
‘

VC SpyGlass Lint®

User Guide

Version S-2021.09-SP2, March 2022

Copyright Notice and Proprietary Information
 2022 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to
Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys,
Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure
to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the
applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is
not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

Synopsys Statement on Inclusivity and
Diversity
Synopsys is committed to creating an inclusive environment where every employee,
customer, and partner feels welcomed. We are reviewing and removing exclusionary
language from our products and supporting customer-facing collateral. Our effort also
includes internal initiatives to remove biased language from our engineering and
working environment, including terms that are embedded in our software and IPs. At
the same time, we are working to ensure that our web content and software
applications are usable to people of varying abilities. You may still find examples of non-
inclusive language in our software or documentation as our IPs implement industry-
standard specifications that are currently under review to remove exclusionary
language.

Contents

Introduction..7
About this Guide ... 8
Contents of this Manual... 9

Getting Started ...11
Verification Compiler (VC) Platform .. 12
VC Static and Formal Solution ... 13
VC SpyGlass Lint ... 14

Licensing Requirements..15
Key Features of VC SpyGlass Lint...15

VC SpyGlass Lint Methodology Flow .. 16

Reading the Design ...17
Setting Up Design Environment... 18
VC SpyGlass Fundamentals for Lint ... 19

Support for DesignWare (DW) Components ...19
Reusing the Pre-compiled DW Components ...19
Selecting DW Components for Elaboration...20
Language Support ...20
Running the VC Static Shell...20

VC Static Shell Command Line Options ...21
Changing the VC Static Session Name and Location..................................22
Sample Design Setup ...22
Saving and Restoring Sessions Using save_session and restore_session......24
Updating Application Variable Settings..24

Reading the Liberty Files... 27
The search_path and link_library Variable ...27

Using Black Boxes in VC SpyGlass Lint .. 28
Reading the Design ... 29

Application Variables that Impact Reading a Design..................................33
Performing VC SpyGlass Lint Checks ... 35
Analyzing Reports ... 36
v
Synopsys, Inc.FeedbackFeedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

Working with Methodologies and Goals37
Terminology .. 38
Development Phases and Methodologies:.. 40

Development Levels. ..40
Block level Development ...40
SoC level Integration and Implementation...40

Development phases ..40
Initial RTL Development..40
Initial RTL Development on block level..41

RTL Handoff .. 42
RTL Handoff with block level..42
RTL Handoff with SoC level ...42

Netlist Handoff .. 44
Netlist Handoff on block level ..44
Netlist Handoff on SoC level ..44

Layout Handoff.. 45
Understanding GuideWare Goals ... 46
Setting Up Methodology/Goals.. 47
Running Custom Goals .. 53

Using VC SpyGlass Lint ...55
Invoking VC SpyGlass Lint in Tcl Shell Mode.. 56
Sourcing a Tcl Script in VC SpyGlass Lint... 57
Building a Design File .. 58

Building a Design Using Analyze and Elaborate ..58
Building a Design With read_file...58

Using Built-in Tcl Commands... 59
Running Lint Checks.. 60
Reporting Violations.. 61

Ignoring Encrypted Modules ..61
Reporting Same or Similar Tags .. 62
Using Multi-Cores .. 63
Module-based Reporting ... 66
Using Waivers in VC SpyGlass Lint .. 67

Native VC SpyGlass Lint Waivers..67
vi
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

Using Tags in VC SpyGlass Lint..71
About VC SpyGlass Lint tags.. 72
Creating the Configuration File ... 73
Configuring Tag Parameters.. 74
Inferring Hanging Clocks .. 75
Support for STARC and STARC02 Tag Mapping...................................... 76

VC SpyGlass Functional Lint ..81
Invoking VC SpyGlass Functional Lint ...83

Analyzing VC SpyGlass Lint Results...87
Understanding VC SpyGlass Lint Violation Database 88

Configuring Message Tags...88
Debugging Lint Violations Using Tcl .. 93

Examples of Violation Fields ..99
Filtering Messages ... 100
Operations on Tag Definitions .. 101

Reports Generated by VC SpyGlass Lint ...103

Appendix A - Supported Commands ..111
Application Variables ...112

enable_lint ... 112
enable_clk_rst_infer_potential... 112
infer_unique_bbox... 113
language_check_hierarchy_format... 113
lang_check_report_input_path .. 113
lint_debug .. 114
lint_dump_hanging_clocks.. 114
lint_enable_coverage_flow.. 114
lint_enable_pgpins... 115
lint_enable_smart_tag_execution .. 115
lint_formal_disable_stage_name.. 116
lint_functional_mode.. 116
lint_ignore_syncreset_for_asyncflop... 116
lint_ignore_redundant_field_waiver.. 117
lint_load_goal_results .. 117
lint_memory_threshold .. 118
vii
Synopsys, Inc.FeedbackFeedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

lint_no_of_formal_processes ...118
lint_no_of_lang_processes ..118
lint_report_all_paths ..119
lint_report_same_similar_rules..119
lint_report_whole_path...120
lint_spyglass_waiver_report ..120
lint_traverse_depth..120
quick_lint_mode ..121
elab_summary_report_max_inst..122
enable_generate_label_naming ...123
ignore_encrypted_module_violations..124
enable_gw_optional_tag ...124
report_all_hdl_errors ...124

LINT Commands .. 126
check_lint ...126
report_lint ..126
report_violations ...131
waive_lint ...133
view_fl_viol_summary..137
get_flp_summary ..137

LINT Configure Commands.. 139
configure_lint_tag..139
configure_lint_tag_parameter..141
configure_lint_functional_setup ...142
configure_lint_methodology ..143
configure_lint_rca ..144
configure_lint_setup...146

Database Commands... 148
all_clock_gates..148
all_clocks..148
all_connected..148
all_designs ...150
all_fanin ...150
all_fanout ...152
all_inputs ...154
all_instances ...155
all_outputs ...155
change_link ..156
configure_mem_macro_inference ..157
connect_net..158
viii
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

create_bus ... 159
create_cell.. 160
create_net.. 161
create_port... 162
define_user_attribute... 164
disconnect_net.. 165
find ... 166
get_cells .. 166
get_designs .. 169
get_lib_cells ... 171
get_lib_pins.. 174
get_lib_timing_arcs ... 176
get_libs.. 177
get_link.. 179
get_nets .. 180
get_object_name .. 184
get_pins... 185
get_ports ... 188
get_timing_arcs .. 191
insert_buffer... 192
list_designs .. 193
list_instance ... 194
list_libs .. 195
remove_attribute... 196
remove_buffer .. 196
remove_bus.. 197
remove_cell .. 198
remove_net .. 199
remove_port... 200
report_cell .. 201
report_link.. 203
report_net .. 203
report_port... 204
set_always_on_cell .. 206
set_attribute... 206
set_get_command_message_limit ... 207
set_isolation_cell ... 208
set_level_shifter_cell ... 208
set_pg_pin_model ... 210
set_pin_model .. 212
set_power_switch_cell ... 213
ix
Synopsys, Inc.FeedbackFeedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

set_retention_cell ..214
set_top_module ..215

Common Commands.. 216
add_tag_field ..216
analyze ..216
change_names ..219
check_hdl_lib ..220
checkpoint_session ..221
configure_module_synthesis ...221
configure_libcell_uniquification ..222
configure_tcl_command..222
configure_unobservable_logic_identification ..223
configure_waiver_filter_field..224
create_clock ...225
create_generated_clock..227
create_interface_wrapper ...229
create_reset ...230
create_static ...231
define_design_lib...232
define_name_rules ..233
diff_database ..234
disable_tag_field ...236
elaborate..236
generate_waiver_commands ...239
get_blackbox ..241
get_clock_relationship..241
get_constant_sources...243
get_exception ...243
get_field_subfield ..244
get_glassbox...245
get_license ...246
get_no_msg_reporting_tags..246
get_pi_drive_clock...247
get_readmsg_attribute ...247
get_readmsg_field ...248
get_readmsg_ids ...248
get_readmsg_names..249
get_readmsg_names..249
get_supported_tags ...250
get_violation_waiver ..250
get_waiver_attribute ..251
x
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

get_waivers .. 251
index_database... 252
infer_clock_roots ... 252
infer_reset_roots... 253
infer_setup ... 253
link.. 255
link_design ... 256
list_all_waiver_files.. 257
llib... 257
man .. 258
merge_database ... 259
read_file... 259
read_sdc .. 264
remove_case_analysis.. 265
remove_clock.. 265
remove_clock_groups .. 266
remove_generated_clocks .. 267
rename_tag.. 268
report_mode... 269
report_names ... 270
report_properties .. 270
report_read .. 271
report_read_violations ... 271
report_session_data .. 274
report_tag .. 274
reset_mode .. 276
set_case_analysis.. 276
waive_read... 277

Command Sanity Checks ..280
Errors Generated by Tcl Commands.. 280

Migrating Waivers ...287
Working with Waivers..288

SpyGlass to SGUM Migration Flow .. 288
SpyGlass to VCUM Migration Flow .. 292

Migrating Waivers ..294
Applying Waivers ... 295
Migrating Pragma Waivers... 296

Waiving Using GUI ...299
Managing Waivers.. 299
xi
Synopsys, Inc.FeedbackFeedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

Creating a Waiver ..302
Waive all Messages of a Tag ..302
Waive Messages Selectively...305

Reporting Waivers... 309
Debugging Aids ... 310
Waiver-related Commands and Application Variables.......................... 311

Application Variables ..311
Commands ...311

Waiver Configuration Commands..312
Waiver TCL Commands ...312
xii
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Contents'

Introduction
This chapter provides an overview of VC SpyGlass Lint and includes the
following sections:
 About this Guide

 Contents of this Manual
7
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Introduction'

About this Guide

Introduction
About this Guide
The VC SpyGlass Lint User Guide describes the concepts, features, usage,
and tags of VC SpyGlass Lint, which enable you to use the Verilog or
SystemVerilog designs against various coding standards and design tags.
8
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Introduction'

Contents of this Manual

Introduction
Contents of this Manual
The VC SpyGlass Lint User Guide consists of the following sections:

Section Description
Getting Started Provides an overview of VC SpyGlass Lint.
Reading the Design Describes how to read a design in VC SpyGlass Lint.
Working with
Methodologies and Goals

Provides information on using methodologies and
goals.

Using VC SpyGlass Lint Provides reference information for the built-in Tcl
commands implemented in VC SpyGlass Lint.

Using Tags in VC
SpyGlass Lint

Provides detailed procedures for how to configure
and use the prepackaged tags to check your HDL
code.

VC SpyGlass Functional
Lint

Describes the VC SpyGlass Functional Lint flow.

Analyzing VC SpyGlass
Lint Results

Describes the VC SpyGlass Lint violations, how to
debug Lint Violations Using Tcl, and reports
generated by VC SpyGlass Lint.

Appendix A - Supported
Commands

Describes the SDC commands, Tcl commands,
configure commands and application variables
supported by VC SpyGlass Lint.

Migrating Waivers Describes migrating waivers in VC SpyGlass Lint.
9
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Introduction'

Contents of this Manual

Introduction
10
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Introduction'

Getting Started
This section introduces Verification Compiler (VC) Platform, VC SpyGlass,
and VC SpyGlass Lint and is organized into the following sections:
 Verification Compiler (VC) Platform

 VC Static and Formal Solution

 VC SpyGlass Lint
11
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Verification Compiler (VC) Platform

Getting Started
Verification Compiler (VC) Platform
Today's electronic consumer market is driven by a huge demand for
mobility, portability, and reliability. Additional functionality, performance,
and bandwidth are very important for maximizing semiconductor sales in
addition to faster time-to-market and product quality. The evolution of
applications, such as cellular phones, laptops, PDAs, computers, mobile
multimedia devices, and portable systems, has seen an exponential growth
in battery operated systems.

The increase in design complexities and shrinking technologies, where
more and more functionality is being added into smaller area of a chip has
brought in a new set of challenges in System-on-Chip (SoC) verification.
With adoption of advanced techniques and sophisticated tools, which helps
in verifying SoC connectivity, signal integrity, power management, and
functionality of analog components, hardware-software co-verification has
become inevitable.

This brings in a need for a unified and integrated verification environment
with seamless flow and reuse of the information across different domains/
levels to achieve faster results.

Verification Compiler Platform is a next-generation verification solution that
provides a scalable environment, where sophisticated tools work
seamlessly with each other throughout the flow to accomplish various
verification tasks using integration of technologies. It helps in optimizing
design iterations and recompilations, shortens debug cycles, and enables
steady integration and interoperability between individual verification tools.
12
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC Static and Formal Solution

Getting Started
VC Static and Formal Solution
Traditionally, simulation-based dynamic verification techniques have been
the mainstay of functional verification. As modern day SoC designs become
more complex, the adoption of static verification techniques is important.

Synopsys' VC Static and Formal verification solution offers the next-
generation comprehensive VC Formal verification solution, VC SpyGlass
Lint, VC SpyGlass CDC, VC SpyGlass RDC, and VC Low Power verification
solution.

Synopsys' VC Static and Formal verification solution combines the best-in-
class technologies for improved ease-of-use, accuracy, and performance. It
also provides with low violation noise and excellent debug capabilities. This
solution enables designers and verification engineers to quickly and easily
find and fix bugs in RTL before simulation; therefore, reducing the time
needed before software bring-up, hardware emulation, and prototyping.

VC LP is a multi-voltage, static low power rule checker that allows
engineers to rapidly verify designs that use voltage control-based
techniques for power management. VC LP is part of the Synospys Eclypse
Flow. VC LP also helps in pipe-cleaning the power intent of the design that
is captured in IEEE 1801 Unified Power Format (UPF) before such intent is
used as a golden reference for implementation and other verification tools.
Further, VC LP verifies the implemented power-intent later in the design
flow.

VC Formal verification offers property checking that consists of
mathematical techniques to test properties or assertions to ensure the
correct functionality of RTL designs. For more information, see the VC
Formal Verification User Guide.

VC SpyGlass Lint, a static verification tool, performs system-to-netlist
verification using prepackaged tags to check Verilog, SystemVerilog, VHDL
designs against various coding standards and design tags. After you
elaborate your design in the VC Lint environment, you can use built-in Tcl
queries, prepackaged checks, and a set of predefined procedures to run
interactive queries on your design.

RTL code is verified for connectivity correctness between two nodes of a
design using the VC Formal Connectivity Checking solution. For more
information, see the VC Formal Connectivity Checking User Guide.

RTL is further verified for functionality and policy compliance. Model
checking technique exhaustively and automatically checks whether a
13
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Lint

Getting Started
model adheres to a given specification and verifies correct properties of
finite-state systems. For more information, see the VC Formal Verification
User Guide.

VC SpyGlass RDC performs reset verification to report issues, such as
metastability, glitches, and functional failures leading to silicon failure. It
also provides advanced RDC capabilities, such as performing RDC
synchronization in sequential crossing paths, memory modeling, and
extracting reset order automatically from the simulation database. In
addition, it generates RDC reports that you can use to identify
synchronization issues in the design. You can also waive and filter
violations.

VC SpyGlass Lint
VC SpyGlass Lint is a system-to-netlist checker tool that comes with
prepackaged tags to check Verilog or SystemVerilog designs against
various coding standards and design tags.

After you elaborate your design in the VC SpyGlass Lint environment, you
can use the built-in Tcl shell and a set of predefined procedures to run
interactive queries on your design. With full support for Verilog 2001 and
IEEE Std 1800-2005 SystemVerilog design constructs, combined with
extensive RTL and netlist checks, VC SpyGlass Lint can check your designs
for errors that may cause problems in the downstream simulation,
synthesis, and equivalence checking flows.The best way to learn the tool is
to test one of your designs with the Checker and the prepackaged policies
(sets of tags). The prepackaged tags are designed to meet the best coding
guidelines and practices followed in the industry.

VC SpyGlass Lint is a design checker tool that comes with a rich set of
prepackaged tags to check Verilog and SystemVerilog designs against
various coding standards and design tags.

You use the Checker to designate Verilog or SystemVerilog input files that
you want to compare against coding tags that you select with the click of a
mouse. The Checker analyzes your Verilog and SystemVerilog source code
against the selected tags and generates a report indicating which lines in
the code violate the tags. You can then:
 Open the report in the GUI and debug the reported violations

 Generate schematics to debug structural checks.
14
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Lint

Getting Started
 Navigate directly from the violation message in the GUI to its source
code in your HDL files.

 Create filters and waivers for better report management

Licensing Requirements

VC SpyGlass Lint requires the 'VC-LINT-BASE & checker' licenses. Ensure
that these licenses are available before you run VC SpyGlass Lint.

Key Features of VC SpyGlass Lint

The key features and benefits of using VC SpyGlass LINT for static
verification in a typical design are as follows:
 Improved total runtime and PEAK memory

 Unified compilation

 Management of large memories and does not require options to handle
large memories during synthesis

 Word-level traversal and avoidance of bit level traversal (if needed)

 Consistent handling of clocks and resets

 Multi-message and multi-line support

 Tag-specific reports

 Noise reduction using the allviol parameter

 V2k language support

 VHDL2008 support

 Complete IEEE 1800-2005 System Verilog design constructs

 Saving and restoring elaborated design view
15
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Lint Methodology Flow

Getting Started
VC SpyGlass Lint Methodology Flow
Figure 1 shows the VC SpyGlass Lint methodology flow.

FIGURE 1. VC SpyGlass Lint Methodology Flow
16
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Design
This section describes how you can get started with VC SpyGlass Lint.
17
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Setting Up Design Environment

Reading the Design
Setting Up Design Environment
You must provide the synthesizable design files (RTL/Netlist) to perform
Lint verification.

Licensing and Installation

This release of VC Static Platform is a standalone platform and must be
installed in an empty directory, using the latest version of the Synopsys
Installer. Do not install this release over an existing release of a Synopsys
tool.

For installation instructions, see the vc_static_INSTALL_README.txt file
in the product download directory. For detailed installation instructions, see
the Synopsys Installation Guide at the following address:
http://www.synopsys.com/install

Before running Synopsys tools, you must have installed and configured the
Synopsys Common Licensing (SCL) software, retrieved your license key
file, and defined the license file environment variable. For detailed
information about SCL installation and setup, see the Synopsys Licensing
Quickstart Guide at the following address:
http://www.synopsys.com/licensing

For more information on the VC Static license keys, see section VC Static
Product Installation Notes.
18
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
VC SpyGlass Fundamentals for Lint
VC SpyGlass Lint uses the synthesizable RTL files to perform Lint
verification. The tool provides you with commands that you can use to
create and verify Lint setup, perform various checks on the design.

VC SpyGlass Lint reports the results of the checks performed on the design
in the form of violation tags. A violation tag can be an Error, Warning, or
Info type depending on the type of violation reported.

Support for DesignWare (DW) Components

VC Static supports usage of DesignWare components in the RTL. To compile
DW components, use the dw_analyze command as shown below:

dw_analyze -dwroot <DC-install-path> <dir-name>

Where:
 <DC-install-path> specifies the path to Design Compiler

 <dir-name> specifies the directory where the compiled DW is stored

For example, consider the following command:

dw_analyze -dwroot /global/apps/syn_2016.12-SP3
NG_DW_WORK_1712

In the above command, /global/apps/syn_2016.12-SP3 specifies the
path to DC and NG_DW_WORK_1712 is the name of the directory where the
compiled DW is generated.

Reusing the Pre-compiled DW Components

You can use DW components that are compiled in a previous major release
by saving the compiled DW components to an appropriate location that is
accessible by other users. Users can use this compile in all Service Pack
releases of the major VC Static release. You need to recompile the DW
components when you move to the next major VC Static release.

For example, if you compile DW components in the VC Static 2017.12
release and save it at a central location, all users can use the compile in all
the VC Static 2017.12-SP* releases.
19
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
To use such compiled DW components, use the following command:

set_app_var vsi_dwroot <path>/NG_DW_WORK_1712

Where, <path> specifies the directory where the compiled DW components
are stored.

NOTE: You can save the compiled DW components on your local machine and use it in
successive SP* releases as well.

Selecting DW Components for Elaboration

If both RTL and DW pre compiled libraries are present in a design, VC
SPYGLASS, by default, uses the RTL definition for elaboration. This might
lead to creation of blackboxes of the DesignWare components in the
design.

Set the prefer_dw_over_rtl application variable to true to enable VC
SpyGlass to use the DW pre-compiled libraries instead of RTL.

Language Support

VC Static platform supports the following industry standard HDLs:
 Verilog (1995, v2k)

 VHDL (‘87, ‘93, 2008)

 SystemVerilog 1800-2005, and 2009

 Mixed Language Design

Running the VC Static Shell

VC SpyGlass Lint uses the pivotal environment variable,
VC_STATIC_HOME. This variable must be set to point to the installation
directory as shown in the following code snippet. In the installation
directory, you can find the bin, lib, doc and other directories.

% setenv VC_STATIC_HOME /tools/synopsys/vcst

Optionally, you can add $VC_STATIC_HOME/bin to your $PATH. To start the
VC Static tool, execute the following command:
20
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
% $VC_STATIC_HOME/bin/vc_static_shell

To invoke the VC Static platform from the shell in the 64-bit mode (default
mode), use the following command:

%vc_static_shell

VC Static Shell Command Line Options

The following command line options are available for VC Static. The options
might be abbreviated by leaving out the text in parenthesis; for example,
either –f or –file can be used to give the name of a script file to execute.

Syntax

%vc_static_shell -help

Usage: /~/Release/bin/vc_static_shell

[-batch]Start tool in batch mode (non-interactive).

[-cmd_log_file <log_name>]Name of command log file in current
directory.

[-f(ile) <file_name>]Script file to exec after setup.

[-gui]Start the GUI ActivityView.

[-h(elp)]Print this help message.

[-id | -ID] Give more information about application build/
env.

[-lic_wait <minutes>]Wait for license for #minutes.

[-no_init]Don't load .synopsys_vcst.setup files.

[-no_restore]Remove previous session and start a new one.

[-no_ui]Starts the tool without the GUI/UI process.

[-output_log_file <log_name>]Capture console output in given
log file.

[-read_only]Restore a previous session in read-only mode.

[-restore]Restore a previous session.

[-session <session_name>]Use the <session_name> directory
21
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
for the runtime database.

debug options:

[-echo]Echo the environment but do not invoke the executable.

Use Model

Using vc_static_shell in batch mode

%vc_static_shell -f vcst.tcl -batch

Using vc_static_shell in interactive mode

%vc_static_shell -f vcst.tcl

NOTE: When you use the -batch option, VC Static automatically quits the shell even when
quit is not explicitly specified in the vcst.tcl file or when an unexpected error occurs
and the full run is not complete. This is useful for regression runs.

Changing the VC Static Session Name and Location

After vc_static_shell is run in any user work directory, VC Static creates
a default session (work database directory) in the current working area
called vcst_rtdb [VC Static Run Time Data Base] along with default log
files. The default session name is vcst.

You can change the name of the session and the location of the session at
the time of invoking vc_static_shell.

%vc_static_shell -session my_path/my_session <other
commands>

This command creates a database directory named my_session_rtdb in the
./my_path directory.

Sample Design Setup

The following script file is a sample script that you can use to run VC
SpyGlass Lint flow in vc_static_shell.
Note to set respective app_vars' and other settings in below
order.

Basic VC SpyGlass LINT TCL file.
22
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
Edit, fill in <options> and uncomment any settings/commands,
then save.

#Settings to enable VC SpyGlass LINT flowset_app_var
enable_lint true

#Following command reads Cell library files in .db format set
search_path < Path to directory which contain db files> set
link_library <db file list which located in search path> Refer
to the Reading the Liberty Files section for details.

Enabling/Disabling VC Spyglass LINT tags
configure_lint_tag -enable -tag "<tag_name>" -goal <goal_name>

configure_lint_tag_parameter -tag "<tag_name>" -parameter
<parameter_name>

-value {<value>} -goal <goal_name>

configure_lint_setup -goal <goal_name>

Set below settings after the "Enabling/Disabling VC
Spyglass LINT tags" settings
Design read

define_design_lib WORK -path ./WORK/VCS
 analyze -format <Verilog/sverilog/vhdl> {-f <file_list> }
-vcs {<vcs_command>}
elaborate <top_module_name>

#Command to check LINT
check_lint

#Following command generates verbose report
report_lint -verbose -file <File_name> -limit 0

Show results in GUI
23
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
view_activity

Saving and Restoring Sessions Using save_session and
restore_session

VC SpyGlass Lint enables you to save the results of the run after the
check_lint TCL command and restore the results in the subsequent run from
the same point. You can use GUI based debugging, applying waivers and
report generation in the restored run.

When you exit the vc_static_shell, the results of the current session are
not automatically saved. To save the session setup and run data, use the
save_session command. The command uses the following syntax:

save_session
-session <session_name>

where, -session <session_name> specifies the name to be used to save
the session.

To restore a saved session, use the restore_session command. The
command uses the following syntax:

restore_session

[-session <session_name>]

where, -session <session_name> specifies the name of a previously saved
session.

Updating Application Variable Settings

VC SpyGlass Lint offers a list of application variables that can be used as
per your requirements. To see the list of all the available application
variables and their current settings in the vc_static_shell, use the
following command:
%vc_static_shell> printvar (or)

%vc_static_shell> report_app_var
24
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
The printvar command reports all variables including user-defined
variables while the report_app_var command reports only the VC Static
and Formal application variable settings.

Example 1

%vc_static_shell> printvar

......

......

....

 lint_enable_coverage_flow = "false"

 lint_enable_pgpins = "false"

 lint_enable_smart_tag_execution = "false"

 lint_functional_mode = "false"

 lint_ignore_encrypted_violations = "false"

 lint_ignore_syncreset_for_asyncflop = "false"

...

...

....

.....

Example 2
vc_static_shell> report_app_var *lint*

Variable Value Type Default Constraints

--------- --------- ------- ---------- ---------------
enable_lint false bool false

lint_debug 0 int 0

lint_enable_
coverage_flow false bool false

lint_enable_
pgpins false bool false

lint_enable_smart
_tag_execution false bool false
25
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Fundamentals for Lint

Reading the Design
lint_functional_
mode false bool false

Example 3

vc_static_shell> report_app_var lint_functional_mode
-verbose

Variable Value Type Default Constraints

--------- --------- ------- ---------- ----------------

lint_
functional_
mode false bool false

Enables formal aware lint

You can change the default behavior of VC SpyGlass Lint by changing the
default settings of the application variables. You can use the set_app_var
command to change the setting of an application variable. The following
example shows how to set a variable:

vc_static_shell> set_app_var lint_enable_coverage_flow true
26
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Liberty Files

Reading the Design
Reading the Liberty Files
For pure RTL designs, supplying liberty files is not necessary, However,
supplying liberty files is necessary for RTL designs with pre-instantiated
cells and for most logical/physical netlist designs. You must provide all the
required liberty files using search_path and link_library application
variables before reading the design. After the link_library and
search_path commands are set, read the design using the read_file
command.

The search_path and link_library Variable

The search_path application variable specifies a sequence of directories
where VC SpyGlass Lint looks for the library (.db) files. The specified
directories are searched before a new library file is loaded.
%vc_static_shell> set_app_var search_path <list of all the paths>

 Specify all the paths where VC SpyGlass Lint should search for the
library files and design files. The paths might be absolute or relative to
the directory from which VC SpyGlass Lint is invoked.

 If multiple paths are present, specify the paths as space separated
values in double quotation marks.

 The search_path variable supports environment variables.

 The search_path variable does not support wildcard characters.

The link_library application variable specifies a list of .db library files to
be searched when a cell instantiation is to be resolved.
%vc_static_shell> set_app_var link_library <list of .db files>

 Specify all the library files that should be read.

 Only Liberty .db files (not .lib files) are read in by the tool.

 If multiple .db files are present, specify the paths as space separated
values in double quotation marks.

 The link_library variable does not support environment variables.

Example
%vc_static_shell> set_app_var search_path “. path1 path2 …"

%vc_static_shell> set_app_var link_library “lib1 lib2 … libN"
27
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Black Boxes in VC SpyGlass Lint

Reading the Design
Using Black Boxes in VC SpyGlass Lint
A black box is either categorized as an automatic black box or a user-
defined black box as described below:
 A user defined black box is created using the Tcl command

set_blackbox. This needs to be done before using the analyze/
read_file commands.

For example, to black-box the module moduleA, use the following command:

set_blackbox -designs {moduleA}

read_file -format verilog -top top <design file name.v>

 An automatic black box is marked by the tool automatically. To see the
designs marked as a black box, use the following command:

vc_static_shell> get_blackbox -designs

VC SpyGlass Lint issues the following message for each black boxed
module instance:

Note-[SM_BB_SKIP] Skipping blackboxed Module/Entity

In a design that contains one or more black boxes, the black boxes are
elaborated with the following implicit hardware:
 Each input port of a black box is connected inside the corresponding

module entity to one input of one implicit combinatorial gate (of
undefined type).

 Each output port of a black box is driven inside the corresponding
module by one output of one implicit combinatorial gate (of undefined
type).

 Each inout port of a black box has both characteristics above as an input
and an output port.

VC SpyGlass Lint does not perform tag checking for black-boxed modules
and all modules that are instantiated in a black-boxed module.
28
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Design

Reading the Design
Reading the Design
VC SpyGlass Lint reads design in RTL (verilog, VHDL, SystemVerilog) and
netlist (verilog) formats.

VC SpyGlass Lint provides the following commands to read a design:
 read_file: Read in design source files, and link design in memory. This

command can be used to load design in a single language (Verilog/SV or
VHDL). Using this command, you can specify all source files in one
command in a single language environment. The files get analyzed and
then elaborated. Upon completion of the command the complete design
has been loaded and is ready to be used. The command returns 1 on
success and 0 on failure.
Syntax:
%vc_static_shell> read_file -help

Usage: read_file # Reading design files

[-top <top_design>] (Name of the top design)

[-library <library_name>] (Remaps work library to library_name)

[-define <list of verilog defines>](Verilog/SV defines)

[-work <work_library>] (alias for -library)

[-netlist] (Verilog Netlist Reader)

[-parameters <comma-separated list of ordered or named
parameters>](design parameters)

[-vcs <vcs command line>] (VCS Command line for reading design)

[-vcs_elab <vcs elaborate command line>](VCS Command line for
elaborating design)

[-format <file format>] (Verilog/SV defines: Values: verilog,
sverilog, vhdl, mdb)

[-sva] (Process SVA/PSL during compilation
using 2009 semantics)

[-sva2005] (Process SVA/PSL during compilation
using 2005 semantics)

[-v2kconfig <configuration-name>](Specifies the v2k
configuration)

[-buildTop <dut name>] (Specifies the DUT down from which
29
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Design

Reading the Design
synthesis model is generated)

[-multi_step] (Load design in multi-step mode)

[-cov <metric_type>] (Enables coverage instrumentation
during compilation)

[-llk <llk_type>] (Creates livelock goals during
compilation)

[-aep <aep_type>] (Enables AEP extraction during
compilation)

[-inject_fault <fault_type>](Injects behavioral faults in the
design for doing sign-off with
formal)

[-j <number_of_processes>] (Specifies the number of processes to
use for parallel compilation: Value
>= 1)

[slist] (List of input files)

NOTE: For details on how to compile a design using the VCS standard switches, see the
VCS® MX/VCS® MXi™ User Guide. You can download this document from Solvnet.

 analyze: Analyzes the specified HDL source files and stores the design
templates into the specified library in a format that is ready to elaborate
to form linkable cells of a full design. Using this command, you can
specify multiple source files in a single language in one command. On
completion of the command, all specified files are analyzed and are
ready for elaboration. The command returns 1 on success and 0 on
failure.
Syntax:
%vc_static_shell> analyze -help

Usage: analyze # Analyze the source files

[-format <file_format>] (Specify file format:
Values: verilog, vhdl, sverilog,
sysc, spi)

[-library <library_name>] (Remaps the work library to
library_name)

[-work <library_name>] (Remaps the work library to
library_name)

[-define <define_macros>] (Spcify list of top-level macros)
30
Synopsys, Inc. Feedback

https://spdocs.synopsys.com/dow_retrieve/latest/home_public/vcs.html
mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Design

Reading the Design
[-vcs <vcs_cmd>] (VCS Command line for reading design)

[design_file_list] (List of source files)

NOTE: When you use the -vcs switch, the vlogan and vhdlan arguments and switches must
be enclosed in curly braces.

Examples:
analyze -format verilog {test.v}

analyze -format vhdl {test.vhd}

analyze -format vhdl -vcs {-vhdl08} test.vhd

analyze -format vhdl -vcs {-f filelist_vhdl.f}

analyze -format verilog -vcs {+define+g90d -f sources_ng.f}

analyze -format verilog -vcs { +incdir+src/./sim_1 -f
sources_ng.f}

analyze -format verilog -vcs { +incdir+src/./sim_1 -f
sources_ng.f}

 elaborate: Builds a design from the intermediate format of a Verilog
module, a VHDL entity and architecture, or a VHDL configuration. Using
this command, the user can elaborate design from pre-analyzed design
files, from a specified top module. This command returns 1 on success
and 0 on failure.
Syntax
%vc_static_shell> elaborate -help
Usage: elaborate # Elaborate the design, which is analyzed
using analyze command

[-work <library_name>] (Specifies the library name to which
work is to be mapped)

[-library <library_name>] (Specifies the library name to which
work is to be mapped)

[-architecture <arch_name>](Specifies the name of the
architecture)

[-parameters <param_list>] (Specifies a list of design
parameters enclosed in quotation
marks)

[-file_parameters <file_list>](Specifies a list of files that
contain parameter specifications)

[-vcs <vcs_cmd>] (VCS Command line for elaborating
31
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Design

Reading the Design
design)

[-sva] (Process SVA/PSL during compilation
using 2009 semantics)

[-sva2005] (Process SVA/PSL during compilation
using 2005 semantics)

[-v2kconfig <configuration-name>](Specifies the v2k
configuration)

[-buildTop <dut name>] (Specifies the DUT down from which
synthesis model is generated)

[-cov <metric_type>] (Enables coverage instrumentation
during compilation)

[-llk <llk_type>] (Creates livelock goals during
compilation)

[-aep <aep_type>] (Enables AEP extraction during
compilation)

[-inject_fault <fault_type>](Injects behavioral faults in the
design for doing sign-off with
formal)

[-j <number_of_processes>] (Specifies the number of processes to
use for parallel compilation: Value
>= 1)

design_name (Specifies the name of the design to
build)

NOTE: (1) If there is one design top, it must not be passed using vcs arguments, that is,
elaborate –vcs {designtop}. It must be passed as follows: elaborate
designtop
(2) For a model with testbench, you must pass the arguments as follows:
elaborate dut_top -vcs "tb_top"
Where, “dut_top” is the design top, and “tb_top” is the testbench top.
(3) Set the cdc_number_of_processes application variable before the
sg_read_project command to specify if value of the -j argument of the
elaborate command should be generated in the internal.tcl and
vc_setup.tcl files created by the sg_read_project command.

 read_verilog: Reads in one or more design or library files in Verilog
format.
Syntax:
32
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Design

Reading the Design
%vc_static_shell> read_verilog -help

Usage: read_verilog # Read one or more verilog files

[-netlist] (Use structural Verilog netlist
reader)

[-rtl] (Use RTL Verilog)

file_names (Files to read)

 read_vhdl: Reads in one or more designs or library files in VHDL
format.
Syntax
%vc_static_shell> read_vhdl -help

Usage: read_vhdl # Read one or more vhdl files

[-netlist] (Use structural VHDL netlist reader)

file_names (Files to read)

 read_sverilog: Reads in one or more design or library files in
SystemVerilog format.
Syntax
%vc_static_shell> read_sverilog -help

Usage: read_sverilog # Read one or more systemverilog files

[-netlist] (Use structural Verilog netlist
reader)

[-rtl] (Use RTL Systemverilog)

file_names (Files to read)

Application Variables that Impact Reading a Design

There are few application variables that affect the design read and
database generation. Before you start reading the design, ensure that you
review and set these application variables as per your design read
requirements.
 analyze_skip_translate_body

 hierarchy_delimiter

 sh_continue_on_error
33
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reading the Design

Reading the Design
 language_check_hierarchy_format

 enable_timing_arc_for_bbox_detection

 prefer_lib_or_rtl_model

For details on each of these application variables, refer to the man pages.
34
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Performing VC SpyGlass Lint Checks

Reading the Design
Performing VC SpyGlass Lint Checks
Performing VC SpyGlass Lint checks involves performing language checks,
performing structural checks.

To perform LINT checks, use the following command:

%vc_static_shell> check_lint

%vc_static_shell> check_lint -help
Usage: check_lint # Invoke VC SpyGlass Lint application
35
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Analyzing Reports

Reading the Design
Analyzing Reports
After performing VC SpyGlass Lint checks, analyze the reports that VC
SpyGlass Lint generates.
36
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Working with
Methodologies and
Goals
GuideWare is the testing platform to check the functionality of various
goals by running them on different types of designs. The designer keeps
modifying and adding goals until the desired coverage is achieved from
these goals.

