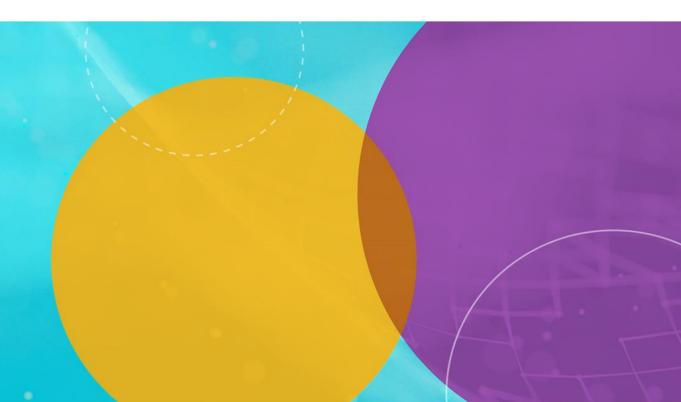


Enhancing Timing Signoff with Timing Constraint Manager: Case Study for SerDes and PCIe IPs

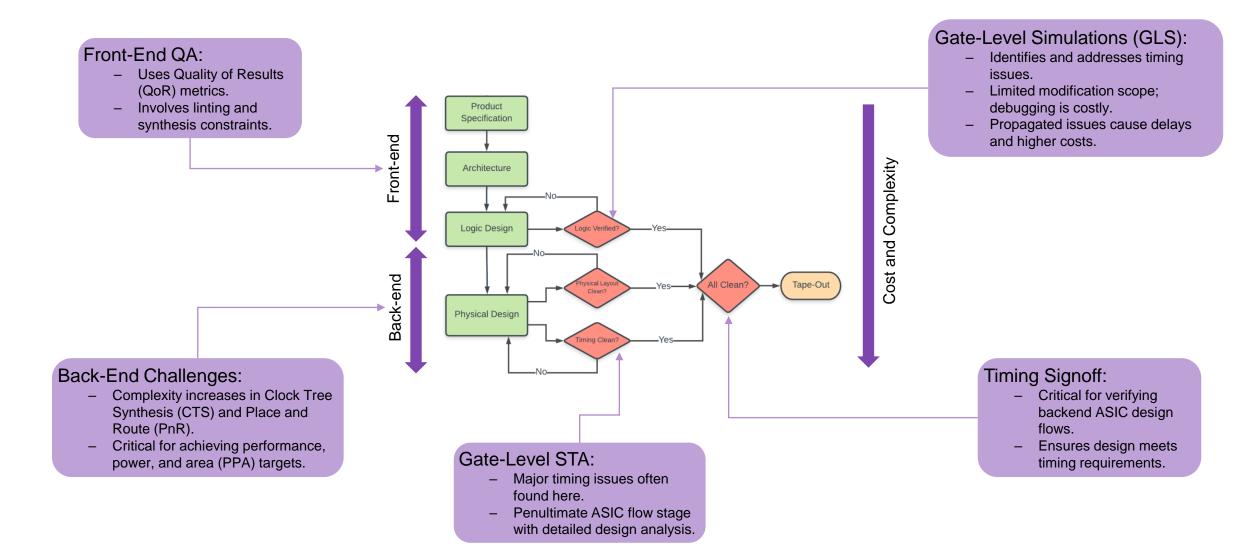
Synopsys Tutorial

Pawankumar Yendigeri Srini Gaddam Synopsys India Pvt Ltd, India Priyanka Goel Apoorv Srivastava

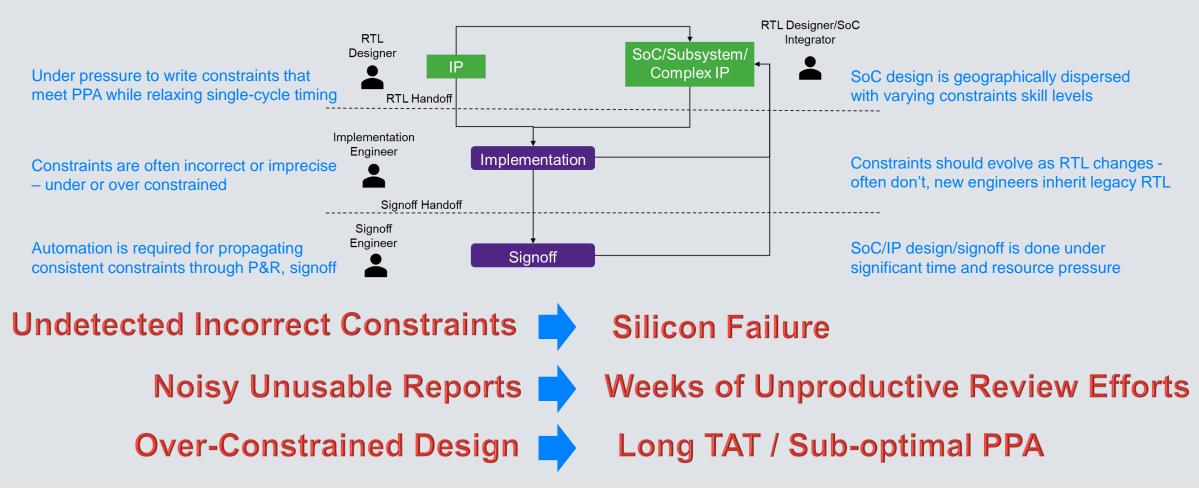
SYNOPSYS°


Outline

- Timing closure and it challenges with current flows
- Synopsys E2E Constraints Flow
- Case-Study in SerDes MIPI MPHY
- Discussion
- Key Takeaways
- TCM Promotion flow

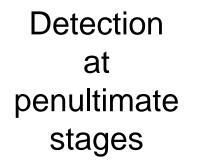

Timing closure and it challenges with current flows

Overview


SYNOPSYS[®]

