

Advancing Signoff Convergence with PrimeClosure[™] in the age of Al

Presenter : Dhananjay Kewale Co-Authors : Atul Walimbe, Amit Dounde, Luck Kuan Tee Intel Graphics Team

AGENDA

ECO & It's Objectives

ECO Flow & Objectives

4

Current Available Tool Solutions

	PRIMETIME (DMSA)	TWEAKER
Data Preparation Efforts	Low	Medium/High
Physical Aware ECOs	Yes	Yes
Timing Correlation (Signoff PT)	~100%	~95%
Distributed Machine Feature	Yes	Can be split if Partition violation count is High
Hierarchical ECO support	Yes	Yes
Multi-corner Support	Yes	Yes (100+ corners on same machine)

PrimeClosure[™]: Next-Generation ECO (Integrated the strengths of PTECO[™] and Tweaker[™] ECO + New Technologies)

PrimeClosure™
Design Flow

PrimeClosure™ Design flow

Al-driven ECO

Clock Surgery

SNUG INDIA 2024 9

1. SMSA: Single-Machine Multi-Scenario Analysis

Single ECO database

- All scenario timing data is merged into one ECO database using the timing collaterals generated by the PrimeTime tool.
- ECO fixing happens on this ECO database using single Machine

High-Capacity and Less Compute Resources

• Capable of optimizing 100+ scenarios with fewer machines, and subsystem/top-level.

sn

2. Cross Version Compatibility

- Primetime DMSA has limitation that Timing Session and DMSA needs to use Same PT version
- Prime Closure has cross version compatibility feature which allows Timing session and Prime Closure can be on different version.

3. Al-driven ECO – Early Version

Integrated Delphi (Al-driven ECO Space Optimization) technology, which allows different ECO parameter values (built-in Permutons) to achieve better PPA/design convergence results.

Al-driven ECO for Last-Mile Closure

Original Timing Fixing Settings

set slk_auto_sizing_max_shift_distance 4 set slk_fix_hold_watch_driving_pin_setup_slack false set slk_fix_hold_watch_driving_pin_hold_slack false set slk_fix_hold_watch_driving_pin_slack false

Built-In Permutons

set slk_	_auto_sizing_max_shift_distance [0, 4, 8]
set slk_	_fix_hold_watch_driving_pin_setup_slack
set slk_	_fix_hold_watch_driving_pin_hold_slack
set slk	fix hold watch driving pin slack

4. Clock-Surgery

• Address setup timing speed-paths with useful clock skew.

New Options/Enhancements

- Restrict the maximum clock level (*-max_level_in_clock 5*)
- Exclude/Ignore IO related endpoints (*-ignore_boundary_flops 1*)

Fix at the starting point **(Green: Pull-in):** Decrease clock delay by upsizing and/or bypass Fix at the endpoint (Red: Push-out): Increase clock delay by downsizing and/or inserting

Data Exchange from PrimeTime[™] to PrimeClosure[™]

Generate sessions for PT and PC save_session ./pt_session_scen1_

Reuse/Link the existing STA session to save disk-space

write_eco_session <pre_eco_session</pre>

-include {smsa_data} \

-smsa_data_type {setup hold max_transition max_capacitance \
 max_fanout power drc_max_transition drc_max_capacitance pin_slew} \
-smsa_data_format binary -smsa_pba_mode exhaustive \

-link_session \$sh_launch_dir/pt_session_scen1

					PC session (with -		-
Design 1	PT Session	PC session	F	PC session (GB)	link_s	ession and Witl	hout
🔹 (~1.3M instances) 🔽	(GB) 🔽	(GB) 🔽		(-link_session)	· .	SMSA data) (KB)	-
PVT1	4.4	5.6		1.2		56	
PVT2	4.4	5.6		1.2		56	
PVT3	4.4	5.6		1.2		56	
PVT4	4.4	5.6 1.2		56			
PVT5	5	6.2	1.2 80		80		
PVT6	5	6.2		1.2		80	
PVT7	6.6	8.3	1.7 116		116		
PVT8	6.6	8.3	17			116	
Percentage		126 %		<mark>26</mark> %		0.0015%	

