

VC SpyGlass Constraints Overview

July 2022

Agenda

- Why Signoff Constraints at RTL?
- VC SpyGlass Platform
- VC SpyGlass Constraints Overview
 - Dynamic Verification of Multi-cycle path and False path
 - DC/PT Compatibility and TCL Support
 - Differential Report Analysis
 - Debug Capabilities

Why Signoff Constraints at RTL?

Why Signoff Constraints at RTL?

Constraints Signoff Upfront Reduces Backend Iterations

VC SpyGlass Platform

VC SpyGlass

Industry leading static verification platform for RTL signoff

10x noise reduction with Al vs. competition

3x performance and ½ the memory vs. competition

Synopsys Design Compiler, PrimeTime, VCS, Verdi compatibility

VC SpyGlass Constraints Overview

VC SpyGlass Constraints Overview

Industry-standard signoff platform accelerating design cycle

- Delivers 3X performance with half the memory and billion+ gate design capacity
- Signoff confidence using exhaustive constraint checks
- Design Compiler and PrimeTime compatibility
- Dynamic and formal verification for multi-cycle and false path
- Debug visibility across abstraction levels

Example Of Typical Clock Issues

VC SpyGlass Constraints Tags – Clocks Checks (1)

Category	VC SpyGlass Tag	Description
	SDC_VIRTUAL_CLOCK_UNUSED, SDC_CLOCK_UNUSED	Constrained clock not used as a clock
	SDC_GEN_CLOCK_NO_SOURCE	A generated clock is not in the fanout of it source clock
	SDC_IO_DELAY_CLOCK_PORT	set_input_delay/set_output_delay has been specified on a clock port
	SDC_SYNC_CLK_DIFFERENT_ROOT	Some clocks in the same clock domain have a different root clock
T	SDC_GEN_CLOCK_PORT	Object on which clock is generated should not be a port
Ī	SDC_CLOCK_OVERLAP	Clock source pin is in the fanout of another clock, but is not generated by that clock
	SDC_CLOCK_PIN_UNCONSTRAINED	Clock not driven by a clock constraint (missing clock constraints)
Clock Intent Checks	SDC_UNCONSTRAINED_SEQ SDC_CLOCK_PIN_CONSTANT SDC_GEN_CLOCK_SOURCE_CONSTANT	Clock driven by a constant value or hanging (clocks is blocked by constant/sdt/sense etc. or clock pin of seq is hanging)
Clock intent checke	SDC_GEN_CLOCK_NO_MASTER	Identifies multiple clocks at the source pin of a generated clock that does not have a master_clock argument
	SDC_GEN_CLOCK_MISSING	Identifies clocks for which generated clock is not defined at a design object
	SDC_GEN_CLOCK_CONVERGE	Ensures a single path for the master clock to its generated clock
	SDC_CLOCK_MULTIPLE_SOURCES	Multiple paths exist from the clock pin of a sequential cell to different clock sources
	Assertion Generation Based Check	Incorrectly defined generated clock using dynamic
	SDC_CLOCK_CONVERGE	Identifies instances when the same clock is converging through different combinational paths
	SDC_CLOCK_ON_MUX_SELECT	Identifies the control pin of a mux in the clock path

Example Of Typical I/O Issues

VC SpyGlass Constraints Tags – I/O & other Categories (2)

