

Navigating the Challenges of RC Parasitic analysis in IC Design: A Standardized Approach using StarRC Parasitic Explorer

Ritu Ratra (NXP) Vartul Sharma (SNPS)

Agenda

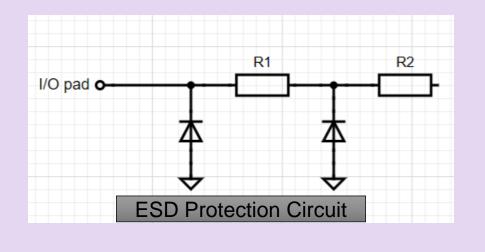
- Challenges and Motivation
- Proposed Approach
- Introduction to Parasitic Explorer
- Design Under Test
- Why Parasitic Explorer?
- Parasitic Explorer Flow and Methodology
- Results
- Unique Features
- Conclusions and Future Scope

NXP SEMICONDUCTORS OVERVIEW

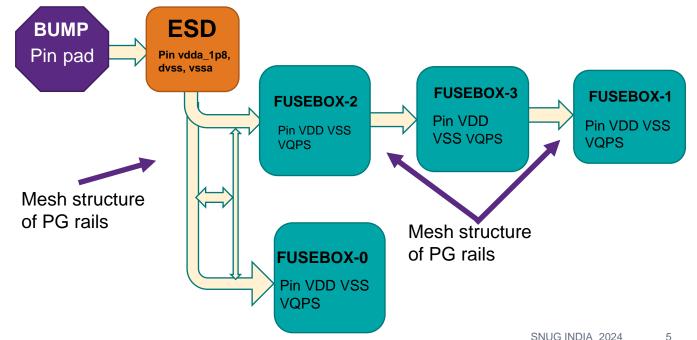
SECURE CONNECTIONS FOR A SMARTER WORLD

OUR DIGITALLY ENHANCED WORLD IS EVOLVING TO ANTICIPATE AND AUTOMATE

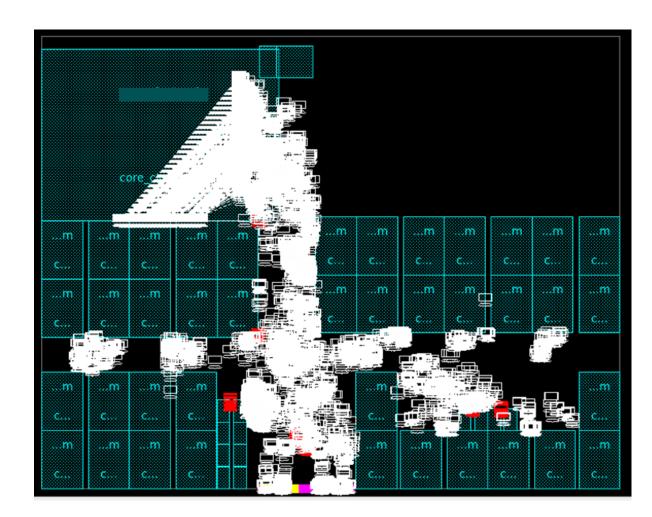
NXP Semiconductors N.V. (NASDAQ: NXPI) is a global semiconductor company creating solutions that enable secure connections and infrastructure for a smarter world. NXP focuses on research, development and innovation in its target markets.



