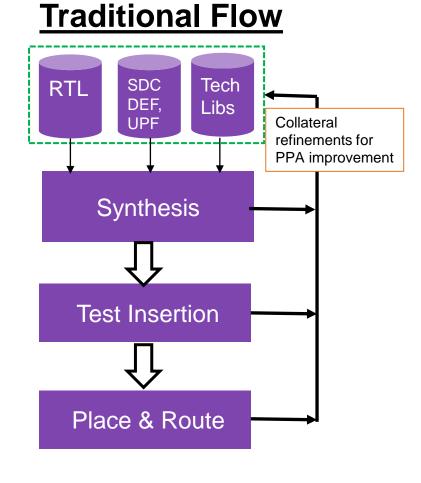


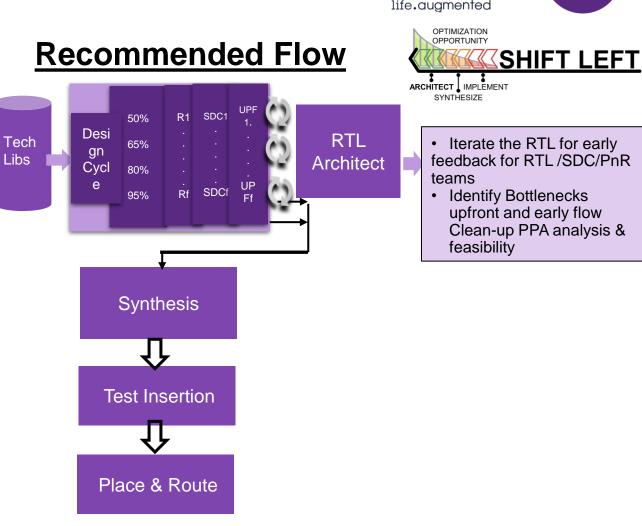
Improving RTL quality and reducing Backend cycles by using Synopsys RTL-Architect at the Chip top and Subsystem

Micro-Architecture Exploration and Refinement for Optimal PPA

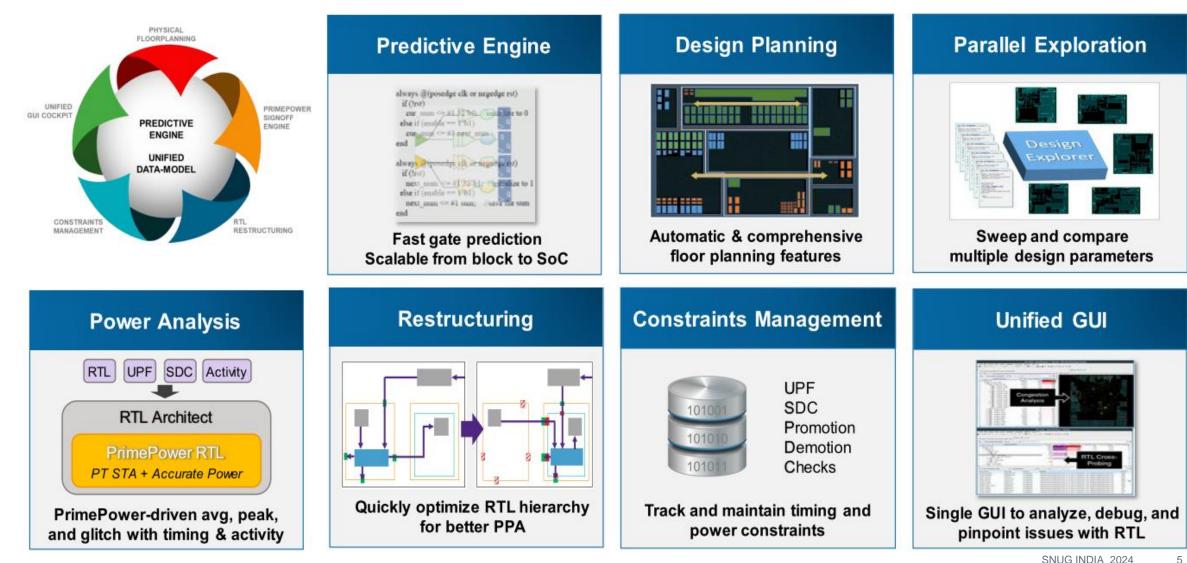
Mohammad Javed(ST Microelectronics)Penugonda MAHESH(ST Microelectronics)Ashi Goyal(Synopsys)

