

Multi Chip Simulation of Battery Management System
with Synopsys Virtualizer Studio

Frank Poppen, Ralph Görgen, Manfred Thanner
NXP Semiconductor Germany GmbH

Hamburg and Munich, Germany

https://www.nxp.com

ABSTRACT

This work describes the virtual integration and usage of a complete multi-chip battery
management system (BMS) in an extensible Synopsys Virtualizer Studio Development
Kit (VSDK). The full system simulation (FSS) consists of a microcontroller unit (MCU)
S32K3xx with serial peripheral interface (SPI), gateway (GTW) MC33664 to transport
protocol link (TPL), daisy chain of battery cell controllers (BCC) MC33774 as parts of a
cell monitoring unit (CMU) and simplified battery cell models. Such a FSS is an enabler
for early development and evaluation of BMS complex device drivers (CDD) in a safety
critical automotive open system architecture (AUTOSAR) environment. Especially the
aspects of safety require the completeness of the model in all main functions. The work
denotes the virtual integration process, obstacles that needed to be overcome and use of
the FSS.

SNUG Europe 2024

Page 2 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

 Table of Contents

1. Introduction .. 3

2. High Voltage Battery Management System ... 4

3. Full System Simulation Setup .. 6

4. Identifying and Fixing an Issue with TLM-SPI ... 9

5. Oberserving Complete SW Stack Execution on FSS .. 11

6. Conclusions and Future Work ... 15

7. Glossary ... 16

8. References ... 17

Table of Figures

Figure 1. Shift Left with Hardware/Software Co-Design. ... 3

Figure 2. Integrated into an electric car: battery pack of several modules. ... 4

Figure 3. System Solution of a High Voltage Battery Management System ... 5

Figure 4. Balancing Cells for Optimal Charging and Discharging of a Battery Pack. 5

Figure 5. Complete Software Stack of BMS Reference Application ... 6

Figure 6. Full System Simulation Setup with Model of S32K3xx, MC33664 and MC33774. 7

Figure 7. TLM Model of SPI to TPL Gateway MC33664 ... 8

Figure 8. Instantiating BCC in VSDK and Connecting SPI-TLM Network. .. 9

Figure 9. TPL Data Field Alignment: 64-, 80-, 96- or 112-bit Frame for One or up to Four Data
Values transmitted. .. 10

Figure 10. Description of the Continuous Select Flag. .. 11

Figure 11. Configuring RTD and CDD Software with EB tresos and Compiling with S32 Design
Studio ... 12

Figure 12. Loadnig Executable .elf File on Simulated MCU. Images Ttab of VP Config (vpcfg). 12

Figure 13. Attaching Lauterbach TRACE32 Debugger to Simulated Core 0 of Simulated MCU. 13

Figure 14. Browsing BCC’s Software Configured Hardware Registers. ... 14

Figure 15.Vpcfg Analyses Tracing Device Enumeration Value Changes in CMU over Time. 15

Figure 16. Enabling FastTrack Logging on SPI Network for Versatily Messages on Interface Status.
.. 15

SNUG Europe 2024

Page 3 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

1. Introduction

The development of today’s automotive microelectronic systems is a demanding challenge. On one
hand, there is the high complexity of the systems and the high degree of interaction inside and between
them. On the other hand, there are strong requirements for instance on functional safety, reliability,
bill of material (BOM1), and time to market. Our work here is about a multi-chip automotive battery
management system (BMS) consisting of a microcontroller unit (MCU), a gateway (GTW) and a chain
of battery cell controllers (BCC) assembled in a cell monitoring unit (CMU). The BMS supervises the
voltage and temperature of lithium-ion cells in automotive batteries through highly accurate
measurements in a high-voltage environment including requirements such as functional safety, power
consumption, and reliability. The possibility of catching fire in the battery of an electric vehicle is rated
as an automotive safety integrity level (ASIL) D hazard i.e., the BMS needs to support ASIL D
requirements in an ASIL D environment. Furthermore, the system’s BCCs are directly mounted to the
battery modules and supplied by the battery, meaning that they are permanently powered.
Consequently, the ICs power consumption needs to be very low to avoid discharge of the cells.
Additionally, this means that the IC cannot be powered off and restarted in case of a failure. In [1] we
describe our method to close the gap between the architecture description in SysML and a BCC virtual
prototype. As stated there, this allows us to use the architecture definition not only for the virtual
prototype but also for a starting point for RTL design and integration as a common source of truth. At
the time, the flow concentrated on structure only. In the meantime, we continued our approach by
adding functional behavior towards a more complete functional BCC model. But such single
component model, even though quite complex in its own internal structure, is just a small part of the
system that we need to make saver and more secure. For pre silicon evaluation we had to bring
together several stakeholders of different business lines for a complete virtualized BMS in one full
system simulation (FSS).

