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Arithmetic Overflow Verification Challenge
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Arithmetic Overflow Verification Challenge

• Arithmetic overflow verification:
– Unsigned arithmetic
– Signed arithmetic

• Traditional methods can be inefficient:
– Dynamic simulation: Hard to be exhaustive
– Structural LINT: Lots of false negatives

input  [3:0] A;
input  [3:0] B;
output [3:0] Y;

assign Y[3:0] = A[3:0] + B[3:0];

• RHS width is 5-bit, including carry

• LHS width 4-bit

• LHS is not wide enough  Overflow!
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Arithmetic Overflow Verification Challenge

• Formal LINT = Structural LINT + Formal Verification
– Auto-generated SystemVerilog Assertions for Formal Verification

• Formal LINT looks promising
– But…
– The paper provides its prerequisite
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Arithmetic Logic Category
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Arithmetic Logic Category

• Unsigned Logic
– The design implements unsigned arithmetic
– No “signed” keyword
– “Part select syntax” could be used for readability
– Manual “zero-padding” at MSBs could be used for readability

• Example
wire [3:0] FUL_U1A, FUL_U1B; // Variables are intended to be unsigned.
wire [4:0] Y_U1A = FUL_U1A + FUL_U1B;
wire [4:0] Y_U1B = FUL_U1A[3:0] + FUL_U1B[3:0];
wire [4:0] Y_U1C = {1’b0,FUL_U1A[3:0]} + {1’b0,FUL_U1B[3:0]};
wire [4:0] Y_U1D = {1’b0,FUL_U1A} + {1’b0,FUL_U1B};
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Arithmetic Logic Category

• Implicit Signed Logic
– The design implements signed arithmetic
– No “signed” keyword. Variable signedness is implied by its consuming logic.
– Manual sign-extension for implicit signed variable must be used for correctness
– Part-select syntax could be used for readability
– Manual zero-padding at MSBs could be used for readability (for unsigned variables)

• Example
wire [3:0] FUL_U1A; // Variable is intended to be unsigned.
wire [3:0] FUL_S1B; // Variable is intended to be signed but not declared explicitly.
wire [4:0] Y_S1A = FUL_U1A + {FUL_S1B[3],FUL_S1B};
wire [4:0] Y_S1B = {1’b0,FUL_U1A} + {FUL_S1B[3],FUL_S1B};
wire [4:0] Y_S1C = {1’b0,FUL_U1A[3:0]} + {FUL_S1B[3],FUL_S1B[3:0]};
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Arithmetic Logic Category

• Explicit Signed Logic
– The design implements signed arithmetic
– Signed variables are declared using “signed” keyword
– No part-select syntax for explicit signed variables
– No manual sign-extension for explicit signed variables

• Example
wire [3:0] FUL_U1A; // Variable is intended to be unsigned.
wire [3:0] FUL_U1B; // Variable is intended to be unsigned.
wire signed [3:0] FUL_S1C; // Variable is intended to be signed and declared explicitly.
wire signed [3:0] FUL_S1D; // Variable is intended to be signed and declared explicitly.

wire signed [4:0] Y_S1A = FUL_U1A + FUL_U1B;
wire signed [4:0] Y_S1B = FUL_S1C + FUL_S1D;
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Formal LINT for Each Category
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Formal LINT for Unsigned Logic
• HLF_U1A, HLF_U1B and Y_U3A are all unsigned 4-bit  Overflow?!
• HLF_U1A and HLF_U1B both reduced to half range by logic.
• Formal LINT proves Y_U3A has no overflow issue.

output [3:0] Y_U3A; 
input  [3:0] FUL_U1A, FUL_U1B; 
wire   [3:0] HLF_U1A = (FUL_U1A > 7) ? 7 : FUL_U1A; 
wire   [3:0] HLF_U1B = (FUL_U1B > 7) ? 7 : FUL_U1B; 
assign Y_U3A = HLF_U1A + HLF_U1B;

These are just testcases, not real design. 
Value ranges are clamped to test the 
behavior difference between Structural LINT 
and Formal LINT.

LHS value range : 15~0
RHS value range : 7~0 + 7~0 = 14~0
Structural LINT : Violation
Formal LINT : Proven
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Formal LINT for Explicit Signed Logic
• All variables declared “signed” explicitly
• HLF_S1A, HLF_S1B and Y_S3F are all signed 4-bit  Overflow?!
• HLF_S1A and HLF_S1B both reduced to half range by logic.
• Formal LINT proves Y_S3F has no overflow issue.

output signed [3:0] Y_S3F; 
input  signed [3:0] FUL_S1A, FUL_S1B; 
wire   signed [3:0] HLF_S1A, HLF_S1B;
assign HLF_S1A = (FUL_S1A > 3) ? 3 : (FUL_S1A < -4) ? -4 : FUL_S1A;
assign HLF_S1B = (FUL_S1B > 3) ? 3 : (FUL_S1B < -4) ? -4 : FUL_S1B;
assign Y_S3F = HLF_S1A + HLF_S1B;