Problem Statement


Design Challenge

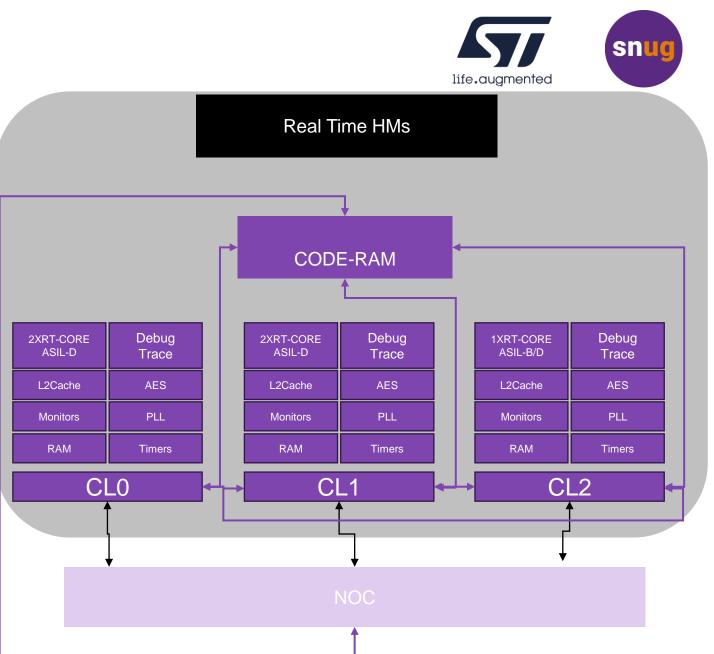

FE		BE		Design Chall	enges
Architecture	Primary	PPA		Target Frequency	> 1Ghz
Exploration Synopsys RTL- Architect	Exploration Targets	Synopsys Fusion Compiler	Performance	Low Memory Latency	0/1 Wait State > 1 Ghz Clock
Wait State	– 0/1 Wait State –	Wait State		Level 2 Cache	To reduce miss latency of DDR4 access
Performance	> 1.0 Ghz	Performance	Functional Safety	ASIL-D/ASIL-B Support	Replication and well as ECC/Parity support
Memory Selection (access time/power/area)	Low Latency Low Power		Power	Power-Budget of 500mW	Select Low-Power SRAM put Clock-Gating
Area (Relative comparison)	x.yz mm²	Area (Final)	Area	x.yzum2	Area Optimized SRAM Selection
Power (Relative comparison)	Xyz mw @0.825v_FF_125c	Leakage Power	Security	Native Encryption/Decryptio	For inter-chip communication and
	Leakage Profiling all frequency Targets	Leakage Profiling	Technology	n TSMC-N7	Safety Architecture for TSMC Memories and validation

Traditional Flow \rightarrow Recommended Flow


Iterative, Risking Schedule & Quality..

Predictable, Convergent & Scalable !!

