
SNUG INDIA 2024 1

Efficient methods to optimize PrimeTime-

based full flat timing signoff runtime for

large SoC designs

Akhilesh Kumar Shukla

Devyani Wad

Jyothirmayee Camasamudram

Intel

SNUG INDIA 2024 2

Agenda

• Possibility of Full Flat Signoff for big Designs

• Design Challenges with partition/SubFCs Roll-up at FCT : Case Studies

• Full Chip Timing Runtime Challenges

• Methods to Optimize Runtime and Peak Memory Requirement

• Results, Conclusion & Future Work

SNUG INDIA 2024 3

Possibility of Full Flat Signoff for big Designs

• Problem Statement

- For Large complex SoCs, It is difficult to flatten all the hierarchies in one run, due to

limited availability of bigger size compute/machines and huge runtime

- Generally, large size SoCs follow hierarchical signoff with "Hyperscale Scale Model’ to reduce full

chip timing runtime and compute requirement

- Need some design hand-holding/Constraint management while rolling-up partition data as

“hierarchical abstraction”

• Synopsys has done lots of improvement to PrimeTime to handle big size

design

– Large SoC full flat designs can be managed with comparatively smaller compute farm with

reasonably lesser runtime

SNUG INDIA 2024 4

SoC Runtime Target for "Full Flat" Timing Signoff

• SoC timing runtime should be ~1day and target should be to achieve minimum

~2 Timing ECO Cycles per week

• Runtime target for Full Chip Timing (FCT) including One cycle Timing ECO

FCT Prep
Run area setup, Collateral Population, STA Setup

FCT Run
Save session, Timing reports generation,

TECO collateral generation

Timing

Clean

Timing Signoff

Tweaker/Manual

ECO

Partition ECO
Place and ECO Route

Metal Fill and Extraction

Partition Collaterals

Generation

~1 day

~1 day

~1 day

No

Yes

SNUG INDIA 2024 5

Design Challenges with partition/SubFCs Roll-up at FCT

Case Study 1

• Multiple Entry points at partition level for

same clock

• If partition is roll-up as hierarchical

abstraction model then clock latency

need to model with proper constraint in

FCT

clk

• Multiple fanout from the same port

• By default all fanouts not retained

• Need to use a special switch to retain

all the fanouts

Partition/SubFCs

Model

• Any variation/crosstalk delta delay in clock network outside the “hierarchical

abstraction” boundary that need to be modeled with appropriate constraint to avoid

any timing gaps/miscorrelation

Partition/SubFCs

Model

Interface 1

Interface 2

Interface 3

Interface 4

c
lk

Partition/SubFCs

Model

SNUG INDIA 2024 6

FF1 FF2

Big load Cap set

in partition IOC

HS/Flat Model

• Min Timing was failing when “partition" is flattened at SoC

• There was big load cap setting in “partition" IO constraint, delaying the "clk->q" of flop FF1

• No buffer was added at physical boundary at partition, hence internal flop delay calculation was dependent

on external load cap set in IOC

• In flat run, real load cap seen and FF1 "clk-q" delay was faster compared to partition run and showing-up

min failure

Design Challenges with partition/SubFCs roll-up at FCT

Case Study 2

SoC Flat Model

SNUG INDIA 2024 7

Methods to Optimize Runtime and Peak

Memory Requirement

SNUG INDIA 2024 8

Full Chip Timing Runtime Challenges

FCT

HS Hierarchy
Selection

STA run

Link_design

Read parasitics

Read_constraints

Update_timing –
full

Save_session

STA reporting

S.No. Flow Step Runtime

1 link design 34 mins

2 read parasitics 38 mins

3 read_constraints 16hr:50mins

4 update_timing -

full

12hr:12mins

5 save session 21m

Solutions implemented for the runtime issues

• read_constraints – Tool enhancements done by Synopsys + Constraints Optimization techniques

• update_timing –full – Tool enhancements done by Synopsys for full flat FCT runs

• These enhancements helped improve overall runtime and memory requirements of the FCT runs for both

HS and full flat

SNUG INDIA 2024 9

Constraints Optimization : Collection Reordering

Original script set_multicycle_path -setup… - through [all_fanout -from [get_pins */*$pattern* --nocase

-filter “direction==in”] -to [get_clocks clk*]

set_multicycle_path -hold… - through [all_fanout -from [get_pins */*$pattern* --nocase

-filter “direction==in”] -to [get_clocks clk*]

Modified script set pins [get_pins[all_fanout -from [get_pins $pattern -nocase -filter “direction==in”]....

set_multicycle_path -setup….-through $pins -start -to [get_clocks clk*]

set_multicycle_path -hold …...-through $pins -start -to [get_clocks clk*]

Issue

• Same collection used multiple times during

read_constraints.