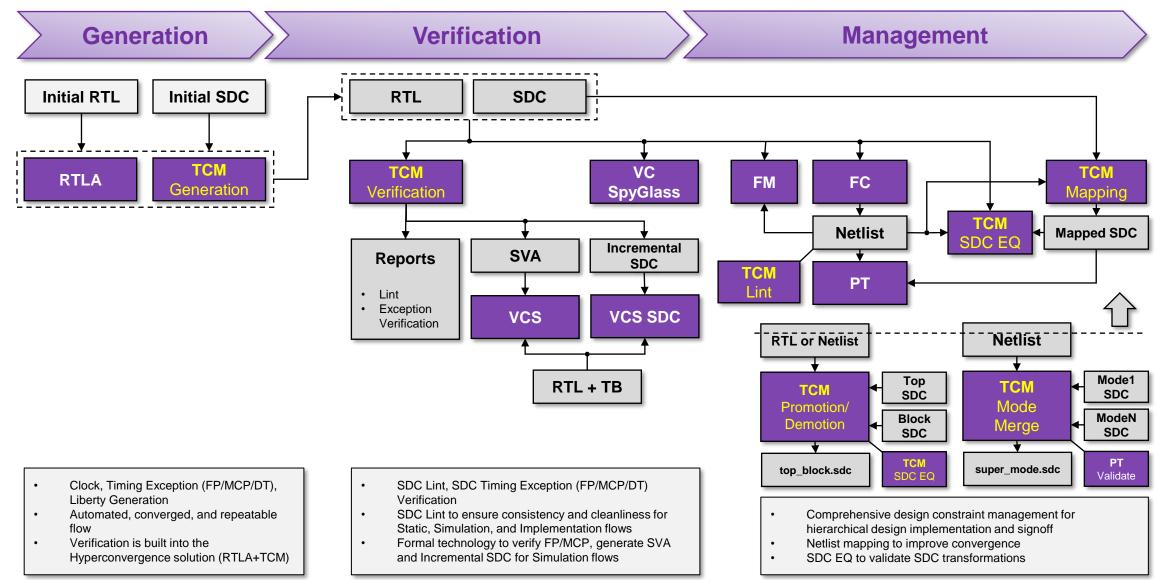
The Constraints Challenge at Customers

SoC Design with External / Internal IP


SYNOPSYS°

Issues with Timing Closure

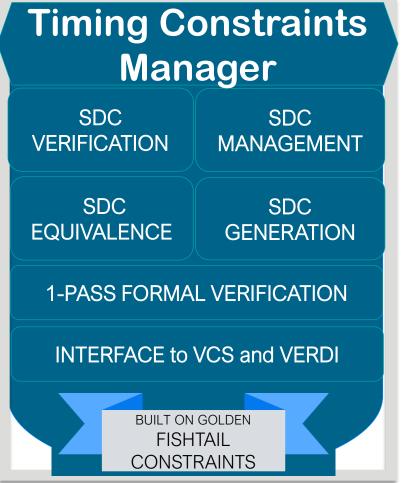
Complex clock tree networks Post CTS Netlist based path checks



High computation Power TAT

Synopsys E2E Constraints Flow

Synopsys E2E Constraints Flow


SYNOPSYS[®]

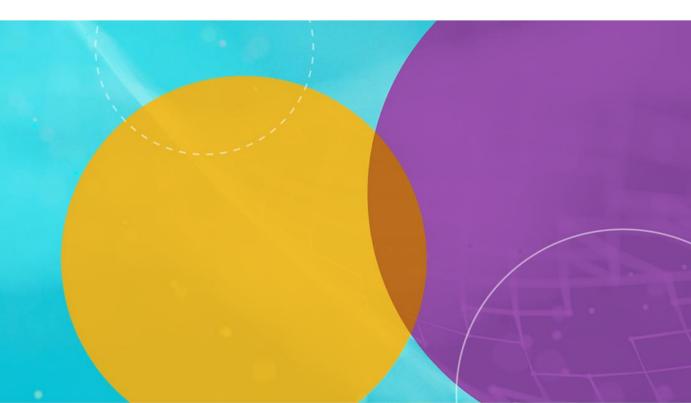
Synopsys Confidential Information

8

Synopsys Timing Constraints Manager

Built on FishTail Best-in-Class SDC Constraints Solution

- Comprehensive SDC Timing Constraints Generation, Verification and Management
- Multi-Cycle/False Path Exception Verification with No Noise RTL Designers are provided precise feedback on their SDC bugs
- Comprehensive SDC Management solution Tape-out proven promotion, demotion, mapping solution

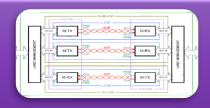

Automated SDC Generation from RTL

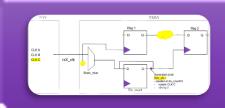
Saves weeks of designer effort and development schedule