Figure 1. Shift Left with Hardware/Software Co-Design.

The FSS is part of our shift left approach (compare with Figure 1) of moving software development,
testing, quality, and safety evaluation early in the development process before we expect first silicon
to be available. As with any embedded software, the traditional development and evaluation of the
complete software stack of a BMS is originally hardware based and requires the availability and setup

1 Please refer to Chapter 7. which holds an extensive Glossary.

SNUG Europe 2024

Page 4 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

of several physical components which are usually not available until very late in the design cycle of a
new product. As soon as they are available, it becomes a time-consuming task to bring up a yet
untested software on complex hardware equipment which generally does not come with visible and
fully controllable behavior. Also, with physical components it becomes rather tedious to test multiple
configurations as permutations of HW setups with changing number and type of components. Such
setups’ costs can go up very high for each system. A FSS setup on the other hand can be changed
by a simple adaptation of parameters and a restart. RTL simulation is no solution for early software
development known as hardware/software co-design. Its execution performance is not sufficient for
live software debugging sessions. So, our objective was to create a showcase which proofs that FSS
enables the required shift left in early software development.

In the following Chapter 2. an example of a high-voltage battery management system (HVBMS) is
examined from a bird's eye view. The knowledge transfer on the topic in this paper is not that deep,
but sufficient to be able to understand what we had to accomplish for our FSS setup documented in
Chapter 3. In the process we came across an anomaly that involved the simulated SPI communication.
It prevented us from communicating SPI data streams of arbitrary bit length. Chapter 4. provides the
story on how NXP and Synopsys worked together to understand and fix the issue. Once the FSS was
complete we were able to run a full software stack. Chapter 5. depicts what that looks like and what
significant use can be drawn from it. The paper closes with our conclusions and future work in Chapter
6. followed by a glossary in Chapter 7. and references in Chapter 8.

2. High Voltage Battery Management System

When we talk about electric vehicles (EV), the first thing that comes to mind is an electric powered car
with a battery. In general, however, scooters, motorcycles, buses, trucks, trains and even boats or
airplanes can also be designed as EVs. For some applications as in trains, but also buses and trucks,
it is an option to draw power from an extravehicular source like overhead contact wires. While this
offers a nearly unlimited traveling range it at the same time confines the freedom of mobility severely
to limited available infrastructure of electrified tracks and roads. The circumstances are inverted when
we have a look at the situation where the EV carries its own source of limited power with it. We can
think of fuel that is converted into electric energy by fuel cells or combustion engines as in hybrid cars.
Or, as it is in the scope of this paper, we put our emphasis on in-vehicle batteries that come in as
many configurations as there are use case scenarios imaginable. In other words, there is no one size
fits all BMS solution. The chemistry today is typically good for battery cells at around 3 to 5 V each
that are interconnected in parallel for higher currents and in series for higher voltage. This way battery
packs are created as low as 14V or high voltages of 800V and more. Unfortunately, the chemistry
reacts very sensitively to leaving the range of specified parameters.

Figure 2. Integrated into an electric car: battery pack of several modules.

SNUG Europe 2024

Page 5 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

NXP offers full system solutions for HVBMS with complete chip sets. They are fully compliant to ASIL D
safety requirements and the technical features include outstanding flexibility. Please refer to the
following Figure 3 as one of many possible BMS setups.

