Achieve First-pass Silicon with,
Efficient RTL to Gate Static Signoff
Methodology Using VC SpyGlass

Rimpy Chugh, Sr Staff Product Manager

Synopsys

Agenda SYNopsys

Achieve Static Signoff Across RTL2Gate Flow

— Find Critical Bugs using Comprehensive Glitch Verification

Is Your Design Implementation Ready?

Ensure Prequalified CDC Paths Remain Intact During Synthesis

— Static-aware Synthesis

— Smart Netlist Flow

Gain 100% Confidence on CDC Assumptions & Protocols

— Seamless Functional CDC Signoff Using Inbuilt Formal and Waveform Replay Technology

Correct by Construction Design Development Beyond Linting
— Formality-aware Linting

— Power Linting
— Testbench Linting using Euclide

SNUG SILICON VALLEY 2024 2

Achieve Static Signoff Across RTL2Gate Flow Synopsys Q

Ensuring correct-by-construction design for static bugs till later design cycles

™
m &
% g Structural Analysi F | Analysis for Noi VC SpyGlass
c S ructural Analysis ormal Analysis Tor Noise (Inbuilt Formal — Single step) .
e S (ML-powered) Pruning & Bug Finding . Catch functional
c € - Highly Accurate
e T b ly at RTL;
. Tl > ——— . ugs early a ;
o o3 Static DB & Productive : _
3 T 9 . sianoff | Gain best possible
g 5 5 Dynamic Verification Implementation & LEC-aware ' [¢) o
od i Glitch Verification Analysis productivity
o & VCS
[72)
a 5 —
2 “ Static DB
c s Ensure pre-verified
£ 280
= 5938 Infer Synthesis Directives for CDC; Reuse VC SpyGlass . . Static Aware | CDC/RDC/MCP
2 e 5% Glitch-free Logic Mapping Lint Waivers Fusion Compller . .
S 525 Synthesis | paths remain intact
o Ocm . .
< © - during synthesis
<) Y=
a S Ensure no new
> % % Reuse RTL Constraints and Waivers; VC SpyGIass Incremental Static bugs
Q 0Z Incremental CDC (Smart Netlist Flow) Gate-level
(@] - . .
3 Ze Verification | ntroduced at netlist
@ requiring fixes

SNUG SILICON VALLEY 2024 3

Find Critical Bugs Using Comprehensive SYNoPsys' @
Glitch Verification

Asynchronous Synchronous Paths Test (DFT) Paths Special Glitch Paths
Paths (MCP, FP, Max-delay) (Mode Transition, (Power Clamp, A2D,
(CDC, Clock, RDC, Clock Merge) D2A)
Reset)
t_en . I:Iamp_enl . 0=>1=0
m 'b >F1 IEID >F1
e — o 0 - litch-prone Logic

Test Mode Glitch

Mode transition
glitches not caught

Caught by current Not caught by STA or Specific logic might

static solutions CDC tools

cause functional
glitch issues

by STA or CDC tools
due to constraints

SNUG SILICON VALLEY 2024 4

Comprehensive Glitch Solution Accelerated Synopsys' @
Productivity from Days to 1.5 hours

Application GPU application 2.6B instances
Synchronous Paths Test (DFT) Paths Special Glitch Paths

(MCP, FP, Max-delay) (Mode Transition, (Power Clamp, A2D,

Challenges Results with VC SpyGlass ShEslienE) D)

10 03130
t_en
. . . Significantly better = I "
* Internal solution runtime gn y ¢ ﬁ"b m -.‘-'b.
runtime compared to)
takes days/weeks : : o &
Inte rnal Solutlon set_mulficycle_path 2 -setup —from F1 —to F2 Test Mode Glitch
e {
« Painful & inefficient post- . : STA and CDC tools Specific logic might
) P Ability to avoid manual STA and CDC tools will not catch mode have functional glitch
miss these glitches
prOCGSS|ng anaIySIS t r |n W|th t on these gathS transition g|itches due issues missed by
demanding significant POS -pt_ocegs Rg ou P to constraints traditional flows
impacting Qo \ \

bandwidth

Comprehensive Glitch Verification Flow Incorporated in Netlist Signoff Checklist

SNUG SILICON VALLEY 2024 5

End-2-End Glitch Verification Methodology ~ Synopsys: @

Designer Expand from traditional VC SG structural
VC SpyGlass (@RTL) analysis user @RTL

