
SNUG SILICON VALLEY 2024 1

Achieve First-pass Silicon with
Efficient RTL to Gate Static Signoff
Methodology Using VC SpyGlass

Rimpy Chugh, Sr Staff Product Manager

Synopsys

SNUG SILICON VALLEY 2024 2

Agenda

• Achieve Static Signoff Across RTL2Gate Flow
– Find Critical Bugs using Comprehensive Glitch Verification

• Is Your Design Implementation Ready?
• Ensure Prequalified CDC Paths Remain Intact During Synthesis

– Static-aware Synthesis
– Smart Netlist Flow

• Gain 100% Confidence on CDC Assumptions & Protocols
– Seamless Functional CDC Signoff Using Inbuilt Formal and Waveform Replay Technology

• Correct by Construction Design Development Beyond Linting
– Formality-aware Linting
– Power Linting
– Testbench Linting using Euclide

SNUG SILICON VALLEY 2024 3

Achieve Static Signoff Across RTL2Gate Flow
Ensuring correct-by-construction design for static bugs till later design cycles

Incremental
Gate-level

Verification

Ensure no new
Static bugs
introduced at netlist
requiring fixes

Static Aware
Synthesis

Ensure pre-verified
CDC/RDC/MCP
paths remain intact
during synthesis

Highly Accurate
& Productive

signoff

Catch functional
bugs early at RTL;
Gain best possible
productivity

Fusion CompilerReuse VC SpyGlass
Lint Waivers

Infer Synthesis Directives for CDC;
Glitch-free Logic Mapping

VC SpyGlass
(Inbuilt Formal – Single step) Structural Analysis

(ML-powered)
Formal Analysis for Noise

Pruning & Bug Finding

Implementation & LEC-aware
Analysis

VC SpyGlass
(Smart Netlist Flow)

Reuse RTL Constraints and Waivers;
Incremental CDC

St
at

ic
 s

ig
no

ff
at

 N
et

lis
t

C
or

re
ct

 b
y

C
on

st
ru

ct
io

n
Sy

nt
he

si
s

St
ru

ct
ur

al
 &

 F
un

ct
io

na
l

Si
gn

of
f a

t R
TL

Dynamic Verification
Glitch Verification

VCS

Static DB

RTL

RTL

Netlist

Sy
no

ps
ys

 D
es

ig
n

C
on

st
ra

in
ts

 (S
D

C
) &

 P
ow

er
 In

te
nt

 (U
PF

)

Static DB

SNUG SILICON VALLEY 2024 4

Find Critical Bugs Using Comprehensive
Glitch Verification

Asynchronous
Paths

(CDC, Clock, RDC,
Reset)

Caught by current
static solutions

Synchronous Paths
(MCP, FP, Max-delay)

Not caught by STA or
CDC tools

Test (DFT) Paths
(Mode Transition,

Clock Merge)

Mode transition
glitches not caught

by STA or CDC tools
due to constraints

Special Glitch Paths
(Power Clamp, A2D,

D2A)

Specific logic might
cause functional

glitch issues

SNUG SILICON VALLEY 2024 5

Comprehensive Glitch Solution Accelerated
Productivity from Days to 1.5 hours

Challenges Results with VC SpyGlass

• Internal solution runtime
takes days/weeks

• Significantly better
runtime compared to
internal solution

• Painful & inefficient post-
processing analysis
demanding significant
bandwidth

• Ability to avoid manual
post-processing without
impacting QoR

Application GPU application 2.6B instances

Synchronous Paths
(MCP, FP, Max-delay)

STA and CDC tools
miss these glitches

on these paths

Test (DFT) Paths
(Mode Transition,

Clock Merge)

STA and CDC tools
will not catch mode

transition glitches due
to constraints

Special Glitch Paths
(Power Clamp, A2D,

D2A)

