Al-driven Memory Exploration in RTL Architect
Efficient Physical-aware PPA Enhancement

Shu Rong Lee
MediaTek

Agenda @

Motivation

Reinforcement Learning Memory exploration Methodology (RLMM)
RLMM Experimental Results

Summary

SNUG TAIWAN 2024 2

Motivation — Physical Awareness 6

Considering physical implementation at the RTL design stage

« RTL designer decides the type of memories and creates
a behavioral model for simulation and verification

— Insufficient for synthesis Memory config 1

GRC overflow: 14.83%
Total power: 27.4 mW

« Memory configuration has a big impact on PPA and
needs to be physically-aware

— Existing solutions consider only each individual memory, not
physical implementation with all memory wrappers

— The best configuration for each memory wrapper based on weight
does not often correspond to the best for physical implementation

— The number of combinations of memory configurations for physical
implementation is huge — it is impossible to explore all of them
physically

Memory config 2

GRC overflow: 17.35%
Total power: 26.7 mW

SNUG TAIWAN 2024 3

Motivation — Feedforward Guidance

Reduce project schedule with an automated flow before synthesis

« Manual selection needs iterative work to check physical PPA
« Leverage RTL Architect’s quick runtime to do early design space exploration

From weeks to months selection for better PPA

AS Is XL HELTIEL FC synthesis MELLEL FC synthesis MEGIVEL FC synthesis
e e coding mem selec mem selec mem selec
N J
N > J ¥ J >
Iteration 1 Iteration 2 Iteration 3

ﬂl-driven Memo

<

Explorh Smart RLMM selection, physical exploration within days (1.75M design ~ 32 hrs)

4

RTLA RTLA RTLA
R LM M RTL RTLA RTLA RTLA SRR FC synthesis MEHEES AN Sl
———— | coding / candidate y consideration to better PPA

QTLA\> RTLAl/ RTLT>/ the best memory candidate

Exploration Runtime ~ 3 * RTLA runtime

OINUU AN cucd 4

RTL Architect Memory Exploration Methodology = °

Al-based Reinforcement Learning

Typical Manual SNPS Explore

* Challenges

— The number of combinations of memory configurations for physical
Implementation is huge — it is impossible to explore all of them physically
generate required collateral
 Reinforcement Learning (RL) reduces the iterations to the

first best result

' Build NDM Library
— Reinforcement Learning (RL) is the science of decision-making -- it is about
learning the optimal behavior in an environment to obtain the maximum reward instantiate the memories, add
decoder / mux Iogic as needed.

AGENT

 Key Features / Advantage /. -
— Native Synopsys Memory Compiler support
— NDM support to feedforward to Fusion Compiler J Mo -/

SYNOPSys

\

ypical flow RTL
eeds iterations

Run SyntheS|s &
implementation

— Powerful filtering capabilities and Al memory selection controls Analyze QOR

— Memory splitting, with control logic inserted

SNUG TAIWAN 2024 5

RLMM Key Steps

=z Q)

ldentify and Generate Select and Instantiate Explore and Analyze

RTL is read with behavioral Top memory candidate solutions are Exploration Runs Launched in Parallel
memory wrappers and the user selected (with user control over the _
identifies the required memory number of runs) RTL . R
instances for exploration _ _ Architect

Memories are automatically MSSSSG Memory Solution 2 +
Memories are selected instantiated, with required control logic Memory Metric Extraction
automatically, with support for (Where needed) Exploration .
user-weighting for Area / Launcher NS Memory Solution n +

Metric Extraction

Performance / Power trade-offs

Runs can be analyzed / compared

For 39-party Memory Synopsys Memory

Compiler flows, the Compiler will
user needs to provide automatically run and
memory NDM as input create the NDM

Memory Output
Instances Mux

Decoder

SNUG TAIWAN 2024 6

RLMM Static and Dynamic Selection P mcoircic g

Static: choose top n memories from library
\ characterization based on weighting

‘ RTL design | /
Create lib and design \

4

Create mode/corner 1

characterize_memory Collect data from all memories in reference libs

Derive module interface and instance sections

initialize_memory_configuration : :
= = of memory configuration

: Find top n memories for each wrapper, update
filter_memory memory config with the result of filtered
memories

