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Problem Statement
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Problem Statement

Evolution of Designs

• Rapid increase in design sizes and impact on PPA 

goals

• Reducing yield due to reticle limit of manufacturing 

equipment – Multi-die solutions, independent 

evolution of dies(process/nodes)

Validation challenges

Traditional Monolithic approach:

• Increase in compute requirements(>128G 

machines)

• Significant TAT for Build+Simulation(~24hrs)

• TB size explosion with newer topologies 

Independent evolution of dies(process/nodes) 

leads to

• Name collisions – IP/TB

• Different versions - VIP, TB packages etc.

Incremental updates to design

• Reintegration at SoC

Evolve a nimble solution
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Requirement



SNUG INDIA  2024 6

Requirements

Disaggregation of dies

• Think design evolution - Divide monolithic setup 

into multiple chiplets 

• Make use of existing TB at Subsystem/IP level

• Occupy less memory compute machines

• “Connect” dies through a simple IPC glue
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Disaggregated Simulation – Use Cases

Monolithic VAL – Disaggregated RTL

Monolithic Env Clk

gen

Virtual  IFC

P0 TX/RX TB sig

Die RTL

P1

TB sig

TX/RX RTL sig

TX/RX TB sig

Die RTL

P2

TB sig

TX/RX RTL sig

TX/RX TB sig

Die RTL

Pn

TB sig

TX/RX RTL sig

TX/RX TB sig



SNUG INDIA  2024 8

Disaggregated Simulation – Use Cases

Die VAL – Reuse at SoC (Typical Usage)

Server Distsim

Die RTL

P1

Die TB

TX/RX RTL sig

TB-TB xfer

Die RTL

P2

Die TB

TX/RX RTL sig

TB-TB xfer

Die RTL

Pn

Die TB

TX/RX RTL sig

TB-TB xfer
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Challenges in Disaggregated Simulation

Typical challenges in custom/inhouse solution

RTL Synchronization

• Connectivity should replicate true die-

to-die signal connectivity 

• Support for multi clock synchronization

TB Data Transfer

• Flexible like Monolithic stimulus

• Deterministic data transfer

• Maintenance of Val code

TB Phase Synchronization

• Synchronization of UVM/User phases 

across dies

• Deterministic phase synchronization

Regression and Debug Productivity

• Low Impact to regression 

methodology

• Less debug impact

• Faster turnaround – Bug fix val

Penalty for morphing a monolithic to disaggregated simulation < 5%



SNUG INDIA  2024 10

Solution
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VCS Distributed Simulation

Use Model

• Compilation

• -distsim needs to be used during elaboration.

• Simulation 

• Primary simv should be launched with switch (-distsim=launch_server) which invokes 

separate process to control the communication

vcs –distsim <cpu-design+tb>

vcs –distsim <io-design+tb>

cpu-simv

io-simv

CPU TB

CPU

IO TB

IO

Primary SIMV

./cpu-simv <simv_opts>

-distsim=launch_server

client SIMV

./io-simv <simv_opts>

Server file/IP address

-

distsim=launch_server
Connectivity file

✓Benign
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VCS Distributed Simulation RTL Synchronization

Simple RTL synchronization with connectivity file

• Connectivity file:

• Synchronization can be clock based(sync_signal:<clock signal>) or time based(sync_interval)

• Communication between the simv’s occurs during sample/drive phases

– All the loads would get sampled together in Sample Phase and driven in Drive Phase

• Support of multiple clock sync signals in the connectivity file

sync_interval: 100ps

s0.soc_tb.cpu.sig1 = s1:soc_tb.io.sig1

s1.soc_tb.io.sig2 = s0:soc_tb.cpu.sig2

s0.soc_tb.cpu.sig3 = s1:soc_tb.io.sig3

sync_signal: s0:soc_tb.cpu.clk

s0.soc_tb.cpu.sig1 = s1:soc_tb.io.sig1

s1.soc_tb.io.sig2 = s0:soc_tb.cpu.sig2

s0.soc_tb.cpu.sig3 = s1:soc_tb.io.sig3
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RTL Sync protocol with Multiple Clocks

Master Clock: Fastest clock to be used for sampling
Config File

master_sync_signal: posedge 

Clock2

  <set_of_signals>

  <driver_sig> = <load_sig> 

sync_signal: posedge Clock1

  <set_of_signals>

Value Sampling

     Value Matured

Clock2 waveform

Master Clock

Clock1 waveform

Clock2 waveform

Master Clock

Clock1 waveform

Client 0

Client 1

@Clock1:

Associated 

signals would be 

sampled

@Clock1:

Associated 

signals would be 

sampled

@Clock2: Associated signals would be sampled

- Clock1’s load signals would be sent to Client 0

- Clock2’s load signals would be sent to Client 0

- Clock1’s and Clock2’s driver signal would get matured values from Client 0

@Clock2: Associated signals would be sampled

- Clock1’s load signals would be sent to Client 1

- Clock2’s load signals would be sent to Client 1

- Clock1’s and Clock2’s driver signal would get matured values from Client 1
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VCS Distributed Simulation TB Phase Sync

Synchronization for User defined and UVM phases

• IPC for Test Bench Phase Sync: User defined phases
• Synchronization is done through code extensions by adding macro 

