Hybrid Linting:

An efficient method to overcome challenges W|th
Structural Linting in Arithmetic Overflow
Verification

Kai-wen Chin, Esra Sahin Basaran, Kranthi Pamarthi -
Renesas Electronics /

SNUG SILICON VALLEY 2024

1

Arithmetic Overflow Verification Challenge

Arithmetic Overflow Verification Challenge RENESAS Q

input [3:0] A; * Arithmetic overflow verification:
input [3:0] B; — Unsigned arithmetic
output [3:0] Y; — Signed arithmetic

* Traditional methods can be inefficient:
— Dynamic simulation: Hard to be exhaustive
— Structural LINT: Lots of false negatives

assign Y[3:0] = A[3:0] + B[3:0];

* RHS width is 5-bit, including carry
* LHS width 4-bit
« LHS is not wide enough = Overflow!

SNUG SILICON VALLEY 2024 3

Arithmetic Overflow Verification Challenge RENESAS Q

 Formal LINT = Structural LINT + Formal Verification
— Auto-generated SystemVerilog Assertions for Formal Verification

 Formal LINT looks promising
— But...
— The paper provides its prerequisite

SNUG SILICON VALLEY 2024 4

Arithmetic Logic Category

Arithmetic Logic Category

» Unsigned Logic
— The design implements unsigned arithmetic
— No “signed” keyword

— select syntax” could be used for readability
— Manual “zero-padding<.at MSBs could be used for readability

° dampie

(wire [3:00) FUL UlA,\FUL UlB; // iables are intended to be unsigned.
wire [4:0]] Y UIA = FUL UlA + FUL U1B;

wire [4:0]] Y UlB = FUL UIA[3:0] + |FUL U1B[3:0]};

wire [4:0]] Y UIC = {1'b0,FUL U1A[3:0]} + {1’b0,FUL U1B[3:0]};

wire [4:0]] Y UID E {1'b0,FUL UlA}| + {1’b0,FUL U1B};

SNUG SILICON VALLEY 2024 6

Arithmetic Logic Category RENESAS Q |

 Implicit Signed Logic
— The design implements signed arithmetic
— No “signed” keyword. Variable signedness is implied by its consuming logic.
— Mariual sign-extension for implicit signed variable must be used for correctness

— Pdlrt-select syntax could be used for readability
MSBs could be used for readability (for unsigned variables)

anual zero-padding

ample

(wire [3:0) FUL UlA; // Variab

is intended to be unsigned.

wire [3:0]] FUL S1B; // Variable\is intended to be signed but not declared explicitly.
wire [4:0]] Y SIA = FUL U1A + [{FUL S1B[3],FUL S1B}|;

wire [4:0]] Y S1B = {1’b0,FUL UlA} + {FUL SIB[3],FUL S1B};

wire [4:0]) ¥ S1C = {1'b0,FUL Ul1A[3:0]} + {FUL S1B[3],FUL S1B[3:0]};

SNUG SILICON VALLEY 2024 7

Arithmetic Logic Category

« Explicit Signed Logic
— The design implements signed arithmetic

— Signed variables are declared using “signed” keyword
— No part-select syntax for explicit signed variables
— No manual sign-extension for explicit signed variables

« Example

wire [3:0] FUL UlA; // Variable is intended to be unsigned.

wire [3:0] FUL UlB; // Variable is intended to be unsigned.

wire signed§\3:0] FUL S1C; // Variable is intended to be signed and declared explicitly.
wire signed [3:0] FUL S1D; // Variable is intended to be signed and declared explicitly.
wire signed [4:0] Y SIA = FUL UlA + FUL UlB;

wire signed [4:0] Y S1B = FUL S1C + FUL S1D;

- J

SNUG SILICON VALLEY 2024 8

Formal LINT for Each Category

Formal LINT for Unsigned Logic RENESAS

« HLF_U1A, HLF_U1B and Y_US3A are all unsigned 4-bit > Overflow?!
« HLF_U1A and HLF_U1B both reduced to half range by logic.
 Formal LINT proves Y_US3A has no overflow issue.

output [3:0] Y U3A;

input (3:0] FUL Ul1A, FUL UI1B;

wire (3:0] HLF UlIA = (FUL UIA > 7) 2 7 FUL UlA;

wire (3:0] HLF UIB = (FUL UIB > 7) 2 7 FUL UlB;
assign Y_UBA = HLF UlA + HLFE UlB;

LHS value range : 15~0 These are just testcases, not real design.
RHS value range : 7~0 + 7~0 = 14~0 Value ranges are clamped to test the
Structural LINT : Violation behavior difference between Structural LINT

Formal LINT : Proven and Formal LINT.

