
SNUG EUROPE 2024 1

Hybrid Linting:

Esra Sahin Basaran and Kai-wen Chin
Renesas Electronics

An efficient method to overcome challenges with

Structural Linting in Arithmetic Overflow

Verification

SNUG EUROPE 2024 2

Agenda

• Arithmetic Overflow Verification Challenge

• Arithmetic Logic Categories

• Formal LINT for Each Category

• Pitfalls in Explicit Signed Logic

• Conclusion

SNUG EUROPE 2024 3

Arithmetic Overflow Verification Challenge

SNUG EUROPE 2024 4

Arithmetic Overflow Verification Challenge

• Arithmetic overflow verification:

– Unsigned arithmetic

– Signed arithmetic

• Traditional methods can be inefficient:

– Dynamic simulation: Hard to be exhaustive

– Structural LINT: Lots of false negatives

input [3:0] A;

input [3:0] B;

output [3:0] Y;

assign Y[3:0] = A[3:0] + B[3:0];

• RHS width is 5-bit, including carry

• LHS width 4-bit

• LHS is not wide enough → Overflow!

SNUG EUROPE 2024 5

Arithmetic Overflow Verification Challenge

• Formal LINT = Structural LINT + Formal Verification

– Auto-generated SystemVerilog Assertions for Formal Verification

• Formal LINT looks promising

– But…

– The presentation provides its prerequisite

SNUG EUROPE 2024 6

Arithmetic Logic Categories

SNUG EUROPE 2024 7

Arithmetic Logic Category

• Unsigned Logic
– The design implements unsigned arithmetic

– No “signed” keyword

– “Part select syntax” could be used for readability

– Manual “zero-padding” at MSBs could be used for readability

• Example
wire [3:0] FUL_U1A, FUL_U1B; // Variables are intended to be unsigned.

wire [4:0] Y_U1A = FUL_U1A + FUL_U1B;

wire [4:0] Y_U1B = FUL_U1A[3:0] + FUL_U1B[3:0];

wire [4:0] Y_U1C = {1’b0,FUL_U1A[3:0]} + {1’b0,FUL_U1B[3:0]};

wire [4:0] Y_U1D = {1’b0,FUL_U1A} + {1’b0,FUL_U1B};

SNUG EUROPE 2024 8

Arithmetic Logic Category

• Explicit Signed Logic
– The design implements signed arithmetic

– Signed variables are declared using “signed” keyword

– No part-select syntax for explicit signed variables

– No manual sign-extension for explicit signed variables

• Example
wire [3:0] FUL_U1A; // Variable is intended to be unsigned

wire [3:0] FUL_U1B; // Variable is intended to be unsigned

wire signed [3:0] FUL_S1C; // Variable is intended to be signed and declared explicitly

wire signed [3:0] FUL_S1D; // Variable is intended to be signed and declared explicitly

wire signed [4:0] Y_S1A = FUL_U1A + FUL_U1B;

wire signed [4:0] Y_S1B = FUL_S1C + FUL_S1D;

SNUG EUROPE 2024 9

Arithmetic Logic Category

• Implicit Signed Logic
– The design implements signed arithmetic

– No “signed” keyword. Variable signedness is implied by its consuming logic.

– Manual sign-extension for implicit signed variable must be used for correctness

– Part-select syntax could be used for readability

– Manual zero-padding at MSBs could be used for readability (for unsigned variables)

• Example
wire [3:0] FUL_U1A; // Variable is intended to be unsigned

wire [3:0] FUL_S1B; // Variable is intended to be signed but not declared explicitly

wire [4:0] Y_S1A = FUL_U1A + {FUL_S1B[3],FUL_S1B};

wire [4:0] Y_S1B = {1’b0,FUL_U1A} + {FUL_S1B[3],FUL_S1B};

wire [4:0] Y_S1C = {1’b0,FUL_U1A[3:0]} + {FUL_S1B[3],FUL_S1B[3:0]};

SNUG EUROPE 2024 10

Formal LINT for Each Category

SNUG EUROPE 2024 11

Formal LINT for Unsigned Logic

• HLF_U1A, HLF_U1B and Y_U3A are all unsigned 4-bit → Overflow?!

