

Achieving sustained performance on next-generation GPUs.

Collaboration with Synopsys.

Abhishek Mukherjee, Senior Engineering Manager Renuka Eadalada, Senior Applications Engineer Imagination Technologies

snug

Presentation Overview: Delve into the physical design challenges GPUs face and introduce advanced solutions to ensure sustained performance.

- Introduction to Imagination Technologies
- Challenges in achieving sustained performance in GPUs
- Methodology and design overview
- Best recipe for power efficiency
- Summary of Results
- Conclusion
- Appendix

Introduction to Imagination Technologies What do we do?

SNUG INDIA 2024 4

Imagination Technologies at a Glance

Global Leader in High-Performance Semiconductor IP Design

Market leader in IP since 1985:

- ▲ #1 GPU IP provider in automotive and mobile
- >13Bn cumulative chip shipments with Imagination IP

Key IP solutions for graphics and AI at the edge

- ▲ Graphics and GPU compute scaling across markets
- High-quality, performance-dense RISC-V processors
- **Business model:**

- ▲ IP licensing to customers and royalties per chip shipped
 Global presence:
- UK-based with a global R&D team and leading customer relationships in US, Asia and Europe

Mobile

O Imagination

Consumer

Challenges in achieving sustained performance in GPUs. What is the motivation?

Challenges in sustained GPU performance

Why does it matter?

- GPUs are ubiquitous (mobile, AI, virtual reality, automotive systems)
- Optimizing for better energy efficiency will help customers and end-users manage costs and reduce operations carbon footprint worldwide.

Complexity of Power Reduction

6

snug

Power Efficient Graphics The design, Tools, libraries and methodology

Power Efficient Graphics

The tools, process and methodology

- We process our design through the **PnR**, timing closure, parasitic extraction, emulation, and Primepower for accurate power calculation.
- RM QoR strategy for baseline was '**extreme_power**' i.e. already power focussed.

TSMC N5 foundry files			N5					
·			Synopsys HPC Designware Librar			raries		
		Metal Stack	15 (T	op 2+ Layers f	or Powe	r)		
				5 Scenario	S			
Fusion	PrimePower		Process	SSGNP	TT	FFGNP		
Compiler	Compiler (2022.12-SP4) J-2022.12-SP3)	PVT Corners	Voltage	0.675	0.75	0.825		
(U-2022.12-5P3)			Temperature	125c/m40c	85c	125c/m40c		
			Parasitic	Cworst		Cbest		
DSO.ai	StarRC		corners	CCworst_T	typical	CCbest_T		
↑	(U-2022.12-SP3)	OCV Strategy		POCV				
Primetime-SI		Power scenario	TT Nom	inal voltage (0.	75V) by	[,] 15%		
(2022.12-SP4)		Target Frequency		1 GHz				
I RTL SAIF	I Netlist SAIF	# Instances	60 million					
Third party e	emulator							

Best recipe for power efficiency Strategies to reduce dynamic power

Strategy to Improve Power Efficiency

- 1. Meticulous floorplan refinements to optimize power consumption.
- 2. <u>Cell selection</u>: Select the most appropriate standard cells within libraries.
 - Curating the don't_use list using Power delay product (PDP).
 - Implementing double inverter flops for enhanced efficiency.
- 3. Selecting module activity-based voltage threshold (VT) and bounds.
- 4. Optimizing tool settings
 - Auto density control
 - Useful skew moderation
 - Register Retiming
 - Performance via ladders
 - Sequential fanin
 - Including datapath options
- 5. Conducting <u>Regressions</u> to determine <u>optimal design inputs</u>

(Skew Limit, Clock Transition limits etc...)

6. DSO.ai and MLMP.

snug

Floorplan refinements

Collaboration with designers to refine module placement Floorplan shrink to reduce C(effective)

Floorplan refinement

Block Level

- 1. Module placement: Reorder up to 4 levels of hierarchy to ensure module placement results in less wire length.
- 2. Shrink the floorplan but avoid congestion. (Final standard cell utilisation around 62%)

Objectives :

- Reduce the wire capacitance without causing routing issues.
- Study the TR of modules to ensure IR compliance.

