
SNUG EUROPE 2024 1

Towards Bug Free Application Specific
Instruction-Set Processors (ASIPs) with
Formal Verification

Oguzhan Turk, Sr. Applications Engineer, Synopsys

Johan Van Praet, Director R&D, ASIP tools, Synopsys

Roy S. Hansen, ASIC Specialist, WSAudiology

SNUG EUROPE 2024 2

Agenda

• VC Formal Overview

• ASIP Designer Overview

• Formal ISA verification Methodology for ASIP Designer

• Formal Verification at WSAudiology

• Summary

SNUG EUROPE 2024 3

VC Formal Overview
Oğuzhan Türk, Sr. Applications Engineer, Synopsys

© 2024 Synopsys, Inc. 4

Synopsys VC Formal – Leading Formal Innovations

Unified Compile with VCS

Industry’s Fastest Growing Formal Solution!

Deliver highest performance
Innovative formal engines and ML-based orchestrations
find more bugs and achieve more proofs on larger designs

Enable formal signoff
Exhaustive formal analysis catches corner-case bugs and
enables formal signoff for control and datapath blocks

Ease Formal adoption
Easy-to-use formal apps, native integration with VCS and Verdi,
and Formal Consulting Services reduce formal adoption effort

Unified Formal Debugger with Verdi

Rich Set of Assertion IPs

ML-Enabled Formal Engines and Orchestrations

© 2024 Synopsys, Inc. 5

Synopsys VC Formal: Innovative Formal Verification Solutions

VC Formal Apps Adoption Effort – Formal Expertise Not Always Required

Verification Complexity: In terms of exhaustive computation analysis required to verify the DUT

Adoption Effort: In terms of formal expertise and testbench required to apply the specific APP

Low Medium High

© 2024 Synopsys, Inc. 6

Synopsys VC Formal: Innovative Formal Verification Solutions

VC Formal Apps Can Be Used Throughout the SoC Flow

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting

High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Block/IP Subsystem SoC

© 2024 Synopsys, Inc. 7

VC Formal Leverages Industry Leading Verification Eco-system

VerdiVCS

VC
Formal

VC Z01X

ASIP
Designer

VC
SpyGlass

VC LP

VCS NLP

Unified Compilation

Common Coverage DB

Integrated UNR

Common Setup and Debug Platform;

Unified Planning;

Integrated Formal Navigator

Fault Pruning

Common Fault DB

ISA Formal VerificationLint, CDC, RDC

Formal Analysis

Common UPF Reader

Unified Low Power Verification

© 2024 Synopsys, Inc. 8

RISC-V Core Formal Verification Overview

• FPV (Model Checking):

– Prefetch Buffer

– LSU – Load/Store unit

– Pipeline

– RISC-V AIP

• DPV (Equivalence Checking):

– ALU/MULT/Dotp

– Decoder

• SEQ (Equivalence Checking):

– Clock gating verification in every functional unit

– Designs comparison in presence of new

features/timing changes

• FRV (Formal Register Verification)

– Control and Status Registers (Zicsr)

• FSV (Formal Security Verification)

– Secure/Non-secure data propagation

• RV32I base ISA, for example:

‒ LOAD - LSU

‒ STORE - LSU

‒ BRANCH/JUMP/LUI/AUIPC - PFU

‒ OP-IMM - EXU

‒ OP - EXU

‒ Environment call/break point

• Zicsr extension

‒ CSR Write

‒ CSR Read

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-

GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

© 2024 Synopsys, Inc. 9

F P V B E N E F I T S F P V F E AT U R E S

• Verify functional correctness

of design blocks through

exhaustive formal analysis

• Find corner-case bugs early

without simulation and

reduce time to verification

closure

• Enable formal signoff

methodology

• State-of-the-art ML-powered

formal analysis engines and

orchestration offer best

performance and capacity

• Integrated Verdi GUI offers

the most familiar debugging

• Deep bug hunting and

advanced proof techniques

Proof Assist, Proof Architect

VC Formal FPV

DUT
Properties

Constraints

VCS Compilation Frontend

Smart Engine Orchestration

Regression Mode Acceleration

Verdi Integrated Debugger

VC Formal FPV: Formal Property Verification

© 2024 Synopsys, Inc. 10

D P V B E N E F I T S

• Exhaustively verify datapath

design refinements

• Prove consistency of

independently developed

reference & implementation

models

• Achieve datapath signoff

without any testbench

D P V F E AT U R E S

• Integrated mature HECTOR

technology

• Supports ADD, SUB, MULT,

DIV, SQRT operators

• Applicable to CPU, GPU,

DSP, AI/ML (CNN) and other

data processing designs

Impl. Model

C/C++/RTL

VC Formal DPV
Transactional Equivalence Checking

Ref. Model

C/C++/RTL

Debug

Counter-Example
Datapath

Signoff

Assume

Equal

Inputs

Compare

Outputs

VC Formal DPV: Datapath Validation

© 2024 Synopsys, Inc. 11

S E Q B E N E F I T S S E Q F E AT U R E S

• Exhaustively verify and

signoff the design

optimizations without any

testbench

• Push the frontier of

performance, power, and

area (PPA) optimizations

• Save weeks/months

simulation regression time

• Supports clock gating,

retiming, microarchitecture

optimizations

• Automatically creates

equivalence mapping

between specification and

implementation RTL

• State-of-the-art ML powered

formal engine for best

performance

Implementation

RTL

VC Formal SEQ
Check Outputs Cycle-Level Equivalence

Specification

RTL

Debug

Counter-Example
Results Reporting

VC Formal SEQ: Sequential Equivalence Checking

© 2024 Synopsys, Inc. 12

VC Formal FRV: Formal Register Verification

F R V B E N E F I T S F R V F E AT U R E S

• Exhaustively verify the

consistency of register

model against specification

• Find corner-case bugs

earlier in the design cycle,

shorten debug time

• Save time and effort

compared with manual

directed simulation tests

• Accept IP-XACT, CSV,

RALF spec formats

• Verify that Control Status

Registers are correctly

implemented using standard

or proprietary bus protocols

• Applicable at both the block

and SoC level

DUT
Register Blocks

Register Spec
RALF/CSV/XML

AIP
Protocol Constraints

VC Formal FRV

Generate checkers for each register field

Verify register read/write

© 2024 Synopsys, Inc. 13

unsecure

source

unsecure

secure

secure

destination

source

destination

OK
Integrity

Violation

Data

LeakOK

F S V B E N E F I T S

• Ensure data security

objectives are met through

exhaustive formal analysis

• Ensure secure data cannot

be read illegally or be

written from an unsecure

source

• Detect security issues that

are hard to find through

other techniques

F S V F E AT U R E S

• Flexible property creation &

management

• ML powered engines for

fast performance

• Data propagation analysis

and debug with temporal

flow view

• Verification of multiple

scenarios in one session

VC Formal FSV: Formal Security Verification

© 2024 Synopsys, Inc. 14

VC Formal Differentiations

Performance

7X Faster

Industry Standard

Datapath Validation

Unique Formal

Signoff Solution
AI/ML for Performance

& Convergence

Verification Solution

Synergy
Pay-per-Minute

Cloud Offerings

© 2024 Synopsys, Inc. 15

SNUG EUROPE 2024 16

ASIP Designer Overview
Johan Van Praet, Director R&D, ASIP tools, Synopsys

SNUG EUROPE 2024 17

ASIP Designer

Your Processor
Model

SDK

RTL

Optimize

Explore

• Industry’s leading tool for creating Application-Specific

Instruction-Set Processors​ (ASIPs)

– Language-based description of ISA: full architectural flexibility

– Automatic generation of professional software development kit (SDK)

– Automatic generation of synthesizable RTL and debug infrastructure

– Accelerated verification, simulation, and virtual prototyping

– Integrated with Synopsys’ Reference Design & Verification Flows

• More than 2 dozen example models included

– Microprocessors, DSPs, vector processors,…

– Examples provided in source code, as starting point

Architectural Exploration with Immediate Tool Support and Immediate RTL Implementation

Automated Design of Custom Processors

Licensed as an EDA tool (not as IP), no royalties

Used by 7 of the Top 10 Semiconductor Developers

See website synopsys.com/asip

SNUG EUROPE 2024 18

4

ASIP Designer

Tool Flow

Supported design steps

• Modeling of instruction-set
architectures: nML language

• Automatic generation of
software development kit,
including an efficient C/C++
compiler

• Algorithm-driven architectural
exploration:
“Compiler-in-the-Loop”

• Automatic generation of
RTL implementation
“Synthesis-in-the-Loop”

• Design verification
– Simulation, prototyping

– Formal ISA verification

1

3

Architectural Optimization

and Software Development

Optimizing C/C++ Compiler

(Dis-)