Specific logic might
have functional glitch

issues missed by
traditional flows

Comprehensive Glitch Verification Flow Incorporated in Netlist Signoff Checklist

SNUG SILICON VALLEY 2024 6

End-2-End Glitch Verification Methodology

Expand from traditional VC SG structural
analysis user @RTL

1. Expand RTL structural analysis from async.

paths to all other paths in the design

2. Achieve noise reduction by enabling inbuilt
formal for CDC/Reset/MCP/P2P

3. Verify remaining paths using dynamic VCS
simulation

• Native dynamic path sensitization-
based simulation enables faster TAT
and provides easy analysis leveraging
glitch-specific coverage

4. Structural analysis using VC SpyGlass
@Netlist

Static DB

VC SpyGlass (@RTL)

Static Glitch Analysis

Proof

RTL SDC

Async. Path Sync. Path /
Point2Point

Formal Glitch Analysis for Noise Reduction
(Inbuilt VC Formal)

Fail Inconclusive

VCS
Native Dynamic Path Sensitization

VC SpyGlass (@Netlist)
Post Synthesis

Designer

DV Engineer

Designer

SNUG SILICON VALLEY 2024 7

Is your Design Implementation Ready?
Avoid unintended bugs due to synthesis optimizations with
Implementation Design Checks

SNUG SILICON VALLEY 2024 8

Is Your Design Implementation Ready?
Current Flow Challenges and SHIFT-LEFT with Implementation
Design Checks

VC SpyGlass (@RTL)
Implementation Design

Checks

Fusion Compiler

RTL Designer

Impl. Engineer

RTL

SHIFT-LEFT and easy root cause analysis of constant register
optimized during synthesis

No iteration due to unintentional register optimizations or logic
congestion; Predictable overall design cycle

Before

RTL

Synthesis

Potential unintended
optimization of registers

during synthesis

Netlist

Manual debug with
limited information
to find root causes

&
Iterative process

Static Signoff

Impl. Engineer

After

Finding root-cause for ~70% of registers obvious.
Higher TAT (2-3 months) for root cause analysis of pending 30%

Multiple iterations between RTL & Synthesis teams
Ex. huge difference in area from one RTL drop to another

Lack of mechanisms to determine logic congestion issues before
RTL handoff

SHIFT-LEFT and easy design fixes of logic congestion issues as
part of RTL signoff

SNUG SILICON VALLEY 2024 9

Implementation Design Checks (IDC): Case
Studies

Unexpected optimization
due to registers

incorrectly tied to zero

Quoted “Exceptional
proficiency in identifying

stuck at fault
registers/flops early in
the RTL coding phase”

Manual & iterative high
debug TAT for constant

registers optimized
during synthesis

Decided to use IDC for
weekly regression runs

for every design

Manual & high debug
TAT of 3-4 months on
8B+ design (32 tiles)

Hard to find complex
root-causes were

detected within a week
earlier in design cycle

Unexpected optimization
of 72k registers were

optimized during
synthesis

Caught real RTL bug
where a config register

was unexpectedly
optimized per design

intent
Synopsys Confidential Information

Infrastructure
Technology Leader, US

Leading Processor
Supplier, US

Leading Technology
Company, US Smart EV Maker, China

SNUG SILICON VALLEY 2024 10

Applications

Implementation Design Checks (IDC)

SNUG SILICON VALLEY 2024 11

Implementation Design Checks (IDC) Flow

• Develop VC SpyGlass IDC setup
– Reuse existing VC SpyGlass setup

• Enable push-button IDC flow

• Identify optimized registers due to constant propagation
and unused register output

• Easy determination of root cause for optimized registers

• Fix RTL or add waivers for synthesis where applicable

Enable IDC Flow

Generate Optimized Register List

Generate RCA Debug for Optimized
Registers

User Debug & RTL Fix as Applicable

Develop VC SpyGlass IDC setup

SNUG SILICON VALLEY 2024 12

Finding Root Cause for Constant Optimized
Registers (CR)

SNUG SILICON VALLEY 2024 13

Register Optimized due to a Constant Source
RHS register is optimized due to fan-in cone of LHS

register by constant propagation

LHS

RHS

Waveform Witness

SNUG SILICON VALLEY 2024 14

Constant 0

Register Optimized due to Toggling Sources
RHS register is optimized due to toggling sources

and LHS constant optimized registers
LHS

RHS

SNUG SILICON VALLEY 2024 15

Finding Root Cause of Unloaded Optimized
Registers (ULR)
• Synthesis tools optimizes several registers because they’re unloaded (ULR).

