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VC Formal Overview
Oguzhan Turk, Sr. Applications Engineer, Synopsys




Synopsys VC Formal — Leading Formal Innovations

Unified Formal Debugger with Verdi Industry's Eastest:Growing Formal Solutiont:

FPV FTA " SEQ DPV
=) 1=k :D—- Deliver highest performance
P_ '\ Tes;nch S " lt' | Datapath Innovative formal engines and ML-based orchestrations
Verri?iF()::ti{)n Analyzer Eqi?\tljae]grlm?:e VaIidaption find more bugs and achieve more proofs on larger designs

FCA

o2 || @

FRV

FXP
é;%‘j Enable formal signoff

Exhaustive formal analysis catches corner-case bugs and

&

Connectivity Coverage X-Propagation Register enables formal signoff for control and datapath blocks
Checking Analyzer Verification Verification
AEP FuSa FSV FLP
2= ] Ease Formal adoption
—)@ % Easy-to-use formal apps, native integration with VCS and Verdi,
Functional Security and Formal Consulting Services reduce formal adoption effort
Auto Checks Safety Verification Low Power

Rich Set of Assertion IPs

ML-Enabled Formal Engines and Orchestrations
S\/HUPS\/S © 2024 Synopsys, Inc.



Synopsys VC Formal: Innovative Formal Verification Solutions
VC Formal Apps Adoption Effort — Formal Expertise Not Always Required

cC FXP SEQ DPV FLP
ol | | A 18 R
» s Aend
Connectivity X-Propagation FuSa Sequential Datapath FSV
Checking Verification Equivalence Validation Low Power
()
- FRV
FCA AEP Functional FPV FTA Security
@ ¥— Safety 101 p— Verification
ok %] @ || Eo
Coverage Register Property Testbench
Analyzer Auto Checks Verification Verification Analyzer

Verification Complexity: In terms of exhaustive computation analysis required to verify the DUT

Adoption Effort: In terms of formal expertise and testbench required to apply the specific APP

Synopesys © 2024 Synopsys, Inc.



Synopsys VC Formal: Innovative Formal Verification Solutions
VC Formal Apps Can Be Used Throughout the SoC Flow

FPV DPV FuSa i SEQ FSV FLP
=F ¢
=R\ TT1
Property Datapath Functional Sequential Security
Verification Validation Safety Equivalence Verification Low Power
FTA AEP FXP FRV FCA CcC
= 2 =
— ¥ — 101
=9 e & v oLw
Testbench X-Propagation Register Coverage Connectivity
Analyzer Auto Checks Verification Verification Analyzer Checking

Block/IP Subsystem

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting

High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Synopesys © 2024 Synopsys, Inc.



VC Formal Leverages Industry Leading Verification Eco-system

Unified Compilation Common Setup and Debug Platform;
Common Coverage DB VCS Verdi Unified Planning;
Integrated UNR Integrated Formal Navigator

Fault Pruning
Common Fault DB

Common UPF Reader VCLP
Unified Low Power Verification VCS NLP

Lint, CDC, RDC VC
Formal Analysis SpyGlass

ISA Formal Verification

Synopesys © 2024 Synopsys, Inc.



RISC-V Core Formal Verification Overview

* FPV (Model Checking):
— Prefetch Buffer
— LSU - Load/Store unit
— Pipeline
— RISC-V AIP
 DPV (Equivalence Checking):
— ALU/MULT/Dotp
— Decoder
SEQ (Equivalence Checking):
— Clock gating verification in every functional unit

— Designs comparison in presence of new
features/timing changes

FRV (Formal Register Verification)
— Control and Status Registers (Zicsr)

FSV (Formal Security Verification)

— Secure/Non-secure data propagation
SYNnopsys

wdata o

v addr o )
Eé rdata i SC-V core _ N—— addre 5
8 128 Controller ol - —S0PA SR o> rdata i =
c nPC PC =08 A y S
S Prefetc Silas i o
H Buffer ‘ Decoder ex [ opA ALU A =
= A Fill SRy BPLp -
0 T mp E —IM OpC A 2
& GPR i e =

