Efficient methods to optimize PrimeTime-
based full flat timing signoff runtlme for
large SoC designs |

Akhilesh Kumar Shukla
Devyani Wad
Jyothirmayee Camasamudram

e =
~."

Intel

Agenda @

Possibility of Full Flat Signoff for big Designs

Design Challenges with partition/SubFCs Roll-up at FCT : Case Studies

Full Chip Timing Runtime Challenges

Methods to Optimize Runtime and Peak Memory Requirement

Results, Conclusion & Future Work

SNUG INDIA 2024 2

Possiblility of Full Flat Signoff for big Designs o

* Problem Statement

- For Large complex SoCs, It is difficult to flatten all the hierarchies in one run, due to
limited availability of bigger size compute/machines and huge runtime

- Generally, large size SoCs follow hierarchical signoff with "Hyperscale Scale Model’ to reduce full
chip timing runtime and compute requirement

- Need some design hand-holding/Constraint management while rolling-up partition data as
“hierarchical abstraction”

« Synopsys has done lots of improvement to PrimeTime to handle big size
design

— Large SoC full flat designs can be managed with comparatively smaller compute farm with
reasonably lesser runtime

SNUG INDIA 2024 3

SoC Runtime Target for "Full Flat" Timing Signoff °

« SoC timing runtime should be ~1day and target should be to achieve minimum
~2 Timing ECO Cycles per week

* Runtime target for Full Chip Timing (FCT) including One cycle Timing ECO

FCT Prep

Run area setup, Collateral Population, STA Setup

~1 day—

FCT Run

Save session, Timing reports generation,
TECO collateral generation

S _, Tweaker/Manual
ECO

¥ Yes | J

Y
Timing Signoff ~1 day

SNUG INDIA 2024 4

Design Challenges with partition/SubFCs Roll-up at FCT

Case Study 1

N

Partition/SubFCs

Model

« Multiple Entry points at partition level for

same clock .
 If partition is roll-up as hierarchical .
abstraction model then clock latency .

~

Partition/SubFCs

Model

Multiple fanout from the same port
By default all fanouts not retained
Need to use a special switch to retain

K need to model with proper constraint in/ K all the fanouts /
FCT

a

Partition/SubFCs

Model

\ any timing gaps/miscorrelation

« Any variation/crosstalk delta delay in clock network outside the “hierarchical
abstraction” boundary that need to be modeled with appropriate constraint to avoid

~

JSNUG INDIA 2024

5

Design Challenges with partition/SubFCs roll-up at FCT

Case Study 2

-~

o

N

HS/Flat Model

\

/

SoC Flat Model

Big load (
in partitic

Cap set
n 1OC

« Min Timing was failing when “partition” is flattened at SoC
« There was big load cap setting in “partition" 10 constraint, delaying the "clk->q" of flop FF1
» No buffer was added at physical boundary at partition, hence internal flop delay calculation was dependent

on external load cap set in IOC

« Inflat run, real load cap seen and FF1 "clk-q" delay was faster compared to partition run and showing-up

min failure

SNUG INDIA 2024 6

Methods to Optimize Runtime and Peak
Memory Requirement

Full Chip Timing Runtime Challenges °

Link_design
Flow Step Runtime

2 read parasitics 38 mins

3 read constraints [16hr:50mins

4 update_timing - 12hr:12mins
full
5 save session 21m
Save_session

Solutions implemented for the runtime issues
» read_constraints — Tool enhancements done by Synopsys + Constraints Optimization techniques
« update_timing —full — Tool enhancements done by Synopsys for full flat FCT runs

~

« These enhancements helped improve overall runtime and memory requirements of the FCT runs for both

HS and full flat

.

SNUG INDIA 2024

8

Constraints Optimization : Collection Reordering

/ Issue \

« Same collection used multiple times during
read_constraints. .

4 N

Solution

Generate the collection and save into a

_ variable
« Example : same set of through pins for

multiple set_multicycle paths/set_false paths .