Deployed at Top Tier Semi Companies with Production-Proven Tape-outs

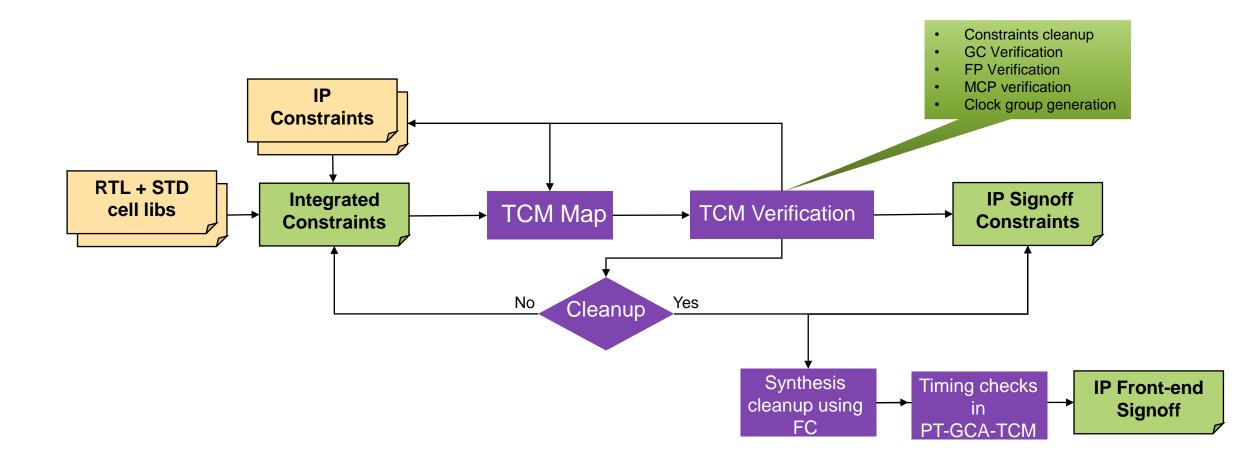
Case-Study SerDes applications

Case Study

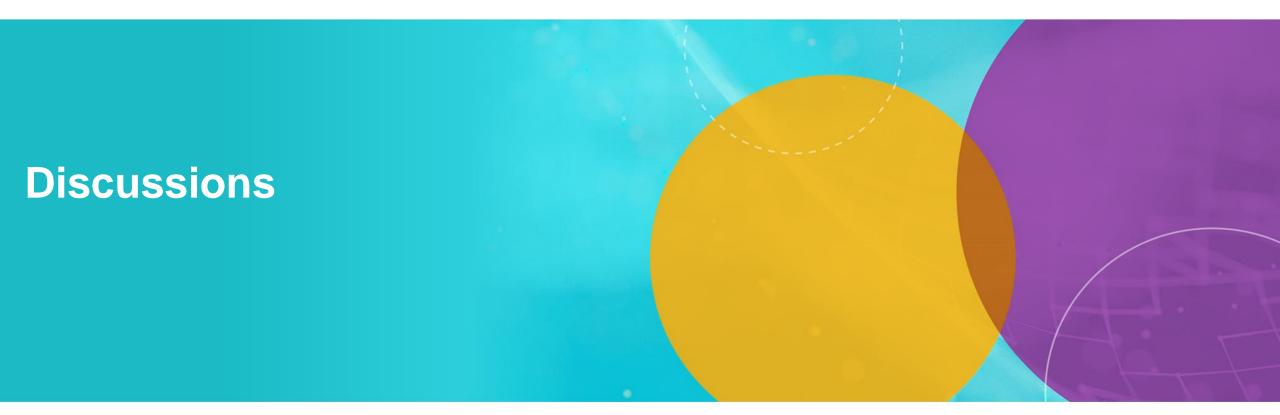



Use of TCM can be extensively tested on applications such as SerDes, where higher number of clock generation and verifications is involved

Majorly high-speed interface IPs like MIPI MPHY, involves high number of clocks and propagated paths that can be majorly benefitted through TCM flow

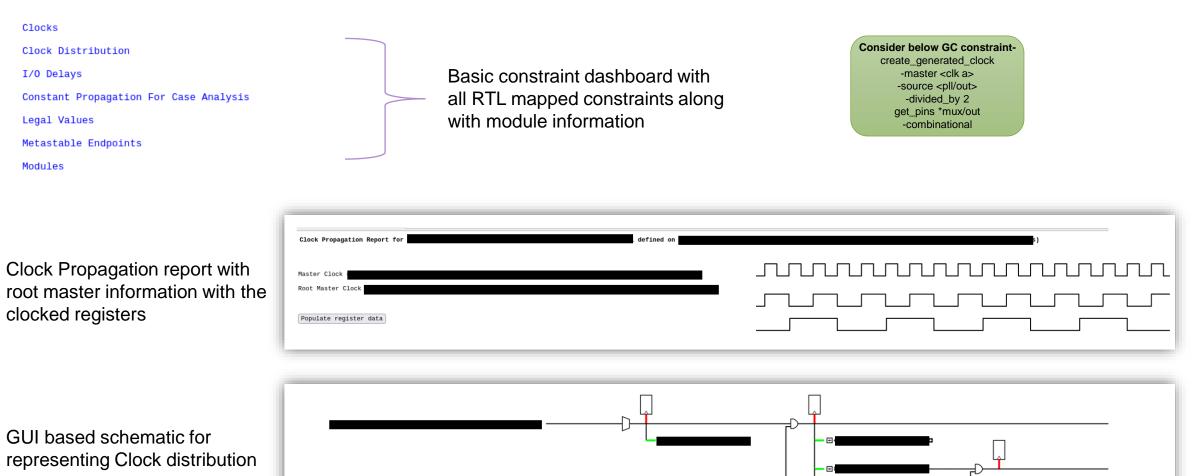


The MPHY (generic PHY+RMMI) clocking architecture involves more than 50 clock generations based on mode, gears(1 to 5), high speed(PLL) and low speed(PWM) etc.

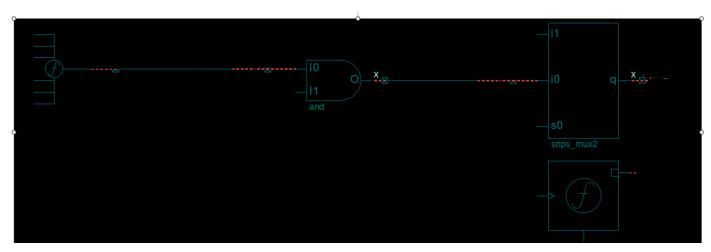


The exceptions reported are crucial as it contains many constraints that cater to be used for specific configurations in

TCM Deployment Methodology


snu

Clock Verification checks - Example

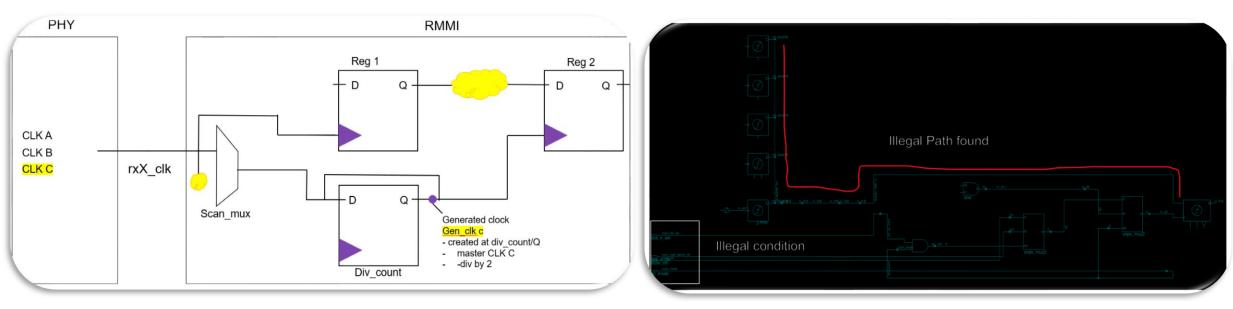

Design Information (dwc_mipi_mphy_type1_g5_2tx_2rx_ns)