—\ 3 !
(0] N>rA pAa— | i
O IF NS>8 DB [ EX =
O = 11D >rC  DCC> ; RF \WB| =]
] fn DIA bl Ex O
= 3 —DDIBI_] o we
= i L OpA

L .

oy ¢ Debug Unit | £l BOFF -
o T A H >opc UNI
[} L | A\ :

k- N | NN

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-

GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/fiqure/6

* RV32l base ISA, for example:

— LOAD - LSU
— STORE - LSU

— BRANCH/JUMP/LUI/AUIPC - PFU

— OP-IMM - EXU
— OP-EXU

— Environment call/break point

» Zicsr extension

© 2024 Synopsys, Inc.
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Property

FPV

Verification

FPV BENEFITS

Verify functional correctness
of design blocks through
exhaustive formal analysis

Find corner-case bugs early
without simulation and
reduce time to verification
closure

Enable formal signoff
methodology

SYNoPSys

State-of-the-art ML-powered
formal analysis engines and
orchestration offer best
performance and capacity

Integrated Verdi GUI offers
the most familiar debugging

Deep bug hunting and
advanced proof techniques
Proof Assist, Proof Architect

VC Formal FPV: Formal Property Verification

Properties

: DUT
Constraints =

VC Formal FPV

VCS Compilation Frontend

Smart Engine Orchestration
Regression Mode Acceleration
Verdi Integrated Debugger




DPV

S F VC Formal DPV: Datapath Validation

Datapath
Validation

DPV BENEFITS

» Exhaustively verify datapath

Integrated mature HECTOR

design refinements technology
* Prove consistency of * Supports ADD, SUB, MULT,
independently developed DIV, SQRT operators

reference & implementation
models * Applicable to CPU, GPU,
DSP, AI/ML (CNN) and other
« Achieve datapath signoff data processing designs

without any testbench

SYNoPSys

Impl. Model
C/C++/RTL

VC Formal DPV

Transactional Equivalence Checking

Assume :>< >C

Equal

LU

Debug Datapath
Counter-Example Signoff

© 2024 Synopsys, Inc. 10

Compare
Outputs




SEQ
111

BIs

Sequential
Equivalence

SEQ BENEFITS

» Exhaustively verify and
signoff the design
optimizations without any
testbench

» Push the frontier of
performance, power, and
area (PPA) optimizations

« Save weeks/months
simulation regression time

SYNopsys

Supports clock gating,
retiming, microarchitecture
optimizations

Automatically creates
equivalence mapping
between specification and
implementation RTL

State-of-the-art ML powered
formal engine for best
performance

VC Formal SEQ: Sequential Equivalence Checking

Implementation
RTL

VC Formal SEQ

Check Outputs Cycle-Level Equivalence

Debug _
Counter-Example Results Reporting

© 2024 Synopsys, Inc. 11



FRV

101 |
010

Register
Verification

FRVY BENEFITS

« Exhaustively verify the
consistency of register
model against specification

* Find corner-case bugs
earlier in the design cycle,
shorten debug time

 Save time and effort

compared with manual
directed simulation tests

SYNoPSys

Accept IP-XACT, CSV,
RALF spec formats

Verify that Control Status
Registers are correctly
implemented using standard
or proprietary bus protocols

Applicable at both the block
and SoC level

VC Formal FRV: Formal Register Verification

Register Spec DUT AIP
RALF/CSV/XML Register Blocks Protocol Constraints

VC Formal FRV

Generate checkers for each register field

Verify register read/write

© 2024 Synopsys, Inc. 12



FSV
N

VC Formal FSV: Formal Security Verification

Security
Verification

FSV BENEFITS

secure
destination

A * Flexible property creation & « Ensure data security
management objectives are met through
Integrity exhaustive formal analysis
Violation OK :
j AK « ML powered engines for
fast performance * Ensure secure data cannot
unsecure > secure )
source source be read illegally or be
\v f « Data propagation analysis written from an unsecure
Data _
OK Leak and debug with temporal source
flow view
v » Detect security issues that
unsecure . . - .
destination » Verification of multiple are hard to find through
scenarios in one session other techniques