Assembler
Linker

Binary

Debugger

& Profiler

Instruction-Set

Simulator

User-Defined

Algorithm

Algorithm
C/C++

2

Refinement

Hardware Generation

RTL Generator

Synthesizable RTL
Verilog/VHDL

RTL Simulator
VCS

RTL Synthesizer
DC / FC

RTL Architect

Verification

Verification Model
SystemVerilog

Virtual Prototyping

ESL Model
SystemC

ASIC
or

FPGA

1 SDK Generation

2 Architectural Optimization

3 Hardware Generation

4 Verification

User-Defined

Architecture

Instruction

 Set

Processor Model
nML

FMT ALU OPD

FMT ALU OPD

FMT ALU OPD

Formal ISA Verification

SNUG EUROPE 2024 19

Modeling: ISA (nML) + Behavior (PDG)

Data Path

Memory,
Peripherals

PCU

INSTR.
DECODER

INSTR.
DECODER

PROGRAM
MEMORY

Datapath Behavior PDG

// 16-bit saturating addition

word add(word a, word b) {

 int17_t x = (int17_t)a + (int17_t)b;

 if (x > MAX) x = MAX;

 else if (x < MIN) x = MIN;

 return x[15:0];

}

I/O Interface Behavior PDG

io_interface my_bus_if(){
 void process_result(){
 // transactions before
 // processor actions
 }
 void process_request(){
 // transactions after
 // processor actions
 }
}

PCU Behavior PDG

void my_asip::
user_next_pc(){
 // manipulation of
 // program counter
}

void my_asip::
user_issue(){
 // creation of issue
 // packets from
 // program words
}

Instruction-Set & Micro-Architecture nML

// Resource definition

mem DM[1024]<word,addr>;
reg RA[2]<word,uint1>;
pipe C<word>;
trn A<word>; trn B<word>;
fu alu;
...

// Instruction-set grammar

opn my_core (arith_inst | ctrl_inst);

opn arith_inst (a:alu_inst,
 d: div_inst, l:load_store_inst);

opn alu_inst (op:opcod, x:c1u, y:c1u,
 z:c1u) {

 action {
 stage EX1:
 A = RA[x];
 B = RB[y];
 switch (op) {
 case add: C = add(A, B) @alu;
 case and: C = and(A, B) @alu;
 case or: C = or(A, B) @alu;
 ...
 }
 stage EX2:
 RA[z] = C @alu;
 }
 syntax: op " RA" x ", RB" y ", RA” z;
 image: "0"::op::x::y::z;
}
...

INTERRUPT
CON-

TROLLER

INSTR.
SEQUEN-

CER

ISSUE
BUFFER

CACHE DMA BUS I/F
WRITE
BACK

BANK
SELECT

DIVALU
DATA

MEMORY
DATA

MEMORY

/ %& |+

SNUG EUROPE 2024 20

Formal ISA Verification Methodology

for ASIP Designer

SNUG EUROPE 2024 21

Formal ISA Verification for ASIP Designer (1)

Formally Verify the Generated RTL Implementation Against Expected nML Actions

• Tool generates SystemVerilog properties that express expected behavior at a high, abstract level

– Requirements are not biased by the implementation

– Decomposing correctness into manageable claims, for easily converging proofs

• VC Formal FPV proves asserted properties, or finds counterexample

– A counterexample typically involves parallel activity, corrupting expected action

• ASIP Designer generates assumptions to express invariant tool behavior

– Assumed properties are generated for the behavior of the C/C++ compiler, to avoid “false negatives”

– Assumptions generated for FPV are checked as assertions in RTL simulation, to avoid “false positives”

• Verify behavior of data path operations (“primitive functions”) separately

– Use data path verification (VC Formal DPV) for formal verification against an independent reference, if available

– Tool may replace primitive functions with formal friendly operations for FPV

SNUG EUROPE 2024 22

.

Formal ISA Verification for ASIP Designer (2)
Generated Properties Use Abstraction
.

Data path

PeripheralsAD / DA SERIAL DMA AHB JTAG Ctrl

PROGRAM
MEMORY

INSTR.
SEQUEN-

CER

INSTR
ISSUE

SH

MPY

ACC

SAT

ALUDATA
MEMORY

DATA
MEMORY

INSTR_ID

INSTR_E1

INSTR_E2

Verification logic applies

single instruction abstraction

Picks arbitrary instruction value

• Tracks it through the instruction pipeline after it enters

• Observes what happens in the architecture, during the

lifetime of that instruction

• Peripherals not targeted by generated properties

• Memories are simplified, containing random values

• External inputs are undriven, meaning formal tool

can assign arbitrary values

DECODER

Design

VC Formal FPV proves properties,

or assigns undriven signals and variables

to accomplish the counterexample

Properties are formulated for tracked instruction

SNUG EUROPE 2024 23

Formal ISA Verification for ASIP Designer (3)

