

3D die disaggregation construction & convergence

Dayanand N Naik Jayatheertha Karekar Veerakumar P

Intel Corporation

Acknowledgment

- Methodology Lead : Vivek R
- **Design:** Anand A, Loyied P, Akshay P, Nawaz S, Amit B, Ashok K, Pallvi S, Vinitha AL, Berolina Mary, Karthik D, Satish R, Sreehari K, Priyam U, Srinivasan G.
- **TFM:** Srinath B, Victoria K, Zhi Sheng, Mike R, Ngoc T, Jung Yunbum, Sirisha, Jyothi, Haris, Madhurima, Harikrishnan K, Tanvi U
- **Synopsys Team :** Eric, Frank, Niranjan, Dhaval & many others.

- IC Evolution
- 3D design planning & convergence
- Results
- Future Scope

Sources: 1Karl Rupp, 2ASML data and projection using Rupp, 3Mark Liu, TSMC, normalized to transistor EEP in 2005.

IC Evolution

Moore's Law

"Number of transistors in an integrated circuit (IC) doubles about every two years"

- Moore's Law

Architecture Evolution

Past-Present-Future

2D+3D disaggregation is the way forward

3D chip design must account for numerous factors, especially different multi-physics elements

3D design planning & convergence System level perspective

*This is representative floorplan where we used 3DIC tool for overall design convergence

System planning

Plan the die separately and integrate

Top-down planning

- Helps to plan system connectivity
 - Through die connections
- Die Alignments
- Interface optimization

Co-designing is the key for convergence

sequences

3D System creation
Bump Management
3D floorplan checks
3D early construction checks
3D signoff collateral generation
Overall System convergence**

sequences

3D System creation	
	3D System creation Bump Management 3D floorplan checks 3D early construction checks Collaterals for signoff

3D System creation

- System level netlist/RTL creation no longer front-end only activity.
 - It needs to see how connections will be made in backend and create then connectivity accordingly.
 - Different categories of connections must be considered.
 - Category 1 : Package I/O direct connections to Top die
 - Category 2a : Package I/O connects to Base die but also has micro bump connections
 - Category 2b : Top die connections only to micro bumps
 - Category 3: Package I/O connects to Base die only.
 - Category 4 : signal connections between top & base dies
 - Category 5 (P/G) : connections to all dies

3D System Creation

sequences

snu

BUMP Management

- Bump planning is carried out during individual die construction using fusion compiler tool native "pseudo bump methodology"
- Main challenges we faced for 3d IC are
 - Bump mirroring
 - Capacity handling
 - Handshaking across different hierarchies.

BUMP alignments

- We used 3d IC shell tool native command *check_3d_design* exclusively to catch all alignment issues
- The following different combinations were verified

- A \rightarrow Logical connection exists between both BASE die(MPH bump) and TOP(BPH bump) die
- $M \rightarrow Mechanical(dummy) bumps$
- B → Logical port/net only exists in BASE die and no business with TOP die ; but due to sort bringing in MPH bumps
- T → Logical port/net only exists in TOP die and no business with BASE die ; but due to sort bringing in BPH bumps

 $R/R1/R2 \rightarrow$ Some connection only exists in BASE die but DUMMY dies exists on top.

NO BUMP \rightarrow No bump exists as DUMMY die is placed.

sequences

3D floorplan checks	

3D floorplan checks

- Created "seal ring" for manufacturing objects
 - 3D checks are based on physical die sizes which includes sealring.
 - create_manufacturing_shapes <>
 - Ex : create_manufacturing_shape -name
 sealring -boundary <> -type seal_ring
- DIE to DIE & SHELF design rules are verifying with utility procedures using "sealring" objects.
 - <u>Utility 1</u>: die_2_die_rules_check (TOP die to TOP die spacing checks)
 - <u>Utility 2</u>: die_2_shelf_design_check (Base die edge to top die edge enclosure)

sequences

3D early construction checks	
Collaterals for signoff	

3D early construction checks

These checks helped system level early convergence, thus stabilizing individual dies floorplan

Advantages of TOPs-DOWN approach

- Helps in managing the work independently, in parallel with each dies.
 - No bottom-up dependency.
- Complete system level connectivity information which helps in early sign-off.
- Faster convergence as design data is available from DAY-1 vs late data availability in bottom-up approach.
- Dirty data can be handled easily.
- Since results are in-design, quicker feedback loop possible.

Runtime - 3DIC bump planning feature

Many issues got fixed throughout the project, in terms of

- Corner case bug fixes for committing pseudo bumps
- Corner case bug fixes for generating "floorplan.tcl"
- Addressed run time challenges.

Total Bumps (~8M)

	Bump regions	No. of bumps	Consumption runtime (without 3DIC bump planning feature)	Consumption runtime (with 3DIC bump planning feature)
Base die backside	452	~40K	45mins	<mark>15mins</mark>
Base die front side	2592	>4M	30hrs	<mark>1hr</mark>
Top dies backside	167	>350K	2 hrs	10mins

	Manual creation (~time)	With Mirroring feature
Top die side bumps creation	manual creation is iterative and ~takes a day's time	Within < 1 hr

Early checks – Comparison metrics

	3D construction early results	Signoff results (3D LV result with bottom up .oasis of individual dies)	Comments
3D LVS results	MATCH	MATCH	All logical connections were caught early on
3D bump alignments	~81% coverage	100% (Gold standard)	Probe bumps vs non-probe bumps are not understood by the tool
Marker cell alignment	NOT Covered	Covered	No alignment checks at present. future request
Short checks	Covered	Covered	This helped to fix all shorts early on.
Die spacing	Covered (though utility)	Covered	Future request : Native command request
runset dependency	NO	YES	In-design comparison is simpler

Run Time Comparison

Simple, quick & easy to run (in-design) comparison

Future Scope

THANK YOU

Our Technology, **Your** Innovation[™]

3D LVS results

- LVS comparison using blackbox & whitebox approaches, for covering TSV connections
- Below are category-wise results.

Marker cell mis alignment,	
Type of violation	Viol count
topdie_0	2
topdie_1	2

Category 5 : Mechanical bumps in top die p	aired with
unprobed bumps in base die : basedie spec	ific supply bumps
are present in base die on these dummy bu	mp locations
violation	Viol count

topdie 0	5514
topdie 1	5530

Category 9 : unprobe bumps in base die paired	with
probed bumps in top die :	
est a l'anti-se	1/2 - 1

violation	Viol cour
topdie_0	8443
topdie_1	8436

#SL No	Rule	
1	dummy with real bump pair not allowed	
2	Missing bump pair not allowed	
3	Probe paired with active bump not allowed	
4	4 Center to center alignment misses for bumps	
5	marker/alignment cell pair alignment	

Category 6 : Mechanical bumps in base die paired with unprobed bumps in top die : top die only supply bumps are present in top die on these dummy bump locations		
violation	Viol count	
topdie 0	5215	
topdie 1	5224	

Category 10: unprobed/dummy bumps in top die paired with	
probed bumps in base die :	

violation	Viol count
topdie_0	4071
topdie_1	4064

P/G connections in 3D