Comparison of PT and PC Save Session File Sizes (GB)

PrimeTime™

PrimeClosure™ Recipe

pc_script.tcl

set multi_scenario_working_directory PC_DMSA; set_host_options -num_processes 12 set_technology –node <N>

read_eco_session pre_eco_session

fix_eco_drc
fix_eco_timing -type setup
fix_eco_timing -type hold

fix_eco_power
start_eco -mode dmsa
start_eco -mode smsa
fix_eco_drc -type max_transition -verbose -methods {recovery}
fix_eco_timing -type setup -methods {recovery}

ecotclout -icc2 <eco_changes.tcl>
report_eco_summary -summary

Configure Machine Resources for STA

Set Technology Node

Read pre-ECO sessions

Read Physical Data

ECO Fixing (LDRC, Timing, Clock-Surgery, and/or Power Recovery)

Changelist

PrimeTime What-if

pc_shell -f pc_script.tcl -output_log ./logs/run.log

snu

An Example of PrimeClosure™ Log File

report_eco_summary -summary Setup violations (Pre-ECO->Post-ECO) Total reg -> reg in -> reg reg -> out in -> out -0.16 -> -0.04 0.00 -> 0.00 0.00 -> 0.00 0.00 -> 0.00 WNS -0.16 -> -0.04 -88.05 -> -4.62 00 05 5 4.62 0.00 -> 0.00 0.00 -> 0.00 0.00 -> 0.00 TNS 13231 -> NUM 13231 -> 611 611 0 -> 0 0 -> 0 0 -> Hold violations (Pre-ECO->Post-ECO) Total reg -> reg in -> reg reg -> out in -> out -0.06 -> -0.05 -0.06 -> -0.05 0.00 -> 0.00 0.00 -> 0.00 0.00 -> 0.00 WNS TNS -16.38 -> -1.34 7514 -> 293 NUM 7514 -> 293 0 -> autofix detail log summary: # autofix detail log summary: B004 Blocked by Timing Window (Setup)(1) # BVIV Improved Slack < min improved slack(75) # B003 Blocked by no setup margin (twf)(1) # B012 Blocked by sizing non-STD cell(8) # B025 Blocked by Timing Window (Setup) (Input Pin)(5) # B004 Blocked by Timing Window (Setup)(3) # B051 Blocked by don't use setting(1787) B006 Blocked by Driving Timing Window (Setup)(1) # B073 Blocked by twf clock pin(34) # B086 Blocked by fix setup/cons without sizing down(1718) # B126 Blocked by auto-sizing area ratio(1767) Blocking Codes for Unresolvable **Hold** Viols

Blocking Codes for Unresolvable Setup Viols

An Example of ECO Implementation Log File

snug

source <eco_changes.tcl>

ECO:	=== Summary of	dropped ECOs	due to targe	et pre-check	===	
ECO:	=== Enabled by	PrimeClosure	variable (e	co_tcl_pre_ch	<pre>neck_target)</pre>	===
ECO:		accept	drop	total		
ECO:		<u></u>				
ECO:	insertion	2000	0	2000		
ECO:	deletion	23	0	23		
ECO:	dummy_load	0	0	0		
ECO:	sizing	193872	0	193872		
ECO:	by_pass	0	0	0		
ECO:	pin_swap	0	0	0		
ECO:	other_eco	0	0	0		

legalize_placement -post_route -incremental

Number of cells moved:	2180 (0.16%)	Orientation changes only: 211
Average cell displacement:	0.0003 um (AW:	0.0003 um = 0.0021 rh
Max cell displacement:	1.9433 um = 13	.5902 rh
Number of large displacements:	215	

