
SNUG SILICON VALLEY 2024 1

Strategies to Reach the 100% Coverage Goal
Raghavan Ramadoss Shravani Balaraju
Engineering Manager Applications Engineer
Cisco Synopsys

SNUG SILICON VALLEY 2024 2

Agenda

• Birds eye view of features used
• Cisco coverage flow

– Step #1: Selecting/Excluding hierarchies
– Step #2: Constant identification
– Step #3: Coverage/Exclusion management
– Step #4: Unreachability Analysis
– Step #5: Iterative coverage closure

• Coverage Results with the new flow

SNUG SILICON VALLEY 2024 3

Birds eye view of features used

SNUG SILICON VALLEY 2024 4

Coverage Closure Challenges

0

20

40

60

80

100

0 50 100 150 200 250

C
ov

er
ag

e
%

Time / Simulation Run Count

Unreachable Space
Wasted time in manual debug
& exclusion effort

Reachable Space
Hard-to-hit points are very slow
and costly to find

Coverage Goal

• Manually add tests or run

Hard to Hit Coverage Points

• Manually debug and exclude

Unreachable Coverage Goal

• Manually correlate coverage results

Separate Simulation &
Formal Coverage Database

SNUG SILICON VALLEY 2024 5

Birds eye view of features used

• Benefit: Improve coverage by excluding targets that never occur/not applicable for the design

Feature: Selecting/excluding hierarchies

• Benefit: Tool identifies and eliminates fixed value variables, configurations at compile time

Feature: Constant Analysis

• Benefit: Easier to view
• Coverage is aggregated and reported over a module view rather than instance view

Feature: Mod tree file

• Benefit: Automatically find functionally unreachable targets and exclude them from coverage

Feature: Unreachability analysis

SNUG SILICON VALLEY 2024 6

Exclusion using covermeter

• We can pick and choose which scopes to enable code coverage collection on.

• To limit the scope of coverage, ‘-cm_hier <hier_file.txt>’ can be used

• The following can be enabled/disabled using +/- in the hier_file
– Modules/instances
– Source code files/file lists
– Libraries
– Signals
– Signal bits/transitions

SNUG SILICON VALLEY 2024 7

Constant Analysis

• Automatically eliminates structurally unreachable goals at compile time.

• Implements various methods to improve coverage based on constant
propagation

• Let’s consider a signal s, is a constant and is set to ‘0’
– p && s will always be zero
– If (s) will never be true
– This will cause a ripple effect if ‘s’ passes through multiple flops.

SNUG SILICON VALLEY 2024 8

Constant Analysis

top

A

B

C

B1

B2

B3

B4

B5

X1

X2

X3

X4

Y1

Y2

X

top

A

B

C

B1

B2

B3

B4

B5

X1

X2

X3

SNUG SILICON VALLEY 2024 9

Mod tree file

• The combined score of all instances of a module can be made a part of
coverage calculations

• The option ‘-modtreefile’ can be passed to either urg or Verdi during coverage
analysis

• Exclusions are propagated to all sibling instances

SNUG SILICON VALLEY 2024 10

Mod tree file

top

A

B

C

B1

B2

B3

B4

B5

X1

X2

X3

X4

Y1

Y2

i

j

k

l

m

c1

c2

c3

SNUG SILICON VALLEY 2024 11

UNR

• Find functionally unreachable targets and exclude them from coverage
calculations

• Analysis done by formal engines under the hood
• The coverage VDB, previous exclusion files can be parsed to narrow the scope

of the analysis region
• Exposes hidden bugs
• Can be deployed at any stage of the design verification cycle

SNUG SILICON VALLEY 2024 12

UNR

case (state)
 8’h00: d_out <= 8’h01;
 8’h01: d_out <= 8’h02;
 8’h02: d_out <= 8’h04;
 8’h03: d_out <= 8’h08;
 8’h04: d_out <= 8’h80;
 8’h05: d_out <= 8’h70;

fvassume –expr {state < 8’h04}

User
constraint

Unreachable

SNUG SILICON VALLEY 2024 13

UNR

case (state)
 8’h00: d_out <= 8’h01;
 8’h01: d_out <= 8’h02;
 8’h02: d_out <= 8’h04;
 8’h03: d_out <= 8’h08;
 8’h04: d_out <= 8’h80;
 8’h05: d_out <= 8’h70;

fvassume –expr {state < 8’h04}

User constraint

Unreachable

SNUG SILICON VALLEY 2024 14

UNR

case (state)
 8’h00: d_out <= 8’h01;
 8’h01: d_out <= 8’h02;
 8’h02: d_out <= 8’h04;
 8’h03: d_out <= 8’h08;
 8’h04: d_out <= 8’h80;
 8’h05: d_out <= 8’h70;

