

From Vision To Reality : SiMa.ai's Physical Design Journey with Synopsys

Shibashish Patel, Jignesh Shah, Ajit Kumar, Vishal Katba SiMa.ai

SiMa.ai at a Glance

We are a **software** company that is *building our own* **silicon**

Amazing team: First silicon to production with off-the shelf boards.

Industry's **best ML software** in production for desktop and cloud

Goal: No code visual development ML environment

SiMa.ai at a Glance

SiMa.ai focus: Embedded edge market

SiMa ai at a Glance

Software schedule value proposition

Customer challenge: I must accelerate my design to meet product schedule SiMa.ai's key differentiator: Model compiler, pushbutton build, pushbutton deploy

Software

schedule

SiMa.ai at a Glance

Power value proposition

Customer challenge: I have size, weight or power constraints in my design

SiMa.ai's key differentiator:

- 40% better FPS/watt on MLPerf benchmark than hand coded competitor
- 2-4x better FPS/watt than competitor compiled ML models (450% YoloV7 tiny)

SNUG INDIA 2024

MLSoC 8.5 watts

6

SiMa ai at a Glance

Performance value proposition

Customer challenge: I have high FPS and low latency ML pipeline in my design

SiMa.ai's key differentiator:

- **10x** faster response time •
- **12x** faster end-to-end pipeline FPS than PCIe ML accelerator •

10x faster control loop latency in microseconds,

not milliseconds

80 60 (FPS) Second 40 20

> **Previous ML Accelerator Design** (competitor) PCIe+FPGA + x86 server (ML ~25 watts)

FPS+

latency

7

Cost value proposition

Customer challenge: I have a low cost target in my design SiMa.ai's key differentiator: 50% lower \$/camera stream than competitor

Complex Landscape Needs: Robust Solutions + Excellent Support Systems

Technology Node ⇔ Foundry ⇔ IP ⇔ EDA SiMaª snug

- Choosing the right technology node
- Foundry-qualified EDA tool versions & signoff settings, known limitations/workarounds
- IP availability
- IP qualification metrics
- Bottom line
 - Simultaneous decision-making needed with multiple variables

Soft-IP & Hard-IP

• Key Decision Making

- Soft/Hard IP Licensing, IP Hardening, In-house development
- Feature support like power management etc.
- Validation & Integration Know-Hows
 - IP PD Integration Guide
 - PPA Metrics details: Synopsys EV74 IP had complete among all IPs
- Watch out for
 - Cost vs Schedule
 - Feasibility: IP integration with different features
 - PPA metrics provided by IP vendor

EDA License & Compute Requirements

- Deciding Factors
 - Schedule vs Compute vs License
- Tool Readiness checks
 - EDA tool features & required licenses
 - Compute cores support per license
 - License hold & release during staggered execution
- Solution:
 - Focussed approach backed by analysis to limit the trials
 - Hiring & To-Be-Hired mindset

EDA Methodology

- Characteristics of good EDA flow:
 - Efficiency
 - Accuracy
 - Repeatability
 - Scalability
 - Integration
 - Flexibility
- RMgen adaption from Synopsys
 - Easy to download & configure
 - Customizable
 - Worked out-of-the-box for most of the blocks
- Important Implication : Next slide

Physical Design Partitioning/Hierarchy

- Limiting & Deciding parameters
 - Schedule/runtimes, Licenses, Compute
 - Constraints Management
 - Additional interface timing closure
 - Clock budgeting/balancing
- Design X flat implementation for faster TAT
 - set_app_options -name extract.starrc_mode with -val none instead of -val fusion_adv
- Remember this
 - Good EDA flow helps in quicker decision-making
 - Tool app options : Correlation tradeoff vs schedule

Constraining the Timing Constraints

- Key considerations:
 - Constraints development: Bottom-up or top-down
 - Constraints coding styles & integration.
 - A combination of TCL format and SDC
 - Constraints quality signoff
 - Combination of GCA & custom quality checks
 - Paranoia checks
 - - from , -through , -to switch usage for every exception definition
 - RTL design integrator and/or IP vendor review

Synthesis/Placement QoR vs Runtime

- Synopsys team actively worked with SiMa.ai PD teams on runtime & QoR improvements. Reference design snapshot:
 - Overall better convergence with new switches with minor impact on runtime
 - With additional 30 minutes of route_detail –incremental benefits in DRCs 196 (20 shorts) without impacting timing (-0.17/-48.34/604)
 - RM flow switch: High effort congestion switch at placement was increasing runtime

Stage: Route_opt	High Effort True	High Effort False	High Effort False + Opt
Shorts/DRCs	8/369	601/2176	87/686 → PRDI 20/196
Total Power	21.18	20.827	<mark>20.225</mark>
WNS	-0.1687	-0.197	-0.1706
TNS	-48.6245	-54.4816	<mark>-47.9718</mark>
NUM	801	782	<mark>463</mark>
Total R2G Runtime	<mark>94.4 hrs</mark>	<mark>77 hrs</mark>	<mark>84.8 hrs</mark>

Formal Verification using Formality

- Follow IP Physical Integration guidelines
 - Logic preservation and formality-related recommended switches
- Multiple challenges of
 - Hard verification, SVF guide rejection, bad logic optimization & wrong guide merging
- Solutions
 - SVF hacks & workaround
 - Close collaboration with Synopsys R&D to provide native fixes for corner cases in Fusion Compiler & Formality
- Pro Tip: Engage early, and parallelize solution finding.