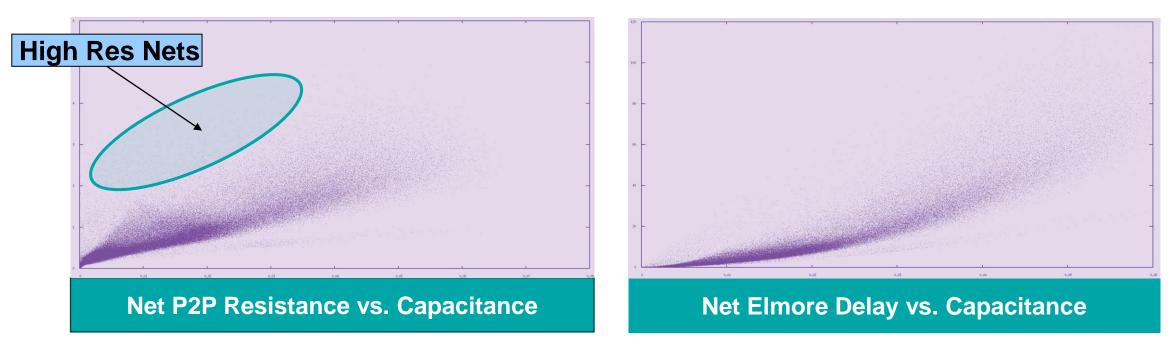
3


Calculating point to point resistance

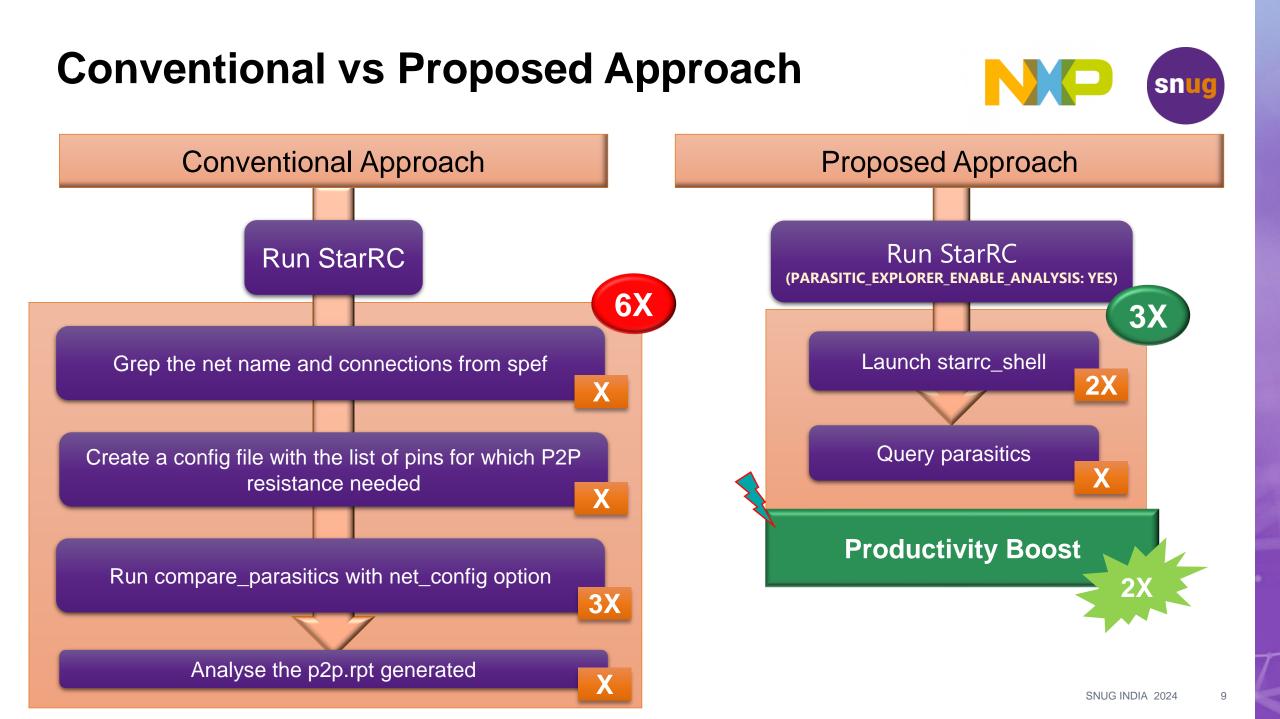
- ESD can generate high peak voltage and current which can damage the IC.
- ESD protection offers less ulletresistive path to these high currents.