Sync. Path /
Async. Path Point2Point 1. Expand RTL structural analysis from async.

paths to all other paths in the design
Static Glitch Analysis

2. Achieve noise reduction by enabling inbuilt

Formal Glitch Analysis for Noise Reduction formal for CDC/Reset/MCP/P2P
(Inbuilt VC Formal)

e e e ' e — 3. Verify remaining paths using dynamic VCS
W “ W simulation

« Native dynamic path sensitization-

e : :
: based simulation enables faster TAT
Static DB . . .
and provides easy analysis leveraging
DV Engineer VCS glitch-specific coverage

Native Dynamic Path Sensitization

: } 4. Structural analysis using VC SpyGlass
Designer VC SpyGlass (@Netlist) @Netlist

Post Synthesis

SNUG SILICON VALLEY 2024 6

Is your Design Implementation Ready?
Avoid unintended bugs due to synthesis optimizations with
Implementation Design Checks

Is Your Design Implementation Ready?
Current Flow Challenges and SHIFT-LEFT with Implementation

Manual debug with Static Signoff
limited information
to find root causes Synthesis

Netlist

lterative process

Potential unintended

Impl. Engineer optimization of registers
during synthesis

®

VC SpyGlass (@RTL)

Implementation Design
Checks

RTL Designer

Fusion Compiler Impl. Engineer

Finding root-cause for ~70% of registers obvious.
Higher TAT (2-3 months) for root cause analysis of pending 30%

SHIFT-LEFT and easy root cause analysis of constant register
optimized during synthesis

Lack of mechanisms to determine logic congestion issues before
RTL handoff

SHIFT-LEFT and easy design fixes of logic congestion issues as
part of RTL signoff

Multiple iterations between RTL & Synthesis teams
Ex. huge difference in area from one RTL drop to another

No iteration due to unintentional register optimizations or logic
congestion; Predictable overall design cycle

SNUG SILICON VALLEY 2024

Implementation Design Checks (IDC): Case

Studies

Infrastructure
Technology Leader, US

Unexpected optimization
due to registers
incorrectly tied to zero

2

Quoted “Exceptional
proficiency in identifying
stuck at fault
registers/flops early in
the RTL coding phase”

Synopsys Confidential Information

Leading Processor
Supplier, US

Manual & iterative high
debug TAT for constant
registers optimized
during synthesis

2

Decided to use IDC for
weekly regression runs
for every design

Leading Technology
Company, US

Manual & high debug
TAT of 3-4 months on
8B+ design (32 tiles)

2

Hard to find complex
root-causes were
detected within a week
earlier in design cycle

Smart EV Maker, China

SYNOPSYS: @

Unexpected optimization
of 72k registers were
optimized during
synthesis

2

Caught real RTL bug
where a config register
was unexpectedly
optimized per design
intent

SNUG SILICON VALLEY 2024 9

Implementation Design Checks (IDC)

Applications

Constant Optimized Registers

Register Removal Report

-l
s R 4

Constant Register
» Shift left detection and root cause
analysis of constant optimized registers.

* 10X faster reporting

Saves Debug Iterations

Unloaded Optimized Registers

Register Removal Report
RTL

A

~Pe®n
‘
‘Ss

Unloaded Register
+ Shift left detection and root cause
analysis of unloaded optimized registers.

