
SNUG INDIA 2024 1

Multi-Die Distributed Simulation -

Next Generation Validation

Framework
SNUG INDIA 2024

Ravishankar Ramaswamy

Principal Engineer
Intel

SNUG INDIA 2024 2

Agenda

• Problem Statement

• Requirement

• Solution - VCS Distributed Simulation

• Results & Summary

• Future enhancements

SNUG INDIA 2024 3

Problem Statement

SNUG INDIA 2024 4

Problem Statement

Evolution of Designs

• Rapid increase in design sizes and impact on PPA

goals

• Reducing yield due to reticle limit of manufacturing

equipment – Multi-die solutions, independent

evolution of dies(process/nodes)

Validation challenges

Traditional Monolithic approach:

• Increase in compute requirements(>128G

machines)

• Significant TAT for Build+Simulation(~24hrs)

• TB size explosion with newer topologies

Independent evolution of dies(process/nodes)

leads to

• Name collisions – IP/TB

• Different versions - VIP, TB packages etc.

Incremental updates to design

• Reintegration at SoC

Evolve a nimble solution

SNUG INDIA 2024 5

Requirement

SNUG INDIA 2024 6

Requirements

Disaggregation of dies

• Think design evolution - Divide monolithic setup

into multiple chiplets

• Make use of existing TB at Subsystem/IP level

• Occupy less memory compute machines

• “Connect” dies through a simple IPC glue

SOC

IOCPU

CPU TB

CPU

IO TB

IO

IPC glue

S3

P0

P1
P2

P3

S0

P0

P1
P2

P3

S2

P0

P1
P2

P3

S1

P0

P1
P2

P3

Testbench

Monolithic Disaggregated

Distributed

SNUG INDIA 2024 7

Disaggregated Simulation – Use Cases

Monolithic VAL – Disaggregated RTL

Monolithic Env Clk

gen

Virtual IFC

P0 TX/RX TB sig

Die RTL

P1

TB sig

TX/RX RTL sig

TX/RX TB sig

Die RTL

P2

TB sig

TX/RX RTL sig

TX/RX TB sig

Die RTL

Pn

TB sig

TX/RX RTL sig

TX/RX TB sig

SNUG INDIA 2024 8

Disaggregated Simulation – Use Cases

Die VAL – Reuse at SoC (Typical Usage)

Server Distsim

Die RTL

P1

Die TB

TX/RX RTL sig

TB-TB xfer

Die RTL

P2

Die TB

TX/RX RTL sig

TB-TB xfer

Die RTL

Pn

Die TB

TX/RX RTL sig

TB-TB xfer

SNUG INDIA 2024 9

Challenges in Disaggregated Simulation

Typical challenges in custom/inhouse solution

RTL Synchronization

• Connectivity should replicate true die-

to-die signal connectivity

• Support for multi clock synchronization

TB Data Transfer

• Flexible like Monolithic stimulus

• Deterministic data transfer

• Maintenance of Val code

TB Phase Synchronization

• Synchronization of UVM/User phases

across dies

• Deterministic phase synchronization

Regression and Debug Productivity

• Low Impact to regression

methodology

• Less debug impact

• Faster turnaround – Bug fix val

Penalty for morphing a monolithic to disaggregated simulation < 5%

SNUG INDIA 2024 10

Solution

SNUG INDIA 2024 11

VCS Distributed Simulation

Use Model

• Compilation

• -distsim needs to be used during elaboration.

• Simulation

• Primary simv should be launched with switch (-distsim=launch_server) which invokes

separate process to control the communication

vcs –distsim <cpu-design+tb>

vcs –distsim <io-design+tb>

cpu-simv

io-simv

CPU TB

CPU

IO TB

IO

Primary SIMV

./cpu-simv <simv_opts>

-distsim=launch_server

client SIMV

./io-simv <simv_opts>

Server file/IP address

-

distsim=launch_server
Connectivity file

✓Benign

SNUG INDIA 2024 12

VCS Distributed Simulation RTL Synchronization

Simple RTL synchronization with connectivity file

• Connectivity file:

• Synchronization can be clock based(sync_signal:<clock signal>) or time based(sync_interval)