Categorization	VC SpyGlass Tag	Description
I/O Delay Checks	SDC_INPUT_DELAY_MISSING	Input not constrained by set_input_delay
	SDC_OUTPUT_DELAY_MISSING	Output has no set_output_delay constraint
	SDC_INPUT_DELAY_INCORRECT	Input constraint associated with wrong (or, incomplete set of) clocks
	SDC_INPUT_DELAY_MISSING_ADD	set_input_delay is set on the same input relative to multiple clocks but -add_delay missing
	SDC_OUTPUT_DELAY_INCORRECT	Output constraint associated with wrong (or, incomplete set of) clocks
	SDC_OUTPUT_DELAY_MISSING_ADD	set_output_delay is set on the same output relative to multiple clocks but -add_delay is missing
Clock Uncertainty,	SDC_CLOCK_UNCERTAINTY_MISSING	Inter clock uncertainty not defined between synchronous clocks
Transition & Latency	SDC_CLOCK_UNCERTAINTY_NEGATIVE	set_clock_uncertainty is set to negative value
Checks	SDC_CLOCK_UNCERTAINTY_INVALID_OBJECT	set_clock_uncertainty constraint set on an object which is not a real or generated clock
	SDC_CLOCK_LATENCY_NEGATIVE	set_clock_latency is set to negative value
	SDC_INPUT_TRANSITION_MISSING	Input transition or drive or driving cell is not defined for input
High Fanout, Load	SDC_LOAD_VALUE_INCORRECT	Load values are outside technology limits
	SDC_HIGH_FANOUT_CLOCK_NET,	High fanout net (clock/non-clock) identified
	SDC_HIGH_FANOUT_NET	
Overlapping/Conflicting Constraints	SDC_CONSTRAINT_CONFLICT	Reports conflicts between set_driving_cell and set_input_transition defined on same object.
	SDC_CONSTRAINT_OVERWRITTEN	Overwritten constraint detected

Synopsys Confidential Information © 2022 Synopsys, Inc. 1

Example Of Typical Clock Relationship Issues

Clock Relationship Verification – SCG Checks (3)

Clock relationship checks to verify correctness of set_clock_group specification

Category	VC SpyGlass Tag	Description
	SDC_CLOCK_RELATIONSHIP_INCORRECT	Generated relationships between clocks and set_clock_groups has been defined between them Ex:- Parent generated relationship exists between Clocks <clk1> and <clk2> and set_clock_groups is defined between them Ex:- Generated Clocks <clk1> and <clk2> are from same master and set_clock_groups is defined between them</clk2></clk1></clk2></clk1>
	SDC_CLOCK_RELATIONSHIP_MISSING	Generated clocks that do not have set_clock_groups defined between them
	SDC_CLOCK_RELATIONSHIP_CONFLICT	Conflicting set_clock_uncertainty constraints for clocks defined as asynchronous/physically exclusive
Clock Relationship Verification	SDC_CLOCK_RELATIONSHIP_INCORRECT	Clocks, which have a set_clock_groups defined but share a harmonic relationship Ex:- set_clock_groups is specified between clocks <clk1> and <clk2> sharing a harmonic relationship</clk2></clk1>
	SDC_CLOCK_RELATIONSHIP_PHYSICALLY_EXCLUSIVE	Multiple clock definitions at the same node as being physically exclusive
	SDC_CLOCK_RELATIONSHIP_MISSING	Missing asynchronous (non-harmonic) set_clock_group between clocks set_clock_groups/set_false_path is not specified between async non-harmonic clocks <clk1> and <clk2></clk2></clk1>
	SDC_CLOCK_RELATIONSHIP_ALLOW_PATH	Asynchronous clocks have defined set_clock_groups with -allow_path
	SDC_CLOCK_RELATIONSHIP_LOGICALLY_EXCLUSIVE	Missing logically-exclusive set_clock_group between clocks

VC SpyGlass Constraints: Performance Results

	Run-time		Memory			
Design	VC SpyGlass	SpyGlass	Gain (X)	VC SpyGlass (GB)	SpyGlass (GB)	Gain (X)
SoC 1 (4B)	14 hours (30 rules)	SpyGlass doesn't complete	<u></u>	357	-	-
Block 1	245 sec	679 sec	2.8	1.7	6	3.3
Block 2	483 sec	1982 sec	4.1	4.4	8	1.8
Block 3	271 sec	2018 sec	7.4	2.1	7.8	3.7
Block 4	272 sec	821 sec	3	1.7	5.5	3.2
Block 5	262 sec	437 sec	1.7	1.8	5.4	3

4 cores: Multi-core rule engines for both design read and constraints analysis

Dynamic Verification for Multi-cycle and False Path

Timing Exception Verification Flow

Static Verification Links to Formal and Dynamic Simulation

- VC SpyGlass Constraints to generate MCP/FP DB
 - Structural checker bedrock for Formal and Dynamic analysis
 - Filtering based on specific cells
- VC Formal (block-level)
 - Bug hunting to identify MCP and FP violations
 - Utilizes MCP/FP database (2-step flow)
- VCS (block & SoC level)
 - Enable inconclusive assertions in simulation
 - Failure using waveform viewer