+ 10X faster reporting

Saves Debug Iterations

SYNOPSYS: @

Logical Congestion

Congestion Report

47 Wi resd
module read B { reglile . radd , ot) 3

gt [7:0] repfile [29820]
wpntt [730) reddr
(7:0) . 2

saign wa o repfilelrase) @ -‘ Big MUX

i L e

Identify Problematic RTL

Select Ops
X-bars

Improve P&R Success

SNUG SILICON VALLEY 2024

10

Implementation Design Checks (IDC) Flow SYNOPSYS' @

Develop VC SpyGlass IDC setup
Develop VC SpyGlass IDC setup — Reuse existing VC SpyGlass setup

Enable IDC Flow

Enable push-button IDC flow

Generate Optimized Register List

|dentify optimized registers due to constant propagation

and unused register output
Generate RCA Debug for Optimized

Registers

Easy determination of root cause for optimized registers

User Debug & RTL Fix as Applicable

Fix RTL or add waivers for synthesis where applicable

SNUG SILICON VALLEY 2024 11

Finding Root Cause for Constant Optimized SYNoPsys'
Registers (CR) =

~y
P —

|_AND_N_3 qi_reg | AND_N_4

\\, ouT D Q T :\\, ouT
,/ — 1/

module top (inl, in2, clk, r=st, gl, Jg2);

input inl, in2; ini NO |
input clk,rst; "RST

ontput reg gl,gd; clk— CP
RST
alwaysi (posedge clk or posedge ©st)
begin rst—s <> - |
if({r=st) '
begin
gl<=
gql<= :
end
else
begin
gl<=gq2 &inl; :
g2<=gl&in2; inl

end
end

endmodnle

B]

SNUG SILICON VALLEY 2024 12

Register Optimized due to a Constant Source

==, RHS register is optimized due to fan-in cone of LHS
register by constant propagation

20| N_12 N_13 Fo000| LLIEL
I_BNOT_N_11 0INO T seL RHS
1 |\@>@)LT-J N1 Lo N o :
wakeup R ey I Bl 27 e it e :
! | ‘ 2 startGmer i o

JJJJJJJ

Waveform Witness !
SNUG SILICON VALLEY 2024 13

Register Optimized due to Toggling Sources SYNoOPSYs’ @

RHS register is optimized due to toggling sources |(Gpimized registery
and LHS constant optimized registers

[Optimized Register Sourcel¢.$

LHS

' Constant 0 L NJ RHS

| Toggling Sourcelt. 4

SNUG SILICON VALLEY 2024 14 !

Finding Root Cause of Unloaded Optimized SYNOPSYS Q
Registers (ULR)

» Synthesis tools optimizes several registers because they’re unloaded (ULR).

» VC SpyGlass provides detection and pinpointing of the root cause for optimization using following tag :
configure lint tag -enable -tag "DetectOptimilizedUnUsedRegister" —-goal <>

» For bit-blasted reporting of registers, disable bus-merging:
lint disable bus merge -tag DetectOptimizedUnUsedRegister

(nioaed .y

re_ctrl_fifo I"'-, IN-1
= \
entry_counter \reg IN-2 Lo
|_ADD_entry_counter_n = i FE-1
ently_counter IN2 _EN Q '-_.en. ntemfry_counter } count) count[2:0] Count COR \ AND Q
INT| /N |ouT entry counter n |) \ ° IN-3 {) D
T dee ||\ D Q / FF-3
(COR)

FF-2
(ULR)

SNUG SILICON VALLEY 2024 15

Easy Debug via Precise Reporting SYNOPSYS' @

« Easy identification of constant & non-constant sources AELIHEE SO AL R
Sources Sources

« Precise reports for multi-bit optimized registers hier1.F1[0], hier2.F1[0] Bus
« Bus merged when specified S1, 82 S3 2'29” F11], hier2.F1[0] Merging

F3
* Reporting for single optimized register from single hierarchy

when multiple instances present

Non-Const Const Optimized Registers
Sources Sources
hier1.F1[1:0]
S1, S2 S3 hier2.F2[1:0]
F2
F3
Non-Const Const Optimized Registers
Sources Sources
hier1.F1[1:0] Report from
S1, S2 S3 F2 one Hierarc
F3