Observations: This leads to a **2%** reduction in dynamic power.

Cell Selection Using Power Delay Product (PDP)

Power efficient cells

- Compare PDP for "All Architecture Variants" for the function under typical design conditions (trans/load/toggle rate) and most used drive strength (D1) and VT (LVT).
- Set don't use on variants for which the PDP is higher than the minimum by a threshold.
- Ex: For ICG, only V8 cells were selected, which aligns with the guidelines in Synopsys document
- 20% more cells added to the new don't use cell list
- PDP flow also selects the most power-efficient version for AOI/OAI and other combinational cells.

	CELL NAME	VARIANT	Power	Delay	PDP	% delta from min		Delta
Example : ICG Cell	HDBLVT06_CKGTPLT_CAQV8_1	CAQV8	3.32E-08	0.029	9.77E-10	0	_	
Function : CKGTPLT variants : (V8, V7, V5)	HDBLVT06_CKGTPLT_CBQV7_1	CBQV7	3.63E-08	0.028	1.03E-09	6	Stdcell Area	-1.0%
Threshold : 5	HDBLVT06_CKGTPLT_CB3QV7_1	CB3QV7	3.63E-08	0.028	1.03E-09	6		
Best variant : V8	HDBLVT06_CKGTPLT_CAQV7_1	CAQV7	3.63E-08	0.029	1.04E-09	7	Total Dyn Power	-1.7%
	HDBLVT06_CKGTPLT_CA3QV7_1	CA3QV7	3.63E-08	0.029	1.04E-09	7		
	HDBLVT06_CKGTPLT_CAQV7FC_1	CAQV7FC	3.61E-08	0.033	1.19E-09	22	Leakage Power	-2.60%
	HDBLVT06_CKGTPLT_CAQV5_1	CAQV5	3.86E-08	0.037	1.45E-09	48		2.0070

Cell Selection Double Inverter Flops

Double inverter FF

- · Some cells use double inverters on the clock, which isolates the register from the clock tree.
- · Although slightly higher in the area, these cells help to reduce the dynamic power.
- Total power improved by **10.7%** with double inverter FF in CTS (**9%** post-route)
- WL, clock area reduced (less $C_{effective}$); Latency improved (better OCV)
- · All other metrics (Logic Area / Setup TNS) have improved
- · Hold TNS was easily recovered with a minor penalty to the area.

Clock QOR at cts stage								
AvgLncy	Area	Cell Count	Buf Area	Buf Count	wirelength			
-13.10%	-38.18%	-55.02%	-266.57%	-279.73%	-2.52%			

	Delta
Stdcell Area	-0.80%
Total Power	-10.70%
Leakage Power	-2.60%

Module Activity based VT Selection

Module Activity based VT Selection

- Some ALU modules have a high average toggle rate (~ 1).
- Using ULVT/ULVTLL will reduce cell size (pin cap), making overall power better
 - Get list of hierarchy which meet criterion source scripts/FC/process_hierarchical_power_info.tcl set hier_tr_list [hier_power_info report_power.hier.rpt.new 30] (The criterion is dyn2lkg ratio > 30)

hc_name	module_name	leaf_count	leaf_area	TR	leaf_lkg_p	leaf_int_p	leaf_sw_p	leaf_tot_p	dyn_over_lkg
ALU_submodule1	SPAG0_sm0_vhdl_1	473251	33273.64	0.93	0.00012	0.0165	0.0233	0.04111	33.17
ALU_submodule2	SPAG0_pap_1	464644	32654.5	0.82	0.0011	0.0163	0.0225	0.04006	32.91
ALU_submodule3	SPAG0_sap_0	463623	32507.7	0.84	0.001	0.01617	0.0229	0.0402	33.46

- 2. Preserve the selected hierarchies (auto ungroup is ON by default) set_ungroup [get_cells \$hier_tr_list] false
- 3. Set Target lib subset

foreach cell \$hier_tr_list {
 if {[sizeof_coll [get_cell -q \$cell]] != 0} {
 set_target_library_subset -objects \$cell -only_here [get_lib_cells */HDBULTLL06*] }}

Hierarchical Average Toggle & DYN2LKG ratio info from Baseline runs.