This section explains the following topics:
 “Terminology”

 “Development Phases and Methodologies:”

 “RTL Handoff”

 “Layout Handoff”

 “Understanding GuideWare Goals”

 “Setting Up Methodology/Goals”

 “Running Custom Goals”
37
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Terminology

Working with Methodologies and Goals
Terminology
This section defines some commonly used terms that have a specific
meaning in the VC SpyGlass environment.
 Tag: In VC SpyGlass environment, a 'Tag' represents the atomic unit of

RTL analysis and checking performed by the VC SpyGlass software.
Although a 'Tag' can be configured, it cannot be further sub-divided to
select what analysis is performed.

 Violation Message: A violation message (or simply a message) is unit of
VC SpyGlass reporting. When a VC SpyGlass 'Tag' detects a design
condition not consistent with the rule requirement, it reports each such
occurrence as a (violation) message. In addition to text message, such
report usually contains other supporting data, such as back-reference in
RTL source code where such problem originates, schematic highlight of
the problem, detailed tables and graphs (as in power activity over time),
waveform for a formal 'witness' (such as a false path proven to be not a
false path), and so on.

 Parameter: In VC SpyGlass environment, a 'Parameter' is like an option
to a tag that dictates the tag behavior. Parameters are typically used to
make the tag do specific or detailed analysis of the RTL.

 Goal: A VC SpyGlass goal is a collection of relevant tags that are
grouped together to perform a specific task. In addition to the tag list, a
goal may further configure the parameters and redefine severity labels
assigned to these tags. VC SpyGlass software release contains a useful
set of many widely applicable goals. However, a user may fine-tune
existing goals or create new goals to meet their specific design and
workflow needs.

 Methodology: A VC SpyGlass methodology is a set of relevant goals that
are grouped together to achieve a particular design goal. In addition to
software, these sub-methodologies contain detailed documentation to
assist customer in understanding specific usage and debug nuances.

 Severity: A VC SpyGlass violation message is tagged with an attribute,
called severity, which helps to identify the criticality of reported
message, within the context of a goal and sub-methodology being run.
VC SpyGlass supports four main severity classes: FATAL, ERROR,
WARNING, and INFO. A VC SpyGlass tag or goal can define a (severity)
text label belonging to one of the above classes, and attach it to a tag.
38
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Terminology

Working with Methodologies and Goals
 Waivers: A VC SpyGlass 'waiver' is a method for user to review a tag
(violation) message and flag a specific occurrence (or set of
occurrences) as acceptable in context of their design and workflow. This
is a very important mechanism to flag an apparently non-compliant
design scenario as intended and verified by actual design or verification
engineer. In the SoC design workflow, the VC SpyGlass waivers play a
very significant role both in Block regressions and in Block handoff to
SoC integration and implementation teams.

 SGDC: SGDC is an abbreviation for 'VC SpyGlass Design Constraints',
and is used to capture additional designer intent of the block/SoC
functionality which are not obvious at RTL/netlist. SGDC is used for
capturing a wide variety of design intent, related with clock domain
crossing, power, testability, etc.
39
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Development Phases and Methodologies:

Working with Methodologies and Goals
Development Phases and Methodologies:
A VC SpyGlass methodology is a set of relevant goals which represents a
sign-off phase of ASIC development. Methodology includes goals which are
arranged with pre-defined parameter.

Development Levels.

Currently we use lint at two major development levels, block level SoC
level.

Block level Development

The process of the development of a new RTL goes through progressive
RTL refinement starting with simpler goals that meet the functional
requirements, such as functional correctness and simulation and synthesis
readiness of the code. As the RTL code and design constraints mature, the
design goals evolve to performance, testability, and meeting handoff
requirements. In this field of use, this design phase recommends three
methodology flow.

SoC level Integration and Implementation

During SoC design or a subset of design (sub-system) that has been
integrated by using various blocks, consistency across blocks is required.

This field of use involves checks related to inter-block/inter-IP issues. In
addition, it ensures that block constraints are consistent with SoC
constraints. In this field of use, this design phase recommends a four-stage
flows.

Development phases

Initial RTL Development

The initial RTL design goal set contains a set of checks for the stage of the
40
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Development Phases and Methodologies:

Working with Methodologies and Goals
project when the RTL is still in coding development and may not be
functionally complete. The idea is not necessarily to be clean all at once but
provide a starting point for getting to the clean RTL.

The design team faces the following lint related challenges during this
stage:
 Issues related with correct code capture

 Issues related with simulation and synthesis

 Issues with basic connectivity

 Issues related with basic structure like combinational loops and multiple
drivers

Initial RTL Development on block level

During this stage, an initial version of the RTL is completed, and an initial
set of SGDC constraints are available. This stage involves basic structural
and sanity checks of the design (and constraints, wherever appropriate). In
addition, issues related to connectivity, synthesizability, preliminary clocks,
and reset integrity issues, such as glitches and clock-MUXing are also
checked during this stage.

For this stage, methodology recommends a set of goals that can be used
by individual RTL designers to correct the issues within their own desktop
environment before simulation and synthesis tasks can begin. These goals
are recommended to be used quite frequently. In some cases, designers
use these goals before checking-in their RTL code. Waivers, if any, should
be captured on an ongoing basis.

This stage may involve some micro-architectural changes related with bus
widths, RAM/ROM usage, and clock phase/frequency refinements. It is
important to ensure that the proposed micro-architectural changes are
reflected in the RTL without any adverse impact on the implementation
issues.
41
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

RTL Handoff

Working with Methodologies and Goals
RTL Handoff
The rtl_handoff goals are a super-set of the initial_rtl goals. This stage
contains the complete set of recommended RTL Handoff checks.

The design team faces the following lint related challenges during this
stage:
 Issues related with verification regressions and associated bug fixes

 Issues related with incomplete handoff

 Providing closure on various implementation issues, such as
synthesizability, timing, constraints, clock domain crossings, testability,
congestion/routing, and power management

An incomplete handoff results in expensive and unpredictable error-prone
iterations during the SoC integration phase. Handoff is assumed to be the
hand-off from the RTL design team to the post-synthesis implementation
team or hand-off to System Integration (sub-system or SoC) integration.

Since the hand-off process is typically iterative, it is not necessarily
expected that all goals will be clean at the first hand-off, but at least the
issues will be known and can be communicated to the consumers
downstream.

RTL Handoff with block level

This is the final completion and handoff stage for the RTL. By this stage, it
is assumed that the RTL has already been refined as per the methodology.

Most checks are applicable at this point before backend implementation
begins. During this stage, the micro-architecture and majority of the logic
is stable. VC SpyGlass goals are used to perform handoff checks with
appropriate waiver definitions.

At this milestone, the block is expected to be clean and all the necessary
inputs are expected to be in place before you perform the final VC
SpyGlass run. It is also expected that the user is able to share the setup,
constraints, waivers, reports, and so on, with the customer.

RTL Handoff with SoC level
42
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

RTL Handoff

Working with Methodologies and Goals
During this stage, the SoC/sub-system integration team assembles the RTL
blocks and IPs to form a SoC/sub-system. These RTL blocks are usually
designed by different teams. The design teams may also use third party or
legacy IPs.

The goals used during this stage target the following objectives:
 Check the complete design intent captured in individual blocks and their

assembly
 Correct various inter-block issues, such as combinational loops and

unconnected ports
 During this stage, the intent is to clean the RTL before production level

synthesis begins.
43
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Netlist Handoff

Working with Methodologies and Goals
Netlist Handoff
The netlist_handoff goals are designed to check post-synthesis netlist prior
to layout. These checks are ideal for hand-off to the backend physical
implementation team or ASIC handoff

Netlist Handoff on block level

This stage when the handoff RTL is synthesized, and netlist is handed off
for backend implementation. All structural checks at RTL hand off are
applicable here. In addition, certain ERC checks are appropriate at this
stage. This netlist is used by many groups as a starting point for their tasks
(such as floor planning, test insertion, power estimation, and reduction
analysis). VC SpyGlass goals are used to perform handoff checks with
appropriate waiver definitions.

The following table describes recommended Base VC SpyGlass goals for
each of the three stages of the new Block/IP development.

Netlist Handoff on SoC level

This netlist is used by many groups as a starting point for their tasks (such
as floor planning, test insertion, power estimation, and reduction analysis).
During this stage, third party tools modify the preliminary netlist for scan
and BIST insertion and power-related gating. This version of netlist is
known as pre-layout netlist by most of the design teams. The goals used

during this stage ensure that the original design intent is not adversely
impacted during these modifications. The goals and sub-methodologies
recommended for this stage ensure the integrity of the complete SoC-level
netlist from ERC perspective.
44
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Layout Handoff

Working with Methodologies and Goals
Layout Handoff
This is only available for SoC level.

During this phase, the SoC post layout netlist is closest to silicon. It is
important to ensure final integrity of this post-layout netlist before tape-
out.

Recommended goals allow the designer to ensure integrity of post-layout
netlist during the ECOs and before the final handoff for tape-out.
45
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Understanding GuideWare Goals

Working with Methodologies and Goals
Understanding GuideWare Goals
A goal is a collection of relevant tags that are grouped together to perform
a specific task. In addition to the tag list, a goal may further configure the
tag parameters and redefine severity labels assigned to these tags. VC
SpyGlass Lint contains a useful set of many widely applicable goals.
However, you can fine-tune existing goals or create new goals to meet their
specific design and workflow needs.
46
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Setting Up Methodology/Goals

Working with Methodologies and Goals
Setting Up Methodology/Goals
To view the default methodology and goal, select the expand button for
Check Lint panel, as shown in the following figure:

FIGURE 1. Select Methodology

When you select a methodology in the GuideWare Methodology section, the
goals in the Goal section change accordingly.

When you click on the Check Lint option after you select a methodology
and a goal, the corresponding Tcl commands are run.

For example, in FIGURE 1. , the Block/inital_rtl methodology and the
lint_rtl goal is selected. Now, when you click the Check Lint option, the
following Tcl commands are run:

#configure_lint_methodology -path $::env(VC_STATIC_HOME)/
auxx/monet/tcl/GuideWare//block/netlist_handoff/lint/ -goal
lint_netlist ;
47
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Setting Up Methodology/Goals

Working with Methodologies and Goals
The following table lists the supported methodologies in VC SpyGlass Lint
and their corresponding goals:

TABLE 1 Goals and Methodologies

Methodol
ogy

Goals Description

block/
initial_rtl

lint_rtl,
lint_rtl_enh
anced

This goal performs following checks on block RTL
• Basic connectivity issue in the design, such as

floating input, width mismatch, etc.
• simulation issues in the design, such as

incomplete sensitivity list, incorrect use of
block/ nonblocking assignments, potential
functional errors and possible simulation hang
& simulation race cases.

• Unsynthesizable constructs in the design and
code that can cause RTL vs. gate simulation
mismatch.

• structural issues in design that affect the post-
implementation functionality or performance of
the design. Examples include multiple drivers,
high fan-in MUX, and synchronous/
asynchronous use of resets.

• These checks should be run after every change
in RTL code prior to code-check-in

block/
rtl_handof
f

lint_rtl,
lint_rtl_enh
anced

This is similar to block lint_rtl but applicable only
for netlist_handoff.

netlist_ha
ndoff

lint_netlist This is similar to lint_rtl but applicable only for
netlist_handoff.
48
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Setting Up Methodology/Goals

Working with Methodologies and Goals
soc/
initial_rtl

lint_rtl,
lint_rtl_enh
nced

This goal performs following checks on SoC RTL
• Basic connectivity issue in the design, such as

floating input, width mismatch, etc.
• simulation issues in the design, such as

incomplete sensitivity list, incorrect use of
block/ non-blocking assignments, potential
functional errors and possible simulation hang
& simulation race cases.

• unsynthesizable constructs in the design and
code that can cause RTL vs. gate simulation
mismatch.

• structural issues in design that affect the post-
implementation functionality or performance of
the design. Examples include multiple drivers,
high fan-in MUX, and synchronous/
asynchronous use of resets.

These checks should be run after every change in
RTL code prior to code-check-in.

soc/
rtl_handof
f

soc/
netlist_ha
ndoff

lint_netlist This is similar to SoC lint_rtl but applicable only
for netlist_handoff

soc/
layout_ha
ndoff

lint_netlist This goal checks basic connectivity issues in the
design, such as floating input and width
mismatch. These checks should be run after every
change.
This goal performs netlist integrity checks such as
connectivity, simulation and structural issues.
This goal must be run when synthesis is complete
and after each major step in SoC implementation,
such as scan-insertion, and power-gating.

lint_forma
lity

block/
initial_rtl

This goal clubs all the formality related rules and
helps user to run all these formality related rule in
one go.

block/
rtl_handoff

Similar to block lint_formality but applicable to
netlist handoff

TABLE 1 Goals and Methodologies

Methodol
ogy

Goals Description
49
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Setting Up Methodology/Goals

Working with Methodologies and Goals
lint_dcco
mpat

block/
initial_rtl

This goal clubs all the rules to perform lint check
for DC compatibility and helps user to run all
these rule in one go.

block/
rtl_handoff

similar to block lint_dccompat but applicable for
netlist handoff.

lint_synth block/
initial_rtl

This goal clubs all the rules to perform earlier
identification of simulation synthesis mismatch
and helps user to run all these rules in one go.

Block/
rtl_handoff

Similar to block lint_synth but applicable for
netlist handoff.

TABLE 1 Goals and Methodologies

Methodol
ogy

Goals Description
50
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Setting Up Methodology/Goals

Working with Methodologies and Goals
The following table lists the commands used to setup the goals/
methodologies:

TABLE 2 Goal/Methodology Setup Commands

Command Description

configure_lint_methodology Sets the current methodology.

configure_lint_tag -enable
-tag <tag-name> [-goal
<goal-name>]

Enables the tag for the respective goal name.

configure_lint_tag_paramet
er -tag <tag-name> -
parameter <param-name> -
value <value> [-goal
<goal-name>]

Configure the parameter for the respective
goal name.

check_lint Invoke VC SpyGlass Lint checker to perform
Lint Tag checks.
51
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Setting Up Methodology/Goals

Working with Methodologies and Goals
NOTE: If check_lint command is used without configure_lint_tag command, the lint_rtl
GuideWare goal, is executed.

configure_lint_setup
[-goal <goal-name>] [-j
<+ve integer>]

To specify a goal to run in the early shift flow,
use the following command:
Note: Setup the current goal using -goal
option and number of cores using -j (default:
4).
If you are defining a custom methodology and
using the name of the goal as standard goal
name "lint_rtl or lint/lint_rtl".
This gets conflicted with tool default goal
name and tool picks up the default rule set.

If you want to continue with using the name
as "lint_rtl or lint/lint_rtl" they can use below
command "configure_lint_methodology" and
parse the setup file instead of "source
goal_setup.tcl"

configure_lint_methodology goal_setup.tcl

configure_lint_setup -goal lint_rtl

report_lint [-filter
<goal-name>]

Reports results for a given goal. Without this
option report_lint reports all available results
from every goal which has been executed.

TABLE 2 Goal/Methodology Setup Commands

Command Description
52
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Running Custom Goals

Working with Methodologies and Goals
Running Custom Goals
To run a custom goal, in the Lint Checks dialog, specify a Tcl file, which
contains goal details.

The following figure illustrates how to specify the custom goal through the
GUI:

FIGURE 2. Custom Goals
53
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Running Custom Goals

Working with Methodologies and Goals
54
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using VC SpyGlass Lint
This section provides reference information for the built-in Tcl commands
implemented in VC SpyGlass Lint. You can use these Tcl commands to
configure tags, manage projects, and control your VC SpyGlass Lint
Checker runs.

This section provides you the information on using Tcl Shell under the
following topics:
 “Invoking VC SpyGlass Lint in Tcl Shell Mode”

 “Sourcing a Tcl Script in VC SpyGlass Lint”

 “Building a Design File”

 “Using Built-in Tcl Commands”

 “Running Lint Checks”

 “Reporting Violations”

 “Reporting Same or Similar Tags”

 “Using Multi-Cores”

 “Module-based Reporting”

 “Using Waivers in VC SpyGlass Lint”
55
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Invoking VC SpyGlass Lint in Tcl Shell Mode

Using VC SpyGlass Lint
Invoking VC SpyGlass Lint in Tcl Shell Mode
To run VC SpyGlass Lint, set the environment variable $VC_STATIC_HOME
as follows:

setenv VC_STATIC_HOME <installation_directory>

set path = ($VC_STATIC_HOME/bin $path)
56
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Sourcing a Tcl Script in VC SpyGlass Lint

Using VC SpyGlass Lint
Sourcing a Tcl Script in VC SpyGlass Lint
You can write the run script as a .tcl file, for example, vc_lint.tcl, and then
pass this file to the command line as follows:

$VC_STATIC_HOME/bin/vc_static_shell -f vc_lint.tcl

When running VC SpyGlass Lint Tcl scripts the -restore option is also
supported in VC SpyGlass Lint.
57
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Building a Design File

Using VC SpyGlass Lint
Building a Design File
You can compile and elaborate the RTL design in the following two ways:
 “Building a Design Using Analyze and Elaborate”

 “Building a Design With read_file”

Building a Design Using Analyze and Elaborate

The following Tcl commands shows how you can build an elaborated
database in VC SpyGlass Lint using the analyze and elaborate commands:

search_path "./DB"

link_library "<library name.db>"

analyze -format verilog <design file name.v>

elaborate top

VCS mode to read files is also supported. Add the VCS options into the
double quote followed by vcs as follows:

analyze -format verilog –vcs “-f file_list”

elaborate top

Building a Design With read_file

The following Tcl commands shows how you can build an elaborated
database in VC SpyGlass Lint using the read_file command:

read_file -format verilog -top top <design file name.v>

This command is generally used for reading netlist design.

VCS mode format:

read_file -format verilog -top top –vcs {-f file_list}
58
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Built-in Tcl Commands

Using VC SpyGlass Lint
Using Built-in Tcl Commands
The following built-in Tcl commands are available with VC SpyGlass Lint:
 check_lint

 configure_lint_tag

 configure_lint_tag_parameter

 report_lint

 waive_lint
59
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Running Lint Checks

Using VC SpyGlass Lint
Running Lint Checks
The following Tcl commands shows how you can run both language and
structural checks in VC SpyGlass Lint:

configure_lint_tag -enable –tag <TAG_NAME>

analyze -format verilog <design file name.v>

elaborate top

check_lint
60
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reporting Violations

Using VC SpyGlass Lint
Reporting Violations
The following Tcl commands report all the violations into the report_hdl.txt
file. If you just want to get the summary of violations, you can turn off the
switch, -verbose.

By default, report_lint reports up to 100 violations for each tag, if you
want to report all the violations, you can use option –limit 0 in
report_lint.

set search_path "./"
set link_library " "
set quick_lint_mode true
configure_lint_tag -enable -tag <TAG_NAME>
analyze -format verilog <design file name.v>
elaborate top
check_lint
report_lint -file report_hdl.txt -verbose -limit 0
quit

Ignoring Encrypted Modules

To ignore the violations reported for the encrypted modules, use the
ignore_encrypted_module_violations app var, as shown below:

set_app_var ignore_encrypted_module_violations true

When the value of the ignore_encrypted_module_violations
app var is false, violations belonging to encrypted modules are reported.
61
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Reporting Same or Similar Tags

Using VC SpyGlass Lint
Reporting Same or Similar Tags
This features enables reporting of same and similar VC SpyGlass Lint tags.
To enable this feature, use the following app var:

set_app_var lint_report_same_similar_rules true

This generates the samesimilarrulereport.rpt report, which contains
information on same or similar tags in VC SpyGlass Lint.
62
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Multi-Cores

Using VC SpyGlass Lint
Using Multi-Cores
You can enable the multi-core feature using the following command:

configure_lint_setup -j <+ve integer >

NOTE: By default, the early shift flow is set to ON in SGUM.

Here, j represents the number of cores used during Lint checks. The
default value of j is 4. You can override this value using the -j switch in the
Tcl file.

NOTE: The -j and -goal arguments of the check_lint will be deprecated in a future release.
It is recommended to use -j and -goal arguments of the configure_lint_setup
command.

VC SpyGlass Lint Flow

VC SpyGlass Lint requires at least two cores to run. By default, one core is
assigned to the language check and remaining cores are assigned to the
structural checks. If more than one core is assigned to the language
checks, the additional cores are taken out from structural checker.

Multiprocessing in the language check is not supported, by default.

To set the number of processes, by which the language check is split in lint,
use the lint_no_of_lang_processes app var as shown below:

set_app_var lint_no_of_lang_processes <+ve integer>

where, <+ve integer> specifies the number of processes.

The default value of this app var is 1.

Functional Lint Flow

In the functional lint mode, at least three cores are required. By default,
one core is assigned to the language check, one core is assigned to the
structural check, and the remaining cores are assigned to the formal
engine.

To set the number of processes by which the formal engine is split in
functional lint, use the lint_no_of_formal_processes app var as shown
below:

set_app_var lint_no_of_formal_processes <+ve integer>
63
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Multi-Cores

Using VC SpyGlass Lint
where, <+ve integer> specifies the number of processes.

The default value of this app var depends upon the number of cores (j) and
is equal to (j-2). By default, value of j is 4 and accordingly, the default
value of this app var is 2.

The functional lint mode does not support multiprocessing in the language
checks and therefore, only one core is assigned to the language check. If
the number of cores assigned to the formal engine is reduced, those cores
are added to the structural checker.

Violation Messages Reported for the Multi-core Feature

In case of an improper usage of multi core feature, VC Spyglass Lint
automatically configures the optimum values that best fits the user
requirement and generates an Error/Warning messages as shown in the
following table:

TABLE 3 Violation Messages for Improper Usage of the Multi-core Feature

Scenario Severity Message

Total number of cores
are not sufficient to
allocate the required
number of cores to
formal checks, specified
through the
lint_no_of_formal_proc
esses app var.
Here, maximum possible
number of cores are
allocated to formal checks.

Warning LINT_RESOURCE_ALLOCATION_IS
SUE: Not enough cores available to
honour the value set through
lint_no_of_formal_processes
app_var. Continuing run with
optimal allocation possible!

Number of cores specified
through the -j switch are
less than the minimum
number of cores required.

Error LINT_MINIMUM_REQUIREMENT_FA
ILURE: Minimum <num> core
required to run Lint. Aborting run.

The
lint_no_of_formal_process
es app var is used in non-
functional lint mode.

Warning LINT_REDUNDANT_APP_VAR:
Command Ignored! This app var
can be used only in functional lint
mode.
64
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Multi-Cores

Using VC SpyGlass Lint
When the total number of
cores are not sufficient to
allocate the required
number of cores to
language checks, using
the
lint_no_of_lang_processes
app var. In that, maximum
possible number of cores
will be allocated to
language checks.

Warning LINT_RESOURCE_ALLOCATION_IS
SUE: Not enough cores available to
honour the value set through
lint_no_of_lang_processes
app_var. Continuing run with
optimal allocation possible!

When the
lint_no_of_lang_processes
app var is used for
multiple language
processes, in the
functional lint mode

Warning LINT_REDUNDANT_APP_VAR:
Command Ignored! MultiProcessing
is not supported in functional lint
mode

TABLE 3 Violation Messages for Improper Usage of the Multi-core Feature

Scenario Severity Message
65
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Module-based Reporting

Using VC SpyGlass Lint
Module-based Reporting
To generate module-based reporting in the moresimple.rpt report, perform
the following steps:
1. Source Tcl proc in the vc_static_shell as shown below:

$vc_static_shell>> source monet/Release/auxx/monet/tcl/
lint_module_based_report.tcl
2. Fetch violations based on module as shown below:

$vc_static_shell>> get_module_violations -goal
<Name_of_goal> -session vcst_rtdb -useModel SGUM

This generates the module-based reports gets in the following directory:

vcst_rtdb/reports/module_based_reports/<$module>
66
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Waivers in VC SpyGlass Lint

Using VC SpyGlass Lint
Using Waivers in VC SpyGlass Lint
VC SpyGlass Lint provides a waiver mechanism that lets you selectively
waive-off specific categories of violations based on your requirement. This
functionality is provided with the waive_lint command. Using this
command, you can select the violations to be waived-off based on the
stage, family, severity or ID.

VC SpyGlass Lint provides the following waiver mechanisms:
 Native VC SpyGlass Lint Waivers

 Convert SpyGlass Waivers to VC SpyGlass Lint Waivers

Native VC SpyGlass Lint Waivers

You can add basic waivers to waive any particular rule in VC SpyGlass Lint
using the following command:

waive_lint -tag [rule_name] -add [waiver_name]

Example

Consider the following waive command:
67
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Waivers in VC SpyGlass Lint

Using VC SpyGlass Lint
The following is the report file generated before applying the waiver:

FIGURE 3. Report Before Waiver
68
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Waivers in VC SpyGlass Lint

Using VC SpyGlass Lint
However, the following report is generated after applying the waiver:

FIGURE 4. Report After Waiver
69
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Waivers in VC SpyGlass Lint

Using VC SpyGlass Lint
70
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Using Tags in VC
SpyGlass Lint
This section provides detailed procedures for how to configure and use the
prepackaged tags to check your HDL code under the following topics:
 “About VC SpyGlass Lint tags”

 “Creating the Configuration File”

 “Configuring Tag Parameters”

 “Inferring Hanging Clocks”

 “Support for STARC and STARC02 Tag Mapping”
71
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

About VC SpyGlass Lint tags

Using Tags in VC SpyGlass Lint
About VC SpyGlass Lint tags
The VC SpyGlass Lint tool offers a rich set of prepackaged tags. You can
select and configure these tags to ensure that a design strictly follows
those tags. A tag is a coding guideline that should be either followed or
avoided strictly.
72
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Creating the Configuration File

Using Tags in VC SpyGlass Lint
Creating the Configuration File
Create the configuration file where you can specify the list of tags that the
design has to be checked against. You can select or deselect a tag based on
your requirement.

Use the Tcl command configure_lint_tag to select/deselect a tag. For
example,

configure_lint_tag -enable/-disable -tag <TAG_NAME>
73
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Configuring Tag Parameters

Using Tags in VC SpyGlass Lint
Configuring Tag Parameters
Some of the tags have parameters that provide the capability to either
extend or minimize the scope the tag. All the parameters of such tags have
certain default values. If you wish to use the parameter to extend/reduce
the scope of the tag, use the Tcl command configure_lint_tag with the -
parameter option as follows:

configure_lint_tag -enable -tag <TAG_NAME>

configure_lint_tag_parameter -tag <TAG_NAME> parameter
<PARAMETER> value <VALUE>

analyze -format verilog <design file name.v>

elaborate top
74
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Inferring Hanging Clocks

Using Tags in VC SpyGlass Lint
Inferring Hanging Clocks
Use the lint_dump_hanging_clocks app var to infer hanging clocks during
clock inference as shown below:

set_app_var lint_dump_hanging_clocks true

The default value of this app var is true. In this case, hanging clocks are
also inferred in auto clock inference.

Set the value of the app var to false for backward compatibility.
75
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Support for STARC and STARC02 Tag Mapping

Using Tags in VC SpyGlass Lint
Support for STARC and STARC02 Tag Mapping
VC SpyGlass lint currently only supports STARC05 tags. Therefore, in the
default mode, VC SpyGlass Lint reports the following violation message
when STARC/STARC02 tags are used:

ReportObsoleteTag "Select Tag 'STARC05-1.4.3.2' instead of
obsolete Tag 'STARC-1.4.3.2'"

In default mode, review the ReportObsoleteTag messages and make
the changes in the tag set accordingly.

However, if you have STARC/STARC02 tags in the flow, you can enable
automatic mapping of STARC/STARC02 tags to STARC05 in VC SG Lint.

To do so, use the lint_enable_smart_tag_execution app var, as
shown below:

set_app_var lint_enable_smart_tag_execution true

When enabled, the following violation message is reported:

ReportObsoleteTag "Running Tag 'STARC05-1.4.3.4' instead of
obsolete Tag 'STARC-1.4.3.

The following tags are supported under auto-mapping under the
lint_enable_smart_tag_execution app var:

TABLE 4 STARC/02/05 Rule Mapping

STARC/STARC02 Rule Corresponding STARC05 Rule

STARC-1.4.3.2 STARC05-1.4.3.2

STARC02-1.1.5.2b STARC05-1.1.5.2b

STARC02-1.2.1.2 STARC05-1.2.1.2

STARC02-1.3.1.7 STARC05-1.3.1.7

STARC02-2.4.1.4 STARC05-2.4.1.4

STARC02-2.4.1.5 STARC05-2.4.1.5

STARC02-2.5.1.2 STARC05-2.5.1.2

STARC02-2.5.1.6 STARC05-2.5.1.6

STARC02-2.5.1.7 STARC05-2.5.1.7
76
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Support for STARC and STARC02 Tag Mapping

Using Tags in VC SpyGlass Lint
STARC02-2.5.1.8 STARC05-2.5.1.8

STARC02-2.5.1.9 STARC05-2.5.1.9

STARC02-3.3.1.4b STARC05-3.3.1.4b

STARC02-3.3.2.2 STARC05-3.3.2.2

STARC02-3.3.2.3 STARC05-3.3.2.3

STARC02-3.3.3.1 STARC05-3.3.3.1

STARC02-3.3.6.2 STARC05-3.3.6.2

STARC-1.1.5.1 STARC05-1.1.5.1

STARC-1.1.5.2a STARC05-1.1.5.2a

STARC-1.1.5.2b STARC05-1.1.5.2b

STARC-1.1.5.2c STARC05-1.1.5.2c

STARC-1.1.5.3 STARC05-1.1.5.3

STARC-1.1.5.4 STARC05-1.1.5.4

STARC-1.2.1.1a STARC05-1.2.1.1a

STARC-1.2.1.1b STARC05-1.2.1.1b

STARC-1.2.1.3 STARC05-1.2.1.3

STARC-1.3.1.3 STARC05-1.3.1.3

STARC-1.3.1.6 STARC05-1.3.1.6

STARC-1.3.1.7 STARC05-1.3.1.7

STARC-1.3.2.1 STARC05-1.3.2.1a

STARC-1.3.2.2 STARC05-1.3.2.2

STARC-1.3.3.4 STARC05-1.3.2.1b

STARC-1.4.1.1 STARC05-1.4.1.1

STARC-1.4.3.1b STARC05-1.4.3.1c

STARC-1.4.3.2 STARC05-1.4.3.2

TABLE 4 STARC/02/05 Rule Mapping

STARC/STARC02 Rule Corresponding STARC05 Rule
77
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Support for STARC and STARC02 Tag Mapping

Using Tags in VC SpyGlass Lint
STARC-1.4.3.4 STARC05-1.4.3.4

STARC-1.4.4.2 STARC05-1.4.4.2

STARC-1.5.1.1 STARC05-1.5.1.1

STARC-1.5.1.2 STARC05-1.5.1.2

STARC-1.6.1.2 STARC05-1.6.1.2

STARC-1.6.2.1 STARC05-1.6.2.1

STARC-1.6.2.2 STARC05-1.6.2.2

STARC-1.6.2.2a STARC05-1.6.2.2a

STARC-1.6.3.1 STARC05-1.6.3.1

STARC-1.6.3.2 STARC05-1.6.3.2

STARC-2.1.1.1 STARC05-2.1.1.1

STARC-2.2.1.3 STARC05-2.2.1.2

STARC-2.2.3.1 STARC05-2.2.3.1

STARC-2.3.1.1 STARC05-2.3.1.1

STARC-2.3.1.3 STARC05-2.3.1.3

STARC-2.3.2.1 STARC05-2.3.2.1

STARC-2.3.4.1 STARC05-2.3.3.2b

STARC-2.3.4.3 STARC05-3.3.1.4b

STARC-2.3.5.1 STARC05-2.3.5.1

STARC-2.3.6.1 STARC05-2.3.6.1

STARC-2.4.1.2 STARC05-2.4.1.2

STARC-2.4.1.3 STARC05-2.4.1.3

STARC-2.5.1.1 STARC05-2.5.1.1

STARC-2.5.1.2 STARC05-2.5.1.2

STARC-2.5.1.4 STARC05-2.5.1.4

TABLE 4 STARC/02/05 Rule Mapping

STARC/STARC02 Rule Corresponding STARC05 Rule
78
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Support for STARC and STARC02 Tag Mapping

Using Tags in VC SpyGlass Lint
STARC-2.5.1.5a STARC05-2.5.1.5a

STARC-2.5.1.5b STARC05-2.5.1.5b

STARC-2.5.2.1 STARC05-2.5.2.1

STARC-3.3.2.2a STARC05-3.3.1.1

STARC-3.3.2.2b STARC05-3.3.1.4a

TABLE 4 STARC/02/05 Rule Mapping

STARC/STARC02 Rule Corresponding STARC05 Rule
79
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Support for STARC and STARC02 Tag Mapping

Using Tags in VC SpyGlass Lint
80
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Functional
Lint
VC Spyglass Lint provides a powerful static Lint analysis solution in RTL
verification industry. This tool is used to detect issues in the RTL code by
using static analysis only. As a result of the issues found in the RTL code,
the tool reports a violation to check the validity as desired in the static
checks. With this new feature, referred as VC Spyglass Functional Lint, the
results of traditionally dominant Linting is enhanced with formal
technology. The objective is to leverage comprehensive and widely used
lint checks in Formal flow while reducing the noise and improve results
accuracy with formal techniques. This formal support is enabled only for
Verilog/System Verilog designs only.

Key Features

Following are some of the key features of VC SpyGlass Functional Lint:
 Easy setup with automatic invocation of formal in existing lint setup

 Lint and Functional Lint checks can be run simultaneously with minimum
change in the setup

 Vast Lint tag set with better design coverage and parameter flexibility

 Vast Lint tag set with better design coverage and parameter flexibility
81
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Functional Lint
Flow

The following figure illustrates the flow of VC SpyGlass Functional Lint:

Terminology

The following terminologies are used in VC SpyGlass Functional Lint:
 Proven: The violations, which are found as issue-free by VC SpyGlass

Functional Lint tool, are referred as proven violations. These violations
are removed from the standard reports.

 Falsified: The violations, which are found valid by VC SpyGlass
Functional Lint tool, are referred as falsified violations. These violations
are included in the standard reports.
82
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Functional Lint
Invoking VC SpyGlass Functional Lint

Use VC Spyglass Lint to invoke Formal analysis as follows:

enable vc spyglass lint formal

set_app_var lint_functional_mode true

To run the functional lint analysis selectively only on specific tags, instead
of the complete formal tag set, specify the -formal switch with the tag.

Example 1

set_app_var enable_lint true
set_app_var lint_functional_mode true

Enabling/Disabling translated Spyglass rules
configure_lint_tag -enable -tag "W164a" -goal test_goal
configure_lint_tag -enable -tag "W116" -goal test_goal
configure_lint_setup -goal test_goal

Example 2

set_app_var enable_lint true
set_app_var lint_functional_mode true

Enabling/Disabling translated Spyglass rules
configure_lint_tag -enable -tag "W164a" -goal test_goal -
formal
configure_lint_tag -enable -tag "W116" -goal test_goal
configure_lint_setup -goal test_goal

For Test setup 1 functional lint analysis will execute on
both W164a, W116 tags. For Test setup 2 it will execute only
on W164a tag.

The view_fl_viol_summary Command

You can generate the following reports using the view_fl_viol_summary
83
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Functional Lint
command:
 The lint_formal_viol_summary.txt Report

 The viol_breakup.csv Report

The lint_formal_viol_summary.txt Report

By default, the view_fl_viol_summary command generates the
lint_formal_viol_summary report.

The lint_formal_viol_summary.txt report contains the details of proven and
falsified violations, including user-waived violations, using the formal
engine.

It contains the following details as a top summary:
 Number of Reported Violations

 Number of Unreported Violations

 Number of Total Violations

The lint_formal_viol_summary.txt file also contains information about the
Status (Proven, Falsified), Reason and related FLP (Functional Lint
Properties) for every violations.The following figure illustrates a sample:
84
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Functional Lint
FIGURE 5. The lint_formal_viol_summary.txt Reportt

The viol_breakup.csv Report

Use the -csv switch of the view_fl_viol_summary command to generate the
viol_breakup.csv report. This report generates a tag-wise breakup of the
formally verified tags in a .csv format.The following figure illustrates a
sample viol_breakup.csv report:
85
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

VC SpyGlass Functional Lint
FIGURE 6. The viol_breakup.csv Report
86
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][SpyGlass Explorer User Guide]&body=Type your comments here for Chapter 'Getting Started'

Analyzing VC SpyGlass
Lint Results
This chapter is organized into the following sections:
 Understanding VC SpyGlass Lint Violation Database

 Debugging Lint Violations Using Tcl

 Reports Generated by VC SpyGlass Lint
87
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Understanding VC SpyGlass Lint Violation Database

Analyzing VC SpyGlass Lint Results
Understanding VC SpyGlass Lint Violation
Database

This section describes the following:
 Configuring Message Tags

Configuring Message Tags

VC SpyGlass LINT provides many LINT checks. All these checks have
message tags and a predefined reporting format. Based on collective user
feedback, by default, VC SpyGlass LINT has certain checks enabled and
certain checks disabled. Also, the severity is predefined for each tag of a
violation.