Figure 3. System Solution of a High Voltage Battery Management System

A HVBMS typically consists of three different modules. The first is a battery management unit (BMU)
and its MCU which is the brain of the BMS. It makes measurement decisions, implements mechanisms
of protection, and communicates with the main vehicle unit. It calculates the State of Charge (SoC) as
the battery’s current capacity. It is an important factor to know, how many more kilometers an EV can
go before it needs to reach a charging point. Another key performance indicator (KPI) of a battery is
the State of Health (SoH). It offers feedback on a battery’s general health and life expectancy in
comparison of the present capacity and its initial capacity after production. The second module is the
cell monitoring unit (CMU) which hosts a chain of BCCs that measure cells’ voltages and temperatures.
It balances the cells to guarantee maximum capacity on charging the pack as otherwise the cell that
first reaches over voltage (OV) would prevent further charging of other cells, while under voltage (UV)
of a cell would prevent further discharge of the battery pack (refer to Figure 4).

Figure 4. Balancing Cells for Optimal Charging and Discharging of a Battery Pack.

The battery junction box (BJB) is the third module and measures the battery pack’s current, the
pyrotechnic switch’s and contactors’ high voltages and the isolation between the battery and the
vehicle’s chassis. If the current from the battery becomes too large due to a dramatic event, the BJB

SNUG Europe 2024

Page 6 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

fires the pyrotechnic switch that uses a small explosive very like an airbag or seatbelt tensioner to
physically cut of power supply as last resort safety measurement. A safety critical feature that should
not engage unintentionally. During power on, a precharge mechanism protects the main contactor
from welding together due to too high inrush currents by initially charging the car’s battery attached
capacitors at a limited current. BJB and CMU operate in the high voltage (HV) domain which must be
isolated from the low voltage (LV) domain where the BMU resides. TPL stands for NXP’s Transport
Protocol Link to establish communication between high voltage BMS components. It is a
communication bus that offers electrical isolation with speeds of typically 2.0 Mbps. A single BCC can
handle up to 18 cells with 5 Volts in series which sums up to 90 Volts [4]. Electric cars typically rely on
batteries with more cells in series going up to 400 or even 800 Volts. A daisy chain of connected BCCs
that monitors such cell configurations needs to be electrically decoupled through TPL. The physical
connection of communication interfaces like SPI, UART, CAN or others are not an option for such a
use-case without destroying the devices. The BMU makes use of a GTW to translate between the
MCU’s SPI and the TPL. The MCU executes the BMU’s software to control everything with real time
drivers (RTD) for these communication peripherals and complex device drivers (CDD) to configure
and operate the BCCs of the CMU. Figure 5 illustrates the complexity of the software stack, which is
based on the AUTOSAR standard.

Figure 5. Complete Software Stack of BMS Reference Application

In the following Chapter 3. we describe how we created an FSS of the described BMS but leaving out
the BJB for the moment.

3. Full System Simulation Setup

We started with two main parts. A Synopsys VSDK of NXP’s S32K3xx MCU and a BCC architectural
model as we describe in [1]. The first can execute a compiled binary of any software that would also
run on the real processor. Unlike a simple instruction set simulator (ISS) it includes a complete
hardware perspective with registers and peripherals (GPT, UART, CAN, SPI). It is only the MCU that
executes BMS software. The BCC itself is software-free but requires its configuration registers
initialized by the CDD running on the MCU. Also, the MCU must read and process measuring values

SNUG Europe 2024

Page 7 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

from the BCC’s result registers. Our SysML generated SystemC architectural model of the BCC
already implements all registers together with read and write accesses. Being SystemC, we made use
of Synopsys TLM creator tool to set up a BCC TLM component. Please refer to Figure 6 to understand
the full system setup which is still missing the BJB as introduced in Chapter 2. , an enhancement for
future work.

Figure 6. Full System Simulation Setup with Model of S32K3xx, MC33664 and MC33774.

Our original architectural model of the BCC [1] comes with an interface to a python script API. The
execution of test python scripts triggers the call and creation of TLM transport methods with proper
payloads for our TPL communication abstraction (TLM-TPL). This enables us to configure register
values of the BCC and read out measured values from a BCC standalone SystemC test-environment
executing specialized python-testcases.

