
SNUG SILICON VALLEY 2024 1

Hybrid Linting:

Kai-wen Chin, Esra Sahin Basaran, Kranthi Pamarthi
Renesas Electronics

An efficient method to overcome challenges with
Structural Linting in Arithmetic Overflow
Verification

SNUG SILICON VALLEY 2024 2

Arithmetic Overflow Verification Challenge

SNUG SILICON VALLEY 2024 3

Arithmetic Overflow Verification Challenge

• Arithmetic overflow verification:
– Unsigned arithmetic
– Signed arithmetic

• Traditional methods can be inefficient:
– Dynamic simulation: Hard to be exhaustive
– Structural LINT: Lots of false negatives

input [3:0] A;
input [3:0] B;
output [3:0] Y;

assign Y[3:0] = A[3:0] + B[3:0];

• RHS width is 5-bit, including carry

• LHS width 4-bit

• LHS is not wide enough  Overflow!

SNUG SILICON VALLEY 2024 4

Arithmetic Overflow Verification Challenge

• Formal LINT = Structural LINT + Formal Verification
– Auto-generated SystemVerilog Assertions for Formal Verification

• Formal LINT looks promising
– But…
– The paper provides its prerequisite

SNUG SILICON VALLEY 2024 5

Arithmetic Logic Category

SNUG SILICON VALLEY 2024 6

Arithmetic Logic Category

• Unsigned Logic
– The design implements unsigned arithmetic
– No “signed” keyword
– “Part select syntax” could be used for readability
– Manual “zero-padding” at MSBs could be used for readability

• Example
wire [3:0] FUL_U1A, FUL_U1B; // Variables are intended to be unsigned.
wire [4:0] Y_U1A = FUL_U1A + FUL_U1B;
wire [4:0] Y_U1B = FUL_U1A[3:0] + FUL_U1B[3:0];
wire [4:0] Y_U1C = {1’b0,FUL_U1A[3:0]} + {1’b0,FUL_U1B[3:0]};
wire [4:0] Y_U1D = {1’b0,FUL_U1A} + {1’b0,FUL_U1B};

SNUG SILICON VALLEY 2024 7

Arithmetic Logic Category

• Implicit Signed Logic
– The design implements signed arithmetic
– No “signed” keyword. Variable signedness is implied by its consuming logic.
– Manual sign-extension for implicit signed variable must be used for correctness
– Part-select syntax could be used for readability
– Manual zero-padding at MSBs could be used for readability (for unsigned variables)

• Example
wire [3:0] FUL_U1A; // Variable is intended to be unsigned.
wire [3:0] FUL_S1B; // Variable is intended to be signed but not declared explicitly.
wire [4:0] Y_S1A = FUL_U1A + {FUL_S1B[3],FUL_S1B};
wire [4:0] Y_S1B = {1’b0,FUL_U1A} + {FUL_S1B[3],FUL_S1B};
wire [4:0] Y_S1C = {1’b0,FUL_U1A[3:0]} + {FUL_S1B[3],FUL_S1B[3:0]};

SNUG SILICON VALLEY 2024 8

Arithmetic Logic Category

• Explicit Signed Logic
– The design implements signed arithmetic
– Signed variables are declared using “signed” keyword
– No part-select syntax for explicit signed variables
– No manual sign-extension for explicit signed variables

• Example
wire [3:0] FUL_U1A; // Variable is intended to be unsigned.
wire [3:0] FUL_U1B; // Variable is intended to be unsigned.
wire signed [3:0] FUL_S1C; // Variable is intended to be signed and declared explicitly.
wire signed [3:0] FUL_S1D; // Variable is intended to be signed and declared explicitly.

wire signed [4:0] Y_S1A = FUL_U1A + FUL_U1B;
wire signed [4:0] Y_S1B = FUL_S1C + FUL_S1D;

SNUG SILICON VALLEY 2024 9

Formal LINT for Each Category

SNUG SILICON VALLEY 2024 10

Formal LINT for Unsigned Logic
• HLF_U1A, HLF_U1B and Y_U3A are all unsigned 4-bit  Overflow?!
• HLF_U1A and HLF_U1B both reduced to half range by logic.
• Formal LINT proves Y_U3A has no overflow issue.

output [3:0] Y_U3A;
input [3:0] FUL_U1A, FUL_U1B;
wire [3:0] HLF_U1A = (FUL_U1A > 7) ? 7 : FUL_U1A;
wire [3:0] HLF_U1B = (FUL_U1B > 7) ? 7 : FUL_U1B;
assign Y_U3A = HLF_U1A + HLF_U1B;

These are just testcases, not real design.
Value ranges are clamped to test the
behavior difference between Structural LINT
and Formal LINT.