\ /

Original script set_multicycle_path -setup... - through [all_fanout -from [get_pins */*$pattern* --nocase
-filter “direction==in"] -to [get_clocks clk*]
set_multicycle_path -hold... - through [all_fanout -from [get_pins */*$pattern* --nocase
-filter “direction==in"] -to [get_clocks clk*]

Use $variable with the different constraints /

Modified script [set pins [get _pins[all_fanout -from [get_pins $pattern -nocase -filter “direction==in"]....
set_multicycle_path -setup....-through $pins -start -to [get_clocks clk*]
set_multicycle_path -hold -through $pins -start -to [get_clocks clk*]

SNUG INDIA 2024 9

Constraints Optimization : Constraints

Reordering
/ Issue

« 2 sets of constraints in Primetime
- Setl : Invalidate logical timing
- Set2 : Update logical timing

 If constraints sourced alternately, logical timing
_ invalidated and validated multiple times -

Set 1
set_case_analysis (Invalidates
logical update timing)

Set 1 set_case_analysis
(Invalidates logical
update timing)

@

Set 2 all_fanin —to $pin

(Invokes logical Set 1 set_sense

update_timing

@

Set 1 set_sense
(Invalidates logical
update_timing

@

Set 2 all_fanout —from

—)

Set 2 all_fanin —to $epin
(Invokes logical update_timing)

$pin (Invokes logical Set 2 all_fanout —from $pin

update_timing)

|‘

Ve

_ Mminimized

Solution

» Reorder the constraints such that the logical
update timing validation/invalidation is

Original
sequence
of
commands

~5-6 logical updates

Modified
sequence
of
commands

2 logical updates. Reducing ~3-4 logical updates
giving runtime advantage

SNUG INDIA 2024

10

Constraints Optimization — Command

Restructuring
/ ssue \/ Sotlution \

* Few Primetime commands invalidate timer * One of the commands was annotating the

update and few invoke timer update delays on objects
P g * Redirected all these commands into a file and

sourced the file outside of the
foreach_in_collection loop

« These were part of foreach_in_collection loop,
resulting in multiple timer updates

- AN J

Original script foreach_in_collection clkpins [get_pins [*/clK] {
set arrival [get_attribute [get_timing_paths..-through $temp_pins]arrival]

set_annotated delay -max_delay -incr -to $object $val

}

Modified script foreach_i_collectionclkpins [get_pins [*/clK] {

set arrival [get_attribute [get_timing_paths... -through $temp_pins] arrival] > Timer
update once

redirect -append -file annotation.tcl [\

set_annotated_delay -max_delay -incr -to $object $val

]
}

source -e -v annotation.tcl

NDIA 2024 11

Constraints Optimization — Collection
Redefining

-~

Issue

Commands like get_pins —hier * and get_cells
—hier * called at multiple places inside multiple

user defined procs

Every time these collections were invoked,
they consume some runtime.

e

Solution

» Redefine these collections as global va
. to be used anywhere in the flow

riables

/

Original script

set varl [get_pins —hier * -quiet]
set var2 [get_cells —=hier * -quiet]
proc procl {

set var3 [get_pins —hier * -quiet]

}

proc proc2 {

set var4d [get_cells —hier * -quiet]

}

Modified script

set CONFIG_GET_CELLS_ALL [get_cells -quiet -hier *]
set CONFIG_GET_PINS_ALL [get_pins -quiet -hierarchical *]
global CONFIG_GET_CELLS_ALL
global CONFIG_GET_PINS_ALL

set varl $CONFIG_GET_PINS_ALL

set var2 $CONFIG_GET_CELLS_ALL

proc procl {

set var3 $CONFIG_GET_PINS_ALL

}
proc proc2 {

set var4 $CONFIG_GET_CELLS_ALL
}

SNUG INDIA 2024

12

Primetime Tool Enhancements o

« Constraint optimization did help a lot to improve the overall constraint read
runtime, but we needed additional tool optimizations to achiever our targets

 Starting T-2022.03-SP5* version (Jan 2023 release) of PrimeTime, SNPS R&D
optimized PrimeTime internal exception processing capabilities

* Tool enhancements not only helped executing full flat runs but also in memory
reduction from Terabytes to Gigabytes.