S‘/“UPS‘/S © 2024 Synopsys, Inc. 13



VC Formal Differentiations

Performance Unique Formal
7X Faster Signoff Solution

Industry Standard Verification Solution
Datapath Validation Synergy

SYNopsys

Al/ML for Performance
& Convergence

Pay-per-Minute
Cloud Offerings

© 2024 Synopsys, Inc.
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VC Formal Virtual Workshop -
Europe & Asia

The Future of Design Innovation: Mastering Formal Verification for
Cutting-Edge Designs

Date: Friday, June 21, 2024
Time: 6:30a.m.-9:30a.m. UTC /1200 p.m.-3:00 p.m. IST / 2:30 p.m. - 5:30 p.m. CST

Location: Virtual workshop with hands-on labs.This session is best suited for attendees based
in Eastern Europe and Asia.

Registration will close on June 14th. Space is limited!

SYNoPSys




ASIP Designer Overview
Johan Van Praet, Director R&D, ASIP tools, Synopsys




Automated Design of Custom Processors SYNOPSYS o

Architectural Exploration with Immediate Tool Support and Immediate RTL Implementation

ASIP Designer « Industry’s leading tool for creating Application-Specific
Instruction-Set Processors (ASIPs)

— Language-based description of ISA: full architectural flexibility

— Automatic generation of professional software development kit (SDK)

‘)Optlmlze

— Automatic generation of synthesizable RTL and debug infrastructure

Your Processor
Model — Accelerated verification, simulation, and virtual prototyping

(, — Integrated with Synopsys’ Reference Design & Verification Flows
Explore ,_)
* More than 2 dozen example models included

— Microprocessors, DSPs, vector processors,...

— Examples provided in source code, as starting point

Licensed as an EDA tool (not as IP), no royalties See website synopsys.com/asip
Used by 7 of the Top 10 Semiconductor Developers

SNUG EUROPE 2024 17




ASIP Designer

Tool Flow
User-Defined
Algorithm
User-Defined Algorithm
Architecture Gic

Processor Model o Architectural Optimization Hardware Generation
il and Software Development e
I I RTL Generator
? ? "g Optimizing C/C++ Compiler

Instruction

Set Formal ISA Verification S

RTL Synthesizer

RTL Simulator
VCS DC/FC

RTL Architect

Refinement
Debugger Instruction-Set
e & Profiler Simulator

0 SDK Generation
9 Architectural Optimization Virtual Prototyping Verification ASIC
9 Hardware Generation ESL Model Verification Model or

. i SystemC SystemVerilog FPGA
Q Verification

SYNOPSYS: ° |

Supported design steps

» Modeling of instruction-set
architectures: nML language

« Automatic generation of
software development Kkit,
including an efficient C/C++
compiler

« Algorithm-driven architectural
exploration:
“Compiler-in-the-Loop”

« Automatic generation of
RTL implementation
“Synthesis-in-the-Loop”

» Design verification
— Simulation, prototyping
— Formal ISA verification

SNUG EUROPE 2024 18




Modeling: ISA (nML) + Behavior (PDG)

Instruction-Set & Micro-Architecture

// Resource definition
mem DM[1024]<word,addr>
reg RA[2]<word,uintl>;

pipe C<word>;
trn A<word>; trn B<word>

fu alu;

// Instruction-set grammar
opn my core (arith inst | ctrl _inst)

d: div_inst,

opn arith inst (a:alu inst,
1l: load store _inst);
opn alu inst (op:opcod, x:clu, y:clu,

SYNOPSYS: 0

PCU Behavior PDG

WRITE
CACHE . BUS I/F BACK MSELEC

BANK

Perlpherals

void my asip:
user next_pc(){
// manipulation of

/T
// program counter

void my asip:
user 1ssue(){
// creation of issue
// packets from
// program words

ISSUE
BUFFER
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Datapath Behavior
// 16-bit saturating addition

z:clu) {
action {
stage EX1: i
A = RA[x];
B = RB[y]; P
switch (op) { -
case add: C = add(A, B) Qalu; I/O Interface Behavior
= A, B lu;
and(a, B) @a.u io_interface my bus if () {
void process result() {
// zransactlons before word add(word a, word b) {
; intl7 t x = (intl7_t)a + (intl7_t)b
if (x > MAX) x = MAX;
else if (x < MIN) x = MIN;

case and: C
= or (A, B) Qalu;

case or: C

i..
stage EX2:

RA[z] = C Qalu;
}
syntax: op " RA" x ", RB" y ", RA” z;

"O"::iop:iR::iy::iZ; // processor actions
}
}
SNUG EUROPE 2024
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// processor actions

}
void process_request() {
// transactions after

return x[15:0];

19




Formal ISA Verification Meth\‘O\dQ!ngl
for ASIP Designer




Formal ISA Verification for ASIP Designer (1)  SYnorsys o
Formally Verify the Generated RTL Implementation Against Expected nML Actions

Tool generates SystemVerilog properties that express expected behavior at a high, abstract level

— Requirements are not biased by the implementation
— Decomposing correctness into manageable claims, for easily converging proofs

VC Formal FPV proves asserted properties, or finds counterexample

— A counterexample typically involves parallel activity, corrupting expected action &

ASIP Designer generates assumptions to express invariant tool behavior

— Assumed properties are generated for the behavior of the C/C++ compiler, to avoid “false negatives”
— Assumptions generated for FPV are checked as assertions in RTL simulation, to avoid “false positives”

Verify behavior of data path operations (“primitive functions”) separately

— Use data path verification (VC Formal DPV) for formal verification against an independent reference, if available
— Tool may replace primitive functions with formal friendly operations for FPV

SNUG EUROPE 2024 21




Formal ISA Verification for ASIP Designer (2)  SYnorsys o

Generated Properties Use Abstraction

7 , DECODER Verification logic applies
é A— single instruction abstraction
;K——|NSTR_E1
oere || oarn ||\ ALU st D Picks arbitrary instruction value
— — | > « Tracks it through the instruction pipeline after it enters
ISSUE « Observes what happens in the architecture, during the
* lifetime of that instruction
Data path ME“;\ORY
|AD/DA||SERIAL|| DMA || AHB || JTAG| Peripherals i Cirl SESEEN' . . .
! Properties are formulated for tracked instruction
Design
- Peripherals not targeted by generated properties VC Formal FPV proves properties,
 Memories are simplified, containing random values or assigns undriven signals and variables
« External inputs are undriven, meaning formal tool to accomplish the counterexample
can assign arbitrary values

SNUG EUROPE 2024 22




Formal ISA Verification for ASIP Designer (3)  SYNorsys °
Decompose ISA Compliance Requirements for Fast Convergence

« Separate requirements for different phases in the instruction lifetime

— Requirements for fetch and issue to be provided by the user

— Generated property for instruction advancing through the instruction pipeline and
reaching the write-back stage within N cycles (N depending on pipeline depth, stalls, wait cycles,...)

« Split requirement for result correctness, by instantiating ASIP RTL implementation twice

NML based, unpipelined, functional SystemVerilog translation
Reference equals CPU 1

o with instruction in isolation
s soced IR N T T (ho pipelne, no paralleism)
tracked instruction

Unconstrained CPU 2 -“---

runs full parallelism

CPU 1 equals CPU 2
after write-back stage

SNUG EUROPE 2024 23




Compute Reference Results

SYNOPSYS: °

Tool Derives SystemVerilog Reference Code From Each nML Rule With Actions

opn alu(d: mRd, s@: mRO, sl: mR1l)

{
action {
stage EX:
d = alut = add(alur=s@, alus=sl);
}
image : "0000"::d::s0::s1;
}

« Simple due to single instruction abstraction
— Only executes one instruction
— Purely functional code, no pipelining