Decompose ISA Compliance Requirements for Fast Convergence

• Separate requirements for different phases in the instruction lifetime

– Requirements for fetch and issue to be provided by the user

– Generated property for instruction advancing through the instruction pipeline and

reaching the write-back stage within N cycles (N depending on pipeline depth, stalls, wait cycles,…)

• Split requirement for result correctness, by instantiating ASIP RTL implementation twice

nML based, unpipelined, functional SystemVerilog translation

IF ID EX ME WB

NOP NOP INSTR NOP NOP

IF ID EX ME WB

JAL ADD INSTR MUL SUB

Constrained CPU 1

runs isolated

tracked instruction

Unconstrained CPU 2

runs full parallelism

Reference equals CPU 1

with instruction in isolation

(no pipeline, no parallelism)

CPU 1 equals CPU 2

after write-back stage

SNUG EUROPE 2024 24

Compute Reference Results

Tool Derives SystemVerilog Reference Code From Each nML Rule With Actions

opn alu(d: mRd, s0: mR0, s1: mR1)

{

 action {

 stage EX:

 d = alut = add(alur=s0, alus=s1);

 }

 image : "0000"::d::s0::s1;

}

• Simple due to single instruction abstraction

– Only executes one instruction

– Purely functional code, no pipelining

– Execution is aligned with pipeline stages in cpu1,
for correct input sampling

always @ (*) begin
 if (alu_active && cpu1_sampled)
 begin
 logic [12:0] image;
 if (cpu1_stage == EX)
 begin
 image = cpu1_instr_EX[12:0];
 __R_r_r1_raddr = image[2:0];
 __R_r_r0_raddr = image[5:3];
 __R_r_w0_waddr = image[8:6];
 r_r1 = cpu1_reg_R[__R_r_r1_raddr];
 r_r0 = cpu1_reg_R[__R_r_r0_raddr];
 alus = r_r1;
 alur = r_r0;
 word_add_word_word(alut2, alur, alus);
 r_w0 = alut2;
 cpu1_reg_R_ref[__R_r_w0_waddr] = r_w0;
 end
 end
end

tracked instruction is of type alu

it entered the pipeline

input sampling

in cpu1

reference result

SNUG EUROPE 2024 25

Generated SystemVerilog Assertions (1)

Instruction Advances and Completes for ALU Rule

property cpu2_advances;

 @(posedge clock)

 alu_active && cpu2_seen && !cpu2_sampled

 ##1 !cpu2_kill_ID

 |->

 ##[1:7] (cpu2_sampled && cpu2_stage == WB && cpu2_instr_WB_valid) || instr_killed;

endproperty;

• “If the tracked instruction enters the pipeline, it reaches the write-back stage within N cycles”

– N depends on pipeline depth, stalls, wait-cycles,…

– A configurable assumption limits stalls, wait-cycles,…

tracked instruction seen at input of decoder

SNUG EUROPE 2024 26

Generated SystemVerilog Assertions (2)

CPU1 and CPU2 Correctness Properties for ALU Rule

• Constrained CPU1 (isolated instruction) compared to reference behavior, derived from nML

property alu_correct_cpu1;

 @(posedge clock)

 alu_active && cpu1_sampled && cpu1_stage == WB && cpu1_instr_WB_valid // Write-Back stage

 |=>

 cpu1_reg_R[__R_r_w0_waddr] == cpu1_reg_R_ref[__R_r_w0_waddr]; // Compare written value

endproperty;

• Unconstrained CPU2 compared to constrained CPU1, aligned to Write-Back stage
property alu_correct_cpu2;
 @(posedge clock)
 alu_active &&
 cpu1_sampled && cpu1_stage == WB && cpu1_instr_WB_valid && // cpu1 @ Write-Back stage
 cpu2_sampled && cpu2_stage == WB && cpu2_instr_WB_valid && // cpu2 @ Write-Back stage
 (cpu2_reg_R[__R_r_r1_raddr] == cpu1_reg_R[__R_r_r1_raddr]) && // operand 1 same for cpu1 and cpu2
 (cpu2_reg_R[__R_r_r0_raddr] == cpu1_reg_R[__R_r_r0_raddr]) // operand 0 same for cpu1 and cpu2
 |=>
 cpu2_reg_R[__R_r_w0_waddr] == cpu1_reg_R[__R_r_w0_waddr]; // result same for cpu1 and cpu2
endproperty;

SNUG EUROPE 2024 27

Optimizing Proof Times

• Unbounded model checking for “instruction advances” property

– Acceptable proving times, since the property relies mostly on controller and decoder

• Bounded model checking for “result correctness” properties

– More complex proving, as this also involves the data path, containing register files etc.