SNUG SILICON VALLEY 2024 16

Optimized Registers Report SYNoPSYs'

Constant Register sources and Optimization type

BB == e
29 OPTIMIZED REGS OPTIMIZATION TYPE SOURCES SOURCE TYPE
E L e L L L L R L e R R LY
31 a cache.tags[@].single use Direct Constant a fetch.cache wtag.single use Design Constant
32 a cache.tags[1].single use
33
OPTIMIZATION TYPE SOURCE_TYPE
Direct Constant : When the inferred optimized register is directly driven by a constant (or a propagated constant) Design Constant : Constant logic
Optimized by Logic : When a combination of inputs driving the register causes it to get optimized Ooptimized Register : Another inferred optimized register
Constant thru Opt Reg : If an inferred optimized register is driving another inferred optimized register NON_CONST : Non Constant logic

SNUG SILICON VALLEY 2024 17

Ensure Prequalified CDC Paths Remain Intact
During Synthesis

Static Aware Synthesis

Synthesis is Unaware of CDC/RDC Paths

Current Flow Challenges

Static signoff

Synthesis

(Design Compiler or Fusion Compiler)

Error-prone methods used to protect CDC paths during Synthesis using RTL
pragmas, manual synthesis directives

Netlist

Potential Corruption
Possible corruption of CDC Paths during Synthesis leading to silicon-respin
P S J P of CDC/RDC Paths

Requires CDC Revalidati
An additional effort at Gate-level for CDC re-verification equires evalidation

Multiple iterations between RTL & Synthesis teams

Synthesis Need to be Guided to Avoid Disruption of Prequalified CDC/RDC Paths

SNUG SILICON VALLEY 2024 20

Synthesis-Aware Static Signoff

Correct by construction synthesis

Synopsys Design Constraints (SDC) &
Power Intent (UPF)

Structural &
Functional Signoff
at RTL

Correct by
Construction
Synthesis

Static signoff
at Netlist

Structural CDC Structural RDC
—

Static DB

Infer Synthesis Directives for CDC & RDC; Reuse VC SpyGlass . .
Glitch-free Logic Mapping Fusion Compller

Structural Lint
Analysis

VC SpyGlass

Reuse RTL Constraints and Waivers;
Incremental Lint, CDC, RDC Analysis (Smart NthlSt FlOW)

SYNOPSYS: @ |

Highlights

v'Preserves CDC signed-off
logic at synthesis level
enabling correct-by-
construction netlist

v'Reduces CDC validation
effort at gate-level

v'Reuse of Lint waivers to
suppress redundant
messages during synthesis
avoiding duplicated effort

SNUG SILICON VALLEY 2024

21

Static-Aware Synthesis Delivers Improved PPA SYynorsys: Q |

- ~40% Dynamic power, - 8% Leakage power reduction & ensures NO disruption
of pre-verified CDCs

Static-Aware Synthesis

o Objective Original Final Flow
flow
— Reduce total power for taped-out project. : ~ : :
RTL design RTL design
— Enhance 100% exhaustive CDC analysis ratio without SDC SDC
manual workaround ‘ ‘ ‘ I

« Background:

— Concerned of dynamic power reduction by modifying RTL
design.

— Wanted self-gating feature to improve total power reduction
in FC. Compiler

— Requested VC SpyGlass to make FC aware 100% CDC
paths for self-gating exception

VCSpyGlass
(CDC analysis)

Auto self-gating exception

Fusion
Compiler

i

SNUG SILICON VALLEY 2024 22

Static-Aware Synthesis Flow Overview SYNoPsys' @

Ensure bug-free netlist transformation during backend stages & new logic introduction

VC SpyGlass (@RTL)

Lint Checks

Fusion Compiler VC SpyGlass (@Gate)