VC SpyGlass LINT provides the flexibility for you to pick and choose which
checks are relevant for your design. You can change the default enable/
disable status of check and the severity of a check by using the
configure_lint_tag command. In summary, you must configure the VC
SpyGlass LINT tags in the following cases:
 When you want to permanently skip certain tags without the local

administrative overhead of a waiver.
 When you want to change the severity of some messages between error

and warning.

It is recommended that you use the configure_lint_tag command before
reading a design.

NOTE: Configuring the LINT checks for a given design/run is one of the most important
review that must be done by the design engineer.

The configure_lint_tag command uses the following syntax:

%vc_static_shell> configure_lint_tag -help

Usage: configure_lint_tag # Enable/Disable check tags for
VC_STATIC Lint checker

 [-tag <tag list>] (Define the tag(s) operated on)

 [-enable] (The tag which user enables)

 [-disable] (The tag which user disables)
88
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Understanding VC SpyGlass Lint Violation Database

Analyzing VC SpyGlass Lint Results
 [-severity <fatal|error|warning|info>]
 (Sets the tag(s) severity level: Values: all, fatal,
error, warning, info)
 [-module <module name or pattern>]
 (Tag will be enabled only for that module or module
pattern)
 [-clear] (Restores all tags to their original state)
 [-tcl] (Displays changes to the lint tag set in a TCL
format suitable for replay)

 [-regexp] (Allows regexp expressions in the tag list
(default glob-style))

 [-all] (Displays all messages, even with default enable and
severity status)

 [-verbose] (Displays short description for each message)

 [-formal] (Run formal version of rule)

 [-goal <Goal-Name>] (Specify Goal Name)

Examples:

The following example shows VC SpyGlass LINT reports of a design before
and after configuration of certain tags/checks.

The following is the output without the use of the configure_lint_tag
command:

%vc_static_shell>report_lint

 Management Summary

 --

 Stage Family Fatals Errors Warnings
Infos

 ----- -------- -------- -------- -------- -

 BUILTIN_CHECK CODING 0 0 3
89
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Understanding VC SpyGlass Lint Violation Database

Analyzing VC SpyGlass Lint Results
0

 LANGUAGE_CHECK CODING 0 4 2
1

 STRUCTURAL_CHECK CODING 0 1 1
0

 ----- -------- -------- -------- -------- -

 Total 0 5 6
1

 --

 Tree Summary

 --

 Severity Stage Tag Count

 -------- ----- ------------------------ -----

 error LANGUAGE_CHECK W122 4

 error STRUCTURAL_CHECK UndrivenInTerm-ML 1

 warning BUILTIN_CHECK CheckDelayTimescale-ML 3

 warning LANGUAGE_CHECK W287a 2

 warning STRUCTURAL_CHECK STARC05-1.4.3.4 1

 info LANGUAGE_CHECK ReportPortInfo-ML 1

 -------- ----- ------------------------ -----

 Total 12

The following is the output after the use of the configure_lint_tag - severity
error command:
90
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Understanding VC SpyGlass Lint Violation Database

Analyzing VC SpyGlass Lint Results
Report Summary

--

 Management Summary

 --

 Stage Family Fatals Errors Warnings
Infos

 ----- -------- -------- -------- -------- -

 LANGUAGE_CHECK CODING 0 4 0
0

 STRUCTURAL_CHECK CODING 0 1 0
0

 ----- -------- -------- -------- -------- -

 Total 0 5 0
0

 --

 Tree Summary

 --

 Severity Stage Tag Count

 -------- ----- ------------------- -----

 error LANGUAGE_CHECK W122 4
91
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Understanding VC SpyGlass Lint Violation Database

Analyzing VC SpyGlass Lint Results
 error STRUCTURAL_CHECK UndrivenInTerm-ML 1

 -------- ----- ------------------- -----

 Total 5
92
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
Debugging Lint Violations Using Tcl
You can debug the violation reported by VC SpyGlass LINT using the Tcl
commands described in the sections below. This section describes the
following:
 Examples of Violation Fields

 Filtering Messages

 Operations on Tag Definitions

The report_lint command reports the messages generated after LINT
analysis is performed on the design. The report_lint command is the main
output command for clock domain crossing checks. By default, a summary
of the messages and the waiver report is reported.

Syntax

vc_static_shell> report_lint -help

Usage: report_lint # Report HDL checks information

 [-no_summary] (Suppresses summary information)

 [-list] (List all messages in simple form)

 [-verbose] (List all messages in detail form)

 [-limit <count>] (Limit the number of output records
per rule)

 [-include_waived] (Include waived messages in the
report)

 [-only_waived] (Report on waived messages)

 [-all_tags] (Include all tested tags)

 [-sort] (Report order match tree summary order)

 [-tag <tag>] (Select violations based on tag)

 [-waived <list>] (Select violations based on waiver
name)

 [-id <rule>] (Select violations based on IDs)

 [-stage <stage>] (Select violations based on stage:
93
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
 Values: Builtin_Check, Custom,Debug_Cause, Debug_Cluster,
Language_Check, Lint_Formal_Check, Netlist, Quick_Lint,
Sg_Builtin_Check,

Spyglass_Check, Structural_Check)

 [-family <family>] (Select violations based on family:

 Values: CLK, CODING, CONN, NAMING, RST, SIM, SIMSYN,
SVSYN, SYN, TESTBENCH, UVM, XPROP, all)

 [-severity <list>] (Select violations based on severity:

 Values: all, fatal, error, warning, info)

 [-filter <expression>] (Select violations based on
expression)

 [-regexp] (Indicates filter expression type to be regular
expression)

[-file <filename>] (Write the results to the designated file)

[-append] (Append results to the designated file)

 [-perf_report] (Generate a performance report)

 [-gen_empty] (Generate a empty log file if has no
violations)

[-report <report-type>] (Generate a report depending upon the
set option)

 [-ignore_viol_state list of viol states] (Ignore count for
given states in report:

Values: Acknowledged, Ignore, NeedsInfo, Open, Waived,
Waived_Temp)

[-nocase] (Case will be ignored when matching string values)

[-include_viol_state <include_viol_state>] (Include messages
with given state(s) in the report:

Values: Acknowledged, Ignore, NeedsInfo, Open, Waived,
Waived_Temp)

[-viol_state <viol_state>]
(Violations belonging to given state(s) will be dumped in
94
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
report:

Values: Acknowledged, Ignore, NeedsInfo, Open, Waived,
Waived_Temp)

[-id_list] (Sets Matching violation id's as command result)

[-format <report format>] (Report will be dumped with this
format.)

[-separator <separator>] (Multiple field values will be
dumped using this separator)

[-include_compressed] (Include compressed messages in the
report)

[-display_compressed <compression name>] (Dump report
corresponding to given compression)

[-skip_full_path_for_waiver_file] (Displays only base name
for waiver file)

Use Model

Using the various options that the report_lint command provides, you can
define the content of the report.

For example, if you specify report_lint in the shell, VC SpyGlass LINT
displays a summary view of all messages, as shown below:

--

 Management Summary

 --

 Stage Family Fatals Errors Warnings
Infos

 ----- -------- -------- -------- -------- -

 BUILTIN_CHECK CODING 0 0 3
0

 LANGUAGE_CHECK CODING 0 4 2
1

95
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
 STRUCTURAL_CHECK CODING 0 1 1
0

 ----- -------- -------- -------- -------- -

 Total 0 5 6
1

 --

 Tree Summary

 --

 Severity Stage Tag Count

 -------- ----- ------------------------ -----

 error LANGUAGE_CHECK W122 4

 error STRUCTURAL_CHECK UndrivenInTerm-ML 1

 warning BUILTIN_CHECK CheckDelayTimescale-ML 3

 warning LANGUAGE_CHECK W287a 2

 warning STRUCTURAL_CHECK STARC05-1.4.3.4 1

 info LANGUAGE_CHECK ReportPortInfo-ML 1

 -------- ----- ------------------------ -----

 Total 12

You can define the content of the report to make it verbose. The following
shows an example of verbose reporting:

%vc_static_shell> report_lint -verbose -tag W287a -limit 0

 --

96
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
 Management Summary

 --

 Stage Family Fatals Errors Warnings
Infos

 ----- -------- -------- -------- -------- --

 LANGUAGE_CHECK CODING 0 0 2
0

 ----- -------- -------- -------- -------- --

 Total 0 0 2 0

 --

 Tree Summary

 --

 Severity Stage Tag Count

 -------- ----- ------- -----

 warning LANGUAGE_CHECK W287a 2

 -------- ----- ------- -----

 Total 2

 --

 W287a (1 warning/0 waived)
97
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
 --

 Tag : W287a

 Description : Input '[Signal]' of instance '[InstName]'
is undriven.[Hierarchy: '[HIERARCHY]']

 Violation : Lint:7

 Goal : test_goal

 Module : ethmac

 FileName : minsoc/rtl/verilog/ethmac/rtl/verilog/
ethmac.v

 LineNumber : 639

 Statement : .dbg_dat(wb_dbg_dat0),

 Signal : wb_dbg_dat0

 InstName : ethreg1

 HIERARCHY : minsoc_top.ethmac

 --

 W287a (1 warning/0 waived)

 --

 Tag : W287a

 Description : Input '[Signal]' of instance '[InstName]'
is unconnected.[Hierarchy: '[HIERARCHY]']

 Violation : Lint:3

 Goal : test_goal

 Module : minsoc_top

 FileName : minsoc/rtl/verilog/minsoc_top.v

 LineNumber : 406
98
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
 Statement : adbg_top dbg_top (

 Signal : wb_rst_i

 InstName : dbg_top

 HIERARCHY : minsoc_top

By default, verbose reporting in the report_lint command limits 100
messages per violation tag. If you want to apply a different limit of the
number of violations per ID, use the -limit option. For example, report_lint
-limit 0 -verbose -file report_lint.log gives a verbose report of all message
IDs.

Examples of Violation Fields

--

 W287a (1 warning/0 waived)

 --

 Tag : W287a

 Description : Input '[Signal]' of instance '[InstName]'
is undriven.[Hierarchy: '[HIERARCHY]']

 Violation : Lint:7

 Goal : test_goal

 Module : ethmac

 FileName : minsoc/rtl/verilog/ethmac/rtl/verilog/
ethmac.v

 LineNumber : 639

 Statement : .dbg_dat(wb_dbg_dat0),

 Signal : wb_dbg_dat0

 InstName : ethreg1
99
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
 HIERARCHY : minsoc_top.ethmac

The short name, severity, and count of the messages are shown on the first
line. The Tag field shows the tag name. The Description field shows the
design-data dependent Description. The Violation field shows the violation
ID which can be used for reference in this run.

Next, the important fields, which are contained in the dynamic Description,
are shown. The remaining lines are less important fields which might be
useful for debugging.

Filtering Messages

You can filter messages by using the -filter <expression> option in the
report_lint command based on the following:
 Family

 Severity

 Filter based on debug fields

 Wildcards and expressions

Example 1

%vc_static_shell> report_lint -tag W287a

%vc_static_shell> report_lint -family CODING

%vc_static_shell> report_lint -severity error

Example 2
Usage of report_lint with –filter

Consider a scenario where you:
 Need a report of all messages related to STARC05-1.4.3.4

 Need a filter for a DesignObjSignal containing the string clk_adjust.clk_int

Use the following command to get the required report:

%vc_static_shell> report_lint -tag STARC05-1.4.3.4 -filter
{(DesignObjSignal=="clk_adjust.clk_int")}
100
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
Operations on Tag Definitions

You can change the violation tags/violations and the sequence of debug
fields present in these violations. VC Static provides the following Tcl
commands to operate tags/violations. For example, renaming of tag/
violation, reorder/disable debug fields of a tag/violation.
 get_tags: Returns tag names. If a single tag name is given as an

argument, then it prints the same tag name. If used with a wildcard
character it expands the wildcard character to a list of matching tags. It
lists the tag/tags independently of the violations/tags present in the
current run of the report database. It does not accept a list of tags, but
wildcard characters are accepted. For example:
vc_static_shell> get_tags W12*

W122L W122L W122L W120 W120 W120 W120 W120 W128 W128 W123
W123 W122 W129 W127 W126 W123 W123 W123 W121 W121 W121 W121
W122 W122 W120 W120 W120 W120

 get_tag_info: Accepts a single tag at a time and lists the information
about the tag. It does not accept a list of tags or wildcard characters. It
runs independent of the violations/tags present in current run of report
database. For example:
vc_static_shell> get_tag_info W123

Lint info LANGUAGE_CHECK CODING disabled 0 0 1

In the above example, the numeric characters indicate the following:
 The first numeric character (0 in the above example) indicates the

total count of violations
 The middle numeric character (0 in the above example) indicates the

total count of waived violations
 The last numeric character indicates the count of built-in (1 in the

above example) and user-defined (not shown in the above example)
tags.

 get_tag_fields: Lists all the fields for a tag. It does not accept
wildcard characters and list of tags. It lists the tag fields independent of
101
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Lint Violations Using Tcl

Analyzing VC SpyGlass Lint Results
the violations/tags present in current run of the report database. For
example:
vc_static_shell> get_tag_fields W287a

{Msg ID} Tag Signature Goal RTL_Instance FileName LineNumber
Statement Signal Module InstName ObjNodeName

 get_violation_tags: Returns ordered list of tags for the violations
present in the report database. This command requires no arguments.
For example:
%vc_static_shell> get_violation_tags W287a

 rename_tag: Takes a single tag and replaces its name with the new
alias. This command should be used BEFORE the check* commands. It
does not accept a list of tags or wildcard characters. For example:
%vc_static_shell>rename_tag W287a New_W287a

 disable_tag_field: Disables tag fields and prevents them from
getting printed in the report. This command should be used only AFTER
check* commands. It does not accept a list of tags or list of fields or
wildcard characters. For example:
%vc_static_shell> disable_tag_field W287a Signal

 reorder_tag_field: Generates a report where info fields appear just
after the design element fields, use the reorder_tag_fields command to
change the order of the fields reported. This command does not accept
wildcard characters and list of tags. It lists the tag fields independent of
the violations/tags present in the current run of the report database. For
example:

%vc_static_shell> set order [get_tag_fields W287a]

%vc_static_shell> set new_order [lsort $order]

%vc_static_shell> reorder_tag_fields W287a

$new_order

%vc_static_shell> report_lint -verbose
102
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
Reports Generated by VC SpyGlass Lint
VC SpyGlass LINT generates a summary report after each run. A sample of
the generated report is shown below. For information on how to read and
use the report, see Debugging Lint Violations Using Tcl.

Report Summary

Product Info

Name: VC Static Master Shell Version :

Report Info Created :

--

Management Summary

--

Stage Family Fatals Errors Warnings Infos

----- -------- -------- -------- -------- --------

BUILTIN_
CHECK CODING 0 0 3 0

LANGUAGE_
CHECK CODING 0 4 2 1

STRUCTURAL_
CHECK CODING 0 1 1 0

 ---- -------- -------- -------- -------- --------

 Total 0 5 6 1

--

Tree Summary

--

Severity Stage Tag Count

------- ----- ------------------------ -----

error LANGUAGE_CHECK W122 4
103
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
error STRUCTURAL_CHECK UndrivenInTerm-ML 1

warning BUILTIN_CHECK CheckDelayTimescale-ML 3

warning LANGUAGE_CHECK W287a 2

warning STRUCTURAL_CHECK STARC05-1.4.3.4 1

info LANGUAGE_CHECK ReportPortInfo-ML 1

-------- ----- ------------------------ -----

Total 12

--

UndrivenInTerm-ML (1 error/0 waived)

--

Tag : UndrivenInTerm-ML

Description : Detected undriven input terminal
[DesignObjSignal]

Violation : Lint:2

Goal : test_goal

Module : ethmac

FileName : minsoc/rtl/verilog/ethmac/rtl/verilog/
ethmac.v

LineNumber : 572

Statement : eth_registers ethreg1

DesignObjSignal : ethmac.ethreg1.dbg_dat[31:0]

String1 :

--

W122 (4 errors/0 waived)

--

Tag : W122

Description : The signal/variable '[Signal]' (or some of
its bits) read in the block is not in the sensitivity
list[Hierarchy: '[HIERARCHY]']
104
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
Violation : Lint:4

Goal : test_goal

Module : or1200_alu

FileName : minsoc/rtl/verilog/or1200/rtl/verilog/
or1200_alu.v

LineNumber : 212

Statement : result = result_cust5;

Signal : result_cust5

HIERARCHY : minsoc_top.or1200_top.or1200_cpu.or1200_alu

--

Tag : W122

Description : The signal/variable '[Signal]' (or some of
its bits) read in the block is not in the sensitivity
list[Hierarchy: '[HIERARCHY]']

Violation : Lint:8

Goal : test_goal

Module : eth_registers

FileName : minsoc/rtl/verilog/ethmac/rtl/verilog/
eth_registers.v

LineNumber : 879

Statement : `ETH_DBG_ADR :
DataOut=dbg_dat;

Signal : dbg_dat

HIERARCHY : minsoc_top.ethmac.ethreg1

--

Tag : W122

Description : The signal/variable '[Signal]' (or some of
its bits) read in the block is not in the sensitivity
list[Hierarchy: '[HIERARCHY]']
105
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
Violation : Lint:5

Goal : test_goal

Module : or1200_alu

FileName : minsoc/rtl/verilog/or1200/rtl/verilog/
or1200_alu.v

LineNumber : 222

Statement : result = result_csum;

Signal : result_csum

HIERARCHY : minsoc_top.or1200_top.or1200_cpu.or1200_alu

--

Tag : W122

Description : The signal/variable '[Signal]' (or some of
its bits) read in the block is not in the sensitivity
list[Hierarchy: '[HIERARCHY]']

Violation : Lint:6

Goal : test_goal

Module : or1200_alu

FileName : minsoc/rtl/verilog/or1200/rtl/verilog/
or1200_alu.v

LineNumber : 255

Statement : result = flag ? a : b;

Signal : flag

HIERARCHY : minsoc_top.or1200_top.or1200_cpu.or1200_alu

--

CheckDelayTimescale-ML (3 warnings/0 waived)

--

Tag : CheckDelayTimescale-ML

Description : Delay used without timescale compiler
106
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
directive

Violation : Lint:11

Goal : test_goal

Module : minsoc_onchip_ram_top

FileName : minsoc/rtl/verilog/minsoc_onchip_ram_top.v

LineNumber : 118

Statement : ack_we <= #1 1'b1;

--

Tag : CheckDelayTimescale-ML

Description : Delay used without timescale compiler
directive

Violation : Lint:12

Goal : test_goal

Module : tc_mi_to_st

FileName : minsoc/rtl/verilog/minsoc_tc_top.v

LineNumber : 1326

Statement : req_r <= #1 3'd0;

--

Tag : CheckDelayTimescale-ML

Description : Delay used without timescale compiler
directive

Violation : Lint:10

Goal : test_goal

Module : minsoc_top

FileName : minsoc/rtl/verilog/minsoc_top.v

LineNumber : 285

Statement : rst_r <= #1 1'b0;

--
107
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
STARC05-1.4.3.4 (1 warning/0 waived)

--

Tag : STARC05-1.4.3.4

Description : Clock signal '[DesignObjSignal]'
used as a non-clock (Used with name '[NonClkPath]')

Violation : Lint:1

Goal : test_goal

FileName : minsoc/rtl/verilog/
minsoc_clock_manager.v

LineNumber : 27

Statement : clk_int <= ~clk_int;

DesignObjSignal : clk_adjust.clk_int

NonClkPath : clk_adjust.clk_int

Module : minsoc_clock_manager

DesignFlop1 : wb_rst

PathNodeObj

SignalInfo

DesignSignalName : clk_adjust.clk_int

FileName : minsoc/rtl/verilog/
minsoc_clock_manager.v

LineNumber : 27

--

W287a (1 warning/0 waived)

--

Tag : W287a

Description : Input '[Signal]' of instance '[InstName]' is
undriven.[Hierarchy: '[HIERARCHY]']

Violation : Lint:7

Goal : test_goal
108
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
Module : ethmac

FileName : minsoc/rtl/verilog/ethmac/rtl/verilog/
ethmac.v

LineNumber : 639

Statement : .dbg_dat(wb_dbg_dat0),

Signal : wb_dbg_dat0

InstName : ethreg1

HIERARCHY : minsoc_top.ethmac

--

W287a (1 warning/0 waived)

--

Tag : W287a

Description : Input '[Signal]' of instance '[InstName]' is
unconnected.[Hierarchy: '[HIERARCHY]']

Violation : Lint:3

Goal : test_goal

Module : minsoc_top

FileName : minsoc/rtl/verilog/minsoc_top.v

LineNumber : 406

Statement : adbg_top dbg_top (

Signal : wb_rst_i

InstName : dbg_top

HIERARCHY : minsoc_top

--

ReportPortInfo-ML (1 info/0 waived)

--

Tag : ReportPortInfo-ML

Description : Port Information for top design unit has been
109
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reports Generated by VC SpyGlass Lint

Analyzing VC SpyGlass Lint Results
generated. For details see report ReportPortInfo.rpt

Violation : Lint:9

Goal : test_goal

FileName : ./vcst_rtdb/spyglass/vc_lint0/minsoc_top/
VC_GOAL0/spyglass_reports/morelint/ReportPortInfo

LineNumber : 1

Statement : # Comment : Report Top Level
Module Port Info
110
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Appendix A - Supported
Commands
This appendix briefly describes the SDC commands, Tcl commands,
configure commands and application variables supported by VC SpyGlass
Lint:
 Application Variables

 LINT Commands

 LINT Configure Commands

 Database Commands

 Common Commands

 Command Sanity Checks
111
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Application Variables
This section describes the application variables used by VC SpyGlass Lint.

enable_lint

Type

string

Default Value

False

Description

This application variable configures the platform for running VC-SpyGlass
LINT checks and to specify the license tier. The following are the valid
values for this app var:
 true

 base

 false

enable_clk_rst_infer_potential

Type

bool

Default Value

True

Description

This application variable disables the optimization in clock tree and detects
any extra potential clock roots.
112
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
infer_unique_bbox

Type

bool

Default Value

false

Description

Enables VC SpyGlass to infer and create a unique representative
personality for all black boxes in the design instead of inferring multiple
copies of black boxes for the same master definition.

language_check_hierarchy_format

Type

bool

Default Value

true

Description

This application variable changes the hierarchy format of language rules.

lang_check_report_input_path

Type

bool

Default Value

false
113
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Description

When this application variable is set, it enables reporting of path (which
can be a link) provided for RTL, in language checks.

lint_debug

Type

int

Default Value

0

Description

When this application variable is set, it will report different log messages
for debug. This application variable can any value from 1 to 8.

lint_dump_hanging_clocks

Type

bool

Default Value

true

Description

When this application variable is set to true, the hanging clocks are also
inferred in the auto clock inference.

lint_enable_coverage_flow

Type

bool
114
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Default Value

False

Description

Enables functional lint coverage checks for the following rules:
 DeadCode-ML

 NoExitFsmState

 NotReachableFsmState

 MissingFsmStateTransition

 RegisterStuckInResetState-ML

lint_enable_pgpins

Type

bool

Default Value

false

Description

This application variable enables power and ground pin information to
be taken into consideration from the specified physical libraries.

lint_enable_smart_tag_execution

Type

bool

Default Value

false
115
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Description

Enables mapped smart rules tag.

lint_formal_disable_stage_name

Type

bool

Default Value

false

Description

Disables stage name modification of the supported lint checks in VC
SpyGlass lint formal rule violations.

lint_functional_mode

Type

bool

Default Value

false

Description

Enables the formal mode for lint checks. Noisy lint checks like Width-
Mismatch, Index-Overflow, DeadCode, and FSM will leverage formal
technology.

lint_ignore_syncreset_for_asyncflop
116
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Type

bool

Default Value

true

Description

When this application variable is set to true, synchronous resets are not
detected for flops having asynchronous resets.

lint_ignore_redundant_field_waiver

Type

bool

Default Value

true

Description

Ignores non mandatory fields while waiver translation.

lint_load_goal_results

Type

bool

Default Value

false

Description

Load goal-specific results in activity viewer. By default it loads consolidated
results for all the executed goals. When this app var is enabled, the activity
117
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
viewer would load goal-specific results.

lint_memory_threshold

Type

bool

Default Value

false

Description

This application variable sets the threshold size (in bit-width) of a bus that
must be recognized as the memory bus. If the size of an MDA in the design
exceeds the specified value, it is recognized as the memory bus.

lint_no_of_formal_processes

Type

int

Default Value

-1

Description

Sets the number of processes in which the formal engine is split in the
functional lint. It's value will be equal to j-2, j dependent, unless specified
otherwise. Since j's default value is 4, so it's default value will be 2 here.

lint_no_of_lang_processes
118
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Type

int

Default Value

1

Description

Sets the number of processes in which the language checks are split in lint.

lint_report_all_paths

Type

bool

Default Value

false

Description

When this application variable is set to true, VC SpyGlass lint prints every
node of the path. When this application variable is set to false, VC SpyGlass
Lint prints 3 nodes of one path.

lint_report_same_similar_rules

Type

bool

Default Value

false
119
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Description

This app var enables reporting of same and similar lint rules.

lint_report_whole_path

Type

int

Default Value

3

Description

When this application variable is set to true, VC Lint reports the whole path
in lint message. By default, only 3 elements are reported for one path.

lint_spyglass_waiver_report

Type

string

Default Value

empty string

Description

This app var is used to convert waivers during the sg_read_waiver by
comparing with the SpyGlass waiver.rpt report.

lint_traverse_depth
120
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Type

int

Default Value

5000

Description

When this application variable is set, you can limit the bit traverse depth in
VC SpyGlass Lint.

quick_lint_mode

Type

bool

Default Value

false

Description

If enabled, VC Lint executes rules which are not dependent on Hardware
Inference.

Command Line Example

set_app_var link_library "" ""

set_app_var quick_lint_mode true

set_app_var enable_verdi_debug true

compress_hdl -enable

configure_hdl_tag -enable -stage ""QUICK_LINT ""

analyze -format verilog -vcs ""test.v -sverilog ""

elaborate top -verbose

check_hdl -lang -structure
121
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
report_hdl -file report_soc.txt -verbose

quit

Example

module top(a, b);
input [2:1]a;
output [2:1]b;
reg [2:1]b;
always @ (a[1] or a[0]) // VC-Lint flags here
b<=a;
endmodule

Report file output

All quick lint rules are flagged in the report:

--

Management Summary

Stage Family Fatals Errors Warnings Infos

----- -------- -------- -------- -------- --------

QUICK_LINT CODING 0 0 4 0

QUICK_LINT SIMSYN 0 0 1 0

QUICK_LINT SYN 0 1 0 0

----- ------- -------- -------- -------- --------

Total 0 1 5 0

elab_summary_report_max_inst

Type

int
122
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Default Value

5

Description

Use this app var to customize printing number of instances per design unit
in the elab_summary.rpt report. Specify an integer value as an input to the
app var.

The default value of the app var is 5, that is, a maximum of 5 instances per
design unit is displayed in the elab_summary.rpt report. Specify any
positive integer value as an input.

If set to -1, it displays all instances.

If set to any other negative number then the default behavior is applied,
that is, a maximum of 5 instances per design unit is displayed.

If set to 0, it displays zero instances.

Examples

The following example shows the usage of the
elab_summary_report_max_inst command:

set_app_var elab_summary_report_max_inst 10

set_app_var elab_summary_report_max_inst 100

set_app_var elab_summary_report_max_inst -1

enable_generate_label_naming

Type

bool

Default Value

true
123
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Description

This variable lists names in the report containing generate label for VHDL.
Note that this app var is available only for language checks.

ignore_encrypted_module_violations

Type

bool

Default Value

false

Description

This variable lists names in the report containing generate label for VHDL.
Note that this app var is available only for language checks.

enable_gw_optional_tag

Type

bool

Default Value

false

Description

When this application variable is set, GW optional tag is enabled.

report_all_hdl_errors

Type

bool
124
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Application Variables

Appendix A - Supported Commands
Default Value

false

Description

Use this app var to report all Verilog syntax errors in a single run. By
default, only the first syntax error is reported but when this variable is set
to true, all syntax errors are reported. For VHDL designs, all syntax errors
are reported at once irrespective of this application variable.

Examples

The following example shows the usage of the report_all_hdl_errors
command:

report_all_hdl_errors

See Also

report_all_hdl_errors
125
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
LINT Commands
This section describes the Lint-specific commands used by VC SpyGlass
Lint.

check_lint

Description

Invoke VC SpyGlass Lint checker to perform Lint Tag checks

Syntax

check_lint

Examples

The following example shows the usage of the check_lint command:

check_lint

See Also

report_lint

report_lint

Description

Prints any violations identified while performing LINT checks.

Syntax

report_lint
[-no_summary]
[-list]
[-verbose]
[-limit <count>]
126
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
[-include_waived]
[-only_waived]
[-all_tags]
[-sort]
[-tag <tag>]
[-waived <list>]
[-id <tag>]
[-stage <stage>]
[-family <family>]
[-severity <list>]
[-filter <regular_expression>]
[-regexp]
[-file <filename>]
[-append]
[-perf_report]
[-gen_empty]
[-report <report-type>]
[-ignore_viol_state { list of violation states }]
[-include_viol_state { list of violation states }]
[-viol_state { list of violation states }]
[-nocase]
[-id_list]
[-format]
[-separator]
[-include_compressed]
[-display_compressed]
[-skip_full_path_for_waiver_file]
[-include_cause_viols]

Arguments

-no_summary

Suppresses the two summary tables which list the number of violations in
each family and stage.
127
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
-list

In addition to the summary tables, print a one sentence description of each
violation with the design data fields filled in. Useful for generating a file
with one line per violation.

-list

In addition to the summary tables, print a one sentence description of each
violation with the design data fields filled in. Useful for generating a file
with one line per violation.

-verbose

In addition to the summary tables, print a number of lines of detail about
each violation. This verbose format includes the description, basic design
detail fields for the violation, and also detailed debugging fields for the
violation. Useful for getting all details of the violation.

-limit <count>

When used with list or verbose mode, print only this number of violations
for each tag. Useful to limit the file size for designs with a large violation
count.

-include_waived

By default, any violation which is waived is not included in the report. Use
this switch to include the waived messages in the report.

-only_waived

By default, any violation which is waived is not included in the report. Use
this switch to invert the display so that only waived messages are included
in the report.

-all_tags

Reports the tags that are run but resulted in 0 violations. This option is
available for Tree Summary of report.

-sort

Use this switch to make report order match tree summary order in the
report.
128
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
-tag <tag>

To focus on only certain tags, use this switch with a list of tag names. Only
violations whose tag is on this list will be displayed.

-waived <list>

To focus on only certain waivers, use this switch with a list of waive names.
Only violations which are waived by a waiver on this list will be displayed.

-id <tag>

To generate the report based on stage.

-stage <stage>

Use this switch with the list of stages to generate the stage-based report.

-family <family>

To focus on only messages from certain families, use this switch with a list
of families.

-severity <list>

To focus on only messages with a certain severity, use this switch with a list
of severities. The valid severities are: error, info, warning.

-filter <regular_expression>

This switch allows you to specify complex criteria-based on pattern
matching. Only violations matching the filter expression will be shown. An
expression may contain several terms separated with a double ampersand.
Each term has a field name, a comparison operator, and a target string.
The field name may be any field name shown in the verbose report; for a
field inside a record, use a colon to separate the record path components.
The comparison operator is any of the standard operators such as ==!=
=~. See the examples section for examples.

-regexp

Use this switch to indicate that the filter expression type is a regular
expression. The default is glob-style.
129
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
-file <filename>

Write the results to the designated file.

-append

Append results to the designated file.

-perf_report

Generate a performance report.

-gen_empty

Generate a empty log file if has no violations

-report <report-type>

Generate a report depending upon the set option.

-ignore_viol_state {list of violation states}

Ignore viol state(s) in report. Possible states are: Acknowledged,
NeedsInfo, Open, Waived, Waived_Temp, Ignore

-include_viol_state {list of violation states}

Include violations for given states. Possible states are: Acknowledged,
NeedsInfo, Open, Waived, Waived_Temp, Ignore.

-viol_state {list of violation states }

Show violations for given states. Possible states are: Acknowledged,
NeedsInfo, Open, Waived, Waived_Temp, Ignore.

-nocase

Use this switch to indicate that case will be ignored when matching string
values.

-id_list

Sets Matching violation id's as command result.
130
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
-format

Report will be dumped with this format.

-separator

Multiple field values will be dumped using this separator.

-include_compressed

By default, any violation which is compressed is not included in the report.
Use this switch to include the compressed messages in the report.

-display_compressed

Dump report corresponding to given compression.

-skip_full_path_for_waiver_file

Specify this option to display only base name for waiver file.

-include_cause_viols

Specify this option to include cause violations reported in the Machine
Learning Root Cause Analysis (MLRCA) flow.

Examples

The following example shows the usage of the report_lint command:

report_lint -verbose -file test.log -filter {(Module =~
"*top*")}

The following command generates a report using user given format and
multiple field values are dumped using seperator.

report_lint -format "%ObjSrcNet%" -separator ","

report_violations

Description

Prints any violations identified while performing LINT checks.
131
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
Syntax

report_violations
- app {lint}
[-no_summary]
[-list]
[-verbose]
[-limit <count>]
[-include_waived]
[-only_waived]
[-all_tags]
[-sort]
[-tag <tag>]
[-waived <list>]
[-id <tag>]
[-stage <stage>]
[-family <family>]
[-severity <list>]
[-filter <regular_expression>]
[-regexp]
[-file <filename>]
[-append]
[-perf_report]
[-gen_empty]
[-report <report-type>]
[-ignore_viol_state { list of violation states }]
[-include_viol_state { list of violation states }]
[-viol_state { list of violation states }]
[-nocase]
[-id_list]
[-format]
[-separator]
[-include_compressed]
[-display_compressed]
[-skip_full_path_for_waiver_file]
[-include_cause_viols]
132
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
Arguments

-app {lint}

Specify lint to print any violation for Lint.

For details on remaining arguments see, Arguments.

Examples

The following example shows the usage of the report_violations command:

report_violations -app {lint} -include_waived -gen_empty -
verbose -file report_hdl.txt

report_violations -app {lint} -limit 2000 -verbose -
include_waived -file report_hdl.txt -gen_empty -report all -
filter {Goal==test_goal}

waive_lint

Description

Manages waivers for SoC violation.

Syntax

waive_lint
[-add <name>]
[-append <name>]
[-delete <name>]
[-delete_all]
[-tcl]
[-force]
[-comment <comment_string>]
[-stage <stage/list_of_stages>]
[-family <family/list_of_families>]
[-severity <list>]
[-tag <tag/list_of_tags>]
[-id <id/list_of_ids>]
133
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
[-filter <regular_expression>]
[-regexp]
[-nocase]
[-msg]
[-ip ip_module_name(s)]
[-preview]
[-not_applied]
[-ignore]
[-skip_full_path_for_waiver_file]
[-posix_regex]

Arguments

-add <name>

Add waiver (add mode) is used to create a new waiver. Name is required
and must be unique. Comment, tags, ids, stage, families, severities and
filter regular expressions are permitted.

-append <name>

Append waiver (append mode) is used to add additional selection criteria to
an existing waiver. Name is required and must have been previously
declared in add mode. Tags, ids, stages, families, severities and filter
regular expressions are permitted. The comment option is not permitted.

[-delete <name>]

Deletes the named waiver (delete mode) from the set of waivers. No other
options are permitted.

[-delete_all]

Deletes all waivers (delete mode) from the set of waivers. No other options
are permitted.

[-tcl]

TCL mode displays all currently defined waivers in a form suitable for re-
application at some later point in the same or sub-sequent session. No
other options are permitted. You can use the redirect option to capture this
134
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
output to a file.

-force

Creates a container for waive_lint append operations.

-comment <comment_string>

Attaches your comment_string to the waiver for descriptive purposes. The
comment option may only be used in add mode.

-stage <stage/list_of_stages>

One or more stages for which this waiver applies. The stage option is only
valid in add or append modes. Accepted values are Language_Check,
Netlist, Quick_Lint and all.

-family <family/list_of_families>

One or more families for which this waiver applies. The family option is only
valid in add or append modes. Accepted values are CODING, CONN,
NAMING, SIM,SIMSYN, SVSYN, SYN, TEMP, XPROP and all.

-severity <list>

Waive violations based on severity. Accepted values are all, error, info and
warning.

-tag <tag/list_of_tags>

One or more tags for which this waiver applies. The tag option is only valid
in add or append modes.

-id <id/list_of_ids>

One or more ids for which this waiver applies. The id option is only valid in
add or append modes.

