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Arithmetic Overflow Verification Challenge




Arithmetic Overflow Verification Challenge RENESAS Q

input [3:0] A; * Arithmetic overflow verification:
input [3:0] B; — Unsigned arithmetic
output [3:0] Y; — Signed arithmetic

* Traditional methods can be inefficient:
— Dynamic simulation: Hard to be exhaustive
— Structural LINT: Lots of false negatives

assign Y[3:0] = A[3:0] + B[3:0];

* RHS width is 5-bit, including carry
* LHS width 4-bit
« LHS is not wide enough = Overflow!
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Arithmetic Overflow Verification Challenge RENESAS Q

 Formal LINT = Structural LINT + Formal Verification
— Auto-generated SystemVerilog Assertions for Formal Verification

 Formal LINT looks promising
— But...
— The paper provides its prerequisite
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Arithmetic Logic Category




Arithmetic Logic Category

» Unsigned Logic
— The design implements unsigned arithmetic
— No “signed” keyword

— select syntax” could be used for readability
— Manual “zero-padding<.at MSBs could be used for readability

° dampie

(wire [3:00) FUL UlA,\FUL UlB; // iables are intended to be unsigned.
wire [4:0]] Y UIA = FUL UlA + FUL U1B;

wire [4:0]] Y UlB = FUL UIA[3:0] + |FUL U1B[3:0]};

wire [4:0]] Y UIC = {1'b0,FUL U1A[3:0]} + {1’b0,FUL U1B[3:0]};

wire [4:0]] Y UID E {1'b0,FUL UlA}| + {1’b0,FUL U1B};
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Arithmetic Logic Category RENESAS Q |

 Implicit Signed Logic
— The design implements signed arithmetic
— No “signed” keyword. Variable signedness is implied by its consuming logic.
— Mariual sign-extension for implicit signed variable must be used for correctness

— Pdlrt-select syntax could be used for readability
MSBs could be used for readability (for unsigned variables)

anual zero-padding

ample

(wire [3:0) FUL UlA; // Variab

is intended to be unsigned.

wire [3:0]] FUL S1B; // Variable\is intended to be signed but not declared explicitly.
wire [4:0]] Y SIA = FUL U1A + [{FUL S1B[3],FUL S1B}|;

wire [4:0]] Y S1B = {1’b0,FUL UlA} + {FUL SIB[3],FUL S1B};

wire [4:0]) ¥ S1C = {1'b0,FUL Ul1A[3:0]} + {FUL S1B[3],FUL S1B[3:0]};
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Arithmetic Logic Category

« Explicit Signed Logic
— The design implements signed arithmetic

— Signed variables are declared using “signed” keyword
— No part-select syntax for explicit signed variables
— No manual sign-extension for explicit signed variables

« Example

wire [3:0] FUL UlA; // Variable is intended to be unsigned.

wire [3:0] FUL UlB; // Variable is intended to be unsigned.

wire signed§\3:0] FUL S1C; // Variable is intended to be signed and declared explicitly.
wire signed [3:0] FUL S1D; // Variable is intended to be signed and declared explicitly.
wire signed [4:0] Y SIA = FUL UlA + FUL UlB;

wire signed [4:0] Y S1B = FUL S1C + FUL S1D;

- J
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Formal LINT for Unsigned Logic RENESAS

« HLF_U1A, HLF_U1B and Y_US3A are all unsigned 4-bit > Overflow?!
« HLF_U1A and HLF_U1B both reduced to half range by logic.
 Formal LINT proves Y_US3A has no overflow issue.

output [3:0] Y U3A;

input (3:0] FUL Ul1A, FUL UI1B;

wire (3:0] HLF UlIA = (FUL UIA > 7) 2 7 FUL UlA;

wire (3:0] HLF UIB = (FUL UIB > 7) 2 7 FUL UlB;
assign Y_UBA = HLF UlA + HLFE UlB;

LHS value range : 15~0 These are just testcases, not real design.
RHS value range : 7~0 + 7~0 = 14~0 Value ranges are clamped to test the
Structural LINT : Violation behavior difference between Structural LINT

Formal LINT : Proven and Formal LINT.
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Formal LINT for Explicit Signed Logic Renesnas Q

All variables declared “signed” explicitly
HLF _S1A, HLF_S1B and Y_S3F are all signed 4-bit = Overflow?!