- Manual parasitic calculation of mesh structures like PG rails can be challenging
- Inaccurate calculations of parasitics can lead to design failure

Analyzing opens and shorts:

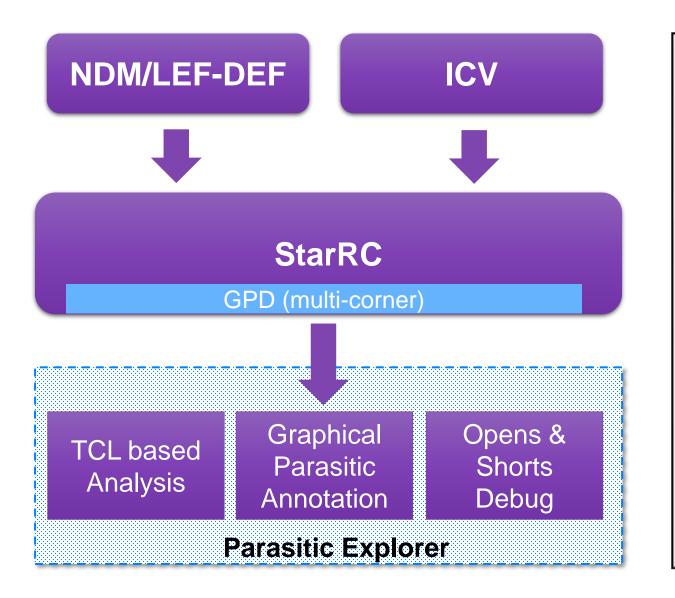

- Opens and shorts in a design can cause critical issues to a design.
- These errors need to be analyzed to ensure the functionality, performance, and reliability of a design.
- Debugging shorts and opens can be challenging without proper annotation.

Identifying high resistance points

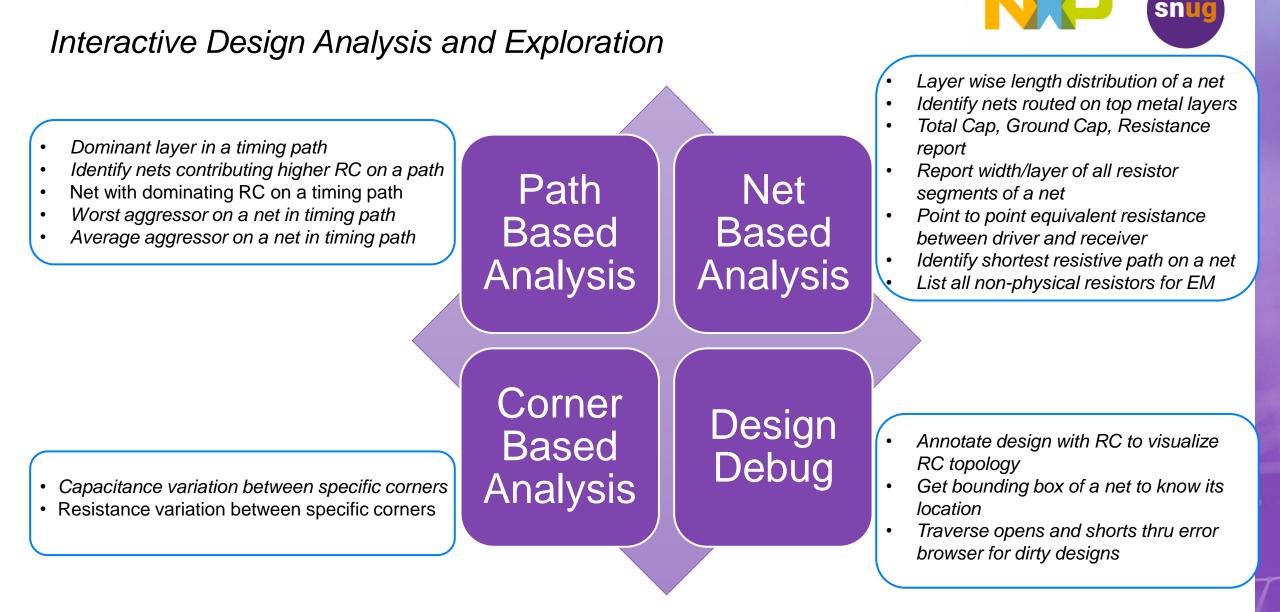


- With some conventional approaches, designers can only obtain RC values of specific pins required rather than a general analysis.
- Having all point-to-point resistance values of all pins in a design helps in identifying points with unusually high resistance and the dominant layer.