MSCTS Methodology Development

- Synopsys successfully demonstrated MSCTS technology improving overall Latency, Timing & overall TAT
 - Design A to reduce latency from 1.3ns to 0.9ns without impact on timing
 - Guided for **Design B** to build custom MSCTS
 - Design C to improve latency, TNS & FEP
- Game Changer :
 - Interface timing closure as well as internal timing improvement by latency reduction
 - 30% latency reduction
 - 2x TNS & FEP reduction

Setup Violations			Normal CTS	
	Total	R2R	I2R	R2O
WNS	-0.831	-0.43	-0.802	-0.831
TNS	-2216.71	-748.807	-795.395	-672.507
NUM	18239	11052	4727	2460
Hold Violations				
	Total	R2R	I2R	R2O
WNS	-0.269	-0.269	0	0
TNS	-97.059	-97.059	0	0
NUM	6779	6779	0	0

Setup Violations			MSCTS	
	Total	R2R	I2R	R2O
WNS	-1.1602	-0.4949	-1.1602	<mark>-0.64</mark>
TNS	-6458.43	-205.918	-6230.78	<mark>-21.73</mark>
NUM	14457	4164	10176	<mark>117</mark>
Hold Violations				
	Total	R2R	I2R	R20
WNS	-0.0832	-0.0832	-0.0288	0
TNS	<mark>-55.48</mark>	-54.6	-0.884	0
NUM	3580	3283	297	0

Extraction & Timing Signoff

- Spef-stitch methodology adopted
 - With marginal miscorrelation (< -30ps Setup) on interface timing, leveraged faster TAT
 - Miscorrelation was mainly identified on nets that had not adhered to a custom interface dmz rule
- Beyond the regular timing signoff
 - Special clocking structure (MESH-based clock network/MSCTS)
 - Voltage scaling requirement, Multi-voltage signoff
 - Hard-IP specific considerations: Aging margins
 - Judicious use of DMSA & Primetime license management
- Food for thought
 - Hierarchical-Flat Correlation vs Signoff Closure vs Schedule

Reliability Verification

- Views/models & signoff criteria
 - Without AVM : 0, With AVM and avm_read:avm_write:stand_by ~10 to 20mV more IR drop
 - Methodology : Grid robustness, IR & ESD

- Start RV early
 - Could reset P&R or longer closure loop
- Views/models/methodology vs Accuracy
- End-to-end closure: At least once before final run ____
 - IR-Analysis:IR-Fix:Timing-DRC:IR-Analysis Loop
 - On near timing closed DB

Physical Verification (IC-Validator)

Traditional Physical Verification Flow

Shift Left Physical Verification within Fusion Compiler (InDesign IC-Validator)

InDesign-IC Validator

signoff check drc

signoff create fill

Fusion Compiler

Design

Planning

Place

Clock

Route

ECO

- Seamless integration into Fusion Compiler
 - Efficient Execution, Error viewing and fixing within PnR tool
- In-design ICV is scalable to multiple CPUs/Hosts
 - SLURM setup enabled for multi-CPU/Host for faster TAT (~40% improvement)
- Be Curious & Possibilities
 - ICV features (explorer, hotspot/cluster analysis)
 - PV closure is possible without an army of PV augmentation/fire-fighters.

Foundry DRC Runset

Foundry Fill runset

Startup: Onwards and upwards!

• The Big Picture

- Startup Opportunities
 - 30,000 foot view & granular knowledge
 - Observational learning & situational understanding
- Synergistic
 - Tech Node, EDA, IP, Compute, License, Schedule, Implementation, Signoff & "Hit the ground running"
- Synopsys
 - Robust solutions
 - Excellent support systems
- Excited to explore the new while maintaining momentum on current
 - RTL-A : For shift-left PPA, blur the lines between RTL & PD, which makes perfect sense for a startup
 - TCM : Constraints management A silicon Savior
 - DSO.ai : TAT reduction & PPA improvement

Acknowledgements

Thanks to Synopsys Team

Azhar Imam Mukunda Nakkana Jin Wang Bhavani Prasad Vijay Sivalingam Karan Shah Charu Khosla Irfan Shaik

THANK YOU

Our Technology, Your Innovation[™]