

sn

Achieving sustained performance on next-generation GPUs. Collaboration with Synopsys.

Abhishek Mukherjee, Senior Engineering Manager Renuka Eadalada, Senior Applications Engineer Imagination Technologies

Presentation Overview: Delve into the physical design challenges GPUs face and introduce advanced solutions to ensure sustained performance.

- Introduction to Imagination Technologies
- Challenges in achieving sustained performance in GPUs
- Methodology and design overview
- Best recipe for power efficiency
- Summary of Results
- Conclusion
- Appendix

Introduction to Imagination Technologies What do we do?

SNUG INDIA 2024 4

Imagination Technologies at a Glance

Global Leader in High-Performance Semiconductor IP Design

- **▲ #1 GPU IP provider in automotive and mobile**
- \triangle >13Bn cumulative chip shipments with Imagination IP

Key IP solutions for graphics and AI at the edge

- ▲ Graphics and GPU compute scaling across markets
- ▲ High-quality, performance-dense RISC-V processors
- **Business model:**

- \blacktriangle IP licensing to customers and royalties per chip shipped **Global presence:**
- ▲ UK-based with a global R&D team and leading customer relationships in US, Asia and Europe

 \Box imagination

Challenges in achieving sustained performance in GPUs. What is the motivation?

Challenges in sustained GPU performance

Why does it matter?

- GPUs are ubiquitous (mobile, AI, virtual reality, automotive systems)
- Optimizing for better energy efficiency will help customers and end-users **manage costs** and **reduce operations carbon footprint** worldwide.

Complexity of Power Reduction

Power Efficient Graphics The design, Tools, libraries and methodology

Power Efficient Graphics

The tools, process and methodology

- We process our design through the **PnR, timing closure, parasitic extraction, emulation,** and Primepower for accurate power calculation.
- RM QoR strategy for baseline was '**extreme_power**' i.e. already power focussed.

Best recipe for power efficiency Strategies to reduce dynamic power

Strategy to Improve Power Efficiency

- 1. Meticulous floorplan refinements to optimize power consumption.
- 2. Cell selection: Select the most appropriate standard cells within libraries.
	- Curating the don't use list using Power delay product (PDP).
	- Implementing double inverter flops for enhanced efficiency.
- 3. Selecting module activity-based voltage threshold (VT) and bounds.
- 4. Optimizing tool settings
	- Auto density control
	- Useful skew moderation
	- Register Retiming
	- Performance via ladders
	- Sequential fanin
	- Including datapath options
- 5. Conducting Regressions to determine optimal design inputs
	- (Skew Limit, Clock Transition limits etc…)
- 6. DSO.ai and MLMP.

sn

Floorplan refinements

Collaboration with designers to refine module placement Floorplan shrink to reduce C(effective)

Floorplan refinement

Block Level

- **1. Module placement**: Reorder up to 4 levels of hierarchy to ensure module placement results in less wire length.
- **2. Shrink** the floorplan but avoid congestion. (Final standard cell utilisation around 62%)

Objectives :

- Reduce the wire capacitance without causing routing issues.
- Study the TR of modules to ensure IR compliance.

Observations: This leads to a **2%** reduction in dynamic power.

Cell Selection Using Power Delay Product (PDP)

Power efficient cells

- Compare PDP for "All Architecture Variants" for the function under typical design conditions (trans/load/toggle rate) and most used drive strength (D1) and VT (LVT).
- Set don't use on variants for which the PDP is **higher than the minimum by a threshold**.
- Ex: For ICG, only V8 cells were selected, which aligns with the guidelines in Synopsys document
- **20%** more cells added to the new don't use cell list
- PDP flow also selects the most power-efficient version for AOI/OAI and other combinational cells.

