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VC Formal Overview
Oğuzhan Türk, Sr. Applications Engineer, Synopsys



© 2024 Synopsys, Inc. 4

Synopsys VC Formal – Leading Formal Innovations

Unified Compile with VCS

Industry’s Fastest Growing Formal Solution!

Deliver highest performance
Innovative formal engines and ML-based orchestrations 
find more bugs and achieve more proofs on larger designs

Enable formal signoff
Exhaustive formal analysis catches corner-case bugs and 
enables formal signoff for control and datapath blocks

Ease Formal adoption
Easy-to-use formal apps, native integration with VCS and Verdi, 
and Formal Consulting Services reduce formal adoption effort

Unified Formal Debugger with Verdi

Rich Set of Assertion IPs

ML-Enabled Formal Engines and Orchestrations
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Synopsys VC Formal: Innovative Formal Verification Solutions

VC Formal Apps Adoption Effort – Formal Expertise Not Always Required 

Verification Complexity: In terms of exhaustive computation analysis required to verify the DUT

Adoption Effort: In terms of formal expertise and testbench required to apply the specific APP

Low Medium High
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Synopsys VC Formal: Innovative Formal Verification Solutions

VC Formal Apps Can Be Used Throughout the SoC Flow

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting

High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Block/IP Subsystem SoC
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VC Formal Leverages Industry Leading Verification Eco-system

VerdiVCS

VC 
Formal

VC Z01X

ASIP 
Designer

VC 
SpyGlass

VC LP

VCS NLP

Unified Compilation

Common Coverage DB

Integrated UNR

Common Setup and Debug Platform; 

Unified Planning;

Integrated Formal Navigator

Fault Pruning

Common Fault DB 

ISA Formal VerificationLint, CDC, RDC 

Formal Analysis

Common UPF Reader

Unified Low Power Verification
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RISC-V Core Formal Verification Overview

• FPV (Model Checking):

– Prefetch Buffer

– LSU – Load/Store unit

– Pipeline

– RISC-V AIP

• DPV (Equivalence Checking):

– ALU/MULT/Dotp

– Decoder

• SEQ (Equivalence Checking):

– Clock gating verification in every functional unit

– Designs comparison in presence of new 

features/timing changes

• FRV (Formal Register Verification)

– Control and Status Registers (Zicsr)

• FSV (Formal Security Verification)

– Secure/Non-secure data propagation

• RV32I base ISA, for example:

‒ LOAD - LSU

‒ STORE - LSU

‒ BRANCH/JUMP/LUI/AUIPC - PFU

‒ OP-IMM - EXU

‒ OP - EXU

‒ Environment call/break point

• Zicsr extension

‒ CSR Write

‒ CSR Read

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-

GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
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F P V  B E N E F I T S F P V  F E AT U R E S

• Verify functional correctness 

of design blocks through 

exhaustive formal analysis

• Find corner-case bugs early 

without simulation and 

reduce time to verification 

closure

• Enable formal signoff 

methodology

• State-of-the-art ML-powered 

formal analysis engines and 

orchestration offer best 

performance and capacity

• Integrated Verdi GUI offers 

the most familiar debugging

• Deep bug hunting and 

advanced proof techniques 

Proof Assist, Proof Architect

VC Formal FPV

DUT 
Properties 

Constraints

VCS Compilation Frontend

Smart Engine Orchestration

Regression Mode Acceleration

Verdi Integrated Debugger 

VC Formal FPV: Formal Property Verification 
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D P V  B E N E F I T S

• Exhaustively verify datapath 

design refinements

• Prove consistency of 

independently developed 

reference & implementation 

models

• Achieve datapath signoff 

without any testbench

D P V  F E AT U R E S

• Integrated mature HECTOR 

technology

• Supports ADD, SUB, MULT, 

DIV, SQRT operators

• Applicable to CPU, GPU, 

DSP, AI/ML (CNN) and other 

data processing designs

Impl. Model

C/C++/RTL

VC Formal DPV
Transactional Equivalence Checking

Ref. Model

C/C++/RTL

Debug 

Counter-Example
Datapath

Signoff

Assume 

Equal 

Inputs

Compare 

Outputs

VC Formal DPV: Datapath Validation
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S E Q  B E N E F I T S S E Q  F E AT U R E S