LHS value range : 15~0
RHS value range : 7~0 + 7~0 = 14~0
Structural LINT : Violation
Formal LINT : Proven

SNUG SILICON VALLEY 2024 11

Formal LINT for Explicit Signed Logic
• All variables declared “signed” explicitly
• HLF_S1A, HLF_S1B and Y_S3F are all signed 4-bit  Overflow?!
• HLF_S1A and HLF_S1B both reduced to half range by logic.
• Formal LINT proves Y_S3F has no overflow issue.

output signed [3:0] Y_S3F;
input signed [3:0] FUL_S1A, FUL_S1B;
wire signed [3:0] HLF_S1A, HLF_S1B;
assign HLF_S1A = (FUL_S1A > 3) ? 3 : (FUL_S1A < -4) ? -4 : FUL_S1A;
assign HLF_S1B = (FUL_S1B > 3) ? 3 : (FUL_S1B < -4) ? -4 : FUL_S1B;
assign Y_S3F = HLF_S1A + HLF_S1B;

LHS value range : 7~-8
RHS value range : 3~-4 + 3~-4 = 6~-8
Structural LINT : Violation
Formal LINT : Proven

SNUG SILICON VALLEY 2024 12

Formal LINT for Implicit Signed Logic

• All variables are intended to be signed but aren’t explicitly declared as signed.
• The design is correct because HLF_S1e and HLF_S1f are reduced to half range.
• Formal LINT treat both operands as unsigned and flag error.

output [3:0] Y_SCf;
input [3:0] FUL_S1e, FUL_S1f;
wire [3:0] HLF_S1e = (FUL_S1e[3:2]==2'b01) ? 4'b0011 :

(FUL_S1e[3:2]==2'b10) ? 4'b1100 : FUL_S1e[3:0] ;
wire [3:0] HLF_S1f = (FUL_S1f[3:2]==2'b01) ? 4'b0011 :

(FUL_S1f[3:2]==2'b10) ? 4'b1100 : FUL_S1f[3:0] ;
assign Y_SCf[3:0] = {HLF_S1e[3], HLF_S1e[3:0]} + {HLF_S1f[3], HLF_S1f[3:0]};

Formal LINT doesn’t know the operands are signed in the design intention.
LHS value range : 15~0
RHS value range : 31~0 + 31~0 = 62~0
Structural LINT : Violation
Formal LINT : Violation

Intended LHS value range : 7~-8
Intended RHS value range : 3~-4 + 3~-4 = 6~-8

SNUG SILICON VALLEY 2024 13

Formal LINT is not for all of them!

• The key issue is variable’s signedness information

Category Pitfalls Formal LINT limitation

Implicit Signed

Logic
None

• Limitation: Lack of variable signedness information.

• Formal LINT currently may not accurately analyze it.

• Work-in-progress for EDA vendors

Explicit Signed

Logic

Many

(show you

later)

• No showstopper for Formal LINT

• Complementary checks required

• Work-in-progress for EDA vendors

Unsigned Logic None
• No limitation

• Formal LINT is fully capable of its verification

Hybrid
LINTing

SNUG SILICON VALLEY 2024 14

Pitfalls in Explicit Signed Logic

SNUG SILICON VALLEY 2024 15

Pitfall in Explicit Signed Logic
• Verilog-2001 and 2005 defined syntax for signed arithmetic.
• However, designers must be aware of some rules to avoid incorrect design.
• Refer to Verilog-2005 LRM:

– Section 3.5.1 Integer constants
– Section 5.1.2 Binary operator precedence
– Section 5.1.3 Using integer numbers in expressions
– Section 5.1.6 Arithmetic expressions with regs and integers
– Section 5.1.7 Relational operators
– Section 5.1.8 Equality operators
– Section 5.1.12 Shift operators
– Section 5.4 Expression bit lengths
– Section 5.5 Signed expressions

SNUG SILICON VALLEY 2024 16

Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

• Example:
wire [3:0] FUL_U1A;
wire signed [3:0] FUL_S1A;
wire signed [3:0] FUL_S1B;

wire [4:0] Y_U1C = FUL_S1A + FUL_S1B;

wire [4:0] Y_U1B = FUL_U1A + FUL_S1A;

Signed variable converted
into unsigned during
evaluation of the equation

Unsigned
variable

Signed variable

Mixture of signed
and unsigned in
equation

SNUG SILICON VALLEY 2024 17

Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

• Example:
wire [3:0] A_U4b;
wire signed [3:0] A_S4b;
wire signed [3:0] B_S4b;
wire signed [4:0] Y_S5b = A_S4b + B_S4b;

wire signed [4:0] Z_S5b = A_U4b + B_S4b;

What’s the impact?

