

Forecasting the Timing and Static Power for Cells

Arm perspective

Mohit Srivastava – Staff Engineer Kevin Vaz – Sr. Design Engineer Arm Embedded Technologies Pvt. Ltd. Agenda

Motivation The dilemma of last minute PDK/PVT changes

Close on the current PDK/PVT (face issue of seeing competitor showing better benchmarks)

Wait for new characterized libs from vendor (late time to market).

Apply a pessimistic flat delay derate

(pessimism can cause excessive tool TAT, not to mention the ECO after the implementation could be large).

Use the S2D technique (this will provide a realistic *estimated* derate for each and every path with +-3% of actual characterized liberty).

Note: S2D is not a SUBSTITUTE for actual characterized libraries

Introduction to S2D

S2D is an acronym for Spice to Design

A method to assess timing and power impact of new spice model, in the absence of characterised new libraries within a range of $\pm 3\%$ of actual/New library data

Perturbation Effects

Analysis Types

Threshold Voltage (Vth)

It is the gate voltage which controls the MOSFET. Vth is inversely proportional to delay

Saturation Current (Ids)

It is the current between drain to source when MOSFET is turned on. Ids is proportional to delay

PVTExplorer based S2D

User defined perturbation for Vth and Ids. PPA, Robustness analysis

CTPM based S2d

ML analysis to determine the effects of a PDK change for the design Analyzing impact of new spice models

Analysis types

PVT Explorer based analysis

Timing/power sensitivity with respect to {Vth, Idsat, Cap} User specified change in {Vth, Idsat, Cap}

Note: The data is from Synopsys[©] Project Sicily

Generation of the Augmented Sensitivity Side-file Data needed by Analysis tools to add derate from perturbation

Generation flow in Prime-Lib S2D augmented sensitivity side-file generation

- Hspice simulator to be used as a model parser.
 - The simulator reads the models and perturbation parameters provided in the configuration.
 Then it creates a intermediate files, which is used by the PrimeLib.
 - Pertubation parameters provided by foundry.
- Run the S2D char for the selected slew/load indices, to get full coverage of the delay/constraint tables.
- S2D data generated for delay/constraints/power/receiver_cap.

Simulation decks

Timing and Static power spice decks

ps_delay deck,

.data <u>arc_data</u> + <u>slew_ck load_q temperature_tag __param_vdd</u> slew_time_hl_ck_45 **ps_1 ps_2 ps_3 ps_4 ps_5 ps_6 ps_7 ps_8** + 2.43e-13 2.71203e-17 -25 1.1 2.7321e-12 <mark>0 0 0 0 0 0 0 0 0</mark>

+ 2.43e-13 2.71203e-17 -25 1.1 2.7321e-12 -1 0 0 0 0 0 0 0 0

Checks on S2D

+ Uses check_library utility from LibraryCompiler

- Baseline liberty value check.
- Any missing S2D tables
- Trend Checks

set check library options -sensitivity lib -report format {csv=1} tolerance {delay 0.02 0.002 slew 0.02 0.002 constraint 0.02 0.002 capacitance 0.02 0.0005 load index 0.001 0.00001}

check library -logic library name "./baseline.db ./sensitivity.db"

report check library options

quit

Sensitivity table: Param_name: p_vta_slytnfet Pert_value: -0.050000 Table type: cell_rise VARIABLE_1: input_transition_time VARIABLE_2: output_net_total_cap INDEX_1: 0.00110600 0.02426870 0.19740000 INDEX_2: 0.00002712 0.02240310 0.40686199 VALUES: -0.00167352 -0.00237539 -0.00260401 -0.00351806 -0.00424603 -0.00457861 -0.01588330 -0.01731160 -0.01739000

Sensitivity table:

Param_name: ids_mult_slvtnfet Pert_ratio: -0.150000 Table_type: cell_rise VARIABLE_1: input_transition_time VARIABLE_2: output_net_total_cap INDEX_1: 0.00110600 0.02426870 0.19740000 INDEX_2: 0.00002712 0.02240310 0.40686199 VALUES: 0.00148183 0.00190724 0.00220797 0.00178256 0.00219025 0.00245375 0.00479302 0.00528656 0.00569219

The check_library reports will remain empty if there is no violations

S2D table

snippet

Check_library cmd file

Analysis on entire cell set in the base toolkit library Checking how CTPM S2D works on library cell set

Collaterals & Flow

Note: Basic data is from Synopsys[©] Project Sicily

Collaterals & Flow

Note: Basic data is from Synopsys[©] Project Sicily

Analysis Setup details – library coverage

Library:

- sc6_ln03gapss0_base_slvt_ffpg_nominal_min_1p05v_m25c (fast corner lib-ccs-tn)
- sc6_ln03gapss0_base_slvt_sspg_nominal_max_0p50v_125c (near threshold corner)

