

Aiding Left-shift strategy for early functional, interoperability and performance bottlenecks with Synopsys solution portfolio

Prodip Kundu, Principal Engineer Verification, Arm Bangalore Puneet Singh, Senior Verification Engineer, Arm Bangalore Charanpreet Singh, Principal Engineer Verification, Arm Bangalore Piyush Kumar Gupta, Director Emulation, Arm Bangalore Rakesh Singh, Sr. Architect (ZeBu & HAPS), Synopsys Bangalore Arm and Synopsys Collaboration

- Arm is using Synopsys Memory controller(MC) portfolio in both Infra & Client solutions
- For Infra Solution Arm is extensively using Synopsys Chi-based MC (Chi-E) along with with Arm's internally developed Phy & DDR5
- Further exploration ongoing for the Synopsys Chi-F MC integration & further validation
- For Client Solution The Synopsys Zebu compatible Phy (zDFI) & LPDDR5 (zLPDDR5) is getting used with Arm's AXI based MC

Arm Sub-System Overview Integration, Interoperability, Functional Verification and Validation

Arm Sub-system : Infra Solution

- Big Core CPUs with Chi Based interface
- Interconnect Mesh Topology (CI-Coherent Interconnect)
- Chi based Dynamic Memory Controller(DMC)
- Memory subsystem with Phy & DDR5

DMC : Memory Controller Overview **Crm**

- The DMC provides a system interface for the system to gain read/write access to DRAM memory
- It also provides a programming interface to configure and initialise the DMC and DRAM along with the DRAM interface to the external DRAM

E La top	top
🕀 👼 u_dut	dut
🖻 📅 u_kit_tb	kit_tb
🖶 👼 u_CRG	crg
🚽 📅 u_c_platform_reg	platform_reg
🚽 📅 u_cpu_hang_detector	cpu_hang_detector
🚽 📅 u_dfi_clk_gen	clkdivider_logic
🕀 📅 u_iofpga_smc	iofpga_smc
🔚 u_kit_tb_decoder	kit_tb_apb_decoder
🔚 u_mem_clk_gen	clkdivider_logic
u mem pret d	mem_wat
🚽 📶 u_mem_tb	mem_tb_component
📄 📅 u_c_dmc	c_dmc_f0_top
🕀 📻 g_c_mc0	
a c mcl	
🕀 🛜 g_c_mc2	
🖃 📆 Philos_memsys	ros_memsys
🕂 🛜 g_mem_chan_0	
🖻 📅 u_phy	dfi_phy_syncup_top
🕀 👼 u_dfi_syncup	dfi_syncup
🗄 👼 u_phy	dfi_phy
📄 📻 u_sdram_channel	sdram_channel
🕀 👼 mem_rank[0]	
🕀 🖶 👼 mem_rank[1]	
g_ECC	
🕀 🔂 y_mem_chan_1	
🕀 🛜 g_mem_chan_z	
🕀 🔂 g_mem_chan_3	
🕂 着 g mem chan 4	

snug

Configurable Arm Sub-System

•	Configurable SoC like system- – Built using SIF (System Integration Framework) – Contains both HW & SW layers	<pre>#include "mem_defs.h" #include <platform.h> #include "platform_register_tb_externs.h" m4_define(def_NUM_DMC,`4')</platform.h></pre>
	 Interface level connections via standard AMBA bus definitions to stitch IPs 	<pre>m4_define(def_NUM_PP,`1') void dmc725_init (unsigned int DMC_BASE, unsigned int DMC_NUM //[9600] : dmc-fenix_r0p0_00dev2_nahpc2_1227202 m4_define(def_NUM_DSU_CHI,`4' //[Program DMC Registers (FSP-0)] : MEM_RW(DMC_BASE, 0x038) = 0x01010501; //'address_control'</pre>
•	SIF Integrates IPs as early as Alpha Milestone	<pre>m4_define(def_NUM_DMC, `4') m4_define(def_NUM_ITS, `0') MEM_RW(DMC_BASE, 0x15c) = 0x00043210; //'decode_column_bit_ MEM_RW(DMC_BASE, 0x160) = 0x00008765; //'decode_bank_rank_t MEM_RW(DMC_BASE, 0x164) = 0x1f001f00; //'address_base_mask' MEM_DW(DMC_BASE, 0x164) = 0x00008000; //'address_base_mask'</pre>
•	SIF provides ever platform for -	m4_define(def_NUM_TRFGEN, `4') MEM_RW(DMC_BASE, 0x168) = 0x00000000; // decode_bg0_nash_ma MEM_RW(DMC_BASE, 0x16c) = 0x000000000; // decode_bg1_hash_ma MEM_RW(DMC_BASE, 0x170) = 0x000000000; // decode_bg1_hash_ma
	 Interoperability testing 	m4_define(`def_NUM_THREADS', m ⁴ MEM_RW(DMC_BASE, 0×174) = 0×00000000; //'decode_ba5_Mash_ma
	 Functional validation to expose early bugs 	<pre>m4_define(`def_NUM_INT_Q', m4_(MEM_RW(DMC_BASE, 0x178) = 0x00000000; //'decode_cs_hash_map m4_define(def_NUM_CHIPS, `0') MEM_RW(DMC_BASE, 0x768) = 0x00000205; //'memory_type' MEM_RW(DMC_BASE, 0x76c) = 0x00000300; //'format_control'</pre>
	 Running industry standard 	m4_define(def_NUM_CLUSTERS_PER_CHI
	benchmarks for performance analysis	<pre>m4_define(def_NUM_MCN, `8')</pre>
	 Comparison with previous 	<pre>m4_define(def_LCC_ENABLED, `1')</pre>
	generation IPs to emphasize improvement	m4_define(def_L1_CACHE,`64KB')
		m4_define(`def_DMC725_ENABLED',`1'