Static memory
configuration

write_memory_configuration Auto configuration file generation

o Output characterized configuration data
Memory config file

_ Memory configuration file
Dynamic memory

configuration Dynamic: perform reinforcement-learning
physically-aware selection

Instantiate memories Reinforcement learning _ _ _
with selected memory based memory Apply reinforcement learning (RL) to find the

configuration : : best memory configuration
configuration

¥

SNUG TAIWAN 2024 7

RLMM Dynamic Workflow

» Based on config file, hook up memory connections and generate the corresponding control logic
« With reinforcement learning, the exploration search space is effectively reduced

Memory configuration file Reinforcement Learning Memory candidates for the best physical PPA

generated automatically memory configuration Result #5:
from StatiC SeleCtion {u mdvlpsys-mdvlp dvfs top-u sram dm@ TGELSCRIJMANSB2KX32B256M8SW1A 1x1}

{u mdvlpsys-mdvlp dvfs top-u sram pml TGEFSCRIJMANSB4KX26B128M8SWOA 1x1}

{u mdvlpsys-mdvlp dvfs top-u sram dml TGEFSCRIJMANSB2KX32B128M8SW1A 1x1}
{u mdvlpsys-mdvlp dvfs top-u sram pm@ TGEFSSCRIJYMANSA1KX26B128M4SWOA 1x1f}

"y
PPA report of selected memory configuration
Summary Table Comparator
Timing Instance Count
I Run Trans Trans Cap
" I':WBTDP I WNS TNS NVE Cost Violation Violation Standard Register Repeaters ICG's
"DWC_SRMBTDP_16 Num Num
1, b MEM1 4 0.04 0.00 0 0.00 0 0 1709 26 147 1
"ub O-pd switchable-cmem@-dtags® 0": {
*memories”: [MEM1 3 0.04 000 0 0.00 0 0 1651 19 140 1
"DWC_SRMBTDP_32x39",
"DWC_SRMBTDP 32x22"
1.
}, |
"ub_0-pd_switchable-cmem@-dtagsl 0": | /.\ ., \.
"memori [(] o
"DWC_SRMSTDP_32x22", \a/ \./
“DWC_SRMBTDP 32x39" An intelligent agent takes actions in a dynamic o/, 0)
environment to maximize the cumulative reward e o trained ML model
\e”

SNUG TAIWAN 2024 8

Explore with Parallel Space Exploration

Leverage PSE for parameter sweeping
O PSE explores memory configurations and placement

confli\gﬁg(t)i% Mg Configure exploration runs O Find the best PPA among multiple objectives — overall
Generated automatically consideration of congestion/power/timing/area

from static selection

Run PSE with chosen
memory configurations Leverage PSE for
memory exploration

Runl Run?2 Run3
RTL Architect PSE

Instantiate memories & Instantiate memories & Instantiate memories &
control logic for Runl control logic for Run2 control logic for Run3

RTLA run RTLA run RTLA run

= N iterations

Instantiate memories & Instantiate memories & Instantiate memories &
control logic for Run3N-2 control logic for Run3N-1 control logic for Run3N