• Example : same set of through pins for

multiple set_multicycle_paths/set_false_paths

 Solution

• Generate the collection and save into a

variable

• Use $variable with the different constraints

SNUG INDIA 2024 10

Constraints Optimization : Constraints

Reordering
 Issue

• 2 sets of constraints in Primetime

- Set1 : Invalidate logical timing

- Set2 : Update logical timing

• If constraints sourced alternately, logical timing

invalidated and validated multiple times

 Solution

• Reorder the constraints such that the logical

update timing validation/invalidation is

minimized

Set 1 set_case_analysis
(Invalidates logical

update timing)

Set 2 all_fanin –to $pin
(Invokes logical
update_timing

Set 1 set_sense
(Invalidates logical

update_timing

Set 2 all_fanout –from
$pin (Invokes logical

update_timing)

Set 1
set_case_analysis (Invalidates

logical update timing)

Set 1 set_sense

Set 2 all_fanin –to $epin
(Invokes logical update_timing)

Set 2 all_fanout –from $pin

Original

sequence

of

commands

~5-6 logical updates

Modified

sequence

of

commands

2 logical updates. Reducing ~3-4 logical updates

giving runtime advantage

SNUG INDIA 2024 11

Constraints Optimization – Command

Restructuring

Original script foreach_in_collection clkpins [get_pins [*/clk] {

set arrival [get_attribute [get_timing_paths..-through $temp_pins]arrival] → trigger

timer update

set_annotated_delay -max_delay -incr -to $object $val

}

Here set_annotated_delay is part of foreach loop which invalidates timer update

Modified script foreach_in_collection clkpins [get_pins [*/clk] {

set arrival [get_attribute [get_timing_paths… -through $temp_pins] arrival] → Timer

update once

redirect -append -f i le annotation.tcl [\

set_annotated_delay -max_delay -incr -to $object $val

]

}

source -e -v annotation.tcl

Set_annotated_delay commands written out into a f i le and sourced separately

 Issue

• Few Primetime commands invalidate timer

update and few invoke timer update

• These were part of foreach_in_collection loop,

resulting in multiple timer updates

Solution

• One of the commands was annotating the

delays on objects

• Redirected all these commands into a file and

sourced the file outside of the

foreach_in_collection loop

SNUG INDIA 2024 12

Constraints Optimization – Collection

Redefining

 Issue

• Commands like get_pins –hier * and get_cells

–hier * called at multiple places inside multiple

user defined procs

• Every time these collections were invoked,

they consume some runtime.

 Solution

• Redefine these collections as global variables

to be used anywhere in the flow

 Original script Modified script

set var1 [get_pins –hier * -quiet]

set var2 [get_cells –hier * -quiet]

proc proc1 {

…

set var3 [get_pins –hier * -quiet]

}

proc proc2 {

. .

set var4 [get_cel ls –hier * -quiet]

}

set CONFIG_GET_CELLS_ALL [get_cel ls -quiet -hier *]

 set CONFIG_GET_PINS_ALL [get_pins -quiet -hierarchical *]

 global CONFIG_GET_CELLS_ALL

 global CONFIG_GET_PINS_ALL

set var1 $CONFIG_GET_PINS_ALL

set var2 $CONFIG_GET_CELLS_ALL

proc proc1 {

…

set var3 $CONFIG_GET_PINS_ALL

}

proc proc2 {

..

set var4 $CONFIG_GET_CELLS_ALL

}

SNUG INDIA 2024 13

Primetime Tool Enhancements

• Constraint optimization did help a lot to improve the overall constraint read

runtime, but we needed additional tool optimizations to achiever our targets

• Starting T-2022.03-SP5* version (Jan 2023 release) of PrimeTime, SNPS R&D

optimized PrimeTime internal exception processing capabilities

• Tool enhancements not only helped executing full flat runs but also in memory

reduction from Terabytes to Gigabytes.