• Exhaustively verify and 

signoff the design 

optimizations without any 

testbench

• Push the frontier of 

performance, power, and 

area (PPA) optimizations

• Save weeks/months 

simulation regression time

• Supports clock gating, 

retiming, microarchitecture 

optimizations

• Automatically creates 

equivalence mapping 

between specification and 

implementation RTL

• State-of-the-art ML powered 

formal engine for best 

performance

Implementation

RTL

VC Formal SEQ
Check Outputs Cycle-Level Equivalence

Specification

RTL

Debug 

Counter-Example
Results Reporting

VC Formal SEQ: Sequential Equivalence Checking
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VC Formal FRV: Formal Register Verification 

F R V  B E N E F I T S F R V  F E AT U R E S

• Exhaustively verify the 

consistency of register 

model against specification

• Find corner-case bugs 

earlier in the design cycle, 

shorten debug time

• Save time and effort 

compared with manual 

directed simulation tests

• Accept IP-XACT, CSV, 

RALF spec formats

• Verify that Control Status 

Registers are correctly 

implemented using standard 

or proprietary bus protocols

• Applicable at both the block 

and SoC level

DUT
Register Blocks

Register Spec
RALF/CSV/XML

AIP
Protocol Constraints

VC Formal FRV

Generate checkers for each register field

Verify register read/write
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unsecure

source

unsecure

secure

secure

destination

source

destination

OK
Integrity

Violation

Data

LeakOK

F S V  B E N E F I T S

• Ensure data security 

objectives are met through 

exhaustive formal analysis

• Ensure secure data cannot 

be read illegally or be 

written from an unsecure 

source

• Detect security issues that 

are hard to find through 

other techniques 

F S V  F E AT U R E S

• Flexible property creation & 

management

• ML powered engines for 

fast performance

• Data propagation analysis 

and debug with temporal 

flow view

• Verification of multiple 

scenarios in one session

VC Formal FSV: Formal Security Verification 
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VC Formal Differentiations

Performance

7X Faster

Industry Standard

Datapath Validation

Unique Formal 

Signoff Solution
AI/ML for Performance 

& Convergence

Verification Solution 

Synergy
Pay-per-Minute 

Cloud Offerings
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ASIP Designer Overview
Johan Van Praet, Director R&D, ASIP tools, Synopsys
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ASIP Designer

Your Processor 
Model

SDK

RTL

Optimize

Explore

• Industry’s leading tool for creating Application-Specific 

Instruction-Set Processors​ (ASIPs)

– Language-based description of ISA: full architectural flexibility

– Automatic generation of professional software development kit (SDK)

– Automatic generation of synthesizable RTL and debug infrastructure

– Accelerated verification, simulation, and virtual prototyping

– Integrated with Synopsys’ Reference Design & Verification Flows

• More than 2 dozen example models included

– Microprocessors, DSPs, vector processors,… 

– Examples provided in source code, as starting point

Architectural Exploration with Immediate Tool Support and Immediate RTL Implementation

Automated Design of Custom Processors

Licensed as an EDA tool (not as IP), no royalties

Used by 7 of the Top 10 Semiconductor Developers

See website synopsys.com/asip
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4

ASIP Designer

Tool Flow

Supported design steps

• Modeling of instruction-set 
architectures: nML language

• Automatic generation of 
software development kit, 
including an efficient C/C++ 
compiler

• Algorithm-driven architectural 
exploration: 
“Compiler-in-the-Loop”

• Automatic generation of 
RTL implementation
“Synthesis-in-the-Loop”

• Design verification
– Simulation, prototyping

– Formal ISA verification

1

3

Architectural Optimization 

and Software Development

Optimizing C/C++ Compiler

(Dis-) 