Suppress Lint Messages Netlist Lint Checks

Generate Synthesis

Constraints for CDC, RDC Netlist CDC

Clock Domain Crossing
(CDC)

Reset Domain Crossing
(RDC)

Static DB CDC/RDC-aware Synthesis Netlist RDC

Verification Phase Implementation Phase Validation Phase

()

v" Preserves CDC signed-off CDC logic at synthesis level ensuring correct-by-construction netlist

v" Reduces the CDC validation effort at gate-level

SNUG SILICON VALLEY 2024 23

Static-aware Synthesis Flow Ensures
Instantiation of Glitch-Free Mux’es

Synthesis
b1 —] .
1’b1 — |
rx_clk
Static—aware
Synthesis
tx_clk > RTL d

Instantiates “Glitch- 1'b1

I
I
I

free MUX cell” tX—Clk ‘\\1,b1 ,/I m

SNUG SILICON VALLEY 2024 25

s | B

Avoid Transformation of Pre-verified CDC Paths to SYNoPsys' Q

Unsafe
Asynchronous signal moves to Clock Gating path

Regular Synthesis Flow o e

» Prequalified CDC path transforms into » H—:D_l_—
/

unsafe CDC path during synthesis
« Unprotected path introduced without

blocking signal during synthesis e '

CGC

Static-aware Synthesis Flow

Qualifier
« Ensures no optimization in clock gating for pe Protected Path
asynchronous sources /
» Avoids translation of pre-qualified CDC
paths to unprotected CDC path — m

SNUG SILICON VALLEY 2024 26

Ensure No Insertion of Clock Gating to

Synchronized Paths

Unexpected self clock-gate insertion introduces new bugs

Regular Synthesis Flow

New multi-paths get introduced between
destination & synchronizer

Static-aware Synthesis Flow

Ensure no CGC insertion happens within
synchronizer

=

=

SYNOPSYS: @

a4

Clk1 k2

——)D_ CGC

Clk2

Clk1 ‘Ii

Synchronizer

SNUG SILICON VALLEY 2024

27

Accelerated Static Signoff Closure Using SYNoPsys' @
Smart Netlist Flow

—— —

Name Mapping

Netlist Generation Name Mapping VC SpyGlass CDC Analysis @RTL
— (Verdi or Formality) File

SVF > > <>
— Netlist NEHIE RTL

Constraints Violation DB

1. Generate name mapping file for use
during RTL CDC run

Waivers
2. Generate netlist constraints & waivers Netlist VC SpyGlass CI_:)C Analysis
in RTL run @Netlist
3. Report new errors introduced at netlist

4. Debug errors categorized differently e —
between RTL & netlist Differential Netlist Violation DB

SNUG SILICON VALLEY 2024 31

Gain 100% Confidence on C\C_‘_Aﬂs,st’jmptions

& Protocols
Leverage Inbuilt formal and waveform replay engines within VC

SpyGlass

Need for Functional CDC Signoff SYNoPsys' @

CDC constraints and protocols require validation

Constraint Name . |
Convergence: Verify that sources follow Gray Encoding protocol
create clock ToataL_
create _generated clock o N\
create_reset _— /
Recik L LML L L L
create_static E eSS ——

set _case_analysis

Multi-source Glitch: Multiple source converging at comb-gate can Glitch
configure_cdc_convergence - ﬂ
ignore_among_signals | ﬂ
set_input_delay 4 wel Mo]
Sig2 —l
" (ilirch_E—i
set_cdc_ignore_path

SNUG SILICON VALLEY 2024 33

Shift-Left & Catch Functional Bugs Seamlessly SYNoPSYys @

Designers ensures complete functional CDC signoff upfront
without relying on DV

VC SpyGlass Platform

Violation
Reports

Static Analysis

Simulator
(Standard run) »

Inbuilt Formal Analysis

(using VC Formal) <A

Coverage
Reports

»