– Perform bounded model checking with bound N + 2

– Without reset, if result correctness holds under bounded model checking with cycle bound N + 2,

it holds without cycle bound too

– Any longer counterexample can be mapped to a counterexample with length <= N + 2,

where in the first cycle the tracked instruction is issued,

from an initial state capturing the history of the long counterexample

Use Bounded Model Checking

-n -n+1 … 0 1 2 … N N+1

Reset INSTR -n+1 … INSTR INSTR+1 INSTR+2 … INSTRN INSTRN+1

INSTR INSTR+1 INSTR+2 … INSTRN INSTRN+1

SNUG EUROPE 2024 28

Generated SystemVerilog Assumptions

Tool Adds Assumptions to the Formal Testbench to Avoid False Negatives

• ASIP Designer’s C/C++ compiler avoids certain instructions or instruction sequences

– Compiler avoids write conflicts on registers and nets

– Compiler honors software stall rules

– Compiler honors control related constraints, e.g. no jumps are scheduled in delay slots of other instructions

• Some general assumptions are needed

– e.g. on-chip debugging actions only in on-chip debug mode, etc.

– In absence of reset, some initial decoder states need to be constrained by invariant properties

• User can add extra assumptions to be included in checkers modules

Properties assumed in the formal testbench, are also written out as assertions for simulation

NML
Assumptions

Assertions

Formal Verification

+ Assertions

Simulation

Stimuli

SNUG EUROPE 2024 29

Organization According to nML Rules

VC Formal FPV scripts automatically generated
• Make a task for proving each nML rule

• Usable with GUI or without (batch mode)

SNUG EUROPE 2024 30

Which Bugs Are Found?

• Overall connectivity and data flow in the architecture are verified

• Failing hazard protection

– On architectures with near-consistent write-back stages per register file

– Hazards are largely also verified by design tools, but not for e.g. delayed results from multi-cycle units

• Failure to protect instructions from being corrupted by parallel activity

– Interaction with on-chip debugging and interrupts, delayed results,…

– This protection is hand-written by the user, and prone to errors

• “Bug Hunting” where FPV complements simulation

– Some bugs are indirectly connected to generated properties, but cause corruption of behavior that is verified

• Good results for formal signoff metrics, e.g. with Formal Testbench Analysis (VC Formal FTA)

– Detection of injected faults in controller (PCU), decoder, hazards logic,…

– High coverage metric for property density, over-constraint analysis, formal core,…

SNUG EUROPE 2024 31

Formal Verification at WSAudiology
Roy S. Hansen, ASIC Specialist, WSAudiology

SNUG EUROPE 2024 32

WSA is a global leader in the Hearing Aid industry

32

PRESENCE

OUR MAIN PRODUCTION SITES

RESEARCH AND DEVELOPMENT HUB

2019
Merger of Widex and Sivantos

Widex launched their first digital

Hearing Aid devices in 1995

(state machines)

12,500+
Employees working in more than 45 offices

 HQ Lynge, Denmark

R&D
1000+ engineers develop Hearing Aids

and key enabling technologies

R&D hubs in

 Lynge (near Copenhagen), Denmark

 Erlangen, Germany

 Singapore

€2,465M
Of revenue FY 2022/23

Earnings of €480M (EBITA ~14%)

Increased revenue by 50% over the last 5 years

~ 3.8 M people was fitted

Main competitors: GN, Oticon (Demand),

Phonak(Sonova), Starkey

IC Development
Team of ~35 Analog and Digital IC

designers develop chips that

enable our core technology and

business

SNUG EUROPE 2024 33

IC Development for Hearing Aids

• Custom ASIC development to meet power and functional

requirements

• Smallest batteries have a capacity of 50 mAh

➢ Must last for 16 hours (= 3 mA)

• Latest process: ~20 nm

• Complexity comparable to first 3G modem chips,

but with lower voltage and clock speed

• Rich features:

– Bluetooth streaming

– Bi-aural digital communication

– AI Analog IC Digital IC

SNUG EUROPE 2024 34

Motivation

“Is there a hard-to-find bug that my testbench has not caught?”