C Imagination

Results

- 1. With targeted ULVTLL total area was reduced by 2%, and the area for the targeted modules shrunk by 3 to 4%
- 2. Total ULVTLL usage is 7.14%, Targeted module ULVTLL usage is 16%
- 3. If dynamic to leakage ratio > 30, expected power saving > 2%

	Logic Area Delta	ULVTLL %age
Block Level (ALU)	-2%	7%
Targeted Module (ALU_submodule1)	-3.20%	16%

Power Saving Estimate (for targeted modules)							
	Baseline	Module Based VT	Delta				
Leakage L	L* 0.16 *2.8						
	L	+					
		L*(1-0.16) = 1.288L					
Dynamic	D = 30L	30L*(1-0.032) = 29.04L					
Total	31L	30.328L	-2%				

*Note: We also experimented with Module activity-based bounds. While it leads to wirelength reduction, it results in routing issues later. The concept for module selection is same.

Optimizing tool settings

Register Retiming Include datapath options Sequential fanin Auto density control Via Pillars Current setting: set_optimize_registers -modules \$des true -delay_threshold 1.0 Experiment setting: set_optimize_registers -modules \$des true -delay_threshold 1.2 **Observations:-**

- Relaxing delay threshold by 20%, doesn't degrade timing, area is smaller by 0.5%
- Tool inserted slightly higher number of retiming bits, but better banking among those cells 2.
- 3. Recommendation: Relax delay threshold to 1.2

reg

reg

Retiming control

Be	efore retiming	After retiming			
	1.0 (Baseline)	1.2 (relaxed)	Delta		
Bit Per FF	6.05	6.2	2.50%		
Retiming Reg count	14,180	13,637	-3.80%		
Retiming Bit Count 78,460		79,860	1.80%		
Setup TNS	-1.3	-1.3	0.00%		

	Delta	
Tot. Logic Area	-0.50%	
Retiming FF Area	1.80%	
Total Power	-1.00%	

O Imagination

Fanin-based sequential clock gating

• Edit rm_user_plugin_scripts/compile_pre_script.tcl

set_app_options -list {compile.clockgate.fanin_sequential true}

• **<u>Observation</u>**: The sequential clock gating saves **0.5%** dynamic power.

Before clock gating

After	clock	gating
-------	-------	--------

Stage	Set	up	Hold		Netlist						Delta
Route opt	r2rWNS	r2rTNS	HWNS	HTNS	StdCells	Hbufs	Util	Gated%	Bits/Flop	Stdcell Area	1.20%
Baseline	-0.11	-2.07	-0.728	-2.9	3561388	174511	56	99.3	6.05		
final	-0.133	-3.36582	-0.72072	-3.1	3671791	136642	56.73	99.3	6.01	Total Power	-0.50%
Difference	20.90%	62.60%	-1.00%	6.90%	3.10%	-21.70%	1.30%	0.00%	-0.60%	Leakage Power	0.90%

Include datapath options

Edit rm_user_plugin_scripts/compile_pre_script.tcl

set_datapath_gating_options -enable true -sequential true

set_datapath_architecture_options -power_effort medium

Observation: This option saves an additional **1%** dynamic power.