Comparison Results Prime Closure™ Vs Primetime™

Timing

	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	SETUP TNS	SETUP VP	SETUP TNS	SETUP VP	SETUP TNS	SETUP VP
PARTITION	(ROUTE)	(ROUTE)	(PTECO)	(PTECO)	(PCECO)	(PCECO)
DESIGN1	-16.30	2672	-1.88	491	-1.20	324
DESIGN2	-14.596	1851	-0.418	175	-0.276	77
DESIGN3	-25.107	4121	-0.242	90	-0.137	65
DESIGN4	-40.66	7570	-1.012	148	-1.233	184
DESIGN5	-32.155	4370	-0.061	44	-0.068	52
Percentage					19.39 %	25.95%

19% Setup TNS improvement with PC

	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	HOLD TNS	HOLD VP	HOLD TNS	HOLD VP	HOLD TNS	HOLD VP
PARTITION	(ROUTE)	(ROUTE)	(PTECO)	(PTECO)	(PCECO)	(PCECO)
DESIGN1	-6.00	2242	-0.15	52	-0.30	73
DESIGN2	-11.564	4764	-0.425	231	-0.314	247
DESIGN3	-6.279	2295	-0.089	87	-0.145	97
DESIGN4	- <mark>5</mark> .282	2177	-0.396	115	-0.345	96
DESIGN5	-13.003	3510	-0.197	159	-0.129	90
Percentage					1.83 %	6.37 %

1.8% Hold TNS improvement with PC

Power

PARTITION	TOTAL POWER PTECO(mW)	TOTAL DYNAMIC POWER PTECO(mW)	TOTAL LEKAGE POWER PTECO(mW)	TOTAL POWER PCECO(mW)	TOTAL DYNAMIC POWER PCECO(mW)	TOTAL LEKAGE POWER PCECO(mW)
DESIGN1	24.62	16.12	8.5	23.94	16.15	7.8
DESIGN2	13.69	9.56	4.12	13.39	9.55	3.84
DESIGN3	22.26	18.45	3.8	22.24	18.44	3.8
DESIGN4	34.27	27.26	7.01	34.06	27.26	6.77
DESIGN5	20.13	16.08	4.05	19.8	15.99	3.81
Percentage				1.34%	0.09%	5.31%

5.3% Leakage improvement with PC

Runtime

PARTITION	INSTANCE COUNT (M)	RUNTIME PTECO (HH:MM)	RUNTIME PCECO (HH:MM) _■
DESIGN1	1	9:53	7:28
DESIGN2	1.35	14:30	11:30
DESIGN3	1.3	13:50	11:10
DESIGN4	0.33	3:54	2:50
DESIGN5	1.44	15:50	13:25
Percentage			19.80%

20% Runtime improvement with PC

Routing

PARTITION	SHORTS (PTECO)	DRC (PTECO)	SHORTS (PCECO)	DRC (PCECO)
DESIGN1	15	144	28	167
DESIGN2	27	362	27	362
DESIGN3	9	174	11	171
DESIGN4	29	243	29	260
DESIGN5	12	114	9	107
Percentage			13.04 %	2.89%

Resource Utilization (Cores and Memory)

	PTECO	PCECO
CORES	92 Cores/Hr.	24.4 Cores/Hr.
Memory	1088GB/Hr.	345.6GB/Hr.

72% Less Cores with PC

68% Less Memory with PC

HOW? Resource Distribution Illustration (PTECO vs. PC): ~10 hours normalized runtime

PTECO

PrimeClosure

snug

• Al-driven ECO (Leakage Power Saving)

Design 4	PTECO	<u>PC</u>	<u>PC</u> (Al-driven)	<u>Diff</u> (vs PTECO)
LVT%	5.63	5.86	5.31	-0.32
SVT%	67.31	64.65	62.45	-4.86
HVT%	27.06	29.50	32.24	5.18
РТРХ				
Total Power [mw]	2.612	2.510	2.419	7%
Dyanamic Power [mw]	0.330	0.330	0.330	0%
Leakage Power [mw]	2.281	2.180	2.088	8%
		4%	4%	
	1			
Timing				
R2R Setup TNS	-1.06	-0.32	-0.32	70%
Number of R2R Setup Viols	8	6	7	-1
Number of R2R Hold Viols	78	89	87	9

High-Leakage Cell Usage

1 Low-Leakage Cell Usage

- Total ~8% reduction in leakage power without affecting timing:-
- i. ~4% leakage power saving has been achieved with PrimeClosure (vs PTECO).
- ii. Another ~4% leakage power reduction is observed with PrimeClosure Al-driven ECO enabled.

