Clock-in early: \

Integrated Structural Multlsource
Clock Tree Synthesis to push PPA
In high-speed GPU designs

Presenter: Amit Dounde |
Co-authors: Francisco Rivera Valverde, Huy Cao,

Milind Mahajan, Dhananjay Kewale
Intel

Context on
Multisource CTS

e

What/Why/How?

/

Early clock-in
features

[el

Results &
Recommendations

SNUG INDIA 2024

2

Common Acronyms @

Abbreviation Definition

CTS Clock Tree Synthesis
MSCTS Multisource CTS Flow
SMSCTS Structural Multisource CTS
RMSCTS Regular Multisource CTS
ISMSCTS Integrated SMSCTS

IRMSCTS Integrated RMSCTS

SNUG INDIA 2024 3

1
1
v N
\
\
\
N\
N
~

Multisource Clock Tree Synthesis
Focusing on local clock tree distribution

Multisource Clock Tree Synthesis

» On-chip-variation (OCV) motivates
advanced clock techniques to achieve i
lower skew, improved shared clock
paths and other PPA targets.

Clock Root :

Global Clock tree (H-tree

Mesh drivers | !
—

L

S | ==
Mesh fabric /. 7 S S A
: o —r v

5 B ogm
N Al

Subtrees
SNUG INDIA 2024 5

Shared Clock Path
A

« MSCTS consists of two components:

— Global clock distribution: clock mesh,
spine, ...

— Local clock distribution: subtree’s that
connect the global network to the sinks

 We focus on local clock distribution
techniques!

Local Clock Tree Synthesis @

 There are 2 main mechanisms in which local clock trees are created
In MSCTS:

Structural MSCTS (SMSCTS)

Regular MSCTS (RMSCTYS)

T T [T

TT1 || e b

[
CEEXY

Structural MSCTS ’ é

Global clock
structure
1

Mesh drivers
i

L
Mesh fabic /A7 A
Z /1 Y4

« Optimize for latency and skew, while i - ‘ #j ;
minimizing clock power | e

» Consists of:
— Balance: add cells to level subtrees
— Merge: merges equivalent clock cells H
— Optimize: splitting, sizing, relocation of clock

cells

— Route _)
— Refine: sizing and cell relocation

» Typically, less OCV, better skew but
slightly more demanding flow/power

SNUG INDIA 2024 7

Regular MSCTS @

 Sink distributed among tap drivers
during tap assignment

Clock Root

Global Clock tree (H-tme)

Regular CTS is used for building the Mesh drvers
subtrees

— No restriction on adding/removing buffers

Mesh fabric If i

F) if?

Regular MSCTS

Lesser power than SMSCTS, very
useful skew friendly

SNUG INDIA 2024 8

A better way to do Structural MSCTS @

« RMSCTS “simplicity” gives the tool a lot of flexibility to:

— Enable compile fusion clock-aware optimizations — better clock gate optimization, concurrent clock/data
(CCD) opt => Integrated Reqular MSCTS

— Easier useful skew implementation as there is no restriction on adding/removing buffers on subtrees

B -=
_=

__._=

 Traditionally, SMSCTS clock trees are frozen during build clock — CCD mainly
used for sizing/relocation of clock cells

— Push/pull can be done on a post-CTS optimized database also, but limited room for CCD as compared
to full flow enabling .’

=

— 3

SNUG INDIA 2024 9

e Presentation Goal

* Enable early SMSCTS clock
construction during compile fusion
to take advantage of clock-aware
optimization features

In a nutshell....

ECGL

Compile_fusion g clock opt route_opt

RMSCTS setup

CCD

SMSCTS IRMSCTS
1

j

ECGL

SMSCTS setup Compile_fusion route_opt

ISMSCTS

11

ol SNUG INDIA 2024

bl
1
v N
\
\
\
N\
N
~

The What, Why and How this feature is enabled

Integrated SMSCTS

In a nutshell....

ECGL

RMSCTS setup

Compile_fusion g clock opt route_opt

CCD

SMSCTS IRMSCTS

e

ECGL

| [

g Cclock opt

SMSCTS setup Compile_fusion

route_opt

%)
|_
O
)
=
D

CCD

SNUG INDIA 2024

What Is Integrated SMSCTS? (Traditional) °

compile_fusion =) clock_opt route_opt

New clock cells i+ ,,

f'm @ m m m

Clock opt PR

Traditional Ideal clock

Clock route

g Clock refine |

 Clock cell insertion (balancing, splitting, DRC fixing, ...) happens until clock opt

o After new cell insertion, clock network is routed

* Refine optimization are performed, with post clock data optimization as well
(clock opt —from final opto)

SNUG INDIA 2024 14

What Is Integrated SMSCTS?

