

SAIF Based DPS and IRAP for Power and Power Grid Optimization for Complex IPs

Ramanan RR, Ganesh Pai Kaup, Minu Mathew, Christopher Silvester Intel

Introduction

Proposed Method

Setup and Strategy

Implementation Results

Conclusion and Future Work

Acknowledgement

Introduction

IP design teams aims to deliver better quality deliverables, but the factor of IR reliability and power comes as a bottle neck and pull them back from timely deliverable

Design may need to be tweaked to reduce power and modify power grid based on the results from the signoff tools, which is time consuming

Introduction

Std Cell count	5M
Technology	Intel3
Area	507587.82 um2
Operating Frequency	4GHz
Macro Cell count	262

There are certain IPs which are instantiated multiple times in the SOC.

Table 1: Design Specifications for Block 1

Std Cell count	35K
Technology	Intel 18A
Area	28978um2
Operating Frequency	625MHz
Macro Cell count	1

Delivering them with robust power grid with better reliability results and reduced power along with improvised TAT, these IPs will improve the total power consumption and reliability results of SOC. Also, IPs can be delivered quicker.

 Table 2: Design Specifications for Block 2

Traditional Method

Challenges:

- Time Consuming due to multiple iterations
- Uncertainty over impact on timing/other reliability issues.

Proposed Method

Why this Method.?

- Breaks the Traditional cycle chain
- Improved TAT
- Reduced Violation count
- By the end of fill you can know the impact of IR in your design

DPS and IRAP – An Introduction

Figure-1: DPS – Dynamic Power Shaping

Figure-2: IR Aware Placement

Setup and Strategy Steps to Implement

Setting up the Proposed Method

Saif _ Synthesis

DPS

• set_app_options -name compile.flow.enable_dps -value true

- set_app_options -name ccd.dps.flow_reporting -value {*}
- set_app_options -name ccd.dps.focus_power_scenarios -value scenario_name

- set_app_options -name rail.pad_files -value <pad/bump locations>
- set_app_options -name place.coarse.ir_drop_aware -value true
- set_app_options -name opt.common.ir_drop_threshold -value <IR Threshold>
- set_app_options -name rail.tech_file <IR Tech file>
- analyze_rail -nets -voltage_drop static/dynamic

Implementation Results

IR Aware Placement and DPS Results

restree to the same presso period scopers takes over the preventer trees resulted REDHAWK RESULT was loaded successfully. open_rail_result Peak Memory: 229408.730 MB CPU Time: 615.141 seconds Elapsed Time: 397.867 seconds (70299.641 70697.508) Placer: reannotation successful Placer: reading RH power Placer: Power Density: found supply net vccmg Placer: Power Density: found supply net vcc Placer: Power Density: found supply net vcc Placer: Power Density: found supply net vss Placer: Power Density: Using layer m2 (default) for Effective R extraction Information: Analyze net vcc Information: Analyze net vcc Information: Analyze net vccs Information: Analyze net vcc Information: Analyze net vss Information: include net vcc to analyze Information: include net vcc to analyze Information: include net vcc to analyze Information: include net vco to analyze Information: include net vss to analyze Information: #net: 5 #node: 73165160 Information: Using MMD Ordering. Information: Allocated 18205.8 Mbytes for effective resistance calculation. Information: Calculating effective resistance values using 4 thread(s). Progress: 0% Progress: 10% Progress: 20% Progress: 100% Placer: Power Density: found effective R for supply net vcc Placer: Power Density: found effective R for supply net vcc Placer: Power Density: found effective R for supply net vco Placer: Power Density: found effective R for supply net vss Info: using PLACER: IRDP: #instances: 736531 #instances annotated with RH power: 519375 (70%)

	Baseline	Optimized	Reduction
ļ	12.399mA	11.102mA	10.5%
[0.621mA	0.544mA	12.4%
1	1.242mA	0.844mA	32.0%

sn

Figure-2: DPS data from compile final reports

Figure-1: Log File entries from Clock Route Opt db

Voltage Drop Comparison

RHSC IR DROP HEAT MAP COMPARISON

Legend

Figure-1: From RHSC Signoff Results from Traditional Method **Figure-2:** From RHSC Signoff Results from Proposed Method

Power Comparison Summary

Figure-1: Computed total power in active mode across multiple experiments

Figure-2: Computed total power in peak mode across multiple experiments

DPS Results – Block 2

Figure-1: Ungated supply optimization from DPS

Figure-2: Gated Supply Optimization from DPS

Dynamic IR Results – Block 2

Dynamic IR Results Comparison

Figure: Results comparison between traditional method vs the proposed method

Figure: Dynamic IR drop comparison between traditional vs proposed method

Final Signoff Results Comparison – Block 2

Figure -1: From RHSC tw_min violations heatmap from traditional method signoff runs

Figure -2: From RHSC tw_min violations heatmap from proposed method signoff runs

Conclusion and Future Work

Why This Method

Conclusion & Future Work

To Conclude:

We can observe that the SAIF based DPS and IRAP is providing us a better improvement in voltage drop and as a by product we can also see there is an improvement in power.
 With this method we can reduce 20%-30% TAT.

Future Work:

Trying out InDesign PrimePower along with this method to check for further improvement in power.

> Trying PG Grid augmentation feature along with the proposed method.

Acknowledgments

Acknowledgements

Team Intel:

N Purushotham Reddy , Brahmaiah Throvangunta , Varun Kumar Legala, Ajith Vijay, Chezhian Murugasundaramoorthy, Shivani Patalbansi, Jagadish Bagul, Rana Sagar

Synopsys AE:

Kanchan Sunia , Ashok Kumar.

Special Acknowledgement to Prashanth Mishra an intern from November'23 to April'24 for his significant contribution on this effort with our team.

THANK YOU

Our Technology, **Your** Innovation[™]