SNUG INDIA 2024 14

Results and Conclusion

SNUG INDIA 2024 15

Runtime and Memory Impact with Constraints

Optimization

Runtime Design A (HS model R*

version)

No

constraints

opto

With

constraints

opto

Runtime

Reduction

read_constraints ~17hrs ~14.2hrs 16%

update_timing ~12hrs ~8.5hrs 29%

total_runtime ~30.5hrs ~24.5hrs 19.67%

Memory Design A (HS model R*

version)

No

constraints

opto

With

constraints

opto

Runtime

Reduction

read_constraints 859G 846G 1.5%

update_timing 1.03T 886G 13.98%

total_memory 1.03T 897G 12.91%

• Runtime and Memory impact on Design A after

implementing all the constraint optimization

techniques discussed

• There is no change in PT version used

• Results are on the HS based model of Design A

SNUG INDIA 2024 16

Runtime and Memory Gain with Tool Enhancements

for HS Based Designs

• Runtime and Memory impact on Designs A & B

with the T* versions

• Results are on the HS based model of Designs

A & B

Design A R*

Version

T*

Version

Runtime Gain

Read_constraints ~16h ~6h 62%

Update_t iming ~12h ~5h 58%

Total Runtime ~30h ~12h 60%

Design A R*

Version

T*

Version

Memory Gain

Read_constraints 869G 131G 85%

Update_t iming 1.03T 312G 70%

Total memory 1.03T 312G 70%

Design B R*

Version

T*

Version

Runtime Gain

Read_constraints ~12h ~9h 25%

Update_t iming ~10h ~5.5h 45%

Total Runtime ~24h ~16h 33%

Design B R*

Version

T*

Version

Memory Gain

Read_constraints 362G 154G 57%

Update_t iming 1.14T 432G 62%

Total memory 1.14T 433G 62%

SNUG INDIA 2024 17

Runtime and Memory Gain with Tool

Enhancements for Full Flat Designs

• Runtime and Memory impact on Designs A & B with the T* versions

• Results are on the full flat models of Designs A & B

• Design A full flat runs always crashed in R* versions. So there is no reference data

Design A R*

Version

T*

Version

Performance

Read_constraints Tool Crash ~6h NA

Update_t iming Tool Crash ~5h NA

Total Runtime Tool Crash ~12h NA

Design A R*

Version

T*

Version

Memory Gain

Read_constraints 3TB+ 237G NA

Update_t iming 3TB+ 611G NA

Total memory 3TB+ 611G NA

Design B R*

Version

T*

Version

Runtime Gain

Read_constraints ~7h ~10h -42%

Update_t iming ~7h ~7h 0&

Total Runtime ~16h ~19h -18%

Design B R*

Version

T*

Version

Memory Gain

Read_constraints 505G 260G 48%

Update_t iming 1.77T 602G 66%

Total memory 1.77T 602G 66%

SNUG INDIA 2024 18

Conclusion & Future Work

• Primetime is Capable of handling large designs with optimized runtime/peak

memory without compromising on overall quality

• It is recommended to flatten the design as much as possible for better

silicon correlation

• During initial phase of designs, better to focus the timing convergence with HS

model for quick turn-around time

• Need to continue partnering with SNPS for further performance gains in the next

versions

SNUG INDIA 2024 19

Future PT enhancements

• Primetime U* release is enhanced further to reduce the number logic updates

which help in runtime improvement.

• Work in progress to check the QoR impact on multiple designs.

Design A

 (T*version)

Runtime Memory Logical

Updates

Read_constraints ~13h 225G 24

Update_timing ~10h 567G 25

Total ~27h 612G 25

Design A

(U*version)

Runtime

(hours)

Memory

(GB)

Logical

Updates

Read_constraints ~8.5h 215G 11

Update_timing ~9.5h 559G 12

Total ~26h 592G 12

SNUG INDIA 2024 20

	Slide 1: Efficient methods to optimize PrimeTime-based full flat timing signoff runtime for large SoC designs
	Slide 2: Agenda
	Slide 3: Possibility of Full Flat Signoff for big Designs
	Slide 4: SoC Runtime Target for "Full Flat" Timing Signoff
	Slide 5: Design Challenges with partition/SubFCs Roll-up at FCT Case Study 1
	Slide 6
	Slide 7: Methods to Optimize Runtime and Peak Memory Requirement
	Slide 8: Full Chip Timing Runtime Challenges
	Slide 9: Constraints Optimization : Collection Reordering
	Slide 10: Constraints Optimization : Constraints Reordering
	Slide 11: Constraints Optimization – Command Restructuring
	Slide 12: Constraints Optimization – Collection Redefining
	Slide 13: Primetime Tool Enhancements
	Slide 14: Results and Conclusion
	Slide 15: Runtime and Memory Impact with Constraints Optimization
	Slide 16: Runtime and Memory Gain with Tool Enhancements for HS Based Designs
	Slide 17: Runtime and Memory Gain with Tool Enhancements for Full Flat Designs
	Slide 18: Conclusion & Future Work
	Slide 19: Future PT enhancements
	Slide 20

