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VC Formal Overview
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Synopsys VC Formal – Leading Formal Innovations
Unified Compile with VCS

Industry’s Fastest Growing Formal Solution!

Deliver highest performance
Innovative formal engines and ML-based orchestrations 
find more bugs and achieve more proofs on larger designs

Enable formal signoff
Exhaustive formal analysis catches corner-case bugs and 
enables formal signoff for control and datapath blocks

Ease Formal adoption
Easy-to-use formal apps, native integration with VCS and Verdi, 
and Formal Consulting Services reduce formal adoption effort

Unified Formal Debugger with Verdi

Rich Set of Assertion IPs

ML-Enabled Formal Engines and Orchestrations
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Synopsys VC Formal: Innovative Formal Verification Solutions
VC Formal Apps Adoption Effort – Formal Expertise Not Always Required 

Verification Complexity: In terms of exhaustive computation analysis required to verify the DUT
Adoption Effort: In terms of formal expertise and testbench required to apply the specific APP

Low Medium High
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Synopsys VC Formal: Innovative Formal Verification Solutions
VC Formal Apps Can Be Used Throughout the SoC Flow

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting
High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Block/IP Subsystem SoC
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VC Formal Leverages Industry Leading Verification Eco-system

VerdiVCS

VC 
Formal VC Z01X

ASIP 
Designer

VC 
SpyGlass

VC LP
VCS NLP

Unified Compilation
Common Coverage DB

Integrated UNR

Common Setup and Debug Platform; 
Unified Planning;
Integrated Formal Navigator

Fault Pruning
Common Fault DB 

ISA Formal VerificationLint, CDC, RDC 
Formal Analysis

Common UPF Reader
Unified Low Power Verification
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RISC-V Core Formal Verification Overview
• FPV (Model Checking):

– Prefetch Buffer
– LSU – Load/Store unit
– Pipeline

• DPV (Equivalence Checking):
– ALU/MULT/Dotp
– Decoder

• SEQ (Equivalence Checking):
– Clock gating verification in every functional unit
– Designs comparison in presence of new 

features/timing changes

• FRV (Formal Register Verification)
– Control and Status Registers (Zicsr)

• FSV (Formal Security Verification)
– Secure/Non-secure data propagation

• RV32I base ISA, for example:
‒ LOAD - LSU
‒ STORE - LSU
‒ BRANCH/JUMP/LUI/AUIPC - PFU
‒ OP-IMM - EXU
‒ OP - EXU
‒ Environment call/break point

• Zicsr extension
‒ CSR Write
‒ CSR Read

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-
GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
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F P V  B E N E F I T S F P V  F E AT U R E S

• Verify functional correctness 
of design blocks through 
exhaustive formal analysis

• Find corner-case bugs early 
without simulation and 
reduce time to verification 
closure

• Enable formal signoff 
methodology

• State-of-the-art ML-powered 
formal analysis engines and 
orchestration offer best 
performance and capacity

• Integrated Verdi GUI offers 
the most familiar debugging

• Deep bug hunting and 
advanced proof techniques 
Proof Assist, Proof Architect

VC Formal FPV

DUT Properties 
Constraints

VCS Compilation Frontend

Smart Engine Orchestration

Regression Mode Acceleration

Verdi Integrated Debugger 

VC Formal FPV: Formal Property Verification 
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D P V  B E N E F I T S

• Exhaustively verify datapath 

design refinements

• Prove consistency of 

independently developed 

reference & implementation 

models

• Achieve datapath signoff 

without any testbench

D P V  F E AT U R E S

• Integrated mature HECTOR 

technology

• Supports ADD, SUB, MULT, 

DIV, SQRT operators

• Applicable to CPU, GPU, 

DSP, AI/ML (CNN) and other 

data processing designs

Impl. Model
C/C++/RTL

VC Formal DPV
Transactional Equivalence Checking

Ref. Model
C/C++/RTL

Debug 
Counter-Example

Datapath
Signoff

Assume 
Equal 
Inputs

Compare 
Outputs

VC Formal DPV: Datapath Validation
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S E Q  B E N E F I T S S E Q  F E AT U R E S

