
SNUG INDIA 2024 1

Reproducing a Deep Corner-Case

Bug using Formal

Abhishek Anand
SiFive

SNUG INDIA 2024 2

Bug Overview

SNUG INDIA 2024 3

Bug Overview

• What was the bug ?
– A lost RAW hazard in OOO LSU was causing older data to be returned

• Why was this a corner-case bug ?
– Required multiple hazard dependencies to be created between Multiple Instructions and Cached Data

– Cache-line needed to be evicted within a specific window of multiple dependencies being resolved

– Finally, there was a single cycle window where store resolve needed to happen for this bug to occur

SNUG INDIA 2024 4

LSU Formal TB Overview

SNUG INDIA 2024 5

LSU Formal Test-bench Overview

• Why is LSU a complex block for Formal ?
– LSU is an out-of-order processor unit which tracks hazards and dependencies for all ongoing instructions

– A given instruction in LSU can go through multiple paths depending on cache states and other

instructions in the pipeline, leading to huge state space

– High end-to-end Latencies

• How did we tackle complexity ?
– Parameter Reduction

– Store/Load trackers reduced significantly to the order to ~4

– Memory Abstraction

– Store data only for tracked address (under-constrained for everything else)

– Reset Abstraction

– Allow Store/Load trackers and Caches to be filled up out-of-reset

SNUG INDIA 2024 6

LSU Formal Test-bench Overview

• Results from LSU Formal Test-bench
– 60+ bugs reported through Formal Verification

– ~25% of reported bugs were found to be high-impact and corner case scenarios

• Why did LSU Formal miss the bug ?
– Parameter Reduction

– Given bug was unique to larger parameter design causing extensive hold at a given Arbiter

– Huge Latency

– Proof depth not being sufficient was a known limitation at the time of this bug

– End-to-end assertion was hitting depth = 14; bug required depth = ~25 (even with reset abstraction)

– This was even after running with ~96 workers for 60+ hours

SNUG INDIA 2024 7

Formal Effort to Reproduce Bug

SNUG INDIA 2024 8

Formal Effort for Bug

• Why was it important to reproduce the bug in Formal ?
– The bug needed to be reproduced either in Formal or Simulation to confirm designer’s hypothesis

– Fix Verification and further bug-hunting was required to ensure absence of similar bug

• Further steps taken
– Under-constrained Arbiter to allow extensive holds possible only with larger configs

– Used Local assertion to reduce scope of assertion

– Replaced generic reset abstraction with FSDB loading at reset

SNUG INDIA 2024 9

Under-constraint

• Why was it required ?
– For larger design there were ~32 requestors at an internal arbitration point

– For parameter reduced design #requestor dropped to ~4

– Bug required the Arbiter to hold request for a given requestor for 8+ cycles

• How was it achieved ?
– Added snip on grant and constrained it as

~(|req) |-> ~gnt

– Modified behaviour
– Grant can remain de-asserted even if there is a pending request

– Discounted this behavior for all dependent Forward Progress Assertions

SNUG INDIA 2024 10

Local Assertion

• Why was it required ?
– Original end-to-end load correctness assertion had huge COI

– 1,000+ flops in COI (even after all abstractions)

• What was the new assertion ?
– New assertion focused on the hazard dependencies being correctly maintained until a given instruction

completes
– Only 100+ flops in COI

• Should this be the recommended approach ?
– Ideally we would want our end-to-end assertion to be robust enough to cover everything

– However, since this bug required quick resolution, moving to local assertion helped

– Later the Formal Setup was made more robust using divide and conquer approach

SNUG INDIA 2024 11

Reset Abstraction

• Why was it required ?
– Reset Abstraction was very generic allowing

– All store/load trackers to hold instructions out-of-reset

– Complete L1 Cache to be occupied with data present out-of-reset in any coherence state

– This caused the assertion to observe huge state-space out-of-reset and state-space explosion to slow

down the assertion

• What was the alternative method ?
– Wrote covers to generate waveforms for pre-condition of the buggy scenario to occur

– Loaded the generated waveforms at reset and ran targeted assertion

SNUG INDIA 2024 12

Results

– Able to hit the bug in ~1 minute as compared to not being able to hit it in 60+ hours !!

– Fix was verified using same approach

– Further bug-hunting was done using same approach to further improve the confidence

SNUG INDIA 2024 13

Further Takeaways

– Employ under-constrained behaviour on Arbiters across all designs

– This was adapted and added to Simulation flow as well

– Add more Local Assertions in designs to help hit bugs faster

– Employ Bug-Hunting with FSDB loaded waves for Formal setups with known proof-depth issues

SNUG INDIA 2024 14

	Slide 1: Reproducing a Deep Corner-Case Bug using Formal
	Slide 2: Bug Overview
	Slide 3: Bug Overview
	Slide 4: LSU Formal TB Overview
	Slide 5: LSU Formal Test-bench Overview
	Slide 6: LSU Formal Test-bench Overview
	Slide 7: Formal Effort to Reproduce Bug
	Slide 8: Formal Effort for Bug
	Slide 9: Under-constraint
	Slide 10: Local Assertion
	Slide 11: Reset Abstraction
	Slide 12: Results
	Slide 13: Further Takeaways
	Slide 14

