

Advanced Implementation Techniques For Achieving Best PPA in High Performance Designs

Sudhakar Vadiraj Alur, Kishorkumar Chavada, Ramnarayan Thukkaram , Ujjwal Prakash Qualcomm India Private Limited

Agenda

- Introduction
- Implementation challenges
- Synthesis Flow Enhancements
- Synthesis Strategy
- PnR Challenges and Solutions
- Results
- Conclusion

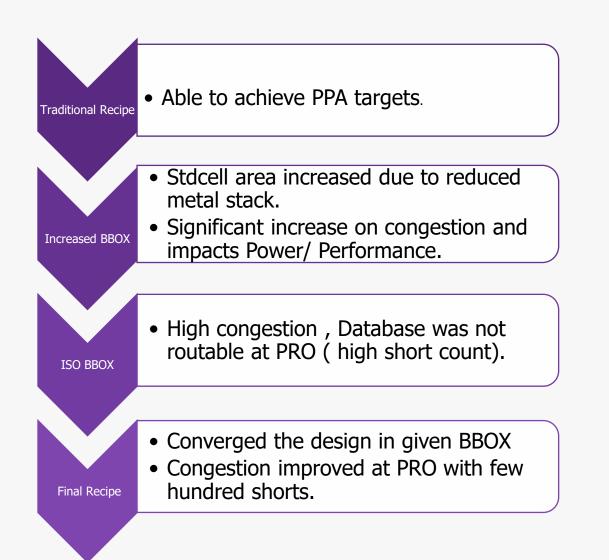
Introduction

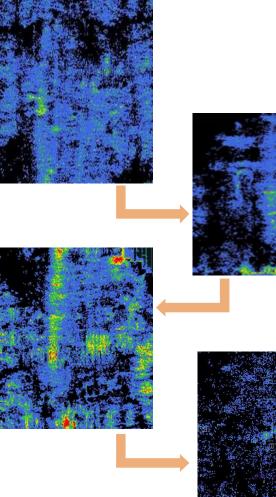
- Goal:-
 - Address congestion with reduced metal layer stack.
 - Converge on PPA targets.
 - Meet strict BBOX area requirements.
- Design Details:-
 - Subsystem ranging in Millions of instances.
 - Frequency in the GHz range.
 - Multiple power domains.
 - Multi scenario closure.

Implementation Challenges

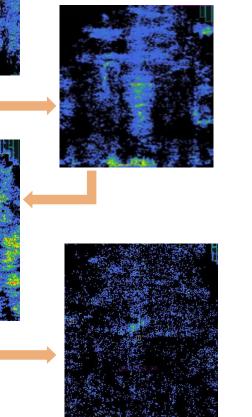
Stringent target to meet Reduced metal layer stack w/o area overhead Reduced Metal layer stack Challenges