Assembler
Linker

Binary

Debugger

& Profiler

Instruction-Set

Simulator

User-Defined

Algorithm

Algorithm
C/C++

2

Refinement

Hardware Generation

RTL Generator

Synthesizable RTL
Verilog/VHDL

RTL Simulator
VCS

RTL Synthesizer
DC / FC

RTL Architect

Verification

Verification Model
SystemVerilog

Virtual Prototyping

ESL Model
SystemC

ASIC 
or

FPGA

1 SDK Generation

2 Architectural Optimization

3 Hardware Generation

4 Verification

User-Defined

Architecture

Instruction

 Set

Processor Model
nML

FMT ALU OPD

FMT ALU OPD

FMT ALU OPD

Formal ISA Verification
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Modeling: ISA (nML) + Behavior (PDG)

Data Path

Memory, 
Peripherals

PCU

INSTR.
DECODER

INSTR.
DECODER

PROGRAM
MEMORY

Datapath Behavior   PDG

// 16-bit saturating addition

word add(word a, word b) { 

  int17_t x = (int17_t)a + (int17_t)b;

  if (x > MAX) x = MAX;

  else if (x < MIN) x = MIN;

  return x[15:0];

} 

I/O Interface Behavior PDG

io_interface my_bus_if(){
  void process_result(){
    // transactions before
    // processor actions
  }
  void process_request(){
    // transactions after
    // processor actions
  }
}

PCU Behavior   PDG

void my_asip::
user_next_pc(){
  // manipulation of
  // program counter
}

void my_asip::
user_issue(){
  // creation of issue  
  // packets from   
  // program words
}

Instruction-Set & Micro-Architecture nML

// Resource definition

mem DM[1024]<word,addr>;
reg RA[2]<word,uint1>; 
pipe C<word>;
trn A<word>; trn B<word>;
fu alu;
...

// Instruction-set grammar

opn my_core (arith_inst | ctrl_inst);

opn arith_inst (a:alu_inst, 
  d: div_inst, l:load_store_inst);

opn alu_inst (op:opcod, x:c1u, y:c1u, 
  z:c1u) {

  action {
    stage EX1:
      A = RA[x];
      B = RB[y]; 
      switch (op) {
      case add: C = add(A, B) @alu;
      case and: C = and(A, B) @alu;
      case or: C = or(A, B) @alu;
      ...
      }
    stage EX2:
      RA[z] = C @alu;
  }
  syntax: op " RA" x ", RB" y ", RA” z;
  image: "0"::op::x::y::z;
}
...

INTERRUPT
CON-

TROLLER

INSTR.
SEQUEN-

CER

ISSUE
BUFFER

CACHE DMA BUS I/F
WRITE
BACK

BANK
SELECT

DIVALU
DATA

MEMORY
DATA

MEMORY

/ %& |+
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Formal ISA Verification Methodology 

for ASIP Designer
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Formal ISA Verification for ASIP Designer (1)

Formally Verify the Generated RTL Implementation Against Expected nML Actions

• Tool generates SystemVerilog properties that express expected behavior at a high, abstract level

– Requirements are not biased by the implementation

– Decomposing correctness into manageable claims, for easily converging proofs

• VC Formal FPV proves asserted properties, or finds counterexample

– A counterexample typically involves parallel activity, corrupting expected action

• ASIP Designer generates assumptions to express invariant tool behavior 

– Assumed properties are generated for the behavior of the C/C++ compiler, to avoid “false negatives”

– Assumptions generated for FPV are checked as assertions in RTL simulation, to avoid “false positives”

• Verify behavior of data path operations (“primitive functions”) separately

– Use data path verification (VC Formal DPV) for formal verification against an independent reference, if available

– Tool may replace primitive functions with formal friendly operations for FPV



SNUG EUROPE  2024 22

. 

Formal ISA Verification for ASIP Designer (2)
Generated Properties Use Abstraction
. 