O 0 0 0 0]0 O > 0]0
. 8 New clock cells =
Traditional |deal clock T Clock opt

Clock route L

B Clockrefine |

compile fusion route_opt

Integrated

« Moved clock cell creation (balancing, merging, splitting,...) to final _place.
« CTS performs skew optimization, routing and post route opt
» Clocks are not propagated, but cell presence enables clock-aware optimization

SNUG INDIA 2024 15

In a nutshell....

ECGL

RMSCTS setup

Compile_fusion g clock opt route_opt

CCD

SMSCTS IRMSCTS

e

[

ECGL

g Cclock opt

SMSCTS setup

Compile_fusion route_opt

%)
|_
O
)
=
D

CCD

WHY?

SNUG INDIA 2024

F

Why we do ISMSCTS? D

1. (ISMSCTS) Leverage the latest — Cts network inserted upfront great for clock cell
fusion_compiler enhancements that prioritization (placement)
enable compile fusion to create the # — Clock delay not propagated, expected in future
SMSCTS clock subtree structure releases
logically

2. (CCD) Enable useful skew | — Full flow CCD has more opportunity to optimize

computation leveraging the already
inserted clock cells

3. (ECGL) Enable estimate clock gate I

latency to have a better optimization — Realistic clock gate picture enaH W ?
perspective on enable paths —

SNUG INDIA 2024 17

In a nutshell....

ECGL

Compile_fusion g clock opt route_opt

RMSCTS setup

CCD

SMSCTS IRMSCTS
1

j

ECGL

SMSCTS setup Compile_fusion route_opt

ISMSCTS

18

ol SNUG INDIA 2024

Traditional post compile SMSCTS @

BLESTOIRNIREIELRERENFARCIEETIEN < SMSCTS settings make sense only on
a post compile/place_opt context

compile_fusion —to Initial _opto

» Clock network is constructed only after
compile_fusion/place opt is done
(build__clock).

compile_fusion —from final _place

source cts_settings.tcl

clock opt —from build_clock —to route_clock

» Typically, CCD is enabled only on a
post-CTS fashion (from final opt)

clock opt —from final opt

SNUG INDIA 2024 19

Feature#l: Integrated SMSCTS (Precompile)o

DI IRNINEEIOREREN 7 BN * Provide CTS settings before
compile fusion final place

source cts_settings.tcl — Exceptions, balance points, clock cells to use
— set_multisource_clock subtree_options

— set_app_options -name

compile_fusion —to initial_opt compile.flow.enable_multisource_clock_trees -
value true
compile_fusion —from final_place * Make sure no user don’t touch on clock
network

« Compile_fusion will trigger Trial CTS
where clock cells are physically
Inserted in the DB and placed
— No routing happens on subtree at this stage**

SNUG INDIA 2024 20

Feature#l: Integrated SMSCTS (Trial cTs) Q

 New Trial CTS stage will be executed during compile fusion

final_place
— Watch for CTS-* messages which traditionally would have been in clock _opt command

compile_fusion —from final_place

SNUG INDIA 2024 21

Feature#1l: ISMSCTS (Postcompile) @

« Keep SMSCTS settings same as the
ones used in pre-compile

e Clock opt will understand the already
created logical clock network
— Will only perform incremental optimizations
— Route and refine clock network

clock _opt —from build_clock —to route_clock — This typically allows a better skew as compared
to non Integrated flow

clock opt —from final opt
« Route-aware optimization on clock

route_opt network happens on this stage

SNUG INDIA 2024 22

Feature#2: Full Flow CCD (Enable)

« CCD can be enabled via app options:
— set_app_options -name compile.flow.enable ccd -value true

— set_app_options -name clock _opt.flow.enable_ccd -value true
— set_app_options -name route_opt.flow.enable_ccd -value true

compile_fusion clock_opt =) route_opt

Offsets implement‘ S

SNUG INDIA 2024 23

Feature#2: Full Flow CCD (level control) @

compile fusion clock_opt route_opt

Offsets implement {*.".°.".

« SMSCTS tree target level (set_multisource_clock subtree options —target level X) can be
different than CCD target levels (set_clock tree options -max_levels Y), where Y > X.