AREA

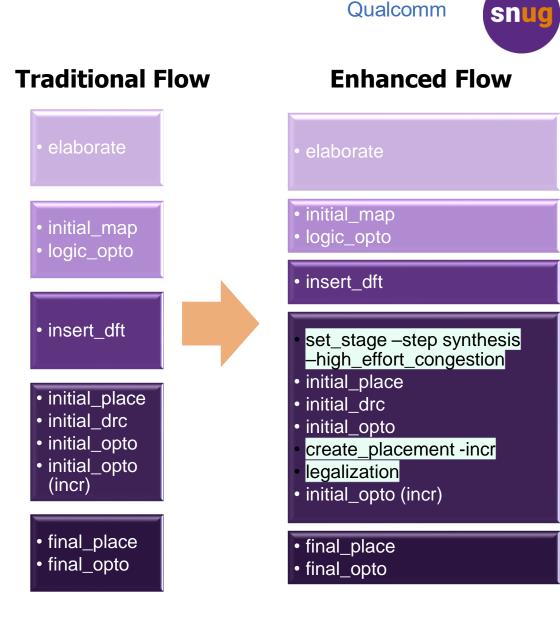

Aggressive FMAX push to provide best in class HPC with given constraints


POWER

Dynamic/Leakage Power targets

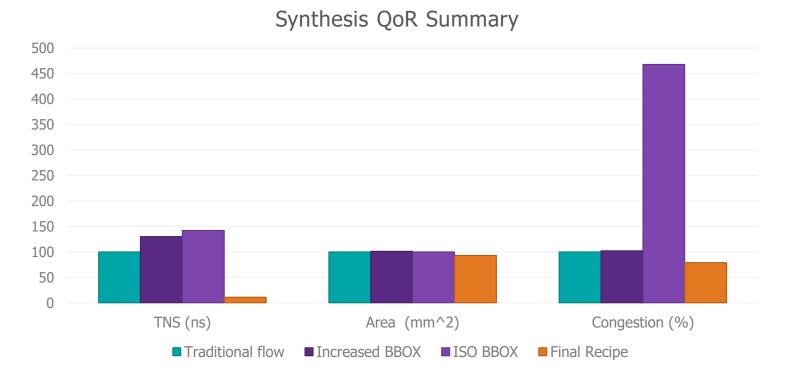

4

Synthesis Flow Enhancements



Synthesis Flow Enhancements (Contd.)

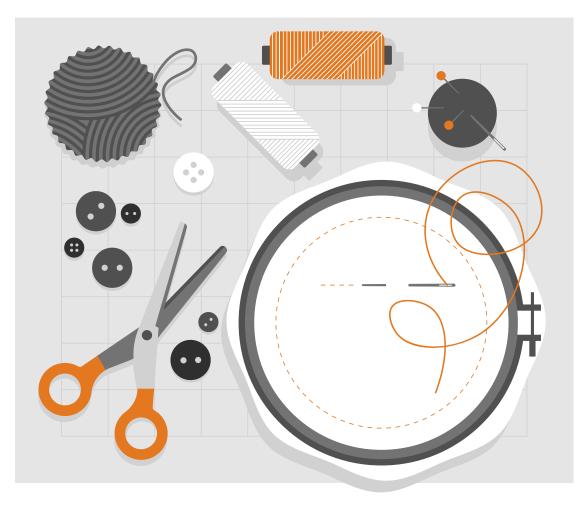
- set_technology –node
- set_stage -step synthesis high_effort_congestion
- set_qor_strategy -metric timing -stage synthesis -mode balanced mega switch
- create_placement -incr and legalize post first initial_opto compile

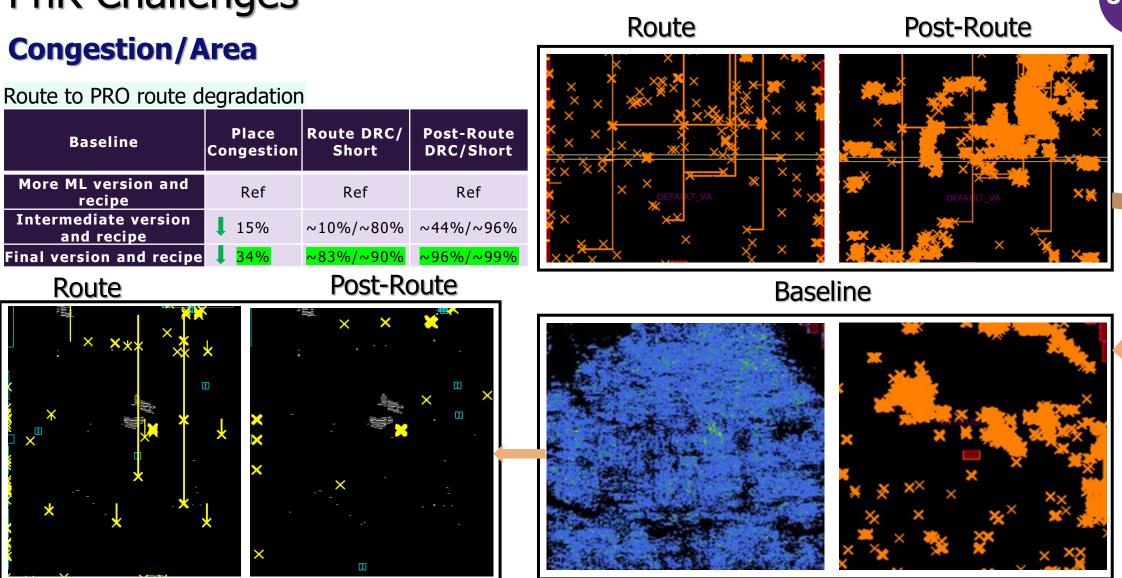


Synthesis Strategy

- Direct Congestion Driven Placement (DCDP):optimizes congestion as part of placer directly.
- Enhanced Low Power Placement (ELPP):- Switching Power Reduction During Placement.
- Destructive Advanced Logic Restructuring (DALR):-Restructure logic across hierarchies to improve QoR.
- Enhanced Delay Optimization (EDO):- Better delay optimization on Path Groups.
- Cell Filtering:- Filter high pin count cells at Initial Map to avoid congestion.
- Area Improvement:- Improve area optimization.