• VC SpyGlass provides detection and pinpointing of the root cause for optimization using following tag :
configure_lint_tag -enable -tag "DetectOptimizedUnUsedRegister" –goal <>

• For bit-blasted reporting of registers, disable bus-merging:
lint_disable_bus_merge -tag DetectOptimizedUnUsedRegister

SNUG SILICON VALLEY 2024 16

Easy Debug via Precise Reporting

Non-Const
Sources

Const
Sources

Optimized Registers

S1, S2 S3
hier1.F1[0], hier2.F1[0]
hier1.F1[1], hier2.F1[0]
F2
F3

Bus
Merging

Report from
one Hierarchy

D Q

F1[0]

D Q
F1[1]

D Q
F2

hier1

D Q

F3

S1
S2
S3

Non-Const
Sources

Const
Sources

Optimized Registers

S1, S2 S3
hier1.F1[1:0]
hier2.F2[1:0]
F2
F3

Non-Const
Sources

Const
Sources

Optimized Registers

S1, S2 S3
hier1.F1[1:0]
F2
F3

• Easy identification of constant & non-constant sources

• Precise reports for multi-bit optimized registers
• Bus merged when specified

• Reporting for single optimized register from single hierarchy
when multiple instances present

SNUG SILICON VALLEY 2024 17

Optimized Registers Report
Constant Register sources and Optimization type

SNUG SILICON VALLEY 2024 19

Ensure Prequalified CDC Paths Remain Intact
During Synthesis
Static Aware Synthesis

SNUG SILICON VALLEY 2024 20

Synthesis is Unaware of CDC/RDC Paths
Current Flow Challenges

Synthesis Need to be Guided to Avoid Disruption of Prequalified CDC/RDC Paths

Possible corruption of CDC Paths during Synthesis leading to silicon-respin

An additional effort at Gate-level for CDC re-verification

Multiple iterations between RTL & Synthesis teams

Error-prone methods used to protect CDC paths during Synthesis using RTL
pragmas, manual synthesis directives

RTL

Static signoff

Synthesis
(Design Compiler or Fusion Compiler)

Potential Corruption
of CDC/RDC Paths

Netlist

High Effort

Requires CDC Revalidation

SNUG SILICON VALLEY 2024 21

Synthesis-Aware Static Signoff
Correct by construction synthesis

Highlights

Preserves CDC signed-off
logic at synthesis level
enabling correct-by-
construction netlist

Reduces CDC validation
effort at gate-level

Reuse of Lint waivers to
suppress redundant
messages during synthesis
avoiding duplicated effort

Fusion CompilerReuse VC SpyGlass
Lint Waivers

Infer Synthesis Directives for CDC & RDC;
Glitch-free Logic Mapping

VC SpyGlass
Structural Lint

Analysis

VC SpyGlass
(Smart Netlist Flow)

Reuse RTL Constraints and Waivers;
Incremental Lint, CDC, RDC Analysis

St
at

ic
 s

ig
no

ff
at

 N
et

lis
t

C
or

re
ct

 b
y

C
on

st
ru

ct
io

n
Sy

nt
he

si
s

St
ru

ct
ur

al
 &

Fu

nc
tio

na
l S

ig
no

ff
at

 R
TL

Static DB

RTL

RTL

Netlist

Sy
no

ps
ys

 D
es

ig
n

C
on

st
ra

in
ts

 (S
D

C
) &

Po

w
er

 In
te

nt
 (U

PF
)

Structural CDC
Analysis

Structural RDC
Analysis

Constraints

SNUG SILICON VALLEY 2024 22

Static-Aware Synthesis Delivers Improved PPA
- ~40% Dynamic power, - 8% Leakage power reduction & ensures NO disruption
of pre-verified CDCs

• Objective
– Reduce total power for taped-out project.
– Enhance 100% exhaustive CDC analysis ratio without

manual workaround

• Background:
– Concerned of dynamic power reduction by modifying RTL

design.
– Wanted self-gating feature to improve total power reduction

in FC.
– Requested VC SpyGlass to make FC aware 100% CDC

paths for self-gating exception

Static-Aware Synthesis

Fusion
Compiler

Fusion
Compiler

VCSpyGlass
(CDC analysis)