	Delta
Stdcell Area	-0.20%
Total Power	-1.20%
Leakage Power	0.50%

Stage	Setup		Hold		Netlist				
	r2rWNS	r2rTNS	HWNS	HTNS	StdCells	Hbufs	Util	Gated%	Bits/Flop
	Baseline								
route_opt	-0.11	-2.07	-0.728	-2.9	3561388	174511	56	99.3	6.05
	Final								
route_opt	-0.04	-0.74	-0.71	-2.7	3536458	201037	55.89	99.3	6.11
Difference	-64.60%	-64.10%	-1.90%	-6.90%	-0.70%	15.20%	-0.20%	0.00%	1.00%

Auto density control

Recipe: Let the tool clump (high TR) cells (don't spread evenly)

- place.coarse.auto_density_control = true,
- place.coarse.max_density = 0
- Visually, placement with enhanced option seems clumped.
- 7% reduction in wire length and 1% in cell area leads to a 1.13% reduction in dynamic power

	Logic Area Delta	Wire Length Delta	Setup TNS	Congestion
Auto density (false)	-	-	-1.3ns	0.036/0.066
Auto density (True)	-1%	-7%	-2.0ns	0.027/0.071

Performance via ladders

C imagination

- Setup performance via ladders for the high-density cells
 - 2 files are created which need to be edited in sidefile_setup.tcl
 - set TCL_VIA_LADDER_DEFINITION_FILE "auto_perf_via_ladder_rule.tcl"
 - set TCL_SET_VIA_LADDER_CANDIDATE_FILE "auto_perf_via_ladder_association.tcl"
 Edit design_setup.tcl
 - set ENABLE_PERFORMANCE_VIA_LADDER true
- **Observation: 3.1%** power savings at the end of route_opt.

	Delta
Stdcell Area	-0.60%
Total Power	-3.10%
Leakage Power	-0.70%

Stage	Set	up	Но	ld	Netlist				
	r2rWNS	r2rTNS	HWNS	HTNS	StdCells	Hbufs	Util	Gated%	Bits/Flop
Baseline									
route_opt	-0.11	-2.07	-0.728	-2.9	3561388	174511	56	99.3	6.05
	Final								
route_opt	-0.07	-2.38	-0.4	-2	3532897	163691	55.61	99.3	6.06
Delta	-38.20%	15.20%	-45.70%	-31%	-0.80%	-6.20%	-0.70%	0.00%	0.20%

Summary

Summary of the key points

% Power Trial Reduction (%) in Power QoR metrics (Top Level) improvement Floorplan modifications 2.00% PDP cell selection 2.50% -48.38% Double inverter FF 9.00% TR based module VT 1.00% -54.74% CK Area placement CK WL **Tool options** 5.00% Total WL -27.55% Cell Area **Total Estimation (FC)** 19.50% Actual power savings 18.0% (PrimePower) -3.50% **Correlation from** estimate to actual power 93% saving -60.00% -50.00% -40.00% -30.00% -20.00% -10.00% 0.00%

- Reduction in all **QoR parameters correlates** with the reduction in dynamic power.
- Actual power reduction to estimation is <10% acceptable for time/resources saved.

C Imagination

Results (Power and Efficiency)

- **12-20%** power savings across critical blocks.
- Cell area reduction in all blocks except one. Overall, 4% savings in area.
- No change in the performance of GPU.
- The power savings lead to a direct correlation = 18% improvement in power efficiency.

* Represents critical blocks

*Timing after PT ECOs for both baseline and final were met.

Benchmark = Manhattan 3.1 Same performance (fps) for both runs.

Conclusion and the way forward The work in progress

SNUG INDIA 2024 30

Conclusion

Retrospective and Way forward

- <u>Analysis of design for floorplan, CTS and module constraints is a crucial step.</u>
- The <u>library choice and cell selection</u> can significantly impact power data.
- It is important to tune the tool settings for the design in use.
 - For ex: Retiming control, datapath options etc...
- <u>Analysis and estimation of power is challenging.</u>
 - Can be mitigated by comparing power QoR proxy metrics.
- Overall, an 18% improvement in power efficiency with 4% less area and no impact on timing is a massive gain.
- Our next step is to push the design with updated cell lists into DSO.ai.
 - This work is in progress.
 - Initial trials: to let the tool have full autonomy (i.e. baseline into DSO) to compare against our manual work results.
 - Our results here are with cold start approach. We expect better results with warm start.
- As our blocks are macro-dominant, trials with MLMP will be beneficial in progress.