• Exhaustively verify and 
signoff the design 
optimizations without any 
testbench

• Push the frontier of 
performance, power, and 
area (PPA) optimizations

• Save weeks/months 
simulation regression time

• Supports clock gating, 
retiming, microarchitecture 
optimizations

• Automatically creates 
equivalence mapping 
between specification and 
implementation RTL

• State-of-the-art ML powered 
formal engine for best 
performance

Implementation
RTL

VC Formal SEQ
Check Outputs Cycle-Level Equivalence

Specification
RTL

Debug 
Counter-Example Results Reporting

VC Formal SEQ: Sequential Equivalence Checking



© 2024 Synopsys, Inc. 12

VC Formal FRV: Formal Register Verification 

F R V  B E N E F I T S F R V  F E AT U R E S

• Exhaustively verify the 
consistency of register 
model against specification

• Find corner-case bugs 
earlier in the design cycle, 
shorten debug time

• Save time and effort 
compared with manual 
directed simulation tests

• Accept IP-XACT, CSV, 
RALF spec formats

• Verify that Control Status 
Registers are correctly 
implemented using standard 
or proprietary bus protocols

• Applicable at both the block 
and SoC level

DUT
Register Blocks

Register Spec
RALF/CSV/XML

AIP
Protocol Constraints

VC Formal FRV
Generate checkers for each register field

Verify register read/write
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unsecure
source

unsecure

secure

secure
destination

source

destination

OK
Integrity
Violation

Data
LeakOK

F S V  B E N E F I T S

• Ensure data security 
objectives are met through 
exhaustive formal analysis

• Ensure secure data cannot 
be read illegally or be 
written from an unsecure 
source

• Detect security issues that 
are hard to find through 
other techniques 

F S V  F E AT U R E S

• Flexible property creation & 
management

• ML powered engines for 
fast performance

• Data propagation analysis 
and debug with temporal 
flow view

• Verification of multiple 
scenarios in one session

VC Formal FSV: Formal Security Verification 
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VC Formal Differentiations

Performance
7X Faster

Industry Standard
Datapath Validation

Unique Formal 
Signoff Solution

AI/ML for Performance 
& Convergence

Verification Solution 
Synergy

Pay-per-Minute 
Cloud Offerings
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ASIP Designer Overview
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ASIP Designer

Your Processor 
Model

SDK

RTL

Optimize

Explore

• Industry’s leading tool for creating Application-Specific 
Instruction-Set Processors (ASIPs)

– Language-based description of ISA: full architectural flexibility

– Automatic generation of professional software development kit (SDK)

– Automatic generation of synthesizable RTL and debug infrastructure

– Accelerated verification, simulation, and virtual prototyping

– Integrated with Synopsys’ Reference Design & Verification Flows

• More than 2 dozen example models included

– Microprocessors, DSPs, vector processors,… 

– Examples provided in source code, as starting point

Architectural Exploration with Immediate Tool Support and Immediate RTL Implementation

ASIP DesignerTM Automates Design of Custom Processors/Accelerators

Licensed as an EDA tool (not as IP), no royalties
Used by 7 of the Top 10 Semiconductor Developers

See website synopsys.com/asip
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4

ASIP Designer
Tool Flow

Supported design steps
• Modeling of instruction-set 

architectures: nML language

• Automatic generation of 
software development kit, 
including an efficient C/C++ 
compiler

• Algorithm-driven architectural 
exploration: 
“Compiler-in-the-Loop”

• Automatic generation of 
RTL implementation
“Synthesis-in-the-Loop”

• Design verification
– Simulation, prototyping
– Formal ISA verification

1

3
Architectural Optimization 

and Software Development

Optimizing C/C++ Compiler

(Dis-) 
Assembler Linker

Binary

Debugger
& Profiler

Instruction-Set
Simulator

User-Defined
Algorithm

Algorithm
C/C++

2

Refinement

Hardware Generation

RTL Generator

Synthesizable RTL
Verilog/VHDL

RTL Simulator
VCS

RTL Synthesizer
DC / FC

RTL Architect

Verification

Verification Model
SystemVerilog

Virtual Prototyping

ESL Model
SystemC

ASIC 
or

FPGA

1 SDK Generation
2 Architectural Optimization
3 Hardware Generation
4 Verification

User-Defined
Architecture

Instruction
 Set

Processor Model
nML

FMT ALU OPD

FMT ALU OPD

FMT ALU OPD
Formal ISA Verification
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Processor Modeling: ISA Description (nML) + Behavior (PDG)