-filter <regular_expression>

Used in conjunction with the -regexp boolean option the filter option may
be used to select specific data fields from violations. The id option is only
valid in add or append modes.
135
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
-regexp

Used in conjunction with the -filter option to distinguish between glob and
Unix-style regular expression syntax. The -regexp option is valid in add or
append modes.

-nocase

Ignores case while matching string values.

-msg

Waive violations based on the message pattern. Message-pattern will be
matched with violation message dumped using report_lint -list.

-ip ip_module_name(s)

Waive violations based on the Module inside which it lies.

-preview

If this option is set, waiver will not be added into database and matching
violation ids will be set as command output.

-not_applied

Display the waivers which do not apply.

-ignore

Waiver will be applied but will not be shown in waiver report.

-skip_full_path_for_waiver_file

Specify this option to display only base name for waiver file.

-posix_regex

Specify this option to enable POSIX regular expression matching in
waivers.

Examples

The following creates two waivers, the first waiver being the union of
two sets of violations. In this example, violations covered by the append
selection criteria will take precedence over those covered by waive_2 since
136
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
the append criteria was added to waive_1 which was declared before
waive_2.

waive_lint -add filt1 -comment " My first waiver" -tag
CODING_SIGNAL_LOWER_CASE -filter {(Module =~ "*top*")}

waive_lint -add Waive_error_tag -comment " Waiving all error
severity rules" -severity error

waive_lint -add Waive_fmly_CODING -comment " Waiver all the
rule tags of CODING family" -family CODING

view_fl_viol_summary

Description

This command is used to generate summary report of formally verified
Lint violations. It contains all the information regarding each violation
verified using the formal engine. Successful execution of this command
generates lint_formal_viol_summary.txt report in the run directory.

This command is supported in functional lint only. When the command is
applied successfully, 1 is returned; 0 otherwise. Use the -csv switch of the
view_fl_viol_summary command to generate the viol_breakup.csv report.
This report generates a rule-wise breakup of the formally verified rules in a
.csv format.

Syntax

view_fl_viol_summary

[-csv]

Arguments

[-csv]

Use this switch to generate the .csv report.

get_flp_summary
137
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Commands

Appendix A - Supported Commands
Description

Use this command to fetch various attributes of a property. Currently, the
following attributes are supported:
 lint_information: Relevant lint information encapsulated in a particular

property.
 engine: Name of the engine used to solve a particular property.

 solve_time: Time taken by the engine to solve the property.

This command is supported in lint_functional_mode only.

When the command is applied successfully, 1 is returned; 0 otherwise.

Syntax

get_flp_summary
[-prop <prop_name>]
[-attr <lint_information|solve_time|engine>]

Arguments

[-prop <prop_name>]

property name

[-attr <lint_information|solve_time|engine>]

Attribute to be checked

Examples

The following example shows how this command can be used to fetch the
solve time of a property top.m1.expr_mismatch_1:

prompt> get_flp_summary -prop top.m1.expr_mismatch_1 -attr
solve_time
138
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
LINT Configure Commands
This section describes the commands for configuring VC SpyGlass Lint.

configure_lint_tag

Description

Configures VC Lint checker violation tags by enabling, disabling, changing
severity.

Note: configure_lint_tag must be set before running any check_*
commands.

Syntax

configure_lint_tag
[-tag <tag list>]
[-enable]
[-disable]
[-severity <fatal|error|warning|info>]
[-module <module name or pattern>]
[-clear]
[-tcl]
[-regexp]
[-formal]
[-goal <Goal-Name>]
[-all]
[-verbose]
[-disable_turbo]

Arguments

[-tag <tag list>]

Define the tag(s) operated on.
139
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
[-enable]

Enables the specified tag(s)

[-disable]

Disables the specified tag(s)

[-severity <fatal|error|warning|info>]

Sets the tag(s) severity level: Values: error, fatal, info, warning

[-module <module name or pattern>]

Rule will be enabled only for that module or module pattern

[-clear]

Restores all tags to their original state

[-tcl]

Displays changes to the lint tag set in a TCL format suitable for replay.

[-regexp]

Allows regexp expressions in the tag list (default glob-style)

[-formal]

Run formal version of rule.

[-goal <Goal-Name>]

Specify Goal Name.

[-all]

Displays all messages, even with default enable and severity status.

[-verbose]

Displays short description for each message

[-disable_turbo]

Disables the turbo mode for specified tag(s)
140
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
Examples

The following example shows some usages of configure_lint_tag
command:

configure_lint_tag -enable -tag "RegOutputs" -goal test_goal
-severity warning

configure_lint_tag_parameter

Description

Sets the parameters for the VC Lint tags.

Syntax

configure_lint_tag_parameter
-tag <tag_name>
-parameter <parameter_name>
-value <value>
-goal <Goal-Name>

Arguments

-tag <tag_name>

Tag selected by the user. It is mandatory to specify the -tag argument.

-parameter <parameter_name>

Parameter selected by the user

-value <value>

Value of the parameter selected

-goal <Goal-Name>

Specify Goal Name
141
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
Examples

The following example shows the usage of the
configure_lint_tag_parameter command:

configure_lint_tag_parameter -tag "RegOutputs" -parameter
CHECK_REGOUTPUT_MODULES -value "" -goal test_goal

configure_lint_functional_setup

Description

This command is used for passing various options for Formal Model
Creation and Verification.

Syntax

configure_lint_functional_setup
[-scope <block|chip>]
[-seqDepth <seq_depth>]
[-opWidth <op_width>]
[-recipe <func_lint_recipe>]
[-regInit]
[-resetInit]
[-print]

Arguments

[-scope <block|chip>]

Specify the scope for which formal verification needs to be done.

[-seqDepth <seq_depth>]

Specify the sequential depth upto which the fan-in cone of a property is to
be considered.
142
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
[-opWidth <op_width>]

Specify the operator width upto which the fan-in cone of a property is
considered.

-modDepth

Specify the module depth upto which the fan-in cone of a property is
considered for performing the formal analysis.

[-recipe <func_lint_recipe>]

Specify the formal recipe to be used for solving properties.

[-regInit]

Specify whether register initialization should be done or not.

[-resetInit]

Specify whether the design should be brought to non-reset state before
Formal Model Creation and Verification.

[-print]

Print all the arguments and their respective values.

Examples

 The following example shows how this command can be used to set seq
depth to 4, op width to 10 and scope to chip.

prompt> configure_lint_functional_setup -seqDepth 4 -
opWidth 10 -scope chip

configure_lint_methodology

Description

Set options to specify current lint methodology.
143
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
If you want to use a custom methodology but standard goal name, such as,
lint_rtl or lint/lint_rtl, it causes conflict with the default goal name
and VC SpyGlass Lint picks up the default rule set.

To continue with using the name as lint_rtl or lint/lint_rtl, use the
configure_lint_methodology command and parse the setup file instead
of source goal_setup.tcl file, as shown below:

configure_lint_methodology goal_setup.tcl

configure_lint_setup -goal lint_rtl

Syntax

configure_lint_methodology
[-path <Path Name>]
[-goal <Goal-Name>]

Arguments

[-path <Path Name>]

Methodology path.

[-goal <Goal-Name>]

Specify Goal Name

Examples

The following example shows some usages of configure_lint_methodology
command:

configure_lint_methodology -goal "test_goal"

configure_lint_rca

Description

Specify this command to enable/disable/modify root cause tags and their
corresponding tags. Also, used to specify stage or pattern list
144
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
Syntax

configure_lint_rca
-help
[-rca <rca list>]
[-enable]
[-disable]
[-tag <tag list>]
[-clear]
[-stage <Stage-Id>]
[-pattern <pattern list>]
[-severity <severity>]

Arguments

-help

View the help for the command.

[-rca <rca list>]

Define the RCA(s) for which tags are configured.

[-enable]

Specify the tag to enable.

[-disable]

Specify the tag to disable.

[-tag <tag list>]

Specify the tag(s).

[-clear]

Restores all the tags to their original state.

[-stage <Stage-Id>]

Specify stage id to consider tags from that stage.
145
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
[-pattern <pattern list>]

Specify the pattern to match.

[-severity <severity>]

Specify violations from which category need to be clustered. Supported for
fatal, error, warning and info.

Examples

configure_lint_rca -enable -rca {DEBUG_LINT_COMMON_MODULE
DEBUG_LINT_OPEN_PORT} -tag {UnloadedOutTerm-ML}

configure_lint_setup

Description

Specifies which goal to run in early shift flow.

If you want to use a custom methodology but standard goal name, such as,
lint_rtl or lint/lint_rtl, it causes conflict with the default goal name
and VC SpyGlass Lint picks up the default rule set.

To continue with using the name as lint_rtl or lint/lint_rtl, use the
configure_lint_methodology command and parse the setup file instead
of source goal_setup.tcl file, as shown below:

configure_lint_methodology goal_setup.tcl

configure_lint_setup -goal lint_rtl

Syntax

configure_lint_setup
[-goal <Goal-Name>]
[-j <+ve integer>]
146
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

LINT Configure Commands

Appendix A - Supported Commands
Arguments

[-goal <Goal-Name>]

Specify Goal Name

[-j <+ve integer>]

Number of cores to use for parallel analysis.

Examples

The following example shows some usages of configure_lint_setup
command:

configure_lint_setup -goal "test_goal"

configure_lint_setup -goal "test_goal" -j 8
147
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Database Commands
This section describes the database commands used by VC SpyGlass Lint.

all_clock_gates

Description

This command creates a collection of clock gating cells. If -clock_pins
option is specified, this command creates a collection of clock gating cells
clock pins instead of the collection of clock gating cells.

Syntax

all_clock_gates

[-no_hierarchy]

[-clock_pins]

Arguments

 [-no_hierarchy]: Searches for clock gating cells or their clock pins at
the current level of hierarchy. By default, the search is hierarchical.

 [-clock_pins]: Creates a collection of clock gating cells clock pins. By
default, this command creates a collection of clock gating cells.

all_clocks

Description

This command returns all clocks of the current design.

all_connected

Description

The all_connected command returns a collection of objects connected to
the specified net, port, pin, net instance, or pin instance. A net instance is
148
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
a net in the hierarchy of the design. A pin instance is a pin on a cell in the
hierarchy of a design.

If the -leaf option is used, a list of leaf pins of the net is returned.

To connect nets to ports or pins, use the connect_net command. To break
connections, use the disconnect_net command.

Syntax

all_connected <object>

[-leaf]

Arguments

 <object>: Specifies the object whose connections are returned. The
object must be a net, port, pin, net instance, or pin instance.

 [-leaf]: Specifies that only leaf pins are returned for a hierarchical
net. For non-hierarchical nets, there is no difference in output.

Examples

The following example uses all_connected to return the objects
connected to MY_NET:

prompt> all_connected MY_NET

prompt> connect_net MY_NET OUT3
Connecting net 'MY_NET' to port 'OUT3'.

prompt> connect_net MY_NET U65/Z
Connecting net 'MY_NET' to pin 'U65/Z'.

prompt> all_connected MY_NET
{OUT3 U65/Z}

prompt> all_connected OUT3
{MY_NET}

prompt> all_connected U65/Z
{MY_NET}

This example uses all_connected to associate net load capacitance with
149
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
the net n47, which is connected to the pin instance C/Z:

prompt> set_load 0.147 [all_connected [get_pins U0/U1/C/Z]]
Set "load" attribute to 0.147 for net "U0/U1/n47"

all_designs

Description

The all_designs command returns a collection containing the designs in
the current design hierarchy in bottom-up order. You must set the current
design using the current_design command before using all_designs.

Syntax

all_designs

all_fanin

Description

The all_fanin command reports the fanin of specified sink pins, ports, or
nets in the design. A pin is considered to be in the fanin of a sink if there is
a path through combinational logic from the pin to that sink. The fanin
report stops at the pins of registers (sequential cells).

Syntax

all_fanin

[-to <sink_list>]

[-startpoints_only]

[-only_cells]

[-flat]

[-levels <count>]

[-pin_levels <pin_count>]

[-step_into_hierarchy]]
150
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-stop <stop_point_list>]

Arguments

 [-to <sink_list>]: Reports a list of sink pins, ports, or nets in the
design and a fanin of each sink in the sink_list. If you specify a net, the
effect is the same as listing all driver pins on the net.

 [-startpoints_only]: Returns only the startpoints.

 [-only_cells]: Results in a set of all cells in the fanin of the sink_list.

 [-flat]: Specifies to function in the flat mode of operation. The two
major modes in which all_fanin functions are hierarchical (the default)
and flat. When in hierarchical mode, only objects from the same
hierarchy level as the current sink are returned. Thus, pins within a level
of hierarchy lower than that of the sink are used for traversal but are not
reported.

 [-levels <count>]: Stops traversal when reaching the perimeter of
the search of count hops, where counting is performed over the layers
of cells that are equidistant from the sink.

 [-pin_levels <pin_count>]: Specifies the number of pins in the
design.

 [-step_into_hierarchy]]: You can only use this option in hierarchical
mode and with either the -levels or -pin_levels option. Without this
option, a hierarchical block at the same level of hierarchy as the current
object is considered to be a cell; the input pins are considered a single
level away from the related output pins, regardless of what is inside the
block. With the switch enabled, the counting is performed as though the
design were flat, and although pins inside the hierarchy are not
returned, they determine the depth of the related output pins.

 [-stop <stop_point_list>]: Specifies the custom stop points list at
which the traversal must stop. You can specify a collection of names,
any hierarchical name (pin, port, net, instance), design cell names or a
collection of these. When a match is found in the traversal, the traversal
stops at the specified point.

Examples

The following examples show the fanin of a port in the design. The design
comprises three inverters in a chain named iv1, iv2, and iv3. The iv1 and
iv2 inverters are hierarchically combined in a larger cell named ii2.
151
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
prompt> all_fanin -to tout
{ii2/hin iv3/in iv3/out tin ii2/hout tout}

prompt> all_fanin -to tout -flat
{ii2/iv1/U1/a ii2/iv2/U1/z tin iv3/U1/a ii2/iv1/U1/z
ii2/iv2/U1/a iv3/U1/z tout}

The following example shows the fanout of a port in the design. The design
comprises the following three inverters in a chain named iv1, iv2, and iv3.
The iv1 and iv2 inverters are hierarchically combined in a larger cell named
ii2.

prompt> all_fanin -to tout
{"ii2/hout", "iv3/out", "ii2/hin", "iv3/in", "tin", "tout"}

prompt> all_fanin -to tout -flat
{"ii2/iv1/U1/Z", "ii2/iv1/U1/A", "ii2/iv2/U1/Z", "ii2/iv2/U1/
A", "iv3/U1/Z", "iv3/U1/A", "tin", "tout"}

prompt> all_fanin -to tout -stop ii2/hout
{"ii2/hout", "iv3/out", "iv3/in", "tout"}

prompt> all_fanin -to tout -stop {iv3/U1/A ii2/hout}
{"iv3/out", "tout", "iv3/out"}

all_fanout

Description

The all_fanout command reports the fanout of specified source pins,
ports, or nets in the design. A pin is considered to be in the fanout of a sink
if there is a path through combinational logic from that source to the pin.
The fanout report stops at the inputs to registers (sequential cells). The
source pins or ports are specified by using the -from source_list option.

Syntax

all_fanout

[-from <source_list>]

[-endpoints_only]
152
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-only_cells]

[-flat]

[-levels <count>]

[-pin_levels <pin_count>]

[-step_into_hierarchy]

[-stop <stop_point_list>]

[-exclude_resetless]

[-only_resetless]

Arguments

 [-from <source_list>]: Specifies a list of source pins, ports, or nets
in the design. The fanout of each source in the source_list is reported. If
a net is specified, the effect is the same as listing all load pins on the
net. The -clock_tree and -from options are mutually exclusive.

 [-endpoints_only]: Returns only endpoints as a result.

 [-only_cells]: Results in a set of all cells in the fanout of the
source_list, rather than a set of pins or ports.

 [-flat]: Specifies to function in the flat mode of operation. The two
major modes in which all_fanout functions are hierarchical (the default)
and flat. When in hierarchical mode, only objects from the same
hierarchy level as the current source are returned. Thus, pins within a
level of hierarchy lower than that of the source are used for traversal
but are not reported.

 [-levels <count>]: Stops traversal when reaching the perimeter of
the search of count hops, where counting is performed over the layers
of cells that are equidistant from the source.

 [-pin_levels <pin_count>]: Specifies the number of pins in the
design.

 [-step_into_hierarchy]: You can use this option only in hierarchical
mode with either the -levels or -pin_levels option. Without this option, a
hierarchical block at the same level of hierarchy as the current object is
considered to be a cell; the output pins are considered a single level
away from the related input pins, regardless of what is inside the block.
With the switch enabled, the counting is performed as though the design
153
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
were flat, and although pins inside the hierarchy are not returned, they
determine the depth of the related input pins.

 [-stop <stop_point_list>]: Specifies the custom stop points list.

 [-exclude_resetless]: Specifies to exclude fanout objects that are
reset-less flops.

 [-only_resetless]: Specifies to report only reset-less flops as fanout
objects.

Examples

The following example shows the fanout of a port in the design. The design
comprises the following three inverters in a chain named iv1, iv2, and iv3.
The iv1 and iv2 inverters are hierarchically combined in a larger cell named
ii2.

prompt> all_fanout -from tin
{iv3/out tout iv3/in ii2/hin ii2/hout tin}

prompt> all_fanout -from tin -flat
{tout ii2/iv2/U1/z ii2/iv1/U1/a iv3/U1/z iv3/U1/a
ii2/iv2/U1/a ii2/iv1/U1/z tin}

prompt> all_fanout -from tin -levels 1 -only_cells
{iv3 ii2}

all_inputs

Description

The all_inputs command returns a collection of all input or inout ports in
the current design, unless one of the options limits the search. The
all_inputs command is usually used with a command that places attributes
on input ports. To get detailed information on ports in the current design,
use the report_port command.

Syntax

all_inputs
154
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Examples

The following example lists all input ports in the current design:

prompt> all_inputs
{A1 A2 BIDIR1}

The following example sets the drive value of all the input ports on the
current design to 10:
prompt> set_drive 10.0 [all_inputs]

The following example marks with a multicycle value of 0 all paths from
inputs having level-sensitive input delay relative to PHI1 to level-sensitive
registers clocked by PHI1:

prompt> set_multicycle_path 0 \\
-from [all_inputs -clock PHI1 -level_sensitive] \\
-to [all_registers -data_pins -clock PHI1]

all_instances

Description

Create a collection of all instances of a design (stub)

Syntax

all_instances [<>]

[-hierarchical]

Arguments

 [<>]: Target design or lib cell name.

 [-hierarchical]: Search for instances hierarchically

all_outputs

Description

The all_outputs command returns a collection of all output or inout ports in
the current design, unless one of the options limits the search. This
155
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
command is usually used with a command that places attributes on output
ports. To get detailed information on ports in the current design, use the
report_port command.

Syntax

all_outputs

Examples

The following example lists all output ports:

prompt> all_outputs
{OUT1 OUT2 BIDIR1}

change_link

Description

The change_link command specifies a design for which to change the link
for a cell. If you specify a cell in the object list, the command changes it to
one occurrence of the specified design. You can change the cell link only to
a compatible design.For example, the design must have the same number
of ports with the same name and direction as the cell or reference.

Syntax

change_link <object_name_list>

[-force]

[-all_instances]

[-pin_map <pin map table>]

Arguments

 <object_name_list>: Specifies the cells or references in the current
design for which to change the link.

 <design_name>: Specifies the name of the design to which to link the
cells or references in the object list.
156
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-force]: Enables the command to allow mismatched pin counts, as
long as any mismatched cells in the object list have fewer pins than the
specified design.

 [-all_instances]: Enables the command to accept instance cells in
the object list.

 [-pin_map <pin map table>]: Specifies the pin mapping used to map
old pin names to new pin names.The pin name must be the reference
cell pin name.To specify the pin mapping, use the following Syntax
{{old_pin1 new_pin1} ... {old_pin_n new_pin_n}} New pins maintain
the same net connections as the corresponding old pins.

Examples

The following example creates a cell named cell1 under the sub design
corresponding to the mid1 cell:

vc_static_shell> create_cell cell1 my_lib/AND2
[Info] ADD_CELL: Creating cell 'cell1' in design 'mid1'.

configure_mem_macro_inference

Description

This command is used to specify the constraint for Memory Macro
Inference in synthesis.

Syntax

configure_mem_macro_inference

-mthresh int

-infer_1dmem

-skip_infer

Arguments

 -mthresh int: Use this option to specify the width of signal beyond
which memory inference will get triggered.The default value is 4096.

 -infer_1dmem: Use this option to specify the memory inference for
vector signal.
157
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 -skip_infer: Use this option to skip the memory macro inference.

connect_net

Description

Connects the specified net to the specified pins or ports. This command
connects a net to the specified pins or ports at the same hierarchical level.
The net can be at any level of hierarchy but the pins or ports must be at
the same level. A net can be connected to many pins or ports; however,
you cannot connect a pin or port to more than one net. To disconnect
objects on a net, use the disconnect_net command. To display pins and
ports on a net, use either the all_connected or get_nets -of $net command.
Multicorner-Multimode Support This command has no dependency on
scenario-specific information.

Syntax

connect_net <net_name>

Arguments

 <net_name>: Specifies the net to connect. The net must be a scalar
(single bit) net, and must exist in the current design.

 <object_list>: Specifies a list of pins and ports to which the net is to
be connected. Pins and ports must be at the same hierarchical level as
the specified net, and must exist in the current design. If a specified pin
or port is already connected, the tool issues an error message. Use this
option to specify the list of nets

Examples

The following example uses connect_net to connect net NET0 to ports A1
and A2 and pin U1/A. The all_connected command returns the objects
connected to net NET0.

vc_static_shell> connect_net NET0 [get_ports {A1 A2}]
vc_static_shell> connect_net NET0 [get_pins U1/A]
vc_static_shell>all_connected NET0
{A1 A2 U1/A}
158
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
create_bus

Description

The create_bus command creates a bus object of the type port or net. The
number of objects in the list determines the bus width. Buses appear as
multibit ports on a design or as multiwire nets in a design. This command
groups any number of ports or any number of nets into a bus object.
Unless the -sort or -no_sort option is selected, the specified objects are
sorted by reverse alphanumeric order of names before the bus is created.
When using Design Vision to create a design schematic, bused nets are
inferred from bused ports or pins in the design. Bused nets only appear as
nets in a schematic if they are connected to a bused port. If the start bit
and end bit for the bus are specified with the -start and -end options, the
bus is created with these start and end indices. If only the start bit is
specified, an upward-going bus starting at that start bit is built. If only the
end bit is specified, an upward going bus ending at that end bit is built.

Syntax

create_bus <net_name_list>

[-start <start bit>]

[-end <end bit>]

Arguments

 <net_name_list>: Specifies a list of ports or nets to be put into a bus.
If both ports and nets have the same names, the ports are put into the
bus. This option is required.

 <bus_name>: Specifies the name of the bus. This name cannot be the
same as any other bus or object of the same type. Port bus names must
be different from the names of ports, and net bus names must be
different from the names of nets. This option is required.

 [-start <start bit>]: Specifies the start bit for the bus.

 [-end <end bit>]: Specifies the end bit for the bus.

Examples

This example groups the A1, A2, and A3 ports into a bus named A. The
159
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
ports must already exist. The order in which the ports appear in the bus is
A3, A2, A1.
vc_static_shell> create_bus {A1 A2 A3} A

This example groups the existing D1, D2, and D3 ports into a bus named D
and assigns it the index range 6-to-4. Port D1 is assigned index 6, port D2
to index 5, and port D3 to index 4.
vc_static_shell> create_bus {D1 D2 D3} D -start 6 -end 4

create_cell

Description

This command creates new leaf orhierarchical cells in the current design or
its subdesigns based on the cell_list argument. New leaf cells are the
instantiation of an existing design or library cell. New hierarchical cells are
the instantiation of a new design. New cells are the instantiation of an
existing design, a library cell, a logic 0 generator, or a logic 1 generator.
The created cells are unplaced. To be viewed properly in the GUI, the cells
must be placed either manually by using the set_cell_location command or
automatically by using placement commands. To remove cells from the
current design, use the remove_cell command. Although the
reference_name argument accepts names in the format library/library_cell,
the command might not instantiate the actual library cell from the specified
library. The actual library cell to be used is determined by the current link
library settings.

Syntax

create_cell <reference> [<reference>]

[-only_physical]

[-hierarchical]

[-logic <logic_value>]

Arguments

 <reference>: Specifies the design or library cell that new cells
reference. You must specify the reference_name. Ports on the reference
determine the name, number, and direction of pins on the new cell.
160
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [<name_list>]: Specifies the names of cells created in the current
design. Each cell name must be unique within the current design.

 [-only_physical]: Creates a new physical or physical-only cell using
a reference from the physical library. The -only_physical option sets the
is_physical_only attribute on the created physical-only cell. After you
create a physical-only cell, you must assign a location to that cell. Unlike
physical cells with logic functions, the tool does not assign a location to
a physical-only cell during synthesis. To assign a location, use the
set_cell_location command, Tcl commands, or a DEF file. By default, this
option is off.

 [-hierarchical]: Creates hierarchical cell instances and designs with
the name given by cell_list if the reference_name is not specified. If you
specify the reference_name, the cell_list must have a single element.
The command creates the hierarchical cell instance with the name given
by the single cell_list and also creates the design with the name given
by reference_name.

 [-logic <logic_value>]: Specifies that the new cell generates a logic
0 or logic 1 value. The logic value must be either 0 or 1. By using this
option, the cell contains a single output pin. By default, this option is off.

Examples

The following example creates a cell named cell1 under the subdesign
corresponding to the mid1 cell:

vc_static_shell> create_cell {mid1/cell1} my_lib/AND2
[Info] ADD_CELL: Creating cell 'cell1' in design 'mid1'.

The following example creates a cells with -hierarchical option

vc_static_shell> create_cell -hierarchical {H2 H3} my_lib/AND2
[Info] ADD_CELL: Creating cell 'H2' in design 'test'.
[Info] ADD_CELL: Creating cell 'H3' in design 'test'.

create_net

Description

The create_net command creates new net objects in the current design or
its subdesign based on the net_list argument. The create_net command
creates only scalar (single bit) nets. To bundle scalar nets into buses, use
161
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
the create_bus command. Nets connect pins and ports in a design. When
you create nets with create_net, they are not connected. To establish this
connection, use the connect_net command. To remove nets from the
current design, use the remove_net command.

Syntax

create_net <name_list>

Arguments

 <name_list>: Specifies the names of the created nets. If you specify a
hierarchical net name, the net is created in the specified instance. The
net name must be unique within the current design or the subdesign
where it is created. If you use a hierarchical net name, the parent
instance must be unique; it cannot be an instance of a multiply-
instantiated design. This option is required.

Examples

The following example uses create_net to create net objects in the current
design :

vc_static_shell> create_net {N1 N2 N3 N4}
[Info] ADD_NET: Creating net 'N1' in design 'test'.
[Info] ADD_NET: Creating net 'N2' in design 'test'.
[Info] ADD_NET: Creating net 'N3' in design 'test'.
[Info] ADD_NET: Creating net 'N4' in design 'test'.

The following example uses create_net to create net objects in the mid
subdesign. Note that mid1 is an instance of the mid design. The mid design
must be unique for the create_net command to succeed.

vc_static_shell> create_net {mid1/N1 mid1/N2 mid1/N3 mid1/N4}
[Info] ADD_NET: Creating net 'N1' in design 'mid1'.
[Info] ADD_NET: Creating net 'N2' in design 'mid1'.
[Info] ADD_NET: Creating net 'N3' in design 'mid1'.
[Info] ADD_NET: Creating net 'N4' in design 'mid1'.

create_port
162
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Description

The create_port command creates new port objects in the current design
or its subdesign. The create_port command creates only scalar or single bit
ports. To bundle scalar ports into buses, use the create_bus command.
Ports are the external connection points on a design. To connect ports to
nets inside a design, use the connect_net command. To remove ports from
the current design, use the remove_port command. Multicorner-Multimode
Support This command has no dependency on scenario-specific
information.

Syntax

create_port <name_list>

[-direction <dir>]

Arguments

 <name_list>: Specifies names of ports created in the current design.
Each port name must be unique within the current design.

 [-direction <dir>]: Specifies the signal flow of the created port. The
possible values are in, out, or inout. The default is in.

Examples

The following example uses create_port to create ports in the current
design

vc_static_shell> create_port -direction "in" {A1 A2 A3 A4}
[Info] ADD_PORT: Creating port 'A1' in design 'test'.
[Info] ADD_PORT: Creating port 'A2' in design 'test'.
[Info] ADD_PORT: Creating port 'A3' in design 'test'.
[Info] ADD_PORT: Creating port 'A4' in design 'test'.

The following example uses create_port to create ports in the U1
subdesign.

vc_static_shell> create_port -direction "in" {U1/B1 U1/B2 U1/B3
U1/B4}
[Info] ADD_PORT: Creating port 'B1' in design 'U1'.
[Info] ADD_PORT: Creating port 'B2' in design 'U1'.
[Info] ADD_PORT: Creating port 'B3' in design 'U1'.
[Info] ADD_PORT: Creating port 'B4' in design 'U1'.
163
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
define_user_attribute

Description

This command defines a new attribute. Use the list_attributes command to
list the attributes that you have defined.

The definition for a user-defined attribute can be persistent if it has been
set on a specified object and stored in the database.

Syntax

define_user_attribute <attr_name>

[-type <string | int | float | double | boolean>]

-classes <cell | clock | design | lib_cell | lib_pin | net |
net_word | pin | pin_word | port | port_word>

[-range_min <min>]

[-range_max <max>]

[-one_of <values>]

Arguments

 <attr_name>: Specifies the name of the attribute.

 [-type <string | int | float | double | boolean>]: Specifies
the data type of the attribute. Specifies the classes for the new user-
defined attribute. Valid classes are design, port, cell, net, etc.

 -classes <cell | clock | design | lib_cell | lib_pin | net |
net_word | pin | pin_word | port | port_word>: Specifies the
type of the object on which the new attribute is created.

 [-range_min <min>]: Specifies the minimum value for numeric
ranges. This option is valid only when the data type of the attribute is int
or double. Specifying a minimum constraint without a maximum
constraint creates an attribute that accepts a value greater than or
equal to min.

 [-range_max <max>]: Specifies the maximum value for numeric
ranges. This option is valid only when the data type of the attribute is int
or double. Specifying a maximum constraint without a minimum
164
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
constraint creates an attribute that accepts a value less than or equal to
max.

 [-one_of <values>]: Provides a list of allowable strings. This option is
valid only when the data type of the attribute is string.

Examples

The following example defines an attribute named attr_1, which has a data
type of double with a minimum value of 2 and a maximum value of 3.2 and
can be set on cells or nets.

prompt> define_user_attribute -class {cell net} -type double \\
-range_max 3.2 -range_min 2 attr_1

The following example defines an attribute named attr_2, which has a data
type of string with valid values of true or false and can be set on nets.

prompt> define_user_attribute -class net -type string \\
-one_of {true false} attr_2

The following example shows how to list the attribute definitions using the
list_attributes command:
prompt> list_attributes

disconnect_net

Description

The disconnect_net command breaks the connections between a net or a
net instance and its pins or ports. The net, pins, and ports are not
removed. This command accepts only scalar (single bit) nets, and not
bused nets. To connect nets, use the connect_net command. To display the
pins and ports connected to a net, use the all_connected command.

Syntax

disconnect_net <net_name>

Default Argument <net_name>

Specifies the net name or net instance name to disconnect. A net must
exist in the current design.
 Default Argument: <object_name_list>
165
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Specifies the pins and ports disconnected from the net. Only pins and ports
existing in the current design are specified. Either object_list or -all must
be specified.

Examples

The following examples disconnect nets using the disconnect_net
command:

disconnect_net NET0 [get_ports A1]
Disconnecting net 'NET0' from port 'A1'

disconnect_net NET0 [get_pins U1/A]
Disconnecting net 'NET0' from pin 'U1/A'.

find

Description

Finds objects of specific object type

Syntax

find [<>]

[-hierarchy]

 Default Argument: [<>]

Specifies object type: Values: cell, design, lib_cell, lib_pin, net, pin, port
 Default Argument: [<>]

Specifies a list of names of design or library objects

Arguments

 [-hierarchy]: Specifies to return all objects matching type and
name_listwithin the current design hierarchy

get_cells
166
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Description

This command creates a collection of cells that match the specified criteria.
By default, the command creates the collection of cells from the current
design, relative to the current instance.

If the command cannot find any cells that match the criteria and the
current design is not linked, the design automatically links.

The command returns a collection if any cell matches the criteria. If no
object matches the criteria, the command returns an empty string.

You can use this command at the command prompt or you can nest it as an
argument to another command, such as query_objects. In addition, you
can assign the result to a variable.

When issued from the command prompt, the command behaves as though
you have called the query_objects command to report the objects in the
collection. By default, it displays a maximum of 100 objects. You can
change this maximum by using the collection_result_display_limit variable.

For information about collections and the querying of objects, see the
collections man page.

Syntax

get_cells [<patterns>]

[-hierarchical]

[-quiet]

[-regexp]

[-nocase]

[-exact]

[-filter <expression>]

[-of_objects <objects>]

Arguments

 Default Argument: [<patterns>]: Creates a collection of cells whose
names match the specified patterns. Patterns can include the *
(asterisk) and ? (question mark) wildcard characters. For more
information about using and escaping wildcards, see the wildcards man
167
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
page. Pattern matching is case sensitive unless you use the -nocase
option. are mutually exclusive; you can specify only one. If you do not
specify any of these arguments, the command uses * (asterisk) as the
default pattern.

 [-hierarchical]: Searches for cells level-by-level, relative to the
current instance. The name of the object at a particular level must
match the patterns. For example, if there is a cell block1/adder, a
hierarchical search finds it using "adder". By default, the search is not
hierarchical.

 [-quiet]: Suppresses warning and error messages if no object
matches. Syntax error messages are not suppressed.

 [-regexp]: Views the patterns argument as a regular expression
rather than a simple wildcard pattern. This option also modifies the
behavior of the =~ and !~ filter operators to use regular expressions
rather than simple wildcard patterns. The regular expression matching
is similar to the Tcl regexp command. When using the -regexp option,
be careful how you quote the patterns argument and filter expression.
Using rigid quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always anchored; that
is, the expression is assumed to begin matching at the beginning of an
object name and end matching at the end of an object name. You can
widen the search by adding ".*" to the beginning or end of the
expressions, as needed. The -regexp and -exact options are mutually
exclusive. You can specify only one of these options.

 [-nocase]: Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

 [-exact]: Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards.

 [-filter <expression>]: Filters the collection with the specified
expression. For each cell in the collection, the expression is evaluated
based on the cell's attributes. If the expression evaluates to true, the
cell is included in the result. To see the list of cell attributes that you can
use in the expression, use the list_attributes -application -class cell
command. For more information about how to use the -filter option, see
the filter_collection man page.

 [-of_objects <objects>]: Creates a collection of cells connected to
the specified objects. arguments are mutually exclusive; you can specify
only one. If you do not specify any of these arguments, the command
168
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
uses the * (asterisk) as the default pattern. In addition, you cannot use
the -hierarchical option with the -of_objects option.

Examples

The following example queries the cells that begin with "o" and reference
an FD2 library cell. Although the output looks like a list, it is only a display.

prompt> get_cells "o*" -filter "@ref_name == FD2"
{o_reg1 o_reg2 o_reg3 o_reg4}

The following example queries the cells connected to a collection of pins.

prompt> set pinsel [get_pins o*/CP]
{o_reg1/CP o_reg2/CP}

prompt> get_cells -of_objects $pinsel
{o_reg1 o_reg2}

The following example queries the cells connected to a collection of nets.

prompt> set netsel [get_nets tmp]
{tmp}

prompt> get_cells -of_objects $netsel
{b c}

get_designs

Description

The get_designs command creates a collection of designs from those
currently loaded into the tool that match certain criteria. The command
returns a collection if any designs match the patterns and pass the filter (if
specified). If no objects match your criteria, the empty string is returned.

Regular expression matching is the same as in the Tcl regexp command.
When using -regexp, take care in the way you quote the patterns and filter
expression. Using rigid quoting with curly braces around regular
expressions is recommended. Regular expressions are always anchored.
The expression is assumed to begin matching at the beginning of an object
name and end matching at the end of an object name. You can widen the
search simply by adding ".*" to the beginning or end of the expressions as
needed.
169
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
You can use the get_designs command at the command prompt, or you
can nest it as an argument to another command, such as query_objects. In
addition, you can assign the get_designs result to a variable.

When issued from the command prompt, get_designs behaves as though
query_objects has been called to display the objects in the collection. By
default, a maximum of 100 objects is displayed. You can change this
maximum using the collection_result_display_limit variable.