SYNOPSYS[®]

Clock Verification checks - Example

GUI Schematic depicting clock propagation condition

<nwave:5> /remote//tcm_rt1_verification/verdi/mcp40000008</nwave:5>	38_1.1.vcd.fsdb		≀₽_□>
<u>File Signal View Waveform Analog Tools Window</u>			
😑 🗗 🥱 😹 🕒 🗟 👌 💿 📥 💿	▲ ▼ 0	x 1ps 🕘 🕲 🕎 By: 🛐 🕶 💽 🏹 Goto: G1 💽	
		0, 1, 1, 1, 1, [5001, 1, 1, 1, 1, 000, 1, 1, 1, 1, 500, 1, 1, 1, 12, 000, 1, 1, 1, 13, 500, 1, 1, 1, 13, 500, 1, 1, 1, 14, 000, 1, 1, 1, 14, 500, 1, 1, 1, 15, 000,	1.1.1
		1	
		0 0	
		f	
		0 0 1	
	177		6,500
1			


Assertion dumped for verifications of high/low pulse checks for generated clocks

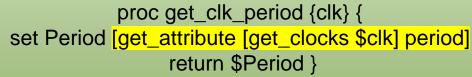
False Path Verification checks - Example

False path exception mapped by TCM

set_false_path -from [get_clocks clk a] -through [get_pins -hier "port a port b …"]

MPHY Rx Clocking architecture Uses CLK C to create Gen_clk c Verdi based schematic view for assertion generated for false path constraint


Implicit timing updates- Example



Use of below queries in the constraints causes Synthesis/STA tool to trigger implicit timing update-

- get_attribute [*] query
- set_case_analysis
- remove_case_analysis
- ✤ all_registers/all_fanin/all_fanout

Consider below MPHY example-

This resulted in TCM warning (SDC_068) in setup as below as it will not query the attribute-

Error: Execution error in SDC on line 'xx' of file 'mphy_constraints. (SDC-068) >> can't use empty string as operand of "/" >> while executing >> "expr {[get_clk_period CLK a}"

>> invoked from within

>> set_input_delay [expr {[get_clk_period CLK a}] [get_ports port a] -add_delay..."

where,

TCM Checks

sn

Clock Verification Warnings	Θ
Clock Issues	433
IO Issues	3421
Case Analysis Issues	1
Exception Issues	Θ

Generated	Clock Verification	100%
Generated	Clocks	110
Passing		19
Failing		0
Skipped		82
Waived		0

False Path Verification	100%
False Paths	35
Passing	0
Failing	0
No Paths	30
Skipped	5
Waived	0

Multicycle Path Verification	100%
Multicycle Paths	2
Passing	1
Failing	Θ
No Paths	0
Skipped	1
Waived	0

Message Severity Warnings Waived

CLK-009 47 0 CLK-010 11 0 CLK-016 4 0 CLK-018 22 0 CLK-027 20 0 CLK-028 313 0 CLK-037 3 0	CLK-006	2	13	0
CLK-016 4 0 CLK-018 22 0 CLK-027 20 0 CLK-028 313 0	CLK-009	€X	47	0
CLK-018 22 0 CLK-027 20 0 CLK-028 313 0	CLK-010	Xa	11	0
CLK-027 20 0 CLK-028 313 0	CLK-016	eX.	4	0
CLK-028 313 0	CLK-018		22	0
	CLK-027		20	0
CLK-037 💂 3 0	CLK-028		313	0
	CLK-037	ex.	3	0

Clock warnings

Classification	Exception Count	Path Count		
		Pass	Fail	Total
PASS	Θ	0	Θ	0
PARTIAL FAIL	2	108	448	556
FAIL	4	0	4008	4008
NO PATHS	29	0	Θ	0
SKIPPED (Async Clocks)	Θ	0	Θ	0
SKIPPED (I/O Paths)	0	0	Θ	0
SKIPPED (Internal)	Θ	0	Θ	0
SKIPPED (Hold FP)	Θ	0	Θ	0
SKIPPED (Duplicate)	Θ	0	Θ	0
SKIPPED (User)	Θ	0	Θ	0
WAIVED	0	0	Θ	0
WAIVED BY TOOL	Θ	0	Θ	0
Total	35	108	4456	4564

False path checks

Message Type	Warnings	Waived
Clock Issues	624	0
IO Issues	703	0
Case Analysis Issues	1	1
Exception Issues	Θ	0

Constraint warnings

Classification	Exception Count	Path Count		
		Pass	Fail	Total
PASS	0	0	0	0
PARTIAL FAIL	Θ	0	0	0
FAIL (Incorrect Shift)	Θ	0	0	0
FAIL	Θ	0	0	0
NO PATHS	Θ	0	0	0
SKIPPED (Async Clocks)	Θ	0	0	0
SKIPPED (I/O Paths)	1	0	0	0
SKIPPED (Internal)	Θ	0	0	0
PASS (Hold < Setup)	1	0	0	0
SKIPPED (No Relaxation)	0	0	0	0
SKIPPED (Duplicate)	Θ	0	0	0
SKIPPED (User)	Θ	0	0	0
WAIVED	0	0	0	0
WAIVED BY TOOL	0	0	0	0
Total	2	0	0	Θ

