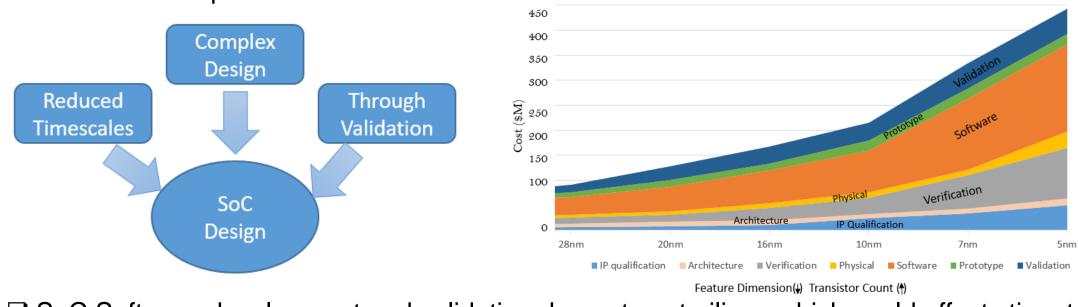


Unveiling Advance Hybrid Emulation Methodology for Accelerated Android Home Screen Bring-up and System Level Verification

Rinkesh Yadav(rinkesh.y@samsung.com) Sarang Kalbande(sarang.m@samsung.com) Hyundon Kim(hyundon.kim@samsung.com) Garima Srivastava(s.garima@samsung,com)

Samsung Semiconductor India Research


- High performance Emulation methodology: Need & Impact
- Challenge to bring-up software on Pure Emulation
- Hybrid Emulation : Introduction
- Easy Portability from Pure to Hybrid Emulation
- Results and Benefits : Emulation v/s Hybrid Emulation
- Future Scope : CPU Benchmark
- Acknowledgement & References

High performance Emulation methodology: Need & Impact

Industry need to Launch Product constantly faster in market with higher performance and less power greedy.

□ Increased design complexity and shrunk time to market, not an easy to launch product

on time to competitive others.

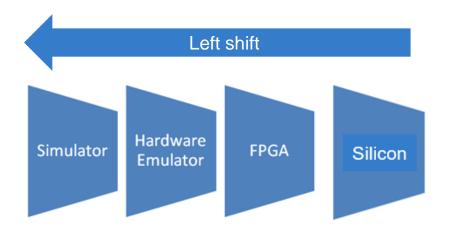
□ SoC Software development and validation done at post-silicon which could effects time to

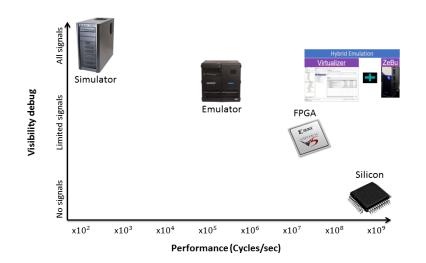
market and cost.

High performance Emulation methodology: Need & Impact(2)

➤ Is Simulation viable for SoC Software development ?

Though Good design debug visibility but runtime is a bottleneck

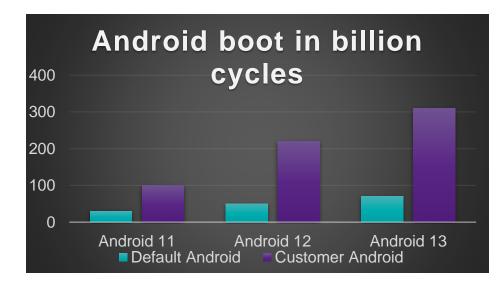

➤ Is Traditional Emulation a solution for SoC Software Development?


Improved Runtime but still takes time to develop SoC software and system tests

➢ Is FPGA and Silicon a solution ?

It has Less design debug visibility ,high cost ,Respin cost.

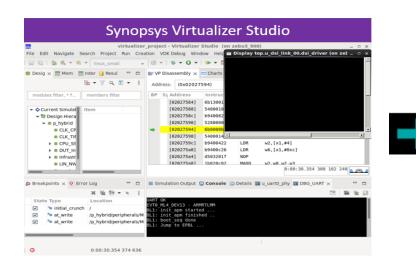
≻ Left Shift and High Run time performance.