The implicit query property of get_designs provides a fast, simple way to
display designs in a collection. However, if you want the flexibility provided
by the query_objects options (for example, if you want to display the
object class), use get_designs as an argument to query_objects.

For information about collections and the querying of objects, see the
collections man page.

Syntax

get_designs

[-hierarchical]

[-quiet]

[-regexp]

[-nocase]

[-exact]

[-filter <expression>]

Arguments

 [-hierarchical]: Searches for designs inferred by the design
hierarchy relative to the current instance. The full name of the object at
a particular level must match the patterns. The use of this option does
not force an auto link.

 [-quiet]: Suppresses warning and error messages if no objects
match. Syntax error messages are not suppressed.

 [-regexp]: Uses the patterns argument as real regular expressions
rather than simple wildcard patterns.

 [-nocase]: Makes matches case-insensitive.
170
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-exact]: Disables simple pattern matching. This is used when
searching for objects that contain the * (asterisk) and ? (question mark)
wildcard characters.

 [-filter <expression>]: Filters the collection with expression. For
any designs that match patterns, the expression is evaluated based on
the design's attributes. If the expression evaluates to true, the design is
included in the result.

Examples

The following example queries the designs that begin with mpu. Although
the output looks like a list, it is just a display. A complete listing of designs
is available using the list_designs command.

prompt> get_designs mpu*
{mpu_0_0 mpu_0_1 mpu_1_0 mpu_1_1}

The following example shows that, given a collection of designs, you can
remove those designs:

prompt> remove_design [get_designs mpu*]
Removing design mpu_0_0...
Removing design mpu_0_1...
Removing design mpu_1_0...
Removing design mpu_1_1...

get_lib_cells

Description

This command creates a collection of library cells from the libraries
currently loaded into memory that match the specified criteria.

If no libraries have been loaded into memory, the tool loads the libraries
specified in the link_library variable into memory the first time you run the
get_libs, get_lib_cells, or get_lib_pins command.

If you use the -scenarios option, only libraries associated with the specified
scenarios are included in the search.

The command returns a collection if any library cells match the criteria. If
no objects match the criteria, the command returns an empty string.

You can use this command at the command prompt or you can nest it as an
171
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
argument to another command, such as query_objects. In addition, you
can assign the result to a variable.

When issued from the command prompt, the command behaves as though
you have called the query_objects command to report the objects in the
collection. By default, it displays a maximum of 100 objects. You can
change this maximum by using the collection_result_display_limit variable.

For information about collections and the querying of objects, see the
collections man page.

Syntax

get_lib_cells <patterns>

[-quiet]

[-regexp]

[-exact]

[-nocase]

[-filter <expression>]

[-of_objects <objects>]

Arguments

 Default Argument: <patterns>: Creates a collection of library cells
whose names match the specified patterns. Patterns can include the *
(asterisk) and ? (question mark) wildcard characters. For more
information about using and escaping wildcards, see the wildcards man
page. Pattern matching is case sensitive unless you use the -nocase
option. The patterns and -of_objects arguments are mutually exclusive;
you must specify one.

 [-quiet]: Suppresses warning and error messages if no objects
match. Syntax error messages are not suppressed.

 [-regexp]: Views the patterns argument as a regular expression
rather than a simple wildcard pattern. This option also modifies the
behavior of the =~ and !~ filter operators to use regular expressions
rather than simple wildcard patterns. The regular expression matching
is similar to the Tcl regexp command. When using the -regexp option,
be careful how you quote the patterns argument and filter expression.
Using rigid quoting with curly braces around regular expressions is
172
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
recommended. Note that regular expressions are always anchored; that
is, the expression is assumed to begin matching at the beginning of an
object name and end matching at the end of an object name. You can
widen the search by adding ".*" to the beginning or end of the
expressions, as needed. The -regexp and -exact options are mutually
exclusive; you can use only one.

 [-exact]: Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards. The -regexp and -exact options
are mutually exclusive; you can use only one.

 [-nocase]: Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

 [-filter <expression>]: Filters the collection with the specified
expression. For each library cell in the collection, the expression is
evaluated based on the library cell's attributes. If the expression
evaluates to true, the library cell is included in the result. To see the list
of library cell attributes that you can use in the expression, use the
list_attributes -application -class lib_cell command. For more
information about how to use the -filter option, see the filter_collection
man page.

 [-of_objects <objects>]: Creates a collection of library cells that
are referenced by the specified cells or own the specified library pins.
Each object is either a named library pin, a netlist cell, a library pin
collection, or a netlist cell collection. The patterns and -of_objects
arguments are mutually exclusive; you must specify one.

Examples

The following example queries all library cells that are in the misc_cmos
library whose names begin with AN2. Although the output looks like a list,
it is just a display.

prompt> get_lib_cells misc_cmos/AN2*
{misc_cmos/AN2 misc_cmos/AN2P}

The following example shows one way to determine the library cell used by
a particular cell instance:

prompt> get_lib_cells -of_objects [get_cells o_reg1]
{misc_cmos/FD2}
173
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
get_lib_pins

Description

This command creates a of library cell pins from the libraries currently
loaded into memory that match the specified criteria.

If no libraries have been loaded into memory, the tool loads the libraries
specified in the link_library variable into memory the first time you run the
get_libs, get_lib_cells, or get_lib_pins command.

The command returns a collection if any library cell pins match the criteria.
If no objects match the criteria, the command returns an empty string.

You can use this command at the command prompt or you can nest it as an
argument to another command, such as query_objects. In addition, you
can assign the result to a variable.

When issued from the command prompt, the command behaves as though
you have called the query_objects command to report the objects in the
collection. By default, it displays a maximum of 100 objects. You can
change this maximum by using the collection_result_display_limit variable.

For information about collections and the querying of objects, see the
collections man page.

Syntax

get_lib_pins <patterns>

[-quiet]

[-regexp]

[-exact]

[-nocase]

[-filter <expression>]

[-of_objects <objects>]

Arguments

 Default Argument: <patterns>: Creates a collection of library cell pins
whose names match the specified patterns. Patterns can include the *
(asterisk) and ? (question mark) wildcard characters. For more
174
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
information about using and escaping wildcards, see the wildcards man
page. Pattern matching is case sensitive unless you use the -nocase
option. The patterns and -of_objects arguments are mutually exclusive;
you must specify one.

 [-quiet]: Suppresses warning and error messages if no objects
match. Syntax error messages are not suppressed.

 [-regexp]: Views the patterns argument as a regular expression
rather than a simple wildcard pattern. This option also modifies the
behavior of the =~ and !~ filter operators to use regular expressions
rather than simple wildcard patterns. The regular expression matching
is similar to the Tcl regexp command. When using the -regexp option,
be careful how you quote the patterns argument and filter expression.
Using rigid quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always anchored; that
is, the expression is assumed to begin matching at the beginning of an
object name and end matching at the end of an object name. You can
widen the search by adding ".*" to the beginning or end of the
expressions, as needed. The -regexp and -exact options are mutually
exclusive; you can use only one.

 [-exact]: Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards. The -regexp and -exact options
are mutually exclusive; you can use only one.

 [-nocase]: Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

 [-filter <expression>]: Filters the collection with the specified
expression. For each library cell pin in the collection, the expression is
evaluated based on the library cell pin's attributes. If the expression
evaluates to true, the library cell pin is included in the result. To see the
list of library cell pin attributes that you can use in the expression, use
the list_attributes -application -class lib_pin command. For more
information about how to use the -filter option, see the filter_collection
man page.

 [-of_objects <objects>]: Creates a collection of library cell pins
referenced by the specified netlist Each object is either a named library
cell, netlist pin, library cell collection, or a netlist pin collection. The
patterns and -of_objects arguments are mutually exclusive; you must
specify one.
175
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Examples

The following example queries all pins of the AN2 library cell in the
misc_cmos library. Although the output looks like a list, it is just a display.

prompt> get_lib_pins misc_cmos/AN2/*
{misc_cmos/AN2/A misc_cmos/AN2/B misc_cmos/AN2/Z}

The following example shows one way to find out how the library pin is
used by a particular pin in the netlist:

prompt> get_lib_pins -of_objects o_reg1/Q
{misc_cmos/FD2/Q}

get_lib_timing_arcs

Description

Creates a collection of library arcs for custom reporting and other
processing. You can assign these library arcs to a variable and get the
desired attribute for further processing.

Syntax

get_lib_timing_arcs

[-to <to_list>]

[-from <from_list>]

[-of_objects <cell list>]

[-filter <expression>]

Arguments
 [-to <to_list>]: Specifies the "to" library pins, or ports. All backward

library arcs from the specified library pins or ports are considered.
 [-from <from_list>]: Specifies the "from" library pins, or ports. All

forward library arcs from the specified library pins or ports are
considered.

 [-of_objects <cell list>]: Specifies library cells or timing arcs. If a
library cell is specified, all library cell arcs of that cell are considered. If a
timing arc collection is given in the object list, the corresponding library
timing arc is considered.
176
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-filter <expression>]: Specifies the filter expression. A filter
expression is a string that comprises a series of logical expressions
describing a set of constraints you want to place on the collection of
library arcs. Each subexpression of a filter expression is a relation
contrasting an attribute name with a value, by means of an operator.

Examples

The following examples show the usage of the get_lib_timing_arcs
command:

vc_static_shell> get_lib_timing_arcs -of_objects [get_lib_cells
/]
{"tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/
INVD20BWP16P90LVT/I
tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/INVD20BWP16P90LVT/
ZN", "tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/
INVD4BWP16P90LVT/I
tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/INVD4BWP16P90LVT/
ZN"}

The following examples show the usage of the get_lib_timing_arcs
command:

vc_static_shell> get_lib_timing_arcs -from
tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/INVD20BWP16P90LVT/
I -to tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/
INVD20BWP16P90LVT/ZN -filter "object_class == lib_timing_arc"
{"tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/
INVD20BWP16P90LVT/I
tcbn16ffllbwp16p90lvtffgnp0p6v125c_ccs_cchp0/INVD20BWP16P90LVT/
ZN"}

get_libs

Description

This command creates a collection of libraries from the libraries currently
loaded into memory that match the specified criteria.

If no libraries have been loaded into memory, the tool loads the libraries
specified in the link_library variable into memory the first time you run the
get_libs, get_lib_cells, or get_lib_pins command.
177
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
The command returns a collection if any library matches the criteria. If no
library matches the criteria, the command returns an empty string.

You can use this command at the command prompt or you can nest it as an
argument to another command, such as query_objects. In addition, you
can assign the result to a variable.

When issued from the command prompt, the command behaves as though
you have called the query_objects command to report the objects in the
collection. By default, it displays a maximum of 100 objects. You can
change this maximum by using the collection_result_display_limit variable.

For information about collections and the querying of objects, see the
collections man page.

Syntax

get_libs [<patterns>]

[-quiet]

[-regexp]

[-exact]

[-nocase]

[-filter <expression>]

[-of_objects <objects>]

Arguments

 Default Argument: [<patterns>]: Creates a collection of libraries
whose names match the specified patterns. Patterns can include the *
(asterisk) and ? (question mark) wildcard characters. For more
information about using and escaping wildcards, see the wildcards man
page. Pattern matching is case sensitive unless you use the -nocase
option. The patterns and -of_objects arguments are mutually exclusive;
you can specify only one. If you do not specify any of these arguments,
the command uses the * (asterisk) as the default pattern.

 [-quiet]: Suppresses warning and error messages if no object
matches. Syntax error messages are not suppressed.

 [-regexp]: Views the patterns argument as a regular expression
rather than a simple wildcard pattern. This option also modifies the
178
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
behavior of the =~ and !~ filter operators to use regular expressions
rather than simple wildcard patterns. The regular expression matching
is similar to the Tcl regexp command. When using the -regexp option,
be careful how you quote the patterns argument and filter expression.
Using rigid quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always anchored; that
is, the expression is assumed to begin matching at the beginning of an
object name and end matching at the end of an object name. You can
widen the search by adding ".*" to the beginning or end of the
expressions, as needed. The -regexp and -exact options are mutually
exclusive; you can use only one.

 [-exact]: Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards. The -regexp and -exact options
are mutually exclusive; you can use only one.

 [-nocase]: Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

 [-filter <expression>]: Filters the collection with the specified
expression. For each library in the collection, the expression is evaluated
based on the library's attributes. If the expression evaluates to true, the
library is included in the result. To see the list of library attributes that
you can use in the expression, use the list_attributes -application -class
lib command. For more information about how to use the -filter option,
see the filter_collection man page.

 [-of_objects <objects>]: Creates a collection of libraries that
contain the specified objects. Each object is either a named library cell
or a library cell collection. The patterns and -of_objects arguments are
mutually exclusive; you can specify only one. If you do not specify any
of these arguments, the command uses the * (asterisk) as the default
pattern.

Examples

The following example queries all loaded libraries. Use the list_libs
command to get a complete listing of the libraries.

prompt> get_libs
{misc_cmos misc_cmos_io}

get_link
179
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Description

This command returns the designs built with reason code using Simon/
VNR.

Syntax

get_link

-reasons <reason_list>

Arguments
 -reasons <reason_list>: Use this option to specify the reason list.

The values are AutoBB, AutoGB, DirtyData, Empty, PhysicalCell,
SimDirection, SimMatch, SimPort, SimWidth, Synthesis, Unresolved,
UserBB, and UserGB.

get_nets

Description

This command creates a collection of nets in the current design relative to
the current instance that match the specified criteria.

The command returns a collection if any nets match the specified criteria.
If no objects match the criteria, the command returns an empty string.

You can use this command at the command prompt or you can nest it as an
argument to another command, such as query_objects. In addition, you
can assign the result to a variable.

When issued from the command prompt, the command behaves as though
you have called the query_objects command to report the objects in the
collection. By default, it displays a maximum of 100 objects. You can
change this maximum by using the collection_result_display_limit variable.

For information about collections and the querying of objects, see the
collections man page.

Syntax

get_nets <patterns>

[-regexp]
180
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-exact]

[-nocase]

[-filter <expression>]

[-hierarchical]

[-filter <expression>]

[-quiet]

[-top_net_of_hierarchical_group]

[-segments]

[-of_objects <objects>]

Arguments

 Default Argument: <patterns>: Creates a collection of nets whose
names match the specified patterns. Patterns can include the *
(asterisk) and ? (question mark) wildcard characters. For more
information about using and escaping wildcards, see the wildcards man
page. Pattern matching is case sensitive unless you use the -nocase
option. mutually exclusive; you can specify only one. If you do not
specify any of these arguments, the command uses * (asterisk) as the
default pattern.

 [-regexp]: Views the patterns argument as a regular expression
rather than a simple wildcard pattern. This option also modifies the
behavior of the =~ and !~ filter operators to use regular expressions
rather than simple wildcard patterns. The regular expression matching
is similar to the Tcl regexp command. When using the -regexp option,
be careful how you quote the patterns argument and filter expression.
Using rigid quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always anchored; that
is, the expression is assumed to begin matching at the beginning of an
object name and end matching at the end of an object name. You can
widen the search by adding ".*" to the beginning or end of the
expressions, as needed. The -regexp and -exact options are mutually
exclusive; you can use only one.

 [-exact]: Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards. The -regexp and -exact options
are mutually exclusive; you can use only one.
181
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-nocase]: Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

 [-filter <expression>]: Filters the collection with the specified
expression. For each net in the collection, the expression is evaluated
based on the net's attributes. If the expression evaluates to true, the
net is included in the result. To see the list of net attributes that you can
use in the expression, use the list_attributes -application -class net
command. For more information about how to use the -filter option, see
the filter_collection man page.

 [-hierarchical]: Searches for nets level-by-level relative to the
current instance. The name of the object at a particular level must
match the patterns. For example, if there is a net named block1/muxsel,
a hierarchical search finds it using muxsel.

 [-filter <expression>]: Filters the collection with the value of the
expression argument. For any nets that match the specified criteria, the
expression is evaluated based on the net's attributes. If the expression
evaluates to true, the net is included in the result.

 [-quiet]: Suppresses messages if no objects match. Syntax error
messages are not suppressed.

 [-top_net_of_hierarchical_group]: Keeps only the top net of a
hierarchical group. When more than one hierarchical net of the same
group is specified (local nets at various hierarchical levels of the same
physical net), only the net closest to the top of the hierarchy is saved in
the collection. In the case of multiple nets at the same level, the first net
specified is kept. To get the top hierarchical net connected to a single
net, need to use this option in combination with the -segments option.

 [-segments]: Modifies the initial search that matches the patterns or -
of_object argument to include all global segments for the matching
nets. Global net segments are all the net segments that are physically
connected across all hierarchical boundaries. This option is best used
with a single net. When you use the -segments option with the -
top_net_of_hierarchical_group option, you can isolate the highest net
segment of a physical net.

 [-of_objects <objects>]: Creates a collection of nets connected to
the specified objects. arguments are mutually exclusive; you can specify
only one. If you do not specify any of these arguments, the command
uses * (asterisk) as the default pattern. You cannot use the -hierarchical
option with the -of_objects option.
182
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Examples

The following example queries the nets that begin with NET in a block
named block1. Although the output looks like a list, it is a display.

prompt> get_nets block1/NET*
{block1/NET1QNX block1/NET2QNX}

The following example queries the nets connected to a collection of pins.

prompt> current_instance block1
block1
prompt> set pinsel [get_pins {o_reg1/QN o_reg2/QN}]
{o_reg1/QN o_reg2/QN}
prompt> get_nets -of_objects $pinsel
{NET1QNX NET2QNX}

The following example queries the nets connected to a collection of cells.

prompt> current_instance block1
block1
prompt> set cellsel [get_cells {o_reg1 o_reg2}]
{o_reg1 o_reg2}
prompt> get_nets -of_objects $cellsel
{NET1QX NET1QNX NET1DX NET2QX NET2QNX NET2DX}

The following examples use the design shown below to show the behavior
of the get_nets command with various options. There is a buffer instance
named buffer in the L3 instance.

+------------------------------------+
| L1 |
| +-----------------------+ |
	L2			
	+------------+			
		L3		
net1	net2	net3	net4	
--------+------+------+------>				
	+------------+			
+-----------------------+				
+------------------------------------+
183
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
When you use the -of_objects option by itself, the command gets only the
net that connects to a pin directly.

prompt> get_nets -of_objects L1/L2/L3/buffer/A
{L1/L2/L3/net_4}

When you also use the -segments option, the command gets all the
hierarchical nets that connect together through the hierarchical pins.

prompt> get_nets -of_objects L1/L2/L3/buffer/A -segments
{L1/L2/L3/net_4 L1/L2/net_3 L1/net_2 net_1}

When you use the -segments and -top_net_of_hierarchical_group option
together, the command returns only the net in the topmost hierarchical net
group.

prompt> get_nets -of_objects L1/L2/L3/buffer/A -segments \
-top_net_of_hierarchical_group
{net_1}

The following examples use the patterns argument to select the nets.

prompt> get_nets net*4 -hierarchical
{L1/L2/L3/net_4}

prompt> get_nets net*4 -hierarchical -segments
{L1/L2/net_3 net_1 L1/L2/L3/net_4 L1/net_2}

prompt> get_net net*4 -hierarchical -segments -filter
name==net_2
{L1/net_2}

get_object_name

Description

This command returns a list of names of the objects in a collection.

Syntax

get_object_name <collection>

Default Argument <collection>

Specifies the name of the collection that contains objects whose names are
requested.
184
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Examples

The following example returns the name top as the object contained in the
collection returned by the current_design command.

prompt> get_object_name [current_design]
Current design is 'top'.
top

get_pins

Description

This command creates a collection of pins in the current design relative to
the current instance that match the specified criteria.

arguments do not match any objects and the current design is not linked,
the design automatically links.

The command returns a collection if any pins match the specified criteria. If
no objects match the criteria, the command returns an empty string.

You can use this command at the command prompt or you can nest it as an
argument to another command, such as query_objects. In addition, you
can assign the result to a variable.

When issued from the command prompt, the command behaves as though
you have called the query_objects command to report the objects in the
collection. By default, it displays a maximum of 100 objects. You can
change this maximum by using the collection_result_display_limit variable.

For information about collections and the querying of objects, see the
collections man page.

Syntax

get_pins <patterns>

[-hierarchical]

[-quiet]

[-regexp]

[-exact]

[-nocase]
185
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-filter <expression>]

[-of_objects <objects>]

[-leaf]

[-all]

Arguments

 Default Argument: <patterns>: Creates a collection of pins whose
names match the specified patterns. Patterns can include the *
(asterisk) and ? (question mark) wildcard characters. For more
information about using and escaping wildcards, see the wildcards man
page. Pattern matching is case sensitive unless you use the -nocase
option. arguments are mutually exclusive; you can specify only one. If
you do not specify any of these arguments, the command uses *
(asterisk) as the default pattern.

 [-hierarchical]: Searches for pins level-by-level, relative to the
current instance. The name of the object at a particular level must
match the patterns. The search is similar to that of the UNIX find
command. For example, if there is a pin named block1/adder/D[0], a
hierarchical search finds it by using adder/D[0]. The -hierarchical option
is mutually exclusive with use the -of_objects option; you can use only
one.

 [-quiet]: Suppresses warning and error messages if no objects
match. Syntax error messages are not suppressed.

 [-regexp]: Views the patterns argument as a regular expression
rather than a simple wildcard pattern. This option also modifies the
behavior of the =~ and !~ filter operators to use regular expressions
rather than simple wildcard patterns. The regular expression matching
is similar to the Tcl regexp command. When using the -regexp option,
be careful how you quote the patterns argument and filter expression.
Using rigid quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always anchored; that
is, the expression is assumed to begin matching at the beginning of an
object name and end matching at the end of an object name. You can
widen the search by adding ".*" to the beginning or end of the
expressions, as needed. The -regexp and -exact options are mutually
exclusive; you can use only one.
186
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-exact]: Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards. The -regexp and -exact options
are mutually exclusive; you can use only one.

 [-nocase]: Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

 [-filter <expression>]: Filters the collection with the specified
expression. For each pin in the collection, the expression is evaluated
based on the pin's attributes. If the expression evaluates to true, the pin
is included in the result. To see the list of pin attributes that you can use
in the expression, use the list_attributes -application -class pin
command. For more information about how to use the -filter option, see
the filter_collection man page.

 [-of_objects <objects>]: Creates a collection of pins connected to
the specified objects. By default, the command considers only pins
connected to the specified nets at the same hierarchical level. To
consider only pins connected to leaf cells on the specified nets, use the -
leaf option. arguments are mutually exclusive; you can specify only one.
If you do not specify any of these arguments, the command uses *
(asterisk) as the default pattern. You cannot use the -hierarchical option
with the -of_objects option.

 [-leaf]: Includes only those pins that are on leaf cells connected to
the nets specified in the -of_objects option. The tool crosses hierarchical
boundaries to find pins on leaf cells. You can use this option only if you
also use the -of_objects option.

 [-all]: Includes power and ground pins.

Examples

The following example queries the CP pins of cells that begin with o.
Although the output looks like a list, it is only a display.

prompt> get_pins o*/CP
{o_reg1/CP o_reg2/CP o_reg3/CP o_reg4/CP}

The following example queries the pins connected to a collection of cells:

prompt> set csel [get_cells o_reg1]
{o_reg1}

prompt> get_pins -of_objects $csel
{o_reg1/D o_reg1/CP o_reg1/CD o_reg1/Q o_reg1/QN}
187
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
The following example shows the difference between getting the local pins
of a net and the leaf pins of net. In this example, NET1 is connected to the
i2/aP and reg1/QN. Cell i2 is hierarchical. Within cell i2, port a is connected
to U1/A and U2/A.

prompt> get_pins -of_objects [get_nets NET1]
{i2/a reg1/QN}

prompt> get_pins -leaf -of_objects [get_nets NET1]
{i2/U1/A i2/U2/A reg1/QN}

The following example shows how to create a clock using a collection of
pins:

prompt> create_clock -period 8 -name CLK [get_pins o_reg*/CP]
1

get_ports

Description

This command creates a collection of ports by selecting ports from the
current design that match the specified criteria.

The command returns a collection if any ports match the criteria. If no
objects match the criteria, the command returns an empty string.

You can use this command at the command prompt or you can nest it as an
argument to another command, such as query_objects. In addition, you
can assign the result to a variable.

When issued from the command prompt, the command behaves as though
you have called the query_objects command to report the objects in the
collection. By default, it displays a maximum of 100 objects. You can
change this maximum by using the collection_result_display_limit variable.

For information about collections and the querying of objects, see the
collections man page.

In addition, see the man pages for the all_inputs and all_outputs
commands, which also create collections of ports.

Syntax

get_ports <patterns>
188
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-quiet]

[-regexp]

[-exact]

[-nocase]

[-filter <expression>]

[-hierarchical]

[-of_objects <objects>]

Arguments

 Default Argument: <patterns>: Creates a collection of ports whose
names match the specified patterns. Patterns can include the *
(asterisk) and ? (question mark) wildcard characters. For more
information about using and escaping wildcards, see the wildcards man
page. Pattern matching is case sensitive unless you use the -nocase
option. arguments are mutually exclusive; you can specify only one. If
you do not specify any of these arguments, the command uses *
(asterisk) as the default pattern.

 [-quiet]: Suppresses warning and error messages if no objects
match. Syntax error messages are not suppressed.

 [-regexp]: Views the patterns argument as a regular expression
rather than a simple wildcard pattern. This option also modifies the
behavior of the =~ and !~ filter operators to use regular expressions
rather than simple wildcard patterns. The regular expression matching
is similar to the Tcl regexp command. When using the -regexp option,
be careful how you quote the patterns argument and filter expression.
Using rigid quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always anchored; that
is, the expression is assumed to begin matching at the beginning of an
object name and end matching at the end of an object name. You can
widen the search by adding ".*" to the beginning or end of the
expressions, as needed. The -regexp and -exact options are mutually
exclusive; you can use only one.

 [-exact]: Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards. The -regexp and -exact options
are mutually exclusive; you can use only one.
189
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-nocase]: Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

 [-filter <expression>]: Filters the collection with the specified
expression. For each port in the collection, the expression is evaluated
based on the port's attributes. If the expression evaluates to true, the
port is included in the result. To see the list of port attributes that you
can use in the expression, use the list_attributes -application -class port
command. For more information about how to use the -filter option, see
the filter_collection man page.

 [-hierarchical]: Searches for ports level-by-level, relative to the
current instance. The full name of the object at a particular level must
match the patterns. The search is similar to that of the UNIX find
command. For example, if there is a port named block1/adder/D[0], a
hierarchical search finds it by using adder/D[0]. The -hierarchical option
is mutually exclusive with use the -of_objects option; you can use only
one.

 [-of_objects <objects>]: Creates a collection of ports connected to
the specified objects. Each object can be a net, terminal, bound, or via
region. arguments are mutually exclusive; you can specify only one. If
you do not specify any of these arguments, the command uses *
(asterisk) as the default pattern.

Examples

The following example queries all input ports beginning with "mode".
Although the output looks like a list, it is only a display.

prompt> get_ports mode* -filter {@port_direction == in}
{mode[0] mode[1] mode[2]}

The following example sets the driving cell for ports beginning with

prompt> set_driving_cell -lib_cell FD2 -library my_lib \\
[get_ports in*]

The following example reports ports connected to nets that match the
pattern "bidir*".
prompt> report_port [get_ports -of_objects [get_nets bidir*]]

The following example get the ports connected to terminals that match the
pattern "CC*".

prompt> get_ports -of_objects [get_terminals CC*]]
190
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
{CC CCEN}

The following example shows you can get bus ports by their base name.
A[0], A[1], and A[2] are bus ports with the base name A; A[3] is not a bus
port.

prompt> get_ports A
{A[0] A[1] A[2]}

prompt> get_ports A[3]
{A[3]}

get_timing_arcs

Description

This command returns the collection of timing arc objects.

Syntax

get_timing_arcs

-from <from>

-to <to>

-of_objects obj_list

-filter <expression>

-onlyseq

-onlycombo

Arguments

 -from <from>: Use this option to specify the source objects in timing
arc objects.

 -to <to>: Use this option to specify the destination objects in timing
arc objects.

 -of_objects obj_list: Use this option to specify the object list (net/
cell).
191
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 -filter <expression>: Use this option to specify the filters in those
timing arcs of which attributes matches with expression.

 -onlyseq: Use this option to get only the sequential timing arcs.

 -onlycombo: Use this option to get only the combinational timing arcs.

Examples

The following examples show how to use get_timing_arcs command

vc_static_shell> get_timing_arc -from INST/IN -to INST/PAD
{"INST/IN --> INST/PAD"}

vc_static_shell> get_timing_arc -of [get_cells INST]
{"INST/IN1 --> INST/PAD", "INST/IN --> INST/PAD", "INST/NOE -->
INST/PAD", "INST/PAD --> INST/OUT"}

vc_static_shell> get_timing_arc -of [get_cells INST] -onlyseq
{"INST/IN1 --> INST/PAD"}

insert_buffer

Description

This command adds a buffer at one specified net or pin. A library cell with a
single input and single output can be used as the buffer or inverter, as long
as output has the same or inverted logic function of the input.

Syntax

insert_buffer <object_name>

[-no_of_cells < number of cells>]

[-inverter_pair]

-new_net_cells <new net cells>

-new_cell_names <new cell names>
192
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Arguments

 Default Argument: <object_name>: Net or Pin which need to be
buffered.

 Default Argument: <buffer lib cell>: Reference buffer lib cell to be
instantiated.

 [-no_of_cells < number of cells>]: Number of level(s) of buffers
to be introduced.

 [-inverter_pair]: Insert a pair of inverter cells for each buffer.

 -new_net_cells <new net cells>: Specifies the name of the new net.

 -new_cell_names <new cell names>: Specifies the name of the new
buffer.

Examples

The following example creates a buffer named cell1 under the sub design
corresponding to the mid1 cell:

vc_static_shell> insert_buffer -new_net_names n1 -
new_cell_names buf1 i tiny/BUF
[Info] NET_BUFFERING: Buffering net 'i' in design 'top'.
[Info] NET_DISCONNECTED: Disconnecting net 'i' to object 'I' in
design 'top'
[Info] ADD_NET: Creating net 'n1' in design 'top'.
[Info] ADD_CELL: Creating cell 'buf1' in design 'top'.
[Info] NET_CONNECTED: Connecting net 'i' to object 'I' in
design 'top'
[Info] NET_CONNECTED: Connecting net 'n1' to object 'Z' in
design 'top'
[Info] NET_CONNECTED: Connecting net 'n1' to object 'I' in
design 'top'

list_designs

Description

list_designs command lists designs that have been loaded.
193
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Syntax

list_designs [<design_list>]

Arguments

 Default Argument [<design_list>]: Use this option to specify the list
of designs

Examples

The following examples show the usage of the list_designs command:

vc_static_shell> list_designs
ALU BLENDER CLOCK_GEN CONTEXT_MEM CONTEXT_MEM_DW01_inc_6_0
CONTEXT_MEM_DW01_inc_6_1 CONTROL DATA_PATH INSTRN_LAT ORCA (*)
ORCA_TOP PARSER PCI_CORE PCI_RFIFO PCI_WFIFO
PCI_W_MUX PRGRM_CNT_TOP REG_FILE RESET_BLOCK RISC_CORE
1

The following example shows the usage of the list_designs command with
a query pattern

vc_static_shell> list_designs ALU
ALU
1

list_instance

Description

list_instance command lists the instances in the current design or current
instance.

Syntax

list_instance [<instance_list>]

[-max_levels <num_levels>]

[-hierarchy]

[-full]
194
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Arguments

 Default Argument: [<instance_list>]: Use this option to specify the
list of instances. By default, all instances in the current design or current
instance are listed.

 [-max_levels <num_levels>]: Specifies a limit to the number of
levels of hierarchy that are listed.

 [-hierarchy]: Lists all levels of instance hierarchy. By default, only
the current level of hierarchy is listed.

 [-full]: Displays the full hierarchy. By default, if there is a submodule
in multiple locations in a hierarchy, its components are listed only once
with ellipses (...) indicating the contents of a previously displayed
module.

Examples

The following examples show the usage of the list_instance command:

vc_static_shell> list_instance
I_BNOT__SVAC_1_abort (BITWISE_NOT) I_BNOT__SVAC_1_disable_iff
(BITWISE_NOT) I_BNOT__SVAC_1_disable_iff_0 (BITWISE_NOT)
I_BNOT__SVAC_1_disable_iff_1 (BITWISE_NOT) _SVAC_1_ended_reg
(SEQ_FF) I_OR_N_36 (BITWISE_OR)
I_AND_N_1 (BITWISE_AND) I_BNOT_N_0 (BITWISE_NOT)
I_BUF__sva_topbit_0 (CONNECT)

list_libs

Description

list_libs command reports all the libs loaded and the details of these libs.

Syntax

list_libs [<patterns>]

Arguments

 Default Argument [<patterns>]: Use this option to specify the list of
libs
195
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Examples

The following examples show the usage of the list_libs command:

vc_static_shell> list_libs

Library File Path
------- ---- ----
ATL25_25_cell_wcmil ATL25_25_cell_wcmil.db /remote/dtdata1/
testdata/libraries/syn/
lsi_10k lsi_10k.db /remote/dtdata1/testdata/libraries/syn/

The following examples show the usage of the list_libs command with a
query pattern

vc_static_shell> list_libs ATL25_25_cell_wcmil

Library File Path
------- ---- ----
ATL25_25_cell_wcmil ATL25_25_cell_wcmil.db /remote/dtdata1/
testdata/libraries/syn/

remove_attribute

Description

This command removes the specified attribute from the specified objects.
For a complete list of attributes, see the attributes man page.

A returned empty string indicates that no object has been removed.

Syntax

remove_attribute <object_list>

Arguments

 Default Argument <object_list>: Specifies a list of objects from which
the attribute is to be removed.

remove_buffer
196
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Description

This command removes buffer cells and the specified connected net.

Syntax

remove_buffer <cell name>

[-from <start point>]

[-net]

[-to <pins>]

[-level <level>]

Arguments

 Default Argument: <cell name>: Specifies the buffer to be removed.

 [-from <start point>]: Starting Driver Pin to begin buffer deletion.

 [-net]: Net from which buffer need to be deleted.

 [-to <pins>]: Load pins where to end buffer deletion.

 [-level <level>]: Number of level(s) of buffers to be introduced.

Examples

The following example removes a buffer named buf1 in design top:

vc_static_shell> remove_buffer buf1
[Info] NET_DISCONNECTED: Disconnecting net 'n1' to object 'Z'
in design 'top'
[Info] NET_DISCONNECTED: Disconnecting net 'i' to object 'I' in
design 'top'
[Info] NET_DISCONNECTED: Disconnecting net 'n1' to object 'I'
in design 'top'
[Info] NET_CONNECTED: Connecting net 'i' to object 'I' in
design 'top'
[Info] REMOVE_CELL: Removing cell 'buf1' in design 'top'.
[Info] REMOVE_NET: Removing net 'n1' in design 'top'.

remove_bus
197
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Description

This command removes port or net buses from a design. If port and net
buses have the same name, both port buses and net buses are removed.
Individual members of buses remain. The bus can be from the current
design or one of its subdesigns. To delete a bus on a subdesign, it must be
unique. Multicorner-Multimode Support This command has no dependency
on scenario-specific information.

Syntax

remove_bus <bus_name_list>

Arguments

 Default Argument <bus_name_list>: Specifies a list of port or net
buses to remove.

Examples

The following example removes the specified port buses:
vc_static_shell> remove_bus {AB AC}

In the following example, all buses with names that end in s are removed.
If port and net buses have the same name, both buses are removed.
vc_static_shell> remove_bus *s

remove_cell

Description

The remove_cell command removes cells or cell instances from the current
design. The command also removes pins owned by the specified cells. The
design or library cell to which the cell refers is not removed. If a cell
instance is used, the parent design must be unique. To create cells, use the
create_cell command.

Syntax

remove_cell <name_list>

[-all]
198
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Arguments

 Default Argument: <name_list>: Specifies a list of cells to be
removed from the current design. Each cell name must exist in the
current design.

 [-all]: Removes all cells in the current design.

Examples

The following example uses remove_cell to remove the specified cells in
the current design:

vc_static_shell> remove_cell {U1 U2}
Removing cell 'U1' in design 'example'.
Removing cell 'U2' in design 'example'.

The following example removes all cells remaining in the current design:

vc_static_shell> remove_cell -all
Removing cell 'U3' in design 'example'.
Removing cell 'U4' in design 'example'.
Removing cell 'U5' in design 'example'.
Removing cell 'U6' in design 'example'.
Removing cell 'U7' in design 'example'.
Removing cell 'U8' in design 'example'.

remove_net

Description

This command removes nets or net instances from the current design. Net
connections to pins or ports are disconnected. You cannot remove bused
nets with the remove_net command. Use the remove_bus command to
remove bused nets. Scalar (single bit) nets that are components of a bused
net cannot be removed. You must remove bused nets first. To create nets,
use the create_net command. Multicorner-Multimode Support This
command has no dependency on scenario-specific information.