Just like the physical device, the simulated S32k3xx of the VSDK comes with several SPI interfaces
implemented through Synopsys proprietary TLM-SPI socket2. We required a gateway from Synopsys
TLM-SPI to NXP TLM-TPL and connect the two models. This required communication gateway is not
just an artefact of simulation, but a needed functionality in the physical world, too. For this purpose,
NXP offers a physical GTW device named “MC33664: Isolated Network High-Speed Transceiver” [5]
or “MC33665: General Purpose BMS Communication TPL Transceiver and CAN FD Gateway” [6].
which needs to become part of the FSS to make it complete. Synopsys offers a helpful tutorial lab on
how to design a SPI Controller Model [2]. This tutorial was the perfect implementation start for a

2 tlm_ft_spi_device_socket

SNUG Europe 2024

Page 8 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

behavioral model of the required gateway as depicted in Figure 7. While the left part of the figure
shows the architecture of the MC33664 model, the right part visualizes a screenshot of the TLM creator
tool.

Figure 7. TLM Model of SPI to TPL Gateway MC33664

The gateway is equipped with one SPI Slave interface for request commands and one SPI Master
interface for respective responses. In the TLM creator graphical usage interface (GUI) both interfaces
are created in the tab “Interfaces”. Other instances are added to the model in the tab “Instances”. The
“Details of instance …” tab leads to callbacks for SystemC code sections to fill in the behavior of e.g.
the processes “SLAVE_CTRL” and “MASTER_CTRL”. Referring to [2] should make it quite clear how
this works in all detail.

TLM creator also comes with the option of importing existing SystemC TLM Models. Being an TLM
based model, it seemed obvious to use this feature to pull the architectural model of the BCC into the
FSS. As stated in [1], the model is autogenerated from SysML leading to a highly structured SystemC
code with many .cpp- and .h-files to import. We did not expect it to be promising to draw all of this in
as one enormous chunk. Instead, we decided to achieve this in a controlled semi-manual step by step
approach making use of the Synopsys Visualizer Studio python API. Whenever we were satisfied with
what part of the BCC we imported last, we continued to extend the python script as outlined below for
the next section of code to add. Defining approximately 300 path- and filenames by hand in the TLM
creator GUI would otherwise have been a very tedious endeavor. Especially knowing that we would
want to start from scratch whenever we did not like the outcome of the previous import. Outline of
Synopsys Virtualizer Studio python script to setup/modify an existing TLM project:

Path to BCC_REPOSITORY

bcc_repo = '<*path*>'

Finding the correct project with name

projs = tlmcreator.get_tlm_projects()

for i in projs:

 if (i.get_eclipse_project_name() == "<*proj*>"):

 proj = i

bs = proj.get_build_specification()

bc = bs.get_configurations()[0]

Adding compiler flags to the project

cxxFlags.append('<*flag_1*>')

cxxFlags.append('<*flag_2*>')

bc.set_cxx_flags(cxxFlags)

Adding include information to the project

SNUG Europe 2024

Page 9 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

includePath.append(bcc_repo + '<*/path/SLMODEL/inc1*>')

…

includePath.append(bcc_repo + '<*/path/SLMODEL/inc90*>')

bc.set_include_path(includePath)

Adding source information to the project

sources = []

sources.append(bcc_repo + '<*/path/SLMODEL/src/source1.cpp*>')

…

sources.append(bcc_repo + '<*/path/SLMODEL/src/source180.cpp*>')

bc.set_sources(sources)

proj.save()

After import and compile of our GTW plus BCC chain model, the TLM component is accessible via the
Synopsys Virtualizer Studio Library Manager. The new component can be dragged and dropped into
the VSDK S32K3_System as seen in Figure 8 top left. To connect the SPI sockets, one selects the
SpecFlow tab and finds the proper SPI Networks (middle right). With originally only the MCU model
attached to the network, it is configured as “stub” to cope with the missing communication partner. To
enable transmission of TLM messages the “ActAsStub” flag needs to be set to false (bottom left). The
FSS we created is a scalable model of a complete CMU with a configurable number of BCC instances
attached as one TPL daisy chain (compare with Figure 6). TLM creator offers the concept of TLM
model parameters which we used to make SPI IDs, use case selection and number of BCC instances
configurable.

Figure 8. Instantiating BCC in VSDK and Connecting SPI-TLM Network.

4. Identifying and Fixing an Issue with TLM-SPI

In the process of setting up the FSS as documented in Chapter 3. we came across an issue that
involved the behavior of TLM-SPI communication. In the real world and the simulation, the MCU is
coupled to the CMU via a GTW which serves as gateway between SPI and TPL. The bit length of a

SNUG Europe 2024

Page 10 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

message frame is encoded inside the data itself and can have a length of 64, 80, 96 or 112 bits (refer
to Figure 9).

