Closing Functional Coverage With

Deep Reinforcement Learning

Eric Ohana

Agenda

* Introduction

« RTL Verification and Reinforcement Learning (RL)

 The LZW Compression Encoder Functional Coverage Problem
« Co-simulating a SystemVerilog Test Bench and a PyTorch Agent
* The Deep Q-Learning Agent (DQN)

« Simulation Results: Standard Approach Vs. DOQN

« Conclusion

« THANK YOU! (Questions)

SNUG EUROPE 2024 2

Introduction
Closing Functional Coverage

SNUG EUROPE 2024 3

« Hitting the last functional coverage (FC) bins on an RTL design, has traditionally
been an obstacle to verification closure

* In this presentation, we tap into reinforcement learning tools and techniques to
assist in the simulation based constrained random coverage driven functional
verification process

« Specifically, we use a DeepMind Technologies inspired Deep Q-Learning (DQN)
agent to target a functional coverage category reluctant to the standard
constrained random verification techniques

SNUG EUROPE 2024 4

A
1
v N
\
\
\
N
N
~

RTL Verification and Reinforcemeﬁt—’Learning

A Reinforcement Learning (RL) RL AGENT RL ENVIRONMENT o
: : - St . .
_system isa sequential f/)\ ¢ / \ NCTIONAL enlity
interaction between an agent \ state and | , COVERAGE | Teeniy
and an environment |' A:E'-m | ' Reward E.] —
: : ion |
At every iteration, the agent W A 'EEELTST;T"] ow
: | .
processes a state and a reward _/ L /(—| A\ agorm
value from the environment, |) data
. . CHECKER < “/ processing
then issues back an action to aL
the environment ' —» algorithm
datz flow
Action <> Transaction .fl> TB data
flerw
Reward <> FC bins hits/misses, AT
the harder to hit the FC, the GOLDEN MODEL
higher the RL reward
State <> Some representation of
how we reached the current FC
state (Markov Decision Process) Y - -
STIMULUS | ~ >{ DUT :{> MONITOR

SYNnopsys SNUG EUROPE 2024 6

The LZW Compression Encodérf_u_n,cftibnal
Coverage Problem

Timeste, Input Symbol CAM[address] Output Symbol
P put Sy put Sy
4-bit HEX 5-bit HEX

B CAM[0] = AB

A CAM[1] = BA 0B
B Match on CAM[O]

A CAM[2] = ABA 10
B Match on CAM[O]

A Match on CAM[2] 12

The shortest sequence possible is of
2 input symbols. There are 136 CAM
write FC bins to cover, out of 152
CAM locations

The CAM write functional coverage
category necessitates very specific
sequences!

It is virtually impossible to reach them
randomly!

Can our DQN agent help?

Sequence of 4-bit input
symbols: 0x0 to 0xF

DUT: LZW Compressor

16 Addresses
CAM

Memory

CAM ADDR #0

CAM ADDR #1

CAM ADDR #2

CAM ADDR #14

CAM ADDR #15

Sequence of 5-bit output
symbols: 0x00 to 0x1F

—

SNUG EUROPE 2024

8

Co-simulating a SystemVeriIogj*T\e_s_t_,Be’hch and a
PyTorch Agent

R e DOt ”| scoresoarb: ‘ LZW Encoder
in/out DUT out: . [HEEEEE S SES e e — Python golden model
= Model DPI Model |
- = = > out "CF out =
with
B i Pyth
Y onement (. headeof'; RL Environment
object GENERATOR:
» S and R encoding €—1——>» < = =
CAM A deco‘ﬁng Encoded Encoded C(;I’(l;;l'l(lel:l :g?et::;n
ety SAR SAR B
Our RL agent runs in Python and report A
PyTorch Py RS PR A
) . . FUNCTION_AL] | B e = = = u
Our SV Design & Verification o e DRIVER: drives all *
environment run on a digital T DUT input signals &
simulator like VCS \ [] [] / = s
Using SV DPI/C/C Embedded 3 @ .
Python and a client/server .
networking protocol, both can y .
communicate efficiently! y : -
.- n‘ -
-
-
-
-
-
" RL
- Agent
[SV I/F functional] 5 Pytorch coded FFNN
coverage #
- s~
= Communication
A ~ L : socket server
sv sv -
VF LZW Compression Encoder: | VF o
DUT the DUT | DUT
in out »
-
\ _4 .
-
o
-
Verification Environment Simulation Linux Process. =
The TB is the verification environment without the DUT. : Python Linux Process
Legend:
Digital D RTL design |_| DynamicTB C] € SV DPI -3 TB data transfer
signal flow - entity implementation
~ SystemVerilog — 5 Linux parallel
. Stat't‘.: 8 interface/Virtual | Python entity O Python entity e processes
entity interface separation
I/F: interface, SNUG EUROPE 2024 10