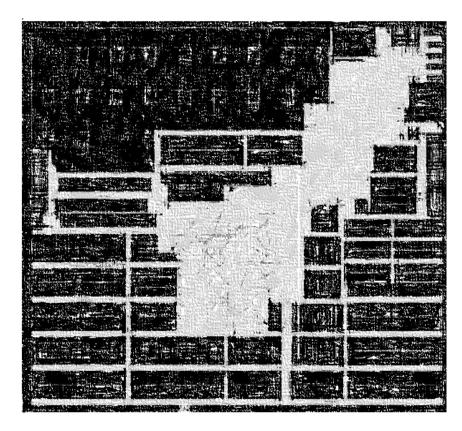
Proposed Approach

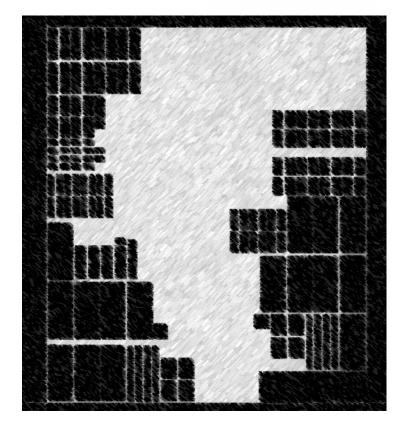


Parasitic Explorer Introduction


Parasitic Explorer - Introduction

- Advanced Parasitic Analysis environment for Gate and Transistor level flow
- Supports the core Tcl language with Synopsys Tcl extensions
- Graphical environment for Parasitic Annotation and opens and Shorts debug
- Easy to setup: No PDK is required
- Invoked through the command 'starrc_shell'
- Available in pt_shell as well


Scope of using Parasitic Explorer


Design Under Test

Design Under Test

Design A Instance count: 1.2M 16nm/10M Metal track: 7.5T

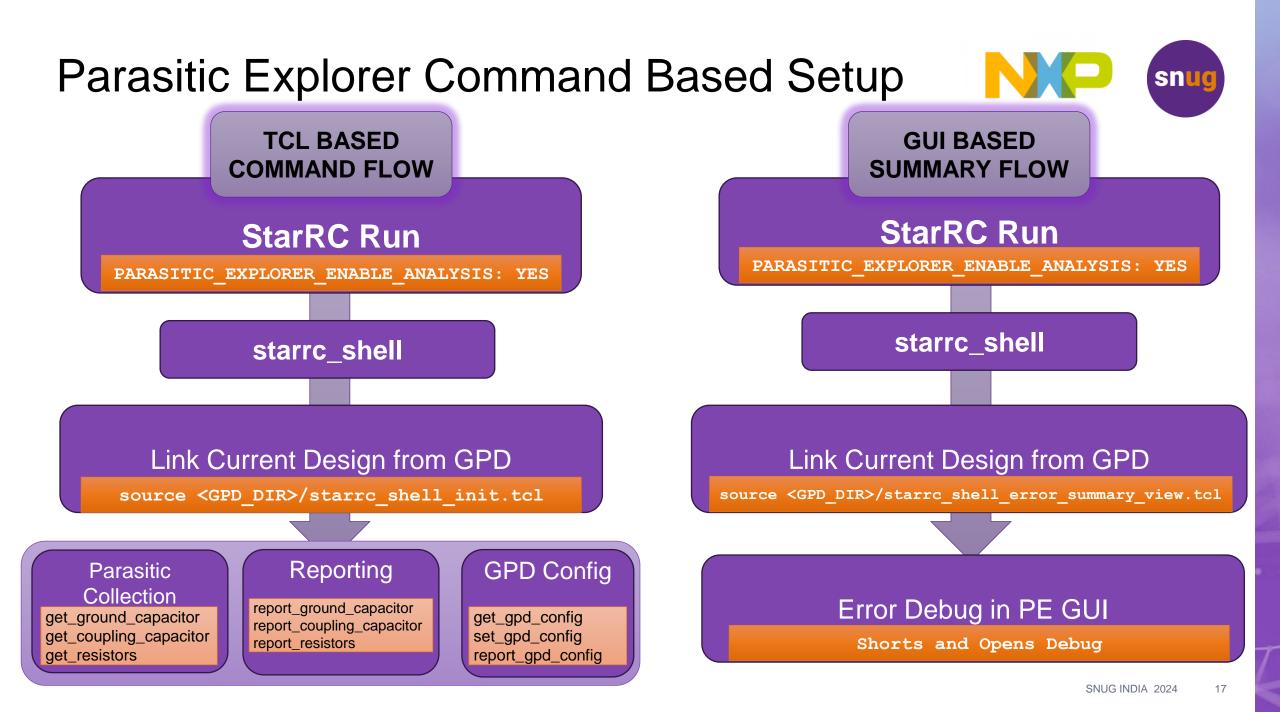
Design B Instance count: 8.9M 5nm/13M

Why Parasitic Explorer?

