

Identifying Soft-Resets in RTL Design using RDC Flow

Megha Hansaliya Sushovan Kunti

Google

AGENDA

□Introduction to RDC

□ Problem Statement

Methodology

Implementation

□Challenges and Workaround

Results

□Conclusions

□Future Scope of Work

Introduction on RDC

SNUG INDIA 2024

- Today's SoCs see increasing reset domains and very complex reset architecture
- Multiple resets are designed to cater to various requirements
- Part which asynchronously goes in reset state, corrupts the other part not in reset state
- Results into metastability, glitch, and functional failure leading to silicon failure
- In the above schematic, due to the asynchronous assertion of rst1, the d2 input may change within the setup or hold window of that flop, **leading to metastability**

Problem Statement

Problem Statement

- Synchronous reset coming from internal logic or F/Fs is combined with global asynchronous resets
- Together when they drive the async reset port of some internal logic it causes metastability
- As a result the internal logic goes under soft-reset
- Difficult to find the exact point where reset-crossing is happening between software reset and asynchronous reset
- Require **multiple iterations** of RTL Reset Constraints releases
- Industry-standard tools often lack direct visibility into reset crossings between soft-resets and asynchronous resets leads to **post-silicon bugs** in the chip

Task 1	Task 2	Task 3	Task 4	Task 5	
Designers can find all soft-resets in the design using setup stage by having inferred soft-reset rule	Primary inputs to the RDC tool are reset constraints and reset grouping , for resets coming from common generator module	In setup goal, find all soft-resets under a specific tag and dump them as constraints using Custom Report Generation feature using tool based Tcl Query	These generated constraints are used in the RDC tool with advanced goal which enables us to find reset crossings between soft-resets and asynchronous resets	Reset grouping enables us to reduce noise and only provides us with the relevant soft-reset crossings without having reset sequencing	

Implementation

Challenges and Workarounds

Challenges and Workarounds

• Larger Gate Count designs

 Use RDC constraints/abstract-models for lower level blocks to perform RDC in hierarchical mode

• IPs having lots of Third Party IPs (3PIP)

- Black-box the third party IPs if,
 - Vendor delivers a clean RDC design
 - Boundary reset constraints are provided by the Vendor
- The above process rules out the scenario where soft-reset from IP going into 3PIP
- If above scenarios aren't fulfilled then run flat RDC analysis

• IPs with huge number of memories

- Ensure no external resets corrupt memory operations
- If not true, constrain external resets driving memory for RDC analysis

Sub-System Design	Gate count	Performance			Violations		
		Setup (mins)	Memory (GB)	Setup+Advance (mins)	Memory (GB)	Num of Soft- resets	RDC Errors (Compressed)
Hardware Accelerator	350k	7.1	14	10.1	19	5	38
Security	200k	8.9	15	13.9	22	9	54
High Speed Peripheral	620k	12.8	20	49.1	63	140	189

- Proposed methodology catches all the soft-reset related issues identified by the software team
 - Reduce multiple iteration of RTL Reset Constraints releases
 - Reduced turnaround time and effort for manual review in frontend design cycle
 - Turnaround time reduced from 1-2 week to 3-4 days
- These bugs normally found in manual reviews at STA
 - With catching these issues at RTL stage achieved shift left strategy
 - Focuses solely on violations from soft-reset crossings, reducing noise compared to industry standards tools
 - Can be **adopted by any user** using or planning for RDC analysis
 - Addresses common industry challenges when enabling RDC checks for soft-resets as part of RTL Sign-Off Checks

Future Scope of Work

Future Scope of Work

• Designers **need to cleanup all CDC constraints** for seeing only reset crossings

- Need to work on to find how to reduce constraints mapping
- For large design, observed large amount of RDC crossings
 - Need methods for reducing noise beyond existing suggestions
- Huge/Complex designs reports longer runtime
 - Needs improvement to reduce runtime for bigger design
- Analysis of **soft-reset stops at flop out, instead of going deep in the design** and reporting the exact pin
 - In figure 1, we are expecting tool should also report U1/Q as the soft-reset

18

Q&A

Our Technology, Your Innovation™

THANK YOU

Our Technology, Your Innovation[™]