Data Path
Memory, 

Peripherals

PCU

INSTR.
DECODER

INSTR.
DECODER

PROGRAM
MEMORY

Datapath Behavior   PDG
// 16-bit saturating addition
word add(word a, word b) {
int17_t x = (int17_t)a + (int17_t)b;
if (x > MAX) x = MAX;
else if (x < MIN) x = MIN;
return x[15:0];

} 

I/O Interface Behavior PDG
io_interface my_bus_if(){

void process_result(){
// transactions before
// processor actions

}
void process_request(){

// transactions after
// processor actions

}
}

PCU Behavior   PDG
void my_asip::
user_next_pc(){
// manipulation of
// program counter

}

void my_asip::
user_issue(){
// creation of issue  
// packets from   
// program words

}

Instruction-Set & Micro-Architecture nML
// Resource definition

mem DM[1024]<word,addr>;
reg RA[2]<word,uint1>;
pipe C<word>;
trn A<word>; trn B<word>;
fu alu;
...

// Instruction-set grammar
opn my_core (arith_inst | ctrl_inst);

opn arith_inst (a:alu_inst, 
d: div_inst, l:load_store_inst);

opn alu_inst (op:opcod, x:c1u, y:c1u, 
z:c1u) {
action {
stage EX1:
A = RA[x];
B = RB[y]; 
switch (op) {
case add: C = add(A, B) @alu;
case and: C = and(A, B) @alu;
case or: C = or(A, B) @alu;
...
}

stage EX2:
RA[z] = C @alu;

}
syntax: op " RA" x ", RB" y ", RA” z;
image: "0"::op::x::y::z;

}
...

INTERRUPT
CON-

TROLLER

INSTR.
SEQUEN-

CER

ISSUE
BUFFER

CACHE DMA BUS I/F WRITE
BACK

BANK
SELECT

DIVALUDATA
MEMORY

DATA
MEMORY

/ %& |+
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Formal ISA Verification Methodology 
for ASIP Designer
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Formal ISA Verification Methodology for ASIP Designer (1)
Formally Verify the Generated RTL Implementation Against Expected nML Actions

• Tool generates SystemVerilog properties that express expected behavior at a high, abstract level
– Requirements are not biased by the implementation
– Decomposing overall correctness into more manageable claims, for easily converging proofs

• VC Formal FPV proves asserted properties, or finds counterexample
– A counterexample typically involves parallel activity, corrupting expected action

• ASIP Designer generates assumptions to express invariant tool behavior 
– Assumed properties are generated for the behavior of the C/C++ compiler, to avoid “false negatives”
– Assumptions generated for FPV are checked as assertions in RTL simulation, to avoid “false positives”

• Verify behavior of data path operations (“primitive functions”) separately
– Use data path verification (VC Formal DPV) for formal verification against an independent reference, if available
– Tool may replace primitive functions with formal friendly operations for FPV
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. 

Formal ISA Verification Methodology for ASIP Designer (2)
Generated Properties Use Abstraction
. 

Data path

PeripheralsAD / DA SERIAL DMA AHB JTAG Ctrl

PROGRAM
MEMORY

INSTR.
SEQUEN-

CER

INSTR
ISSUE

SH

MPY

ACC

SAT

ALUDATA
MEMORY

DATA
MEMORY

INSTR_ID

INSTR_E1

INSTR_E2

Verification logic applies
single instruction abstraction

Picks arbitrary instruction value
• Tracks it through the instruction pipeline after it enters
• Observes what happens in the architecture, during the 

lifetime of that instruction

• Peripherals not targeted by generated properties
• Memories are simplified, containing random values
• External inputs are undriven, meaning formal tool 

can assign arbitrary values

DECODER

Design
VC Formal FPV proves properties,
or assigns undriven signals and variables 
to accomplish the counterexample