RTL design

SDC

RTL design

SDC

Auto self-gating exception

Original
flow

Final Flow

SNUG SILICON VALLEY 2024 23

Static-Aware Synthesis Flow Overview
Ensure bug-free netlist transformation during backend stages & new logic introduction

 Preserves CDC signed-off CDC logic at synthesis level ensuring correct-by-construction netlist

 Reduces the CDC validation effort at gate-level

VC SpyGlass (@RTL)

Lint Checks

Clock Domain Crossing
(CDC)

Reset Domain Crossing
(RDC)

Fusion Compiler

Suppress Lint Messages

Generate Synthesis
Constraints for CDC, RDC

CDC/RDC-aware Synthesis

Verification Phase Implementation Phase

Validation Phase

RTL

VC SpyGlass (@Gate)

Netlist Lint Checks

Netlist CDC

Netlist RDC

Validation Phase

Static DB

Netlist

Constraints

SNUG SILICON VALLEY 2024 25

Static-aware Synthesis Flow Ensures
Instantiation of Glitch-Free Mux’es

Synthesis

Instantiates “Glitch-
free MUX cell”

RTL

1’b1

1’b1

tx_clk

rx_clk

1’b
1

1’b1

Netlist

rx_clk

tx_clk

tx_clk
rx_clk

MUX_CELL

SEL

1’b1

1’b1

Static–aware
Synthesis

Netlist

SNUG SILICON VALLEY 2024 26

Avoid Transformation of Pre-verified CDC Paths to
Unsafe
Asynchronous signal moves to Clock Gating path

• Prequalified CDC path transforms into
unsafe CDC path during synthesis

• Unprotected path introduced without
blocking signal during synthesis

Regular Synthesis Flow

• Ensures no optimization in clock gating for
asynchronous sources

• Avoids translation of pre-qualified CDC
paths to unprotected CDC path

Static-aware Synthesis Flow

SNUG SILICON VALLEY 2024 27

Ensure No Insertion of Clock Gating to
Synchronized Paths
Unexpected self clock-gate insertion introduces new bugs

F1 F2F0

CGC
Clk1 Clk2

New multi-paths get introduced between
destination & synchronizer

Regular Synthesis Flow

F1
Clk1

F2F0

Synchronizer

Clk2

Ensure no CGC insertion happens within
synchronizer

Static-aware Synthesis Flow

SNUG SILICON VALLEY 2024 31

Accelerated Static Signoff Closure Using
Smart Netlist Flow

1. Generate name mapping file for use
during RTL CDC run

2. Generate netlist constraints & waivers
in RTL run

3. Report new errors introduced at netlist
4. Debug errors categorized differently

between RTL & netlist

VC SpyGlass CDC Analysis
@Netlist

Name Mapping
Generation

(Verdi or Formality)
VC SpyGlass CDC Analysis @RTLName Mapping

File

Netlist
Constraints

Differential Netlist Violation DB

RTL

Netlist

SVF

Netlist

RTL Constraints Waivers

Netlist
Waivers

RTL
Violation DB

SNUG SILICON VALLEY 2024 32

Gain 100% Confidence on CDC Assumptions
& Protocols
Leverage Inbuilt formal and waveform replay engines within VC
SpyGlass

SNUG SILICON VALLEY 2024 33

Need for Functional CDC Signoff
CDC constraints and protocols require validation

Constraint Name
create_clock

create_generated_clock
create_reset

create_static

set_case_analysis

configure_cdc_convergence -
ignore_among_signals

set_input_delay

set_cdc_ignore_path

CDC Constraints CDC Protocols

SNUG SILICON VALLEY 2024 34

VC SpyGlass Platform

Shift-Left & Catch Functional Bugs Seamlessly
Designers ensures complete functional CDC signoff upfront
without relying on DV

• Inbuilt formal & dynamic analysis with combined results reporting
• Enables parallel development of static & simulation environments
• No need to simulate assertions with DUT for each test