• HLF_U1A and HLF_U1B both reduced to half range by logic

• Formal LINT proves Y_U3A has no overflow issue

output [3:0] Y_U3A;

input [3:0] FUL_U1A, FUL_U1B;

wire [3:0] HLF_U1A = (FUL_U1A > 7) ? 7 : FUL_U1A;

wire [3:0] HLF_U1B = (FUL_U1B > 7) ? 7 : FUL_U1B;

assign Y_U3A = HLF_U1A + HLF_U1B;

Value ranges are clamped to test the

behavior difference between Structural LINT

and Formal LINT.

LHS value range : 15~0

RHS value range : 7~0 + 7~0 = 14~0

Structural LINT : Violation

Formal LINT : Proven

SNUG EUROPE 2024 12

Formal LINT for Explicit Signed Logic

• All variables declared “signed” explicitly

• HLF_S1A, HLF_S1B and Y_S3F are all signed 4-bit → Overflow?!

• HLF_S1A and HLF_S1B both reduced to half range by logic

• Formal LINT proves Y_S3F has no overflow issue

output signed [3:0] Y_S3F;

input signed [3:0] FUL_S1A, FUL_S1B;

wire signed [3:0] HLF_S1A, HLF_S1B;

assign HLF_S1A = (FUL_S1A > 3) ? 3 : (FUL_S1A < -4) ? -4 : FUL_S1A;

assign HLF_S1B = (FUL_S1B > 3) ? 3 : (FUL_S1B < -4) ? -4 : FUL_S1B;

assign Y_S3F = HLF_S1A + HLF_S1B;

LHS value range : 7~-8

RHS value range : 3~-4 + 3~-4 = 6~-8

Structural LINT : Violation

Formal LINT : Proven

SNUG EUROPE 2024 13

Formal LINT for Implicit Signed Logic

• All variables are intended to be signed but aren’t explicitly declared as signed

• The design is correct because HLF_S1e and HLF_S1f are reduced to half range

• Formal LINT treat both operands as unsigned and flag error

output [3:0] Y_SCf;

input [3:0] FUL_S1e, FUL_S1f;

wire [3:0] HLF_S1e = (FUL_S1e[3:2]==2'b01) ? 4'b0011 :

(FUL_S1e[3:2]==2'b10) ? 4'b1100 : FUL_S1e[3:0] ;

wire [3:0] HLF_S1f = (FUL_S1f[3:2]==2'b01) ? 4'b0011 :

 (FUL_S1f[3:2]==2'b10) ? 4'b1100 : FUL_S1f[3:0] ;

assign Y_SCf[3:0] = {HLF_S1e[3], HLF_S1e[3:0]} + {HLF_S1f[3], HLF_S1f[3:0]};

Formal LINT doesn’t know the operands are signed in the design intention.

LHS value range : 15~0

RHS value range : 31~0 + 31~0 = 62~0

Structural LINT : Violation

Formal LINT : Violation

Intended LHS value range : 7~-8

Intended RHS value range : 3~-4 + 3~-4 = 6~-8

SNUG EUROPE 2024 14

Formal LINT is not for all of them!

The key issue is variable’s signedness information

Category Pitfalls Formal LINT limitation

Implicit Signed Logic None

• Limitation: Lack of variable signedness information

• Formal LINT currently may not accurately analyze

• Work-in-progress

Explicit Signed Logic Many
• No showstopper for Formal LINT

• Complementary checks required

Unsigned Logic None
• No limitation

• Formal LINT is fully capable

Hybrid

LINTing

SNUG EUROPE 2024 15

Pitfalls in Explicit Signed Logic

SNUG EUROPE 2024 16

Pitfall in Explicit Signed Logic

• Verilog-2001 and 2005 defined syntax for signed arithmetic.

• However, designers must be aware of some rules to avoid incorrect design.