HLF S1A and HLF_S1B both reduced to half range by logic.
Formal LINT proves Y_S3F has no overflow issue.

output signed [3:0] Y S3F;

input signed [3:0] FUL S1A, FUL S1B;

wire signed [3:0] HLF S1A, HLF S1B;

assign HLF S1A = (FUL SIA > 3) ? 3 : (FUL S1A < -4) ? -4 : FUL S1A;

assign HLF SIR = (FIL S1R > 3) 2 3 - (FUL SIB < -4) ? -4 : FUL S1B;
assign Y S3F = HLF S1A + HLF S1B;

LHS value range : 7~-8

RHS value range : 3~-4 + 3~-4 = 6~-8
Structural LINT : Violation

Formal LINT : Proven
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Formal LINT for Implicit Signed Logic ENESAS Q

 All variables are intended to be signed but aren’t explicitly declared as signed.
* The design is correct because HLF_S1e and HLF_S1f are reduced to half range.
 Formal LINT treat both operands as unsigned and flag error.

output [3:0] Y SCf;
input [3:0] FUL Sle, FUL S1f;

wire [3:0] HLEF Sle = (FUL Sle[3:2]==2'b01) ? 4'b0011 :

(FUL Sle[3:2]==2"b10) ? 4'b1100 : FUL Sle[3:0] ;
wlre [3:0] HLEF S1f = (FUL S1f[3:2]==2'b01) ? 4'b0011 :

(FUL S1f[3:2]==2"b10) ? 4'b1100 : FUL S1£[3:0] >

assign Y SCEf[3:0] {HLF Sle[3], HLF Sle[3 0]} + {HLF S1f[3], HLF S1£f[3:0]};

Formal LINT doesn’t know the operands are signed in the design intention.
Intended LHS value range : 7~-8 LHS value range : 15~0
Intended RHS value range : 3~-4 + 3~-4 = 6~-8 RHS value range : 31~0 + 31~0 = 62~0

Structural LINT : Violation

Formal LINT : Violation
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Formal LINT is not for all of them! RENESAS @

e The key issue is variable’s signedness information

Category m Formal LINT limitation

Limitation: Lack of variable signedness information.

None « Formal LINT currently may not accurately analyze it.
« Work-in-progress for EDA vendors
Many * No showstopper for Formal LINT

Explicit Signed Hybrid
(show you Complementary checks required -_— LI);\lTing

Logic

later) Work-in-progress for EDA vendors

* No limitation
Unsigned Logic None
« Formal LINT is fully capable of its verification
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Pitfall in Explicit Signed Logic — @

 Verilog-2001 and 2005 defined syntax for signed arithmetic.
« However, designers must be aware of some rules to avoid incorrect design.
« Refer to Verilog-2005 LRM:

— Section 3.5.1 Integer constants
— Section 5.1.2 Binary operator precedence

— Section 5.1.3 Using integer numbers in expressions

— Section 5.1.6 Arithmetic expressions with regs and integers
— Section 5.1.7 Relational operators

— Section 5.1.8 Equality operators

— Section 5.1.12 Shift operators

— Section 5.4 Expression bit lengths

— Section 5.5 Signed expressions
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Pitfall 1: Signed-to-unsigned conversion RENESAS @

Due to mixture of signed and unsigned in expression

- Example: Mixture of signed

wire [3:0) FUL ULA; and unsigned in
wire signed [3:0] FUL S1A;

wire signed [3:0] FUL S1B; equatlon

wire [4:0] Y UIC = FUL S1A +A4UL S1B;

wire [4:0] Y UIB E FUL_UIPJ +[FUL_SIA;]

Unsigned  Signed variable converted
variable into unsigned during
evaluation of the equation

SNUG SILICON VALLEY 2024 16



Pitfall 1: Signed-to-unsigned conversion RENESAS @ |

Due to mixture of signed and unsigned in expression

What’s the impact?