Design:

• Is a netlist covering all cells in the Samsung 3GAP library

Tool used:

- PrimeTime: 2022.12-SP5-1-VAL-20240115_EngBuild
- Hspice: 2023.03-SP2-1

Process:

 The S2D CTPM flow uses a machine learning algorithm to determine the perturbation applied to each node of the design paths. This is then used in PT to report the estimated timing numbers of paths. Another PT run is performed on the newly characterized liberty. PT reports between S2D & NEWPDK run are compared

Expectation:

The delay difference between S2D estimated STA and NEWPDK STA should be within +-3%

Results from CTPM based solution

Transition time Analysis done on EVT0 + S2D & EVT1 of Samsung 3GAP process

S2D vs NEWPDK Transition Plot FFPG-Base

······· Linear (pos3) •••••• Linear (neg3) S2D tr

Transition- FFPG	S2D	NEW- PDK	ABS- DIFF(ps)	%-DIFF
MIN	0.001547	0.001547	0	0%
AVG	0.005506	0.005441	0.064	-1%
МАХ	0.030841	0.029301	1.54	-5%

S2D vs NEWPDK Transition Plot SSPG-Base

Transition-		ABS-			
SSPG	S2D	NEW-PDK	DIFF(ps)	%-DIFF	
MIN	0.003567	0.003647	0.08	2%	
AVG	0.013748	0.013945	0.197	1%	
МАХ	0.058754	0.060068	1.314	2%	

Results from CTPM based solution

Delay time Analysis done on EVT0 + S2D & EVT1 of Samsung 3GAP process

S2D vs NEWPDK Delay Plot FFPG-Base

NEWPDK dly

S2D dly
········Linear (neg3ps)
·······Linear (pos3ps)

		ABS-		
Delay-FFPG	S2D	NEW-PDK	DIFF	%-DIFF
MIN	-0.002406	-0.003174	0.768	24%
AVG	0.007654	0.007527	0.126	-2%
МАХ	0.046573	0.046452	0.121	0%

0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 -0.02

S2D dly

NEWPDK dly

			ABS-	
Delay-SSPG	S2D	NEW-PDK	DIFF	%-DIFF
MIN	0.000459	0.000013	0.446	-97%
AVG	0.023880	0.023982	0.102	0%
МАХ	0.165214	0.171294	6.08	4%

•••••••• Linear (pos3ps)

S2D vs NEWPDK Delay Plot SSPG-Base

••••••••••• Linear (neg33ps)

Results from CTPM based solution

Constraint Analysis done on EVT0 + S2D & EVT1 of Samsung 3GAP process

S2D vs NEWPDK FConstraint Plot FPG-Base

S2D •••••••••• Linear (negps) ······· Linear (posps)

Constraint-			ABS-	
FFPG	S2D	NEW-PDK	DIFF(ps)	%-DIFF
MIN	-0.003916	-0.003219	0.697	-22%
AVG	0.007251	0.007269	0.018	0%
МАХ	0.020466	0.020863	0.397	2%

S2D vs NEWPDK Constraint Plot SSPG-Base

NEWPDK S2D ••••••• Linear (neg3ps) ······· Linear (pos3ps)

Constraint-			ABS-			
	SSPG	S2D	NEW-PDK	DIFF(ps)	%-DIFF	
	MIN	-0.007079	-0.005668	1.411	-25%	
	AVG	0.019820	0.020502	0.682	3%	
	мах	0.064736	0.070211	5.475	8%	

Summary on Timing Snapshot of the analysis result for library coverage netlist

		FFPG(Diff)ps	FFPG (%)	SSPG(Diff)ps	SSPG (%)
	Min	0	0%	0.08	2%
Transition	Avg	-0.064	-1%	0.197	1%
	Мах	-1.54	-5%	1.314	2%
	Min	-0.768	24%	-0.446	-97%
Delay	Avg	-0.126	-2%	0.102	0%
	Мах	-0.121	0%	6.08	4%
	Min	0.697	-22%	1.411	-25%
Constraint	Avg	0.018	0%	0.682	3%
	Мах	0.397	2%	5.475	8%

- The average for most of cells is within +-3% range
- The constraints and transition data is expected to normalizes over design

Summary on Static Power – Total Power

Snapshot of the analysis result for library coverage netlist

- We see the effect on internal power
- Working with Synopsys to understand this behavior

S2D-CTPM flow is a value add for timing, providing few months advantage

- The average for most of the library cells is within $\pm 3\%$ or ± 3 ps range
- Outliers seen were few and mostly on complex function cells like MBFF

The S2D-CTPM flow for static power is under evaluation

- The values for Leakage power are closer to the older PVT, which is not expected
- Synopsys is working on this limitation

THANK YOU

Our Technology, Your Innovation[™]