Data path

PeripheralsAD / DA SERIAL DMA AHB JTAG Ctrl

PROGRAM
MEMORY

INSTR.
SEQUEN-

CER

INSTR
ISSUE

SH

MPY

ACC

SAT

ALUDATA
MEMORY

DATA
MEMORY

INSTR_ID

INSTR_E1

INSTR_E2

Verification logic applies

single instruction abstraction

Picks arbitrary instruction value

• Tracks it through the instruction pipeline after it enters

• Observes what happens in the architecture, during the 

lifetime of that instruction

• Peripherals not targeted by generated properties

• Memories are simplified, containing random values

• External inputs are undriven, meaning formal tool 

can assign arbitrary values

DECODER

Design

VC Formal FPV proves properties,

or assigns undriven signals and variables 

to accomplish the counterexample

Properties are formulated for tracked instruction
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Formal ISA Verification for ASIP Designer (3)

Decompose ISA Compliance Requirements for Fast Convergence

• Separate requirements for different phases in the instruction lifetime

– Requirements for fetch and issue to be provided by the user

– Generated property for instruction advancing through the instruction pipeline and 

reaching the write-back stage within N cycles  (N depending on pipeline depth, stalls, wait cycles,…)

• Split requirement for result correctness, by instantiating ASIP RTL implementation twice

nML based, unpipelined, functional SystemVerilog translation 

IF ID EX ME WB

NOP NOP INSTR NOP NOP

IF ID EX ME WB

JAL ADD INSTR MUL SUB

Constrained CPU 1

runs isolated

tracked instruction

Unconstrained CPU 2

runs full parallelism

Reference equals CPU 1

with instruction in isolation

(no pipeline, no parallelism)

CPU 1 equals CPU 2

after write-back stage
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Compute Reference Results

Tool Derives SystemVerilog Reference Code From Each nML Rule With Actions

opn alu(d: mRd, s0: mR0, s1: mR1)

{

    action {

    stage EX:

        d = alut = add(alur=s0, alus=s1);

    }

    image : "0000"::d::s0::s1;

} 

• Simple due to single instruction abstraction

– Only executes one instruction

– Purely functional code, no pipelining

– Execution is aligned with pipeline stages in cpu1, 
for correct input sampling

  

always @ (*) begin
 if (alu_active && cpu1_sampled)
 begin
  logic [12:0] image;
  if (cpu1_stage == EX)
  begin
   image = cpu1_instr_EX[12:0];
   __R_r_r1_raddr = image[2:0];
   __R_r_r0_raddr = image[5:3];
   __R_r_w0_waddr = image[8:6];
   r_r1 = cpu1_reg_R[__R_r_r1_raddr];
   r_r0 = cpu1_reg_R[__R_r_r0_raddr];
   alus = r_r1;
   alur = r_r0;
   word_add_word_word(alut2, alur, alus);
   r_w0 = alut2;
   cpu1_reg_R_ref[__R_r_w0_waddr] = r_w0;
  end
 end
end

tracked instruction is of type alu

it entered the pipeline

input sampling

in cpu1

reference result
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Generated SystemVerilog Assertions (1)

Instruction Advances and Completes for ALU Rule

property cpu2_advances;

 @(posedge clock)

   alu_active && cpu2_seen && !cpu2_sampled

    ##1 !cpu2_kill_ID

  |->

  ##[1:7] (cpu2_sampled && cpu2_stage == WB && cpu2_instr_WB_valid) || instr_killed;

endproperty;

• “If the tracked instruction enters the pipeline, it reaches the write-back stage within N cycles”

– N depends on pipeline depth, stalls, wait-cycles,… 

– A configurable assumption limits stalls, wait-cycles,…

tracked instruction seen at input of decoder
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Generated SystemVerilog Assertions (2)

CPU1 and CPU2 Correctness Properties for ALU Rule

• Constrained CPU1 (isolated instruction) compared to reference behavior, derived from nML

property alu_correct_cpu1;

