Hybrid Linting:

An efficient method to overcome challenges vvlth
Structural Linting in Arithmetic Overflow
Verification

Esra Sahin Basaran and Kai-wen Chin ;
Renesas Electronics %

!
' <
SNUG EUROPE 2024 1

Agenda

 Arithmetic Overflow Verification Challenge
 Arithmetic Logic Categories

 Formal LINT for Each Category

« Pitfalls in Explicit Signed Logic

« Conclusion

SNUG EUROPE 2024 2

Arithmetic Overflow Verificatioh"(fhallenge

Arithmetic Overflow Verification Challenge ReNESAS e :

input [3:0] A; Arithmetic overflow verification:
input [3:0] B; — Unsigned arithmetic
output [3:0] Y; — Signed arithmetic

 Traditional methods can be inefficient:
— Dynamic simulation: Hard to be exhaustive
— Structural LINT: Lots of false negatives

assign Y[3:0] = A[3:0] + B[3:0];

* RHS width is 5-bit, including carry
* LHS width 4-bit

* LHS is not wide enough - Overflow!

SNUG EUROPE 2024 4

Arithmetic Overflow Verification Challenge ReNESAS o

e Formal LINT = Structural LINT + Formal Verification
— Auto-generated SystemVerilog Assertions for Formal Verification

 Formal LINT looks promising
— But...
— The presentation provides its prerequisite

SNUG EUROPE 2024 5

Arithmetic Logic Categories

Arithmetic Logic Category

» Unsigned Logic
— The design implements unsigned arithmetic
— No “signed” keyword
— “Part/select syntax” could be used for readability

— Mapnual “zero-padding._at MSBs could be used for readability

Y UlA
Y UIB = _UIA[3:0] +(FUL UIB[3:
Y UIC = {17p0,FUL U1A[3:0]} + {1'b0,FUL UIB[3:0]};
Y UID = ({1700, FUL UTAJ) + {1’b0,FUL U1B};

SNUG EUROPE 2024 7

Arithmetic Logic Category

 Explicit Signhed Logic
— The design implements signed arithmetic
— Signed variables are declared using “signed” keyword
— Ng part-select syntax for explicit signed variables
— No manual sign-extension for explicit signed variables

« Example
wire

wire |

(wire signe@
wire signed

FUL UlA; // Variable is intended to be unsigned
FUL U1B; // Variable is intended to be unsigned
FUL S1C; // Variable is intended to be signed and declared explicitly
FUL S1D; // Variable is intended to be signed and declared explicitly

Y S1A = FUL UlA + FUL UlLB;
Y S1B = FUL S1C + FUL S1D;

wire signed
ere signeqj

o W w W W
O O O O o o
L e N e L S I S D S—

SNUG EUROPE 2024 8

Arithmetic Logic Category RENESAS ° '

 Implicit Signed Logic
— The design implements signed arithmetic
— No “signed” keyword. Variable signedness is implied by its consuming logic.
— Manual sign-extension for implicit signed variable must be used for correctness
— Paft-select syntax cauld be used for readability
anual zero-padding at MSBs could be used for readability (for unsigned variables)

amPIe

Gire [3:0]) FUL UlA; // Variab is intended to be unsigned

wire [3:0]| FUL S1B; // Variable\is intended to be signed but not declared explicitly
wire [4:0]| Y SI1A = FUL UlA + [{FUL S1B[3],FUL S1B};

wire [4:0]| Y SIB = {1’b0,FUL UlA} + {FUL S1B[3],FUL S1B};

wire [4:0]) Y SI1C = {1’'b0,FUL_UIA[3:0]} + (FUL_S1B[3],FUL_S1B[3:0]};

SNUG EUROPE 2024 9

Formal LINT for Each Category\"/

Formal LINT for Unsigned Logic ReNESAS

« HLF _U1A, HLF_U1B and Y_U3A are all unsigned 4-bit - Overflow?!
« HLF_U1A and HLF_U1B both reduced to half range by logic
« Formal LINT proves Y_U3A has no overflow issue

output [3:0] Y U3A;

input [3:0] FUL_UlA, FUL_UlB;

wlre [3:0] HLF_UlA = (FUL_UlA > 7)) 7?7 FUL_UlA;

wlre [3:0] HLF_UlB = (FUL_UlB > 7)) 7?7 FUL_UlB;

assign Y_U3A = HLF_UIA + HLF_UlB;

LHS value range : 15~0

RHS value range : 7~0 + 7~0 = 14~0 Value ranges are clamped to test the
Structural LINT : Violation behavior difference between Structural LINT

Formal LINT : Proven and Formal LINT.