Example:
A_U4b = +4 = 4’b0100
B_S4b = -1 = 4’b1111
Expected Z_S5b = +3

Example:
A_S4b = +4 = 4’b0100
B_S4b = -1 = 4’b1111
Expected Y_S5b = +3

Y_S5b[4:0] = A_S4b + B_S4b
 = 5’b00100 + 5’b11111
 = 5’b00011
 = +3

Z_S5b[4:0] = A_U4b + B_S4b

 = 5’b00100 + 5’b01111
 = 5’b10011
 = -13

B_S4b is converted
to unsigned

SNUG SILICON VALLEY 2024 18

Pitfall 1: Signed-to-unsigned conversion
Due to mixture of signed and unsigned in expression

• Example:
wire [3:0] U4b_0 = 4'b0100; // +4
wire signed [3:0] S4b_0 = 4'b0100; // +4
wire signed [3:0] S4b_1 = 4'b1111; // -1

wire Y_0 = (S4b_0 >= S4b_1); // Y_0 = 1 (simulation result)

wire Y_1 = (U4b_0 >= S4b_1);

What’s the impact?

U4b_0 is interpreted as +4
S4b_1 is interpreted as +15 because it is converted into
unsigned.

// Y_1 = 0 (simulation result)

SNUG SILICON VALLEY 2024 19

Pitfall 2: Signed-to-unsigned conversion
Due to concatenation

• Signed variable will be automatically sign-extended.
• However, manual sign-extension will cause signed-to-unsigned conversion
• Example:
wire signed [3:0] S4b_A;
wire signed [3:0] S4b_B;
wire signed [4:0] S5b_Y;
wire signed [4:0] S5b_Z;
assign S5b_Y = S4b_A + S4b_B;
assign S5b_Z = {S4b_A[3],S4b_A} + {S4b_B[3],S4b_B};

Result of
concatenation is
treated as unsigned

SNUG SILICON VALLEY 2024 20

Pitfall 3: Signed-to-unsigned conversion
Due to part-select

• Example:
wire signed [3:0] S4b_A;
wire signed [3:0] S4b_B;
wire signed [4:0] S5b_X;
wire signed [4:0] S5b_Y;
wire signed [4:0] S5b_Z;
assign S5b_X = S4b_A + S4b_B;
assign S5b_Y = S4b_A[3:1] + S4b_B[3:1];
assign S5b_Z = S4b_A[3:0] + S4b_B[3:0];

Part-select changes
variable into unsigned
during equation
evaluation

They will be automatically zero-
padded instead of sign-extended

SNUG SILICON VALLEY 2024 21

Pitfall 4: Sign Casting

• To avoid signed-to-unsigned conversion, we can use $signed().
• However, pitfall again…
• Example:
wire [3:0] A_U4b;
wire signed [3:0] B_S4b;
wire signed [5:0] X_S6b = A_U4b + B_S4b; // Signed-to-unsigned conversion

wire signed [5:0] Y_S6b = $signed(A_U4b) + B_S4b; // Bad sign casting

wire signed [5:0] Z_S6b = $signed({1’b0,A_U4b}) + B_S4b; // Good sign casting

Example: If A_U4b is “+15”,
$signed(A_U4b) will be interpreted as “-1”.

Solution: Zero-padding before sign-
casting
(Reference: Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 –
Opportunities and Hazards,” in DVCON 2005)

SNUG SILICON VALLEY 2024 22

Pitfall 5: Signed Constant

• Example:
wire signed [3:0] A_S4b;

wire signed [5:0] X_S6b = A_S4b + 4’d8;

wire signed [5:0] Y_S6b = A_S4b + 4’sd8;

wire signed [5:0] Z_S6b = A_S4b + 5’sd8;

4’d8 is unsigned. A_S4b is
converted into unsigned due to
mixture of signed and unsigned
variables. Use a signed constant to

keep A_S4b as signed. But
“4’sd8” will be interpreted
as “-8”.

