
SNUG EUROPE 2024 1

Comprehensive IP Verification using

Hybrid Way (simulation and formal) :
User Experience

Nikhil Tambekar, Verification Specialist
Nokia Solutions and Networks Oy, Finland

SNUG EUROPE 2024 2

Agenda

• Introduction

• IP verification requirements

• IP verification challenges and risks

• Proposed partitioning

• VC Formal APPs

• Regression management

• Traceability using VPlanner

• Results

• Suggestions for enhancements

• Conclusion

SNUG EUROPE 2024 3

Introduction, IP Verification Challenges

SNUG EUROPE 2024 4

Introduction

• Increased Complexity of SOCs

• Verification Challenges

• Configurable IPs

• First pass silicon and Time to market

• Simulation based verification methodology is matured

• Time to explore Formal for exhaustive verification

Combination of Formal Verification and Simulation improves quality

SNUG EUROPE 2024 5

IP Verification Requirements

Testbench reusability and maintainability

All functional features verified

Use case or System Scenario verification (Domain
Specific)

Crosses of functionality with configurations

Micro-architecture and interface protocol checking

Code and Functional Coverage should be 100% achieved

Traceability between feature requirements to coverage

Reference:Accelera UVM User guide 1.2

SNUG EUROPE 2024 6

Verification Challenges and Risks

Inhouse VIPs

(Not verified)

Verification

Risks and

Challenges

Inhouse RTL

IPs
(non-silicon

proven)

Management

Reporting

Regression

Management

Coverage

Closure

Traceability

Experienced

Resources

Domain

Knowledge

Verification in

critical path

Specification

Changes

SNUG EUROPE 2024 7

Proposed Solution

SNUG EUROPE 2024 8

Proposed Solution

• Formal Techniques for micro-architecture verification

• Simulations for use-case and system verification
Divide-and-Conquer

• Execution Manager based regression

• YAML config + templates = Regression configurations

• Jenkins CI for automation

Regression

Management

• VPlanner and regression result back annotation

• Merging simulation and formal coverages

• Define organization specific coverage metric

Coverage Signoff

• VPlanner for test plan development

• Requirement to coverage mapping

• Single document for status reporting and tracking

Reporting

SNUG EUROPE 2024 9

Formal Verification Made Easy
VC Formal APP Based Verification

• CC

– Top Level connectivity check

• FRV

– Register field attributes check

• FXP

– Catches X Prop issues at RTL level

• FPV-AIP

– AMBA Assertion IPs (AXI4, AXI stream, AXI4_lite)

• Data Path Validation

– Mathematical blocks, C/C++ reference models

• Formal Coverage Analyzer

– Improves Coverage closure with auto exclusions

FRV

Register
Verification

CC

Connectivity
Checking

FXP

X-Prop

Verification

VC Formal APPs
Used

FPV

AIP
Verification

DPV

Data Path
Validation

FCA

Formal
Coverage
Analyzer

SNUG EUROPE 2024 10

Benefits of Formal Verification APPs

• Exhaustive verification using formal
techniques

• Easy and fast VC Formal APP setup

• Can be used without expert level formal
verification knowledge

• No dependency on testbench

• Speed up the setup using automation

• Easy failure analysis using counter
example

• Used for small RTL blocks

Design

Specification

(Machine

readable)

Template for

TCL and SV

binds

Code

Generator

Scripts

VC Formal

Tool
Results

RTL

Automation setup for VC Formal Run

FRV AIP CC FCA FPV

Less Expertise High Expertise

Less Effort

SNUG EUROPE 2024 11

Verification Setup

• Identify features for simulation and formal in

the plan

• Reuse compilation: VCS and VC Formal

• Merge simulation and formal Coverage

• V Planner for back-annotation of results

• Unified Coverage report for analysis

Regression +

Coverage Report

VCS URG

Design
Specification

Simulation

Testbench

Formal

Verification

Setup

Coverage

Merging

Verification
Plan

VC F ormal

VPlanner URG

Simulation

Coverage

Formal

Coverage

VC F ormal

SNUG EUROPE 2024 12

Regression management and Traceability

SNUG EUROPE 2024 13

Regression Setup Automation

Test_list:
{% for test in tests %}
-test_name: {{test[name
 -build_name: {{test[build
 -run_opts: test.opts
{{test[run_opts
 -priority: 2
 -test_group: {{test[group
{% endfor %}

regr_modeA:
- name: [test1, test2, test3, test4]
- build_name: build_full_rtl
- run_opts: ENA_MODEA=1
- group: stress_modeA_regr

regr_modeB:
- name: [test1, test10, test11]
- build_name: build_full_rtl
- run_opts: ENA_MODEB=1
- group: stress_modeB_regr

YAML Config file for regression

modes

Test list Template

• Automation of regression setup using Jenkins

• YAML based regression modes

• Exec man does Coverage merging, HVP

annotation

Run Modes:

• Full (3000+)

• Nightly(200+)

• Sanity(15)

• Formal Only

• Technology sim

• Power FSDB sim

Testcase

Generator

Regression

Run

Exec Man

Config

.emc

generator

script

.emc

template

(yaml/jinja2)