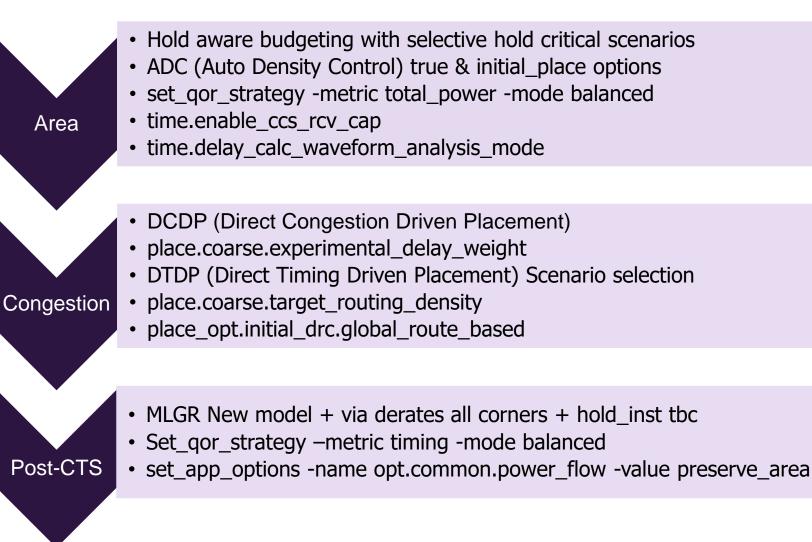
Synthesis Results

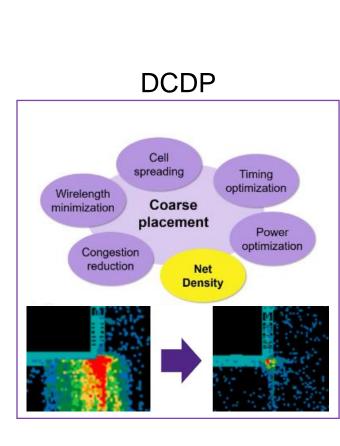

- Able to improve timing and congestion issues compared to traditional flow.
- Area impact was minimal.
- Trade off on total power vs higher frequency/ routing challenges.


Qualcomm

sn

Synth Netlist Handover to PD Team


Baseline	Place Congestion	Route DRC/ Short	Post-Route DRC/Short
More ML version and recipe	Ref	Ref	Ref
Intermediate version and recipe	1 5%	~10%/~80%	~44%/~96%
Final version and recipe	J4%	<mark>~83%/~90%</mark>	<mark>~96%/~99%</mark>

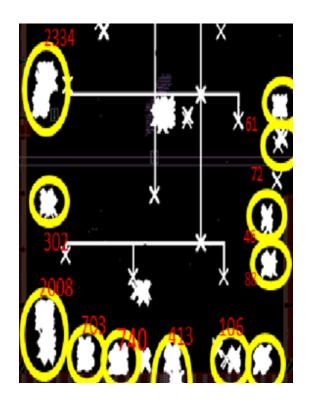


Intermediate

Congestion/Area Improvement Solutions

Qualcomm S

Performance


• GR-DR miscorrelation

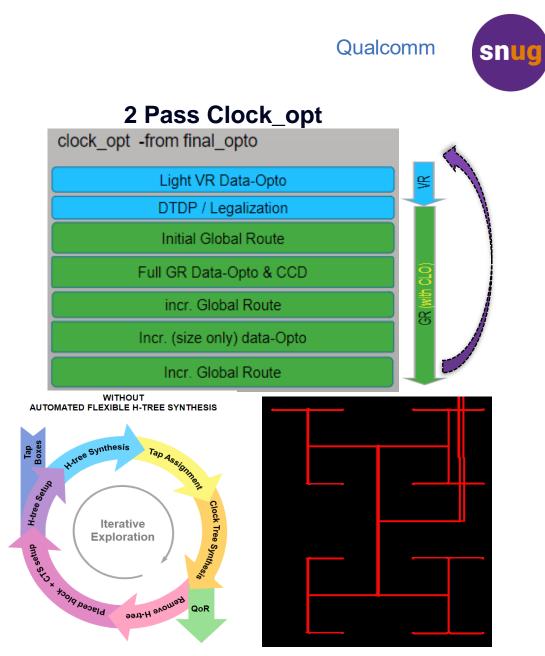
- SI impact

- Lower layer routing
- CLK NDRs
- CCD offset trials
 - Early MSCTS
- Hold BW regions
- DCD degradation
- Setup-hold critical paths
- Latency improvements