Properties are formulated for tracked instruction
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Formal ISA Verification Methodology for ASIP Designer (3)
Decompose ISA Compliance Requirements for Fast Convergence
• Separate requirements for different phases in the instruction lifetime

– Requirements for fetch and issue to be provided by the user
– Generated property for instruction advancing through the instruction pipeline and 

reaching the write-back stage within N cycles  (N depending on pipeline depth, stalls, wait cycles,…)

• Split requirement for result correctness, by instantiating ASIP RTL implementation twice

nML based, unpipelined, functional SystemVerilog translation 

IF ID EX ME WB
NOP NOP INSTR NOP NOP

IF ID EX ME WB
JAL ADD INSTR MUL SUB

Constrained CPU 1
runs isolated
tracked instruction

Unconstrained CPU 2
runs full parallelism

Reference equals CPU 1
with instruction in isolation
(no pipeline, no parallelism)

CPU 1 equals CPU 2
after write-back stage
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Compute Reference Results
Tool Derives SystemVerilog Reference Code From Each nML Rule With Actions
opn alu(d: mRd, s0: mR0, s1: mR1)
{

action {
stage EX:

d = alut = add(alur=s0, alus=s1);
}
image : "0000"::d::s0::s1;

}

• Simple due to single instruction abstraction
– Only executes one instruction
– Purely functional code, no pipelining
– Execution is aligned with pipeline stages in cpu1, 

for correct input sampling

always @ (*) begin
 if (alu_active && cpu1_sampled)
 begin
  logic [12:0] image;
  if (cpu1_stage == EX)
  begin
   image = cpu1_instr_EX[12:0];
   __R_r_r1_raddr = image[2:0];
   __R_r_r0_raddr = image[5:3];
   __R_r_w0_waddr = image[8:6];
   r_r1 = cpu1_reg_R[__R_r_r1_raddr];
   r_r0 = cpu1_reg_R[__R_r_r0_raddr];
   alus = r_r1;
   alur = r_r0;
   word_add_word_word(alut2, alur, alus);
   r_w0 = alut2;
   cpu1_reg_R_ref[__R_r_w0_waddr] = r_w0;
  end
 end
end

tracked instruction is of type alu

it entered the pipeline

input sampling
in cpu1

reference result
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Generated SystemVerilog Assertions (1)
Instruction Advances and Completes for ALU Rule

property cpu2_advances;
@(posedge clock)
alu_active && cpu2_seen && !cpu2_sampled
##1 cpu2_sampled && !cpu2_kill_ID
|->
##[1:7] (cpu2_sampled && cpu2_stage == WB && cpu2_instr_WB_valid) || instr_killed;

endproperty;

• “If the tracked instruction enters the pipeline, it reaches the write-back stage within N cycles”
– N depends on pipeline depth, stalls, wait-cycles,… 
– A configurable assumption limits stalls, wait-cycles,…

tracked instruction seen at input of decoder

entered the pipeline one cycle later
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Generated SystemVerilog Assertions (2)
CPU1 and CPU2 Correctness Properties for ALU Rule
• Constrained CPU1 (isolated instruction) compared to reference behavior, derived from nML

property alu_correct_cpu1;

@(posedge clock)

alu_active && cpu1_sampled && cpu1_stage == WB && cpu1_instr_WB_valid    // Write-Back stage

|=>

cpu1_reg_R[__R_r_w0_waddr] == cpu1_reg_R_ref[__R_r_w0_waddr];            // Compare written value

endproperty;