• Refer to Verilog-2005 LRM:

– Section 3.5.1 Integer constants

– Section 5.1.2 Binary operator precedence

– Section 5.1.3 Using integer numbers in expressions

– Section 5.1.6 Arithmetic expressions with regs and integers

– Section 5.1.7 Relational operators

– Section 5.1.8 Equality operators

– Section 5.1.12 Shift operators

– Section 5.4 Expression bit lengths

– Section 5.5 Signed expressions

SNUG EUROPE 2024 17

Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

Example:
wire [3:0] FUL_U1A;

wire signed [3:0] FUL_S1A;

wire signed [3:0] FUL_S1B;

wire [4:0] Y_U1C = FUL_S1A + FUL_S1B;

wire [4:0] Y_U1B = FUL_U1A + FUL_S1A;

Signed variable converted into

unsigned

Unsigned

variable

Mixture of signed

and unsigned

SNUG EUROPE 2024 18

Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

Example:
wire [3:0] A_U4b;

wire signed [3:0] A_S4b;

wire signed [3:0] B_S4b;

wire signed [4:0] Y_S5b = A_S4b + B_S4b;

wire signed [4:0] Z_S5b = A_U4b + B_S4b;

What’s the impact?

A_U4b = +4 = 4’b0100

B_S4b = -1 = 4’b1111

Expected Z_S5b = +3

A_S4b = +4 = 4’b0100

B_S4b = -1 = 4’b1111

Expected Y_S5b = +3

Y_S5b[4:0] = A_S4b + B_S4b

 = 5’b00100 + 5’b11111

 = 5’b00011

 = +3

Z_S5b[4:0] = A_U4b + B_S4b

 = 5’b00100 + 5’b01111
 = 5’b10011

 = -13

B_S4b is converted

to unsigned

SNUG EUROPE 2024 19

Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

Example:
wire [3:0] U4b_0 = 4'b0100; // +4

wire signed [3:0] S4b_0 = 4'b0100; // +4

wire signed [3:0] S4b_1 = 4'b1111; // -1

wire Y_0 = (S4b_0 >= S4b_1); // Y_0 = 1 (simulation result)

wire Y_1 = (U4b_0 >= S4b_1);

What’s the impact?

U4b_0 is interpreted as +4

S4b_1 is interpreted as +15 because it is converted

into unsigned

// Y_1 = 0 (simulation result)

SNUG EUROPE 2024 20

Pitfall 2: Signed-to-unsigned conversion
Due to concatenation

• Signed variable will be automatically sign-extended.

• However, manual sign-extension will cause signed-to-unsigned conversion

Example:
wire signed [3:0] S4b_A;

wire signed [3:0] S4b_B;

wire signed [4:0] S5b_Y;

wire signed [4:0] S5b_Z;

assign S5b_Y = S4b_A + S4b_B;

assign S5b_Z = {S4b_A[3],S4b_A} + {S4b_B[3],S4b_B};

Result of concatenation

is treated as unsigned

SNUG EUROPE 2024 21

Pitfall 3: Signed-to-unsigned conversion
Due to part-select

Example:
wire signed [3:0] S4b_A;

wire signed [3:0] S4b_B;

wire signed [4:0] S5b_X;

wire signed [4:0] S5b_Y;

wire signed [4:0] S5b_Z;

assign S5b_X = S4b_A + S4b_B;

assign S5b_Y = S4b_A[3:1] + S4b_B[3:1];

assign S5b_Z = S4b_A[3:0] + S4b_B[3:0];

Part-select changes

variable into unsigned

They will be automatically zero-padded

instead of sign-extended

SNUG EUROPE 2024 22

Pitfall 4: Sign Casting

• To avoid signed-to-unsigned conversion, we can use $signed().

• However, pitfall again…

Example:
wire [3:0] A_U4b;

wire signed [3:0] B_S4b;

wire signed [5:0] X_S6b = A_U4b + B_S4b; // Signed-to-unsigned conversion

wire signed [5:0] Y_S6b = $signed(A_U4b) + B_S4b; // Bad sign casting

wire signed [5:0] Z_S6b = $signed({1’b0,A_U4b}) + B_S4b; // Good sign casting

Example: If A_U4b is “+15”, $signed(A_U4b) will

be interpreted as “-1”

Solution: Zero-padding before sign-casting

SNUG EUROPE 2024 23

Pitfall 5: Signed Constant

Example:
wire signed [3:0] A_S4b;

wire signed [5:0] X_S6b = A_S4b + 4’d8;

wire signed [5:0] Y_S6b = A_S4b + 4’sd8;

wire signed [5:0] Z_S6b = A_S4b + 5’sd8;

4’d8 is unsigned.

A_S4b is converted into unsigned due

to mixture of signed and unsigned

variables.

