
SNUG EUROPE 2024 1

Using DPV for code coverage closure

optimization

Kees van Kaam, verification lead
Dreamchip Technologies

SNUG EUROPE 2024 2

Outline

• DPV introduction

• Verification context

• Closing code coverage of arithmetic modules

• DPV flow details

• Example

• Conclusion

SNUG EUROPE 2024 3

Introduction to DPV

SNUG EUROPE 2024 4

Synopsys VC formal DPV app

source: Synopsys

SNUG EUROPE 2024 5

DPV equivalence checking

picture source: Synopsys

Using equivalence checking using formal verification.

- Build in math functions for performance

- Uses the VC formal tool environment

- Reference model and implementation languages

can be C/C++ or RTL

SNUG EUROPE 2024 6

Verification context
Realtime Pixel Processor module verification

SNUG EUROPE 2024 7

Realtime Pixel processor (RPP)
Abstracted view

RPP

PRE PIPE
main_addrmux

INPUT
FORMATTER

Func1 Func2 Func3 Func4 Func5

mon1 mon2 mon3

POST PIPE
main_addrmux

Func7 Func8 Func9
OUTPUT

FORMATTER

mon5 mon6mon4

Image In (from
sensor)

Image Out

Register
interface

Verification is done on different levels to verify the whole RPP:

- Focus on this presentation is the module verification (e.g. Func1)

- Main module verification method is constrained random verification (CRV) with UVM

SNUG EUROPE 2024 8

Code coverage closure
Challenge on getting 100% coverage on arithmetic modules

Arithmetic modules:

- Math calculation like multiply, divide, add, round, etc…

- Compile time configurable (systemverilog parameters).

Functional Module

Arithmetic instance 1
Arithmetic instance 2

100% code coverage

 Less than 100 % code
coverage

Arithmetic instance 3

Arithmetic instance 5

Arithmetic instance 4

Code coverage holes in arithmetic modules:

- Holes that should be manually waived:

- Limitations on the input operand values (hard to

proof).

- Holes that need to be verified:

- Too deep logic to have enough randomization.

- Large bit widths of input operands.

SNUG EUROPE 2024 9

Closing code coverage of arithmetic modules

SNUG EUROPE 2024 10

Initial approach: use CRV for arithmetic modules

For every used arithmetic module

configuration, a full CRV verification is

done to reach 100% code coverage. Then

it can be excluded from the module

coverage metrics.

The testbench is compile time

configurable, total number of

configurations for RPP: 142

Disadvantages:

- Configuration parameter values are

hand crafted (danger of verifying the

wrong one).

- We need to blend the 142 verification

reports into the RPP verification report.

- Quite some maintenance.

- Not part of the (top) module verification.

Scoreboard

Input
UVC

Compare and
Check

Arithmetic
Function

Output
UVC

Operand A Output

Clock/
Reset
UVC

Clock

Reset

Tests

Arithmetic Testbench

Operand BInput
UVC

Compile Time
Configuration

SNUG EUROPE 2024 11

New approach: Synopsys DPV

Advantages:

- Directly verify the arithmetic

module(s) inside the module to be

verified.

- Coverage is part of the DPV

execution, no additional reporting

required.

- Executed as part of the module

verification.

- Compile time configuration is

automatically verified (applied in

the C code only).

- C-code model is re-used for other

functional module testbenches.

Functional Module

Arithmetic instance 1
Arithmetic instance 2

Arithmetic instance 3

Arithmetic instance 5

Arithmetic instance 4

Arithmetic model in
C code

DPV TCL code

SNUG EUROPE 2024 12

DPV flow details

SNUG EUROPE 2024 13

DPV flow
Compilation of the C-code

rpp_mult.cpp

hector_wrapper

Inputs

Outputs

Inputs => parameters

select_mult_param

mult_ss

mult_us

mult_su

mult_uu

Multiplier example:

Define cover
properties

Compile the spec
(the C-code)

Compile the impl
(the design)

Apply constraints

Define checks

Solve

SNUG EUROPE 2024 14

DPV flow
Compilation of the design

proc compile_impl {} {

create_design -name impl -top rpp_gamma_in -clock clk -reset

reset_n -negReset -cov

vcs -f ../../src/design.vcs.f

compile_design impl

}

The toplevel design (module) is rpp_gamma_in (named impl in DPV)!

rpp_gamma_in

rpp_mult_su

op_a

op_b

out_resultDefine cover
properties

Compile the spec
(the C-code)