Assertion Generation and Application

The following diagram shows how SVA is generated

Benefits

- Exhaustively identifying all possible paths from an MCP constraint
- An enable logic which determines change of data in destination register
 - Enable logic formed by evaluating all control signals which affect data path
- Reducing required number of assertions/MCP by identifying common enable logic governing many flat paths

"Enable Condition" Extraction

Statically Identify enabling conditions for MCP paths

- Analyze all multi-cycle paths
 - Consider all combinational enables:
 - MUX, AND, NAND, OR, NOR
- Compute enable condition
- Scalable Solution
 - Single Assertion for multiple destinations of a source with same enable condition

MCP path: C1 → C2 data path: FF1 → FF2 Enable condition: e1 & e2

MCP: Failure debug in Verdi

- Assertion trigger shows failure
- Data in signal "from" is launched on a clock edge and is captured in "to" signal after 4 cycles violating MCP of cycle count 5

False Path Assertion Verification

Supported False Paths

- Clock to clock
- Flop to flop
- Based on Through
- Both rise/fall

DC/PT Compatibility and TCL Support

VC SpyGlass Accelerates Productivity

Reuse DC/PT Setup

```
vc static shell> set search path "<space separated list of
directories>"
                                                              Setup
vc static shell> set link library "<space separated list
of libs>"
vc static shell> analyze -format vhdl -work lib name
                                                               RTL
file.vhd
                                                              Design
vc static shell> analyze -format verilog -work lib name
file.v
vc static shell> elaborate -work lib name DUT
vc static shell> read sdc top.sdc
                                                              Check
vc static shell> check sdc
vc static shell> report sdc
                                                              Report
vc_static_shell> start_gui
                                                               GUI
```

Reuses Design Compiler and PrimeTime Setup with SDC and non-SDC commands

Custom TCL Checks

```
#Unconstrained Clock Pins
sizeof_collection [filter_collection $clockpins "sizeof(clocks)==0"]

#Seqs receiving one clock
sizeof_collection [filter_collection $clockpins "sizeof(clocks)==1"]

#Multi-Clock Seqs
sizeof_collection [filter_collection $clockpins "sizeof(clocks) > 1"]

#Constant data flops
set datapins [get_pins -of_objects [all_registers] -filter "is_data_pin && (case_value==0 || case_value==1)"]

foreach_in_collection p $datapins {
    redirect -file "constant_cells.rpt" {echo "[get_object_name [get_cells -of_objects $p]]"}
}
```

TCL procedure for Custom checks on RTL

Compatible with Design Compiler and PrimeTime

	SDC Commands		Non-SDC Commands
all_clocks	set_min_capacitance	set_max_area	all_connected
all_inputs	set_min_delay	set_max_capacitance	all_fanin
all_outputs	set_multicycle_path	set_max_delay	all_fanout
all_registers	set_wire_load_selection_group	set_case_analysis	all_instances
create_clock	set_max_fanout	set_clock_gating_check	get_attribute
create_generated_clock	set_max_time_borrow	set_clock_groups	get_clock_network_objects
create_voltage_area	set_max_transition	set_clock_latency	get_clock_relationship
current_design	set_timing_derate	set_clock_sense	get_clocks
delay_port_pin_list	set_voltage	set_clock_transition	add_to_collection
set_min_pulse_width	set_wire_load_min_block_size	set_clock_uncertainty	remove_from_collection
get_cells	set_false_path	set_data_check	append_to_collection
get_lib_cells	set_fanout_load	set_disable_timing	define_user_attribute
get_lib_pins	set_ideal_latency	set_drive	get_timing_arcs
get_libs	set_ideal_network	set_driving_cell	get_timing_paths
get_nets	set_ideal_transition	set_operating_conditions	set_sense
get_pins	set_input_delay	set_output_delay	set_cell_mode
get_ports	set_input_transition	set_port_fanout_number	
group_path	set_level_shifter_strategy	set_propagated_clock	
set_level_shifter_threshold	set_load	set_resistance	
max_case_voltage	set_logic_one	set_wire_load_mode	
set_wire_load_model	set_logic_zero		

