
SNUG INDIA 2024 1

Framework for Automated

Connectivity Checks for core

and SOCs

Srobona Mitra, Avinaba Tapadar, Akash Singh,

Mohit Solanki, Raghu B R

Qualcomm India Private Limited

SNUG INDIA 2024 2

AGENDA

Introduction

Motivation

Formal Connectivity check

Rules-based connectivity check (static)

Bugs caught

Conclusion

SNUG INDIA 2024 3

Introduction

• Connectivity verification is one of the most time-consuming and crucial tasks due to its volume of
checks and the serious repercussions of a bug.

• At SOC level the no. of connections usually goes into lakhs if not more.

• Manually filled in connectivity information are present in IP-Spec releases. An error in this often gets
caught at the later stages where it is difficult to check if the bug is present in the spec or the RTL.

• A debugging activity at a later stage requires involvement of multiple teams, namely, Core design,
SoC design, and SoC DV.

• This work aims to simplify the prognosis step by formally verifying the connectivity of different parts
of the design at earlier stages and at core level. We use the Connectivity app of VC Formal in the
process.

• We also use rule-based static checks for verifying SOC integration connectivity.

• Our tool has been adopted by multiple teams and applied on several projects.

• It has proven its worth by catching several bugs in these projects thus increasing the quality of
verification and bestowing confidence.

SNUG INDIA 2024 4

Motivation and Our Proposal
Why we need automated connectivity checks

• The data is filled manually !!

• Given the amount of the data on connections, it is highly likely that bugs will creep in during this

manual process.

• It takes days to verify the data in DV

• A bug often gets caught in the later stage, where multiple days of effort is required for debugging.

Proposed methodology

✓ End-to-end automated

✓ Takes minutes to verify

✓ Bugs are caught in early stages, easier to debug

✓ Can be signed-off without DV

SNUG INDIA 2024 5

Contribution

We have developed our tool to carry out connectivity verifications both at core and SOC level.

Following is a brief outline of our contribution.

Core level formal verification

• Formal connectivity verification of connectivity data present in spec

• Connectivity gets formally verified within minutes; all core verification can be completed in ~2hours

SOC level static checks

• Developed the syntax and semantics of specifying connectivity rules at SOC level

• Checks SOC level inter-core connectivity based on user-provided rules

• Automated static checks of the SOC-level connectivity

• Provides a SOC level connectivity coverage metric

SNUG INDIA 2024 6

Rule-based static checks
Creating the connectivity rules

• We have developed the following syntax and semantics for specifying the SOC connectivity rules

• It caters the need for customized and varied use cases needed for SOC connectivity checks

• We have introduced two types of wildcard “*” and “+” to denote all matching cases and at least one

matching case, respectively.

• There is also provision to provide multiple destinations for a source

• Following are a few examples

Src

instance

Src port Dest

instance

Dest

port

Semantics

u_noc a_irq u_modem irq_in u_noc.a_irq → u_modem.irq_in

u_noc a_irq u_modem u_noc.a_irq → any one port in u_modem

u_noc u_modem irq_in any one port from u_noc → u_modem.irq_in

u_gcc gcc_apc_

clk

u_modem *_clk u_gcc.gcc_apc_clk → all ports matching with u_modem.*_clk

u_gcc gcc_apc_

clk

u_modem +_clk u_gcc.gcc_apc_clk → at least one port matching with

u_modem.*_clk

u_gcc +_clk u_* +_clk At least one clk signal from u_gcc → at least one clk signal in

all u_* modules

SNUG INDIA 2024 7

Proposed methodology

SPEC

Connectivity
Properties .tcl file

VC Formal Connectivity App

Connectivity Information (.yml)

Rule

Fails

Automatic property extraction

Modify
Spec or RTL

Properties

Pass

Core level (formal) Rule-based static check

Connectivity
rules

RTL

SOC connectivity (.json)

Static checks script

Check RTL

All rules pass

SNUG INDIA 2024 8

Results

Traditional way Proposed way

Core level • User has to manually generate
separate testbenches for checking
each memory connection present in
IP-Spec.

• Verification is done during
simulation with manually embedded
checkers.

• Takes several days

• Push button flow

• Minimal manual effort

• All cores can be validated in ~2hrs

• Bugs caught at early stage of design cycle

SOC level • No spec present

• Takes days to manually verify each
connection as per intention

• No scope for reusability

• Takes <1hr for entire SOC integration
connectivity verification

• Spec (rules file) once generated can be
reused across projects

SNUG INDIA 2024 9

Bugs Caught

Our tool has been deployed across multiple projects in Qualcomm Technologies. It has been integrated in the

spec-release flow and can be configured to act as a gating check for every core spec release.

Following are some of the bugs which we caught during the initial deployment phase

• Project 1: at least 6 bugs were caught

• Project 2: >50 bugs caught at a very early stage of the design

• Project 3:

• Core level : 9 bugs caught at core-level

• SOC level: Bugs caught at SOC integration level before DV, and patches were provided.

DV Found a Same
Core Issue. CORE
Fix was not rolled

0

2

4

6

week 1 Week 2 Week 3 Week 4 week 5 week 6 week 7

Issues Timeline

CORE Issues SoC Issues DV Found issue

SNUG INDIA 2024 10

Conclusion and Future work

• If a bug in core spec is caught at a later stage, it halts the further developments until the cause of the
bug is figured out and rectified. Since multiple variables come into play at this stage, it is difficult to
ascertain the cause of the bug.

• We left shift the verification step to an early stage, hence saving on time and effort needed to debug at
later stage.

• Our tool streamlines the connectivity validation methodology with formal checks across different cores
and static check in SOCs.

• Our end-to-end automated methodology reduces the verification time from multiple days to 10 min
(core level) and 1hr (SOC level) while increasing the quality of the solution.

• The proposed approach has shown promising results on multiple modules across different projects.

• It has been integrated into the spec-release system as a one-click solution. It can automatically report
mis-matches between the RTL and spec on every spec release.

SNUG INDIA 2024 11

	Slide 1: Framework for Automated Connectivity Checks for core and SOCs
	Slide 2: AGENDA
	Slide 3: Introduction
	Slide 4: Motivation and Our Proposal
	Slide 5: Contribution
	Slide 6: Rule-based static checks
	Slide 7: Proposed methodology
	Slide 8: Results
	Slide 9: Bugs Caught
	Slide 10: Conclusion and Future work
	Slide 11