Waveform Replay Using Verdi

FSDB Violation
Reports

Static AnalysisSimulator
(Standard run)

Coverage
Reports

Simulator
(Standard run) FSDB

RTL Designers

Inbuilt Formal Analysis
(using VC Formal)

DV Engineers

SNUG SILICON VALLEY 2024 36

Design Scenario: Validation of Create_static
Constraint
Simulator Message:-
"/global/apps/vcstatic_2022.06-
SP2/auxx/cdc/static_db/VCS/assumptions_definitions.sdb", 454:
testbench_top.inst.i_Assumption_mod_chip_top.Create_Static_1.ADVCDC_DETECT_Q
S_TOGGLE: started at 110s failed at 156s

Create_static signal is
toggling

SNUG SILICON VALLEY 2024 37

Detect RTL Structures that Cause Long
Formality Runtimes (Inconclusives)
VC SpyGlass Formality-aware Lint

Synopsys Confidential Information

Structural Lint
Signoff

Functional Lint
Signoff

Power Lint
Analysis

Formality-aware
Lint

Testbench
Linting

Could be adopted in any order after Structural Lint closure

SNUG SILICON VALLEY 2024 38

Is Design Functional Equivalence Verifiable?
Challenge – Design is synthesizable but not verifiable

Some RTL styles stress Equivalence Checking;
Resolving these RTL styles a.k.a Hard Verification Points may

require re-synthesis

Detecting these points later during verification is TOO LATE
Huge runtime during logical equivalence checking run

VC SpyGlass (@RTL)

Formality-aware Lint

Fusion Compiler

RTL Designer

Impl. Engineer

RTL

SHIFT-LEFT by early warning to designers about hard
verification points and shorten LEC TAT

No iteration by early detection of hard-to-verify points; Designers
get to ensure the design is verifiable upfront

May require re-coding RTL or update synthesis setup constraints

Before

RTL

Synthesis

Lack of LEC Convergence
Causing Longer TAT

Netlist
Iterative & hard
process

Static Signoff

Impl. Engineer

After

LEC

Formality

RTL Designer

SNUG SILICON VALLEY 2024 39

Abort Points Detected Using VC SG in Min.
vs. Formality Run Later in Days

VC SpyGlass (@RTL)
Formality-aware Lint flagged 34 abort

points in 10 min

Fusion Compiler

RTL Designer

Impl. Engineer

Before

RTL

Fusion Compiler

34 abort points detected
in 36 hours by Formality

Iterative & hard
process

VC SpyGlass
@ RTL

Impl. Engineer

After

Formality Formality

RTL Designer

Faster convergence during Formality
run

VC SpyGlass Highlighted 34 Abort Points in 10 min Earlier at RTL vs. 36 hrs Formality Run After Implementation

Formality Aware Lint Incorporated within RTL Signoff Checklist in Regression Usage Mode

SNUG SILICON VALLEY 2024 40

Identify Opportunities to Reduce Power using
Power-aware Lint
VC SpyGlass Power-aware Lint

Synopsys Confidential Information

Structural Lint
Signoff

Functional Lint
Signoff

Power Lint
Analysis

Formality-aware
Lint

Testbench
Linting

Could be adopted in any order after Structural Lint

SNUG SILICON VALLEY 2024 41

Early Power Reduction Leveraging Power-
aware Lint

• EARLY guidance at RTL to accurately pinpoint
coding styles resulting in high power
consumption. Ex:-
– Missing clock gating structures
– Inefficient/Redundant clock gating
– Structural inefficiency for clock gating
– Connectivity/Optimization of clock gating logic

• Enables best design practices to avoid power-
hungry logic
– Use of SRAM instead of 2-3k bit flop arrays
– Redundant Flop arrays
– Unintended bus toggles

Problem Statement Solution: Early Power Linting

• Expand Regular Lint run with Power Lint (with or without
SDC)

• 27 rules enabled via Power Lint with 2023.03-SP2-3

• Applicable for both IP & SoC level RTL signoff

SNUG SILICON VALLEY 2024 42

Testbench Consuming More Simulation Time,
Need to Improve TB Quality
Euclide TB Linting – Batch Mode