LHS value range : 7~-8
RHS value range : 3~-4 + 3~-4 = 6~-8
Structural LINT : Violation
Formal LINT : Proven
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Formal LINT for Implicit Signed Logic

• All variables are intended to be signed but aren’t explicitly declared as signed. 
• The design is correct because HLF_S1e and HLF_S1f are reduced to half range.
• Formal LINT treat both operands as unsigned and flag error.

output [3:0] Y_SCf; 
input  [3:0] FUL_S1e, FUL_S1f; 
wire   [3:0] HLF_S1e = (FUL_S1e[3:2]==2'b01) ? 4'b0011 : 

(FUL_S1e[3:2]==2'b10) ? 4'b1100 : FUL_S1e[3:0] ; 
wire   [3:0] HLF_S1f = (FUL_S1f[3:2]==2'b01) ? 4'b0011 : 

(FUL_S1f[3:2]==2'b10) ? 4'b1100 : FUL_S1f[3:0] ; 
assign Y_SCf[3:0] = {HLF_S1e[3], HLF_S1e[3:0]} + {HLF_S1f[3], HLF_S1f[3:0]};

Formal LINT doesn’t know the operands are signed in the design intention.
LHS value range : 15~0
RHS value range : 31~0 + 31~0 = 62~0
Structural LINT : Violation
Formal LINT : Violation

Intended LHS value range : 7~-8
Intended RHS value range : 3~-4 + 3~-4 = 6~-8
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Formal LINT is not for all of them!

• The key issue is variable’s signedness information

Category Pitfalls Formal LINT limitation

Implicit Signed 

Logic
None

• Limitation: Lack of variable signedness information.

• Formal LINT currently may not accurately analyze it.

• Work-in-progress for EDA vendors

Explicit Signed 

Logic

Many

(show you 

later)

• No showstopper for Formal LINT

• Complementary checks required

• Work-in-progress for EDA vendors

Unsigned Logic None
• No limitation

• Formal LINT is fully capable of its verification

Hybrid 
LINTing
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Pitfalls in Explicit Signed Logic
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Pitfall in Explicit Signed Logic
• Verilog-2001 and 2005 defined syntax for signed arithmetic.
• However, designers must be aware of some rules to avoid incorrect design. 
• Refer to Verilog-2005 LRM:

– Section 3.5.1 Integer constants
– Section 5.1.2 Binary operator precedence
– Section 5.1.3 Using integer numbers in expressions
– Section 5.1.6 Arithmetic expressions with regs and integers
– Section 5.1.7 Relational operators
– Section 5.1.8 Equality operators
– Section 5.1.12 Shift operators
– Section 5.4 Expression bit lengths
– Section 5.5 Signed expressions
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Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

• Example:
wire [3:0] FUL_U1A; 
wire signed [3:0] FUL_S1A; 
wire signed [3:0] FUL_S1B; 

wire [4:0] Y_U1C = FUL_S1A + FUL_S1B;

wire [4:0] Y_U1B = FUL_U1A + FUL_S1A;

Signed variable converted 
into unsigned during 
evaluation of the equation

Unsigned 
variable

Signed variable

Mixture of signed 
and unsigned in 
equation
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Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

• Example:
wire        [3:0] A_U4b;
wire signed [3:0] A_S4b;
wire signed [3:0] B_S4b;
wire signed [4:0] Y_S5b = A_S4b + B_S4b;

wire signed [4:0] Z_S5b = A_U4b + B_S4b;

What’s the impact?

Example:
A_U4b = +4 = 4’b0100
B_S4b = -1 = 4’b1111
Expected Z_S5b = +3

Example:
A_S4b = +4 = 4’b0100
B_S4b = -1 = 4’b1111
Expected Y_S5b = +3

Y_S5b[4:0] = A_S4b + B_S4b
           = 5’b00100 + 5’b11111
           = 5’b00011
           = +3

Z_S5b[4:0] = A_U4b + B_S4b

           = 5’b00100 + 5’b01111
           = 5’b10011
           = -13

B_S4b is converted 
to unsigned
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Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

• Example:
wire        [3:0] U4b_0 = 4'b0100; // +4
wire signed [3:0] S4b_0 = 4'b0100; // +4
wire signed [3:0] S4b_1 = 4'b1111; // -1

wire Y_0 = (S4b_0 >= S4b_1); // Y_0 = 1 (simulation result)

wire Y_1 = (U4b_0 >= S4b_1);

What’s the impact?

U4b_0 is interpreted as +4
S4b_1 is interpreted as +15 because it is converted into 
unsigned.