« Example: Example:
| A S4b = +4 = 4'b0100
wire [3:0] A Udb; B S4b = -1 = 4’b1111
wire signed [3:0] A S4db; Expected Y S5b = +3
wire signed [3:0] B S4b; Y S5b[4:0] = A S4b + B _S4b
[Wire Signed [4:0] Y_SSb = A_S4b + B_S4b;] = 5'b00100 + 5'bl1111
= 5’b00011
wire signed [4:0] Z S5b = A U4d4b + B S4b; = *3
Example: B S4b is converted

A Udb = +4 = 4’b0100
B S4b = -1 = 4'bl1lll
Expected Z S5b = +3 Z S5b[4:0]

to unsigned

A U4b + B S4db

5'b00100 + 5'b01111

5'b10011
-13
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Pitfall 1: Signed-to-unsigned conversion RENESAS Q

Due to mixture of signed and unsigned in expression

e P
IIIVIU-
lwire [3:0] Ud4b 0 = 4'b0100; // +4]

wlre si1gnegd [(3:01 S-O_O = 4"p0100; // +4
[wire signed [3:0] S4b 1 = 4'bl111; // —1]

What’s the impact?

wire Y 0 = (S4b 0 >= S4b 1); // Y 0 = 1 (simulation result)

[wire Y 1 = (Udb 0 >= S4b 1); // Y 1 = 0 (simulation result) ]

U4b 0 is interpreted as +4
S4b 1 is interpreted as +15 because it is converted into
unsigned.
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Pitfall 2: Signed-to-unsigned conversion RENESAS @

Due to concatenation

« Signed variable will be automatically sign-extended.
* However, manual sign-extension will cause signed-to-unsigned conversion

« Example: Result of
wire signed Sdb_A; concatenation is
wire signed S4b B;

OOOO

[

[ .
wire signed | treated as unsigned
wire signed [

]

]

] S5b Y;

] s5b_z- ///////’//\
assign S5b Y

_|_
assign S5b 7z =|{S4b A[ A} T {S4b_B[3],S4b_B}];
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Pitfall 3: Signed-to-unsigned conversion RENESAS Q

Due to part-select

« Example: Part-select changes

wire signed [3:0] S4b_A; variable into unsigned
wire signed [3:0] S4b B; during equation
wire signed [4:0] S5b X; _
wire signed [4:0] S5b Y; evaluation
wire signed [4:0] S5b Z;
assign S5b X = S4b A + 5S4
S4b A[3:1]

assign S5b 7z =| S4b A[3:0]

assign S5b Y =[

They will be automatically zero-
padded instead of sign-extended
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Pitfall 4: Sign Casting —— @

« To avoid signed-to-unsigned conversion, we can use $signed().

* However, pitfall again...

« Example:

wire
wire
wire

wire

wire

[3:0] A Udb;

signed
signed

signed

signed

[3:0]
[5:0]

[5:0]

[5:0]

Example: IfA U4b is “+157,
$signed(A_U4b) will be interpreted as “-1”.