SNUG INDIA 2024 13

1
1
v N
\
\
\
N\
N
~

Results and Conclusion

Runtime and Memory Impact with Constraints
Optimization

Performance Gain

Runtime (mins) Memory (gh)

2000

1500

1000

500

m No Constraint Opt m With Constrant Opt

Runtime Design A (HS model R* Memory Design A (HS model R*
version) version)

With Runtime No With Runtime
constralnts constraints Reduction constraints constraints Reduction
opto opto opto opto

read_constraints ~17hrs ~14.2hrs 16% read constraints 859G 846G 1.5%
update_timing ~12hrs ~8.5hrs 29% update_timing 1.03T 886G 13.98%

total_runtime ~30.5hrs ~24.5hrs 19.67% total_memory 1.03T 897G 12.91%

SNUG INDIA 2024 15

Runtime and Memory Gain with Tool Enhancements
for HS Based Designs

Performance X Gain

Runtime Memory

o Rr N W A

m Design A m Design B

Design A Runtime Gain Design A Memory Gain
VerS|on Versmn VerS|on VerS|on

Read_constraints ~16h 62% Read_constraints 869G 131G 85%
Update_timing ~12h ~5h 58% Update_timing 1.03T 312G 70%
Total Runtime ~30h ~12h 60% Total memory 1.03T 312G 70%

Design B R* T* Runtime Design B R* T* Memory Gain
Version Version Version Version
Read_constraints 250 Read_constraints 362G 154G 57%
Update_timing ~10h ~5.5h 45% Update_timing 1.14T 432G 62%

Total Runtime ~24h ~16h 33% Total memory 1.14T 433G 62%

Runtime and Memory Gain with Tool
Enhancements for Full Flat Designs

Design A Performance Design A Memory Gain
VerS|on VerS|on VerS|on VerS|on

Read_constraints Tool Crash Read_constraints 3TB+ 237G
Update_timing Tool Crash ~5h NA Update_timing 3TB+ 611G NA
Total Runtime Tool Crash ~12h NA Total memory 3TB+ 611G NA

Design B R* T* Runtime Gain Design B R* T* Memory Gain
Version Version Version Version
Read_constraints ~7h ~10h -42% Read_constraints 505G 260G 48%
Update_timing ~7h ~7h 0& Update_timing 1.77T 602G 66%

Total Runtime ~16h ~19h -18% Total memory 1.777 602G 66%

Conclusion & Future Work o

* Primetime is Capable of handling large designs with optimized runtime/peak
memory without compromising on overall quality

* |t is recommended to flatten the design as much as possible for better
silicon correlation

 During initial phase of designs, better to focus the timing convergence with HS
model for quick turn-around time

* Need to continue partnering with SNPS for further performance gains in the next
versions

SNUG INDIA 2024 18

Future PT enhancements @

* Primetime U* release is enhanced further to reduce the number logic updates
which help in runtime improvement.

« Work in progress to check the QoR impact on multiple designs.

Design A Runtime Logical Design A Runtime Memory Logical
(T*version) Updates (U*version) (hours) (GB) Updates
Read constraints | ~13h 225G 24
Update_timing ~10h 567G 25

Total ~27h 612G 25

SNUG INDIA 2024 19

.\
N\
.\
-
N\

\\ Our
Technology,
| \\;

Innovation”

	Slide 1: Efficient methods to optimize PrimeTime-based full flat timing signoff runtime for large SoC designs
	Slide 2: Agenda
	Slide 3: Possibility of Full Flat Signoff for big Designs
	Slide 4: SoC Runtime Target for "Full Flat" Timing Signoff
	Slide 5: Design Challenges with partition/SubFCs Roll-up at FCT Case Study 1
	Slide 6
	Slide 7: Methods to Optimize Runtime and Peak Memory Requirement
	Slide 8: Full Chip Timing Runtime Challenges
	Slide 9: Constraints Optimization : Collection Reordering
	Slide 10: Constraints Optimization : Constraints Reordering
	Slide 11: Constraints Optimization – Command Restructuring
	Slide 12: Constraints Optimization – Collection Redefining
	Slide 13: Primetime Tool Enhancements
	Slide 14: Results and Conclusion
	Slide 15: Runtime and Memory Impact with Constraints Optimization
	Slide 16: Runtime and Memory Gain with Tool Enhancements for HS Based Designs
	Slide 17: Runtime and Memory Gain with Tool Enhancements for Full Flat Designs
	Slide 18: Conclusion & Future Work
	Slide 19: Future PT enhancements
	Slide 20