SNUG EUROPE 2024 11

Formal LINT for Explicit Signed Logic ReNESAS ° :

 All variables declared “signed” explicitly

« HLF_S1A, HLF _S1B and Y_S3F are all signed 4-bit - Overflow?!
« HLF_S1A and HLF _S1B both reduced to half range by logic

« Formal LINT proves Y_S3F has no overflow issue

output signed [3:0] Y S3F;

input signed [3:0] FUL S1A, FUL S1B;

wire signed [3:0] HLF S1A, HLF S1B;

assign HLF S1A = (FUL S1A > 3) ? 3 : (FUL S1A < -4) ? -4 : FUL S1A;

assign HLF SI1B = (FUL S1B > 3) 2 3 : (FUL SI1B < -4) 2 -4 : FUL S1B;

assign Y S3F = HLF S1A + HLF S1B;

LHS value range : 7~-8

RHS value range : 3~-4 + 3~-4 = 6~-8
Structural LINT : Violation

Formal LINT : Proven

SNUG EUROPE 2024 12

Formal LINT for Implicit Signed Logic ReNESAS °

 All variables are intended to be signed but aren’t explicitly declared as signed
* The design is correct because HLF_Sle and HLF S1f are reduced to half range
 Formal LINT treat both operands as unsigned and flag error

output [3:0] Y SCf;
input [3:0] FUL Sle, FUL S1f;

wire [3:0] HLF Sle = (FUL Sle
(FUL Sle
wire [3:0] HLF S1f = (FUL S1f
(FUL S1f

3:2]1==2"'001) ? 4'b0011 :
3:2]==2"'010) ? 4'b1100 : FUL Sle[3:0] ;
3:2]1==2"'0b01) 2?2 4'b0011 :
3:2]==2"b10) ? 4'b1100 : FUL S1£[3:0] ;

assign Y SCE[3:0] = {HLF Sle[3], HLF_Sle[3J:0]} + {HLF S1f[3], HLF S1£f[3:0]};
Y

Intended LHS value range : 7~-8
Intended RHS value range : 3~-4 + 3~-4 = 6~-8

Formal LINT doesn’t know the operands are signed in the design intention.
LHS value range : 15~0

RHS value range : 31~0 + 31~0 = 62~0

Structural LINT : Violation

Formal LINT : Violation

SNUG EUROPE 2024 13

Formal LINT is not for all of them! RENESAS o

The key issue is variable’s signedness information

* No showstopper for Formal LINT ;
Many PP , Hybrid
« Complementary checks required LINTIng

SNUG EUROPE 2024

14

Pitfalls in Explicit Signed Logic

Pitfall in Explicit Signed Logic Renesns Q

* Verilog-2001 and 2005 defined syntax for signed arithmetic.
« However, designers must be aware of some rules to avoid incorrect design.
» Refer to Verilog-2005 LRM:

— Section 3.5.1 Integer constants

— Section 5.1.2 Binary operator precedence

— Section 5.1.3 Using integer numbers in expressions

— Section 5.1.6 Arithmetic expressions with regs and integers

— Section 5.1.7 Relational operators
— Section 5.1.8 Equality operators
— Section 5.1.12 Shift operators

— Section 5.4 Expression bit lengths
— Section 5.5 Signed expressions

SNUG EUROPE 2024 16

Pitfall 1: Signed-to-unsigned conversion ReENESAS °

Due to mixture of signed and unsigned in expression

Example:
wire [3:0] FUL UlA; Mixture of signed
wire signed [3:0] FUL S1a; and unsigned

wire signed [3:0] FUL S1B;

wire [4:0] Y UIC

FUL S1A S1B;

wire [4:0] Y_ULB = [FUL_U1A| + [FUL_S12;]

Unsigned Signed variable converted into
variable unsigned

SNUG EUROPE 2024 17

Pitfall 1: Signed-to-unsigned conversion ReENESAS °

Due to mixture of signed and unsigned in expression

What’s the impact?