Simulator
(Standard run) -

DV Engineers

Waveform Replay Using Verdi

RTL Designers

* Inbuilt formal & dynamic analysis with combined results reporting
« Enables parallel development of static & simulation environments
* No need to simulate assertions with DUT for each test

SNUG SILICON VALLEY 2024 34

Design Scenario: Validation of Create static
Constraint

Simulator Message:-

"/global/apps/vcstatic 2022.06-
SP2/auxx/cdc/static_db/VCS/assumptions_definitions.sdb", 454
testbench_top.inst.i_Assumption_mod_chip top.Create Static 1. ADVCDC _DETECT_Q

S TOGGLE: started at 110s failed at 156s

SYNOPSYS @

Create_static signal is
toggling

*<=nWave:3 > /slowfs/.. /V(S/Single-Step/inter.fsdb

File Signal View Waveforrn Tools Window

110 g | O L5 v -110

n = 100

B
fl: i S O N NN O DS S (N MU S s

#ed Bl data(0:0] 1
[er] des clk
lar des_en
Yer des rat

... [Weg local_enable
er] mode_enable

J 1 1
pw = k& & ¥ § 9§ F & |

Q@ [s [F+E@

¢ widl S S U N SN LR R S

LT LT LU LT LT LT LT LT LT LT L

SNUG SILICON VALLEY 2024

36

1A

B
| -

Detect RTL Structures that C‘au_g_e,Ldng

Formality Runtimes (Inconclusives)
VC SpyGlass Formality-aware Lint

Structural Lint Functional Lint Power Lint Formality-aware Testbench
Signoff Signoff Analysis Lint Linting

Could be adopted in any order after Structural Lint closure
Synopsys Confident SNUG SILICON

Is Design Functional Equivalence Verifiable? SYNnoprsys @

Challenge — Design is synthesizable but not verifiable

RTL

RTL Designer Static Signoff
lterative & hard Synthesis
process Netlist

Impl. Engineer Lack of LEC Convergence

Causing Longer TAT

Some RTL styles stress Equivalence Checking;
Resolving these RTL styles a.k.a Hard Verification Points may
require re-synthesis

VC SpyGlass (@RTL)

Formality-aware Lint

|RTL|

Fusion Compiler
Formality

RTL Designer

Impl. Engineer

SHIFT-LEFT by early warning to designers about hard
verification points and shorten LEC TAT

Detecting these points later during verification is TOO LATE
Huge runtime during logical equivalence checking run

No iteration by early detection of hard-to-verify points; Designers
get to ensure the design is verifiable upfront
May require re-coding RTL or update synthesis setup constraints

SNUG SILICON VALLEY 2024 38

Abort Points Detected Using VC SG in Min. SYNoPsys' @
vs. Formality Run Later in Days

RTL Designer VC SpyGlass
@ RTL

Iterative & hard
process Fusion Compller

Formality

Impl. Engineer 34 abort points detected
in 36 hours by Formality

VC SpyGlass (@RTL)

RTL Designer

Formality-aware Lint flagged 34 abort
points in 10 min

Fusion Compiler
Formality

Faster convergence during Formality | |mpl. Engineer
run

VC SpyGlass Highlighted 34 Abort Points in 10 min Earlier at RTL vs. 36 hrs Formality Run After Implementation

Formality Aware Lint Incorporated within RTL Signoff Checklist in Regression Usage Mode

SNUG SILICON VALLEY 2024 39

Identify Opportunities to Reéluc_e._ _Em}ver using

Power-aware Lint
VC SpyGlass Power-aware Lint

Structural Lint Functional Lint Power Lint Formality-aware Testbench
Signoff Signoff Analysis Lint Linting

Could be adopted in any order after Structural Lint

Synopsys Confidential Informa SNUG SILICON VALLEY 2024

Early Power Reduction Leveraging Power-

aware Lint
Problem Statement

« EARLY guidance at RTL to accurately pinpoint
coding styles resulting in high power
consumption. Ex:-