Figure 9. TPL Data Field Alignment: 64-, 80-, 96- or 112-bit Frame for One or up to Four Data Values transmitted.

The transmitted bits through the GTW are a one-by-one copy of a frame from SPI to TPL and vice
versa. When we think of how this would be abstracted with TLM-SPI one might expect that the MCU’s
simulated SPI interface would create a single TLM-SPI message containing the complete frame in its
payload. But a TLM-SPI message can carry only a max of 64 bit, one unsigned long long. The reader
is refered to the documentation [3] for all details: “bits - Number of valid data bits to be transmitted in
the SPI payload. It can set from 0 to 64.”. The following shows the method’s receive signature.

received_transfer_64bit_V3(

 unsigned long long data,

 unsigned bit_length,

 bool continuous_select

)

Instead, the simulated MCU sends several SPI-TLM for one message frame. The software real time
device driver (RTD) handling the SPI interface is configurable in such a way, that the “SpiDataWidth”
can be set between 1 to 64 bits. Meaningful values are 8, 16, 32 or 64 bits only. We decided to
configure a value of 16-bit lengths. The simulated MCU of the VSDK is modeled to such accuracy that
it then creates one TLM message for every 16 bits of data. This makes good sense as the BCC’s
registers are 16-bit word based and we can interpret the length of a message with respect to that as
4, 5, 6, or 7 words of 16 bit. But how can the GTW model know if the 5th word is still part of the current
message frame received or already a new one? We could have implemented it in the way that we
interpret the “DATALEN” information inside the TLM messages received so far (compare with Figure
9). But that would be inappropriate for two reasons. Firstly, semantic bitwise interpretation of the data
in the payload would break the level of abstraction. The reason to use TLM is exactly to abstract away
such detail of communication. Secondly, this would add functionality to the GTW model that is not
there in the physical device. The GTW does not interpret the data it is sending from SPI to TPL and
vice versa. Consequently, the model should not do this either.

The way to go here is to make use of the flag “continuous select” as to be seen from the method
signature above. The Synopsys Virtuallizer Studio documentation [3] gives the following information
(Figure 10).

…

SNUG Europe 2024

Page 11 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

Figure 10. Description of the Continuous Select Flag.

We implemented the GTW model to collect SPI-TLM messages to the point when the continuous
select flag would become ‘0’ before creating one single TPL-TLM payload and calling the b_transport
of the BCC model. The GTW model would issue an error if less than four or more than seven SPI-
TLM messages are received. Unfortunately, this approach was not successful right away. We would
see cases where the continuous select flag is faulty. The cause of this erroneous behavior could have
been the RTD software running on the simulated MCU, our newly created model of the GTW or the
simulated SPI of the VSDK. We started an extensive analysis to find the cause for this. Our special
thanks go to the Synopsys team who took the effort to help us track down the issue to the MCU’s SPI
interface implementation. A fix for the S32K3xx VSDK was delivered by Synopsys within three working
days and the FSS setup became operational.

5. Observing Complete SW Stack Execution on FSS

Looking back at Figure 5 gives some impression on the complexity of BMS software and that its
development and safety validation testing is a tedious task that takes a significant amount of effort and
time to complete. We are happy to report that the FSS we created in the previous chapters is accurate
to the point where it can execute the complete software stack and enables a significant shift left in our
product development cycle. In the following we want to document the look and feel of a simulation run
and pre silicon software debugging session.

Simulation and real device operate on the same .elf file as executable. Meaning, that the same
compiler and compiler setup is used for both cases. Our setup is based on Elektrobit (EB) Tresos as
microcontroller abstraction layer (MCAL) for an AUTOSAR workflow. It generates the RTD and CDD
source code configuration files of which the BMS application makes use of. The design and
compilation environment for that is S32 Design Studio (S32DS) [7]. Figure 11 shows the GUIs of the
two tools. The screenshot of EB Tresos symbolizes the configuration of the SPI RTD with 16 bit data

SNUG Europe 2024

Page 12 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

width (mentioned in previous chapter 4.), while the one of S32DS depicts the generated .elf file after
successful compile of the project.