Example- A_S4b = +4 = 4"p0100

. ' B S4b = -1 = 4’b1111
wilre [3:0] A Udb; Expected Y S5b = +3
wire signed [3:0] A S4b;
wire signed [3:0] B Sdb; R S

. . - = 5’00100 + 5’bl1111
|wire signed [4:0] Y _S5b = A_S4b + B_S4b;| i b00011

= +3
|wire signed [4:0] Z SS5b = A U4b + B S4b;|
A Udb = +4 = 4'Db0100 B S4b 1s converted
Expected Z Sbb = +3
- Z S5b[4:0] = A Udb + B S4b
= 5’00100 + 5’01111

= 5'b10011
= 213

SNUG EUROPE 2024 18

Pitfall 1: Signed-to-unsigned conversion ReENESAS °

Due to mixture of signed and unsigned in expression

What’s the impact?

Example:

|wire [3:0] U4b 0 = 4'b0100; // +4 |
wire signed [3:0] S4b 0 = 4'b0100; // +4
|wire signed [3:0] S4b 1 = 4'b1111; // -1 |

wire Y 0 = (S4b 0 >= S4b 1); // Y 0 = 1 (simulation result)

|wire Y 1 = (U4b 0 >= S4b 1); // Y 1 = 0 (simulation result) |

U4db O is interpreted as +4
S4b_1is interpreted as +15 because it is converted
Into unsigned

SNUG EUROPE 2024 19

Pitfall 2. Signed-to-unsigned conversion RENESAS °

Due to concatenation

 Signed variable will be automatically sign-extended.

« However, manual sign-extension will cause signed-to-unsigned conversion
Example:

wire signed [3:0] S4b_A; Result of concatenation
wire signed [3:0] S4b_B; is treated as unsigned
wire signed [4:0] S5b Y;

wire signed [4:0] S5b Z;

assign Sbb Y S4b A + S4b B; \
assign S5b 7 =[{S4b_A[3],S4b_A} + HS4b_B[3],S4b_B}k

SNUG EUROPE 2024 20

Pitfall 3: Signed-to-unsigned conversion ReENESAS °

Due to part-select

Example:
wire signed S4b A;
wire signed S4b B;

S5b X; Part-select changes
ssb y:; variable into unsigned
:0] S5b Z;

S4b A + S4b/B;

S4b A[3:1]1] + [S4b B[3:1]});

S4b A[3:0]) + |S4b B[3:01);

They will be automatically zero-padded
Instead of sign-extended

wire signed
wire signed
wire signed
assign S5b X
assign Sb5b Y
assign S5b 7z

oS D DN W W
O O O O

-

SNUG EUROPE 2024 21

Pitfall 4: Sign Casting Renesas °

 To avoid signed-to-unsigned conversion, we can use $signed().

* However, pitfall again... £, h1e: IFA_Udb is “+15”, $signed(A_U4b) will

Example: be interpreted as “-1”
wire [3:0] A Udb;

wire signed [3:0] B S4b;
wire signed [5:0] X Sob

A U4b + B S4b;/// Signed-to-unsigned conversion

wire signed [5:0] Y S6b =[$signed(A_U4bﬂ + B S4b; // Bad sign casting

wire signed [5:0] Z Séb =[$signed({l’bO,A_U4b}j]+ B S4b; // Good sign casting

Solution: Zero-padding before sign-casting

SNUG EUROPE 2024 22

Pitfall 5: Signed Constant ReENESAS °

Example:
wire signed

wire signed
wire signed

wire signed

4'd8 is unsigned.
A _S4Db is converted into unsigned due
A S4b: to mixture of signed and unsigned
B variables.

X_S6b =[A_S4bJ+ 4"d8; g6 3 signed constant to keep

A S4Db as signed.
Y S6b = A S4b + |4'sd8|; | _
- - B “4’sd8” is actually “-8" as a

7 S6b = A Sdb + [57sdg) Slgned number.

This is the right way to do it!