Use a signed constant to keep

A_S4b as signed.

“4’sd8” is actually “-8” as a

signed number.

This is the right way to do it!

Value range of 4-bit signed constant : +7 ~ -8

Value range of 5-bit signed constant : +15 ~ -16

SNUG EUROPE 2024 24

Pitfall 6: Interim Result overflow

Example:
wire [3:0] B = 4'b0011;

wire [3:0] C = 4'b1110;

 // Simulation result:

wire [3:0] Y2 = (B+C) >>> 1; // Y2 = 4'b0000

wire [3:0] Y4 = (B+C) / 2 ; // Y4 = 4'b1000

• Refer to Verilog-2005 LRM:

“B+C” evaluated as 4-bit

expression → Overflow

already before shift

Constant “2” is 32-bit.

“(B+C)/2” is evaluated as 32-

bit expression. Result is

correct.

SNUG EUROPE 2024 25

Solution: VC SpyGlass

Check Items LINT Type
VC SpyGlass

Coverage
SpyGlass Rule

Signed-to-unsigned

conversion

Due to mixed signed

and unsigned operands Structural Covered
SignedUnsignedExpr-ML

Due to part-select Structural Covered SignedUnsignedConvert -ML

Due to concatenation Structural Covered SignedUnsignedConvert -ML

Bad sign-casting Formal Covered SignedSysFuncUsage-ML

Bad signed constant Structural Covered
LiteralUnderflow-ML

LiteralOverflow-ML

Interim result overflow Formal Part of Roadmap

Arithmetic overflow Formal Covered

SignedUnsignedExpr-ML

W164a

NegativeValueInfer-ML

W110

Hybrid

Linting

SNUG EUROPE 2024 26

Conclusion

SNUG EUROPE 2024 27

Conclusion

• Formal LINT is not efficient for Implicit Signed Logic

• Formal LINT is a promising verification solution for

Unsigned Logic and Explicit Signed Logic

• Our DvCon Paper covered details of the pitfalls as well

DVCON2024

Paper (#1020)

DVCON2024

Poster (#1020)

SNUG EUROPE 2024 28

References

[1] "IEEE Standard for Verilog Hardware Description Language," in IEEE Std 1364-2005 (Revision of IEEE Std 1364-

2001) , vol., no., pp.1-590, 7 April 2006, doi: 10.1109/IEEESTD.2006.99495.

[2] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language," in IEEE Std

1800-2017 (Revision of IEEE Std 1800-2012) , vol., no., pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595

[3] Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 – Opportunities and Hazards,” in DVCON 2005

SNUG EUROPE 2024 29

Questions?

SNUG EUROPE 2024 30

	Slide 1: Hybrid Linting:
	Slide 2: Agenda
	Slide 3
	Slide 4: Arithmetic Overflow Verification Challenge
	Slide 5: Arithmetic Overflow Verification Challenge
	Slide 6
	Slide 7: Arithmetic Logic Category
	Slide 8: Arithmetic Logic Category
	Slide 9: Arithmetic Logic Category
	Slide 10
	Slide 11: Formal LINT for Unsigned Logic
	Slide 12: Formal LINT for Explicit Signed Logic
	Slide 13: Formal LINT for Implicit Signed Logic
	Slide 14: Formal LINT is not for all of them!
	Slide 15
	Slide 16: Pitfall in Explicit Signed Logic
	Slide 17: Pitfall 1: Signed-to-unsigned conversion Due to mixture of signed and unsigned in expression
	Slide 18: Pitfall 1: Signed-to-unsigned conversion Due to mixture of signed and unsigned in expression
	Slide 19: Pitfall 1: Signed-to-unsigned conversion Due to mixture of signed and unsigned in expression
	Slide 20: Pitfall 2: Signed-to-unsigned conversion Due to concatenation
	Slide 21: Pitfall 3: Signed-to-unsigned conversion Due to part-select
	Slide 22: Pitfall 4: Sign Casting
	Slide 23: Pitfall 5: Signed Constant
	Slide 24: Pitfall 6: Interim Result overflow
	Slide 25: Solution: VC SpyGlass
	Slide 26
	Slide 27: Conclusion
	Slide 28: References
	Slide 29
	Slide 30