SNUG SILICON VALLEY 2024 10

Formal LINT for Explicit Signed Logic Renesnas Q

All variables declared “signed” explicitly
HLF _S1A, HLF_S1B and Y_S3F are all signed 4-bit = Overflow?!

HLF S1A and HLF_S1B both reduced to half range by logic.
Formal LINT proves Y_S3F has no overflow issue.

output signed [3:0] Y S3F;

input signed [3:0] FUL S1A, FUL S1B;

wire signed [3:0] HLF S1A, HLF S1B;

assign HLF S1A = (FUL SIA > 3) ? 3 : (FUL S1A < -4) ? -4 : FUL S1A;

assign HLF SIR = (FIL S1R > 3) 2 3 - (FUL SIB < -4) ? -4 : FUL S1B;
assign Y S3F = HLF S1A + HLF S1B;

LHS value range : 7~-8

RHS value range : 3~-4 + 3~-4 = 6~-8
Structural LINT : Violation

Formal LINT : Proven

SNUG SILICON VALLEY 2024 11

Formal LINT for Implicit Signed Logic ENESAS Q

 All variables are intended to be signed but aren’t explicitly declared as signed.
* The design is correct because HLF_S1e and HLF_S1f are reduced to half range.
 Formal LINT treat both operands as unsigned and flag error.

output [3:0] Y SCf;
input [3:0] FUL Sle, FUL S1f;

wire [3:0] HLEF Sle = (FUL Sle[3:2]==2'b01) ? 4'b0011 :

(FUL Sle[3:2]==2"b10) ? 4'b1100 : FUL Sle[3:0] ;
wlre [3:0] HLEF S1f = (FUL S1f[3:2]==2'b01) ? 4'b0011 :

(FUL S1f[3:2]==2"b10) ? 4'b1100 : FUL S1£[3:0] >

assign Y SCEf[3:0] {HLF Sle[3], HLF Sle[3 0]} + {HLF S1f[3], HLF S1£f[3:0]};

Formal LINT doesn’t know the operands are signed in the design intention.
Intended LHS value range : 7~-8 LHS value range : 15~0
Intended RHS value range : 3~-4 + 3~-4 = 6~-8 RHS value range : 31~0 + 31~0 = 62~0

Structural LINT : Violation

Formal LINT : Violation

SNUG SILICON VALLEY 2024 12

Formal LINT is not for all of them! RENESAS @

e The key issue is variable’s signedness information

Category m Formal LINT limitation

Limitation: Lack of variable signedness information.

None « Formal LINT currently may not accurately analyze it.
« Work-in-progress for EDA vendors
Many * No showstopper for Formal LINT

Explicit Signed Hybrid
(show you Complementary checks required -_— LI);\lTing

Logic

later) Work-in-progress for EDA vendors

* No limitation
Unsigned Logic None
« Formal LINT is fully capable of its verification

SNUG SILICON VALLEY 2024 13

Pitfalls in Explicit Signed Logic

Pitfall in Explicit Signed Logic — @

 Verilog-2001 and 2005 defined syntax for signed arithmetic.
« However, designers must be aware of some rules to avoid incorrect design.
« Refer to Verilog-2005 LRM:

— Section 3.5.1 Integer constants
— Section 5.1.2 Binary operator precedence

— Section 5.1.3 Using integer numbers in expressions

— Section 5.1.6 Arithmetic expressions with regs and integers
— Section 5.1.7 Relational operators

— Section 5.1.8 Equality operators

— Section 5.1.12 Shift operators

— Section 5.4 Expression bit lengths

— Section 5.5 Signed expressions

SNUG SILICON VALLEY 2024 15

Pitfall 1: Signed-to-unsigned conversion RENESAS @

Due to mixture of signed and unsigned in expression

- Example: Mixture of signed

wire [3:0) FUL ULA; and unsigned in
wire signed [3:0] FUL S1A;

wire signed [3:0] FUL S1B; equatlon

wire [4:0] Y UIC = FUL S1A +A4UL S1B;

wire [4:0] Y UIB E FUL_UIPJ +[FUL_SIA;]

Unsigned Signed variable converted
variable into unsigned during
evaluation of the equation

SNUG SILICON VALLEY 2024 16

Pitfall 1: Signed-to-unsigned conversion RENESAS @ |

Due to mixture of signed and unsigned in expression

What’s the impact?