Compile the impl
(the design)

Apply constraints

Define checks

Solve

SNUG EUROPE 2024 15

DPV flow
Applying constraints

#align input data width (opa: 26, opb: 24)

assume spec_opa_msb_bits = -always spec.in_opa[31:26] == 6’b0

assume spec_opb_msb_bits = -always spec.in_opb[31:24] == 8'b0

#set parameters

assume spec_param_signed_opa = -always (spec.signed_opa == 1)

assume spec_param_signed_opb = -always (spec.signed_opb == 0)

assume spec_param_dw_opa = -always (spec.dw_opa == 26)

assume spec_param_dw_opb = -always (spec.dw_opb == 24)

Constraints for the multiplier configuration in the spec:

Constraints for selecting the multiplier inputs:

#inputs

assume in_opa = -always impl.u_core…u_rpp_mult_su.in_opa == spec.in_opa

assume in_opb = -always impl.u_core…u_rpp_mult_su.in_opb == spec.in_opb

Define cover
properties

Compile the spec
(the C-code)

Compile the impl
(the design)

Apply constraints

Define checks

Solve

SNUG EUROPE 2024 16

DPV flow
Defining checks

lemma out_mult = impl.u_core...u_rpp_mult_su.out_result(3) == spec.out_result(1)

The check on the multiplier output:

The multiplier design

needs one clock cycle

to output results.

Define cover
properties

Compile the spec
(the C-code)

Compile the impl
(the design)

Apply constraints

Define checks

Solve

SNUG EUROPE 2024 17

DPV flow
Defining coverage properties

for {set i 0} {$i < 24} {incr i} {

cover cover_opa_opb_zero_$i =

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b0) &&

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b0)

cover cover_opa_opb_one_$i =

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b1) &&

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b1)

cover cover_opa_opb_10_$i =

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b1) &&

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b0)

cover cover_opa_opb_01_$i =

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b0) &&

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b1)

}

Add coverage for the inputs:

Define cover
properties

Compile the spec
(the C-code)

Compile the impl
(the design)

Apply constraints

Define checks

Solve

SNUG EUROPE 2024 18

DPV flow
Let DPV formally proof the equivalence of the RTL vs. the C code.

Define cover
properties

Compile the spec
(the C-code)

Compile the impl
(the design)

Apply constraints

Define checks

Solve

SNUG EUROPE 2024 19

Example

SNUG EUROPE 2024 20

Example: multiplier coverage
Multiplier verification that shows limitations on the inputs

All other coverage properties are passing:

 - Operand B bits 0..3 can only be 1.

This restriction is a design limitation and should be visible in the module code coverage

analysis:

- As DPV gives this proof, no further analysis required by verification.

- The design engineer should further judge if the code coverage can be waived or

that he wants to update the design.

SNUG EUROPE 2024 21

Conclusion

SNUG EUROPE 2024 22

Conclusion

• DPV can optimize the code coverage closure of modules in the RPP.

– Standard compile time configurable arithmetic modules can be fully verified with DPV and excluded from

module code coverage analysis.

– DPV is more efficient than using an UVM testbench to verify the arithmetic modules (TCL vs. full UVM

testbench).

– DPV implicitly verifies the correct configuration of the arithmetic module.

– Just running the proof as a “test” in regression is enough for the verification reporting and hence needs

no further effort.

– DPV gives additional proof on limitations of the input operands of the arithmetic modules, which saves

time during code coverage hole analysis.

SNUG EUROPE 2024 23

THANK YOU
YOUR

INNOVATION

YOUR

COMMUNITY

	Slide 1: Using DPV for code coverage closure optimization
	Slide 2: Outline
	Slide 3: Introduction to DPV
	Slide 4: Synopsys VC formal DPV app
	Slide 5: DPV equivalence checking
	Slide 6: Verification context
	Slide 7: Realtime Pixel processor (RPP)
	Slide 8: Code coverage closure
	Slide 9: Closing code coverage of arithmetic modules
	Slide 10: Initial approach: use CRV for arithmetic modules
	Slide 11: New approach: Synopsys DPV
	Slide 12: DPV flow details
	Slide 13: DPV flow
	Slide 14: DPV flow
	Slide 15: DPV flow
	Slide 16: DPV flow
	Slide 17: DPV flow
	Slide 18: DPV flow
	Slide 19: Example
	Slide 20: Example: multiplier coverage
	Slide 21: Conclusion
	Slide 22: Conclusion
	Slide 23