Analysis using get_trace_paths

```
Usage: get trace paths # Creates a collection of tracing paths for custom reporting and other processings.
               -from <signal>
                                       (Traces specified signal)
               [-mode <mode>]
                                       (Mode with options 'user' for SCA & 'all' for everything )
                                        (Use this option with -from to specify end point of tracing)
               [-to <signal>]
                                        (Use with both -from and -to to specify through which signal to trace)
               [-through <signal>]
                                        (Performs a backtrace. This option cannot be used with -to /-through)
               [-back]
                                        (Maximum number of level for signals in traverse: Value >= 0)
               [-level < signal level>]
                                        (Maximum number of paths to be reported: Value >= 1)
               [-max path <n>]
               [-quiet]
                                        (Suppresses all messages. Syntax error messages are not suppressed)
               [-psw mode]
                                       (Traverse in switch enable mode)
               [-through_sequential]
                                       (Traverse through sequentials)
               [-through icg]
                                       (Traverse through ICG cells)
               [-exhaustive mode]
                                       (Get all paths)
```

Like PT Command analyze_paths, Use Path Tracing Capability for Debug

Path Report Using report_trace_paths

```
Point

Type

Type

D_DWC_mshc_clk_gate/I_AND_clk_gated/OUT

BITWISE_AND

U_DWC_mshc_clk_gate/clk_gated

U_DWC_mshc_uhs2/bclk

U_DWC_mshc_uhs2/U_DWC_mshc_uhs2_tlu/bclk

U_DWC_mshc_uhs2/U_DWC_mshc_uhs2_tlu/U_DWC_mhsc_uhs2_tlu_tpsm/bclk

U_DWC_mshc_uhs2/U_DWC_mshc_uhs2_tlu/U_DWC_mhsc_uhs2_tlu_tpsm/dcmd_ebsy_wait/CLK

SEQ_FF
```

vc_static_shell> report_trace_paths [get_trace_paths -from U_DWC_mshc_clk_gate/enable_scan]
[Info] REPORT TRACE PATHS HEADER: path info:

Waivers Translation to PTC

VC SpyGlass & PrimeTime Constraints Flow

Message based RTL waivers translation to PT based Netlist waiver commands

VC SpyGlass to PrimeTime Constraints Waiver File Format

- Waivers translated for cases involving only registers and ports
 - Different naming between RTL and Netlist for other logic
 - Regular expression supported in waivers
- Unmapped waivers generated in comment form in translated PTC waiver file

Differential Report Analysis

Differential Report Analysis for Incremental Updates

Delivers faster comparisons between two RTL or constraints

- Easy comparison of the results of two runs
 - 2 SDCs on the same RTL
 - 2 incremental RTL with the same SDC

Debug Capabilities

Intuitive Verdi Debug to Accelerate Root Cause Analysis

File glit view Schematic Trace Tools Window

GOWN COURCE

SOURCE

Destination

Reconvergence path

Path

Reonverging gate

Locators pointing to relevant logic

Domain-specific coloring

Debug properties probing

Cross-probe signals between views

VC SpyGlass Constraints Offers Intuitive Insights For Every Check

Input and Output Delay Check – VERIF_IO_INPUT_DELAY_INCORRECT

- Report when Input delay is specified, but associated with wrong clock
- If missed, may lead to incorrect slack assumptions during synthesis
 - Timing closure may fail

VC SpyGlass Constraints Provides Intuitive Annotation in Verdi

Constant and Clock Propagation Annotation in Schematic

- Propagated constant values shown on ports/pins in schematic
- Propagated clock information available in properties window for selected pin/nets in schematic
- SDC constraints
 highlighted with red circled
 + sign on design object

Drive RTL Signoff With Quality Constraints

- Reduce Long Setup Cycles
 - Eliminate interactive setup and manual corrections
 - Automatic extraction of clocks
- Identify and Resolve SDC Issues
 - Clock domain conflicts
 - Clock waveform issues
 - Set case analysis issues
 - General correctness and completeness
- CDC/RDC/LP/DFT Analysis Relies On Clean Clock Constraints for Accurate Analysis
 - Alternative, manage noise in analysis
 - Missed bugs!