« Because ISMSCTS preserve subtree level structure, special handshaking is required from the
tool perspective to physically implement offsets SNUGINDIA 2024 24

Feature#2: Full Flow CCD (handshake) @

* In ISMSCTS context, following options are required so compile

fusion is aware of the subtrees while computing offsets

— set_app_options -name cts.multisource.enable_subtree_synthesis aware ccd -value true
— set_app_options -name clock _opt.flow.enable _multisource_clock trees -value true

* The specified offsets must be realistically implementable during

clock_opt build tree:

— set_app_options -name ccd.max_prepone -value <>
— set_app_options -name ccd.max_postpone -value <>

SNUG INDIA 2024 25

Feature#3: Native clock splitting @

* With ISMSCTS, It is advisable to turn on native CG-enable logic

duplication feature:
— set_app_options -name cts.multisource.enhanced_enable_logic_splitting —value true

— set_multisource_clock subtree options -split_enable_max_width <> -
split_enable_max_height <> -split_enable_max_latch_level <> -split_enable _max_fanout <>

* With realistic clock splitting, it is advisable to enable ECGL feature

to help enable path closure on clock gates
— set_app_options -name opt.common.estimate clock gate latency -value true

SNUG INDIA 2024 26

1
1
v N
\
\
\
N\
N
~

Results and Conclusions

Context of the blocks used @

» Used Fusion Compiler™ tool version U-2022, highly tuned flow
recipe for best PPA

* Blocks detalls:

— ~1 million instances blocks

— highly congested blocks (both wire and placement)
— 70% > utilization

— Graphics designs with many datapaths, and muxing
— Non-macro dominated

SNUG INDIA 2024 28

Experiment Setup @

« Data is always presented after route opt, with fill-insertion, and apples-to-
apples comparison

« Baseline for all experiments is a traditional SMSCTS flow, with CCD size only
enabled In post cts.

» Target experiments use the best recommendations from before: ECGL, CCD
since final_place, ISMSCTS

« We also provide equivalent IRMSCTS results

SNUG INDIA 2024

29

In a nutshell....

ECGL

RMSCTS setup

n
—
O
N
=
o

CCD

SMSCTS

ECGL

»
>

| [

u

SMSCTS setup

Compile_fusion

ISMSCTS

CCD

SNUG INDIA 2024

Highlights of the feature: TNS @

« ISMSCTS+features provide a significant
Reduction vs Traditional SMSCTS improvement as Compared to baseline
blockL _block2 block3 _ block4 — Some blocks are still better with IRMSCTS

« Min convergence in general iIs more

¥ ISMSCTS TNS

controlled in Structural flow impacting overall
optimization

* TNS reduction can be mapped to ease of
convergence:

— Less congested/buffer polluted designs at route_opt
— Lesser violations means lesser effort for PR/manual work

SNUG INDIA 2024 31

Highlights of the feature: WNS @

« Early CCD has been a great enabler of
Reduction vs Traditional SMSCTS frequency push:

blockl _ block2 _ block3 _ block4 — For non-RTL bottle-necks, WNS can be reduced
with this technique

 ISMSCTS WNS — Late CCD (both sizing or incremental post-CTS
LTS VNS push/pull) has restricted opportunities to push
freq-max

SNUG INDIA 2024 32

Room for improvement @

« With CCD, min is typically degraded (up to 20% degradation on ISMSCTS and
40% on IRMSCTS)

— CCD hold effort high might be needed for high hold degradation. This may have an impact on leakage
power.

* With CCD, ECGL and ISMSCTS, runtime can increase up to 10%

* ISMSCTS had ISO power/area as compared to baseline
— IRMSCTS had slightly better total power (<5%) than ISMSCTS

* We observe maximum 2 extra levels added by CCD on ISMSCTS (5% more
clock buffers than baseline) and ISO clock gates

SNUG INDIA 2024 33

Conclusions and future work

* ISMSCTS flow is the recommended approach for designers to

converge their block

— For all high frequency blocks, ISMSCTS gives better PPA compared to IRMSCTS or
SMSCTS.

— Some blocks (mostly lower frequency) may converge better with regular MSCTS as compared
to structural MSCTS with CCD.