SV: SystemVerilog,
S, A, R: state, action, reward

A
1
v N
\
\
\
N

The Deep Q-Learning Agent (DQ\N)_’

RL state/
Functional coverage
current state
representation

]

RL action/
Next transaction
(input symbol)

—

The DQN
\ Agent

RL reward/CAM write functional coverage score

SNUG EUROPE 2024

12

A
1
v N
\
\
\
N

Simulation Results: Standard Apﬁr_c-)—éch V/s. DON

Standard Simulation

’ By runmng. a _unlf_orm InpUt CAM Overall Occupancy: max 152
symbols distribution, over many
episodes, where an episode a0
starts with an empty CAM and
ends with a full CAM. o

 We have managed to hit 28 CAM 20]
write bins out of 136 with a CAM
overall occupancy of 44 out of o
152

- s R N S R SRS E]

250 500 750 1000 1250 1500 1750

29% CAM write FC
Input Symbols Generated

SNUG EUROPE 2024 14

We first run 500 episodes with an ¢-
greedy linearly decreasing

We observe a constant incremental
increase in the CAM overall occupancy

We have managed to hit 133 CAM
write bins out of 136 with a CAM
overall occupancy of 152 out of 152

To target the 3 remaining CAM write
FC bins, we run 750 episodes, to allow
a smoother transition from exploration
to exploitation

By merging both DQN simulations, we
reach 100% CAM write functional
coverage

97.8% CAM write FC

140 1

o
[

100 1

Cumulative Occupied CAM Elements
8§ 38 8

N
o
i

o
N

DON Simulation

CAM Overall Occupancy: max 152

2500

5000

7500 10000
Symbols Generated

12500

15000

17500

SNUG EUROPE 2024

15

Conclusion

SNUG EUROPE 2024

* We identified a functional coverage category which is hard to fully cover using
standard means: the CAM write functional coverage for the LZW compression
encoder

« We defined an action-value function for a DQN agent, linking between input

symbols and the expected future rewards expressed as CAM write functional
coverage bins hits

* We used a simple e—greedy policy allowing a transition from exploration (full
randomness) to exploitation (using reinforcement learning lessons) to reach
100% functional coverage

SNUG EUROPE 2024

17

N
N
.\

\\ . Our
THANK YOU\ Teglliology

Your
R - ™
- Innovation

Appendix o

A Deep Q-Networks (DQN) agent uses a neural network to model an action-value function

Our action-value function called Q_(S,A) processes the environment state S and issues an output vector
value representing the expected future reward R for every action A called E(R|A,S, 7)

In the verification realm, it just means that, given the current functional coverage state, every input symbol
we can chose for the next transaction, has a particular impact on the CAM write functional coverage overall
score

n is called a policy and is just a way of selecting the next transaction from the output vector: E(R|A,S,)

See detalls in generic paper:
https://www.researchgate.net/publication/369187045 Closing_Functional Coverage With _Deep_Reinforce
ment_Learning_ A _Compression_Encoder Example

SNUG EUROPE 2024 19

	Slide 1: Closing Functional Coverage With Deep Reinforcement Learning
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4
	Slide 5: RTL Verification and Reinforcement Learning
	Slide 6
	Slide 7: The LZW Compression Encoder Functional Coverage Problem
	Slide 8
	Slide 9: Co-simulating a SystemVerilog Test Bench and a PyTorch Agent
	Slide 10
	Slide 11: The Deep Q-Learning Agent (DQN)
	Slide 12
	Slide 13: Simulation Results: Standard Approach Vs. DQN
	Slide 14
	Slide 15
	Slide 16: Conclusion
	Slide 17
	Slide 18
	Slide 19: Appendix