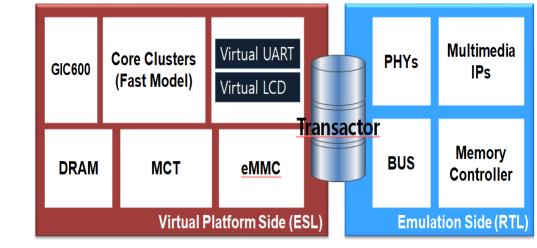
4

Challenge to bring-up software on Pure Emulation

android 13 boot time(cpu @3Mhz, 4cycles/ instruction):


(310Bx4/3 MHz)/3600s = 114 hours (~ 4 days)

- Emulator driver clock frequency is not sufficient to bring-up Linux kernel, Android OS boot and to develop system level software.
- □ Takes 114 hours to bring-up Android OS where SoC is running on 3Mhz emulator driver clock frequency.
- To overcome less emulator speed and to accelerate software development, Hybrid emulation is introduced.


Hybrid Emulation: Introduction

- Hybrid emulation combines Virtualizer and Hardware emulator.
- one part of the SoC design is run at the emulator and the other part is run at virtual platform.
- Virtual prototypes are high performance, System C models of a particular block, a system model or an entire SoC as per requirements.
- The task of virtual platform is to have enough accuracy to support the level of software being run on it. This is achieved by modelling the behaviour and inter-block communication at transaction level(TLM), which makes these faster than equivalent cycle-accurate RTL.

6

SNUG INDIA 2024

7

Easy Portability from Pure to Hybrid Emulation

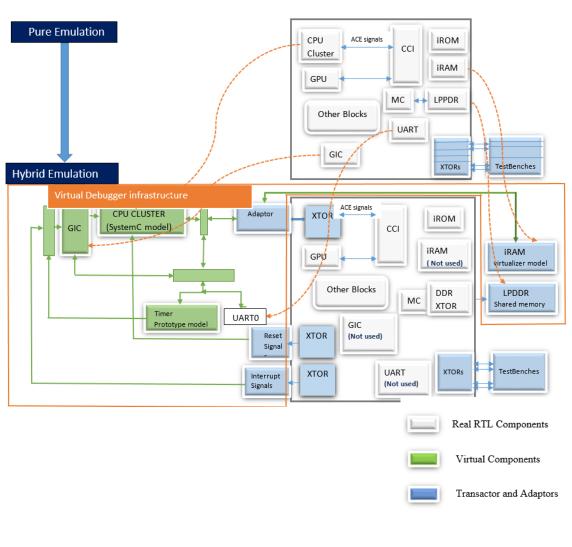
□ @ Linux/Android boot, many AXI/CHIE bus

transactions at cpu - dram path.

□ High latency cpu dram transactions are bottle-

neck for pure emulator performance to SW

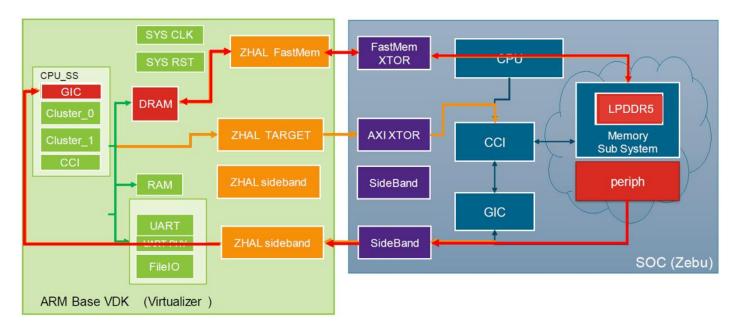
development.


□ To overcome this, CPU and related components

moved to **virtual side** for **OS boot** faster and accelerative.

□ Acceleration achieved because of virtual model of

the CPU which runs Instruction Set Simulation


(ISS) to perform much faster compared to CPU's gate level behavior in emulator.