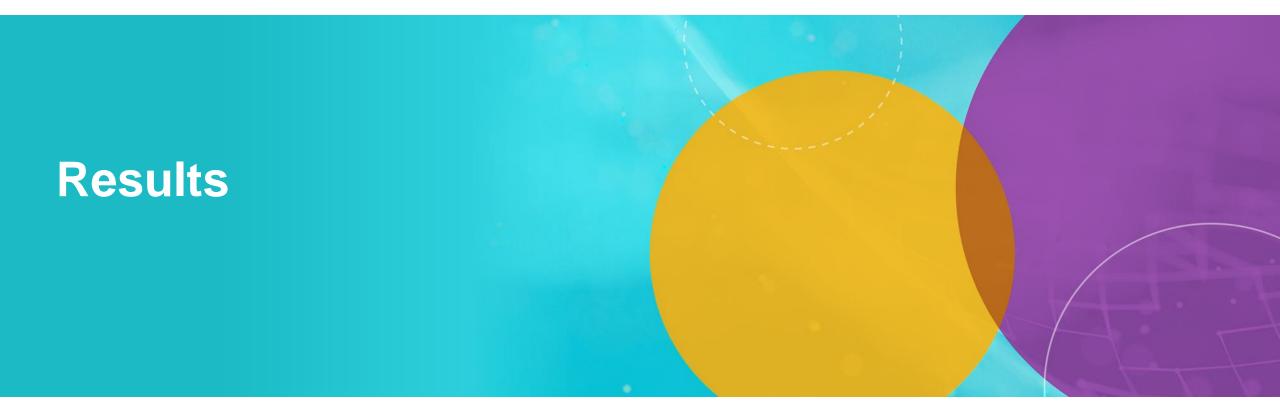
Point-to-point RC values

- Query all the pin-to-pin resistance values for a given net with a single command.
- P2P resistance between any two nodes can be directly calculated.

Layer-wise contribution of RC


- Individual RC values and percentage contribution of each metal layer can be calculated for a given path.
- Query RC dominant layer in the path.

Designer's Productivity Boost


Ease of Debuggability Accurate Results Faster Signoff

Parasitic Explorer Flow and Methodology

report_rc_componets

Report : RC Components Design : toprt Version: V-2023.12-SP4 Date : Wed Jul 17 18:47:31 2024 Capacitive_load_unit : 1e-12 Farad Resistance_unit : 1000 Ohm

	Total	: sec_msb/n71 Resistance : 0.076384 Capacitance: 0.024688	Caellalua	*CCtib-t
	Layer	ResValue %ResContribution	capvaiue	Acapcontribution
	=====		=======	
	M1	0.009314 12.193653	0.001591	6.444426
	M2	0.046862 61.350545	0.021051	85,268146
	M3	0.003828 5.011521	0.002046	8,287427
	VIA1	0.013500 17.673858	0,000000	0.000000
ļ	VIA2	0,002880 3,770423	0,000000	0,000000

report_dominant_layer_in_path

starrc_shell> report_dominant_layer_in_path -of_objects "n290 n291" *******

Report : Dominant Layer in Path Design : toprt Version: V-2023.12-SP4 Date : Wed Jul 17 18:59:04 2024 *******

List of nets in specified timing path: Warning: Nothing implicitly matched 'n290' (SEL-003) net 1: Warning: Nothing implicitly matched 'n291' (SEL-003) net 2: Total number of nets in the timing path: 2

R dominant layer: M3 Total R on M3: 0.087252

C dominant layer: M3 Total C on M3: 0.045069

report_point_to_point_resistance

Report : report_point_to_point_resistance Version: V-2023.12-SP4 Date : Wed Jul 17 19:01:12 2024 Resistance_unit : 1000 Ohm *******************