• Unconstrained CPU2 compared to constrained CPU1, aligned to Write-Back stage
property alu_correct_cpu2;
 @(posedge clock)
  alu_active && 
  cpu1_sampled && cpu1_stage == WB && cpu1_instr_WB_valid &&      // cpu1 @ Write-Back stage
  cpu2_sampled && cpu2_stage == WB && cpu2_instr_WB_valid &&      // cpu2 @ Write-Back stage
  (cpu2_reg_R[__R_r_r1_raddr] == cpu1_reg_R[__R_r_r1_raddr]) &&   // operand 1 same for cpu1 and cpu2 
  (cpu2_reg_R[__R_r_r0_raddr] == cpu1_reg_R[__R_r_r0_raddr])      // operand 0 same for cpu1 and cpu2
  |=>
  cpu2_reg_R[__R_r_w0_waddr] == cpu1_reg_R[__R_r_w0_waddr];       // result same for cpu1 and cpu2
endproperty;
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Optimizing Proof Times

• Unbounded model checking for “instruction advances” property
– Acceptable proving times, since the property relies mostly on controller and decoder

• Bounded model checking for “result correctness” properties
– More complex proving, as this also involves the data path, containing register files etc.
– Perform bounded model checking with bound N + 2
– Without reset, if result correctness holds under bounded model checking with cycle bound N + 2,

it holds without cycle bound too
– Any longer counterexample can be mapped to a counterexample with length <= N + 2, 

where in the first cycle the tracked instruction is issued, 
from an initial state capturing the history of the long counterexample

Use Bounded Model Checking

-n -n+1 … 0 1 2 … N N+1

Reset INSTR-n+1 … INSTR INSTR+1 INSTR+2 … INSTRN INSTRN+1

INSTR INSTR+1 INSTR+2 … INSTRN INSTRN+1
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Generated SystemVerilog Assumptions
Tool Adds Assumptions to the Formal Testbench to Avoid False Negatives
• ASIP Designer’s C/C++ compiler avoids certain instructions or instruction sequences

– Compiler avoids write conflicts on registers and nets
– Compiler honors software stall rules
– Compiler honors control related constraints, e.g. no jumps are scheduled in delay slots of other instructions

• Some general assumptions are needed
– e.g. on-chip debugging actions only in on-chip debug mode, etc.
– In absence of reset, some initial decoder states need to be constrained by invariant properties

• User can add extra assumptions to be included in checkers modules

Properties assumed in the formal testbench, are also written out as assertions for simulation

NML
Assumptions

Assertions

Formal Verification

+ Assertions

Simulation

Stimuli
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Organization According to nML Rules

VC Formal FPV scripts automatically generated
• Make a task for proving each nML rule
• Usable with GUI or without (batch mode)
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Which Bugs Are Found?
• Overall connectivity and data flow in the architecture are verified
• Failing hazard protection

– On architectures with near-consistent write-back stages per register file
– Hazards are largely also verified by design tools, but not for e.g. delayed results from multi-cycle units

• Failure to protect instructions from being corrupted by parallel activity
– Interaction with on-chip debugging and interrupts, delayed results,…
– This protection is hand-written by the user, and prone to errors

• “Bug Hunting” where FPV complements simulation
– Some bugs are indirectly connected to generated properties, but cause corruption of behavior that is verified

• Good results for formal signoff metrics, e.g. with Formal Testbench Analysis (VC Formal FTA)
– Detection of injected faults in controller (PCU), decoder, hazards logic,… 
– High coverage metric for property density, over-constraint analysis, formal core,… 



© 2024 Synopsys, Inc. 32

Summary

• Automated formal ISA verification methodology for ASIP Designer

• Leveraging VC Formal FPV for processor verification (e.g. RISC-V)
• Also applying other VC Formal apps (DPV, FTA, COV, …) 

SystemVerilog

nML 
rule

RTL 
Generator

Reference 
Model

Assertions

Functional model w/ required operand/result behavior 

Expected behavior of instructions, e.g.:
• Instruction advances: Issued instruction reaches write-back stage 

within known number of cycles
• Correct results: Instruction results of constrained CPU1 are same 

as in reference + compare results CPU1 with unconstrained CPU2

VC Formal 
(FPV)

Prove the assertions under all possible contexts
• E.g., instruction-level parallelism, pipeline hazards, mode switches 

(normal, debug, interrupt, …)
VCS

Verify all 
assumptions 
in simulation

Assumptions

Characteristics of C/C++ compiler (to prevent “false negatives”)
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THANK YOU
YOUR
INNOVATION
YOUR
COMMUNITY
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