« Example: Example:
| A S4b = +4 = 4'b0100
wire [3:0] A Udb; B S4b = -1 = 4’b1111
wire signed [3:0] A S4db; Expected Y S5b = +3
wire signed [3:0] B S4b; Y S5b[4:0] = A S4b + B _S4b
[Wire Signed [4:0] Y_SSb = A_S4b + B_S4b;] = 5'b00100 + 5'bl1111
= 5’b00011
wire signed [4:0] Z S5b = A U4d4b + B S4b; = *3
Example: B S4b is converted

A Udb = +4 = 4’b0100
B S4b = -1 = 4'bl1lll
Expected Z S5b = +3 Z S5b[4:0]

to unsigned

A U4b + B S4db

5'b00100 + 5'b01111

5'b10011
-13

SNUG SILICON VALLEY 2024 17

Pitfall 1: Signed-to-unsigned conversion RENESAS Q

Due to mixture of signed and unsigned in expression

e P
IIIVIU-
lwire [3:0] Ud4b 0 = 4'b0100; // +4]

wlre si1gnegd [(3:01 S-O_O = 4"p0100; // +4
[wire signed [3:0] S4b 1 = 4'bl111; // —1]

What’s the impact?

wire Y 0 = (S4b 0 >= S4b 1); // Y 0 = 1 (simulation result)

[wire Y 1 = (Udb 0 >= S4b 1); // Y 1 = 0 (simulation result)]

U4b 0 is interpreted as +4
S4b 1 is interpreted as +15 because it is converted into
unsigned.

SNUG SILICON VALLEY 2024 18

Pitfall 2: Signed-to-unsigned conversion RENESAS @

Due to concatenation

« Signed variable will be automatically sign-extended.
* However, manual sign-extension will cause signed-to-unsigned conversion

« Example: Result of
wire signed Sdb_A; concatenation is
wire signed S4b B;

OOOO

[

[.
wire signed | treated as unsigned
wire signed [

]

]

] S5b Y;

] s5b_z- ///////’//\
assign S5b Y

|
assign S5b 7z =|{S4b A[A} T {S4b_B[3],S4b_B}];

SNUG SILICON VALLEY 2024 19

Pitfall 3: Signed-to-unsigned conversion RENESAS Q

Due to part-select

« Example: Part-select changes

wire signed [3:0] S4b_A; variable into unsigned
wire signed [3:0] S4b B; during equation
wire signed [4:0] S5b X; _
wire signed [4:0] S5b Y; evaluation
wire signed [4:0] S5b Z;
assign S5b X = S4b A + 5S4
S4b A[3:1]

assign S5b 7z =| S4b A[3:0]

assign S5b Y =[

They will be automatically zero-
padded instead of sign-extended

SNUG SILICON VALLEY 2024 20

Pitfall 4: Sign Casting —— @

« To avoid signed-to-unsigned conversion, we can use $signed().

* However, pitfall again...

« Example:

wire
wire
wire

wire

wire

[3:0] A Udb;

signed
signed

signed

signed

[3:0]
[5:0]

[5:0]

[5:0]

Example: IfA U4b is “+157,
$signed(A_U4b) will be interpreted as “-1”.

B S4b;
X S6b = A Ud4b + B S4K; // Signed-to-unsigned conversion

Y S6b {»$signed(A_U4b) + B S4b; // Bad sign casting

Z Seéb { $signed({1’bO,A_U4b})]+ B S4b; // Good sign casting
Solution: Zero-padding before sign-

casting

(Reference: Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 —
Opportunities and Hazards,” in DVCON 2005)

SNUG SILICON VALLEY 2024 21

Pitfall 5: Signed Constant RENESAS @

« Example:

wire

wire

wire

wire

signed
signed
signed

signed

:0] A S4b;

4'd8 is unsigned. A _S4b is
converted into unsigned due to
mixture of signed and unsigned

variables. Use a signed constant to

0] X_S6b = [A_S4b|+ 47a8; keep A_S4b as signed. But
.0] Y S6b = A Sdb +[4,5018];“4’sd8” will be interpreted

as "-8".

:0] Z S6b = A S4b +[5'sd8}-

This is the right way to do it
Value range of 4-bit signed constant : +7 ~ -8
Value range of 5-bit signed constant : +15 ~ -16

Pitfall 6: Interim Result overflow RENESAS @

“B+C” evaluated as 4-
« Example: bit expression =2

wire [3:0] B = 4'b0011;
wite [3:01 C = 41p1110., Overflow already before

Shﬁp/ Simulation result:
>>> 1; // Y2 = 4'b0000

wire [3:0] Y2 =

wire [3:0] Y4 =[(B+c) /2| : // Y4 = 4'b1000

 Refer to Verilog-2005 LRM:

Constant “2” is 32-bit.

Expression Bit length Comments

ops e i) “(B+C)/2" is evaluated as
R T omssmessomnoto) | 32-bit expression. Result
S 1o Jis st detemmines IS correct.