A fully automated flow for further advancing PPA

sn

Future Technologies & Enhancements

Production release of new & advanced 'AI-driven ECO' technology.

Clock-Surgery with splitting/cloning technique

Improving Ease-of-Use : Eliminating DEFs and LEFs input collaterals when NDM

nque

Summary

Timing	19% Setup TNS improvement	Resource	68% Less Memory	
	2% Hold TNS improvement		72% Less Cores	
Power	5.3% Leakage improvement	Runtime	20% Runtime improvement	

In conclusion, PrimeClosure[™] has the potential to reduce ECO efforts and iterations at advanced nodes for high-speed and high-density designs, while also accelerating design closure and time-to-market.

sn

THANK YOU

Our Technology, **Your** Innovation[™]

Comparison Results (Block ECO)

• With Clock-Surgery Enabled

Timing (Intra-Block Only + post-ECO)

	Advanced	# of New		Total	Total	Total	Total
Block	Nodo	Clock Colls		Setup TNS	Setup TNS	Hold Viols	Hold Viols
	NOUE	lode Clock Cells		(Before)	(After)	(Before)	(After)
Design 2	Ν	28		-8.9	-7.7	94	348
Design 5	N+1	1		-3.24	-3.02	409	1108
Average D	Diff				12%		-953 🐧

Routing

Total DRC (Before)	Total DRC (After)	Total Short (Before)	Total Short (After)	Total PWR (Before)	Total PWR (After)	Leakage PWR (Before)	Leakage PWR (After)
852	867	20	17	39.02	39.08	6.64	6.72
97	99	23	24	30.34	30.45	12.5	12.6
	-17		2		-0.25%		-0.94%

Total Setup TNS is further improved by ~12%

Comparable

Power is only increased slightly

An additional ECO loop may be required to address hold degradation at lower buckets, primarily caused by pre- and post-ECO miscorrelation. snu

Hierarchical ECO Flow at Section/Full-Chip Level (w/ Hyperscale)

Hierarchical ECO Flow at Section/Full-Chip Level (Recipe)

pc_script.tcl

set multi_scenario_working_directory PC_DMSA; set_host_options -num_processes 12 set_technology –node <N>

Additional settings from set_eco_options can be included here read_physical_data -tech \$tech_lef -lef \$lef_files

Voltage areas

read_physical_data -def {Top.def} -physical_constraint_file {Topva.tcl} read_physical_data -def {B1.def} -physical_constraint_file {B1va.tcl} read_physical_data -def {B2.def} -physical_constraint_file {B2va.tcl} ...

read_eco_session section_pre_eco_scen1 -scenario_name scen1 # Section level sessions
read_eco_session section_pre_eco_scen2 -scenario_name scen2 # Section level sessions
start_eco -mode smsa -smsa_data_type {setup hold max_transition pin_slew
drc_max_transition drc_max_capacitance} \

Enable technology specific settings
fix_eco_drc
fix_eco_timing -type setup
fix_eco_timing -type hold

report_eco_summary or other SMSA reporting commands
ecotclout -icc2 <eco_changes.tcl>

- Configure Machine Resources for STA
- Enable technology specific settings
- Provide the standard LEF, DEF and VA (Voltage Area) inputs for physical information for TOP and blocks
- Read PT pre-ECO sessions
- Conduct ECO operations
- Write out hierarchical changes for implementation.