— Execution is aligned with pipeline stages in cpul,
for correct input sampling

tracked instruction is of type alu
always @ (*) begin
if (alu_active && cpul sampled)
begin ~
logic [12:0] image;
if (cpul_stage == EX)
begin
image = cpul instr EX[12:0];
R r rl raddr = image[2:0];
__R_r_ro _raddr = image[5:3]; input sampling
__R_r_we_waddr = image[8:6]; in cpul
r_rl = cpul_reg R[__R_r_rl_raddr]; | /
rre = cpul_reg_R[__R_r_r@_raddr];}—
alus = r_ri;
alur = r_ro;
word_add_word word(alut2, alur, alus);
rwo = alut2;
cpul _reg R ref[ R r w@ waddr] = r_we;
end
end ™~
end

it entered the pipeline

reference result

SNUG EUROPE 2024 24




Generated SystemVerilog Assertions (1) Synorsys ° |

Instruction Advances and Completes for ALU Rule

property ) tracked instruction seen at input of decoder
@(posedge clock)
alu active && cpu2 seen && !cpu2 sampled
##1 !cpu2 kill ID
| ->
##[1:7] (cpu2_sampled & cpu2 stage == WB && cpu2_instr WB valid) || instr_killed;
endproperty;

» “If the tracked instruction enters the pipeline, it reaches the write-back stage within N cycles”
— N depends on pipeline depth, stalls, wait-cycles,...
— A configurable assumption limits stalls, wait-cycles,...

SNUG EUROPE 2024 25



Generated SystemVerilog Assertions (2) SYNOPSYS
CPU1 and CPU2 Correctness Properties for ALU Rule

« Constrained CPUL (isolated instruction) compared to reference behavior, derived from nML

property alu correct cpul;

@(posedge clock)
alu_active && cpul _sampled && cpul stage == WB && cpul _instr_WB_valid // Write-Back stage
|=>
cpul _reg R[__ R r w@ waddr] == cpul reg R_ref[_ R r w@ waddr]; // Compare written value

endproperty;

* Unconstrained CPU2 compared to constrained CPU1, aligned to Write-Back stage
property alu correct cpu2;
@(posedge clock)
alu active &&

cpul sampled && cpul stage == WB && cpul instr WB valid && // cpul @ Write-Back stage

cpu2_sampled && cpu2 stage == WB && cpu2_instr WB valid && // cpu2 @ Write-Back stage

(cpu2_reg R[__ R r_rl raddr] == cpul_reg R[_ R r_ril raddr]) & // operand 1 same for cpul and cpu2

(cpu2_reg R[__ R r_re raddr] == cpul_reg R[__R r_ro raddr]) // operand © same for cpul and cpu2

|=>

cpu2_reg R[__ R r w@ waddr] == cpul reg R[__R r w@ waddr]; // result same for cpul and cpu2
endproperty;

SNUG EUROPE 2024 26




Optimizing Proof Times SYNoPSys' o
Use Bounded Model Checking

» Unbounded model checking for “instruction advances” property
— Acceptable proving times, since the property relies mostly on controller and decoder

« Bounded model checking for “result correctness” properties
— More complex proving, as this also involves the data path, containing register files etc.
— Perform bounded model checking with bound N + 2

— Without reset, if result correctness holds under bounded model checking with cycle bound N + 2,
it holds without cycle bound too

— Any longer counterexample can be mapped to a counterexample with length <= N + 2,
where in the first cycle the tracked instruction is issued,
from an initial state capturing the history of the long counterexample

o | el |0 | 1 2 | .| N | N

Reset  INSTR...; INSTR  INSTR,; INSTR,, ... INSTR,  INSTRy.;
\ )

T—* INSTR INSTR,; INSTR,, INSTR\ INSTR .+,

SNUG EUROPE 2024 27




Generated SystemVerilog Assumptions SYNoPSys'

Tool Adds Assumptions to the Formal Testbench to Avoid False Negatives

» ASIP Designer’s C/C++ compiler avoids certain instructions or instruction sequences

— Compiler avoids write conflicts on registers and nets

— Compiler honors software stall rules

— Compiler honors control related constraints, e.g. no jumps are scheduled in delay slots of other instructions
* Some general assumptions are needed

— e.g. on-chip debugging actions only in on-chip debug mode, etc.