RTLA run RTLA run RTLA run

PPA Summary
Compare QoR results

Best memory configuration
with physical consideration SNUG TAIWAN 2024

Parallel Space Exploration PPA Summary &=z 0

« PSE collects PPA Summary for each memory configuration in HTML format

el vurrmar Preh ey & Daeye - Sormin Sy mp B e ¢
Summary Table Comparator w1 - P R — ot N of s 508
F i -Ja 5 4 LR 1l KT M (i L i W VA Traad Viedalasss, 1]
Timang Pewar Cangesisn Imaz . o . o r . o o o ::-qn::n;q-wnn- m
Kun —_— . § § Crverilew wERE has - .) ! : ! ooy widh Vialaion n
WKS THS NVE Totsl Leakage Switching Imuge etk b Comgeubed rean oL e lon i) max vl Stamdard Register B
Pl frvaip ' -
Wil gspecil: 056 -1508 64 461608 293601 6604 k] M4 ML) 1 4413 148 1 s Nrmarte L solpiSvIZEc s Rk
| | [Crameal |
e = i " i
Wl gsreci].] 0E1 -15T? 64 42003 1EkeDd 45leld 0 £ 03 A0 : FrL S i e am e boor ot ekl i ot .
B— I A S A : -
LB gapen2.] 050 D501 64 S42e-08 1 THe0) SATe-lH &73 TSR X ARI (9104 L1 4308 85 i Marsecw SEmmary T § Sumam LCSSOpEWIESC Y Cawpey WD v
Vi g, il bargres WS et b, st Byt W My an s iy barget 1%
Al pople-] Dt ci6A% 64 8]0k J00e0) daked L] i% 1 P36 (0.1 1% i 44k | & i
Mtk 1 WA Ll i HVE oedu b i it
Eoabaah 1 [T FrTRT TN 1 1 B gei 17 1 [T
QORSUITI <= EJRuns =Z Metrics [J] Info £+ Settings
X Run Setup Logical DRCs Netlist Power Routability Runtime Parameters
QOR Summary WNS TNS NVE r2riNs r2rTNs r2rNVE TranDRCs CapDRCs Util StdCellArea StdCells HBufs TotalPwr LeakPwr Gated% Bits/Flop Overflow% TotalRun StageRun memory_cell
Performance 1/ MEM1_1 0.110 0.0 0 0.000 0.0 0 0 0 59.0 2037 6172 0 1488200 21200100 1.00 0.35 0.13 0.13 MEM1_1
App Option Details 2 MEM1_2 0.130 0.0 0 0.000 0.0 0 0 0 51.3 2027 6139 0 1465400 204000 109 1.00 0.36 0.14 0.14 MEM1_2
3 MEM1_3 0.120 0.0 0 0.000 0.0 0 0 0 48.7 2023 G783 0 1470800 2080000 1.00 0.31 0.12 0.12 MEM1_3
Timing / LDRC v
4 MEM1_4 0.100 0.0 0 0.000 0.0 0 0 0 65.8 2028 6119 0 1472700 22700109 1.00 0.94 0.1 0.11 MEM1_4
Timing Summary 5/ MEM1_5 0.100 0.0 0 0.000 0.0 0 0 0 57.7 2044 6168 0 1487800 248000 09 1.00 0.56 0.1 0.11 MEM1_5
Path Group Detals 6 Memi OI8O 00 0 0000 0.0 0 0 o GG 2021 (6173 o OO0 23000 125 1.00 S AT MEM1_6
Logical DRCs

QoR Summary for the top 6 candidates — the User can specify the numbers of rankings

SNUG TAIWAN 2024 10

RLMM Experimental Results P mcorei g °

. . . . i Design 3
- Validated in FC with Al-suggested memories Total pomer omovement GRC improvement
— Design 1 (4 wrappers) : Focus on power reduction 1 /‘ 1 “
— 5.8% power reduction with updated mem configuration os -5.8% 08 -55%
and re-placement o 06
— Design 2 (54 wrappers) : Focus on power reduction 09 Jeer mem . 02 e mem .
B 0 : : : :
2.8% power reduction with updated mem configuration T o ——
and re-placement
RLMM Runtime RLMM 3 iterations runtime

M Single RTLA runtime

— Design 3 (135 wrappers) : Focus on congestion reduction

— GRC down from 1.26% to 0.58%, reduced 51% track)
overflow with updated mem configuration and re- 2
placement 20
» With RTL Architect’s quick runtime, exploration TAT is e | pis | l
reduced from months to hours ’

0.25M 032M 1.75M

Runtime is dependent on design size,
irrelevant to number of wrappers
SNUG TAIWAN 2024 11

Summary: RTL Architect’s RLMM D

« Memory selection during the RTL design stage should consider physical I
implementation — RLMM provides Al-driven memory exploration for physically-
aware PPA optimization

 RLMM facilitates exploration flow with automation instead of manual iterative
loops — Memory selection TAT can be reduced from months to hours

« RLMM testing produced 3%-6% power improvement and 51% track overflow
reduction, and the results were validated with Fusion Compiler synthesis

 RLMM helps with Al-based smart exploration and physical placement with quick
optimization runtime at the RTL development stage

.\
N\
.\
-
N\

\\ Our
Technology,
| \\;

Innovation”

	Slide 1: AI-driven Memory Exploration in RTL Architect
	Slide 2: Agenda
	Slide 3: Motivation – Physical Awareness
	Slide 4: Motivation – Feedforward Guidance
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Explore with Parallel Space Exploration
	Slide 10: Parallel Space Exploration PPA Summary
	Slide 11: RLMM Experimental Results
	Slide 12: Summary: RTL Architect’s RLMM
	Slide 13