NET: sec_msb/n71

Pin1	Pin2	P2P R
=====	====	=====
sec_n	sb/cnt_blk1/U31/B_sec_msb/U1/	A 0.028302
sec_n	sb/cnt_blk1/U31/B_sec_msb/cnt	_blk1/reg_blk1/U13/B 0.026487
sec_n	sb/cnt_blk1/U31/B_sec_msb/cnt;	_blk1/reg_blk1/f0/Q 0.001155
sec_n	sb/cnt_blk1/U31/B_sec_msb/cnt;	_blk1/U54/A 0.036678
sec_n	sb/cnt_blk1/U31/B_sec_msb/cnt;	_blk1/U49/A 0.010691
sec_n	sb/U1/Asec_msb/cnt_blk;	1/reg_blk1/U13/B 0.006315
sec_n	sb/U1/A sec_msb/cnt_blk:	1/reg_blk1/f0/Q 0.029457
sec_n	sb/U1/A sec_msb/cnt_blk	1/U54/A 0.064980
		1/U49/A 0.038993
		c_msb/cnt_blk1/reg_blk1/f0/Q 0.027642
		c_msb/cnt_blk1/U54/A 0.063165
	sb/cnt_blk1/reg_blk1/U13/B se	
	sb/cnt_blk1/reg_blk1/f0/Q sec	
	sb/cnt_blk1/reg_blk1/f0/Q sec	
sec_n	sb/cnt_bl <u>k</u> 1/U54/A sec_msb/cnt,	_blk1/U49/A 0.030488

get_point_to_point_resistance

starrc_shell> get_point_to_point_resistance -from sec_msb/cnt_blk1/U54/A -to sec_msb/cnt_blk1/U49/A
0.0304875

report_coupling_capacitors

tcap: 0.024688

Total CCAP	%Cc/Ct	Aggressor Net
=========	=====	
0.001325	5,366980	sec_msb/cnt_blk1/reg_in[0]
0.001034	4.188270	sec_msb/bcd[1]
0.000570	2,308814	sec_msb/cnt_blk1/n181

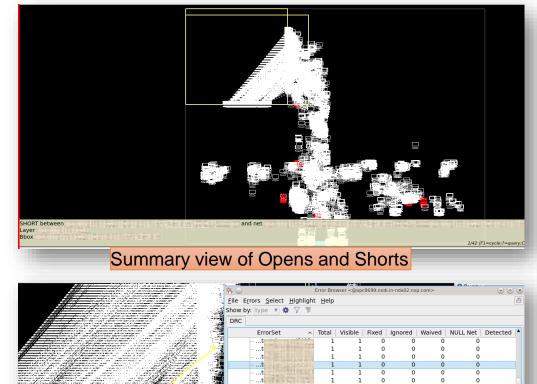
report_p2p_per_layer

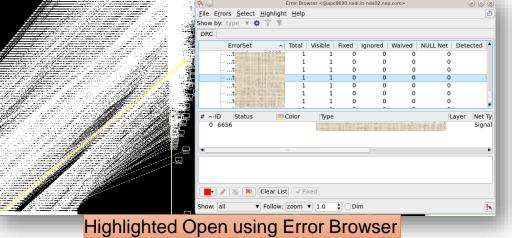
starrc_shell> report_p2p_per_layer -from sec_msb/cnt_blk1/reg_blk1/f0/Q -to sec_msb/cnt_blk1/U49/A Report : point to point resistance per layer Design : toprt Version: V-2023.12-SP4 Date : Wed Jul 17 19:15:49 2024 Resistance_unit: 1000 Ohm **** Net : sec_msb/n71 From: sec_msb/cnt_blk1/reg_blk1/f0/Q To : sec_msb/cnt_blk1/U49/A Layer P2P_R %P2P_R/Total M1 0.001488 15.607333 M2 0.003547 37.201949 VIA1 0.004500 47.190718

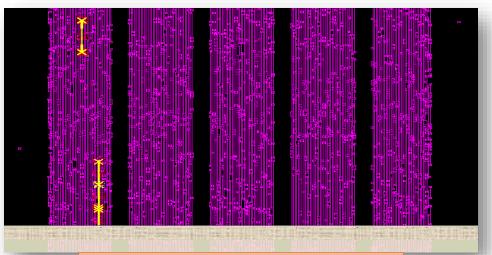
Comparing Conventional vs Proposed Approach