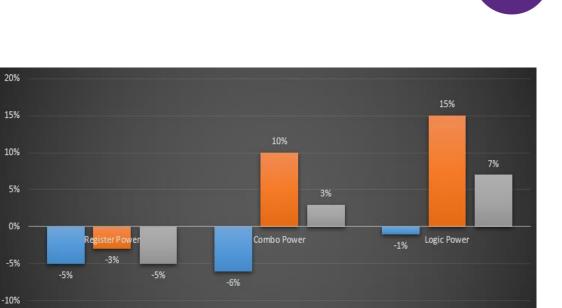
	Post-CTS Non-SI	Route Non-SI	Post-CTS SI	Route SI
Setup TNS	Ref	minor change	Ref	20X 🕇
Hold TNS	Ref	minor change	Ref	3X 🕇

Performance Improvement Solutions

- For bridging the GR-DR miscorrelation
 - SNPS provided MLGR models for reduced metal stack
 - Via derates to mimic the DR fallout
- Hold BWs
 - DCDP across stages
 - HAB flow
 - TBC for hold buffer count reduction
- CCD refinements
 - Staggered CCD approach
 - 900% ↓TNS for these PG's
 - 89% 🖡 in FEP



Baseline					
Default Recipe	R2R TNS	R2R NVE	R2R H TNS	R2R H NVE	Util %
Post-CTS	Ref1	Ref2	Ref3	Ref4	Ref5
Route	65X	26X	16X	8X	+1%
Post-Route	0.6X	0.9X	0.3X	0.6X	+5%
Intermediate					
Default Recipe	R2R TNS	R2R NVE	R2R H TNS	R2R H NVE	Util %
Post-CTS	Ref1	Ref2	Ref3	Ref4	Ref5
Route	22X	11X	12X	5X	+0.5%
Post-Route	0.25X	0.6X	0.25X	0.37X	+3%
Final					
Default Recipe	R2R TNS	R2R NVE	R2R H TNS	R2R H NVE	
Post-CTS	Ref1	Ref2	Ref3	Ref4	Ref5
Route	10X	5X	1X	22X	0%
Post-Route	0.15X	0.30%	0.7X	0.7X	+1%


Performance Improvement Solutions (Contd.)

- DCD improvements
 - cts.common.prefer_inverter_for_delay_insertion true
 - cts.compile.repeater_selection inverters_only
- Setup-hold critical paths
 - Two pass clock-opt ; SNPS tbc
 - Manual ECO for left over paths.
- Latency improvement
 - Flex H-tree based MSCTS
 - split_clock_cells -latency_driven -cells [get_cells a1]
 - − 10% ↓ in latency & 15% ↓ in skew
 - 40% improvement in hold TNS.

Power

- Synth -> Post-Route
 - ~15% increase in logic power Dyn power
 - ~44% increase in Lkg power
- Power critical cores are multi instantiated. •
- Reduced layer shooting up congestion and timing • violations; in turn tool upsizing and excessive buffer for fixing violations
- **GR-DR** miscorrelation •
- High SI impact from GR->DR •