Cell Selection Double Inverter Flops

Double inverter FF

- Some cells use double inverters on the clock, which isolates the register from the clock tree.
- Although slightly higher in the area, these cells help to reduce the dynamic power.
- Total power improved by **10.7%** with double inverter FF in CTS (**9%** post-route)
- WL, clock area reduced (less $C_{effective}$); Latency improved (better OCV)
- All other metrics (Logic Area / Setup TNS) have improved
- Hold TNS was easily recovered with a minor penalty to the area.

Module Activity based VT Selection

Module Activity based VT Selection

- Some ALU modules have a high average toggle rate (-1) .
- Using ULVT/ULVTLL will reduce cell size (pin cap), making overall power better
	- 1. Get list of hierarchy which meet criterion **source scripts/FC/process_hierarchical_power_info.tcl set hier_tr_list[hier_power_inforeport_power.hier.rpt.new 30]** (The criterion is dyn2lkg ratio > 30)

- 2. Preserve the selected hierarchies (auto ungroup is ON by default) **set_ungroup[get_cells \$hier_tr_list] false**
- 3. Set Target lib subset

foreach cell \$hier_tr_list{ if $\{$ [sizeof_coll [get_cell-q \$cell] $] = 0$ } $\{$ **set_target_library_subset-objects \$cell -only_here [get_lib_cells */HDBULTLL06*] }}**

 \cup imagination

Results

- 1. With targeted ULVTLL **total area** was reduced by **2%**, and the area for the targeted modules shrunk by **3 to 4%**
- 2. Total ULVTLL usage is 7.14%, Targeted module ULVTLL usage is 16%
- 3. If dynamic to leakage ratio > 30, expected power saving > **2%**

***Note**: We also experimented with Module activity-based bounds. While it leads to wirelength reduction, it results in routing issues later. The concept for module selection is same.

Optimizing tool settings

Register Retiming Include datapath options Sequential fanin Auto density control Via Pillars

Current setting: **set_optimize_registers -modules \$des true -delay_threshold 1.0** Experiment setting: **set_optimize_registers -modules \$des true -delay_threshold 1.2 Observations:-**

- 1. Relaxing delay threshold by 20%, doesn't degrade timing, area is smaller by **0.5%**
- 2. Tool inserted slightly higher number of retiming bits, but better banking among those cells
- 3. Recommendation: **Relax delay threshold to 1.2**

Retiming control

Setup TNS -1.3 -1.3 0.00%

Fanin-based sequential clock gating

• Edit rm_user_plugin_scripts/compile_pre_script.tcl

set_app_options –list {compile.clockgate.fanin_sequential true}

• **Observation:** The sequential clock gating saves **0.5%** dynamic power.

Include datapath options

Edit rm_user_plugin_scripts/compile_pre_script.tcl

set_datapath_gating_options –enable true –sequential true

set_datapath_architecture_options –power_effort medium

Observation: This option saves an additional **1%** dynamic power.

Auto density control

Recipe: Let the tool clump (high TR) cells (don't spread evenly)

- **place.coarse.auto_density_control = true,**
- **place.coarse.max_density = 0**
- Visually, placement with enhanced option seems clumped.
- **7%** reduction in wire length and **1%** in cell area leads to a **1.13%** reduction in dynamic power

Performance via ladders

- Setup performance via ladders for the high-density cells
	- 2 files are created which need to be edited in sidefile_setup.tcl
		- **set TCL_VIA_LADDER_DEFINITION_FILE "auto_perf_via_ladder_rule.tcl"**
		- **set TCL_SET_VIA_LADDER_CANDIDATE_FILE "auto_perf_via_ladder_association.tcl"**

Edit design_setup.tcl

- **set ENABLE_PERFORMANCE_VIA_LADDER true**
- ^o **Observation: 3.1%** power savings at the end of route_opt.