Thank You

Recommended Synopsys Constraints Solution

DTI Davalanmant				
RTL Development	RTL Verification	RTL Exploration	Subsystem Signoff	SoC signoff
 Block level Raw RTL (Lint, CDC needed) Dirty/no constraints to start Manual work in generating and validating constraints 	 Blk/Subsystem/SoC level RTL getting better Need to make Constraints synthesis friendly Manual work in creating/ verifying exceptions 	 Subsystem & SoC level PPA tradeoff focus Constraints optimized for implementation Constraints propagation up/down the hierarchy 	Netlist nearing signoffManual work in managing SDC versions	 SoC level Netlist nearing signoff SoC constraints not consistent with subsys Needs to be consistent with final STA signoff
• RTL Constraint generation • RTL SDC checking • RTL 1D2S Equiv	 RTL SDC checking RTL Exception Verif. RTL 1D2S/B2T Equivalence Netlist, SDC, Waivers	 RTL SDC checking Promotion/Demotion Budgeting Netlist, SDC	 Netlist SDC checking Promotion/Demotion Budgeting 1D2S/B2T/2D2S Equiv 	 Netlist SDC checking Promotion/Demotion Budgeting 1D2S/B2T/2D2S Equiv
SpyGlass/VC SpyGlass	SpyGlass/VC SpyGlass	RTL Architect	PTC	PTC

SYNOPSYS* Synopsys Confidential Information © 2022 Synopsys, Inc. 38

SpyGlass Rules Mapping with PTC (1)

SG Rule Name	Description	PTC Rule Name
Clk_Gen01a	Missing primary clock source	UDEF_0001
SDC_209	Generated clock with no master clock (dead clock)	CLK_0003
Clk_Gen26	Generated clock with ambiguous master clocks of different periods	CLK_0028
SDC_257	master_clock not present at -source object (no path from -master_clock, no path from -source)	CLK_0016
Clk_Gen03	create_generated_clock has no logic path from -source object (path exist from other clock sources)	CLK_0016
Clk_Gen03	create_generated_clock has no logic path from -source object (path do not exist from other clock sources)	CLK_0016
Clk_Gen01b	application point of clock is a constant	CLK_0006
Clk_Gen01b	source point of a generated clock is a constant	CLK_0007
Clk_Gen01b	Floating or Undriven register clock pins	DES_0002
Clk_Gen38	clock propagation overlaps with user-applied case analysis	CLK_0042
Clk_Gen09	create_clock blocks clock propagation	CLK_0043
SCG05	Missing physically-exclusive set_clock_group between clocks	CGR 0007
SCG08	Missing logically-exclusive set_clock_group between clocks	UDEF_0014
SCG06	Missing asynchronous (non-harmonic) set_clock_group between clocks	CGR_0010
SCG02	Missing physically-exclusive:inherit set_clock_group between clocks	CGR_0006
SCG01	Incorrect interclock set_clock_group/set_false_path for various categories of sync clock pairs	CGR_0002
SCG01	Incorrect interclock set_clock_group/set_false_path for various categories of sync clock pairs	CGR_0001
SCG01	Incorrect set_clock_groups , source sync clocks/Incorrect interclock false path, source-synchronous.	UDEF_018G
Clk_Gen38	set_case_analysis or propagated-constant register clock pins This rule identifies register clock pins that are driven by a constant.	CLK_0042
Clk_Gen02	Clock has no sink	CLK_0021
Clk_Gen34	clock is overridden by another clock with same name	UIC-034
Op_Del16	Source-Sync Output Data port not constrained to source-sync clock	UDEF_add_rule6
np_Del08/Op_Del08	input output delay constrains is overriden because another input output delay constrains at same point without -add	UIC-043
False_Path12	Clock-Clock False path -setup not covered by -hold	UDEF_add_rule3
MCP09	Clock-Clock Multicycle path -setup not covered by -hold	UDEF_add_rule4
Clk Lat08	negative latency value	UIC-028

MCP Glitch Verification

- MCP paths can have glitches due to reconverging logic that can be sampled
 - Spurious transition at sink flop
- Potential glitch with and without MCP hold specification

Glitch sampled before 3 setup delay