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Introduction to DPV
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Synopsys VC formal DPV app

source: Synopsys
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DPV equivalence checking

picture source: Synopsys

Using equivalence checking using formal verification.

- Build in math functions for performance

- Uses the VC formal tool environment

- Reference model and implementation languages 

can be C/C++ or RTL
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Verification context
Realtime Pixel Processor module verification
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Realtime Pixel processor (RPP)
Abstracted view

RPP

PRE PIPE
main_addrmux

INPUT 
FORMATTER

Func1 Func2 Func3 Func4 Func5

mon1 mon2 mon3

POST PIPE
main_addrmux

Func7 Func8 Func9
OUTPUT 

FORMATTER

mon5 mon6mon4

Image In (from 
sensor)

Image Out

Register 
interface

Verification is done on different levels to verify the whole RPP:

- Focus on this presentation is the module verification (e.g. Func1)

- Main module verification method is constrained random verification (CRV) with UVM
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Code coverage closure
Challenge on getting 100% coverage on arithmetic modules

Arithmetic modules:

- Math calculation like multiply, divide, add, round, etc…

- Compile time configurable (systemverilog parameters).

Functional Module

Arithmetic instance 1
Arithmetic instance 2

100% code coverage

 Less than 100 % code 
coverage

Arithmetic instance 3

Arithmetic instance 5

Arithmetic instance 4

Code coverage holes in arithmetic modules:

- Holes that should be manually waived:

- Limitations on the input operand values (hard to 

proof).

- Holes that need to be verified:

- Too deep logic to have enough randomization.

- Large bit widths of input operands.
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Closing code coverage of arithmetic modules



SNUG EUROPE 2024 10

Initial approach: use CRV for arithmetic modules

For every used arithmetic module 

configuration, a full CRV verification is 

done to reach 100% code coverage. Then 

it can be excluded from the module 

coverage metrics.

The testbench is compile time 

configurable, total number of 

configurations for RPP: 142

Disadvantages:

- Configuration parameter values are 

hand crafted (danger of verifying the 

wrong one).

- We need to blend the 142 verification 

reports into the RPP verification report.

- Quite some maintenance.

- Not part of the (top) module verification.

Scoreboard

Input
UVC

Compare and 
Check

Arithmetic 
Function

Output 
UVC

Operand A Output

Clock/
Reset 
UVC

Clock

Reset

Tests

Arithmetic Testbench

Operand BInput
UVC

Compile Time
Configuration
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New approach: Synopsys DPV

Advantages:

- Directly verify the arithmetic 

module(s) inside the module to be 

verified.

- Coverage is part of the DPV 

execution, no additional reporting 

required.

- Executed as part of the module 

verification.

- Compile time configuration is 

automatically verified (applied in 

the C code only).

- C-code model is re-used for other 

functional module testbenches.

Functional Module

Arithmetic instance 1
Arithmetic instance 2

Arithmetic instance 3

Arithmetic instance 5

Arithmetic instance 4

Arithmetic model in 
C code

DPV TCL code



SNUG EUROPE 2024 12

DPV flow details
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DPV flow
Compilation of the C-code

rpp_mult.cpp

hector_wrapper

Inputs

Outputs

Inputs => parameters

select_mult_param

mult_ss

mult_us

mult_su

mult_uu

Multiplier example:

Define cover 
properties

Compile the  spec  
(the C-code)

Compile the  impl  
(the design)

Apply constraints

Define checks

Solve
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DPV flow
Compilation of the design

proc compile_impl {} {  

create_design -name impl -top rpp_gamma_in -clock clk -reset 

reset_n -negReset -cov  

vcs -f ../../src/design.vcs.f

compile_design impl 

} 

The toplevel design (module) is rpp_gamma_in (named impl in DPV)! 

rpp_gamma_in

rpp_mult_su

op_a

op_b

out_resultDefine cover 
properties

Compile the  spec  
(the C-code)

Compile the  impl  
(the design)

Apply constraints

Define checks

Solve
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DPV flow
Applying constraints

#align input data width (opa: 26, opb: 24)

assume spec_opa_msb_bits = -always spec.in_opa[31:26] == 6’b0

assume spec_opb_msb_bits = -always spec.in_opb[31:24] == 8'b0

#set parameters

assume spec_param_signed_opa = -always (spec.signed_opa == 1)

assume spec_param_signed_opb = -always (spec.signed_opb == 0)

assume spec_param_dw_opa = -always (spec.dw_opa == 26)

assume spec_param_dw_opb = -always (spec.dw_opb == 24)

Constraints for the multiplier configuration in the spec:

Constraints for selecting the multiplier inputs:

#inputs

assume in_opa = -always impl.u_core…u_rpp_mult_su.in_opa == spec.in_opa

assume in_opb = -always impl.u_core…u_rpp_mult_su.in_opb == spec.in_opb

Define cover 
properties

Compile the  spec  
(the C-code)

Compile the  impl  
(the design)

Apply constraints

Define checks

Solve
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DPV flow
Defining checks

lemma out_mult = impl.u_core...u_rpp_mult_su.out_result(3) == spec.out_result(1)

The check on the multiplier output: 

The multiplier design 

needs one clock cycle 

to output results.

Define cover 
properties

Compile the  spec  
(the C-code)

Compile the  impl  
(the design)

Apply constraints

Define checks

Solve
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DPV flow
Defining coverage properties

for {set i 0} {$i < 24} {incr i} {

cover cover_opa_opb_zero_$i = 

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b0) && 

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b0)

cover cover_opa_opb_one_$i = 

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b1) && 

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b1)

cover cover_opa_opb_10_$i = 

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b1) && 

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b0)

cover cover_opa_opb_01_$i = 

(impl.u_core...u_rpp_mult_su.in_opa[$i](2) == 1'b0) && 

(impl.u_core...u_rpp_mult_su.in_opb[$i](2) == 1'b1)

}

Add coverage for the inputs:

Define cover 
properties

Compile the  spec  
(the C-code)

Compile the  impl  
(the design)

Apply constraints

Define checks

Solve
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DPV flow
Let DPV formally proof the equivalence of the RTL vs. the C code.

Define cover 
properties

Compile the  spec  
(the C-code)

Compile the  impl  
(the design)

Apply constraints

Define checks

Solve
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Example
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Example: multiplier coverage
Multiplier verification that shows limitations on the inputs

All other coverage properties are passing:

 - Operand B bits 0..3 can only be 1.

This restriction is a design limitation and should be visible in the module code coverage 

analysis:

- As DPV gives this proof, no further analysis required by verification.

- The design engineer should further judge if the code coverage can be waived or 

that he wants to update the design.
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Conclusion
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Conclusion

• DPV can optimize the code coverage closure of modules in the RPP.

– Standard compile time configurable arithmetic modules can be fully verified with DPV and excluded from 

module code coverage analysis.

– DPV is more efficient than using an UVM testbench to verify the arithmetic modules (TCL vs. full UVM 

testbench).

– DPV implicitly verifies the correct configuration of the arithmetic module.

– Just running the proof as a “test” in regression is enough for the verification reporting and hence needs 

no further effort.

– DPV gives additional proof on limitations of the input operands of the arithmetic modules, which saves 

time during code coverage hole analysis.
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