

Navigating Extraction and Timing Closure in Multi-Die System -A Signoff Methodology

Tanvi Upadhyaya Mohammed Haris Ansari Sirisha Thota Harikrishnan Krishnan Namboodiri Intel India

Agenda

- Multi-Die Systems
 - Types
 - Factors driving Multi-Die Systems
 - Basic Terminologies
- Extraction
 - 3DIC StarRC Flow
 - Need for Multi-Die modelling in RC
 - Virtual Interface Block
 - Outputs and Results
- Timing
 - Requirements for 3DIC STA Signoff Methodology
 - Building 3DIC STA environment
 - Performance comparison of Hyperscale v/s Flat
 - Hyperscale model validation
 - Derate Modelling and Parasitic annotation
 - Conclusion and Future Work

Rise of Multi-Die Systems

- Traditional monolithic chips Die is fabricated using single process node
- Multi-Die Systems Disaggregation of multiple dies with different process nodes and then stacking and assembling them in a single package

Types of Multi-Die Systems

• Broadly classified as 2D, 2.5D and 3D

4

Factors Influencing Multi-Die Systems

3DIC Basic Terminology

Through Silicon Via. A via that goes through the silicon substrate that enables connection from top to bottom.

Micro-Bump(uBump)

Small solder ball are aligned between adjacent chips. They are used to connect one die to another. The aligned bumps are much smaller than flip-chip bumps.

Back side metal(MB)

Bumps are placed both on front side RDL layer and back side metal to form connection to both the "up" and "down" chips.

Silicon Interposer (Si-IP)

Chip-scale wiring structure that contains TSVs, enabling connection from one chip to another chip, or from one chip to the package.

Insulato

sn

Extraction Methodology

StarRC 3DIC Solutions

TSV

- TSV can be extracted as via or cell
- Linear dielectric around TSV modeled
- Resistance and ground cap for TSV is extracted
- TSV to TSV coupling is extracted(optional)
- TSV user defined sub-circuit(optional)

Substrate

- Substrate optionally treated as floating node or grounded
- All metal layers (M1 to back metal BM1) capacitance extracted

Micro bump

- Optional user defined sub-circuit
- Resistance modeled using pseudo-via

Multi-Die Extraction Challenges/Solutions

Various coupling interactions possible in Multi-Die System

- Micro-bump coupling parasitics
- Coupling between the top routing layers of two stacked dies

Reduced complexity for interface modelling

- Multiple interfaces can exist in a Multi-Die system
- Extract each interface and merge to get the SPEF

Multi mode multi corner extraction

• SPEFs needed for all STA scenarios

StarRC 3DIC NDM Flow

Virtual Interface Block (VIB)

Source - Synopsys document on 3DIC extraction flow

D2D Extraction Method

Source - Synopsys document on 3DIC extraction flow

 Individual die SPEFs at Multi-Corner Multi-Mode scenarios

 VIB coupling cap SPEFs at 3DIC STA scenarios

OUTPUTS

- Accurate extraction of TSVs and bumps
- User controllable layer specification for VIB extraction

RESULTS

- Die-2-Die cap numbers are validated using test structure layouts
- ~95% correlation achieved

STA Methodology

D2D Timing Topology

snug

- Dies are connected through ubumps
- Timing path
 FFB (Die1) -> FF1 (Die2)
- Data and clock passes through Tx and Rx Hips
- Clock POD can be in any of the dies
- 3DIC STA model ensures setup and hold requirements of D2D paths

Source – Synopsys White Paper on Multi-Die Systems

3DIC STA Methodology Aspects

- Building 3DIC STA Environment
 - With Hyperscale Models
 - With Flat Collaterals
- Hyperscale vs Flat Comparison
- Hyperscale Model Validation QRM
- Critical Path Retention Strategy
- Guardband / Derate Modelling
- Parasitic Annotation at 3DIC VIB SPEF

sn

Building 3DIC STA Environment

sn Logical feedthrough HS model from each die CDIE SOC BDIE PKG HS HS uBump + Top metal zone

PKG

HS

SOCPKG

Hyperscale Model

- Instantiation of dies as Hyperscale
- Generation of multiple PVT HS models
- Library rollup along with Hyperscale
- Ensure accuracy through QRM flow

Flat STA

- Collaterals of each partition/subFC/die rolled up with libraries
- Read individual die Netlist, SPEF, UPF and Timing constraints

Hyperscale vs Flat Comparison

- Hyperscale Models gives 2x faster runtime with 3.5x lesser memory
- Flat STA has significant runtime penalty, typically used as Paranoia
- Hyperscale is the regular signoff closure methodology

Hyperscale Model Validation

- QRM flow ensures accuracy of Hyperscale
- 99% paths correlating with Flat
- Max deviation ~ 3ps

Critical Path Retention Strategy

- Analysis of critical internal paths
 needed at 3DIC
- set_port_abstraction used to retain critical paths in HS models

Histogram of delta slack

No. of paths

Slack Range (ps)

Guardband and Derate Modelling

- D2D interface modelling
 - Material variation
 - Voltage drop
 - Foundry specific guardbands
- Aggregate the guardbands and derates for each die within 3DIC

Parasitic Annotation – VIB SPEF

- Die2Die bump connections are stitched with VIB SPEF
- Die level SPEF rolled up along with
 - Hyperscale Model
 - Flat collateral
- Correct SPEF annotation, key in timing closure

THANK YOU

Our Technology, **Your** Innovation[™]