• Macro `VCSDISTSIM_PHASE_SYNC(PHASE_NAME) needs to be added at each sync point

• Waits until all client simv’s reach same phase

• TB resumes when all client simv’s are synced

• IPC for Test Bench Phase Sync: UVM Runtime default phases
• Implicit UVM phase synchronization across simv’s with predefined UVM component class dist_tbsync_comp 

• TB phase order should be identical in client TBs

• There can be additional Client specific Phases :-

- Sync not available for phases unavailable in other Clients

- Sync for common phases can be achieved using runtime flag or connectivity file 
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VCS Distributed Simulation TB Data Transfer

Val data transfer across clients

• Test Bench Data Transfer of Class Objects is through bit stream

• Send/receive TB data is through VCS distsim API’s(`VCSDISTSIM_TB_SEND/ 

`VCSDISTSIM_TB_RECV)

• At sender, generate bit array from the transaction class object

• At receiver, bit array is used to fill the transaction class object

cpu-simv io-simv

id1

id3

id2

id4

Connectivity File:

                       

tb_trans=id1:s0::id2:s1

tb_trans=id4:s1::id3:s0

RecvReq_Ch1

TB Transfer  

executed for 

channel 1

TB Transfer 

executed for 

channel2

RecvReq_Ch2
SendReq_Ch1

S1 SyncN SyncN+8

SendReq_Ch2

RecvReq_Ch2

TB Transfer 

executed for 

channel2

SendReq_Ch2
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VCS Distributed Simulation Save Replay

Debug Productivity

• Enables simulation of single Simv with stimulus captured from other clients 

during save run

• Helpful for debugging if issue is present in only one die

• Save mode is used to capture all RTL/TB receive calls with respect to sync point 

and logged into replay database

• During Replay Mode, one can force the RTL signals which are part of 

connectivity file

CPU Replay 

database 

IO TB

IO
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Results & Summary
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VCS Distributed Simulation 

Results & Summary

• Ease of integration 

– Bringup of VCS distributed simulation in <2days

– Complete regression results < 1week

• Performance improvement over existing solution

– Gains for both Simulation time and memory

• Deployment

• Debug Productivity

– 1.5X Runtime gain with replay mode.

• Scalability – Easily scalable to next projects
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Future Enhancements
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VCS Distributed Simulation

Challenges/Next steps

• Increase in sync time penalty with increase in number of simv’s

• Support of interface modports connections is not available; add individual signals manually

• Only bit stream is supported for TB data transfer and needs force cap on entire design

Future Enhancements

• Support of interface modport connection

• Multiple master clock synchronizations

• User assisted partitioning 

• Unified Debug with Verdi

• Consolidated logs/coverage i.e merge across vdb’s

• Cloud Support
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Sample code for TB Sync and TB data transfer

Driver: send t ransact ion f rom one-d ie to  other -d ie  
and for  receiv ing response.

Sequencer :  rece ive t ransact ion f rom dr iver  and 
send response to  dr iver

Task based Phase Sync

in t  d ie id ;

b i t  rsp_bi t_array_d0[ ] ;

b i t  rsp_bi t_array_d1[ ] ;

b i t  rsp_bi t_array_d2[ ] ;

mp_tb_seq_i tem local_rsp ;

b i t  rsp_bi t_array[ ] ;

$value$plusargs ("DIE_ID=%d",d ie id) ;

i f  (d ie id==0)

begin

fork

begin

forever  begin

`VCSDISTSIM_TB_RECV("RECV_RSP_D0",  

rsp_bit_array_d0) ; 

end

end

begin

forever  begin

`VCSDISTSIM_TB_RECV("RECV_RSP_D1",  

rsp_bit_array_d1) ;

end

end

begin

forever  begin

`VCSDISTSIM_TB_RECV("RECV_RSP",  

rsp_bit_array_d2) ; 

end

end

jo in_none / / fork

end / /d ie id=0

$value$plusargs ("DIE_ID=%d",d ie id) ;

i f  (d ie id==1)

begin

fork

begin

forever  begin

`VCSDISTSIM_TB_RECV("RECV_REQ1",  

req_bit_array_n); 

end

end

begin

forever  begin

`VCSDISTSIM_TB_RECV("RECV_REQ2",  

req_bit_array_s ) ; 

end

end

jo in_none / / fork

end

i f  (d ie id==1) begin

`VCSDISTSIM_TB_SEND("SEND_RSP",  

req_bit_array) ;

end

vi r tua l  task body() ;

super.body() ;

……

`uvm_info(get_type_name() , ">> reset  d is ts im_phase_sync  

sequence" ,  UVM_NONE) ;

$disp lay("SNPS VCSDISTSIM Phase Sync Before CP0") ;

`VCSDISTSIM_PHASE_SYNC(CP0);

$display("SNPS VCSDISTSIM Phase Sync Af ter  CP0") ;

i f  (get_current_test_phase()  == " reset_phase")

begin

$disp lay("SNPS VCSDISTSIM Phase Sync Before CP1") ;

`VCSDISTSIM_PHASE_SYNC(CP1);

$disp lay("SNPS VCSDISTSIM Phase Sync Af ter  CP1") ;

………..
endtask
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