 @(posedge clock)

   alu_active && cpu1_sampled && cpu1_stage == WB && cpu1_instr_WB_valid    // Write-Back stage

  |=>

  cpu1_reg_R[__R_r_w0_waddr] == cpu1_reg_R_ref[__R_r_w0_waddr];            // Compare written value

endproperty;

• Unconstrained CPU2 compared to constrained CPU1, aligned to Write-Back stage
property alu_correct_cpu2;
 @(posedge clock)
  alu_active && 
  cpu1_sampled && cpu1_stage == WB && cpu1_instr_WB_valid &&      // cpu1 @ Write-Back stage
  cpu2_sampled && cpu2_stage == WB && cpu2_instr_WB_valid &&      // cpu2 @ Write-Back stage
  (cpu2_reg_R[__R_r_r1_raddr] == cpu1_reg_R[__R_r_r1_raddr]) &&   // operand 1 same for cpu1 and cpu2 
  (cpu2_reg_R[__R_r_r0_raddr] == cpu1_reg_R[__R_r_r0_raddr])      // operand 0 same for cpu1 and cpu2
  |=>
  cpu2_reg_R[__R_r_w0_waddr] == cpu1_reg_R[__R_r_w0_waddr];       // result same for cpu1 and cpu2
endproperty;
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Optimizing Proof Times

• Unbounded model checking for “instruction advances” property

– Acceptable proving times, since the property relies mostly on controller and decoder

• Bounded model checking for “result correctness” properties

– More complex proving, as this also involves the data path, containing register files etc.

– Perform bounded model checking with bound N + 2

– Without reset, if result correctness holds under bounded model checking with cycle bound N + 2,

it holds without cycle bound too

– Any longer counterexample can be mapped to a counterexample with length <= N + 2, 

where in the first cycle the tracked instruction is issued, 

from an initial state capturing the history of the long counterexample

Use Bounded Model Checking

-n -n+1 … 0 1 2 … N N+1

Reset INSTR -n+1 … INSTR INSTR+1 INSTR+2 … INSTRN INSTRN+1

INSTR INSTR+1 INSTR+2 … INSTRN INSTRN+1
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Generated SystemVerilog Assumptions

Tool Adds Assumptions to the Formal Testbench to Avoid False Negatives

• ASIP Designer’s C/C++ compiler avoids certain instructions or instruction sequences

– Compiler avoids write conflicts on registers and nets

– Compiler honors software stall rules

– Compiler honors control related constraints, e.g. no jumps are scheduled in delay slots of other instructions

• Some general assumptions are needed

– e.g. on-chip debugging actions only in on-chip debug mode, etc.

– In absence of reset, some initial decoder states need to be constrained by invariant properties

• User can add extra assumptions to be included in checkers modules

Properties assumed in the formal testbench, are also written out as assertions for simulation

NML
Assumptions

Assertions

Formal Verification

+ Assertions

Simulation

Stimuli
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Organization According to nML Rules

VC Formal FPV scripts automatically generated
• Make a task for proving each nML rule

• Usable with GUI or without (batch mode)
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Which Bugs Are Found?

• Overall connectivity and data flow in the architecture are verified

• Failing hazard protection

– On architectures with near-consistent write-back stages per register file

– Hazards are largely also verified by design tools, but not for e.g. delayed results from multi-cycle units

• Failure to protect instructions from being corrupted by parallel activity

– Interaction with on-chip debugging and interrupts, delayed results,…

– This protection is hand-written by the user, and prone to errors

• “Bug Hunting” where FPV complements simulation

– Some bugs are indirectly connected to generated properties, but cause corruption of behavior that is verified

• Good results for formal signoff metrics, e.g. with Formal Testbench Analysis (VC Formal FTA)

– Detection of injected faults in controller (PCU), decoder, hazards logic,… 

– High coverage metric for property density, over-constraint analysis, formal core,… 
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Formal Verification at WSAudiology
Roy S. Hansen, ASIC Specialist, WSAudiology
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WSA is a global leader in the Hearing Aid industry