Figure 11. Configuring RTD and CDD Software with EB tresos and Compiling with S32 Design Studio

Synopsys Virtualizer Studio makes use of a VP configuration concept that comes in the form of vpcfg-
files. Selecting the “Images” tab gives the option to go for the above compiled executable for a
simulation run.

Figure 12. Loading Executable .elf File on Simulated MCU. Images Ttab of VP Config (vpcfg).

The simulation starts with a click on the play button and stops right before the first processor command
executes. This halt is different from that one of a physical processor. A CPU can be stopped by a
debugger, but the environment cannot. In a real hardware setup, the debugger would halt but GTW,
BCC and all the world’s physics around it would still be running. When the simulation stops, the
simulated time itself stops. The concept of time itself halts.

A debugger can attach to the simulated MCU, or rather to any of the four cores that it provides. In our
case we connect the Lauterbach TRACE32 debugger to core 0 of the simulated K3xx processor as
shown in Figure 13 top part. Here we can apply break points or do anything else that debugging allows
us to do, step through the code, add watchpoints, etc. (bottom part of Figure 13).

SNUG Europe 2024

Page 13 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

Figure 13. Attaching Lauterbach TRACE32 Debugger to Simulated Core 0 of Simulated MCU.

Additionally, a virtual platform gives full visibility to the state of the simulated HW. Figure 14 and Figure
15 depict the introspection potential that gives us full observability and traceability of all BCC’s
configuration registers content. The use of Synopsys proprietary SystemC Modeling Library (SCML)
in the model is required to have this feature available in Synopsys Virtualizer Studio. Our model
generation flow of [1] automatically makes use of the library to instantiate all model’s registers and
bitfields. SCML source code is available and SCML based models can run standalone without
Synopsys tools. Still, we consider this proprietary dependency a drawback. SCML is not an open
standard, and we currently are evaluating other options that help us to keep single vendor
dependencies at a minimum.

The first step in the startup of a BMS with several BCC devices in a TPL daisy chain (CMU) is
enumeration. After power on, all BCC’s system communication configuration register’s bitfield device
address (DADD) contains the value zero. Such an unconfigured device acts on any message that it
receives, independently of the DADD in a TPL message. Firstly, the device must be awakened,
though. Any activity on the TPL bus does this e.g., a NOP. A second message during initialization of
the BMS software stack is a TPL write command to the SYS_COM register address (RADD) with the
proper enumeration value. After enumeration it will only respond to such messages that match with its
configured DADD. Otherwise, the message is sent further down the chain. The following pseudo code

SNUG Europe 2024

Page 14 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

gives the idea off this.
for devNum=1 to 5 do (

 nopTPL(DADD=0);

 writeTPL(DADD=0, RADD=0x0001, val=devNum);

 devNumCheck=readTPL(DADD=devNum, RADD=0x0001);

 if devNumCheck == devNum -> OK

 else NOK

)

The proper initialization is directly observable in Synopsys Virtualizer Studio as shown in Figure 14.
Just to point out one of the many features, the tool’s Analysis enables a timely tracing of values. In
Figure 15 one can nicely see how enumeration ripples down the TPL chain.

Figure 14. Browsing BCC’s Software Configured Hardware Registers.

SNUG Europe 2024

Page 15 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

Figure 15.Vpcfg Analyses Tracing Device Enumeration Value Changes in CMU over Time.

Analysis can also be used to configure the verbosity of messages. During the setup of the FSS we
e.g. had the issue that SPI communication was unsuccessful. First issue was that the SPI network
was falsely configured as stub (compare with Figure 8 of Chapter 3.) Another issue was that SPI slave
device ids were configured incorrectly. In a physical setup one would probably have set up a logic
analyzer to have a look at the SPI bus signals and the communicated values. With the FSS available,
enabling FastTrack Logging (Figure 16) for the SPI network was sufficient to understand the issue: a
faultily configured SPI slave id 0.

Figure 16. Enabling FastTrack Logging on SPI Network for Versatily Messages on Interface Status.

SPI_NW_3Model Internal[Legacy Logging]Trying to transmit... slave id

is 0

SPI_NW_3Warning[Generic Warning]Trying to transmit from master - No

such slave with id : 0 exists...