— Missing clock gating structures

— Inefficient/Redundant clock gating

— Structural inefficiency for clock gating

— Connectivity/Optimization of clock gating logic

« Enables best design practices to avoid power-
hungry logic
— Use of SRAM instead of 2-3k bit flop arrays
— Redundant Flop arrays
— Unintended bus toggles

SYNOPSYS: Q

Solution: Early Power Linting
¥ ¥ ¥
Power Lint

lv lv

Vlolatlon

-
w Verdi GUI

Reports

Expand Regular Lint run with Power Lint (with or without
SDC)

27 rules enabled via Power Lint with 2023.03-SP2-3

Applicable for both IP & SoC level RTL signoff

SNUG SILICON VALLEY 2024 41

Testbench Consuming More Simulation Time,

Need to Improve TB Quality
Euclide TB Linting — Batch Mode

Structural Lint Functional Lint Power Lint Formality-aware Testbench
Signoff Signoff Analysis Lint Linting

Could be adopted in any order after Structural Lint
SNUG SILICON VALLEY 2024

Need for Testbench Linting SYNoPSys: @
Testbench code is different than RTL

* Verification testbenches contain Classes
« Synthesizable RTL Lint handled excellently by VC SpyGlass

* No testbench linting or correct-by-construction checking for Class based code or
UVM

* Engineers run into many iterative testbench issues at compile, simulation run or
debug

Synopsys Euclide Enables Testbench Linting During System Verilog and UVM Code Development

SNUG SILICON VALLEY 2024 43

Testbench Linting Using Euclide

Testbench Linting in Batch mode applicable for Verification

Engineers (or VCS users)

« Similar to RTL Linting for
Designers, Verification
Engineers also need early
guidance on Testbench quality

* Engineers get early reports for
addressing TB/UVM issues
without waiting for entire
design to compile

Synopsys Confidential Information

SYNOPSYS: Q

111
112

null_pointer_access

:1- task handle_read_data();

data_flit_seq_item data_flit;
@(vif.clk_monitor);
Fofuif -1 f

PULSPLay L liylig
end
1 begir

f/data_flit = data_flit_seq_item::type_id::create

data_flit.data| = '.rl_f.-c'..k-ncnltar.q‘_drdata:
data_flit.gnum = pending_rd_req.pop_front();

("TRACE_CFIFO_RD", s$sformatf(“Data: %s",

data_flit.sprint(uvm_default_line p

= Line 128 is a UVM factory method to

. Violation No Violation initialize class instance data_flit
uvm_pa C k-l n 'J = In this version this ine is mistakenly
Null class instance access, An attempt | | Class instances need to be initialized commented out o missing.
is made to access a class membervia | | with new or the UVM factory before
class instance that was not initialized, use, Mot doing this will resultin a
or was previously set to ‘null’ runtime simulation error. " Issusonly caught during simulation
and would escape many different
it et tools including simulation
quiai elaboration.
SYMOPSYS
 —— T — T
= Following the conventions of UVM
allows for expected results.
= In this case, “pack” is an internal
Viclation_ No Violation function that user should not

Discouraged UVM method ovemride,
The class method ‘pack’ overrides a
method with the same name in the
extended class 'uvm_object’, which is
discouraged according to UVM

‘do_pack'

The recommended alternative for
including additional fields in a 'pack’
operation is overniding the method

override.

v

SYNOPSYS

= Userinstructed to use the
“do_pack™ method instead

SNUG SILICON VALLEY 2024 44

Testbench Checks Examples SYNOPSYS

ar

1419 class C;

142 rand int x,y;
11439 covergroup €g ();
144 coverpoi

s The class covergroup ‘cg’ is never driven.

R COVETPOT 1hig problem criginates in: test_lib.sv, 143

e cross X, Expanded from: xbus_tb_top.sv, 30

147 endgroup : €

148 hndc'lass 5 quick fixes available:

149 © Add class covergroup allocation

150 ¥ Configure problem settings

151 @ Add @SuppressProblem’ annotation in the same file

i:; @ Add '@SuppressProblem’ annotation in the same file with last selected options

B @ Add Suppress Problem annotation...