— In absence of reset, some initial decoder states need to be constrained by invariant properties

» User can add extra assumptions to be included in checkers modules

Properties assumed in the formal testbench, are also written out as assertions for simulation

Formal Verification Simulation

— -

- ~ ~ - ~

~—— = -~ - SNUG EUROPE 2024 28




Organlzatlon According to nML Rules SYNoOPSYS

<Verdi:nTraceMain:1> formal_tb formal_tb (../formal/formal_tb.sv) - /localdev/.../evaluate_result.fsdb.vf ocaldev/.../verdi/constant.uddb (on krachtcs24)

flle View Source OneTrace Tools Window Help .Q -i)}’
N == + = — T - = fee
B 7 s A A apmose:rv~|-[ill D] - L1 SO0 M
® By: | f|> [« [»] 500 x 1ns
VCF:RskList & = O vCFGoallist 45 _ O
L P| 4] Time |20 | Maxcyce |1 Flter Target cr|EBR SRRy BXE A | (@[l e[
Name Progress Result Targets: ALL
E cpu2_advances status depth name wvacuity witness engine type
- formal_tb.chk_alu_instrs.assert cpu_advances el6 assert
[ alu_rriar instr_alu_instrs__correct C— 2:0:0:2 2 v - - - Srtepus - w2 w5
) ) ) — formal_tb.chk_alu_linstrs assert_cpud_advances e 2 @5 elb assert
[ alu_rrish_instr_alu_instrs_correct 3 2:0:0:2
N _4—— formal th chk_alu r_instrs,assert_cpu2_advances ez | @s | 16 | asert
[ alu_rrarinstr_alu rrar instr or nop_correct ] 2:0:0:2
[¥ brinstr ctrl instrs_cormect C— 2:0:0:2 Constraints: ALL
. . name vacuity witness expression type class
CSITsC_instr csrinstrs_ cormrect 4:0: :ﬂ
& - - - - — 0:0 1 constant 438 reset_ext== constconstraint script
. ~ 1M I
r] EETEE AT (BRI e — 4 0:0:4 2| formal_tb.chk_A.assume_cpu2?_constrain_div_cnt @1 1 assume source
. . 1 H
(] csrw_instr_csr_instrs_correct ) 4:0:0:4 3 formal_th.chk_A assume_cpu2_ocd_exe_then EX_nop 1 1 assume source
[ csrrwi_instr_csr_instrs_correct C— 4:0:0:4
| Y | Total Properties: 13 - passed[13] - failed[0] - ; Constraints Enabled: 126 ; Run Time: 0:05:49 ||
Instance Declarationl VCF: TaskList « *5Srcl:formal_tb.sv |UCF:GoaILiSt[cpu2_advanceS'J|
*<nWave:3> flocaldev/.. /.internaliverdi/evaluate_result.fsdb.vf 4 4 D-L_-‘ - 0O x
File Signal View Waveform Tools Window Help
= c 1 Fa N —
BB in ¥ 500 & o A Y 500 x1ns : (@) (@) [ : By (F]v (<] [») Gota: |source- - |- () T (B~ - kep

N T R R -1 s[4

VC Formal FPV scripts automatically generated n—-—
« Make a task for proving each nML rule | -
* Usable with GUI or without (batch mode) rcesones T D &b b

SNUG EUROPE 2024 29




Which Bugs Are Found? SYNoprsys’ o

Overall connectivity and data flow in the architecture are verified

Failing hazard protection
— On architectures with near-consistent write-back stages per register file

— Hazards are largely also verified by design tools, but not for e.g. delayed results from multi-cycle units

Failure to protect instructions from being corrupted by parallel activity
— Interaction with on-chip debugging and interrupts, delayed results,...
— This protection is hand-written by the user, and prone to errors

“Bug Hunting” where FPV complements simulation
— Some bugs are indirectly connected to generated properties, but cause corruption of behavior that is verified

Good results for formal signoff metrics, e.g. with Formal Testbench Analysis (VC Formal FTA)
— Detection of injected faults in controller (PCU), decoder, hazards logic,...
— High coverage metric for property density, over-constraint analysis, formal core,...