Value range of 4-bit signed constant : +7 ~ -8
Value range of 5-bit signed constant : +15 ~ -16

SNUG EUROPE 2024 23

Pitfall 6: Interim Result overflow RENESAS o

| “‘B+C” evaluated as 4-bit
Examplle. . o ~ expression > Overflow
wire [3:01 B = 4"0b00L1; 4 ready before shift

wire [3:0] C = 4'b1110;
// Simulation result:
wire [3:0] Y2 = [(B+C)[>>> 1; // Y2 = 4'b0000

wire [3:0] Y4 =|[(B+C) / 2| ; // Y4 = 4'b1000

» Refer to Verilog-2005 LRM: \

Constant “2” is 32-hit.
“(B+C)/2” is evaluated as 32-

Expression Bit length Comments bit expression. Result is

1 op j, where op 1s: L(1) 1 15 self-determined Correct_
T o ¥ owm o

Table 5-22—Bit lengths resulting from self-determined expressions

SNUG EUROPE 2024 24

Solution: VC SpyGlass RENESAS °

Structural Covered SignedUnsignedConvert-ML

Formal Covered SignedSysFuncUsage-ML

Part of Roadmap

SNUG EUROPE 2024 25

Conclusion

SNUG EUROPE 2024 26

Conclusion RENESAS e i

« Formal LINT is not efficient for Implicit Signed Logic
DVCON2024

Poster (#1020)
seclr) "R Sy

« Formal LINT is a promising verification solution for
Unsigned Logic and Explicit Signed Logic

ot bt Syt e Arithmetic Overflow Verification using
. . Formal LINT
PP —
« Our DvCon Paper covered details of the pitfalls as we e
= ¥ ¥ siBg oppoTtumities, dd
el =3 iy g i
: e T
I LINT, LT
S ":v:” INTRODUCTION
PO ——
pmatons e et . s ey o £ U f Vi T o ci e
™
ot s o e oo Ao oSt B i, S RS i oL i L
o . ;
e
r oy
: e
o e
e L ig, wid el s sracart apacs e syse,copeciiy, s deigs. e
[y e e ae
e
i
e oo opeses lopi of el 1T gy 3
s o oV venps ol vl s T st 2 ot btarr, el
o i o posul o S Thaeo o+ Mgl Ao T St
e BBy W vl RS 5 e Al RASE BEAS AT
oty
o ones P
o, s cout v ¥ ot LD Thee
e e o e o o o e T o O e
intop 0012015 i Sy aos 00 e sy . St emt of gl
ol ot oLV vl ey ot e g e ot s . ey

Paper (#1020)

SNUG EUROPE 2024 27

References RENESAS ° ;

[1] "IEEE Standard for Verilog Hardware Description Language,” in IEEE Std 1364-2005 (Revision of IEEE Std 1364-
2001) , vol., no., pp.1-590, 7 April 2006, doi: 10.1109/IEEESTD.2006.99495.

[2] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language,” in IEEE Std
1800-2017 (Revision of IEEE Std 1800-2012) , vol., no., pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595

[3] Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 — Opportunities and Hazards,” in DVCON 2005

SNUG EUROPE 2024 28

Questions?

- O
| ur
THANK YOU \ I(i%?m'@gy’

‘\“.’?x o ™
) Innovation

	Slide 1: Hybrid Linting:
	Slide 2: Agenda
	Slide 3
	Slide 4: Arithmetic Overflow Verification Challenge
	Slide 5: Arithmetic Overflow Verification Challenge
	Slide 6
	Slide 7: Arithmetic Logic Category
	Slide 8: Arithmetic Logic Category
	Slide 9: Arithmetic Logic Category
	Slide 10
	Slide 11: Formal LINT for Unsigned Logic
	Slide 12: Formal LINT for Explicit Signed Logic
	Slide 13: Formal LINT for Implicit Signed Logic
	Slide 14: Formal LINT is not for all of them!
	Slide 15
	Slide 16: Pitfall in Explicit Signed Logic
	Slide 17: Pitfall 1: Signed-to-unsigned conversion Due to mixture of signed and unsigned in expression
	Slide 18: Pitfall 1: Signed-to-unsigned conversion Due to mixture of signed and unsigned in expression
	Slide 19: Pitfall 1: Signed-to-unsigned conversion Due to mixture of signed and unsigned in expression
	Slide 20: Pitfall 2: Signed-to-unsigned conversion Due to concatenation
	Slide 21: Pitfall 3: Signed-to-unsigned conversion Due to part-select
	Slide 22: Pitfall 4: Sign Casting
	Slide 23: Pitfall 5: Signed Constant
	Slide 24: Pitfall 6: Interim Result overflow
	Slide 25: Solution: VC SpyGlass
	Slide 26
	Slide 27: Conclusion
	Slide 28: References
	Slide 29
	Slide 30

