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Introduction, IP Verification Challenges
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Introduction

• Increased Complexity of SOCs

• Verification Challenges

• Configurable IPs

• First pass silicon and Time to market 

• Simulation based verification methodology is matured 

• Time to explore Formal for exhaustive verification

Combination of Formal Verification and Simulation improves quality 
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IP Verification Requirements

Testbench reusability and maintainability 

All functional features verified

Use case or System Scenario verification (Domain 
Specific)

Crosses of functionality with configurations

Micro-architecture and interface protocol checking

Code and Functional Coverage should be 100% achieved

Traceability between feature requirements to coverage

Reference:Accelera UVM User guide 1.2
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Verification Challenges and Risks
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Proposed Solution
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Proposed Solution

• Formal Techniques for micro-architecture verification

• Simulations for use-case and system verification
Divide-and-Conquer

• Execution Manager based regression

• YAML config + templates = Regression configurations

• Jenkins CI for automation

Regression 

Management

• VPlanner and regression result back annotation

• Merging simulation and formal coverages

• Define organization specific coverage metric

Coverage Signoff 

• VPlanner for test plan development

• Requirement to coverage mapping 

• Single document for status reporting and tracking

Reporting
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Formal Verification Made Easy
VC Formal APP Based Verification 

• CC 

– Top Level connectivity check

• FRV 

– Register field attributes check

• FXP

– Catches X Prop issues at RTL level

• FPV-AIP

– AMBA Assertion IPs (AXI4, AXI stream, AXI4_lite)

• Data Path Validation

– Mathematical blocks, C/C++ reference models 

• Formal Coverage Analyzer

– Improves Coverage closure with auto exclusions
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Verification
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Data Path 
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Benefits of Formal Verification APPs 

• Exhaustive verification using formal 
techniques

• Easy and fast VC Formal APP setup

• Can be used without expert level formal 
verification knowledge 

• No dependency on testbench

• Speed up the setup using automation

• Easy failure analysis using counter 
example

• Used for small RTL blocks 
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Verification Setup

• Identify features for simulation and formal in 

the plan

• Reuse compilation: VCS and VC Formal

• Merge simulation and formal Coverage

• V Planner for back-annotation of results

• Unified Coverage report for analysis

Regression + 

Coverage Report
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Design
Specification

Simulation 

Testbench

Formal 

Verification 

Setup

Coverage 

Merging

Verification
Plan

VC F ormal

VPlanner URG

Simulation 

Coverage

Formal 

Coverage

VC F ormal



SNUG EUROPE 2024 12

Regression management and Traceability
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Regression Setup Automation

Test_list:
{% for test in tests %}
-test_name: {{test[ name    
    -build_name: {{test[ build    
    -run_opts: test.opts 
{{test[ run_opts    
    -priority: 2
    -test_group: {{test[ group    
{% endfor %}

regr_modeA:
- name: [test1, test2, test3, test4]
- build_name: build_full_rtl
- run_opts:  ENA_MODEA=1 
- group: stress_modeA_regr

regr_modeB:
- name: [test1, test10, test11]
- build_name: build_full_rtl
- run_opts:  ENA_MODEB=1 
- group: stress_modeB_regr

YAML Config file for regression 

modes

Test list Template

• Automation of regression setup using Jenkins

• YAML based regression modes

• Exec man does Coverage merging, HVP 

annotation

Run Modes:

• Full (3000+)  

• Nightly(200+)

• Sanity(15)

• Formal Only

• Technology sim

• Power FSDB sim

Testcase 

Generator

Regression 

Run 

Exec Man 

Config 

.emc 

generator 

script 

.emc 

template 

(yaml/jinja2) 

Exec Man 

Config 

(.emc)

Reports
Regression 

mode config 

(yaml/json)

Verification 

Plan (HVP)

Regression Setup using Exec Man

• Enabled Simulation and formal builds 

• Sequential VC Formal run using Jenkins 

Pipeline
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Verification Planner for traceability
Requirement to coverage completion