P2P resistance obtained with proposed approach

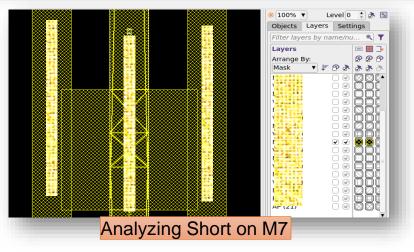
starrc_shell> get_point_to_point_resistance -from sec_lsb/conv_blk1/U28/D -to sec_lsb/conv_blk1/U12/X 0.014772


P2P resistance obtained with conventional approach


../toprt_pe.SPEF.typ ../toprt_pe.SPEF.typ %diff Netname Pin1 Pin2
14.772 14.772 0.000 sec_lsb/conv_blk1/n23 sec_lsb/conv_blk1/U28:D sec_lsb/conv_blk1/U12:X


Accurate results obtained with 2X efficiency when using the proposed approach

Visualization of Opens and Shorts



Highlighted Shorts using Error Browser

Unique features

RC Scaler

- RC Scaling is done in PE environment
- Enables what-if analysis
 - without re-running extraction or changing design
 - to reduce IR drop fix iterations
 - while design porting
- RC Scale factor is supported for:
 - Specified NETs
 - Specified P2P pairs
 - Specified layers

- Use Parasitic Explorer commands to scale parasitics. starrc_shell> scale_parasitics -config config file
- 2. Use Parasitic Explorer commands to write out scaled GPD. starrc_shell> write_parasitics -pe -format gpd test.gpd

Config_file:

- -net_list <net name> -res_factor <res_factor> -cc_factor <cc_factor> -gc_factor <gc_factor>
- -net_list <net name> -res_factor <res_factor2> -cc_factor <cc_factor2> -gc_factor <gc_factor2>
- -net_list <net name> -from <pin/port/node name> -to <pin/port/node name> -res_factor <res_factor> -cc_factor <cc_factor> -gc_factor <gc_factor>
- -layer <layer name> -res_factor <res_factor> -cc_factor <cc_factor> -gc_factor <gc_factor>
- -net_list <net name> -layer <layer name> -res_factor <res_factor> -cc_factor <cc_factor> -gc_factor <gc_factor>

SNUG INDIA 2024 24

Unique Features

starrc_gpd_read_opens_shorts

Usage:

starrc_gpd_read_opens_shorts # Read Opens/Short errors from StarRC, convert to a binary file which can be loaded in non-GUI or GUI Layout->View->Error Browser

-gpd gpdDir	(GPD directory for the design)
[-error_file errorFile]	(File name that stores the error database (default starrc_openshort.err))
[-window window]	(Window (bounding box) for which open or short to be displayed)
[-type type]	(Type of violation: open/short/all (default)))
[-limit limit]	(Total number of errors to be shown for each type)
[-add_gui_selection]	(Highlight the affected net(s) in the GUI)
[-add_net_attributes addNetPar]	(Add attributes to net (append, replace (default)))
[-nets nets]	(List of net names for which open/shorts are to be shown)
[-summary_view]	(Brief visualization of all errors)
[-warning_limit warning_limit]	(Total number of warnings to be shown for each type)
[-short_types short_types]	(List of space-separated short types (net unselectable power fill-blockage nonselected skip_cell fill blockage) for which shorts are to be shown)

Multiple error reports can be dumped and loaded in layout view for analysis
Specific areas in the design can be selected for debugging



Conclusion and Future Scope

Conclusion

- Getting accurate P2P resistance values is critical when doing custom routing for integration of analog IPs, matching RC specs with respect to IP Integration guidelines
- Large RC parasitics can also lead to timing violations in critical path.
- Design complexity $\uparrow \rightarrow$ Debugging Time \uparrow
- Achieved 2x productivity boost in addressing critical signoff issues
- Consequently, PE expedites design closures and enhances the turnaround time (TAT) of the overall design cycle

Future Scope

- Parasitic Explorer can be used to do early estimation of timing violations by looking into the parasitic profile of the design.
- RC Scalar can be used to do what-if analysis of parasitics before moving to newer technology nodes.

THANK YOU

Our Technology, Your Innovation[™]