

Maximizing Efficiency: Achieving Full Flat STA Run Overnight with Primetime Hypergrid

Anju KC, Rajiv Girdhar, Shardul Kishor Dixit Intel

Motivation

Increasing Design Sizes

Longer run times associated with flat runs

Larger machines for flat runs

Management of multiple runs with hierarchical flow

Hypergrid- Distributed STA Feature with Primetime

Distributed compute workers in Manager-Worker configuration

- Manager handles inter-process communication
- · Workers/partitions analyzes part of design
- Manager-Worker interacts to keep the timing data up to date for the entire design

Design is partitioned based on timing cones

- · Timing cones derived based on topological connectivity
- · Constraints and Parasitics aware
- No dependency on physical hierarchies

Better run time with lower configuration machines

- Utilizes multiple smaller configuration machines in parallel
- · Significant improvement on run time
- · No dependency on high configuration machines

Automatic Distribution

Hypergrid Flow

Expectation: Run time improvement by utilizing lower memory machines

Run Time Optimization

Issues	Reason	BKM from SNPS	Update
Increase in link_design run time	HG Manager glances through the constraints to identify the clock propagation for proper partitioning of workers	Selective look-ahead- scan to avoid HG Manager wasting time on huge number of exceptions present	<pre>#Added for HG set distributed_enable_selective_lookahead_scan true enable_hypergrid_pre_scan # if { \$distributed_is_lookahead_scan} { disable_hypergrid_pre_scan } set_multicycle_path -setup 4 -from [get_clocks clock1] -to [get_clocks \$ clock2] -comment {EXCLUDE_FROM_ATPG GE_EXCEPTION S_STC1} set_false_path -through \$sss_pwrgood if { \$distributed_is_lookahead_scan} { enable_hypergrid_pre_scan } </pre>
Higher constraint sourcing run time at Manager	Sourcing of huge number of exceptions at the Manager results in higher run time	Selective disabling of exceptions which doesn't impact clock definition & propagation at the Manager	<pre>if {! (\$::sh_has_full_design && \$::distributed_enable_analysis)} [set_multicycle_path -setup 4 -from [get_clocks c k1] -to [get_clocks c k2 -comment {</pre>

On-the-Fly Constraints Management for Hypergrid

- All clock related constraints to be present during partitioning
- On-the-fly constraints to be converted to static first and then merged with other constraints for Hypergrid

Quality Checks (Initial)

Initial Run

Clock Sinks Comparison

Regular flat Vs Hypergrid

- Differences in quality checks during the initial runs due to clock propagation issues
- Few set_case_analysis and set_sense commands got excluded from manager while excluding exceptions from look ahead scan and exception exclusion

Sil

Reason for High UCR

Exclusion of some case analysis & clock stop propagation constraints in the manager impacted clock propagation

- Missing case_analysis from the manager lead to no case value at the clock mux select pin
- clk1 input of the clock mux is reported as no clock
- Set_sense to stop the clock clkB was missing

- No no-clock or UCE reported on the cell with the case value present
- Set_sense stops the unwanted clock

Keep timing constraints modular to ease out exceptions exclusion from look-ahead-scan and Manager

Quality Checks (Final)

check_timing	PT	HG	comment	
no_input_delay	0	0	Matching	
no_driving_cell	43375	43375	Matching	
unconstrained_endpo ints	76696	76696	Matching	
unexpandable_clocks	2	2	Matching	
no_clock	70560	70560	Matching	
loops	19	19	Matching	
generated_clocks	5	5	PTE-103 & PTE-075	
voltage_level	613	613	Matching	
Clocks	835	834	Un-used virtual clock is less in HG	
all_registers	12175580	12175580	Matching	

Clock Sinks Comparison

- Check_timing matches with regular flat runs
- The run also passed all other extensive internal quality checks

SNUG INDIA 2024 11

SETUP Flat HG Diff -14410 -14410 0

4668

52

0.004

-262958579

1329597

197.8

HOLD Flat HG Diff WNS (ps) -8052 -8052 0 -300606 TNS (ps) -300596 10 NUM 29324 29325 1 TNS per endpoint -10.251 -10.251 0.001

Hold Timing QoR (PBA)

Delta slack (ps)

Setup timing correlation

Setup Timing QoR (PBA)

Regular Flat Vs Hypergrid

-262953910

1329545

197.8

WNS (ps)

TNS (ps)

NUM

TNS per endpoint

Timing Correlation Regular Flat Vs Hypergrid

Launch Clock Latency Correlation

Timing Correlation Regular Flat Vs Hypergrid

Transition Correlation

Capacitance Correlation

Crosstalk Correlation

Run Time / Memory Comparison

Regular Flat Vs Hypergrid

- Considerable improvement in run time of constraint reading & update timing stage
- Overall Hypergrid run time till update timing reduced from 23hrs to 13hrs
- Run time improved by ~43% than flat run time
- Peak memory usage reduced to < 256GB with 16C compared to >500GB with 32C in flat runs

Current Limitations & Future Scope

snug

- On-the-fly constraint generation
 - All constraints including clock definitions and others affecting clock propagation must be present during link_design while partitioning occurs
 - Tool can be enhanced to handle this automatically
- Exceptions (FP & MCP) to be manually excluded from manager
 - To be excluded from look-ahead-scan and constraints sourcing to achieve an optimal run time
 - Adds extra overhead in managing the constraints effectively
 - Tool can be enhanced to handle the exception exclusion automatically
- Minor reporting differences observed on few PARA, RC & UITE warnings
 - Debugged to be reporting issues
 - To be fixed in tool
- Evaluate quality of the outputs e.g. sdf, context, hyperscale etc.

The Hypergrid Journey

Timing Model Comparisons

Parameter	Flat Timing Model	Hierarchical Timing Model	HyperGrid based Timing Model
Timing Signoff	Only at SoC level	At multiple levels	Only at SoC level
Signoff Accuracy	High	Needs more efforts to establish correlation	High
Constraints Generation, Management & Signoff	Only at SoC level	At multiple levels	Only at SoC level
Xtalk & DCD impact modeling	Not Required	Required	Not required
Run Time	High	Low	Highly Optimized
Memory Requirement	High	Low	Low
HyperScale/Lib Generation & Management	Not required	Needs more efforts, Required at various level	Not required
Quality Check	Only at SoC level	At multiple levels	Only at SoC level

Summary

• Achieved over night run time for SoC level flat timing runs with HyperGrid

- Reduces dependency on limited high configuration machines which reduces overall wait time
- HyperGrid based timing run QoR matches with regular flat timing runs.

THANK YOU

Our Technology, **Your** Innovation™