• Communication between the simv’s occurs during sample/drive phases

– All the loads would get sampled together in Sample Phase and driven in Drive Phase

• Support of multiple clock sync signals in the connectivity file

sync_interval: 100ps

s0.soc_tb.cpu.sig1 = s1:soc_tb.io.sig1

s1.soc_tb.io.sig2 = s0:soc_tb.cpu.sig2

s0.soc_tb.cpu.sig3 = s1:soc_tb.io.sig3

sync_signal: s0:soc_tb.cpu.clk

s0.soc_tb.cpu.sig1 = s1:soc_tb.io.sig1

s1.soc_tb.io.sig2 = s0:soc_tb.cpu.sig2

s0.soc_tb.cpu.sig3 = s1:soc_tb.io.sig3

SNUG INDIA 2024 13

RTL Sync protocol with Multiple Clocks

Master Clock: Fastest clock to be used for sampling
Config File

master_sync_signal: posedge

Clock2

 <set_of_signals>

 <driver_sig> = <load_sig>

sync_signal: posedge Clock1

 <set_of_signals>

Value Sampling

 Value Matured

Clock2 waveform

Master Clock

Clock1 waveform

Clock2 waveform

Master Clock

Clock1 waveform

Client 0

Client 1

@Clock1:

Associated

signals would be

sampled

@Clock1:

Associated

signals would be

sampled

@Clock2: Associated signals would be sampled

- Clock1’s load signals would be sent to Client 0

- Clock2’s load signals would be sent to Client 0

- Clock1’s and Clock2’s driver signal would get matured values from Client 0

@Clock2: Associated signals would be sampled

- Clock1’s load signals would be sent to Client 1

- Clock2’s load signals would be sent to Client 1

- Clock1’s and Clock2’s driver signal would get matured values from Client 1

SNUG INDIA 2024 14

VCS Distributed Simulation TB Phase Sync

Synchronization for User defined and UVM phases

• IPC for Test Bench Phase Sync: User defined phases
• Synchronization is done through code extensions by adding macro

• Macro `VCSDISTSIM_PHASE_SYNC(PHASE_NAME) needs to be added at each sync point

• Waits until all client simv’s reach same phase

• TB resumes when all client simv’s are synced

• IPC for Test Bench Phase Sync: UVM Runtime default phases
• Implicit UVM phase synchronization across simv’s with predefined UVM component class dist_tbsync_comp

• TB phase order should be identical in client TBs

• There can be additional Client specific Phases :-

- Sync not available for phases unavailable in other Clients

- Sync for common phases can be achieved using runtime flag or connectivity file

SNUG INDIA 2024 15

VCS Distributed Simulation TB Data Transfer

Val data transfer across clients

• Test Bench Data Transfer of Class Objects is through bit stream

• Send/receive TB data is through VCS distsim API’s(`VCSDISTSIM_TB_SEND/

`VCSDISTSIM_TB_RECV)

• At sender, generate bit array from the transaction class object

• At receiver, bit array is used to fill the transaction class object

cpu-simv io-simv

id1

id3

id2

id4

Connectivity File:

tb_trans=id1:s0::id2:s1

tb_trans=id4:s1::id3:s0

RecvReq_Ch1

TB Transfer

executed for

channel 1

TB Transfer

executed for

channel2

RecvReq_Ch2
SendReq_Ch1

S1 SyncN SyncN+8

SendReq_Ch2

RecvReq_Ch2

TB Transfer

executed for

channel2

SendReq_Ch2

SNUG INDIA 2024 16

VCS Distributed Simulation Save Replay

Debug Productivity

• Enables simulation of single Simv with stimulus captured from other clients

during save run

• Helpful for debugging if issue is present in only one die

• Save mode is used to capture all RTL/TB receive calls with respect to sync point

and logged into replay database

• During Replay Mode, one can force the RTL signals which are part of

connectivity file

CPU Replay

database

IO TB

IO

SNUG INDIA 2024 17

Results & Summary

SNUG INDIA 2024 18

VCS Distributed Simulation

Results & Summary

• Ease of integration

– Bringup of VCS distributed simulation in <2days

– Complete regression results < 1week

• Performance improvement over existing solution

– Gains for both Simulation time and memory

• Deployment

• Debug Productivity

– 1.5X Runtime gain with replay mode.