This is the right way to do it
Value range of 4-bit signed constant : +7 ~ -8
Value range of 5-bit signed constant : +15 ~ -16

SNUG SILICON VALLEY 2024 23

Pitfall 6: Interim Result overflow

• Example:
wire [3:0] B = 4'b0011;
wire [3:0] C = 4'b1110;

// Simulation result:
wire [3:0] Y2 = (B+C) >>> 1; // Y2 = 4'b0000

wire [3:0] Y4 = (B+C) / 2 ; // Y4 = 4'b1000

• Refer to Verilog-2005 LRM:

“B+C” evaluated as 4-
bit expression 
Overflow already before
shift

Constant “2” is 32-bit.
“(B+C)/2” is evaluated as
32-bit expression. Result
is correct.

SNUG SILICON VALLEY 2024 24

Solution: VC SpyGlass

Check Items Required LINT type VC SpyGlass

coverage

Name of the rule

Signed-to-unsigned conversion

Due to mixed s igned and

unsigned operands in equat ion
Structural Covered

SignedUnsignedExpr-ML

Due to part-select Structural Covered SignedUnsignedConvert-ML

Due to concatenat ion Structural Covered SignedUnsignedConvert-ML

Bad sign-casting Formal Part of Roadmap

Bad signed constant
Structural Covered

LiteralUnderf low-ML

LiteralOverf low-ML
Interim result overflow Formal Part of Roadmap

Arithmetic overflow

(LHS variable is not wide enough to hold functional result from

RHS equation) Formal Covered

SignedUnsignedExpr-ML

W 164a

NegativeValueInfer -ML

W 110

Hybrid
Linting

SNUG SILICON VALLEY 2024 25

Conclusion

SNUG SILICON VALLEY 2024 26

Conclusion

• Formal LINT is not efficient for Implicit Signed Logic.
o EDA vendors are working on a solution for it.

• Formal LINT is a promising verification solution for
Unsigned Logic and Explicit Signed Logic.
o EDA vendors are releasing new tool versions for pitfall checks.

• Covered summary of the pitfalls, which can be a good
reference for designers and EDA vendors.

DVCON2024
Paper (#1020)

DVCON2024
Poster (#1020)

SNUG SILICON VALLEY 2024 27

References

[1] "IEEE Standard for Verilog Hardware Description Language," in IEEE Std 1364-2005 (Revision of IEEE Std 1364-
2001) , vol., no., pp.1-590, 7 April 2006, doi: 10.1109/IEEESTD.2006.99495.

[2] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language," in IEEE Std
1800-2017 (Revision of IEEE Std 1800-2012) , vol., no., pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595

[3] Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 – Opportunities and Hazards,” in DVCON 2005

SNUG SILICON VALLEY 2024 28

Questions?

SNUG SILICON VALLEY 2024 29

THANK YOU
YOUR
INNOVATION
YOUR
COMMUNITY

	Hybrid Linting:�
	Arithmetic Overflow Verification Challenge
	Arithmetic Overflow Verification Challenge
	Arithmetic Overflow Verification Challenge
	Arithmetic Logic Category
	Arithmetic Logic Category
	Arithmetic Logic Category
	Arithmetic Logic Category
	Formal LINT for Each Category
	Formal LINT for Unsigned Logic
	Formal LINT for Explicit Signed Logic
	Formal LINT for Implicit Signed Logic
	Formal LINT is not for all of them!
	Pitfalls in Explicit Signed Logic
	Pitfall in Explicit Signed Logic
	Pitfall 1: Signed-to-unsigned conversion�Due to mixture of signed and unsigned in expression
	Pitfall 1: Signed-to-unsigned conversion�Due to mixture of signed and unsigned in expression
	Pitfall 1: Signed-to-unsigned conversion�Due to mixture of signed and unsigned in expression
	Pitfall 2: Signed-to-unsigned conversion�Due to concatenation
	Pitfall 3: Signed-to-unsigned conversion�Due to part-select
	Pitfall 4: Sign Casting
	Pitfall 5: Signed Constant
	Pitfall 6: Interim Result overflow
	Solution: VC SpyGlass
	Conclusion
	Conclusion
	References
	Slide Number 28
	Slide Number 29