Synopsys Confidential Information

Structural Lint
Signoff

Functional Lint
Signoff

Power Lint
Analysis

Formality-aware
Lint

Testbench
Linting

Could be adopted in any order after Structural Lint

SNUG SILICON VALLEY 2024 43

Need for Testbench Linting
Testbench code is different than RTL

• Verification testbenches contain Classes

• Synthesizable RTL Lint handled excellently by VC SpyGlass

• No testbench linting or correct-by-construction checking for Class based code or
UVM

• Engineers run into many iterative testbench issues at compile, simulation run or
debug

Synopsys Euclide Enables Testbench Linting During System Verilog and UVM Code Development

SNUG SILICON VALLEY 2024 44

Testbench Linting Using Euclide
Testbench Linting in Batch mode applicable for Verification
Engineers (or VCS users)

• Similar to RTL Linting for
Designers, Verification
Engineers also need early
guidance on Testbench quality

• Engineers get early reports for
addressing TB/UVM issues
without waiting for entire
design to compile

Synopsys Confidential Information

SNUG SILICON VALLEY 2024 47

Testbench Checks Examples

Tool detects a covergroup
that was not constructed
and suggests a quick fix

Quick fix constructs
the covergroup and
also generates the
class constructor if it is
missing

SNUG SILICON VALLEY 2024 48

Key Takeaways

• Glitch Verification & Functional CDC
signoff is critical to avoid silicon
failure

• Implementation Design Checks
enable easy root cause of synthesis
optimized registers

• Formality-aware Lint, Power Linting
enable Advanced SHIFT-LEFT

• Static-aware synthesis followed by
Smart netlist flow ENABLES end-2-
end static signoff

SNUG SILICON VALLEY 2024 49

THANK YOU
YOUR
INNOVATION
YOUR
COMMUNITY

	Achieve First-pass Silicon with Efficient RTL to Gate Static Signoff Methodology Using VC SpyGlass
	Agenda
	Achieve Static Signoff Across RTL2Gate Flow
	Find Critical Bugs Using Comprehensive Glitch Verification
	Comprehensive Glitch Solution Accelerated Productivity from Days to 1.5 hours
	End-2-End Glitch Verification Methodology
	Is your Design Implementation Ready?
	Is Your Design Implementation Ready?
	Implementation Design Checks (IDC): Case Studies
	
	Implementation Design Checks (IDC) Flow
	Finding Root Cause for Constant Optimized Registers (CR)
	Register Optimized due to a Constant Source
	Register Optimized due to Toggling Sources
	Finding Root Cause of Unloaded Optimized Registers (ULR)
	Easy Debug via Precise Reporting
	Optimized Registers Report
	Ensure Prequalified CDC Paths Remain Intact During Synthesis
	Synthesis is Unaware of CDC/RDC Paths�
	Synthesis-Aware Static Signoff
	Static-Aware Synthesis Delivers Improved PPA
	Static-Aware Synthesis Flow Overview
	Static-aware Synthesis Flow Ensures Instantiation of Glitch-Free Mux’es
	Avoid Transformation of Pre-verified CDC Paths to Unsafe�
	Ensure No Insertion of Clock Gating to Synchronized Paths
	Accelerated Static Signoff Closure Using Smart Netlist Flow
	Gain 100% Confidence on CDC Assumptions & Protocols
	Need for Functional CDC Signoff
	Shift-Left & Catch Functional Bugs Seamlessly
	Design Scenario: Validation of Create_static Constraint				
	Detect RTL Structures that Cause Long Formality Runtimes (Inconclusives)
	Is Design Functional Equivalence Verifiable?
	Abort Points Detected Using VC SG in Min. vs. Formality Run Later in Days
	Identify Opportunities to Reduce Power using Power-aware Lint
	Early Power Reduction Leveraging Power-aware Lint �
	Testbench Consuming More Simulation Time, Need to Improve TB Quality
	Need for Testbench Linting
	Testbench Linting Using Euclide
	Testbench Checks Examples
	Key Takeaways
	Slide Number 49