C (magination

DSO.ai

- Baseline upgraded with latest cell selection as design input to DSO.ai
- 30 runs aimed at improving the total power of blocks
- Resources: 30 16 core machines. Runtime = 4 weeks.
- Comparison points: Register WNS, Shorts and Power
- Cef88e1b : Best results

	STATUS		
ADES R2R_WNS SHORT_DRC TOTAL_POWER		ID 	BLOCK_SAVE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DONE DONE DONE DONE DONE DONE DONE DONE	f227ca27 7e9c921d 4ae9e70e 7b1ce025 99c97019 cef88e1b 68508b09 bab31321 7d9fcd0b 7515a324 bfc24100 ab1bb320	ADES:0 ADES:1 ADES:2 ADES:3 ADES:4 TOTAL_POWER:0 R2R_WNS:0 R2R_WNS:1 TOTAL_POWER:2 TOTAL_POWER:1 user_baseline R2R_WNS:2

DSO.ai

QoR Comparison for cef88e1b

- The best result shows a **15% improvement in dynamic power**. (Was 12% for similar manual trials) i.e. 3% extra power savings.
- Significant improvement in power, **no impact on area**.
- Considering this is an initial trial, we are confident that some tweaking of permutons will lead to more power savings.

Stage	Setup		Hold		Netlist			Delta	
	r2rWNS	r2rTNS	HWNS	HTNS	StdCells	Hbufs	Util		0.400/
			Bas	eline				Stdcell Area	0.10%
route_opt	-0.11	-2.07	-0.728	-2.9	3561388	174511	56	Total Dawar	4.4.000/
			Final (C	ef88e1b)				Total Power	-14.80%
route_opt	-0.048	-2.39	-0.334	-1.71	3696720	151999	56	Lookago Bowar	0.40%
Delta	-43.60%	15.90%	-46.00%	-41%	3.80%	-12.90%	0.00%	Leakage Power	0.40%

THANK YOU

Our Technology, Your Innovation[™]

Imagination Technologies (Links)

Company Website	https://www.imaginationtech.com/
About us	https://www.imaginationtech.com/about/
Products	https://www.imaginationtech.com/products/

Avoid useful skew moderation

Recipe: CTS CCD Settings

- Current setting: Tool decides max pre/post pone CCD values (set_app_options -name ccd.max_postpone -value auto)
- Experiment setting: (1) disable CCD (2) 10% of clock period as max pre/pone value

Why:

- FC seems to be inserting too many repeaters to fix timing using useful skew; clock power will be high
- By limiting useful skew, we can find a balance in clock area/power and timing.
- In our previous projects using Synopsys ICC2, controlling the clock skew showed benefits.

O Imagination

Avoid useful skew moderation

Recipe: CTS CCD Settings

- 1. By limiting CCD to 10% of clock period, the logic area increased by 0.7% and the clock area reduced only by 1.2%
- 2. Overall timing is also better with auto
- 3. Recommendation: keep auto setting

KPI (block level)	(auto)	(limit 0.1)	Delta
CK total area	2574	2544	-1.2%
CK repeater area	656	616	-6.1%
Logic Area (um2)			0.7%
CK wirelength	689K	587K	-14.8%
Level	40	19	-52.5%
Global Skew	0.529	0.254	-52.0%
Setup TNS	-8	-15	87.5%
Hold TNS	-9	-4	-55.6%

Clock transition trials

To extract any potential clock power savings

- Since the clock is responsible for almost 30% of GPU power, any fractional improvement will help reduce dynamic power.
- Some refinements and regressions helped us to extract another 0.5% power improvement.
- 1. Total power reduced by 0.4% for trial 1 setting and 0.5% for trial 2 setting
- 2. This data is from the clock_opt stage. The trend persists after route_opt.
- 3. Trial 2 setting is the best choice for all blocks.

	Default	Trial 1	%age	Trial 2	%age
Clock Total Area	3432	4587	33.7%	4073	18.7%
Clock Repeater Area	980	1999	104.0%	1561	59.3%
Clock Wirelength	851894	996791	17.0%	976960	14.7%
Logic Area			-2.3%		-1.8%