Hierarchical ECO Flow at Section Level (Comparison Results)

hr

Section Hyperscale Testcase

- Consists of 16 blocks
- ~14M instances (~30% involving inter-block logics)

		Total Vi	olations		
	Before	PTECO	After PTECO		
Scenario	Setup	Hold	Setup	Hold	
PVT1_vmid_min	0	861	0	2	
PVT2_vmid_min	0	523	0	3	
PVT3_vhigh_min	0	6104	0	55	
PVT4_vlow_min	0	356	0	0	
PVT5_vlow_max	8	0	0	0	
PVT6_vmid_min	0	1907	0	1	
PVT7_vmid_max	121	0	0	0	
PVT8_vlow_max	10	0	0	0	
PVT9_vmid_max	835	0	25	0	
PVT10_vmid_max	194	0	0	0	
PVT11_vhigh_max	1504	0	235	0	
PVT12_vhigh_max	1426	0	366	0	
Total	4098	9751	626	61	
Fix-Rate			85%	99%	

PTECO

oup : all_group	Original setup	hold	Current setup		hold
Critical Path Slack: Total Negative Slack: No. of Violating Paths: TNS of Violating Endpoints: No. of Violating Endpoints:	-0.05 -155.68 16497 -20.60 1879	-0.21 -278.73 29025 -58.99 8345	-0.04 -33.10 3076 -3.08 284	Hold	-0.08 -11.17 674 -1.82 164
		Setup			
Key takeaway: PrimeClosure de	Based on monstrates	pre-ECO wh s'>20% bette	at-if analy er setup ti	/sis, ming	
than P	I ECO in te	rms of violat	ions.		

PrimeClosure

Comparison Results (Block ECO)

• With Clock-Surgery Enabled

Timing (Intra-Block Only + post-ECO)

	Advanced	# of New		Total	Total	Total	Total
Block	Nodo	Clock Colls		Setup TNS	Setup TNS	Hold Viols	Hold Viols
	NOUE	lode Clock Cells		(Before)	(After)	(Before)	(After)
Design 2	Ν	28		-8.9	-7.7	94	348
Design 5	N+1	1		-3.24	-3.02	409	1108
Average D	Diff				12%		-953 🐧

Routing

Total DRC (Before)	Total DRC (After)	Total Short (Before)	Total Short (After)	Total PWR (Before)	Total PWR (After)	Leakage PWR (Before)	Leakage PWR (After)
852	867	20	17	39.02	39.08	6.64	6.72
97	99	23	24	30.34	30.45	12.5	12.6
	-17		2		-0.25%		-0.94%

Total Setup TNS is further improved by ~12%

Comparable

Power is only increased slightly

An additional ECO loop may be required to address hold degradation at lower buckets, primarily caused by pre- and post-ECO miscorrelation. snu

Hierarchical ECO Flow at Section Level (Comparison Results)

Section Hyperscale Testcase

- Consists of 16 blocks
- ~14M instances (~30% involving inter-block logics)

		Total Vi	olations		
	Before	PTECO	After PTECO		
Scenario	Setup	Hold	Setup	Hold	
PVT1_vmid_min	0	861	0	2	
PVT2_vmid_min	0	523	0	3	
PVT3_vhigh_min	0	6104	0	55	
PVT4_vlow_min	0	356	0	0	
PVT5_vlow_max	8	0	0	0	
PVT6_vmid_min	0	1907	0	1	
PVT7_vmid_max	121	0	0	0	
PVT8_vlow_max	10	0	0	0	
PVT9_vmid_max	835	0	25	0	
PVT10_vmid_max	194	0	0	0	
PVT11_vhigh_max	1504	0	235	0	
PVT12_vhigh_max	1426	0	366	0	
Total	4098	9751	626	61	
Fix-Rate			85%	99%	

PTECO

PrimeClosure

Group : all_group	Original setup	hold	Current setup	hold
Critical Path Slack: Total Negative Slack: No. of Violating Paths: TNS of Violating Endpoints: No. of Violating Endpoints:	-0.05 -155.68 16497 -20.60 1879	-0.21 -278.73 29025 -58.9° 8345	-0.04 -33.10 Hold 3076 -3.08 284	-0.08 -11.17 674 -1.82 164
		Setup		
Key takeaway: PrimeClosure de	Based on monstrate	pre-ECO wh	at-if analysis, er setup timing	9
inan P		erms or violat	IONS.	