141= class C;

142 rand int x,y;
1439 covergroup €g ();
144 coverpoint Xx;
145 coverpoint y;
146 Cross X, y;

147 endgroup : Cg
1482 function new
E14a9 : implement
158 g
151 endfunction
152 endclass

SNUG SILICON VALLEY 2024 47

Key Takeaways

 Glitch Verification & Functional CDC
signoff is critical to avoid silicon
failure

* Implementation Design Checks
enable easy root cause of synthesis
optimized registers

« Formality-aware Lint, Power Linting
enable Advanced SHIFT-LEFT

« Static-aware synthesis followed by
Smart netlist flow ENABLES end-2-
end static signoff

Synopsys Design Constraints (SDC) & Power Intent (UPF)

-

-w

®

= VC SpyGlass
g . Structural Analysis Formal Analysis for Noise {Inbuilt Formal — Single step)
2 = {ML-powered) Pruning & Bug Finding
g™
=g
£c . __ RTLA & Formality-aware
=
o
= — -
“ Static DB
=
28
Al ‘G 2 H H H . v e
oo @ Infer Synthesis Direclives for CDC; Reuse VC SpyGlass . .
2= E Glitch-free Logic Mapping Lint Waivers Fusion Compiler
§52

-
Netlist

Reuse RTL Constraints and Waivers; VC SpyGlass
incremental CDC (Smart Netlist Flow)

Static signoff
at Netlist

SNUG SILICON VALLEY 2024

SYNOPSYS: @

\ ' You
THANK YOU\ IyNONU(;VATION

COMMUNITY

	Achieve First-pass Silicon with Efficient RTL to Gate Static Signoff Methodology Using VC SpyGlass​
	Agenda
	Achieve Static Signoff Across RTL2Gate Flow
	Find Critical Bugs Using Comprehensive Glitch Verification
	Comprehensive Glitch Solution Accelerated Productivity from Days to 1.5 hours
	End-2-End Glitch Verification Methodology
	Is your Design Implementation Ready?
	Is Your Design Implementation Ready?
	Implementation Design Checks (IDC): Case Studies
	

	Implementation Design Checks (IDC) Flow
	Finding Root Cause for Constant Optimized Registers (CR)
	Register Optimized due to a Constant Source
	Register Optimized due to Toggling Sources
	Finding Root Cause of Unloaded Optimized Registers (ULR)
	Easy Debug via Precise Reporting
	Optimized Registers Report
	Ensure Prequalified CDC Paths Remain Intact During Synthesis
	Synthesis is Unaware of CDC/RDC Paths�
	Synthesis-Aware Static Signoff
	Static-Aware Synthesis Delivers Improved PPA
	Static-Aware Synthesis Flow Overview
	Static-aware Synthesis Flow Ensures Instantiation of Glitch-Free Mux’es
	Avoid Transformation of Pre-verified CDC Paths to Unsafe�
	Ensure No Insertion of Clock Gating to Synchronized Paths
	Accelerated Static Signoff Closure Using Smart Netlist Flow
	Gain 100% Confidence on CDC Assumptions & Protocols
	Need for Functional CDC Signoff
	Shift-Left & Catch Functional Bugs Seamlessly
	Design Scenario: Validation of Create_static Constraint				
	Detect RTL Structures that Cause Long Formality Runtimes (Inconclusives)
	Is Design Functional Equivalence Verifiable?
	Abort Points Detected Using VC SG in Min. vs. Formality Run Later in Days
	Identify Opportunities to Reduce Power using Power-aware Lint
	Early Power Reduction Leveraging Power-aware Lint �
	Testbench Consuming More Simulation Time, Need to Improve TB Quality
	Need for Testbench Linting
	Testbench Linting Using Euclide
	Testbench Checks Examples
	Key Takeaways
	Slide Number 49