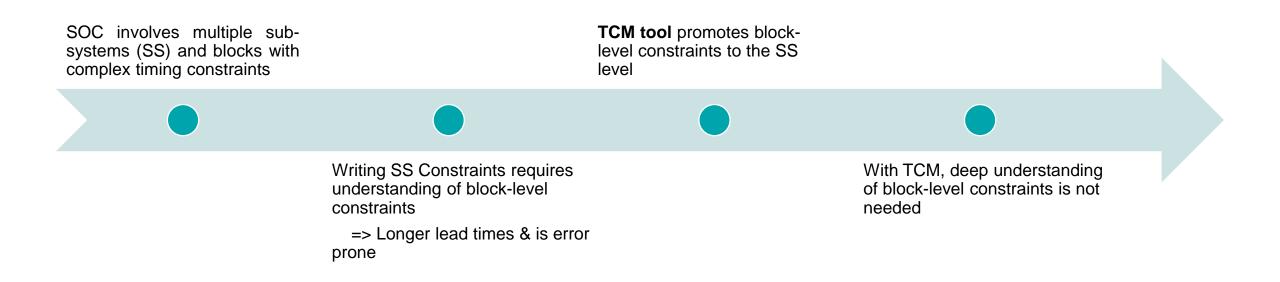
Multi-cycle path checks

After cleanup

© 2024 Synopsys, Inc.	18
-----------------------	----

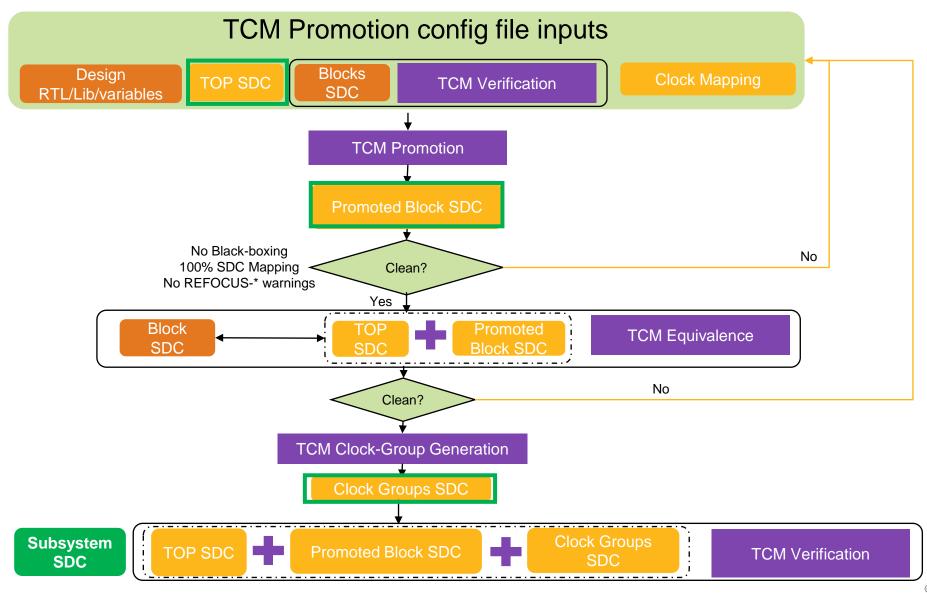
Early-stage detection	 As TCM requires only RTL as a part of design input, it proves to be beneficial in tracking and debugging constraint issues at initial stages of ASIC flow
Rigorous constraints checks	 The rules involved in TCM are categorical in addressing issues related to clock domain crossing, clock relationships, io delays for design ports etc.
Timing Optimisation	 TCM helps getting rid of constraints that cause implicit timing updates that result in long source time for constraints during Back-end flows
Runtime	 As TCM does not involve any requirement of synthesis-based netlist setup, the QA time is much lower than any other constraint management tool
Promotion	 Issues related to adaptation of constraints in the upper layer in IP integration can be tracked in early stages using TCM promotion flow
Less noise in GLS setup	 Cleanup of GLS will be quicker, since the simulation-based setup in TCM mimics the issues that can be seen in the GLS setup

Guidelines and Best Practices for Subsystem Constraints Development with TCM Promotion Tool


Apoorv Srivastava, Priyanka Goel, Akanksha Jat, Naveen Battu Synopsys

Agenda

- TCM Constraints Promotion Flow
 - The Value Proposition
 - The Flow
 - Steps (Unix Commands for TCM Constraints development flow)
 - Why Top SDC if we are promoting?
- Insights from Case Study of PCIe6 Subsystem
 - Overview of Pilot Project
 - Tool Behavior
 - Guidelines
- Conclusion: Pros/Cons


TCM Constraints Promotion Flow

The Value Proposition

In this presentation, we will share our experience of using TCM Constraints promotion for a PCIe6 Subsystem consisting of Synopsys PCIe6 Controller and Synopsys PCIe6 PHY

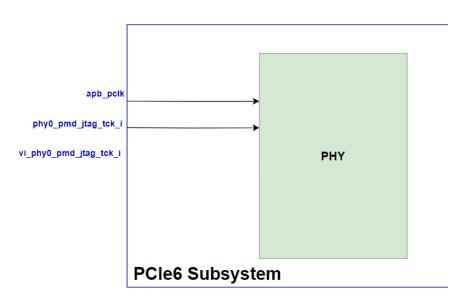
The Flow

Steps (Unix Commands for TCM Constraints development flow)

- –Unix %> <source> tcm
- _Unix %> create_fishtail_scripts-config rtl_constraint_promotion.cfg
- –Unix %> cd <fishtail_rtl_constraint_promotion>/constraint_promotion
- –Unix %>./promote_constraints
- –Unix %> output : promoted.sdc
- –Unix %> view_fishtail_result–verdi
- –Unix %> cd ../equivalence_checking
- –Unix %>./check_equivalence
- –Unix %> view_fishtail_result–verdi
- –Unix %> cd ../clock_group_generation
- –Unix %>./generate_clock_groups
- –Unix %> output : clock_groups.sdc