Synopsys RTL-Architect Features



Subsystem Overview

• 10 Real Time Core

6

- 5XLockStep / 4XLockstep + 2-Split
- Clock Frequency more than 1.0 Ghz
- Low Latency SRAM.
- Level 2 Cache.
- Dedicated AES Engine.
- Process/Clock Monitors
- Shared SRAM for Real-Time Code.
- Functional Safety

Real Time Subsystem

Challenges and Opportunity

- SoC Partitioning to Realizable Hard Macros for parallel execution and reduce TAT
- Shift-Left Methodology to perform the essential design implementation steps early
- Parallel Exploration for various design parameters and updated design options
- Power Analysis using RTL-Architect and Prime Power for Static and Dynamic Power

Activities Performed

Memory Selection and Validation – **Done using Ad hoc Excel**

Micro-Architecture Refinement of Interconnect and Other Critical IP(s) – **More than 50 iterations Tried**

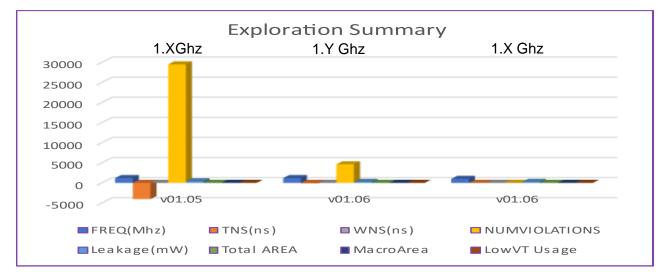
Fusion Compiler/RTL-Architect File-Set and Design Constraint Validation – **No Issue reported from BE**

Timing Constraint and Exception Validation – **No** Issue at BE for Constraints Issues

Hold Fix analysis with Latch Insertion on critical hold path(s)

Internal IP Design update for Hold Fix.

*


Result...

FE PPA Phase: 16 WW

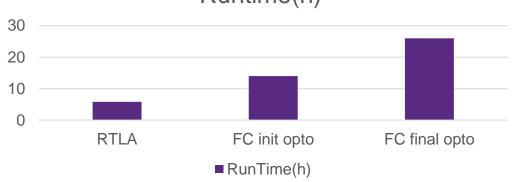
Design Version	TNS (ns)	WNS (ns)	NUM	Memory Leakag e* (mW)	Total AREA (um2)	Macro Area (um2)	Low VT Usage
v01.05-1200 2022-WW47-1,x Ghz	-4020	-0. <u>7</u> 07	29486	393	2.57	2.28	4.7%
v01.06-1200 2023-WW12-1. Ghz	-126	-0.174	4609	245	2.65	2.29	4.6%
v01.06-1000 2023-WW12-1.x Ghz	-0.04	-0.04	1	245	2.62	2.29	4.1%

Implementation Phase(Fusion Compiler): Status

- The BE implementation is Ongoing with target frequency more than 1 Ghz
- There is no show-stopper found in BE for the Real Time Cluster that need major design update.

Clusters	Placeable Instances	Memory Leakage* (mW)	Total AREA (um2)	Macro Area (um2)	Low VT Usage
Cluster0(1.x Ghz)	4.5M	294	2.63	1.98	4.8%
Cluster1(1.x Ghz)	4.5M	294	2.61	1.98	4.8%
Cluster2(1.x Ghz)	3.5M	294	2.50	1.98	4.74%
Cluster3(1.x Ghz)	1.2M	325	4.08	3.92	4.90%

Leakage power are from .libs and without uplift factor



¹⁰Correlation(Fusion Compiler : RTL-Architect) at PPA Phase

RTL-Architect Max Timing Summary[1 violations]

	Total	Reg->Reg	In->Reg	Reg->Out	In->Out
WNS	-0.04	-0.04	0.00	0.00	0.00
TNS	-0.04	-0.04	0.00	0.00	0.00
NUM	1	1	0	0	0

RTL-Architect Runtime is almost 3-time faster than Fusion Compiler init opto and 5-times faster than **Fusion Compiler final opto**

Runtime(h)

life.augmented

Fusion Compiler Init Opto Max Timing Summary[98 violations]