20%

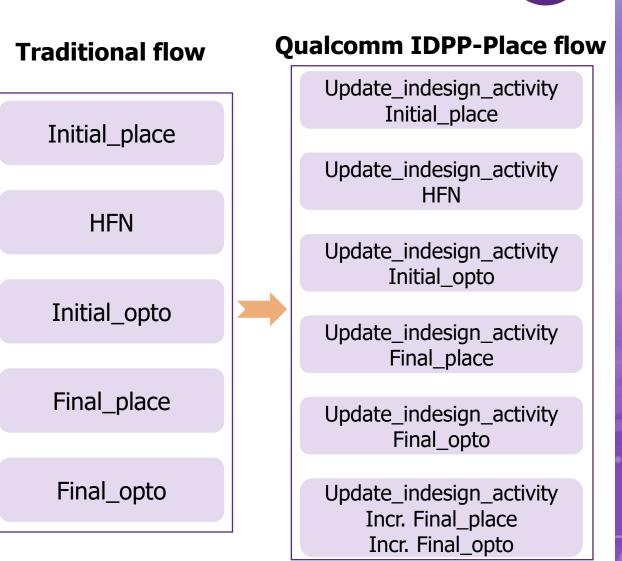
0%

-5%

Qualcomm

Final Synth to PRO growth

sn

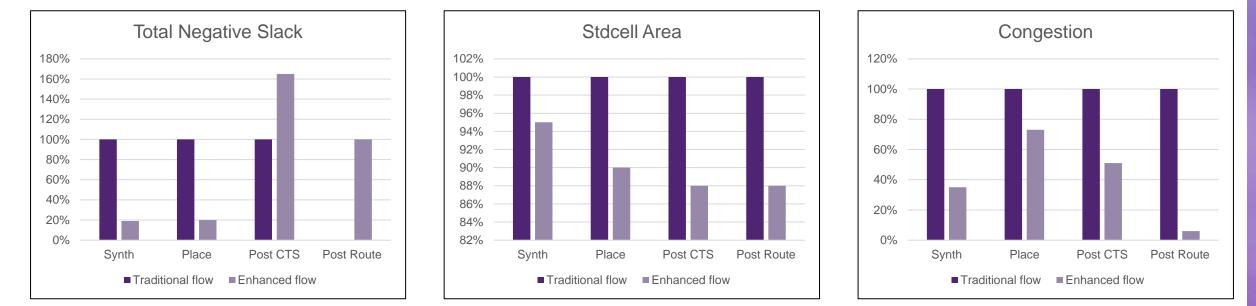

	Ref Synth to PRO growth	Initial Synth to PRO growth	Final Synth to PRO growth
Register Power	-5%	-3%	-5%
Combo Power	-6%	10%	3%
Logic Power	-1%	15%	7%

Initial Synth to PRO growth

Ref Synth to PRO growth

Power Improvement Solutions

- Synth stage:
 - EIO/EDO
- Place stage:
 - InDesign PrimePower
 - Generate refreshed Saif using input FSDB's
 - Generated Saif read back in FC with accurate switching activity
 - Two pass Final Place & Final opto
- PCO stage:
 - Two pass clock_opt
- Post Route stage:
 - Lower DCVS FMAX Relaxation



Power Improvement Results

Recipe	% Dynamic Improvement	Std cell area	DRC	Leakage
EIO/EDO	0.60%	Same	NA	4%
IDPP	1.50%	Same	NA	-6.50%
Two pass final Place & opto	0.02%	-0.28%	Same	-2.30%
2Pass Clock_opt	1.10%	-0.12%	Same	-2.80%
FMAX Reduction at PRO	<mark>2.60%</mark>	<mark>-3%</mark>	<mark>-415%</mark>	Same
Total	<mark>7%</mark>			

Final Results

- Timing(TNS) in enhanced flow was converged but traditional flow in post route tool does not complete.
- Stdcell Area is better in Enhanced flow.
- Design not routable with Traditional flow, was route-able in enhanced flow.

Conclusion

- Achieved our increased target frequency with reduced metal layers.
- With congestion improvement database was routable.
- This flow is now default for all high-performance cores trying to achieve higher frequency.

THANK YOU

Our Technology, Your Innovation[™]

Congestion/Area

Place

- Hold aware budgeting with selective hold critical scenarios
- set_qor_strategy -metric total_power -mode balanced
- AWP CCS
- •-set_app_options -name time.enable_ccs_rcv_cap -value true
- set_app_options -name time.delay_calc_waveform_analysis_mode value full_design
- Custom values for place.coarse.experimental_delay_weight

- DCDP

- Careful selection of DTDP scenario after lot of trials
- Ultra congestion effort
- ADC true & initial_place options
- Custom values for place.coarse.congestion_driven_max_util
- Custom values for place.coarse.target_routing_density
- Place_opt ccd
- place_opt.initial_drc.global_route_based (for notch congestion)

Qualcomm

Post-CTS onwards

- MLGR New model + via derates all corners + hold_inst tbc
- Set_qor_strategy timing
- set_app_options -name opt.common.power_flow -value preserve_area