Exec Man

Config

(.emc)

Reports
Regression

mode config

(yaml/json)

Verification

Plan (HVP)

Regression Setup using Exec Man

• Enabled Simulation and formal builds

• Sequential VC Formal run using Jenkins

Pipeline

SNUG EUROPE 2024 14

Verification Planner for traceability
Requirement to coverage completion

Verification Plan with test scenarios

Requirement mapping -> Features

Test development status tracking

Regression result back-annotation

Code and functional coverage mapping

Formal property coverage mapping

Python based coverage mapping

Project Milestone data for reporting

Auto HVP generation for AIPs

plan ip_plan;

 metric enum {proven, falsified, vacuous,inconclusive} formal;
 metric aggregate {Line, Cond, FSM, Toggle, Branch, Assert, Group} all_coverage
 metric aggregate {Assert, Group, test.percent.pass} Functional_cov;
 annotation string Requirement_ID = "";
 annotation string Feature_ID = "";
 annotation string Release_ID = "";
 annotation string Owner = "";
 annotation string TR_tag = "";
 annotation enum{NotStarted,InProgress,Done,Redundant} Test_Status;
 annotation enum {}project_milestone =;
 annotation integer Priority = 0;

 feature Config_register_access;
 description = "Verify reset value of all the Config registers";
 Requirement_tag = "IP_REQUIREMENT_20";
 Feature_ID = "ip_config_2";
 Release = "1.0.0";
 Owner = "Nikhil Tambekar";
 Test_Status = "InProgress";
 TR_tag = "TR1.2";
 measure test, test.percent.pass uvm;
 source = "ip_tr1_2_hw_reset_test";
 endmeasure
 endfeature

endplan

Verification
Plan

Verification and
Regression

Merged
Coverage
Database

User Data File
Generation

Back
Annotation in
verification

Plan

SNUG EUROPE 2024 15

Functional Coverage outside SV

• Use case scenario coverage is important for completeness

• Some features are difficult to extract in IP level testbench

– E.g. Computation graphs, end to end usecase scenarios etc

• Coverage extraction outside the System Verilog testbench

• Use reference model for coverage data structure generation

• Python based cover groups from test generation environment

• Map the usecase coverage in VPlanner

Architecture

Specification

Reference Model

Pre-simulation

environment

(e.g. Python)

Extract Data structures

from the model for

functional Coverage

Usecase functional

Coverage using Python

libraries

XML/YAML

based Functional

Coverage

Coverage

Merging

VCS Coverage

Coverage report

SNUG EUROPE 2024 16

Results and Conclusion

SNUG EUROPE 2024 17

Results

• Critical bugs found using formal verification

– [AIP] AXI stream protocol bugs (tvalid-tready handshake, access errors)

– [FPV] Architecture Spec vs RTL Endianness issues

– [FPV] Architecture Spec vs RTL mismatch in decoding logic

• Formal techniques improve IP quality and early bug finding

• Single document (HVP Plan) for status reporting

• Saved bandwidth used for domain specific Usecase verification and debug

• Faster coverage closure and frame-work scalable for other IPs

• Traceability achieved for verification completion signoff

• Significant Efficiency improvement with automation

 Verification team achieved all the project milestones on time with high quality deliverables

Handshake bug using AIP AXI stream APP

SNUG EUROPE 2024 18

Future Improvements

• Encourage third party coverage database merging

- More support is needed for UCIS or user-friendly APIs for coverage database manipulation

- Open-source libraries for verification

• Improvements in Execution Manager tool

- Support for running only failing tests

- Improving coverage merging efficiency

• More exhaustive testing for the VCS and VC Formal coverage merging and interoperability

• VC Formal elaboration logs are not self-explanatory, needs AE’s assistance

• YAML/JSON based configuration option for handling tool command line arguments

SNUG EUROPE 2024 19

Conclusion

• Simulation is necessary for Use cases and System scenarios

• Formal verification for micro-architectural features

• Automation in Regression management

• Single document VPlanner for reporting

• Combination of Simulation and Formal techniques gives best results

 Thanks to Jukka Heikkila, Patrick Blestel and Toni Rastio

 for Technical Support

SNUG EUROPE 2024 20

THANK YOU
YOUR

INNOVATION

YOUR

COMMUNITY

	Slide 1: Comprehensive IP Verification using Hybrid Way (simulation and formal) :
	Slide 2: Agenda
	Slide 3: Introduction, IP Verification Challenges
	Slide 4: Introduction
	Slide 5: IP Verification Requirements
	Slide 6: Verification Challenges and Risks
	Slide 7: Proposed Solution
	Slide 8: Proposed Solution
	Slide 9: Formal Verification Made Easy
	Slide 10: Benefits of Formal Verification APPs
	Slide 11: Verification Setup
	Slide 12: Regression management and Traceability
	Slide 13: Regression Setup Automation
	Slide 14: Verification Planner for traceability
	Slide 15: Functional Coverage outside SV
	Slide 16: Results and Conclusion
	Slide 17: Results
	Slide 18: Future Improvements
	Slide 19: Conclusion
	Slide 20