SNUG EUROPE 2024 30




WSAudiology

Formal Verification a
Roy S. Hansen, ASIC Specialist, W:

SNUG EUROPE 2024




WSA is a global leader in the Hearing Aid industry  WsAudiclogy

2019

Merger of Widex and Sivantos

Widex launched their first digital
Hearing Aid devices in 1995
(state machines)

R&D

1000+ engineers develop Hearing Aids
and key enabling technologies
R&D hubs in
Lynge (near Copenhagen), Denmark
Erlangen, Germany
Singapore

12,500+

Employees working in more than 45 offices
HQ Lynge, Denmark

32

€2,465M

Of revenue FY 2022/23

Earnings of €480M (EBITA ~14%)

Increased revenue by 50% over the last 5 years
~ 3.8 M people was fitted

Main competitors: GN, Oticon (Demand),
Phonak(Sonova), Starkey

Q

PRESENCE
®

OUR MAIN PRODUCTION SITES
RESEARCH AND DEVELOPMENT HUB

|IC Development

Team of ~35 Analog and Digital IC
designers develop chips that
enable our core technology and
business




|IC Development for Hearing Aids WsAudiology

Custom ASIC development to meet power and functional
requirements

Smallest batteries have a capacity of 50 mAh
» Must last for 16 hours (= 3 mA)
Latest process: ~20 nm

Complexity comparable to first 3G modem chips,
but with lower voltage and clock speed

Rich features:
— Bluetooth streaming

— Bi-aural digital communication
— Al

SNUG EUROPE 2024 33




Motivation WSsAudiology °

“Is there a hard-to-find bug that my testbench has not caught?”

ASIP Designer Advanced Verification Add-On
released in V-2023.12

| learned about FV techniques back in 1992-95
| am new to SystemVerilog and SVA

Time consuming to reach 100% coverage by manually writing
testcases

ASIP Designer built-in instruction-set simulation coverage
report does not consider different scenarios (pipeline state,
hazards, ...)

Random instruction generation tool (RISK) does also not
provide full coverage

SNUG EUROPE 2024 34



ASIP Features

Scalar and vector instructions

Single/Dual/Triple issue of instructions per clock cycle
Multicycle floating-point division and sqgrt units
System bus inserting processor stalls

Some vector instructions are vector-guarded

»Last three points add complexity for FV

WSAudiology °
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Getting Started

« ASIP Designer provides a manual and a step-by-step
tutorial based on tnano and trv32p5x example cores

« Synopsys assisted to get started with our custom ASIP

« Many tricks used to ensure convergence
» Split instructions into multiple tasks and scripts
» Use blackboxing of unrelated design parts

» Bounded proofs
> ...

« Convenient to run multiple tasks over night

File View Soure Onelrace Tools Window Help
B ® [ see A A Apemode: Fv |- il D) B:7

ay: [F]+ [«] [»] (500 x1ns

|

Task List
Name Progress Result

. B cpu2_advances

[ alu_miar_instr_alu_instrs__correct H2)
[ alu_rmish instr_alu instrs_correet C— 2:0:0:2
[ alu_mrarinstr_alu_rm arinstr or nop_correct [ 2:0:0:2
2
[8 br_instr_ctrl instrs_correct 2

[¥ csrrsc_instr_esr_instrs__cormect

[¥ csrrsci_instr_csr_instrs_correct

[ esrrw_instr_csr instrs_correct

[ csrrwi_instr_csr_instrs_correct

Instance VCFBiskList

+<nWave:3> /localdev/.. /.interaliverdi/evaluate_result fsdbaf

File Signal View Waveform Tools Window Help

Bacn X = 500 & o A v 500

WSAudiology

.../verdi/constant.uddb (on krachtcs24)

(t [T QIR+ XV L S
VCF:GoalList 48 _ 0o
EI ) Time (2w | maxoyee [1 F— S EEREEMEy BX 24 | @ e [R
Targets: ALL
status depth name vacuity witness. engine type
2 I formal_tb.chk_alu_instrs.assert cpu2_advances ez ®5 €16 assert

formal_tb.chk_alu_linstrs t cpu2_advances oz el6 assert

3 v o5
W ormel tohk ol riinsbs.smsert cpu2_sdvences ey | a5 | 15 | osser |

Constraints: ALL

name vacuity winess expression type class

1| constant_438 reset_ext==0 | constconstraint script

2| formal_tb chk_A.assume_cpu2_constrain_div_cnt o1 ol assume source

3 formal_tb chk_A.assume cpu2_ocd exe_then EX nop el o1 assume source
Y | Total Properties: 13 - passed[13]- failed[0] - disabled[0] ; Cnstraints Enabled: 126 ; Run Time: 0:05:49 | O]