Syntax

remove_net <name_list>

[-only_physical]
199
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-all]

Arguments

 Default Argument: <name_list>: Specifies a list of nets to remove
from the current design. Each net name must exist in the current
design. You must specify either net_list or -all

 [-only_physical]: Removes only physical nets in the current design.
The physical nets are those nets that do not connect to a logical netlist.

 [-all]: Removes all nets in the current design. You must specify
either -all or net_list.

Examples

The following example removes the nets in the current design:

vc_static_shell> get_nets *
{"w2", "out", "w", "out1", "w3", "clk1", "w10", "clk2", "sel",
"in"}
vc_static_shell> remove_net w
[Info] REMOVE_NET: Removing net 'w' in design 'test'.
1

The following example removes the physical nets:
vc_static_shell>remove_net -only_physical {physnet1 physnet2}

remove_port

Description

This command removes ports from the current design or its subdesign.
Bused ports cannot be removed with remove_port; use remove_bus to
remove bused ports. Also, scalar (single bit) ports that are components of
a bused port cannot be removed. In this case, you must first remove the
bused port. To create ports, use the create_port command. Multicorner-
Multimode Support This command has no dependency on scenario-specific
information.

Syntax

remove_port <name_list>
200
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Arguments

 Default Argument <name_list>: Specifies a list of ports to be
removed from the current design. Each port name must exist in the
current design.

Examples

The following example uses remove_port to remove ports from the current
design

vc_static_shell> remove_port "B*"
Removing port 'B1' in design 'my_design'.
Removing port 'B2' in design 'my_design'.

report_cell

Description

Reports cell information of the current design

Syntax

report_cell <cell_list>

[-no_split]

Arguments

 Default Argument: <cell_list>: Use this option to specify the list of
cells

 [-no_split]: Prevents line splitting and facilitates writing software to
extract information from the report output. Most of the design
information is listed in fixed-width columns. If the information for a
given field exceeds its column's width, the next field begins on a new
line, starting in the correct column.

Examples

The following examples show the usage of the report_cell command:

vc_static_shell> report_cell
**
201
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Report : cell
Design : top
Version: P-2020.03-Alpha
Date : Wed Mar 20 20:16:37 2019
**
Attributes:
b - black-box (unknown)
h - hierarchical
n - noncombinational
Cell Reference Library Area Attributes

u1 block 21.000000 h
u2 block 21.000000 h
u3 block 21.000000 h

Total 3 Cells 63.000000

vc_static_shell> report_cell -no_split
**
Report : cell
Design : top
Version: P-2020.03-Alpha
Date : Wed Mar 20 20:16:37 2019
**

Attributes:
b - black-box (unknown)
h - hierarchical
n - noncombinational
Cell Reference Library Area Attributes

u12345678910123456789 block 21.000000 h
u2 block 21.000000 h
u3 block 21.000000 h

Total 3 Cells 63.000000
202
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
report_link

Description

Report status of the design build using Simon/VNR (stub)

Syntax

report_link

[-sim_match]

 [-sim_match]: Includes library cells where a simulation model is given

report_net

Description

Reports net information of the current design

Syntax

report_net <net_list>

[-no_split]

Arguments

 Default Argument: <net_list>: Use this option to specify the list of
nets

 [-no_split]: Prevents line splitting and facilitates writing software to
extract information from the report output. Most of the design
information is listed in fixed-width columns. If the information for a
given field exceeds its column's width, the next field begins on a new
line, starting in the correct column.

Examples

The following examples show the usage of the report_net command:

vc_static_shell> report_net
**
203
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Report : net
Design : top
Version: P-2020.03-Alpha
Date : Wed Mar 20 20:16:37 2019
**
Net Fanout Fanin Resistance Pins Attributes

Q 1 1 0.000000 2
S 1 1 0.000000 2
PQRSTUVWXYZABCDEFGHIJKLMNOPGRS
1 1 0.000000 2

vc_static_shell> report_net -no_split
**
Report : net
Design : top
Version: P-2020.03-Alpha
Date : Wed Mar 20 20:16:37 2019
**
Net Fanout Fanin Resistance Pins Attributes

Q 1 1 0.000000 2
S 1 1 0.000000 2
PQRSTUVWXYZABCDEFGHIJKLMNOPGRS1 1 0.000000 2

report_port

Description

Displays port information within the design

Syntax

report_port <port_list>

[-no_split]
204
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Arguments

 Default Argument: <port_list>: Use this option to specify the list of
ports

 [-no_split]: Prevents line splitting and facilitates writing software to
extract information from the report output. Most of the design
information is listed in fixed-width columns. If the information for a
given field exceeds its column's width, the next field begins on a new
line, starting in the correct column.

Examples

The following examples show the usage of the report_net command:

vc_static_shell> report_port
**
Report : port
Design : top
Version: P-2020.03-Alpha
Date : Wed Mar 20 20:16:37 2019
Port Dir Pin Cap(min/max) Wire Cap(min/max)

A in 0.0000/0.0000 0.0000/0.0000
B out 0.0000/0.0000 0.0000/0.0000
C in 0.0000/0.0000 0.0000/0.0000
D out 0.0000/0.0000 0.0000/0.0000

vc_static_shell> report_port -no_split
**
Report : port
Design : top
Version: P-2020.03-Alpha
Date : Wed Mar 20 20:16:37 2019
**
Port Dir Pin Cap(min/max) Wire Cap(min/max)

ABCDEFGHIJKLMNOPQRSTUVWXYZ in 0.0000/0.0000 0.0000/0.0000
B out 0.0000/0.0000 0.0000/0.0000
C in 0.0000/0.0000 0.0000/0.0000
D out 0.0000/0.0000 0.0000/0.0000
205
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
set_always_on_cell

Description

The set_always_on_cell command sets all cells in the library whose name
matches the specified cell name as always-on cells. Only buffer or inverter
cells in the library can be specified as always-on cells.

Syntax

set_always_on_cell

Examples

The following example uses the set_always_on_cell command to set the
library cell named INV_AO as an always-on cell:

prompt> set_always_on_cell INV_AO

set_attribute

Description

This command sets the value of an attribute on an object. For a complete
list of attributes, see the attributes man page.

This command returns a collection of objects that have the specified
attribute value set. If the attribute is not set on any objects, the command
returns an empty string.

Syntax

set_attribute <objects>

[-type <boolean | integer | float | string>]

[-quiet]

Arguments

 Default Argument: <objects>: Specifies the objects on which the
attribute is to be set.
206
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-type <boolean | integer | float | string>]: Specifies the data
type of the attribute_value argument. This argument is required when
creating new attributes; otherwise, it is optional. If the attribute data
type is not specified, the tool uses either the specified attribute_value
argument or the data type of the existing attribute.

 [-quiet]: Turns off the warning message that would otherwise be
issued if the attribute or objects are not found.

Examples

The following example defines an integer cell attribute named X, and then
sets this attribute to 30 on all cells in this level of the hierarchy:

prompt> define_user_attribute -type int -classes cell X
cell
prompt> set_attribute [get_cells *] X 30
{U1}

set_get_command_message_limit

Description

This command sets the limit number of get commands failures.

Syntax

set_get_command_message_limit <command name>

-no_limit

-number <number>

Arguments

 Default Argument: <command name>: Use this option to specify the
Get command to be set. The values are all, get_cells, get_designs,
get_lib_cells, get_lib_pins, get_nets, get_pins and get_ports.

 -no_limit: Use this option to remove limit.

 -number <number>: Use this option to specify the limit number of
failures. The value is >= 1.
207
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
set_isolation_cell

Description

The set_isolation_cell command sets the specified library cells as isolation
cells. You can also specify the data and enable pin details for the isolation
cell.

Syntax

set_isolation_cell

[-data_pin <data_pin_name>]

[-enable_pin <enable_pin_name>]

 [-data_pin <data_pin_name>]: Specifies the name of the data pin of
the isolation cell.

 [-enable_pin <enable_pin_name>]: Specifies the name of the enable
pin of the isolation cell.

Examples

In the following example, all cells in the library whose name starts with ISO
are set as isolation cells. The EN pin of those library cells is considered the
enable pin of the isolation cell.

prompt> set_isolation_cell ISO* -enable_pin EN

set_level_shifter_cell

Description

The set_level_shifter_cell command specifies the properties of the level-
shifter cells.

Syntax

set_level_shifter_cell

[-cell_type <cell_type>]

[-cell_input_voltage_range <{lower_range upper_range}>]
208
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-cell_output_voltage_range <{lower_range upper_range}>]

[-std_cell_main_rail_pg_pin <pg_pin_name>]

[-data_pin <data_pin_name>]

[-input_voltage_range <{lower_range upper_range}>]

[-output_voltage_range <{lower_range upper_range}>]

[-input_signal_level <signal_level>]

[-enable_pin <enable_pin_name>]

[-enable_signal_level <signal_level>]

[-output_signal_level <signal_level>]

Arguments

 [-cell_type <cell_type>]: Specifies the cell type of the level-shifter
cell.

 [-cell_input_voltage_range <{lower_range upper_range}>]:
Specifies the cell input voltage range of the level-shifter cell.

 [-cell_output_voltage_range <{lower_range upper_range}>]:
Specifies the cell output voltage range of the level-shifter cell.

 [-std_cell_main_rail_pg_pin <pg_pin_name>]: Specifies the
standard cell P/G pin of the level-shifter cell.

 [-data_pin <data_pin_name>]: Specifies the data pint of the level-
shifter cell.

 [-input_voltage_range <{lower_range upper_range}>]: Specifies
the input voltage range of the level-shifter cell.

 [-output_voltage_range <{lower_range upper_range}>]: Specifies
the output voltage range of the level-shifter cell.

 [-input_signal_level <signal_level>]: Specifies the input signal
level of the level-shifter cell.

 [-enable_pin <enable_pin_name>]: Specifies the enable pin of the
level-shifter cell.

 [-enable_signal_level <signal_level>]: Specifies the enable
signal level of the level-shifter cell.
209
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
 [-output_signal_level <signal_level>]: Specifies the output
signal level of the level-shifter cell.

Examples

In the following example, library cells whose names start with LVLLH are
set as level-shifter cells of type low to high.

prompt> set_level_shifter_cell LVLLH* -cell_type LH -
std_cell_main_rail_pg_pin VDD \\
-enable_pin EN -input_signal_level VDDL -enable_signal_level
VDDH \\
-output_signal_level VDDH -cell_input_voltage_range {0.7 1.4}
\\
-cell_output_voltage_range {0.7 1.4}

set_pg_pin_model

Description

The set_pg_pin_model command defines the power and ground pins for a
library cell. If the power or ground pin already exists, the new specification
overrides the old one. Otherwise, new power and ground pins are created
for the library cell.

Syntax

set_pg_pin_model

[-pg_pin_name <pin_name>]

[-pg_voltage_name <voltage_names>]

[-pg_pin_type <pin_types>]

[-pg_pin_direction <pin_directions>]

[-pg_physical_connection <physical_connections>]

[-pg_related_bias_pin <related_bias_pins>]
210
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Arguments

 [-pg_pin_name <pin_name>]: Specifies the names of the power and
ground pins of the library cell.

 [-pg_voltage_name <voltage_names>]: Specifies the voltage name
of the corresponding power or ground pin of the library cell. The voltage
names are defined in the library voltage map. There must be a one-to-
one correspondence between the voltage names specified in this option
and the pins specified in the -pg_pin_name option.

 [-pg_pin_type <pin_types>]: Specifies the pin type for the each pin
specified in the -pg_pin_name option. Valid values are primary_power,
primary_ground, backup_power, backup_ground, internal_power,
internal_ground, pwell, nwell, deeppwell, and deepnwell. There must be
a one-to-one correspondence between the pin types specified in this
option and the pins specified in the -pg_pin_name option.

 [-pg_pin_direction <pin_directions>]: Specifies the direction for
each pin specified in the -pg_pin_name option. Valid values are input,
output, inout, and internal. There must be a one-to-one correspondence
between the pin directions specified in this option and the pins specified
in the -pg_pin_name option.

 [-pg_physical_connection <physical_connections>]: Specifies
the type of physical connection used for each pin specified in the -
pg_pin_name option. Valid values are device_layer and routing_pin.
There must be a one-to-one correspondence between the connection
types specified in this option and the pins specified in the -pg_pin_name
option.

 [-pg_related_bias_pin <related_bias_pins>]: Specifies the
related bias pin for each pin specified in the -pg_pin_name option. There
must be a one-to-one correspondence between the related bias pins
specified in this option and the pins specified in the -pg_pin_name
option.

Examples

The following example defines the power and ground pins for the library
cells whose name starts with LVLH.

prompt> set_pg_pin_model LVLH* -pg_pin_name {VDD VSS} \\
-pg_voltage_name {VDDL VSS} \\
-pg_pin_type {primary_power primary_ground}
211
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
set_pin_model

Description

The set_pin_model command defines the related power pin, related ground
pin, and related bias pin for the specified library cell pins. If the related pin
is already defined, the new specification overrides the old one.

Syntax

set_pin_model

[-pins <pin_names>]

[-related_power_pin <pin_names>]

[-related_ground_pin <pin_names>]

[-related_bias_pin <pin_names>]

[-power_down_function <functions>]

Arguments

 [-pins <pin_names>]: Specifies the names of the pins for which you
are defining the related power and ground pins.

 [-related_power_pin <pin_names>]: Specifies the related power pin
for each pin specified in the -pins option. There must be a one-to-one
correspondence between the power pins specified in this option and the
pins specified in the -pins option.

 [-related_ground_pin <pin_names>]: Specifies the related ground
pin for each pin specified in the -pins option. There must be a one-to-
one correspondence between the ground pins specified in this option
and the pins specified in the -pins option.

 [-related_bias_pin <pin_names>]: Specifies the related bias pin for
each pin specified in the -pins option. There must be a one-to-one
correspondence between the bias pins specified in this option and the
pins specified in the -pins option.

 [-power_down_function <functions>]: Specifies the power-down
function for each pin specified in the -pins option. There must be a one-
to-one correspondence between the function specified in this option and
the pins specified in the -pins option.
212
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
Examples

The following example defines the pin model for the RETN and RETNOUT

prompt> set_pin_model *DRFF* -pins {RETN RETNOUT} \\
-related_power_pin VDDG \\
-related_ground_pin VSSG

The following example defines the pin model for the SLEEPOUT pin of the
library cells that match the pattern HEAD*.

prompt> set_pin_model HEAD* -pins {SLEEPOUT} \\
-power_down_function "!VDDG + VSS"

set_power_switch_cell

Description

The set_power_switch_cell command sets the specified library cells as
power-switch cells.

The switch_cell_type attribute must be either coarse_grain or fine_grain .

The switch_function attribute must be defined to identify the control logic
of its switch pins.

It can be defined at either controlled output power or ground pins which is
virtual VDD or vitural VSS pg_pin.

The cell must have at least one switch pin. And switch pin cannot be output
pin.

The cell must have at least one controlled power or ground pin, and one
regular power and ground pin.

The output power pin must have pg_function Boolean expression
containing input power or ground pin.

The pg_function attribute must contain only the input power or ground pin.

Syntax

set_power_switch_cell

[-cell_type <course_grain | fine_grain>]

[-switch_pin <pin_name>]
213
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
[-pg_pin <{pin_name switch_function pg_function}>]

Arguments

 [-cell_type <course_grain | fine_grain>]: Specifies the type of
the power-switch cell. The type can be either coarse_grain or fine_grain.

 [-switch_pin <pin_name>]: Specifies the switch pin of the power-
switch cell.

 [-pg_pin <{pin_name switch_function pg_function}>]: Specifies
the power or ground pin of the power-switch cell.

Examples

In the following example, the library cells whose names starts with FOOT
are set as course-grain power-switch cells.

prompt> set_power_switch_cell FOOT* -cell_type coarse_grain \\
-switch_pin SLEEPN -pg_pin {VSS !SLEEPN VSS}

set_retention_cell

Description

The set_retention_cell command sets the specified library cells as retention
cells. You can also specify the retention pin and retention cell type for the
retention cell.

Syntax

set_retention_cell

[-cell_type <retention_type>]

[-retention_pin <{pin_name pin_type disable_value}>]

Arguments

 [-cell_type <retention_type>]: Specifies the type of the retention
cell.

 [-retention_pin <{pin_name pin_type disable_value}>]: Defines
the retention pin of the library cell. The valid values for the pin_type
214
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Database Commands

Appendix A - Supported Commands
argument are restore, save, and save_restore. The value values for the
disable_value argument are 0 and 1.

Examples

The following example sets all library cells whose name matches *DRFF* as
DRFF retention cells. The retention pin, RETN, is a save-restore pin and is
disabled by a logic 1 value.

prompt> set_retention_cell *DRFF* -cell_type DRFF \\
-retention_pin {RETN save_restore 1}

set_top_module

Description

This command changes the top instance.

Syntax

set_top_module

-topInst <string>

Arguments

 -topInst <string>: Use this option to specify the top instance name.
215
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Common Commands

add_tag_field

Description

This command adds a new field to a tag. The field can be an existing field,
which was not previously used for that tag; or a new user field. After
adding the field to the tag, use set_violation_field to fill in the string for
each violation.

Syntax

add_tag_field <tag> [<tag>]

[-type <value>]

Arguments

 Default Argument: <tag>: Use this option to specify the tag name.

 Default Argument: <field>: Use this option to specify the field name.
Use colon separated name if field needs to be added to complex user
defined field.

 Default Argument: [<app>]: Use this option to specify the application
name.

 [-type <value>]: Use this option to specify the field type. Possible
option values are string and list. Default value is string.

analyze

Description

This command analyzes the specified HDL source files and stores the
design templates they define into the specified library in a format ready to
specialize and elaborate to form linkable cells of a full design.

Using this command, the user can specify multiple source files in single language in
one command. Upon completion of the command all specified files are analyzed and
ready to be elaborated. The command returns 1 on success and 0 on failure.
216
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
When the -vcs option is specified, other options cannot be specified, specify the entire
vlogan/vhdlan command line within '{' and '}'

Syntax

analyze <file_list>

-format <verilog | sverilog | vhdl | sysc | spi>

-library <library_name>

-work <library_name>

-define <define_macros>

[-vcs <vcs_cmd>]

[-netlist]

Arguments

 Default Argument: <file_list>: Use this option to specify the list of
files to be analyzed. When specifying more than one file, separate the
names with a space and enclose the list of names in braces ({}) or
within quotation (" ").

 -format <verilog | sverilog | vhdl | sysc | spi>: Use this
option to specify the input file format type. The supported types are
verilog: IEEE Standard Verilog format, VHDL: IEEE Standard VHDL,
sverilog: IEEE Standard System Verilog.

 -library <library_name>: Use this option to remap the work library in
the same way as the -library option. It specifies the library name to
which work must be mapped. The -work option references the library
where the top-level unit of the elaboration hierarchy is compiled. If the
elaboration starts from a module, then it is the library name where the
module is compiled. If the elaboration starts from a configuration (in
case of -v2kconfig), it is the library name where the configuration is
compiled.

 -work <library_name>: Use this option to remap the work library in the
same way as the -library option. It is an alias for the -library option for
VHDL only. It specifies the library name to which work must be mapped.
The -work option references the library where the top-level unit of the
elaboration hierarchy is compiled. If the elaboration starts from a
module, then it is the library name where the module is compiled. If the
217
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
elaboration starts from a configuration (in case of -v2kconfig), it is the
library name where the configuration is compiled.

 -define <define_macros>: Use this option to specify a list of top-level
macros. This option can only be used with the Verilog and System
Verilog formats.

 [-vcs <vcs_cmd>]: Use this option to analyze the design files using
VCS analyze command. This option specifies all VCS-specific command-
line options. Options specified by -vcs follow the VCS command-line
syntax. The vlogan and vhdlan arguments and switches used in this
switch must be enclosed in curly braces.
The [-sverilog|-verilog] argument specifies the format of the files to be
analyzed.
The [-y directory_path] argument specifies directories that contain the
library files to be searched for unresolved module instantiations in the
design.
The [+libext+.extension1+...] argument specifies the extension to
consider during a files search in the -y library directories. The default is
no extension.
The [-v library_file] holds several module definitions, to be used during
the search for unresolved modules.
The [-f command_file] argument specifies a command file.
The [+define+macro_name+...] argument defines a macro.
The [+incdir+dir1+...] argument includes directories in the search list.

 [-netlist]: Enables VC Static to invoke different design readers for
RTL file and Netlist file present in the tcl script. When RTL and netlist
files are present in the same tcl script, then you must read the netlist
designs using the -netlist option. This improves the performance of the
analyze command.

Examples

The following example analyzes a VHDL file named top.vhd. The library in
which this will be analyzed is my_work.
analyze -format vhdl -work my_work top.vhd

The following example analyzes a VHDL file named my_cfg.v using the VCS
analyze command.
analyze -vcs {my_cfg.v -sverilog}
218
Synopsys, Inc. Feedback

l
l
mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
change_names

Description

The change_names command changes the names of ports, cells (including
physical-only cells), and nets in a design to conform to specified name
rules. This command cannot be used to change the name of library cells or
bus ports.To change the name of bus ports, you must first use the
undefine_bus command to remove the bus property from the port. If an
object name does not conform to the specified rules, the tool changes the
name and ensures that the new name is unique within the design.

To show the effects of running this command without actually making the
changes, use the report_names command.

There are two primary reasons for using the change_names command: It
enables you to modify design object names in the tool so that the names
match those that are ultimately created for a saved design. The names the
tool displays in reports and in other information match those used in your
target system. It enables you to define naming rules specific to your target
system. For example, you might be using VHDL as a design transfer
mechanism, but the naming rules of your system might be more restrictive
than those supported by the true VHDL format.

When you run the change_names command with no options, it operates on
the ports, cells, and nets in the current design. When you specify the -
hierarchy option, changes are expanded to include all design objects within
the current design hierarchy. For runtime reasons, it's best to use the -
instance option only when you have a small list of instances to be renamed.
If you have a big list of instances to be renamed, you must use the -rule
option with change_names or use the -skip_inactive_constraints option
and apply the constraints after running change_names -instance.

Syntax

change_names

[-hierarchy]

[-rules <name_rules>]
219
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Arguments

 [-hierarchy]: Use this option to apply change_names to the
hierarchy.

 [-rules <name_rules>]: Use this option to specify rules to be used
for change_names.

check_hdl_lib

Description

This command enables language check on VCS library files and library
modules. If enabled, VC Lint performs rule checking on the library files
passed with "-v" and "-y" options.

Syntax

check_hdl_lib

[-all]

[-lib <libFile list>]

[-module <libModule list>]

[-lib_file <libListFile>]

[-module_file <libModuleListFile>]

-disable

Arguments

 [-all]: Use this option to check all the library files and modules.

 [-lib <libFile list>]: Use this option to check the specified library
files.

 [-module <libModule list>]: Use this option to check the specified
library modules.

 [-lib_file <libListFile>]: Use this option to check the library files
in the specified file.

 [-module_file <libModuleListFile>]: Use this option to check the
library modules in the specified module.
220
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 -disable: Use this option to disable language check violations on
libcells.

Examples

The following example enables language check on all the library files and
modules.

check_hdl_lib -all

checkpoint_session

Description

Use the checkpoint_session command to save a session. This command
saves the session in the <sessionName>_rtdb /checkpoints directory.You
can add multiple checkpoints during a single run at different stages, but
these checkpoints must have different sessionName specified to avoid over
writing of the files. If two checkpoint_session commands are run one after
another with the same session_name, then the output of the second
command will overwrite the first command output.

Syntax

checkpoint_session

 -session <session_name>

 [-full]

 [-incremental]

Arguments

 -session <session_name>:Use this option to checkpoint this session
under a specified name.

 [-full]: Use this option to create a full checkpoint.

 [-incremental]: Use this option to create an incremental checkpoint.

configure_module_synthesis
221
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

This command configures module level synthesis configurations.

Syntax

configure_module_synthesis

[-enable]

[-disable]

[-config <configuration>]

[-module_list <module_list>]

Arguments

 [-enable]: Use this option to enable module configuration.

 [-disable]: Use this option to disable module configuration.

 [-config <configuration>]: Use this option to specify module
configuration.

 [-module_list <module_list>]: Use this option to specify list of
modules.

configure_libcell_uniquification

Description

Configures libcell uniquification.

Arguments

 [-skip_sequential]: Skips uniquification of all sequential elements.

 [-skip_module <libcell-list>]: Skips uniquification of all instances
of the specified libcell.

 [-skip_instance <libcell-instance-list>]: Skips uniquification of
the specified instances.

configure_tcl_command
222
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

This command disables tcl commands. The commands can be enabled
again with -enable option.

Syntax

configure_tcl_command <cmd>

-enable

-disable

Arguments

 Default Argument: <cmd>: Use this option to specify the command to
be disabled.

 -enable: Use this option to enable the given command.

 -disable: Use this option to disable the given command.

configure_unobservable_logic_identification

Description

This command configures unobservable logic identification.

Syntax

configure_unobservable_logic_identification

-blackbox_endpoints yes/no/auto

-hierpin_endpoints yes/no/auto

-none/sequential/combinational

Arguments

 -blackbox_endpoints yes/no/auto: Use this option to treat black-box
inputs as primary outputs. The values are auto, no, and yes.

 -hierpin_endpoints yes/no/auto: Use this option to treat hierarchical
output pins as primary outputs. The values are auto, no, and yes.
223
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 -none/sequential/combinational: Use this option to identify no,
sequential, or combinational unobservability. The values are
combinational, none, and sequential.

configure_waiver_filter_field

Description

This command configures filter field of a tag. Using this command, you can
customize filter fields for certain tags in waiver window. If this filter
command is not set, all fields are enabled in waiver window for each tag.

Syntax

configure_waiver_filter_field <tagname>

-enable

-disable

Arguments

 Default Argument: <tagname>: Use this option to specify the tag
name.

 Default Argument: <fieldname>: Use this option to specify the field of
a tag.

 -enable: Use this option to enable field in waiver filter template in GUI.

 -disable: Use this option to disable field in waiver filter template in
GUI.

Examples

Specify the tag and field names, and use the -enable or -disable options to
enable or disable tags.
configure_waiver_filter_field -tag ISO_INST_MISSING -field
{Source:PinName} -enable

All the fields must include subfields till leaf level as below:

configure_waiver_filter_field -tag ISO_INST_MISSING -field
{SourceInfo:PowerNet:NetName} -enable
224
Synopsys, Inc. Feedback

l
l
mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
configure_waiver_filter_field -tag ISO_INST_MISSING -field
{SourceInfo:PowerNet:NetName} -enable
configure_waiver_filter_field -tag ISO_INST_MISSING -field
{SinkInfo:GroundNet:NetName} -disable
configure_waiver_filter_field -tag PG_SUPPLY_NOPORT -field
{SupplyPort:PortName} -enable

create_clock

Description

This command creates a clock object in the current design and defines the
specified source_objects as clock sources in the current design. A pin or
port can be a source for a single clock. If source_objects is not specified,
but a clock_name is given, a virtual clock is created. A virtual clock can be
created to represent an off-chip clock for input or output delay
specification. For more information about input and output delay, refer to
the set_input_delay and set_output_delay command man pages.

To show information about all clock sources in a design, use the
report_clock command. To get a list of clock sources, use the get_clocks
command. To return sequential cells related to a given clock, use the
all_registers command. To undo create_clock, use the remove_clock
command.

Syntax

create_clock [<value>]

[-period <period_value>]

[-name <clock_name>]

[-waveform <edge_list>]

[-add]

[-comment <string>]

Arguments

 Default Argument: [<>]: Specify this option to use clock as reference
clock [formal].
225
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 Default Argument: [<value>]: Use this option to specify clock initial
value (0/1 - default 0) at time 0 [formal].

 Default Argument: [<>]: Use this option to specify a list of pins or
ports on which to apply this clock. If you do not use this option, you
must use -name clock_name, which creates a virtual clock not
associated with a port or pin. If you specify a clock on a pin that already
has a clock, the new clock replaces the old clock unless you use the -add
option.

 [-period <period_value>]: Use this option to specify the period of
the clock waveform in library time units.

 [-name <clock_name>]: Use this option to specify clock name.If you
do not use this option, the clock is given the same name as the first
clock source specified in source_objects. If you do not use
source_objects, you must use this option, which creates a virtual clock
not associated with a port or pin. Use this option along with
source_objects to give the clock a more descriptive name than that of
the pin or port where it is applied. If you specify the -add option, you
must use the -name option and the clocks with the same source must
have different names.

 [-waveform <edge_list>]: Use this option to specify the rise and fall
edge times, in library time units, of the clock over an entire clock period.
If the first time in the list is a rising transition, typically it is the first
rising transition after time zero. There must be an even number of
increasing times, and they are assumed to be alternating rise and fall
times. The numbers must represent one full clock period. If -waveform
edge_list is not specified, but -period period_value is, a default
waveform with a rise edge of 0.0 and a fall edge of period_value/2 is
assumed.

 [-add]: Use this option to either add the clock to the existing clock or
to overwrite the existing clock. Use this option to capture the case
where multiple clocks must be specified on the same source for
simultaneous analysis with different clock waveforms. When you specify
this option, you must also use the -name option. Defining multiple
clocks on the same source pin or port causes longer runtime and higher
memory usage than a single clock, because the synthesis timing engine
must explore all possible combinations of launch and capture clocks.

 [-comment <string>]: Use this option to specify comment. It allows
the command to accept a comment string. The tool honors the
226
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
annotation and preserves it with the SDC object so that the exact string
is written out when the constraint is written out when you use the
write_sdc or write_script command. The comment remains intact
through the synthesis, place-and-route, and timing-analysis flows.

create_generated_clock

Description

This command creates a generated clock object. Creates a generated clock
in the current design. If successful, the command returns a collection
containing the new or modified generated clock. You can specify a pin or a
port as a generated clock object. The command also specifies the clock
source from which it is generated. The advantage of using this command is
that whenever the master clock changes, the generated clock
automatically changes. .If you use this command on an existing
generated_clock object, it overwrites its attributes. The generated_clock
objects are expanded to real clocks at the time of analysis. To display
information about generated clocks, use the report_clocks command.

Syntax

create_generated_clock <master_pin>

-name <clock_name>

-divide_by <divide_factor>

-multiply_by <multiply_factor>

-duty_cycle <high_pulse_percentage>

-edges <edge_list>

-edge_shift <edge_shift_list>

-invert

-preinvert

-add

-combinational

-comment <string>
227
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
-pll_output <output_pin>

-pll_feedback <feedback_pin>

-master_clock <clock_name>

Arguments

 Default Argument: <master_pin>: Use this option to specify source
clock object from which this clock is derived (port or pin object).

 Default Argument: <>: Use this option to specify collection of objects.

 -name <clock_name>: Use this option to specify clock name.

 -divide_by <divide_factor>: Use this option to specify frequency
division factor (integer).

 -multiply_by <multiply_factor>: Use this option to specify
frequency multiplication factor (integer).

 -duty_cycle <high_pulse_percentage>: Use this option to specify
duty cycle(of high pulse width), if frequency multiplication is used.

 -edges <edge_list>: Use this option to specify a list of positive
integers that represents the edges from the source clock that are to
form the edges of the generated clock.

 -edge_shift <edge_shift_list>: Use this option to specify a list of
floating-point numbers that represents the amount of shift, in library
time units, that the specified edges are to undergo to yield the final
generated clock waveform.

 -invert: Use this option to invert the generated clock signal.

 -preinvert: Use this option to create a generated clock based on the
inverted clock signal.

 -add: Use this option to add new options to the original clock.

 -combinational: Use this option to specify combinational signal.

 -comment <string>: Use this option to specify comment.

 -pll_output <output_pin>: Use this option to specify the output pin of
the PLL which is connected to the feedback pin.

 -pll_feedback <feedback_pin>: Use this option to specify the
feedback pin of the PLL.

 -master_clock <clock_name>: Use this option to specify master clock.
228
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
create_interface_wrapper

Description

This command creates the wrapper that instantiates the interfaces
specified using the add_top_interface commands, and connects the top
module ports to the interfaces/modports specified via the
connect_top_port commands. If the setup is incompletely specified, an
error is issued and the command is ignored.

Syntax

create_interface_wrapper

-top <top_module_name>

[-name <wrapper_name>]

[-output <wrapper_file>]

[-donot_compile]

Arguments

 -top <top_module_name>: Use this option to specify top module that is
instantiated in wrapper.

 [-name <wrapper_name>]: Use this option to specify the name of
wrapper (default top_<top_module_name>).

 [-output <wrapper_file>]: Use this option to specify the output file
for generated wrapper.

 [-donot_compile]: Use this option to create wrapper but not compile.

Examples

vc_static_shell> add_top_interface â€“top dut â€“interface
atb_if_t -instance ifx_a0
vc_static_shell> connect_top_port â€“port pm0 -interface
ifx_a0.master
vc_static_shell> connect_top_port â€“port ps0 â€“interface
ifx_a0.slave
vc_static_shell> read_file â€“top dut â€“sva â€“vcs { dut.v }
vc_static_shell> create_clock dut.clk â€“period 100
229
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
vc_static_shell> create_clock ifx_a0.clk â€“period 100
vc_static_shell> create_reset dut.resetn â€“low
vc_static_shell> create_reset ifx_a0.resetn â€“low

The generated wrapper would look like the following:
// Automatically Generated File: <date>
module top_dut;
atb_if_t ifx_a0();
dut dut (.pm0(ifx_a0.master),.ps0(ifx_a0.slave));
endmodule

create_reset

Description

This command is convenient and defines simulation reset value as well as
formal analysis value for a set of signals, all in one command. These
signals can be internal nets, or primary inputs (ports) of the design. Use of
create_reset is the same as pairs of sim_force and set_constant, but in
more concise and less error prone form. Return value is a collection, nets
or ports that are defined as resets with this command.

Syntax

create_reset [source_objects]

-sync

-async

-type {reset|set|both}

-name <reset_name>

-sense {low|high|any}

-add

-tdr

Arguments

 [source_objects]: List of nets, ports, and pins on which this reset is
defined.
230
Synopsys, Inc. Feedback

l
mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 -sync: Use this option to specify if the signal drives synchronous reset.
If this argument is not specified, the reset is considered as async by
default.

 -async: Use this option to specify if the signal drives asynchronous
reset.

 -type {reset|set|both}: Use this option to specify the type of reset
signal. The default value is reset.

 -name <reset_name>: Use this option to specify the name of reset
signal.

 -sense {low|high|any}: These switches indicate the assertion polarity
for the reset signal. -low means the reset is asserted low. -high
indicates the reset is asserted high. any indicates the reset is asserted
to low or high. One of these switches is required.

 -add: Use this option to add new resets in addition to existing reset
specified in the default argument.

 -tdr: Use this option to specify that the specified reset is test and/or
debug reset.

Examples

To create asynchronous reset on a pin a_RST_1:

create_reset a_RST_1 -type async

create_static

Description

Use this command to specify the design object (port/pin/net) which must
be treated as Quasi-static signal. Hierarchical objects can be specified in
this command. Quasi-static signals are the ones that are unlikely to change
and remain static most of the times.

Syntax

create_static <signal_name>

 [-check_glitch]

 [-des_clock <clk_name>]
231
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-cycle <cycle value>]

 [-rise_edge <signal_name>]

Arguments

 Default Argument: <signal_name>: Use this option to specify
hierarchical pin or port or net name, which needs to be treated as quasi
static.

 <signal_name>: Use this option to specify hierarchical pin, port, or net
name that needs to be treated as quasi static.

 [-check_glitch]: Use this option to start Glitch analysis on the
specified Quasi objects.

 [-des_clock <clk_name>]: Use this option to specify destination
clocks.

 [-cycle <cycle value>]: Use this option to specify the cycle of the
quasi static constraint. The value of this option must be an integer
between '1' and '100'; both inclusive.

 [-rise_edge <signal_name>]: Use this option to specify rise edge
signal of the quasi static constraint.

Examples

To make a EN signal quasi static:
create_static -name EN

To make a hierarchical pin quasi static:
create_static -name [get_pins -hierarchical Top/MUX/Sel

define_design_lib

Description

This command defines hdl design library.You can use this command
multiple times, once for each logical library name that is to be mapped to a
physical library. You can run the commands at any time, but they are valid
only before the first read into that logical library. When multiple logical
libraries point to the same physical library specified by using the
library_name argument, the tool uses the first logical library name that is
232
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
defined. The path specified by using the -path option is used for proper
mapping. All logical libraries that point to the same path, must share the
same physical library.

A logical library cannot be mapped to two physical libraries in the same
container. But they can be mapped to two physical libraries in different
containers.

This command returns 0 to indicate failure and 1 to indicate success.

Syntax

define_design_lib <library_name>

-path <directory>

Arguments

 Default Argument: <library_name>: Use this option to specify the
design library to be mapped.