* How to improve from here

— ISMSCTS happens in final_place — discussion in progress to analyze Trial CTS on
initial_opto

— Clock propagation on compile_fusion could potentially improve total setup cost

SNUG INDIA 2024 34

N
N
.\

-3
THANK YOU \ roullle

N COMMUNITY
\'\’}éf;-

Backup

SNUG INDIA 2024

Concurrent clock and data Opto @

- o o * This feature can improve design power along
W‘ o oI WF with timing QoR improvements
- |
« Compile_fusion can estimate offsets saving
— — area/power
— +50ps Ops Ops -50ps
FF1 FF2 FF3 1 - —F
BP:+50ps| BP:+50ps| BP:+50ps FF
= | Clock build_clock push/pull clocks for better
timing
CTS with derived balance points
- FF1 = | FF2 = FF3 Ts
ol Ll L] e “”‘r « Clock final_opto/route_opt perform
incremental CCD optimizations

Source: Concurrent Clock and Data, SNUG 2018

SNUG INDIA 2024 37

ECGL

« At pre-CTS stages we don’t have correct clock gating latencies:

Ops
(Ideal clock)

Reg-to-Reg Timing

Ops

(Ideal clock) (Ideal clock)

Ops

ICG Enable Timing not critical

ICG Downstream

I Clock Delay = 0ps

60ps

100ps
(propagated) I

Reg-to-Reg Timing

(propagated)

ﬂ

(propagated)

ICG Enable Timing becomes critical

Propagated ICG Downstream
Clock Delay = 40ps

« Tool can estimate ICG downstream clock delay after specifying set_multisource clock subtree options and
ensuring opt.common.estimate clock _gate latency is true (OBD)

(Ideal clock)

Reg-to-Reg Timing

-40ps

Ops

(Estimated) (Ideal clock)

ICG Enable Timing becomes
critical early in the flow

Estimated ICG Downstream
Clock Delay = 40ps

100ps
(propagated) I

Reg-to-Reg Timing

100ps
(propagated)

60ps
(propagated)

ICG Enable Timing becomes critical

Propagated ICG Downstream
Clock Delay = 40ps I

1
SNUG INDIA 2024

38

Feature#2: Full Flow CCD (Recommendation) o |

« Many CCD app options to control flow are available
— report_app_options *ccd*

* For a successful CCD implementation, consider:
— If setup critical design: set_app_options -name ccd.fmax_optimization_effort -value high

— CCD is path group oriented, make sure both ccd.skip path_groups and
ccd.targeted ccd_path_groups are properly set

— If CCD hold degradation is not acceptable, consider changing value of ccd.hold _control_effort

SNUG INDIA 2024 39

Feature#2: Full Flow CCD (Hierarchical) @

 Hierarchical convergence can be taxing with CCD enabled.

« FC supports different boundary CCD options:

— No ccd on boundary (ccd.optimize_boundary_timing)

— Skew targets for boundary paths (recommended value is global skew pre-ccd)
— set_app_options -name ccd.skew_opt_input_boundary _max_prepone -<>
— set_app_options -name ccd.skew_opt_input_boundary _max_postpone -value <>
— set_app_options —name ccd.skew_opt_output_boundary max_prepone -value <>
— set_app_options —name ccd.skew_opt_output_boundary max_postpone -value <>

SNUG INDIA 2024 40

	Slide 1: Clock-in early: Integrated Structural Multisource Clock Tree Synthesis to push PPA in high-speed GPU designs
	Slide 2: Agenda
	Slide 3: Common Acronyms
	Slide 4: Multisource Clock Tree Synthesis
	Slide 5: Multisource Clock Tree Synthesis
	Slide 6: Local Clock Tree Synthesis
	Slide 7: Structural MSCTS
	Slide 8: Regular MSCTS
	Slide 9: A better way to do Structural MSCTS
	Slide 10
	Slide 11
	Slide 12: Integrated SMSCTS
	Slide 13
	Slide 14: What is Integrated SMSCTS? (Traditional)
	Slide 15: What is Integrated SMSCTS?
	Slide 16
	Slide 17: Why we do ISMSCTS?
	Slide 18
	Slide 19: Traditional post compile SMSCTS
	Slide 20: Feature#1: Integrated SMSCTS (Precompile)
	Slide 21: Feature#1: Integrated SMSCTS (Trial CTS)
	Slide 22: Feature#1: ISMSCTS (Postcompile)
	Slide 23: Feature#2: Full Flow CCD (Enable)
	Slide 24: Feature#2: Full Flow CCD (level control)
	Slide 25: Feature#2: Full Flow CCD (handshake)
	Slide 26: Feature#3: Native clock splitting
	Slide 27: Results and Conclusions
	Slide 28: Context of the blocks used
	Slide 29: Experiment Setup
	Slide 30
	Slide 31: Highlights of the feature: TNS
	Slide 32: Highlights of the feature: WNS
	Slide 33: Room for improvement
	Slide 34: Conclusions and future work
	Slide 35
	Slide 36: Backup
	Slide 37: Concurrent clock and data Opto
	Slide 38: ECGL
	Slide 39: Feature#2: Full Flow CCD (Recommendation)
	Slide 40: Feature#2: Full Flow CCD (Hierarchical)