• ASIP Designer Advanced Verification Add-On

released in V-2023.12

• I learned about FV techniques back in 1992-95

• I am new to SystemVerilog and SVA

• Time consuming to reach 100% coverage by manually writing

testcases

• ASIP Designer built-in instruction-set simulation coverage

report does not consider different scenarios (pipeline state,

hazards, …)

• Random instruction generation tool (RISK) does also not

provide full coverage

SNUG EUROPE 2024 35

ASIP Features

• Scalar and vector instructions

• Single/Dual/Triple issue of instructions per clock cycle

• Multicycle floating-point division and sqrt units

• System bus inserting processor stalls

• Some vector instructions are vector-guarded

➢Last three points add complexity for FV

SNUG EUROPE 2024 36

Getting Started

• ASIP Designer provides a manual and a step-by-step

tutorial based on tnano and trv32p5x example cores

• Synopsys assisted to get started with our custom ASIP

• Many tricks used to ensure convergence

➢ Split instructions into multiple tasks and scripts

➢ Use blackboxing of unrelated design parts

➢ Bounded proofs

➢ …

• Convenient to run multiple tasks over night

SNUG EUROPE 2024 37

Progress over time

SNUG EUROPE 2024 38

The missing interrupt (1)

• Originally observed on FPGA

• After an acknowledged interrupt, we expect IE to go low, but it did not:

SNUG EUROPE 2024 39

The missing interrupt (2)

• Simple to create and debug a counterexample using formal properties

– assert property(@(posedge clock) cpu2_irq ##0 cpu2_iack[->1] |=> decode_swi(cpu2_IR_ID));

• Cause: Bug in PCU that clears interrupt when it arrives during a processor stall

• Now detected with auto-generated assertion in newer tool version

Processor stall

swi instruction

swi overwritten

swi does not enter

the pipeline

SNUG EUROPE 2024 40

Cache Alignment

• Original: Cache used 20-bit address

• New: 32-bit address type shared with IO interfaces

• Bug: Potential overflow in PCU

➢ In real life, we don’t have 220 instructions,

so it’s not an issue

 if (rel_jump) new_pc = pcr + offs;

 else if (abs_jump) new_pc = trgt;

 else if (dlp_jump) new_pc = lsr;

 else new_pc = pcr;

 new_pc_algn = new_pc[19:1]::0;

 31

SNUG EUROPE 2024 41

Reset of Cache Counter Register CH

• Cache counter is updated inside PCU

• nML rule to reset cache counter

• PCU and nML rule write to CH at the same time

• PCU wins -> reset not executed

Reset of CH0 in EX

Value 0 expected in EX2

Wrong value 2

in EX2

SNUG EUROPE 2024 42

Summary

• Automated formal ISA verification methodology for ASIP Designer

• Leveraging VC Formal FPV for processor verification (e.g. RISC-V)

• Also applying other VC Formal apps (DPV, FTA, COV, …)

• Catches bugs that are hard to find by simulation

SNUG EUROPE 2024 43

	Slide 1: Towards Bug Free Application Specific Instruction-Set Processors (ASIPs) with Formal Verification
	Slide 2: Agenda
	Slide 3: VC Formal Overview
	Slide 4: Synopsys VC Formal – Leading Formal Innovations
	Slide 5: Synopsys VC Formal: Innovative Formal Verification Solutions
	Slide 6: Synopsys VC Formal: Innovative Formal Verification Solutions
	Slide 7: VC Formal Leverages Industry Leading Verification Eco-system
	Slide 8: RISC-V Core Formal Verification Overview
	Slide 9
	Slide 10
	Slide 11
	Slide 12: VC Formal FRV: Formal Register Verification
	Slide 13
	Slide 14: VC Formal Differentiations
	Slide 15
	Slide 16: ASIP Designer Overview
	Slide 17
	Slide 18
	Slide 19: Modeling: ISA (nML) + Behavior (PDG)
	Slide 20: Formal ISA Verification Methodology for ASIP Designer
	Slide 21: Formal ISA Verification for ASIP Designer (1)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Formal Verification at WSAudiology
	Slide 32
	Slide 33: IC Development for Hearing Aids
	Slide 34: Motivation
	Slide 35: ASIP Features
	Slide 36: Getting Started
	Slide 37: Progress over time
	Slide 38: The missing interrupt (1)
	Slide 39: The missing interrupt (2)
	Slide 40: Cache Alignment
	Slide 41: Reset of Cache Counter Register CH
	Slide 42
	Slide 43