B S4b;
X S6b = A Ud4b + B S4K; // Signed-to-unsigned conversion

Y S6b {»$signed(A_U4b) + B S4b; // Bad sign casting

Z Seéb { $signed({1’bO,A_U4b})]+ B S4b; // Good sign casting
Solution: Zero-padding before sign-

casting

(Reference: Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 —
Opportunities and Hazards,” in DVCON 2005 )
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Pitfall 5: Signed Constant RENESAS @

« Example:

wire

wire

wire

wire

signed
signed
signed

signed

:0] A S4b;

4'd8 is unsigned. A _S4b is
converted into unsigned due to
mixture of signed and unsigned

variables. Use a signed constant to

0] X_S6b = [A_S4b|+ 47a8; keep A_S4b as signed. But
.0] Y S6b = A Sdb +[4,5018];“4’sd8” will be interpreted

as "-8".

:0] Z S6b = A S4b +[5'sd8}-

This is the right way to do it
Value range of 4-bit signed constant : +7 ~ -8
Value range of 5-bit signed constant : +15 ~ -16




Pitfall 6: Interim Result overflow RENESAS @

“B+C” evaluated as 4-
« Example: bit expression =2

wire [3:0] B = 4'b0011;
wite [3:01 C = 41p1110., Overflow already before

Shﬁp/ Simulation result:
>>> 1; // Y2 = 4'b0000

wire [3:0] Y2 =

wire [3:0] Y4 =[(B+c) /2| : // Y4 = 4'b1000

 Refer to Verilog-2005 LRM:

Constant “2” is 32-bit.

Expression Bit length Comments

ops e i ) “(B+C)/2" is evaluated as
R T omssmessomnoto) | 32-bit expression. Result
S 1o Jis st detemmines IS correct.

1?11: max(L(j).L(k)) i is self-determined

G} LG+ +L() All operands are self-determined
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Solution: VC SpyGlass RENESAS

Check Items Required LINT type VC SpyGlass Name of the rule

coverage

Due to mixed signed and

unsigned operands in equation SignedUnsignedExpr-ML
Structural Covered

Due to part-select Structural Covered SignedUnsignedConvert-ML
Due to concatenation Structural Covered SignedUnsignedConvert-ML
Bad sign-casting Formal Part of Roadmap

Bad signed constant LiteralUnderflow-ML
Structural Covered
LiteralOverflow-ML
Interim result overflow Formal Part of Roadmap

Signed-to-unsigned conversion

Arithmetic overflow SignedUnsignedExpr-ML
(LHS variable is not wide enough to hold functional result from W164a
. Formal Covered
RHS equation) NegativeValuelnfer-ML
W110
Hybrid
Linting
k ) SNUG SILICON VALLEY 2024 24




Conclusion
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Conclusion RENESAS Q

« Formal LINT is not efficient for Implicit Signed Logic.

. _ _ DVCON2024
o EDA vendors are working on a solution for it. Poster (#1020)

ttttttttt " oo §2020. =
accellera usin | LINT DVETDHN _
sverens mama =

AAAAAAAAA

 Formal LINT is a promising verification solution for
Unsigned Logic and Explicit Signed Logic.

o EDA vendors are releasing new tool versions for pitfall checks. T it
 Covered summary of the pitfalls, which can be a good -
reference for designers and EDA vendors. T

“This paper proposes adopcion of Formal LINTing fechnology s & obus soluion fo cefee arithmesic overflow
isstes. Formal LINTiag leverages formal versficson techaiques fo scrutinize 4 desiga's behavior, ensblin o

o snalyzs all potentisl input combiaations exiamstvely. Therefor, it offes & highly sulomsted snd. efficient
Formal LINTing als detect potential

LT, pots 12
prove mathemstcally whether overlow conditons can happen Smcrionally, schieving higher productiviy and

scrcy.
‘Even o omplexiy of aitunesic
Ingics, in other words “cone of 8 uencs” can immodce addions] ehallsnges dring Formal LINTing There 1ra
techmiques availabe fo address such challenges, but those lie out of the scope of s paper_On the otber hand,
spacifically for
e ymte snd rules for of signed
hmetic o T
oo, Without em, Formal LINT tools: enoeh iaf esigmer .
\versad n the
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Questions?

SNUG SILICON VALLEY 2024



\ ' You
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