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Introduction
Closing Functional Coverage
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« Hitting the last functional coverage (FC) bins on an RTL design, has traditionally
been an obstacle to verification closure

* In this presentation, we tap into reinforcement learning tools and techniques to
assist in the simulation based constrained random coverage driven functional
verification process

« Specifically, we use a DeepMind Technologies inspired Deep Q-Learning (DQN)
agent to target a functional coverage category reluctant to the standard
constrained random verification techniques
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RTL Verification and Reinforcemeﬁt—’Learning
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The LZW Compression Encodérf_u_n,cftibnal
Coverage Problem




Timeste, Input Symbol CAM[address] Output Symbol
P put Sy put Sy
4-bit HEX 5-bit HEX

B CAM[0] = AB

A CAM[1] = BA 0B
B Match on CAM[O]

A CAM[2] = ABA 10
B Match on CAM[O]

A Match on CAM[2] 12

The shortest sequence possible is of
2 input symbols. There are 136 CAM
write FC bins to cover, out of 152
CAM locations

The CAM write functional coverage
category necessitates very specific
sequences!

It is virtually impossible to reach them
randomly!

Can our DQN agent help?

Sequence of 4-bit input
symbols: 0x0 to 0xF

DUT: LZW Compressor

16 Addresses
CAM

Memory

CAM ADDR #0

CAM ADDR #1

CAM ADDR #2

CAM ADDR #14

CAM ADDR #15

Sequence of 5-bit output
symbols: 0x00 to 0x1F

—
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Co-simulating a SystemVeriIogj*T\e_s_t_,Be’hch and a
PyTorch Agent
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SV: SystemVerilog,
S, A, R: state, action, reward
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The Deep Q-Learning Agent (DQ\N)_’




RL state/
Functional coverage
current state
representation

]

RL action/
Next transaction
(input symbol)

—

The DQN
\ Agent

RL reward/CAM write functional coverage score
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Simulation Results: Standard Apﬁr_c-)—éch V/s. DON




Standard Simulation

’ By runmng. a _unlf_orm InpUt CAM Overall Occupancy: max 152
symbols distribution, over many
episodes, where an episode a0
starts with an empty CAM and
ends with a full CAM. o

 We have managed to hit 28 CAM 20 ]
write bins out of 136 with a CAM
overall occupancy of 44 out of o
152

- s R N S R SRS E]

250 500 750 1000 1250 1500 1750

29% CAM write FC
Input Symbols Generated
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We first run 500 episodes with an ¢-
greedy linearly decreasing

We observe a constant incremental
increase in the CAM overall occupancy

We have managed to hit 133 CAM
write bins out of 136 with a CAM
overall occupancy of 152 out of 152

To target the 3 remaining CAM write
FC bins, we run 750 episodes, to allow
a smoother transition from exploration
to exploitation

By merging both DQN simulations, we
reach 100% CAM write functional
coverage

97.8% CAM write FC
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DON Simulation
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Conclusion
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* We identified a functional coverage category which is hard to fully cover using
standard means: the CAM write functional coverage for the LZW compression
encoder

« We defined an action-value function for a DQN agent, linking between input

symbols and the expected future rewards expressed as CAM write functional
coverage bins hits

* We used a simple e—greedy policy allowing a transition from exploration (full
randomness) to exploitation (using reinforcement learning lessons) to reach
100% functional coverage
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Appendix o

A Deep Q-Networks (DQN) agent uses a neural network to model an action-value function

Our action-value function called Q_(S,A) processes the environment state S and issues an output vector
value representing the expected future reward R for every action A called E(R|A,S, 7)

In the verification realm, it just means that, given the current functional coverage state, every input symbol
we can chose for the next transaction, has a particular impact on the CAM write functional coverage overall
score

n is called a policy and is just a way of selecting the next transaction from the output vector: E(R|A,S, )

See detalls in generic paper:
https://www.researchgate.net/publication/369187045 Closing_Functional Coverage With _Deep_Reinforce
ment_Learning_ A _Compression_Encoder Example
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