 -path <directory>: Use this option to specify the directory to map the
library.

define_name_rules

Description

This command defines a set of rules for naming design objects. Name rules
are used by the change_names and report_names commands. The
report_name_rules command displays a listing of the name rules currently
defined in the shell.Name rules can be defined in multiple calls to the
define_name_rules command.

The -type option enables you to define rules that apply to a specific object
type, such as port, cell, or net). Each call to define_name_rules is additive
or overrides previous calls for a specific name rules.

Syntax

define_name_rules

[-allowed <char>]

[-first_restricted <string>]
233
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
[-last_restricted <string>]

[-prefix <prefix>]

[-map <map_string>]

[-type port|cell|net]

[-restricted <string>]

[-replacement_char <char>]

[-remove_char]

[-rule_name <rule_name>]

Arguments

 [-allowed <char>]: Use this option to specify a set of allowed chars in
names.

 [-first_restricted <string>]: Use this option to specify set of
restricted first chars in name.

 [-last_restricted <string>]: Use this option to specify set of
restricted last chars in name.

 [-prefix <prefix>]: Use this option to specify prefix to be used when
creating names.

 [-map <map_string>]: Use this option to name mapping and
substitution.

 [-type port|cell|net]: Use this option to apply rules to port or cell
or net.

 [-restricted <string>]: Use this option to specify a set of restricted
chars in names.

 [-replacement_char <char>]: Use this option to specify replacement
char for name changes.

 [-remove_char]: Use this option to remove chars rather than
replacing illegal chars.

 [-rule_name <rule_name>]: Use this option to specify rule name.

diff_database
234
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

Given a previous run with violations on disk, this command reads the
violations from the previous run. For each violation which is common to
both runs, it either deletes the violation from the current run, or adds a
waiver for the violation in the current run. The result is a new, smaller
database where the current run contains only new violations, not found in
the previous run.

Either the option -remove or -waive must be given, to tell what operation
should be performed on the violations in both databases.

The previous run will normally have been saved by checkpoint_session in a
directory such as myrun_cpdb. Specify the session name with "-checkpoint
myrun". Since the database is not normally saved to disk, make sure to
save it before checkpointing by executing "save_db".

The older save/restore capability is also supported; specify the session
name with "-session myrun" to read from myrun_rtdb. In less common
flows, a database file may be directly available on disk; specify a filename
with "-raw mypath/report.db".

Syntax

diff_database

[-remove]

[-waive]

[-checkpoint <session>]

[-session <session>]

[-raw <filename>]

[-app <Application>]

Arguments

 [-remove]: Remove violations found in previous database

 [-waive]: Waive violations found in previous database

 [-checkpoint <session>]: Checkpoint session name

 [-session <session>]: Saved session name

 [-raw <filename>]: Raw database filename (less common)
235
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-app <Application>]: Use this option to specify the application
name.

disable_tag_field

Description

This command prevents a field from being printed in the report_* output
for a tag.

Syntax

disable_tag_field <tag>

Arguments

 Default Argument: <tag>: Use this option to specify the tag name.

 Default Argument: <field>: Use this option to specify the field that
must not appear in the report_* output.

elaborate

Description

This command builds a design from the intermediate format of a Verilog
module, a VHDL entity and architecture, or a VHDL configuration.

Note: Using this command, the user can elaborate design from pre-analyzed
design files, from a specified top module. At the completion, this command
returns 1 on success and 0 on failure.

Note: When the -vcs option is specified, other options cant be specified.

Syntax

elaborate <design_name>

[-library <library_name>]

[-work <library_name>]
236
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
[-architecture <arch_name>]

[-parameters <param_list>]

[-file_parameters <file_list>]

[-vcs <vcs_command>]

[-sva]

[-sva2005]

[-v2kconfig <configuration-name>]

[-buildTop <dut name>]

[-j <number_of_processes>]

Arguments

 Default Argument: <design_name>: Use this option to specify the
design name which needs to be elaborated. The design can be Verilog
module of VHDL entity.

 [-library <library_name>]: Use this option to remap the work
library to library_name. This option can only be used with the VHDL
format. By default, the analyze command stores all output in the work
library. To store design elements in libraries other than library specified
by using the -work option, use the -library option.

 [-work <library_name>]: Use this option to remap the work library in
the same way as the -library option. It is an alias for the -library option
for VHDL only. Specifies the library name to which work must be
mapped. The -work option references the library where the top-level
unit of the elaboration hierarchy is compiled. If the elaboration starts
from a module, then it is the library name where the module is
compiled. If the elaboration starts from a configuration (in case of -
v2kconfig), it is the library name where the configuration is compiled.

 [-architecture <arch_name>]: Use this option to specify the name of
the architecture. In VHDL, the default architecture is the most recently
analyzed architecture.

 [-parameters <param_list>]: Use this option to specify a list of
design parameters enclosed in quotes for Verilog. For VHDL use -vcs {-
gv ...} option. Parameters within the list must be separated by commas.
A specification can be based on parameter order (for example, 8,7,5) or
237
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
on parameter names (for example, N=>8,M=>6). It is acceptable to
mix ordered and named parameter specifications, as long as the ordered
parameters are listed first..

 [-file_parameters <file_list>]: Use this option to specify a list of
files that contain parameter specifications. The specifications are
appended to the parameters listed in the -parameters option (if
present). The syntax of the parameter file is identical to the syntax
between the parameter-delimiters (#) in the -parameters option, except
that the backslashes (\\) at the end of lines and the hashes (#) must be
omitted. The specified files are searched for in the search_path.

 [-vcs <vcs_command>]: Use this option to read the design using VCS
command arguments and switches. Options specified by -vcs follow the
VCS command-line syntax. When specifying the VCS commands, you
must include them either in â€˜{ }â€™ or double quotes. Note: (1)If
there is one design top, it should not be passed using vcs arguments.
that is, elaborate -vcs {designtop}. It should be passed as follows:
%elaborate designtop (2) For a model with several top modules (in
following example: dut_top and tb_top), you must pass the arguments
as follows: %elaborate dut_top -vcs tb_top.
The [-sverilog|-verilog] argument specifies the format of the files to be
analyzed.
The [-y directory_path] argument specifies directories that contain the
library files to be searched for unresolved module instantiations in the
design.
The [+libext+.extension1+...] argument specifies the extension to
consider during a files search in the -y library directories. The default is
no extension.
The [-v library_file] holds several module definitions, to be used during
the search for unresolved modules.
The [-f command_file] argument specifies a command file.
The [+define+macro_name+...] argument defines a macro.
The [+incdir+dir1+...] argument includes directories in the search list.

 [-sva]: Use this boolean switch to compile any discovered SVA or PSL
properties into formally analyzable form when the design is read in.
Properties declared in the source code will be initially enabled as they
are declared in the code (assume, assert, cover). Use this option to
process SVA/PSL during compilation using 2009 semantics.
238
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-sva2005]: Use this option to process SVA/PSL during compilation
using 2005 semantics.

 [-v2kconfig <configuration-name>]: Use this option to specify the
v2k configuration. v2k configuration cannot be directly specified as a
design top.

 [-buildTop <dut name>]: Use this option to specify the DUT down
from which synthesis model is generated.

 [-j <number_of_processes>]: Use this option to specify the number
of processes that can be used for parallel compilation in the RTL flow.
Value >= 1

Examples

The following example elaborates a design named top from a library name
my_work.
elaborate top -work my_work

generate_waiver_commands

Description

This command can be used to generate field-based waiver(s)
corresponding to violations.

Syntax

generate_waiver_commands

 -app <app list>

 [-status]

 [-viol <viol list>]

Arguments

 -app <app-list>: Waivers will be generated for the specified
applications.

 [-status]: Waivers are generated with the specified state. Valid values
include: Acknowledged, NeedsInfo, Open, Waived, Waived_Temp, and
Ignore.
239
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-viol <viol list>]: Field-based waivers are generated for the
specified violation id(s).

Examples

The following command generates filtered report:

generate_waiver_commands -app CDC -viol [report_cdc -tag
SYNCCDC_CTRLPATH_FULL -id_list]

In this case, VC SpyGlass CDC generates the following data:

waive_cdc -add SYNCCDC_CTRLPATH_FULL_98 -tag
SYNCCDC_CTRLPATH_FULL -filter { ContainerInstance ==
"a_syncInfo" && DestClockInfoList:DestClockInfo:ClockName ==
"c2" && DestClockInfoList:DestClockInfo:ClockObject == "clk2"
&& DestObject == "a_syncInfo/dest/out/Q[0]" && DestObjectType
== "flop" && DstFileLine:FileName == "../test.v" &&
DstFileLine:LineNumber == "295" && Module == "MultiSrcNFF" &&
ReasonInfoList:ReasonInfo:ReasonCode == "SYNC_BY_NFF" &&
ReasonInfoList:ReasonInfo:ReasonCodeMsg == "[INFO] Multi Flop
Synchronizer detected" &&
SrcClockInfoList:SrcClockInfo:ClockDomainId == "1.1" &&
SrcClockInfoList:SrcClockInfo:ClockName == "c1" &&
SrcClockInfoList:SrcClockInfo:ClockObject == "clk1" &&
SrcFileLine:FileName == "../test.v" && SrcFileLine:LineNumber
== "295" && SrcObject == "a_syncInfo/b_src/out/Q[0]" &&
SrcObjectType == "flop" && SyncDepth == "2" && SyncObject ==
"a_syncInfo/syncI/out/Q[0]"}

The following command generates the complete report:

generate_waiver_commands -app CDC

The generate_waiver_commands command honors the
configure_waiver_filter_field command. If you have defined some fields for a
tag by using the configure_waiver_filter_field command or if it is predefined
by the application, waivers are generated using the defined fields. Else, all
fields are used.

For example, the configure_waiver_filter_field -tag
SYNCCDC_CTRLPATH_FULL -disable -field SrcObjectType command can
be used to disable generation for the Source object type.
240
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
get_blackbox

Description

This command returns the collection of black-boxed elements in the
design.

Syntax

get_blackbox

-designs

-automatic

-unresolved

Arguments

 -designs: Use this option to create a collection of designs which are
black-boxed.

 -automatic: Use this option to create a collection of cells that are
automatically black-boxed by the tool, while loading the design. This
usually happens if an instance is present in the design, but its definition
is missing in the design. This can also happen if a module has non-
synthesizable constructs, hence the hardware inference tool has black-
boxed that module because that module cannot be synthesized.

 -unresolved: Use this option to return unresolved modules in the
design.

Examples

The following example shows the usage of the get_blackbox command:

vc_static_shell> get_blackbox -designs
{"module1"}

get_clock_relationship

Description

This command reports the relationship between any given number of
241
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
clocks based on the status of current clock groups. The relationship can be
asynchronous,logically_exclusive or physically_exclusive. Multiple types of
relationships or no relationship can exist between clocks.

Syntax

get_clock_relationship

-clocks

[-type <type>]

[-csv]

[-file <file name>]

[-gui]

Arguments

 -clocks: Use this option to specifiy the clocks for which the relationship
needs to be reported.

 [-type <type>]: Use this option to check if a particualar type of
relationship exists between the given clocks.

 [-csv]: Use this option to report the output in comma separated
format.

 [-file <file name>]: Use this option to dump the output to a text
file.

 [-gui]: Use this option to report the output in GUI.

Examples

The following example queries the relationship between clocks c1 and c2

prompt> get_clock_relationship {c1 c2}
asynchronous

The following example queries the if the clocks c1 cand c2 have a logically
exclusive relationship.

prompt> get_clock_relationship {c1 c2} -type
logically_exclusive
true

The following example reports the relationship between clocks c1 and c2 in
242
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
CSV format. -csv option is avaliable only in non-PT mode.

prompt> get_clock_relationship {c1 c2} -csv
'Clock1','Clock2','Relationship'
c1,c2,asynchronous
c2,c1,asynchronous

get_constant_sources

Description

Reports the RTL/SCA constant sources propagating to a signal. The
command calls a fanin traversal from the given constant signal, until it
reaches RTL constants (supply/ground) or set_case_analysis. Then it
reports the constant sources along with their types.

Syntax

get_constant_sources <>

Arguments

 Default Argument: <>: Object to which constant(s) propagate

Examples

> get_constant_sources FF/CLK
Type Object
RTL scan_en
SCA sel1
SCA sel2

get_exception

Description

This command creates a collection of exception objects which are used to
store constraints information of any design object.

The command returns a collection, if the given pattern matches any design
object and constraints are defined on that object. If no object matches, the
243
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
command returns an empty string.

You can use this command at the command prompt or you can nest it as an
argument to another command, such as get_attribute. In addition, you can
assign the result to a variable.

Syntax

get_exception <design_object_name>

[-type]

Arguments

 Default Argument: <design_object_name>: Search for design objects
which matches this pattern and collects constraints on those objects.

 [-type]: Searches for constraints in the given type only. This can be
one of set_case_analysis, set_cdc_ignore_path, set_clock_sense or
set_disable_timing.

Examples

The following example queries the constraints defined on the pin RG1/Q.

prompt> get_attribute [get_exceptions -type set_case_analysis
RG1/Q] type
set_case_analysis

The following example queries the file line information of the constraints
defined on the pin RG1/Q.

prompt> get_attribute [get_exceptions RG1/Q] source
{File: ./test.sdc Line: 7} {File: ./test.sdc Line: 8} {File: ./
test.sdc Line: 9}

The following example queries the commands of the constraints defined on
the pin RG1/Q.

prompt> get_attribute [get_exceptions RG1/Q] command
{set_case_analysis 1 [get_pins RG1/Q]} {set_clock_sense
[get_pins {RG1/Q}]} {set_disable_timing [get_pins { RG1/Q }]}

get_field_subfield
244
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

This command is used to query the qualified fields of violation which
belongs to record type.

Syntax

get_field_subfield <tag>

[-leaf]

[-quiet]

Arguments

 Default Argument: <tag>: Use this option to specify the tag name
you want to query.

 Default Argument: <field>: Use this option to specify the field name
in the tag you want to query.

 [-leaf]: Use this option to recursively query the subfields.

 [-quiet]: Use this option if you want to suppress the error messages.

Examples

%vc_static_shell> get_field_subfield DESIGN_PIN_SCMR
InstanceInfo
PowerNet GroundNet PowerMethod GroundMethod

%vc_static_shell> get_field_subfield DESIGN_PIN_SCMR
InstanceInfo -leaf
PowerNet:NetName PowerNet:NetType GroundNet:NetName
GroundNet:NetType PowerMethod
GroundMethod

%vc_static_shell> get_field_subfield DESIGN_PIN_SCMR
wrong_instance
Error: undefined field 'wrong_instance'

%vc_static_shell> get_field_subfield DESIGN_PIN_SCMR
wrong_instance -quiet

get_glassbox
245
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

This command returns list of objects which are listed as glassbox.

get_license

Description

Use this command to check-out the application specific license keys
explicitly. The command reserves all keys required by a particular script at
the beginning of a batch script. This command returns the number of
application license keys successfully obtained. For more details on the
application license keys, see the VC Static Platform Product Installation
Notes.

Syntax

get_license <feature-list>

-quantity <num>

[-licwait <minutes>]

Arguments

 Default Argument: <feature-list>: Specifies the list of application
specific keys to be reserved.

 -quantity <num>: Specifies the total number of licenses to be checked
out: num >= 1

 [-licwait <minutes>]: Specifies the time period for which the license
server must wait (in minutes) before terminating the run.

get_no_msg_reporting_tags

Description

This command returns list of tags which doesn't report any violation

It will check all the tags which are enabled for the required applcation.

A tag may not report violation due to either it has not been run or it has
246
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
not found any violation scenario which needs to reported.

Syntax

get_no_msg_reporting_tags [<app>]

Arguments

 Default Argument: [<app>]: Use this option to specify the application
name , default Lint.

Examples

To get information about the tags which doesn't report any violation, use:
vc_static_shell> get_no_msg_reporting_tags Lint

get_pi_drive_clock

Description

This command returns all reset/clock pairs in the database.

get_readmsg_attribute

Description

This command returns specific attribute for a design read message.

Syntax

get_readmsg_attribute <>

Arguments

 Default Argument: <>: Use this option to specify message name.

 Default Argument: <>: Use this option to specify attribute name.

Examples

The following example retrieves the count attribute in the message
247
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
UPF_OBJECT_NOT_FOUND_ERROR.
get_readmsg_attribute UPF_OBJECT_NOT_FOUND_ERROR count

get_readmsg_field

Description

This command returns string data for one qualified field of the design read
message.

Syntax

get_readmsg_field <id>

Arguments

 Default Argument: <id>: Use this option to identify integer violation.

 Default Argument: <field>: Use this option to specify qualified field
name.

Examples

The following example returns the 'file' field of the message with id given
by $id.
get_readmsg_field $id file

get_readmsg_ids

Description

This command returns the list of ids of violations for the given design read
message.

Syntax

get_readmsg_ids <name>
248
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Arguments

 Default Argument: <name>: Use this option to specify existing design
read message name.

Examples

The following example returns the list of message ids corresponding to the
message, UPF_OBJECT_NOT_FOUND_ERROR.
get_readmsg_ids UPF_OBJECT_NOT_FOUND_ERROR

get_readmsg_names

Description

This command returns list of design read message names.

Syntax

get_readmsg_names [<type>]

Arguments

 Default Argument: [<type>]: Use this option to specify design read
type and default is UPF.

Examples

The following example retrieves all upf read messages.
get_readmsg_names upf

get_readmsg_names

Description

This command returns list of design read message names.

Syntax

get_readmsg_names [<type>]
249
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Arguments

 Default Argument: [<type>]: Use this option to specify design read
type and default is UPF.

Examples

The following example retrieves all upf read messages.
get_readmsg_names upf

get_supported_tags

Description

This command returns supported rule list for a given RCA.

Syntax

get_supported_tags -rca <ML_RCA_TAG>

Arguments

-rca <ML_RCA_TAG>

Specified RCA tag.

Examples

get_supported_tags -rca DEBUG_LINT_PORT_STRUCT_SIGNAL

get_violation_waiver

Description

This command returns the name of the waiver covering a single violation,
or the empty string if it is not waived. For example, to get the name of the
waiver covering violation 123, use:

vc_static_shell> set violation_name [get_violation_waiver 123]
250
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
To get a list of all the tags with violations in the current run, use
get_violation_tags. To get a list of all the violation IDs for an individual tag,
use get_violation_ids.

There are also commands that operate on tag definitions; for an overview,
see get_tags.

Syntax

get_violation_waiver <id> [<id>]

Arguments

 Default Argument: <id>: Use this option to identify integer violation.

 Default Argument: [<app>]: Use this option to specify application
name.

get_waiver_attribute

Description

This command returns specific attribute for waiver. This command helps to
identify specific attributes in the filter database and can be used to identify
waivers which possess a specific quality. One main usage of this command
is to identify waivers with no violations waived (zero violation count) and
correct/delete them.

Syntax

get_waiver_attribute <waiver>

Arguments

 Default Argument: <waiver>: Use this option to specify waiver name.

 Default Argument: <attribute>: Use this option to specify the
attribute name.

get_waivers
251
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

This command is used to query all the waivers which matches the specified
pattern.

Syntax

get_waivers <pattern>

Arguments

 Default Argument: <pattern>

Use this option to specify pattern of waivers to be returned.

Examples

%vc_static_shell> get_waivers *ISO*
FLT-ISO_STRATEGY_MISSING

index_database

Description

This command creates an index to speed up multiple waivers. It speeds up
subsequent waiver/filter operations by creating a cache for commonly
requested fields. If only one or two simple waivers are executed, this
command will occupy more time than simply executing the waivers.
However, if many complex waivers are being executed, creating this cache
saves time.

infer_clock_roots

Description

This command infers clock roots automatically without the need of defining
the clock information using SDC.

This command does not provide any output. Use report_clock_roots -file
file_name to dump inferred clock roots to a file. This file can be read using
read_sdc file_name.
252
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Syntax

infer_clock_roots

-exclude_latch

-sequentials <list_of_Qpins_or_cells>

Arguments

 -exclude_latch: Use this option to trace latch enables for clock root
identification.

 -sequentials <list_of_Qpins_or_cells>: Use this option to specify
sequential elements for which clock roots will be identified.

infer_reset_roots

Description

This command infers reset roots.

Syntax

infer_reset_roots

-include_latch

-report_reg <file_name>

Arguments

 -include_latch: Use this option to trace latch enables for reset root
identification.

 -report_reg <file_name>: Use this option to dump register and its
reset root to a specified file.

infer_setup

Description

This command infers clock roots/reset roots automatically without the need
253
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
of defining the clock or reset information using SDC.

This command does not generate any output. Use the
write_inferred_setup -type (clock/reset) -file file_name to
include inferred clock roots/reset roots to a file.

Syntax

infer_setup

 -type <clock/reset>

 [-incremental]

 [-full]

 [-apply]

 [-infer_all_potentials]

 [-generated_clocks <true/false>]

 [-generated_resets <true/false>]

 [-sync_resets <true/false>]

 [-infer_gated <true/false>]

 [-include_hanging]

 [-check_vcs_clock]

 [-infer_latch_out]

 [-filter_names <clock_name|reset_name>]

Arguments

 -type <clock/reset>: Use this option to specify the type of root
(clock/reset) to be inferred.

 [-incremental]: Use this option to specify that user-defined
commands are propagated first and then inference is done only from
elements that are not receiving anything.

 [-full]: Use this option to specify that all the roots are inferred.

 [-apply]: Use this option to use inferred clocks directly.

 [-infer_all_potentials]: Use this option to enable inference to all
roots in auto detection.

 [-generated_clocks <true/false>]: Use this option to dump the
generated clocks.
254
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-generated_resets <true/false>]: Use this option to dump the
generated resets.

 [-sync_resets <true/false>]: Use this option to enable inference for
sync resets.

 [-infer_gated <true/false>]: Use this option to enable inference
for gated roots.

 [-include_hanging]: Use this option to enable inference of clocks on
hanging nets.

 [-check_vcs_clock]: Use this option to infer paths with the vcs_clock
attribute.

 [-infer_latch_out]: Use this option to enable inference of latch
outputs as generated clock.

 [-filter_names <clock_name|reset_name>]: Use this option to not
infer clock/reset which have the specified string in its name.

Examples

To infer clock root/reset root based upon type requested.
infer_setup -type clock

write_inferred_setup -type clock -file infer.sdc

link

Description

This command is used to link current design.This command uses the
link_library and search_path variables to resolve design references. A "*"
entry in the value of the link_library variable indicates that link should
search all the designs already loaded in memory. If the link_library variable
has no "*" entry, the already-loaded designs are not searched. The default
value for the link_library variable is "* your_library.db". The search_path
variable specifies a list of directory names that the link command uses to
search for link_library files.

For simple file names (names that contain no '/' character), the link
command looks for the files in the directories specified by the search_path
variable. For absolute or relative path names, the search_path variable is
not used. If the referenced designs are not found in any of the specified
255
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
files, the link command looks in the search path directories for any .ddc or
.db files that have the same name as the referenced design (for example,
adder.ddc or adder.db). In this case, the .ddc files are searched first.

The order of directories in the search path and of the files in the link
libraries is important. Search order during a link is (1)Local link library files
(2)Link library files (3)Search path directories The first occurrence of a
design reference is used.

Syntax

link

-cov <metric_type>

-llk <llk_type>

-aep <aep_type>

-inject_fault <fault_type>

Arguments

 -cov <metric_type>: Use this option to enable coverage
instrumentation during compilation.

 -llk <llk_type>: Use this option to create livelock goals during
compilation.

 -aep <aep_type>: Use this option to specify the types of AEP checks
that should be instrumented as the design is compiled.

 -inject_fault <fault_type>: Use this option to inject behavioral
faults in the design for doing sign-off with formal.

link_design

Description

The link_design locates all designs and library components that are
referenced by the current design and links them to the current design.
During linking, the tool loads all files specified by the link_path variable if
they are not already in memory. Successful linking results in a fully
instantiated design on which you can perform analysis.
256
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Syntax

link_design

[-design_name <design>]

[-quiet]

Arguments

 [-design_name <design>]: Specifies the design to be linked. The
default is the current design.

 [-quiet]: Does not print any information with this option.

Examples

The following example shows the usage of the link_design command:

vc_static_shell> read_verilog top.v
vc_static_shell> link_design top

list_all_waiver_files

Description

A waiver command can now be linked to a file when created from GUI or
given through manage_waiver_file command. This command displays a
complete list of files that are associated with such waivers.

llib

Description

This command lists information within library.This command lists the
information of VHDL objects (entity, architecture, configuration, package
and package body) and Verilog objects (modules) in specified design
library. It supports for pure design i.e. Verilog, VHDL, *.sv and mix design
as well. Before using this command, you must load design using analyze
command and then use this command.
257
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Syntax

llib

[-l]

[-r]

[-lib <library_name>]

[-all]

[-design_unit_name <design_unit_name>]

Arguments

 [-l]: Use this option to show VCS version, timestamp, dependencies,
package references, etc.

 [-r]: Use this option to print architecture name for each entity and
print package body name for each package.

 [-lib <library_name>]: Use this option to search the logical name of
the library.

 [-all]: Use this option to search all logical libraries in setup file.

 [-design_unit_name <design_unit_name>]: Use this option to
specify design unit name (Configuration, Package, Entity or Module).

man

Description

This command shows the man page for the given command or message.
This command is used to view the runtime documentation for Monet
messages and commands in the Monet shell.

Syntax

man

-command_name

Arguments

 -command_name: Use this option to specify the man page name.
258
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
merge_database

Description

This command merges report database from a saved run into the current
run.This command helps you to read a report database on the disk from a
previous run, and merge it into the report database for the current run.

Given a previous run with violations on disk, this command reads the
violations from the previous run. For each violation which is unique to the
previous run, it adds a copy of the violation into the current violation
database. The result is a new, larger database which is the union of both
databases.

The previous run will normally have been saved by checkpoint_session in a
directory such as myrun_cpdb. Specify the session name with "-checkpoint
myrun". Since the database is not normally saved to disk, make sure to
save it before checkpointing by executing "save_db".

The older save/restore capability is also supported; specify the session
name with "-session myrun" to read from myrun_rtdb. In less common
flows, a database file may be directly available on disk; specify a filename
with "-raw mypath/report.db".

Syntax

merge_database

[-session <session_name>]

[-input_filename <input_filename>]

[-checkpoint <session>]

Arguments

 [-session <session_name>]: Use this option to specify the name of
saved session to merge messages from database.

 [-input_filename <input_filename>]: Use this option to specify raw
message file.

 [-checkpoint <session>]: Checkpoint session name

read_file
259
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

This command helps you to read in design source files, and link design in
memory. This command can be used to load design in single language
(Verilog/SV or VHDL)

Note: Using this command, the user can specify all source files in one
command in a single language environment. The files get analyzed and then
elaborated. Upon completion of the command the complete design has been
loaded and is ready to be used. The command returns 1 on success and 0 on
failure.

Note: When the -vcs option is specified, other options cant be specified.

Syntax

read_file

- <top>

-library <library name>

-define <list of verilog defines>

-work <library name>

-netlist

-parameters <string containing ordered or named parameters
separated by comma>

-vcs <vcs command line>

-vcs_elab <vcs elaborate command line>

-sva

-sva2005

-v2kconfig <configuration-name>

-buildTop <dut name>

-multi_step

-cov <metric_type>

-llk type <llk_type>

-aep <aep_type>

[-inject_fault <fault_type>]
260
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
-j <number_of_processes>

-slist

Arguments

 -<top>: Use this option to specify the name of the top design.

 -library <library name>: Use this option to remap the work library to
library_name. This option can only be used with the VHDL format. By
default, the analyze command stores all output in the work library. Use
the -library option to store design elements in libraries other than library
specified by using the -work option.

 -define <list of verilog defines>: Use this option to specify a list
of top-level macros. This option can only be used with the Verilog and
System Verilog formats.

 -work <library name>: Use this option to remap the work library in the
same way as the -library option. It is an alias for the -library option for
VHDL only. Specifies the library name to which work must be mapped.
The -work option references the library where the top-level unit of the
elaboration hierarchy is compiled. If the elaboration starts from a
module, then it is the library name where the module is compiled. If the
elaboration starts from a configuration (in case of -v2kconfig), it is the
library name where the configuration is compiled.

 -netlist: Use this option to invoke the Verilog netlist reader. This
option should only be specified if the design is in Verilog netlist format
only, no behavioral syntax is present. This option cannot be used in
conjunction with -vcs option.

 -parameters <string containing ordered or named parameters
separated by comma>: Use this option to specify a list of design
parameters enclosed in quotes. Parameters within the list must be
separated by commas. A specification can be based on parameter order
(for example, 8,7,5) or on parameter names (for example,
N=>8,M=>6). It is acceptable to mix ordered and named parameter
specifications, as long as the ordered parameters are listed first.

 -vcs <vcs command line>: Use this option to read the design using
VCS command arguments and switches. Options specified by -vcs follow
the VCS command-line syntax. When specifying the VCS commands,
you must include them either in â€˜{ }â€™ or double quotes.
The [-sverilog|-verilog] argument specifies the format of the files to be
261
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
analyzed.
The [-y directory_path] argument specifies directories that contain the
library files to be searched for unresolved module instantiations in the
design.
The [+libext+.extension1+...] argument specifies the extension to
consider during a files search in the -y library directories. The default is
no extension.
The [-v library_file] holds several module definitions, to be used during
the search for unresolved modules.
The [-f command_file] argument specifies a command file.
The [+define+macro_name+...] argument defines a macro.
The [+incdir+dir1+...] argument includes directories in the search list.

 -vcs_elab <vcs elaborate command line>: Use this option to
elaborate the design using VCS command arguments and switches
enclosed in curly braces. Specifies all VCS-specific command-line
options. Options specified by -vcs follow the VCS command-line syntax.

 -sva: Use this option to process SVA/PSL during compilation using 2009
semantics.

 -sva2005: Use this option to process SVA/PSL during compilation using
2005 semantics.

 -v2kconfig <configuration-name>: Use this option to specify the v2k
configuration. V2k configuration cannot be directly specified as a design
top.

 -buildTop <dut name>: Use this option to specify the DUT down from
which synthesis model is generated.

 -multi_step: Use this option to load design in multi step mode.

 -cov <metric_type>: Use this option to specify types of structural
coverage properties that should be instrumented as the design is
compiled. These coverage properties match equivalent coverage objects
in VCS in senatics and locations. The keyword all is supported to prepare
for all structural coverage property types. Valid coverage property types
are the following and are separated by the plus + delimiter: line, cond,
toggle, fsm_state, fsm_transition. In order to control the shapes of
coverage instrumentation, the standard VCS switches such as like -
cm_cond, -cm_tgl etcetera can be used. These switches are passed
through the -vcs switch of read_file command.
262
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 -llk type <llk_type>: Use this option to create livelock goals during
compilation.

 -aep <aep_type>: Use this option to specify types of AEP properties
that should be instrumented as the design is compiled. The keyword all
is supported to prepare for all structural property types. Valid structural
property types are the following and are separated by the plus +
delimiter:
 bounds_check: Create a property every place in the source design

where an array is indexed with a variable. The property will fail if the
index can be assigned a value that is outside the bounds of the
declared array. The type attribute is set to bounds_check.

 multi_driver: Create a check for signals that are driven by multiple
drivers. The property will fail if the signal is simultaneously driven by
more than 1 signal. The type attribute is set to multi_driver.

 conflict_driver: Create a check for signals that are driven by multiple
drivers. The property will fail if the signal is simultaneously driven by
more than 1 signal to opposite logic values. The type attribute is set
to conflict_driver.

 floating_bus: Create a check for signals that are driven by multiple
drivers. The property will fail if the signal is not driven by at least 1
driver at all times. The type attribute is set to floating_bus.

 x_assign: Create a check for every statement in the rtl where an
explicit logic X assignment is made. The property will fail if the
assignment is ever activated. The type attribute is set to x_assign.

 arith_oflow: Find all occurrences of arithmetic operators in the design
(+, -, *, /). The property will fail if the expression ever over- or
underflows the legal ranges for the operation being executed. The
type attribute is set to arith_oflow.

 set_reset: Find all sequentials in the design which use both set and
reset. The property fails if the set and reset signals are ever asserted
at the same time. The type attribute is set to set_reset.

 parallel_case: Find all occurrences of the parallel case directives in
the code. These can be either: // synopsys parallel_case pragma, //
synthesis parallel_case pragma, or SystemVerilog unique keyword
case statements. For each of those scenarios, the property will fail if
the design can behave in a way such that the pragma does not hold.
The type attribute is set to parallel_case.
263
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-inject_fault <fault_type>]: Use this option to inject behavioral
faults in the design for formal testbench analyzer flow.

 -j <number_of_processes>: Use this option to specify the number of
processes that can be used for parallel compilation in the RTL flow.
Value >= 1.

 -slist: Use this option to specify list of input files.

Examples

The following example reads in a verilog file named top.v in verilog netlist
format. The design top is named top.
read_file -format verilog -top top top.v -netlist

read_sdc

Description

This command helps you to read an already existing SDC file as an input.
SDC commands can be specified as Monet shell commands using this
command. (Currently SDC commands are read in Monet shell). Also, this
command is used to read User specified SDC file to populate SDC data
model.

Syntax

read_sdc

-version_sdc_version

-module <list_of_modules>

-instance <list_of_instances>

-spec_file

Arguments

 -version_sdc_version: Use this option to specify the SDC version
value.

 -module <list_of_modules>: Use this option to specify a list of
modules for which the SDC needs to be applied.
264
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 -instance <list_of_instances>: Use this option to specify a list of
instances for which the SDC needs to be applied.

 -spec_file: Use this option to specify the SDC file to be read in.

remove_case_analysis

Description

This command removes the effect of setting value constraints from the
specified list of ports/pins/nets. Upon completion, it returns 1 for success
and 0 otherwise.

Syntax

remove_case_analysis

-all

-list

Arguments

 -all: Use this option to remove all case_analysis.

 -list: Use this option to specify a list of port/pin/net objects.

Examples

Here effect of constant value specified on â€œin1â€? port will get removed.
While for â€œin2â€? it will remains effective. If remove_case_analysis
â€“all is used then effect on all ports will get removed. i.e in this case on
both â€œÃ¯n1â€? and â€œin2â€?.

vc_static_shell>set_case_analysis 1â€™b1 {in1 in2}
vc_static_shell>remove_case_analysis in1

remove_clock

Description

Removes one or more clocks from the current design.
265
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
To display information about clocks and generated clocks in the design, use
the report_clock command.

Syntax

remove_clock

-all

-clock_list

Arguments

 -all: Specifies to remove all clocks in the current design.

 -clock_list: Specifies a list of collections containing clocks or patterns
matching the clock names.

Examples

The following example removes clock CLK1.
vc_static_shell>remove_clock CLK1

The following example removes all clocks from current design.
vc_static_shell>remove_clock -all

remove_clock_groups

Description

Removes specific exclusive or asynchronous clock groups from the current
design.

Syntax

remove_clock_groups

[-logically_exclusive]

[-physically_exclusive]

[-exclusive]

[-asynchronous]

-name
266
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
-all

Arguments

 [-logically_exclusive]: Specifies that the groups set for logically
exclusive clocks are to be removed. The -physically_exclusive, -
logically_exclusive, and -asynchronous options are mutually exclusive.
You must choose only one.

 [-physically_exclusive]: Specifies that the groups set for physically
exclusive clocks are to be removed. The -physically_exclusive, -
logically_exclusive, and -asynchronous options are mutually exclusive.
You must choose only one.

 [-exclusive]: Specifies that the groups set for logically exclusive
clocks are to be removed.

 [-asynchronous]: Specifies that groups set for asynchronous clocks
are to be removed. The -physically_exclusive, -logically_exclusive, and -
asynchronous options are mutually exclusive. You must choose only
one.

 -name: Specifies a list of clock groups to be removed, which matches the
groups in the given names. These clock groups are predefined by the
set_clock_groups command. The -name and -all options are mutually
exclusive.

 -all: Specifies to remove all groups set for exclusive or asynchronous
clocks in the current design. The -name and -all options are mutually
exclusive.

Examples

The following example removes logically_exclusive clock group named
GRP1.
vc_static_shell>remove_clock_groups -logically_exclusive -name
GRP1

The following example removes all asynchronous clock groups from current
design.
vc_static_shell>remove_clock_groups -asynchronous -all

remove_generated_clocks
267
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

Removes generated clock objects from the current design.

To display information about clocks and generated clocks in the design, use
the report_clock command.

Syntax

remove_generated_clocks
-all
-generated_clk_name

Arguments

 -all: Indicates that all generated clocks are to be removed.

 -generated_clk_name: Specifies a list of names of generated clocks to
be removed.

Examples

The following example removes generated clock GEN1.
vc_static_shell>remove_generated_clocks GEN1

The following example removes all generated clocks from current design.
vc_static_shell>remove_generated_clocks -all

rename_tag

Description

This command renames a violation tag.

Syntax

rename_tag <tag> <alias>

Arguments

<tag>

Use this option to specify existing tag name.
268
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
<alias>

Use this option to specify new tag name and replace the existing tag name.