 \Box imagination

Summary of results

Summary

Summary of the key points

Trial % Power improvement Floorplan modifications | 2.00% PDP cell selection \vert 2.50% Double inverter FF 1 9.00% TR based module VT ased module VT 1.00% Tool options \vert 5.00% **Total Estimation (FC)** 19.50% **Actual power savings (PrimePower)** 18.0% **Correlation from estimate to actual power saving** 93% -3.50% -27.55% -54.74% -48.38% -60.00% -50.00% -40.00% -30.00% -20.00% -10.00% 0.00% 1 **Reduction (%) in Power QoR metrics (Top Level)** ■CK Area ■CK WL ■ Total WL Cell Area

- Reduction in all **QoR parameters correlates** with the reduction in dynamic power.
- **Actual power reduction to estimation is <10%** acceptable for time/resources saved.

 \Box imagination

Results (Power and Efficiency)

- **12-20%** power savings across critical blocks.
- Cell area reduction in all blocks except one. Overall, **4%** savings in area.
- No change in the performance of GPU.
- The power savings lead to a direct correlation = **18%** improvement in power efficiency.

EXECUTE: Represents critical blocks

*Timing after PT ECOs for both baseline and final were met.

Benchmark = Manhattan 3.1 Same performance (fps) for both runs.

Snug

Conclusion and the way forward The work in progress

SNUG INDIA 2024 30

Conclusion

Retrospective and Way forward

- Analysis of design for floorplan, CTS and module constraints is a crucial step.
- The library choice and cell selection can significantly impact power data.
- It is important to tune the tool settings for the design in use.
	- For ex: Retiming control, datapath options etc...
- Analysis and estimation of power is challenging.
	- Can be mitigated by comparing power QoR proxy metrics.
- Overall, an **18% improvement in power** efficiency with **4% less area** and **no impact on timing** is a massive gain.
- Our next step is to push the design with updated cell lists into DSO.ai.
	- This work is in progress.
	- Initial trials: to let the tool have full autonomy (i.e. baseline into DSO) to compare against our manual work results.
	- Our results here are with cold start approach. We expect better results with warm start.
- As our blocks are macro-dominant, trials with MLMP will be beneficial in progress.

 \cup imagination

DSO.ai

- Baseline upgraded with latest cell selection as design input to DSO.ai
- 30 runs aimed at improving the total power of blocks
- Resources: $30 16$ core machines. Runtime = 4 weeks.
- Comparison points: Register WNS, Shorts and Power
- **Cef88e1b** : Best results

DSO.ai

QoR Comparison for cef88e1b

- The best result shows a **15% improvement in dynamic power**. (Was 12% for similar manual trials) i.e. 3% extra power savings.
- Significant improvement in power, **no impact on area**.
- Considering this is an initial trial, we are confident that some tweaking of permutons will lead to more power savings.

 \Box imagination

SNUG INDIA 2024 33

THANK YOU

Our Technology, Your Innovation[™]

Imagination Technologies (Links)

Avoid useful skew moderation

 \Box imagination

Recipe: CTS CCD Settings

- **Current setting:** Tool decides max pre/post pone CCD values (set_app_options -name ccd.max_postpone -value auto)
- **Experiment setting:** (1) disable CCD (2) 10% of clock period as max pre/pone value

Why:

- FC seems to be inserting too many repeaters to fix timing using useful skew; clock power will be high
- By limiting useful skew, we can find a balance in clock area/power and timing.
- In our previous projects using Synopsys ICC2, controlling the clock skew showed benefits.

Avoid useful skew moderation

q imagination

Recipe: CTS CCD Settings

- 1. By limiting CCD to 10% of clock period, the logic area increased by 0.7% and the clock area reduced only by 1.2%
- 2. Overall timing is also better with auto
- **3. Recommendation: keep auto setting**

Clock transition trials

To extract any potential clock power savings

- Since the clock is responsible for almost 30% of GPU power, any fractional improvement will help reduce dynamic power.
- Some refinements and regressions helped us to extract another 0.5% power improvement.
- 1. Total power reduced by 0.4% for trial 1 setting and 0.5% for trial 2 setting
- 2. This data is from the clock_opt stage. The trend persists after route_opt.
- 3. Trial 2 setting is the best choice for all blocks.