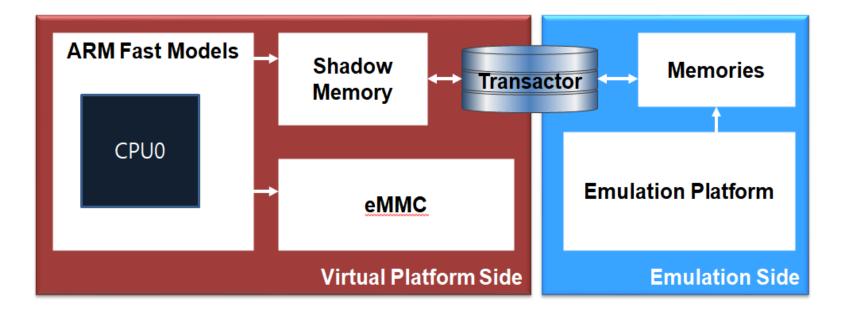
SAMSUNG

Easy portability from Pure to Hybrid Emulation(2) SAMSUNG

To build the hybrid Virtual Platform:

- □ Block/IP mapped on ZeBu have to be remove or disable.
- □ Connection has to be made on the interface with ZeBu:
 - AMBA Busses
 - Sideband Signals
 - ZeBu shared memory

□ Hybrid Adaptor provides a library of wrappers (**ZHAL**) for these components.


□ It can be used inside virtualizer as any TLM model.

snug

UHybrid emulation has **Fastmem model** of DRAM instead of **RTL memory model**.

Hybrid fast memory is shared memory between virtualizer and emulator which is properly synced between them.

Results and Benefits: Emulation V/S Hybrid Emulation

@Exynos SoC

	Simulation	Pure Emulation	Hybrid Emulation
Environment Intitialization	4 Min 💍	5 Min	5 Min
Kernel Boot-up(prompt)	125,865 Min	400 Min	2 Min
Android Logo	230000 Min	1200 Min	12 Min
Android Home Screen	\$10,517 Min	3200 Min	53 Min
Total Consumed Time	867,384 Min	~4805 Min	~72 Min
Clock Frequency	866 Hz	3 Mhz	x20 ~59.9 Mhz

Linux brought-up in 2 Minutes.

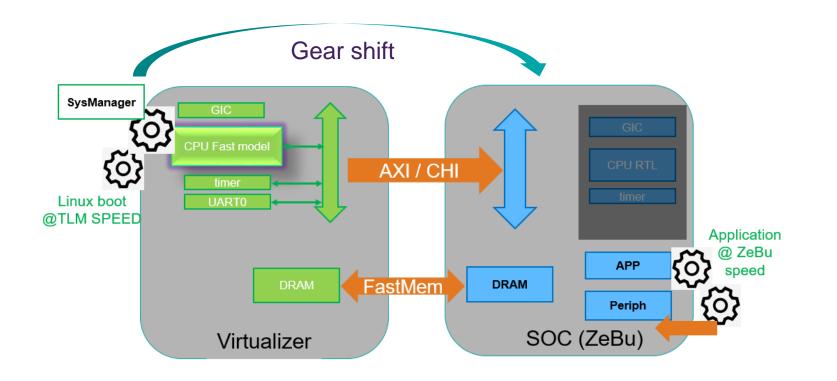
□ Android Logo brought-up in 12 minutes.

□ Android Home Screen brought-up in 72 Minutes.

play top.u dsi link 0.u dsi driver (Resolution 640 x 480) , Frame nc _

SAMSUNG

Results and Benefits: Emulation V/S Hybrid Emulation(2)



Benefits:

- ✓ Early Bring-up Linux kernel and Android home screen.
- ✓ Hybrid Emulation can be use for firmware development and Device driver bring-up at pre-silicon stage like GPU, DPU, AUDIO etc.
- ✓ **Higher debug capability** with various debugger methods support like:
 - TLM transaction debug through Chart View
 - VP disassembly feature and t32 debugger to debug software
 - Support different log levels to debug Transactor and Adaptor
 - Support **QWIC/FWC** waveform dump capture to debug hardware
- ✓ Validate Software use cases for all IPs modelled in RTL.
- ✓ Identify Early SW bugs.

Future Scope: CPU Benchmark

- Once Linux/Android boot is done, CPU STATE will left shift from virtual to RTL CPU running in ZeBu.
- As Now Linux/Android is already booted, CPU Benchmark can be run on Pure Emulation.

Acknowledgement

- Vievkananad Vivek (<u>v.vivek@samsung.com</u>)
- Hwan-sung PARK (<u>hs43.park@samsung.com</u>)
- Synopsys Support Team

References

- How FPGA boards help to validate ARM processors (<u>https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/how-fpga-boards-help-to-validate-arm-processors</u>) [Slide 1-2]
- Synopsys Hybrid Emulation Documents and Quick Start User Guide.

THANK YOU

Our Technology, Your Innovation[™]