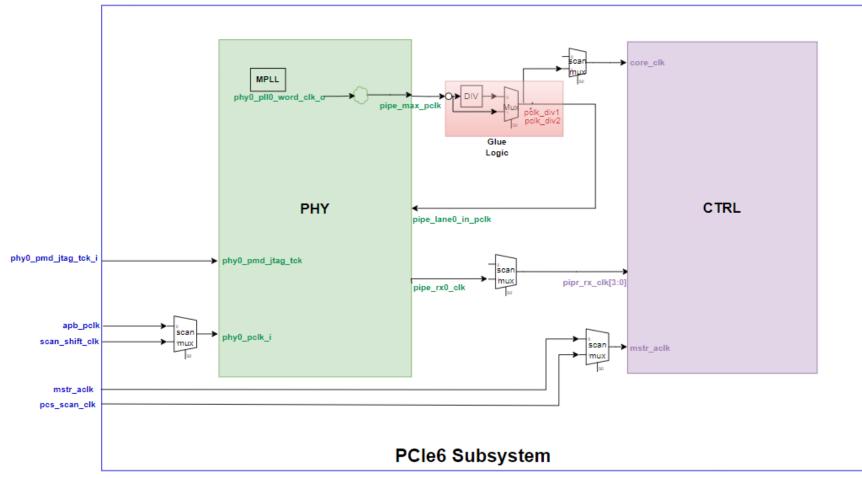
Steps (Unix Commands for TCM Verification)

- –Unix %> create_fishtail_scripts -config rtl_verification.cfg
- –Unix %> cd ./<tcm_verification>/setup
- –Unix %>./map_sdc_and_check_setup
- –Unix %> view_fishtail_result–Verdi

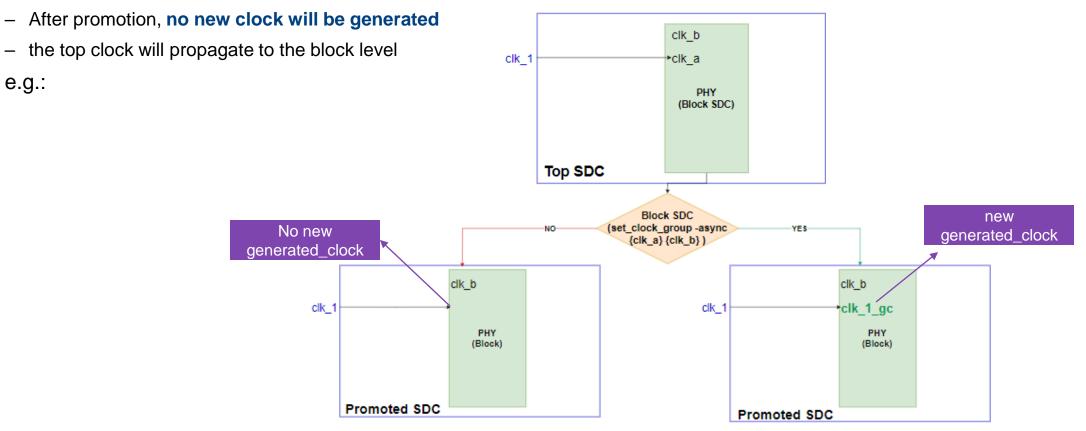

Why Top SDC if we are promoting ?

• Top-level clocks, timing exceptions and IO constraints are required to be defined

```
#Top level SDC
#TOP level clocks
create clock \
  -period 9.0 \
  { phy0 pmd jtag tck } \
  -name phy0 pmd jtag tck i \
  -add
create clock \
  -period 9.0 \


    name vi phy0 pmd jtag tck i

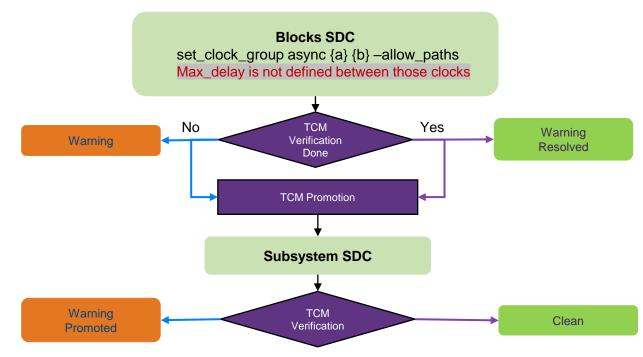
create clock \
  -waveform { 0 2.0 } \
  -period 4.000 \
  { apb pclk } \
  -name apb pclk
#Top level timing exceptions
set clock groups 🔪
  -asynchronous \
  -name all phy functional clks from different sources top clks \
  -group { apb pclk } \
  -group { phy0 pmd jtag tck i vi phy0 pmd jtag tck i }
set input delay \
   2.2 \
  -clock { vi phy0 pmd jtag tck i } \
  { phy0 pmd jtag tms } \
  -max
set false path \
  -through { u pcie ctrl top 0/u pcie core/u DWC pcie native core/u DWC pcie core/u cdm/cfg tc vc map[*] }
```



Insights from Case Study of PCIe6 Subsystem

Overview of Pilot Project

Block Diagram of PCIe6 Subsystem (with clocking)

Tool Behavior

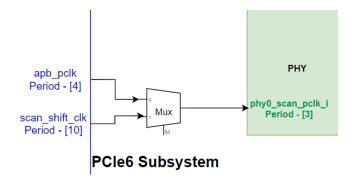

• TB1: If, timing exception is not defined on a clock in block SDC

 TB2: Output delay at the block level will be promoted w.r.t. top clocks if there is a direct connection between the mapped block clock to the top clock

Guidelines:1/8

- G1: Block SDC should be passed through a **constraint's quality check** using the TCM verification tool
 - Otherwise, any weakness at block level SDC will get promoted to Subsystem SDC
 - e.g.