Examples

vcst_shell> rename_tag ISO_INST_MISSING MY_NEW_NAME
vcst_shell> report_lp
--
Tree Summary
--
Severity Stage Tag Count
-------- ----- --------------------- -----
error Design MY_NEW_NAME 3
warning UPF ISO_STRATEGY_REDUND 1
warning Design ISO_STRATEGY_UNUSED 4
-------- ----- --------------------- -----
Total 8

report_mode

Description

This command defines active/inactive modes of dbcell instances.This
command reports which cells have modes and for each mode the current
status and condition causing current status. Also, the report reflects the
mode specifications of set_mode command and set_case_analysis.

Syntax

report_mode

-instance_objects

Arguments

 -instance_objects: Use this option to specify a list of dbcell instances.
Also, it specifies that the mode report is to include only the specified list
of cell instances. By default, all cell instances that have nodes are
reported.
269
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
report_names

Description

This command reports potential name changes of ports, cells, and nets in a
design.

Syntax

report_names

[-hierarchy]

[-rules <name_rules>]

Arguments

 [-hierarchy]: Use this option to apply change_names to the
hierarchy.

 [-rules <name_rules>]: Use this option to specify rules to be used
for report_names.

report_properties

Description

This command reports properties for selected object.

Syntax

report_properties

[-instance <instance>]

[-port <port>]

[-pin <pin>]

[-net <net>]

Arguments

 [-instance <instance>]: Use this option to specify design instance
name.
270
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-port <port>]: Use this option to specify design port name.

 [-pin <pin>]: Use this option to specify design pin name.

 [-net <net>]: Use this option to specify design net name.

report_read

Description

This command reports the messages issued in reading the design. This
command is used to dump the messages issued in design load. The
command report_read (â€“family hdl) will work on the messages issued
during VCS flow, such as parsing, design resolution, and hardware
inference.

Syntax

report_read

[-family <{design_read_family_list}>]

[-list]

[-verbose]

[-no_summary]

[-tag_type <builtin | vcst | legacy>]

Arguments

 [-family <{design_read_family_list}>]: Use this option to provide
a list of allowable family: Values: all, hdl, netlist, sdc, upf.

 [-list]: Use this option to list all messages in simple form.

 [-verbose]: Use this option to display short description for each
message.

 [-no_summary]: Use this option to suppress summary information.

 [-tag_type <builtin | vcst | legacy>]: Use this option to specify
the tag naming convention: Values: builtin, legacy, vcst.

report_read_violations
271
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

Use this command to get reports of the design read, upf parsing, sdc read,
and Tcl command violations which were identified. By default, it writes a
summary of the messages. The -verbose option is required to write the
details of each message. By default, only the first 100 messages of each
tag are printed. To print more, use the -limit flag.

Syntax

report_read_violations

[-no_summary]

[-list]

[-verbose]

[-limit <count>]

[-include_waived]

[-only_waived]

[-all_tags]

[-tag <list of tag names>]

[-waived <list of waiver names>]

[-id <list of message identifiers>]

[-family <list of family name>]

[-severity <list of message severities>]

[-filter <expression>]

[-regexp]

[-nocase]

[-file <file name>]

[-append]

Arguments

 [-no_summary]: Suppresses the two summary tables which list the
number of violations in each family and stage.
272
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-list]: In addition to the summary tables, print a one sentence
description of each violation with the design data fields filled in. Useful
for generating a file with one line per violation.

 [-verbose]: In addition to the summary tables, print a number of lines
of detail about each violation. This verbose format includes the
description, basic design detail fields for the violation, and also detailed
debugging fields for the violation. Useful for getting all details of the
violation.

 [-limit <count>]: When used with list or verbose mode, print only
this number of violations for each tag. Useful to limit the file size for
designs with a large violation count.

 [-include_waived]: By default, any violation which is waived is not
included in the report. Use this switch to include the waived messages in
the report.

 [-only_waived]: By default, any violation which is waived is not
included in the report. Use this switch to invert the display so that only
waived messages are included in the report.

 [-all_tags]: Included all the tags checked for in the report.

 [-tag <list of tag names>]: To focus on only certain tags, use this
switch with a list of tag names. Only violations whose tag is on this list
will be displayed

 [-waived <list of waiver names>]: To focus on only certain
waivers, use this switch with a list of waiver names. Only violations
which are waived by a waiver on this list will be displayed.

 [-id <list of message identifiers>]: To focus on only one
message or a short list of messages, use this switch with a list of
message identifiers such as SDC:123, UPF:23. Only these violations will
be displayed.

 [-family <list of family name>]: To focus on only messages from
certain families, use this switch with a list of families. The valid families
are: all, design, sdc, upf.

 [-severity <list of message severities>]: To focus on only
messages with a certain severity, use this switch with a list of severities.
The valid severities are: error, info, warning.

 [-filter <expression>]: This switch allows you to specify complex
criteria based on pattern matching. Only violations matching the filter
273
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
expression will be shown. An expression may contain several terms
separated with a double ampersand. Each term has a field name, a
comparison operator, and a target string. The field name may be any
field name shown in the verbose report; for a field inside a record, use a
colon to separate the record path components. The comparison operator
is any of the standard operators such as == != =~. See the examples
section for several examples.

 [-regexp]: Use this switch to indicate that the filter expression type is
a regular expression. The default is glob-style.

 [-nocase]: Use this switch to indicate that the filter expression
ignoring the case when matching string values.

 [-file <file name>]: Write the results to the designated file.

 [-append]: Append results to the designated file.

report_session_data

Description

This command displays session-specific information for the current and
restored runtime database.Upon completion, this command returns 1 for
success, 0 otherwise.

Syntax

report_session_data

[-commands]

Arguments

 [-commands]: Use this option to display the log file generated during
the saved session.

report_tag

Description

This command prints a report about a set of tags. For example, to get a
274
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
report of all the isolation tags and information about them, use:

vc_static_shell> report_tag -family isolation

The command has several arguments to control the set of tags which are
printed, and also allows control over which attributes are printed. If
requested, the report can be printed in "comma separated value" format
for easy import into a spreadsheet.

Syntax

report_tag

[-app <app>]

[-severity <severity>]

[-tag <pattern>]

[-stage <pattern>]

[-family <pattern>]

[-enabled]

[-disabled]

[-builtin]

[-user]

[-csv]

[-order <attributes>]

Arguments

 [-app <app>]: Use this option to specify application name.

 [-severity <severity>]: Use this option to print only tags with this
severity.

 [-tag <pattern>]: Use this option to print only tags with name
matching pattern.

 [-stage <pattern>]: Use this option to print only tags with stage
matching pattern.

 [-family <pattern>]: Use this option to print only tags with family
matching pattern.

 [-enabled]: Use this option to print only enabled tags.
275
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-disabled]: Use this option to print only disabled tags.

 [-builtin]: Use this option to print only builtin tags.

 [-user]: Use this option to print only user defined tags.

 [-csv]: Use this option to print in "comma separated value" format.

 [-order <attributes>]: Use this option to specify Tcl list of attributes
in desired print order.

Examples

Report all the tags, and all the information about them to file tag.txt
report_tag > tag.txt

Report all the disabled, built-in tags
report_tag -disabled -builtin

Report only the severity attribute, followed by description, and use comma
separated value format

report_tag -csv -order {description severity}

reset_mode

Description

This command resets active modes of dbcell instances to default. This is
the default behavior when no modes are specified with the set_mode
command.

Syntax

reset_mode

-instance_objects

Arguments

 -instance_objects: Use this option to specify a list of dbcell instances.

set_case_analysis
276
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
Description

This command is used to specify a logic value (treat it as temporary
constant) on pins or ports. This command performs analysis assuming this
constant value at this port/pin. You can use case analysis settings to place
the design into a given operating mode without altering the netlist. Then
these values are propegated based on the requirements of applications.

You can use remove_case_analysis to remove added case values.

Syntax

set_case_analysis

-value

-object_list

Arguments

 -value: Use this option to specify a constant value to be set. Either 1 or
0.

 -object_list: Use this option to specify a list of port/pin/net objects.

Examples

The following command sets the IN1 port to constant logic 0.
set_case_analysis 0 IN1

waive_read

Description

Provides ability to waive based on Tags, Family, Severity, Filter rules using
debug fields, Wildcards and expressions and add comment for waivers as
well.

NOTE: Use waive_read command before report_read_violations command.

Syntax

waive_read
277
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
[-add <name>]

[-append <name>]

[-comment <comment>]

[-delete <name(s)>]

[-delete_all]

[-tcl]

[-force]

[-tag <tag>]

[-id <tag>]

[-stage <stage>]

[-family <family>]

[-severity <list>]

[-filter <expression>]

[-regexp]

[-nocase]

Arguments

 [-add <name>]: Add waiver

 [-append <name>]: Append additional filter parameters to an existing
waiver

 [-comment <comment>]: Waiver Comment.

 [-delete <name(s)>]: Delete waiver

 [-delete_all]: Delete all waivers

 [-tcl]: Display the waiver list in TCL command format

 [-force]: Create a container for waive_read append operations.

 [-tag <tag>]: Waive violations based on tag

 [-id <tag>]: Waive violations based on IDs

 [-stage <stage>]: Waive violations based on stage: Values: design,
pg, upf
278
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Common Commands

Appendix A - Supported Commands
 [-family <family>]: Waive violations based on family: Values: all,
sdc, upf, design

 [-severity <list>]: Waive violations based on severity: Values: all,
error, info, warning

 [-filter <expression>]: Waive violations based on expression

 [-regexp]: Indicates filter expression type to be regular expression
(default glob-style).

 [-nocase]: Filter expressions ignore case when matching string value.

Examples

The following example shows some usage of waive_read command

vc_static_shell> waive_read -family upf -add waiver1 -comment
{ask hemang} -tag SM*
279
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Command Sanity Checks

Appendix A - Supported Commands
Command Sanity Checks
This section describes the VC SpyGlass sanity checks on Lint Tcl
commands.

VC SpyGlass Lint provides the following tags that report sanity errors in the
Tcl commands. Use the report_read_violations command to report the
violations of these tags.

Errors Generated by Tcl Commands

VC SpyGlass reports error generated by Tcl commands in the session.log
file as well as the GUI.

For example, if you have specified a pattern in the get_cells command
and VC SpyGlass cannot find the corresponding cell in the design, it reports
the following DB_QUERY_PATTERN_NO_MATCH violation in the session log
as well as the GUI:

get_cells Cell*

case1.tcl:40: [Warning] DB_QUERY_PATTERN_NO_MATCH:
No matching cell to the given pattern 'Cell*'
280
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Command Sanity Checks

Appendix A - Supported Commands
TCL_COMMAND_INVALID

Severity

Error

Short Help

Reports invalid values of Tcl commands

Description

Reports invalid values specified with a Tcl command argument. In this case,
VC SpyGlass CDC ignores the specified command. The tag reports the
following message:

Value <OptionValue> specified for option <OptionName> of
<CommandName> command is invalid. Command is ignored. [Reason:
<Reason>.].

Example

Consider the following specification:

set_constraints_scope -module M1

In this case, the TCL_COMMAND_INVALID reports a violation if the M1
module does not exist in the design.

What Next

Review the invalid value of the argument and specify the correct value.
281
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Command Sanity Checks

Appendix A - Supported Commands
TCL_PREREQUISITE_COMMAND_NOT_FOUND

Severity

Error

Short Help

Reports if pre-requisite commands do not exist

Description

Reports a violation if any mandatory pre-requisite command for the
specified command does not exist. In this case, VC SpyGlass CDC ignores
the specified command. The tag reports the following message:

Prerequisite command(s) <CommandName> does not exist for
command <CommandName>. Command is ignored.

Example

Consider the following specification:

define_attribute -name ATTR1

In this case, the set_constraints_scope command, which is a pre-
requisite for the define_attribute command, is not specified. Therefore,
the TCL_PREREQUISITE_COMMAND_NOT_FOUND tag reports a violation
because the pre-requisite command is not specified.

What Next

Review the violation and ensure that the pre-requisite commands are
specified.
282
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Command Sanity Checks

Appendix A - Supported Commands
TCL_COMMAND_OPTION_VALUE_INVALID

Severity

Warning

Short Help

Reports invalid values specified with an argument of a Tcl command

Description

This tag reports a violation if a value specified with an argument of a Tcl
command is invalid. In this case, VC SpyGlass considers only the other
valid values and ignores the invalid value.

The tag reports the following message:

Value <s> specified for option <s> of command <s> is invalid.
Option is ignored. [Reason: <Reason>].

Example

Consider the following specification:

apply_attribute ATTR1 -objects { OUT_PORT_1 IN_PORT_1} -start

In this case, OUT_PORT_1 is an invalid value of the -objects argument if
the -start argument is specified in the apply_attribute command. In
this case, the TCL_COMMAND_OPTION_VALUE_INVALID tag reports a
warning and considers only the IN_PORT_1 value and ignores the
OUT_PORT_1 value.

What Next

Review the invalid value of the argument and specify the correct value.
283
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Command Sanity Checks

Appendix A - Supported Commands
TCL_OBJECT_NOT_FOUND

Severity

Error

Short Help

Reports invalid objects specified in Tcl commands

Description

Reports invalid objects specified with a Tcl command argument. In this
case, VC SpyGlass CDC ignores the specified command. The tag reports
the following message:

No matching object found for <object-name> in <OptionName>
option of <CommandName> command

Example

Consider the following specification:

configure_unconstrained_ports -module M1

In this case, the TCL_OBJECT_NOT_FOUND reports a violation if the M1
module does not exist in the design.

What Next

Review the invalid value of the argument and specify the correct value.
284
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Command Sanity Checks

Appendix A - Supported Commands
TCL_COMMAND_CONFLICTING

Severity

Error

Short Help

Reports conflicting Tcl commands

Description

Reports a violation if conflicting commands are specified. In this case, VC
SpyGlass CDC ignores the command that is specified later. The tag reports
the following message:

Command <CommandName2> conflicts with command <CommandName1>.
Command is ignored

Example

Consider the following specifications:

set_constraints_scope -module M1

define_attribute -name ATTR1

set_connectivity_attribute ATTR1 -related_ports {P1}

set_clock_attribute ATTR1 -clock_objects {C1}

end_constraints_scope

In this case, the TCL_COMMAND_CONFLICTING tag reports a violation
because both the set_connectivity_attribute and the
set_clock_attribute commands are specified with the same attribute
name and in the same scope. Therefore, the set_clock_attribute
command is ignored.

What Next

Review and correct the conflicting commands.
285
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Command Sanity Checks

Appendix A - Supported Commands
286
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Migrating Waivers
This section describes migrating waivers in VC SpyGlass Lint and includes
the following sections:
 Working with Waivers

 Migrating Waivers

 Waiving Using GUI

 Reporting Waivers

 Waiver-related Commands and Application Variables
287
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Working with Waivers

Migrating Waivers
Working with Waivers
You can migrate waivers from SpyGlass to the SGUM and VCUM in VC
SpyGlass.

SpyGlass to SGUM Migration Flow

The following describes the SpyGlass to SGUM migration flow.
288
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Working with Waivers

Migrating Waivers
Keep the following guidelines in mind while migrating SpyGlass waivers to
SGUM:
 If you are sg_shell user, you need to create a spyglass project file.

 Use the following format to specify waiver files to SpyGlass.

read_file -type awl <awl file name>

read_file -type waiver <swl file name>

read_file -type sgdc <sgdc file name>

The following shows a sample test.tcl file.

NOTE: Do not use source command in project file. The source waiver.tcl command results
in an error.

 Create a tcl file by using the following command to generate SGUM
setup for the SpyGlass project file & goal.

------------------------- test.tcl --

sg_read_project -project <project_file_name> -goal <goal_name>
-app lint -tclfile <SGUM_tcl_file_name> -run -no_rule_gen -
rename_path -tag_path -post_process_report

--

NOTE: If you do not use the -run command, you will not be able to generate full setup for

SGUM run. Without the -run option, waiver tcl will be generated but it is not
complete one. Waivers with -msg (message based waivers) will not be translated
into tcl file because it is needed to run the design one time. Therefore, you need to
perform a full SGUM run to generate the complete waiver tcl file. Once you
generated the complete waiver file, you can delete or comment out the
sg_read_waivers line & use for next time.

If you ave specified a waiver file in the .prj (read_file -type awl/
waiver), the awl or swl command will automatically convert to a tcl file by
289
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Working with Waivers

Migrating Waivers
the sg_read_waiver command which you can see in the standard output:

sg_read_waiver -append -file top.awl -type awl -output ./
top.awl.tcl

 If you have hierarchical waivers (waive -import), these waivers are
converted to migrate_waivers command that you can see in the output
file of waiver tcl as shown in the following sample.

In this case, the ./mid.awl.tcl file is the block-level waiver file and the
./mid.awl.tcl_sub.tcl file is the top-level waiver file.
290
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Working with Waivers

Migrating Waivers
 If you have any waivers with waive -du, it will convert to waive_lint
-filter {module =~ } as shown in the following sample file:

 If you have any waivers with waive -ip, it will convert to waive_lint
-ip, as shown in the following sample file:

 Waiver with -regexp (Partial static waivers)

 Pragma-based waivers are generated and applied automatically by tool.
The enable_pragma_based_waiver application variable is set to enabled
291
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Working with Waivers

Migrating Waivers
by default. The waiver file is generated in the vcst_rtdb/reports/
pragma2waiver.tcl directory.

SpyGlass to VCUM Migration Flow

The following describes the SpyGlass to VCUM migration flow.

You need to first run SGUM and generate the setup and invoke the setup
292
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Working with Waivers

Migrating Waivers
into VC SpyGlass.

After the SGUM run completes, the sgum.tcl file is created as shown in the
following figure.

Next, you can invoke sgum.tcl in vc_static_shell.
293
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Migrating Waivers

Migrating Waivers
Migrating Waivers
In VC SpyGlass, the migrate_waivers Tcl command enables you to
migrate block-level waivers to the top level.

The command uses the following syntax.

migrate_waivers <block-level-waiver-file> <top-level-waiver
file-name-to-be-created> -module <mod-name>/-instance <inst-
name>

-module <module_name> Specify the block module.

-instance <instance_name> Specify the instance of module.

For example, consider the following commands:

vc_static_shell> migrate_waivers block_waive.tcl top_waive.tcl
-instance ublock

source top_waive.tcl

vc_static_shell> migrate_waivers block_waive.tcl top_waive.tcl
-module block

source top_waive.tcl

If you need to migrate waivers of multiple blocks to the top level, specify
separate migrate_waiver command for each block as shown in the
following sample top-level waiver file.

migrate_waiver block1.tcl top1.tcl -module block1

migrate_waiver block2.tcl top2.tcl -module block2

migrate_waiver block3.tcl top3.tcl -module block3

source top1.tcl

source top2.tcl

source top3.tcl

Therefore, if there are N number of blocks, an equivalent number of top-
level waiver files need to be generated.
294
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Migrating Waivers

Migrating Waivers
Applying Waivers
You can apply the waivers by using any of the following two methods:

Method #1
By using the manage_waiver_file command. The command uses the
following syntax:

manage_waiver_file <file_name>

-add

-remove

Arguments

 <file_name>: Use this option to specify the waiver file name.

 -add: Use this option to add waiver file.

 -remove: Use this option to remove waiver file.

Examples

Specify the following commands in the Tcl script to add three files and
define the new1.tcl file as default waiver file.

manage_waiver_file -add waiver2.tcl

manage_waiver_file -add waiver4.tcl

manage_waiver_file -add new1.tcl

set_app_var default_waiver_file new1.tcl

You can also specify multiple files in a single command as follows:

manage_waiver_file -add { waiver1.tcl waiver2.tcl }

manage_waiver_file -remove { waiver1.tcl waiver2.tcl }

Method #2
You can source the waiver.tcl file as follows:

Source waiver.tcl
295
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Migrating Waivers

Migrating Waivers
Migrating Pragma Waivers
VC SpyGlass enables you to specify waivers in the RTL file itself by using
inline waiver or pragma waivers.

Pragma waivers can be of the following types:
 Line pragma waivers: The scope of these waivers is restricted to the line

in which the pragma waiver is specified.
Syntax: // spyglass disable <Rule Name>

The following figure shows an line pragma waiver.

 Block pragma waivers: The scope of these waivers is restricted to the
block of RTL surrounded by the pragma waivers.
Syntax:

Line:X :: // spyglass disble_block <Rule Name>

Line:Y :: // spyglass enable_block <Rule Name>
296
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Migrating Waivers

Migrating Waivers
Where Y > X

The following figure shows an line pragma waiver.

The scope of the pragma waiver starts from line X and ends at line Y.
Any violation of rule <rule-name> from line X till line Y are waived off.
In case // spyglass enable_block <Rule Name> is not specified, the
scope to the waiver is then from line X till end of file.
Use the enable_pragma_based_waiver application variable to manage
the functioning of the pragma waiver consumption. The app var can
have the following values:
 enabled: Pragma-based waivers will be generated and applied

automatically by tool.
 disabled: Pragma-based waivers will not be generated by the tool.

 create_invalid_rule_pragmas: Pragma-based waivers for invalid
rules are created and generated in a commented format by tool.
297
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Migrating Waivers

Migrating Waivers
The pragma waivers created by the tool are available in the vcst_rtdb/
reports/pragma2waiver.tcl file.
298
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
Waiving Using GUI
This section describes the following by using the VC SpyGlass GUI:

Managing Waivers

Creating a Waiver

Managing Waivers

VC SpyGlass GUI provides the following waiver management options in the
Waiver sub-menu item of the right-click menu on the activity tree as
shown in the following figure.

The following options are available:
299
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
 Add New Waiver File: Use this menu item to add a waiver file. This
command opens the following dialog where you can add a waiver file as
well as specify the default waiver file:

Check the Set this as Default Waiver File option to make the
newly added waiver file as the default waiver file.
300
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
 Remove Waiver File: This menu item opens the following dialog and is
used to remove a waiver file. Deselect the check box for the waiver file
name and then click the Remove button.

 Select Default Waiver File: By default, the waivers are added to the
default waiver file <Working_directory>/vcst_rtdb/reports/
waiver.tcl. You can change the default waiver file by using this menu
item.
As shown in the following figure, the default waiver file mentioned above
is displayed with a check sign denoting that the file is set as the default
waiver file.

301
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
When more waiver files are added, the files are also listed to be selected
as the default waiver file as required as shown in below capture.
You can use the Add waiver file menu item to add a waiver file. When
you use this menu item to add a waiver file, the tool makes this added
waiver file as the default waiver file. The same does not apply to a
waiver file created by using the Add New Waiver file menu item in the
parent sub menu.

Creating a Waiver

You can create waivers to:
 Waive all Messages of a Tag

 Waive Messages Selectively

Waive all Messages of a Tag

You can waive all violations of a tag by using either of the following menu
items:
 The Create a Waiver for this Tag menu item in the sub menu of the

Waiver menu of the activity tree right-click menu as shown in the
302
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
following figure. This menu item is available only when a node for a tag
is selected and right-click on it.

 The Waive Selected Tag menu item from the information view as
shown in the following figure.
303
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
For both the above menu items, the following waiver dialog is launched to
waive all violations of the tag.

The dialog box provides the following options:
 Name: Name of the waiver.

 Comments: Any comments to be added to the waiver.

 File: The default waiver file is displayed in this drop down list. To change
the waiver file, select a different file from the drop down list.
A new waiver file also can be added using the Add waiver file option
from the drop down list.

 ADD Item: Use this button to create the waiver.
304
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
Waive Messages Selectively

You can waive selective violations of a tag by using either of the following
menu items:
 The Waive Selected Violation(s) and Create a Waiver menu items

from the data view as shown in the following figure:

305
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
 The Waive Selected Violation(s) and the Create a Waiver menu
items from the information view.

You can click the Waive Selected Violation(s) menu item and the
selected violation is waived to the default waiver file. This method can
be considered as a quick method of waiving.
If you click the Create a Waiver menu item, the following dialog box is
displayed to waive the violation.
306
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
This dialog provides the following options:
 Name: Name of the waiver.

 Comments: Any comments to be added to the waiver.

 File: The default waiver file is displayed in this list. To change the
waiver file, select a different file from the drop down list.
A new waiver file also can be added using the Add waiver file
option from the drop down list. the following dialog box is displayed:
307
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiving Using GUI

Migrating Waivers
 Fields table: By default, only the signature of violation is selected.
You can select the check box of a field to enable the required fields
to consider for waiving.

 OP (Operator of a field): Double-click on a cell under the OP
column to see the drop down list icon. Required operator can be
selected from the drop down list.

 ADD Item: Use this button to create the waiver
308
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Reporting Waivers

Migrating Waivers
Reporting Waivers
VC SpyGlass generates the following reports:
 merge_waiver_migration.rpt: Use the merge_waiver_migration

report to check the Waiver Migration Summary. This report can be used
to check if the waiver commands have been migrated successfully or
not. This report is generated in the vcst_rtdb/reports/ directory.
If some waivers are migrated successfully, it is included in the List of
waive command which have been migrated successfully section.
Any waiver that has an issue in migration is included in List of waive
command which have not been migrated successfully section as
shown in the following figure.

 Waiver Report: In SGUM, SpyGlass-like waiver report (waiver.rpt) is
generated. You can use this report to check the waived violations.

 pragma2waiver.tcl: Pragma-based waivers are generated and applied
automatically by tool. The waiver file is available at vcst_rtdb/
reports/pragma2waiver.tcl.
309
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Debugging Aids

Migrating Waivers
Debugging Aids
VC SpyGlass provides the following aids that you can use to debug waiver
related issues:
 vcst_rtdb/reports/merge_waiver_migration.rpt: Use the

merge_waiver_migration report to check the Waiver Migration
Summary. This report can be used to check if the waiver commands
have been migrated successfully or not.
If some waivers are migrated successfully, it is included in the List of
waive command which have been migrated successfully section.
Any waiver that has an issue in migration is included in List of waive
command which have not been migrated successfully section.

 Waiver Report: In SGUM, SpyGlass-like waiver report (waiver.rpt) is
generated. You can use this report to check the waived violations.

 TCL Commands: VC SpyGlas provides the following Tcl commands that
can be used to debug waiver-related issues:
 waive_lint: The waive_lint command can be used to obtain the

waiver summary.
 waive_lint -tcl: The waive_lint -tcl command can be used to get

list of all the applied waiver commands.
 waive_lint -not_applied: The waive_lint -not_applied

command can be used to obtain the waiver summary of the waiver
commands that do not waive any violations.

 waive_lint -tcl -not_applied: The waive_lint -tcl -
not_applied can be used to get list of all the applied waiver
commands that do not waive any violations.
310
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiver-related Commands and Application Variables

Migrating Waivers
Waiver-related Commands and Application Variables
VC SpyGlass provides the following waiver-relates commands and
application variables:
 Application Variables

 Commands

Application Variables

The following application variables are available:
 configure_waiver_file_action: Use this application variable to delete a

waiver command or move a waiver command from one file to another
file. The application variable can take three values; no_change
|comment |delete. By default, the application variable is set to
no_change. Refer the man page for more details.

 enable_waiver_opt: This application variable is enabled by default.
Disabling this application variable impacts the run time.

 enable_pragma_based_waiver: Use this application variable to decide if
pragma-based waivers are generated or not. This application variable
can take any one of three values; disabled| enabled
|create_invalid_rule_pragmas. By default, this application variable is
set to enabled. Refer the man page for more details.

 ignore_module_instances_outside_ip: Use this application variable to
perform the SpyGlass default waive -ip behavior in VC SpyGlass. In this
case, even if one instance of a module is inside an IP, the violation is
waived. Refer the man page for more details.

 default_waiver_file: Use this application variable to specify the default
waiver file where waivers are generated automatically.

Commands

The following waiver-related commands are available:
 Waiver Configuration Commands

 Waiver TCL Commands
311
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiver-related Commands and Application Variables

Migrating Waivers
Waiver Configuration Commands

The following waiver configuration commands are available:
 configure_waiver_filter_field: Use this command to configure filter fields

of a tag. You can customize filter fields for certain tags in waiver
window. If this filter command is not set, all fields are enabled in the
waiver window for each tag. Refer the man page for more details.

 configure_waiver: Use this command to configure the following for a
waiver:
 Disable the waiver with the specified name.

 Disable waiver field processing.

 Disable multi-threading in waiver.

 Waiver will not be applied on given tags/severity.
NOTE: The configure_waiver_filter_field command does not support the above configu-

rations.

Waiver TCL Commands

The following Tcl commands are available:
 waive_lint: Use this command to waive lint violations. Refer the man

page for more details.
 manage_waiver_file: Use this command to add/remove a waiver file

from the tool. Refer the man page for more details.
 migrate_waivers: Use this command to migrate block level waiver into

top level. Refer the man page for more details.
 sg_read_waiver: Use this command to convert SpyGlass waivers into VC

SpyGlass waivers. Refer the man page for more details.
 waive_read: Use this command to waive design read violations including

built-in messages. Refer the man page for more details.
 get_violation_waiver: Use this command to get waiver name which is

related to violation ID.
 get_waivers: Use this command to query all the waivers that match the

specified pattern.
312
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiver-related Commands and Application Variables

Migrating Waivers
 list_all_waiver_files: Use this command to display a complete list of
waiver files which are associated with such waivers.

 set_file_for_waiver: Use this command to set waiver file to generate
waiver command.

 get_waiver_attribute: Use this command to get different attribute
values, such as severity, tag etc of each waiver command.

 set_violation_state: Use this command to set state of violation based on
Tags, Severity, Filter rules using debug fields, Wild cards and
expressions, and add comments.

313
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

Waiver-related Commands and Application Variables

Migrating Waivers
314
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][CDC Rules Reference Guide]&body=Type your comments here for Chapter 'Clock Domain Crossing Synchronization Schemes'

	VC SpyGlass Lint® User Guide
	Introduction
	About this Guide
	Contents of this Manual

	Getting Started
	Verification Compiler (VC) Platform
	VC Static and Formal Solution
	VC SpyGlass Lint
	Licensing Requirements
	Key Features of VC SpyGlass Lint

	VC SpyGlass Lint Methodology Flow

	Reading the Design
	Setting Up Design Environment
	VC SpyGlass Fundamentals for Lint
	Support for DesignWare (DW) Components
	Reusing the Pre-compiled DW Components
	Selecting DW Components for Elaboration
	Language Support
	Running the VC Static Shell
	VC Static Shell Command Line Options

	Changing the VC Static Session Name and Location
	Sample Design Setup
	Saving and Restoring Sessions Using save_session and restore_session
	Updating Application Variable Settings

	Reading the Liberty Files
	The search_path and link_library Variable

	Using Black Boxes in VC SpyGlass Lint
	Reading the Design
	Application Variables that Impact Reading a Design

	Performing VC SpyGlass Lint Checks
	Analyzing Reports

	Working with Methodologies and Goals
	Terminology
	Development Phases and Methodologies:
	Development Levels.
	Block level Development
	SoC level Integration and Implementation

	Development phases
	Initial RTL Development
	Initial RTL Development on block level

	RTL Handoff
	RTL Handoff with block level
	RTL Handoff with SoC level

	Netlist Handoff
	Netlist Handoff on block level
	Netlist Handoff on SoC level

	Layout Handoff
	Understanding GuideWare Goals
	Setting Up Methodology/Goals
	Running Custom Goals

	Using VC SpyGlass Lint
	Invoking VC SpyGlass Lint in Tcl Shell Mode
	Sourcing a Tcl Script in VC SpyGlass Lint
	Building a Design File
	Building a Design Using Analyze and Elaborate
	Building a Design With read_file

	Using Built-in Tcl Commands
	Running Lint Checks
	Reporting Violations
	Ignoring Encrypted Modules

	Reporting Same or Similar Tags
	Using Multi-Cores
	Module-based Reporting
	Using Waivers in VC SpyGlass Lint
	Native VC SpyGlass Lint Waivers

	Using Tags in VC SpyGlass Lint
	About VC SpyGlass Lint tags
	Creating the Configuration File
	Configuring Tag Parameters
	Inferring Hanging Clocks
	Support for STARC and STARC02 Tag Mapping

	VC SpyGlass Functional Lint
	Invoking VC SpyGlass Functional Lint

	Analyzing VC SpyGlass Lint Results
	Understanding VC SpyGlass Lint Violation Database
	Configuring Message Tags

	Debugging Lint Violations Using Tcl
	Examples of Violation Fields
	Filtering Messages
	Operations on Tag Definitions

	Reports Generated by VC SpyGlass Lint

	Appendix A - Supported Commands
	Application Variables
	enable_lint
	enable_clk_rst_infer_potential
	infer_unique_bbox
	language_check_hierarchy_format
	lang_check_report_input_path
	lint_debug
	lint_dump_hanging_clocks
	lint_enable_coverage_flow
	lint_enable_pgpins
	lint_enable_smart_tag_execution
	lint_formal_disable_stage_name
	lint_functional_mode
	lint_ignore_syncreset_for_asyncflop
	lint_ignore_redundant_field_waiver
	lint_load_goal_results
	lint_memory_threshold
	lint_no_of_formal_processes
	lint_no_of_lang_processes
	lint_report_all_paths
	lint_report_same_similar_rules
	lint_report_whole_path
	lint_spyglass_waiver_report
	lint_traverse_depth
	quick_lint_mode
	elab_summary_report_max_inst
	enable_generate_label_naming
	ignore_encrypted_module_violations
	enable_gw_optional_tag
	report_all_hdl_errors

	LINT Commands
	check_lint
	report_lint
	report_violations
	waive_lint
	view_fl_viol_summary
	get_flp_summary

	LINT Configure Commands
	configure_lint_tag
	configure_lint_tag_parameter
	configure_lint_functional_setup
	configure_lint_methodology
	configure_lint_rca
	configure_lint_setup

	Database Commands
	all_clock_gates
	all_clocks
	all_connected
	all_designs
	all_fanin
	all_fanout
	all_inputs
	all_instances
	all_outputs
	change_link
	configure_mem_macro_inference
	connect_net
	create_bus
	create_cell
	create_net
	create_port
	define_user_attribute
	disconnect_net
	find
	get_cells
	get_designs
	get_lib_cells
	get_lib_pins
	get_lib_timing_arcs
	get_libs
	get_link
	get_nets
	get_object_name
	get_pins
	get_ports
	get_timing_arcs
	insert_buffer
	list_designs
	list_instance
	list_libs
	remove_attribute
	remove_buffer
	remove_bus
	remove_cell
	remove_net
	remove_port
	report_cell
	report_link
	report_net
	report_port
	set_always_on_cell
	set_attribute
	set_get_command_message_limit
	set_isolation_cell
	set_level_shifter_cell
	set_pg_pin_model
	set_pin_model
	set_power_switch_cell
	set_retention_cell
	set_top_module

	Common Commands
	add_tag_field
	analyze
	change_names
	check_hdl_lib
	checkpoint_session
	configure_module_synthesis
	configure_libcell_uniquification
	configure_tcl_command
	configure_unobservable_logic_identification
	configure_waiver_filter_field
	create_clock
	create_generated_clock
	create_interface_wrapper
	create_reset
	create_static
	define_design_lib
	define_name_rules
	diff_database
	disable_tag_field
	elaborate
	generate_waiver_commands
	get_blackbox
	get_clock_relationship
	get_constant_sources
	get_exception
	get_field_subfield
	get_glassbox
	get_license
	get_no_msg_reporting_tags
	get_pi_drive_clock
	get_readmsg_attribute
	get_readmsg_field
	get_readmsg_ids
	get_readmsg_names
	get_readmsg_names
	get_supported_tags
	get_violation_waiver
	get_waiver_attribute
	get_waivers
	index_database
	infer_clock_roots
	infer_reset_roots
	infer_setup
	link
	link_design
	list_all_waiver_files
	llib
	man
	merge_database
	read_file
	read_sdc
	remove_case_analysis
	remove_clock
	remove_clock_groups
	remove_generated_clocks
	rename_tag
	report_mode
	report_names
	report_properties
	report_read
	report_read_violations
	report_session_data
	report_tag
	reset_mode
	set_case_analysis
	waive_read

	Command Sanity Checks
	Errors Generated by Tcl Commands
	TCL_COMMAND_INVALID
	TCL_PREREQUISITE_COMMAND_NOT_FOUND
	TCL_COMMAND_OPTION_VALUE_INVALID
	TCL_OBJECT_NOT_FOUND
	TCL_COMMAND_CONFLICTING

	Migrating Waivers
	Working with Waivers
	SpyGlass to SGUM Migration Flow
	SpyGlass to VCUM Migration Flow

	Migrating Waivers
	Applying Waivers
	Migrating Pragma Waivers

	Waiving Using GUI
	Managing Waivers
	Creating a Waiver
	Waive all Messages of a Tag
	Waive Messages Selectively

	Reporting Waivers
	Debugging Aids
	Waiver-related Commands and Application Variables
	Application Variables
	Commands
	Waiver Configuration Commands
	Waiver TCL Commands