@ *Srcliformal_th.sv VCF.GoaILlstA:puZ_edvan:esJ‘

x1ns - (@] (@ %) = 8y £~ (4] () € - Goto: [source- ~|- K i) [~ - el

4 I |

@ Message |VC Formal Cunse\el *<nWave:3> evaluate result.fsdb.vf X ‘ @ Analyzer X ‘
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Progress over time WsAudiology

coverage
100.0%
o0.0%
going for full proof with
o008 all regs
70.0% blocks of

Easter

going for full proof
with single regs

&
Y w
gy -
M=% 4

T gy

single
instr

e _ T e,

0.0%
05-Feb 12-Feb 19-Feb 26-Feb 4-Mar 11-Mar 18-Mar 25-Mar 01-Apr 08-Apr 15-Apr 22-Apr 29-Apr 06-May

model em

okl ok BT MNCON  ——tgta == days
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The missing interrupt (1) WsAudiology o

 Originally observed on FPGA
« After an acknowledged interrupt, we expect IE to go low, but it did not:

1
07 le_r (14)
IE r should be low ik
. |

H -
| D4 iack_out]5] (8) (switched with D97)
L

| imck_out]S] (12) (swiiched with D7)
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The m|SS|ng |nterrupt (2) WSAudiology

« Simple to create and debug a counterexample using formal properties
— assert property(@(posedge clock) cpu2 irq ##0 cpu2 iack[->1] |=> decode_swi(cpu2 IR _ID));

« Cause: Bug in PCU that clears interrupt when it arrives during a processor stall
« Now detected with auto-generated assertion in newer tool version

ﬂ clock g @

B c_or2_active swi does not enter_
E cpuz En o]

the pipeline

B cr 0 Processor sta| I—s :
B cpuz s ;] sSwi overwritten IF

B - puz proc stall 9 —l—

S | B EErEE——
ﬂ trm IR ID B ooy wop . swi 96 rlear IROQ . mv imsk?
ﬂ trm ID valid in _

swi instruction
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Cache Alignment

 Original: Cache used 20-bit address
* New: 32-bit address type shared with IO interfaces
« Bug: Potential overflow in PCU

> In real life, we don’t have 220 instructions,
so it's not an issue

WSAudiology o

if (rel_ jump) new pc = pcr + offs;
else if (abs_jump) new_pc = trgt;

else if (dlp_jump) new pc = Isr;

else new_pc = pcr;

new_pc_algn = new pc[19:1]:.0;

31
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Reset of Cache Counter Register CH - g secceer son 1 necono e

begin

S [moves.n:1143]

Cache counter is updated inside PCU
NML rule to reset cache counter

ch w out = lmr in opdis;
2 A

end

PCU and nML rule write to CH at the same time if (CH ch w_loop buf process pdg en in)
PCU wins -> reset not executed \ begin

ch w out = ch wl in;
2 .

end

Reset of CHO in EX Wrong value 2
Value 0 expected in EX2 in EX2
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Summary SYNoPSys: 0 |

« Automated formal ISA verification methodology for ASIP Designer

Functional model w/ required operand/result behavior
Model Expected behavior of instructions, e.g.:
nML RTL * Instruction advances: Issued instruction reaches write-back stage
rule Generator =~ within known number of cycles
» Correct results: Instruction results of constrained CPU1 are same
m as in reference + compare results CPU1 with unconstrained CPU2

SystemVerilog Characteristics of C/C++ compiler (to prevent “false negatives”)

Verify all VC Formal Prove the assertions under all possible contexts
ﬁ'f:i‘,'n“:ﬁ;'ﬁgﬁ VCS (FPV) * E.g., instruction-level parallelism, pipeline hazards, mode switches

(normal, debug, interrupt, ...)

» Leveraging VC Formal FPV for processor verification (e.g. RISC-V)
» Also applying other VC Formal apps (DPV, FTA, COV, ...)

« Catches bugs that are hard to find by simulation
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