1?11: max(L(j).L(k)) i is self-determined

G} LG+ +L() All operands are self-determined

SNUG SILICON VALLEY 2024 23

Solution: VC SpyGlass RENESAS

Check Items Required LINT type VC SpyGlass Name of the rule

coverage

Due to mixed signed and

unsigned operands in equation SignedUnsignedExpr-ML
Structural Covered

Due to part-select Structural Covered SignedUnsignedConvert-ML
Due to concatenation Structural Covered SignedUnsignedConvert-ML
Bad sign-casting Formal Part of Roadmap

Bad signed constant LiteralUnderflow-ML
Structural Covered
LiteralOverflow-ML
Interim result overflow Formal Part of Roadmap

Signed-to-unsigned conversion

Arithmetic overflow SignedUnsignedExpr-ML
(LHS variable is not wide enough to hold functional result from W164a
. Formal Covered
RHS equation) NegativeValuelnfer-ML
W110
Hybrid
Linting
k) SNUG SILICON VALLEY 2024 24

Conclusion

SNUG SILICON VALLEY 2024 25

Conclusion RENESAS Q

« Formal LINT is not efficient for Implicit Signed Logic.

. _ _ DVCON2024
o EDA vendors are working on a solution for it. Poster (#1020)

ttttttttt " oo §2020. =
accellera usin | LINT DVETDHN _
sverens mama =

AAAAAAAAA

 Formal LINT is a promising verification solution for
Unsigned Logic and Explicit Signed Logic.

o EDA vendors are releasing new tool versions for pitfall checks. T it
 Covered summary of the pitfalls, which can be a good -
reference for designers and EDA vendors. T

“This paper proposes adopcion of Formal LINTing fechnology s & obus soluion fo cefee arithmesic overflow
isstes. Formal LINTiag leverages formal versficson techaiques fo scrutinize 4 desiga's behavior, ensblin o

o snalyzs all potentisl input combiaations exiamstvely. Therefor, it offes & highly sulomsted snd. efficient
Formal LINTing als detect potential

LT, pots 12
prove mathemstcally whether overlow conditons can happen Smcrionally, schieving higher productiviy and

scrcy.
‘Even o omplexiy of aitunesic
Ingics, in other words “cone of 8 uencs” can immodce addions] ehallsnges dring Formal LINTing There 1ra
techmiques availabe fo address such challenges, but those lie out of the scope of s paper_On the otber hand,
spacifically for
e ymte snd rules for of signed
hmetic o T
oo, Without em, Formal LINT tools: enoeh iaf esigmer .
\versad n the

SNUG SILICON VALLEY 2024 26

References RENESAS Q

[1] "IEEE Standard for Verilog Hardware Description Language," in IEEE Std 1364-2005 (Revision of IEEE Std 1364-
2001) , vol., no., pp.1-590, 7 April 2006, doi: 10.1109/IEEESTD.2006.99495.

[2] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language," in IEEE Std
1800-2017 (Revision of IEEE Std 1800-2012) , vol., no., pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595

[3] Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 — Opportunities and Hazards,” in DVCON 2005

SNUG SILICON VALLEY 2024 27

Questions?

SNUG SILICON VALLEY 2024

\ ' You
THANK YOU\ IyNONU(;VATION

COMMUNITY

	Hybrid Linting:�
	Arithmetic Overflow Verification Challenge
	Arithmetic Overflow Verification Challenge
	Arithmetic Overflow Verification Challenge
	Arithmetic Logic Category
	Arithmetic Logic Category
	Arithmetic Logic Category
	Arithmetic Logic Category
	Formal LINT for Each Category
	Formal LINT for Unsigned Logic
	Formal LINT for Explicit Signed Logic
	Formal LINT for Implicit Signed Logic
	Formal LINT is not for all of them!
	Pitfalls in Explicit Signed Logic
	Pitfall in Explicit Signed Logic
	Pitfall 1: Signed-to-unsigned conversion�Due to mixture of signed and unsigned in expression
	Pitfall 1: Signed-to-unsigned conversion�Due to mixture of signed and unsigned in expression
	Pitfall 1: Signed-to-unsigned conversion�Due to mixture of signed and unsigned in expression
	Pitfall 2: Signed-to-unsigned conversion�Due to concatenation
	Pitfall 3: Signed-to-unsigned conversion�Due to part-select
	Pitfall 4: Sign Casting
	Pitfall 5: Signed Constant
	Pitfall 6: Interim Result overflow
	Solution: VC SpyGlass
	Conclusion
	Conclusion
	References
	Slide Number 28
	Slide Number 29