// Y_1 = 0 (simulation result)
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Pitfall 2: Signed-to-unsigned conversion
Due to concatenation

• Signed variable will be automatically sign-extended.
• However, manual sign-extension will cause signed-to-unsigned conversion
• Example:
wire signed [3:0] S4b_A; 
wire signed [3:0] S4b_B; 
wire signed [4:0] S5b_Y; 
wire signed [4:0] S5b_Z; 
assign S5b_Y = S4b_A + S4b_B;
assign S5b_Z = {S4b_A[3],S4b_A} + {S4b_B[3],S4b_B};

Result of 
concatenation is 
treated as unsigned
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Pitfall 3: Signed-to-unsigned conversion
Due to part-select

• Example: 
wire signed [3:0] S4b_A; 
wire signed [3:0] S4b_B; 
wire signed [4:0] S5b_X; 
wire signed [4:0] S5b_Y; 
wire signed [4:0] S5b_Z; 
assign S5b_X = S4b_A + S4b_B;
assign S5b_Y = S4b_A[3:1] + S4b_B[3:1];
assign S5b_Z = S4b_A[3:0] + S4b_B[3:0];

Part-select changes 
variable into unsigned 
during equation 
evaluation

They will be automatically zero-
padded instead of sign-extended
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Pitfall 4: Sign Casting

• To avoid signed-to-unsigned conversion, we can use $signed().
• However, pitfall again…
• Example:
wire [3:0] A_U4b; 
wire signed [3:0] B_S4b; 
wire signed [5:0] X_S6b = A_U4b + B_S4b; // Signed-to-unsigned conversion

wire signed [5:0] Y_S6b = $signed(A_U4b) + B_S4b; // Bad sign casting

wire signed [5:0] Z_S6b = $signed({1’b0,A_U4b}) + B_S4b; // Good sign casting 

Example: If A_U4b is “+15”, 
$signed(A_U4b) will be interpreted as “-1”.

Solution: Zero-padding before sign-
casting
(Reference: Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 – 
Opportunities and Hazards,” in DVCON 2005 )
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Pitfall 5: Signed Constant

• Example:
wire signed [3:0] A_S4b;

wire signed [5:0] X_S6b = A_S4b + 4’d8;

wire signed [5:0] Y_S6b = A_S4b + 4’sd8;

wire signed [5:0] Z_S6b = A_S4b + 5’sd8;

4’d8 is unsigned. A_S4b is 
converted into unsigned due to 
mixture of signed and unsigned 
variables. Use a signed constant to 

keep A_S4b as signed. But 
“4’sd8” will be interpreted 
as “-8”.

This is the right way to do it
Value range of 4-bit signed constant : +7 ~ -8
Value range of 5-bit signed constant : +15 ~ -16
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Pitfall 6: Interim Result overflow

• Example:
wire [3:0] B = 4'b0011;
wire [3:0] C = 4'b1110;

// Simulation result:
wire [3:0] Y2 = (B+C) >>> 1; // Y2 = 4'b0000

wire [3:0] Y4 = (B+C) / 2 ; // Y4 = 4'b1000

• Refer to Verilog-2005 LRM:

“B+C” evaluated as 4-
bit expression  
Overflow already before 
shift

Constant “2” is 32-bit. 
“(B+C)/2” is evaluated as 
32-bit expression. Result 
is correct.
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Solution: VC SpyGlass

Check Items Required LINT type VC SpyGlass

coverage

Name of the rule

Signed-to-unsigned conversion

Due to mixed s igned and 

unsigned operands in equat ion
Structural Covered

SignedUnsignedExpr-ML

Due to part-select Structural Covered SignedUnsignedConvert-ML

Due to concatenat ion Structural Covered SignedUnsignedConvert-ML

Bad sign-casting Formal Part of Roadmap

Bad signed constant
Structural Covered

LiteralUnderf low-ML

LiteralOverf low-ML
Interim result  overflow Formal Part of Roadmap

Arithmetic overflow 

(LHS variable is not wide enough to hold functional result  from 

RHS equation) Formal Covered

SignedUnsignedExpr-ML

W 164a

NegativeValueInfer -ML

W 110

Hybrid 
Linting
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Conclusion
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Conclusion

• Formal LINT is not efficient for Implicit Signed Logic.
o EDA vendors are working on a solution for it.

• Formal LINT is a promising verification solution for 
Unsigned Logic and Explicit Signed Logic.
o EDA vendors are releasing new tool versions for pitfall checks.

• Covered summary of the pitfalls, which can be a good 
reference for designers and EDA vendors.

DVCON2024 
Paper (#1020)

DVCON2024 
Poster (#1020)
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Questions?
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THANK YOU
YOUR
INNOVATION
YOUR
COMMUNITY
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