32

PRESENCE

OUR MAIN PRODUCTION SITES

RESEARCH AND DEVELOPMENT HUB

2019
Merger of Widex and Sivantos

Widex launched their first digital 

Hearing Aid devices in 1995 

(state machines)

12,500+
Employees working in more than 45 offices

  HQ Lynge, Denmark

R&D  
1000+ engineers develop Hearing Aids 

and key enabling technologies

R&D hubs in 

  Lynge (near Copenhagen), Denmark

  Erlangen, Germany

  Singapore

€2,465M
Of revenue FY 2022/23

Earnings of €480M (EBITA ~14%) 

Increased revenue by 50% over the last 5 years

~ 3.8 M people was fitted

Main competitors: GN, Oticon (Demand),

Phonak(Sonova), Starkey

IC Development
Team of ~35 Analog and Digital IC 

designers develop chips that 

enable our core technology and 

business
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IC Development for Hearing Aids

• Custom ASIC development to meet power and functional 

requirements

• Smallest batteries have a capacity of 50 mAh

➢ Must last for 16 hours (= 3 mA)

• Latest process: ~20 nm

• Complexity comparable to first 3G modem chips,

but with lower voltage and clock speed

• Rich features:

– Bluetooth streaming

– Bi-aural digital communication

– AI Analog IC Digital IC
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Motivation

“Is there a hard-to-find bug that my testbench has not caught?”

• ASIP Designer Advanced Verification Add-On 

released in V-2023.12

• I learned about FV techniques back in 1992-95

• I am new to SystemVerilog and SVA

• Time consuming to reach 100% coverage by manually writing 

testcases

• ASIP Designer built-in instruction-set simulation coverage 

report does not consider different scenarios (pipeline state, 

hazards, …)

• Random instruction generation tool (RISK) does also not 

provide full coverage
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ASIP Features

• Scalar and vector instructions

• Single/Dual/Triple issue of instructions per clock cycle

• Multicycle floating-point division and sqrt units

• System bus inserting processor stalls

• Some vector instructions are vector-guarded

➢Last three points add complexity for FV
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Getting Started

• ASIP Designer provides a manual and a step-by-step 

tutorial based on tnano and trv32p5x example cores

• Synopsys assisted to get started with our custom ASIP

• Many tricks used to ensure convergence

➢ Split instructions into multiple tasks and scripts

➢ Use blackboxing of unrelated design parts

➢ Bounded proofs

➢ …

• Convenient to run multiple tasks over night
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Progress over time
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The missing interrupt (1)

• Originally observed on FPGA

• After an acknowledged interrupt, we expect IE to go low, but it did not:
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The missing interrupt (2)

• Simple to create and debug a counterexample using formal properties

–  assert property(@(posedge clock) cpu2_irq ##0 cpu2_iack[->1] |=> decode_swi(cpu2_IR_ID));

• Cause: Bug in PCU that clears interrupt when it arrives during a processor stall

• Now detected with auto-generated assertion in newer tool version

Processor stall

swi instruction

swi overwritten

swi does not enter 

the pipeline
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Cache Alignment

• Original: Cache used 20-bit address

• New: 32-bit address type shared with IO interfaces

• Bug: Potential overflow in PCU

➢ In real life, we don’t have 220 instructions,

so it’s not an issue

    if         (rel_jump)   new_pc = pcr + offs;

    else if (abs_jump) new_pc = trgt;

    else if (dlp_jump)  new_pc = lsr;

    else                          new_pc = pcr;

    new_pc_algn = new_pc[19:1]::0;

                                           31
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Reset of Cache Counter Register CH

• Cache counter is updated inside PCU

• nML rule to reset cache counter

• PCU and nML rule write to CH at the same time

• PCU wins -> reset not executed

Reset of CH0 in EX

Value 0 expected in EX2

Wrong value 2 

in EX2
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Summary

• Automated formal ISA verification methodology for ASIP Designer

• Leveraging VC Formal FPV for processor verification (e.g. RISC-V)

• Also applying other VC Formal apps (DPV, FTA, COV, …) 

• Catches bugs that are hard to find by simulation
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