DDR5 - Chi-E based Memory Subsyem System level Verification/Validation of Synopsys Chi-E based Memory controller and Arm's internal PHY and SDRAM memory model

Synopsys Chi-E Memory Controller

Dual Channel MC along with Dual Rank SDRAM

- Speed :
 - Data Rate 4.8 to 6.4 Gbps(giga bit per secon
 - 2.4 to 3.2 GHz clock rate
- Channel Architecture :
 - 40-bit data channel (32 Data + 8 ECC)
 - 2 channels per DIMM(Dual Inline memory module)
 - Higher Memory efficiency, Lower latency
- DIMM topology :
 - Dual Channel, with each channel being 32bit wide for data
 - ECC DIMM are generally 80-bits wide, with 4 bits per channel

8

arm

snuc

System level configurations : Interconnect & DMC

Scaling Number of Memory controller/Memory Channel in System

CMN(Coherent mesh node) based small mesh

Configur ation	Mesh	Cores per chip	HNF Nodes	SNF Node s	No. DMCs Channel/MC instance
1	Small	8	8	4	4/2
2	Full	32	32	8	8/4

- RNF Request Node CPUs/Cluster Interface
- HNF Home Node Internal to Interconnect with SLC(System level Cache)
- SNF Subordinate Node DMCs Interface

Memory Subsystem – DDR5

CHI-E based DMC with DFI 5.0 and JEDEC DDR5 speed grade compatible solution

- Memory Organization : Dual-Channel memory Controller, Dual Rank SDRAM.
- DFI5.0 compliant interface DesignWare DDR5/4 PHY or other DDR5/4 Phy.
- System Interface : Chi-E
- Programming Interface : APB
- PHY & DDR5 : Arm's Internal RTL based solution.
- Clock Mechanism :
 - 1:4 CKR(Clock Ratios) DDR5 mode only supports DFI 1:4 frequency ratio mode
 - DFICLK : 800 MHz
 - MEMCLK : 3200 MHz

System level Verification/Validation with Synopsys zDFI & zLPDDR5

- Combination of Small + Big Cores CPUs with Chi based interface
- AMBA AXI-based Dynamic Memory Controller(DMC) connected with MCN(Memory Controller Node) based interconnect
- Memory subsystem with Phy (DFI 5.1) & JDEC LPDDR5
- Used Synopsys Solution

 Zebu emulation friendly Phy (zDFI) & Memory (zLPDDR5)

System Level Design - **Grm** Sugering Client Solution

AXI-based Memory Subsystem

AXI-based DMC with DFI 5.1 and JEDEC LPDDR5.x speed grade compatible solution

- Non-existing Arm Phy/Memory Solution : Requirement of using 3rd Party EDA Vendor's Emulation(Zebu) friendly industry standard (JEDEC) Memory Model & Phy
- Configurable LPDDR5 dual Rank model & support of different speed grades (8533,9600 Mbps)
- The DMC init programming proving IP level init sequence working on System level (with required changes) & back-door access validation.

How Synopsys Helped Arm

- The Synopsys solutions helped Arm to verify all next generation IPs
- (e.g. CPUs, Interconnect etc.) at the Sub-system level context
- The Synopsys solution helped Arm
 - Validation of Memory Front-door access
 - DDR Preload Or Back door access validation
 - > Speed grade changes , WR-RD delay control ,DDR Memory Size Control, Encodings-RBC/BRC etc.
- The Chi Based DMC helped on validating the Chi based next generation Arm CPUs & Interconnect
- The Synopsys zDFI & zLPDDR5 portfolio helped arm to validate Arm memory controller with industry standard Phy & Memory Models
- The zLPDDR5/zDFI analyzer feature helped for faster debug (by reporting DRAM txns with data

payloads)

= 61	2322	(Ocd0	Å	e874	
0 - - -	279 WR - DATA - DATA - DATA	0 0 80000 - - - - - - - - -	0 - -	- - 1 1 d0 0c 1 1 74 e8 1 1 2a 0b	

Feedbacks & Future Work

 The ZS5 Zebu emulator's high design frequency helped early enablement of complete SoC on emulation Platform- the achieved design frequency is around half of driver frequency

Timing	driverClk: 2631 kHz (380 ns)		
F	Pre-Post delta before rounding: {driver	[.] Clk: 3415 -> 2653 (-22%)}	
t	oottleneck: routing data paths : 377ns,	, Longest Delays: {data: 377 ns, memory: 164 ns}, #MGT in top path: {data: 1	1, filter:
·	++		
FPGA	Total Num. of completed FPGAs: 84	34	

- More collaborations with cross functional teams. The delivered Sub-system RTL (integrated with Synopsys IPs) enabled other teams (e.g. performance Analysis, FPGA etc.) for their further validation
- Faster verification closure on Performance & Benchmarking CPU To memory path Read latency exploration (with industry standard workloads e.g. SPEC, Geekbench, Speedometer etc.)
- Future Work :
 - Enablement of Synopsys Real world Phy & Synopsys DDR5 memory model at System Level
 - > Further validation of Arm's Chi-F IPs with Synopsys Chi-F MC & future collaboration on Chi-G MC
- Some improvement areas:
 - Observed long Zebu compile time
 - > More fine tune control on Memory Content , could be useful for Back-door /preload access debug

THANK YOU

Our Technology, Your Innovation[™]