• Scalability – Easily scalable to next projects

SNUG INDIA 2024 19

Future Enhancements

SNUG INDIA 2024 20

VCS Distributed Simulation

Challenges/Next steps

• Increase in sync time penalty with increase in number of simv’s

• Support of interface modports connections is not available; add individual signals manually

• Only bit stream is supported for TB data transfer and needs force cap on entire design

Future Enhancements

• Support of interface modport connection

• Multiple master clock synchronizations

• User assisted partitioning

• Unified Debug with Verdi

• Consolidated logs/coverage i.e merge across vdb’s

• Cloud Support

SNUG INDIA 2024 21

SNUG INDIA 2024 22

Sample code for TB Sync and TB data transfer

Driver: send t ransact ion f rom one-d ie to other -d ie
and for receiv ing response.

Sequencer : rece ive t ransact ion f rom dr iver and
send response to dr iver

Task based Phase Sync

in t d ie id ;

b i t rsp_bi t_array_d0[] ;

b i t rsp_bi t_array_d1[] ;

b i t rsp_bi t_array_d2[] ;

mp_tb_seq_i tem local_rsp ;

b i t rsp_bi t_array[] ;

$value$plusargs ("DIE_ID=%d",d ie id) ;

i f (d ie id==0)

begin

fork

begin

forever begin

`VCSDISTSIM_TB_RECV("RECV_RSP_D0",

rsp_bit_array_d0) ;

end

end

begin

forever begin

`VCSDISTSIM_TB_RECV("RECV_RSP_D1",

rsp_bit_array_d1) ;

end

end

begin

forever begin

`VCSDISTSIM_TB_RECV("RECV_RSP",

rsp_bit_array_d2) ;

end

end

jo in_none / / fork

end / /d ie id=0

$value$plusargs ("DIE_ID=%d",d ie id) ;

i f (d ie id==1)

begin

fork

begin

forever begin

`VCSDISTSIM_TB_RECV("RECV_REQ1",

req_bit_array_n);

end

end

begin

forever begin

`VCSDISTSIM_TB_RECV("RECV_REQ2",

req_bit_array_s) ;

end

end

jo in_none / / fork

end

i f (d ie id==1) begin

`VCSDISTSIM_TB_SEND("SEND_RSP",

req_bit_array) ;

end

vi r tua l task body() ;

super.body() ;

……

`uvm_info(get_type_name() , ">> reset d is ts im_phase_sync

sequence" , UVM_NONE) ;

$disp lay("SNPS VCSDISTSIM Phase Sync Before CP0") ;

`VCSDISTSIM_PHASE_SYNC(CP0);

$display("SNPS VCSDISTSIM Phase Sync Af ter CP0") ;

i f (get_current_test_phase() == " reset_phase")

begin

$disp lay("SNPS VCSDISTSIM Phase Sync Before CP1") ;

`VCSDISTSIM_PHASE_SYNC(CP1);

$disp lay("SNPS VCSDISTSIM Phase Sync Af ter CP1") ;

………..
endtask

	Slide 1: Multi-Die Distributed Simulation - Next Generation Validation Framework
	Slide 2: Agenda
	Slide 3: Problem Statement
	Slide 4: Problem Statement
	Slide 5: Requirement
	Slide 6: Requirements
	Slide 7: Disaggregated Simulation – Use Cases
	Slide 8: Disaggregated Simulation – Use Cases
	Slide 9: Challenges in Disaggregated Simulation
	Slide 10: Solution
	Slide 11: VCS Distributed Simulation
	Slide 12: VCS Distributed Simulation RTL Synchronization
	Slide 13: RTL Sync protocol with Multiple Clocks
	Slide 14: VCS Distributed Simulation TB Phase Sync
	Slide 15: VCS Distributed Simulation TB Data Transfer
	Slide 16: VCS Distributed Simulation Save Replay
	Slide 17: Results & Summary
	Slide 18: VCS Distributed Simulation
	Slide 19: Future Enhancements
	Slide 20: VCS Distributed Simulation
	Slide 21
	Slide 22: Sample code for TB Sync and TB data transfer