6. Conclusions and Future Work

The usage experience and the received results from our setup FSS is very promising to the point of
convincing. While we were working together with RTD and CDD SW developers to get everything up
and running, their involvement triggered questions like “when will I be able to make use of this in my
customer projects?” and statements like “this would so help me to clean out our HW laboratory space.”
Albeit to get there, some further work must be done. As stated previously, we automated the
generation of the complete register set of devices from SysML models. The functionality behind
registers in the model must be coded in SystemC manually and is not yet complete for all parts of the
MC33774. It is yet missing completely for other variants of BCC, BJB and GTW. The practical results
achieved in this work justify the investment of further resources in the topic to achieve complete FSS
for which we expect a lot of reuse potential between the required SystemC models.

SNUG Europe 2024

Page 16 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

Another potential topic to add would be models of battery cells of different accuracy and potentially
their chemistry. In this work we made use of a very simple model that delivers constant voltage values
per cell as input for measurement. The model does not respond to or act on inputs it receives. It is an
option to connect simulation environments like those from Mathworks Matlab/Simulink with the FSS.
Sophisticated battery models are available for these or can be created that can respond to external
parameters like load, current, etc. This would make the interaction and effect of SoC and SoH
algorithms observable during research and development.

An idea to mention for future work is the setup of our models as models in the loop (MIL) in an
emulation sort of scenario. The SystemC executes in a small box with sufficient SW compute power
to run it and a HW TPL interface to connect it to physical BMS. We executed first experiments with
Raspberry Pis 4 and 5 that encouraged us to proceed this path with further work.

SystemC and TLM are open standards unlike Synopsys SCML. As stated before, our BCC model can
run standalone without Synopsys tooling but requires the proprietary SCML. We are in the process of
evaluating other options like VCML to name just one. Ideally, Synopsys would be willing to open up
SCML towards an open-source standard. Maybe this work can convince decision makers to do so.

7. Glossary
ASIL Automotive Safety Integration Level

BCC Battery Cell Controller

BJB Battery Junction Box

BMS Battery Management System

BMU Battery Management Unit

BOM Bill of Material

CADD Chain Address

CAN Controller Area Network

CDD Complex Device Driver

CMD Command

CMU Cell Monitoring Unit

CRC Cyclic Redundancy Check

DADD Device Address

ELF Executable and Linkable Format

EV Electric Vehicle

FSS Full System Simulation

GPT General Purpose Timer

GTW Gateway

GUI Graphical Usage Interface

HV High Voltage

HVBMS High Voltage Battery Management System

HW Hardware

KPI Key Performance Indicator

LV Low Voltage

MADD Master Address

MCAL Microcontroller Abstraction Layer

MCU Microcontroller Unit

MIL Model in the Loop

MSGCNT Message Count

OV Over Voltage

RADD Register Address

RTD Real Time Device Driver

SNUG Europe 2024

Page 17 Multi Chip Simulation of Battery Management System with
Synopsys Virtualizer Studio

RTL Register Transfer Level

SCML SystemC Modeling Library

SoC State of Charge

SoH State of Health

SPI Serial Peripheral Interface

SW Software

SysML Systems Modeling Language

TLM Transaction Level Model

TPL Transport Protocol Link

UART Universal Asynchronous Receiver/Transmitter

UV Under Voltage

VCML Virtual Components Modeling Library

VSDK Virtualizer Studio Development Kit

8. References

[1] R. Görgen, E. de Kock, “SysML based Architecture Definition and Platform Generation Flow”, Design
and Verification Conference and Exhibition Europe 2019.

[2] “TLM Creation Quickstart Training, Module 2: Building a SPI Controller Model”, Synopsys Solvnet,
TLMCreation_Quickstart_Training_Q2020.06-2

[3] “tlm_ft_spi_bus”, Synopsys Solvnet, U-2023.03-2

[4] “MC33774: 18 Channel Li-Ion Battery Cell Controller IC ASIL D”, www.nxp.com

[5] “MC33664: Isolated Network High-Speed Transceiver”, www.nxp.com

[6] “MC33665: General Purpose BMS Communication TPL Transceiver and CAN FD Gateway”,
www.nxp.com

[7] “S32 Design Studio IDE”, www.nxp.com