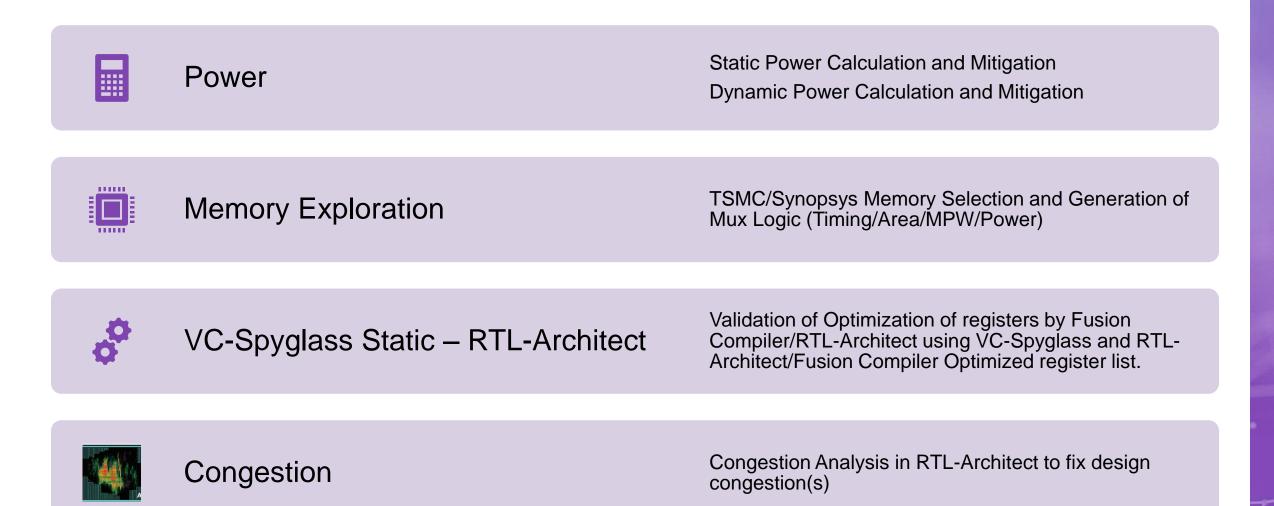
	Total	Reg->Reg	In->Reg	Reg->Out	In->Out
WNS	-0.14	-0.08	-0.14	-0.06	0.00
TNS	-1.45	-0.93	-0.41	-0.11	0.00
NUM	98	84	12	2	0

Fusion Compiler Final Opto Max Timing Summary[211 violations]

	Total	Reg->Reg	In->Reg	Reg->Out	In->Out
WNS	-0.12	-0.12	-0.07	-0.09	0.00
TNS	-7.41	-6.82	-0.43	-0.16	0.00
NUM	211	183	25	3	0

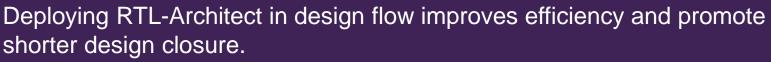
Timing Summary[RTL-Architect-Fusion Compiler Final Opto] (211 violations)

Range	Num Violations
-0.01 - 0.00	121
-0.1200.010	90


Out of 211 violations only 90 violations are between -0.120 ns to -0.010ns, 121 are less than 0.010 ns

Correlation(Fusion Compiler: RTL-Architect) at PPA Phase snug life.augmented 85% endpoints within 5% of Fusion Total Area: ~5% initial_opto endpoint slack Area Timing Run Time 3 x Fusion Compiler init_opto 5 x Fusion Compiler final_opto Congestion Power **Total Power** ~10% Similar Congestion **Individual Component** and Placement (Leakage, interna, Hierarchy

switching, Glitch) : ~15%



Conclusion

Synopsys RTL-Architect Tool provides key technology to designer for improving RTL quality and other collaterals for BE implementation.

•Adopting the RTL-Architect tool has improved the design process by identifying challenges early and providing solutions, resulting in streamlined design processes, improved efficiency, and timely delivery of high-quality design collaterals.

•Additionally, the RTL-Architect timing/area/power results are well correlated with the Fusion Compiler, indicating the tool's effectiveness in improving the design process.

THANK YOU

Our Technology, Your Innovation[™]