Warning: There is a timed asynchronous clock crossing but one or more paths for this clock crossing do not have a max delay constraint. (CLK-038)

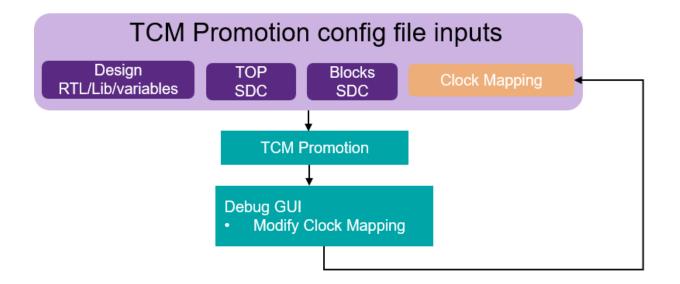

Guidelines:2/8

- G2: Top-level clocks propagating to the block-level clock ports should match their period/name for tool default clock mapping
 - Otherwise, the tool will do a random mapping with a single clock and report a warning

Warning: The period of the top-level clock is different from the block-level clock that it is mapped to. (REFOCUS-070)

- The mapping can be overridden by user-defined clock mapping

e.g.:

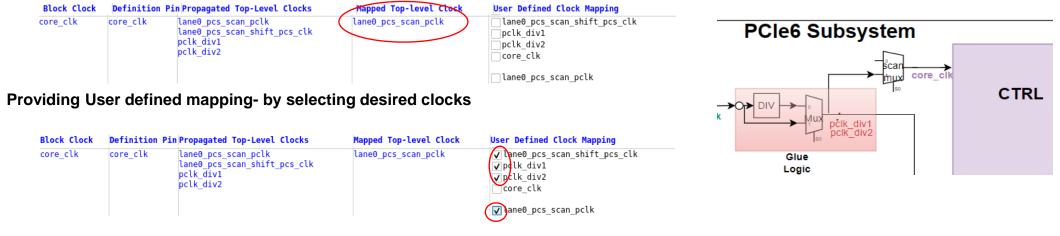

	CLOCK NAME	PERIOD
Top Clock	apb_pclk	4
Top Clock	scan_shift_clk	10
PHY Clock	phy0_scan_pclk_i	3

• Tool Clock Mapping from TCM GUI looks like

Instance	Block Clock	Definition Pin	Propagated Top-Level Clocks	Mapped Top-level Clock	User Defined Clock Mapping
u_pcie_phy_top/pcie_pipe	phy0_scan_pclk_i	phy0_pclk_i	apb_pclk scan_shift_clk	apb_pclk	scan_shift_clk phy0_scan_pclk_i apb_pclk

Guidelines:3/8

- G3: If multiple clocks need to map to block-level clock, user-defined clock mapping is required
 - Otherwise, the tool will do a random mapping with a single clock and report a warning
 Warning: Multiple top-level clocks propagate to a block-level clock. All but one of them are dropped. (REFOCUS-064)
- After the first iteration of TCM Promotion, this file is dumped from the tool, modified, and provided as input to the promotion flow



Guidelines:3/8

Clock Mapping

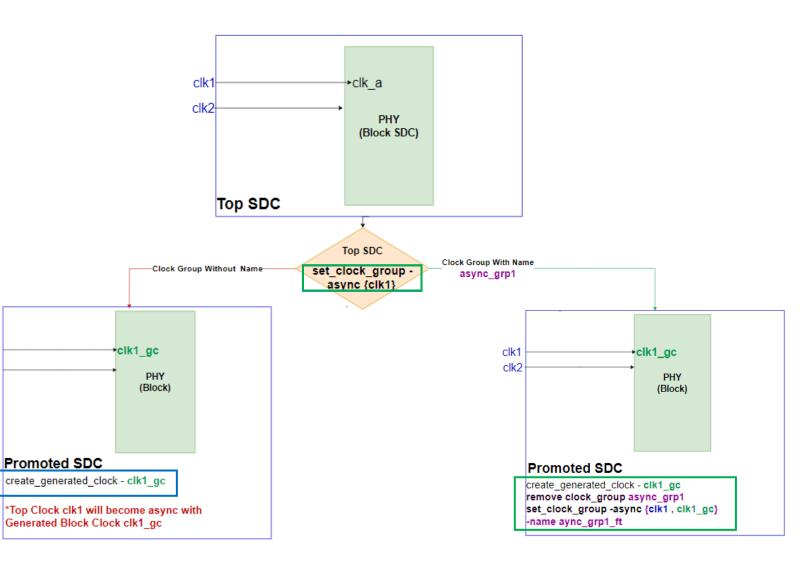
•

• Tool Clock Mapping from TCM GUI looks like

• Dumped File – clock_mapping.tcl

map_top_clock_to_block_clock -block_clock core_clk_ug -top_clock { lane0_pcs_scan_pclk lane0_pcs_scan_shift_pcs_clk pclk_div1 pclk_div2 } -pin u_pcie_ctrl_top_0/u_pcie_core/core_clk_ug

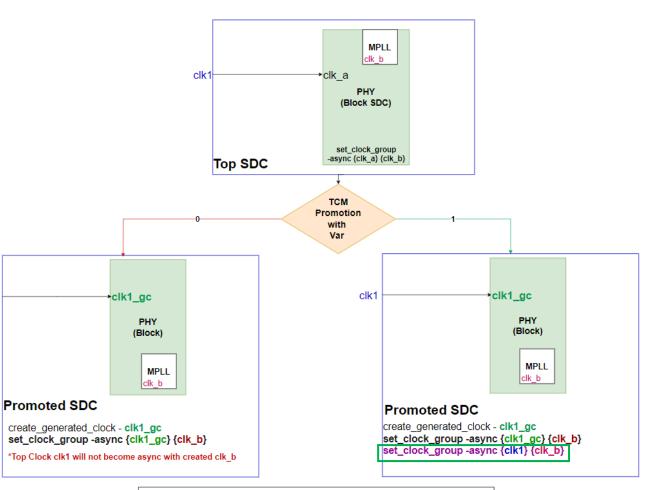
User-defined Clock Mapping


Guidelines:4/8

- G4: In Top SDC, clock_group should be defined with clock_group_name
 - The tool can remove the top clock group after promotion, if required and create a new clock group with updated clock relationship
 - e.g. a clock async with all other clocks at the top level

clk1

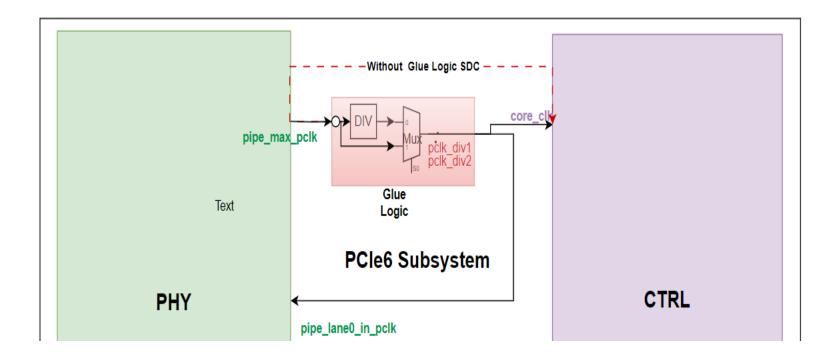
clk2


 After promotion it should be synchronous with its generated clock and asynchronous with all other clocks.