Verification Plan with test scenarios 

Requirement mapping -> Features 

Test development status tracking 

Regression result back-annotation

Code and functional coverage mapping 

Formal property coverage mapping

Python based coverage mapping

Project Milestone data for reporting

Auto HVP generation for AIPs

plan ip_plan; 

   metric enum {proven, falsified, vacuous,inconclusive} formal; 
   metric aggregate {Line, Cond, FSM, Toggle, Branch, Assert, Group} all_coverage 
   metric aggregate {Assert, Group, test.percent.pass} Functional_cov; 
    annotation string Requirement_ID = ""; 
    annotation string Feature_ID = ""; 
    annotation string Release_ID = ""; 
    annotation string Owner = ""; 
    annotation string TR_tag = ""; 
    annotation enum{NotStarted,InProgress,Done,Redundant} Test_Status; 
    annotation enum {}project_milestone =; 
    annotation integer Priority = 0; 
 

 feature Config_register_access; 
    description = "Verify reset value of all the Config registers"; 
    Requirement_tag = "IP_REQUIREMENT_20"; 
    Feature_ID = "ip_config_2"; 
    Release = "1.0.0"; 
    Owner = "Nikhil Tambekar"; 
    Test_Status = "InProgress"; 
    TR_tag = "TR1.2"; 
    measure test, test.percent.pass  uvm; 
        source = "ip_tr1_2_hw_reset_test"; 
    endmeasure 
 endfeature 

endplan  

Verification 
Plan

Verification and 
Regression

Merged 
Coverage 
Database

User Data File 
Generation

Back 
Annotation in 
verification 

Plan
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Functional Coverage outside SV

• Use case scenario coverage is important for completeness

• Some features are difficult to extract in IP level testbench

– E.g. Computation graphs, end to end usecase scenarios etc  

• Coverage extraction outside the System Verilog testbench

• Use reference model for coverage data structure generation

• Python based cover groups from test generation environment 

• Map the usecase coverage in VPlanner 

Architecture 

Specification

Reference Model

Pre-simulation 

environment 

(e.g. Python)

Extract Data structures 

from the model for 

functional Coverage

Usecase functional 

Coverage using Python 

libraries

XML/YAML 

based Functional 

Coverage

Coverage 

Merging

VCS Coverage

Coverage report
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Results and Conclusion
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Results

• Critical bugs found using formal verification

– [AIP]  AXI stream protocol bugs (tvalid-tready handshake, access errors)

– [FPV] Architecture Spec vs RTL Endianness issues 

– [FPV] Architecture Spec vs RTL mismatch in decoding logic  

• Formal techniques improve IP quality and early bug finding

• Single document (HVP Plan) for status reporting

• Saved bandwidth used for domain specific Usecase verification and debug 

• Faster coverage closure and frame-work scalable for other IPs

• Traceability achieved for verification completion signoff

• Significant Efficiency improvement with automation

   Verification team achieved all the project milestones on time with high quality deliverables

 

Handshake bug using AIP AXI stream APP 
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Future Improvements

• Encourage third party  coverage database merging

- More support is needed for UCIS or user-friendly APIs for coverage database manipulation

- Open-source libraries for verification

• Improvements in Execution Manager tool

- Support for running only failing tests

- Improving coverage merging efficiency 

• More exhaustive testing for the VCS and VC Formal coverage merging and interoperability

• VC Formal elaboration logs are not self-explanatory, needs AE’s assistance

• YAML/JSON based configuration option for handling tool command line arguments 
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Conclusion

• Simulation is necessary for Use cases and System scenarios

• Formal verification for micro-architectural features

• Automation in Regression management

• Single document VPlanner for reporting

• Combination of Simulation and Formal techniques gives best results

 Thanks to Jukka Heikkila, Patrick Blestel and Toni Rastio 

  for Technical Support
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