Subsystem SDC = Top SDC + Promoted SDC

Guidelines:5/8

- G5: Set TCM variable create_async_clock_group 1 in TCM config file
 - It creates an async clock group that specifies
 - That clocks created in different blocks being promoted are async to each other and top-level clocks
 - If create_async_clock_group is 0, the tool will report a warning in TCM verif for missing clock group
 - Warning: There is an asynchronous clock group ^{clk1} between clock 'clk_a' and clock 'clk_b' but their master clocks 'clk1' and 'clk_b' are missing this constraint. (CLK-026)

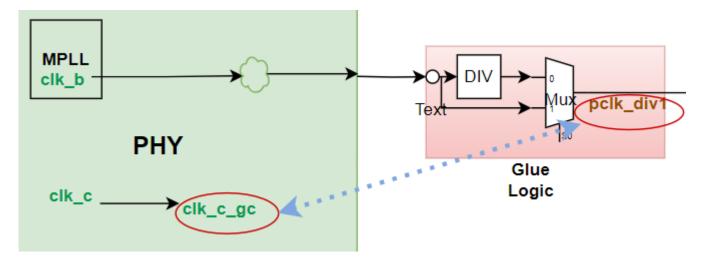


Subsystem SDC = Top SDC + Promoted SDC

Guidelines:6/8

 G6: The SDC should be provided for a block in Subsystem glue logic that has a clock-shaping circuit (divider) e.g.:

In our PCIe6 Subsystem, the CLKRST block has a divider that connects the PHY output max_pclk to the CTRL input core_clk Glue Logic (CLKRST) SDC is provided along with PHY and CTRL for constraint promotion


Guidelines:7/8

• G7: Run Clock Group Generation after TCM promotion

- Some of clock grouping is already handled in promotion flow
- Few clock grouping were missing which will be added by clock group generation step
- In absence of it, TCM verif will report below warning

Warning: There is an asynchronous clock group between master clocks **clk_b** and **clk_c** but generated clocks **plck_div1**' and **clk_c_gc'** are missing this constraint. (CLK-023)

- With Clock_Group_Generation:
 - New async clock_groups created by clock_group_generation between the clocks present in different blocks

Guidelines:8/8

Run TCM verification after Promotion at Subsystem SDC- it can highlight important issues

- G8: If at the block level, some clock_group is defined between clocks e.g. asynchronous
 - After promotion those promoted clocks become logically_exclusive by design
 - Then the promotion tool will not change clock group from async to logically_exclusive
 - TCM verification tool report the warning

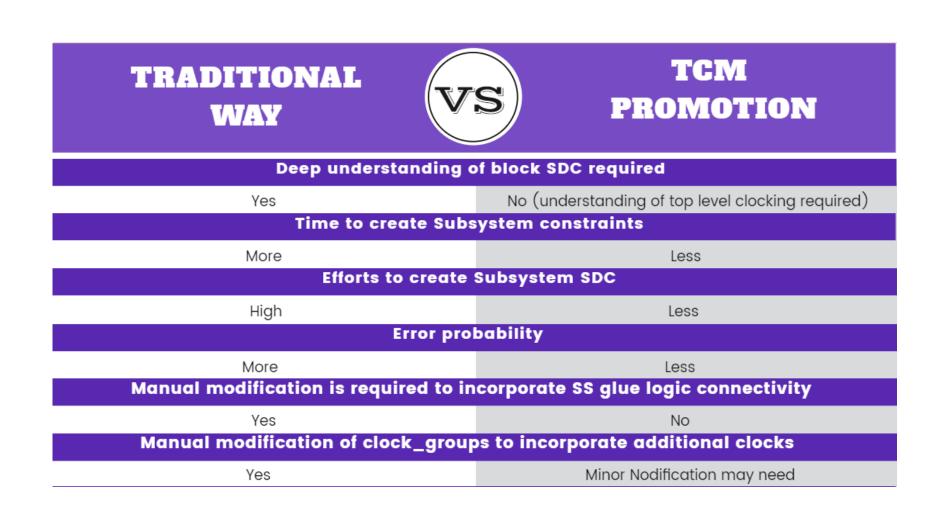
Warning: Clocks are logically exclusive but they have not been specified as such. (CLK-022)

– e.g.

_

- After Promotion CTRL Block Level Logical exclusive {pclk_div2} {pclk_div1} async {clk_a} {clk_b} Async {pclk_div2_gc} {pclk_div1_gc} CTRL PHY CLKRST CTRL clk_a pclk div2 pclk_div2_gc Mux pclk div1 clk b pclk_div1_gc clk1 PCIe6 Subsystem
- Manual modification (Logical Exclusive {pclk_div2_gc} {pclk_div1_gc} in promoted constraints is required to take care of such a scenario based on design

How are the promoted constraints checked ?


TCM Equivalence is run to ensure promoted SDC is aligned with block SDC

TCM Verification is run on Subsystem SDC (Top SDC + Promoted SDC + Clock Group SDC) to check the quality of constraints

Conclusion

Conclusion : Pros/Cons

Q&A

Our Technology, **Your** Innovation[™]

SYNOPSYS°

2024 Synopsys, Inc

THANK YOU

Other collaborators-

Utkarsh Pandharkar Prabhat Yadav Naveen Battu Our Technology, **Your** Innovation[™]

SYNOPSYS°

2024 Synopsys, Inc.