fvassume –expr {state < 8’h04}

User constraint

Unreachable
UNR

VCS/formal

SNUG SILICON VALLEY 2024 15

UNR

case (state)
 8’h00: d_out <= 8’h01;
 8’h01: d_out <= 8’h02;
 8’h02: d_out <= 8’h04;
 8’h03: d_out <= 8’h08;
 8’h04: d_out <= 8’h80;
 8’h05: d_out <= 8’h70;

fvassume –expr {state < 8’h04}

User constraint

Unreachable
UNR

VCS/formal

Exclusion file

Previous
Exclusion file

Cov.vdb

SNUG SILICON VALLEY 2024 16

UNR Use Cases

Use Cases Inputs Project Cycle Scope Purpose
Find Dead Code RTL Early –

No Testbench
Block Find unexpected dead

code, design bugs
Generate
Exclusions

RTL +
Coverage DB

Regressions
Started

Block/Chip
Find and exclude
unreachable goals to
reduce manual
coverage closure
effort

Generate
Exclusions

RTL +
Cov. DB +
Exclusions

Regressions
Mature –
Closing
Coverage

Block/Chip

Validate
Exclusions

RTL +
Cov. DB +
Exclusions

Late - Closing
Coverage

Block/Chip Validate legacy
exclusions

SNUG SILICON VALLEY 2024 17

Cisco coverage flow

Step #1: Selecting/Excluding hierarchies
Step #2: Constant identification
Step #3: Coverage/Exclusion management
Step #4: Unreachability Analysis
Step #5: Iterative coverage closure

SNUG SILICON VALLEY 2024 18

Step #1: Selecting/Excluding hierarchies

• Hierarchical exclude/include of tree, modules
– Project wide file identifies reuse modules that are don’t cares from coverage perspective

– e.g. ecc_gen, synchronizers, mbist & dft logic, retimers, memories etc.
– Block level file identifies subtrees where coverage matters
– can pick and choose which scopes to enable code coverage collection on.

– Compile flow merges the two to create a configuration file that’s passed to VCS
 vcs …. –cm_hier <config_file>

SNUG SILICON VALLEY 2024 19

Step #2: Constant Analysis

• Identify constants in the design
– User identified ones provided directly to VCS

– VCS won’t monitor any code that cannot execute as a result of the constant
– Automatically eliminates structurally unreachable goals at compile time.
– Allow tool to parse and explore the design and identify constants

– One time cost (compile flag); cost depends on design complexity
– Flow at cisco identifies constants on each compile, as design can continue to evolve

– At signoff review and checkin the file

 vcs …. '-cm_noconst' '-cm_seqnoconst' '-diag' 'noconst' '-cm_constfile’ ‘<constant_file>’

• Challenges: Generated file needs to be reviewed, potential for bugs
– Solution: Run it after first complete functionality coverage analysis

SNUG SILICON VALLEY 2024 20

Step #3: Exclusion management

• Identify instances where coverage can be signed off at module level
– Upfront identification of identical instances helps save coverage debug time
– Overall coverage numbers can be updated to reflect module coverage numbers

– Specify instances to be mapped onto in <file_name>
– Three instances of module M can be represented with the following entry in <file_name>
top.M1, top.M2, top.M3

urg … -modtreefile <file_name>

• Active exclusions via GUI in Verdi
– Challenges: Can be laborious and a timedrain

– Partial Solution: “connect signal” driven exclusion can help reduce some grunt work

SNUG SILICON VALLEY 2024 21

Step #4: Unreachability Analysis (UNR)

• Setup and run UNR
– Uses formal engines to identify dead code
– No TB dependency, so can be run upfront by the designer
– Can be run via VC formal or directly with VCS

– We ran with VCS, so negligible infra investment

• Challenges
– Can generate huge exclusion files

– Run after a round of coverage review, so exclusions can be trusted
– Run by designer upfront, so we can use the DV ramp up time to review/close the list

– Takes long time to converge
– Use autoscale and provide more workers to help converge faster

9% Coverage Improvement with UNR

SNUG SILICON VALLEY 2024 22

Step #5: Iterative coverage closure

• Two rounds of coverage review
– First round:

– We first exclude all error/debug logic, add them to separate exclusion file
– Review coverage on just the core functionality, so we can focus on areas that really matter
– Iterate through the process of adding more waivers, adding tests, enhancing testbenches

– Second round:
– Unexclude error/debug logic, related waivers
– Run UNR to assist with exclusion list generation
– Final signoff as we converge onto near 100%

SNUG SILICON VALLEY 2024 23

Results with new coverage flow

Near 100% on most block level environments
• None of the blocks in the previous generation ASIC were even close
• Few exceptions to accommodate ASIC specific configs, flow
• Fast and confident elimination of noise helped team focus on holes that matter
• 9% coverage bump with UNR

Dashboard to capture status/progress
• Automated flow to publish converged results in a central area
• Easy tracking of progress as well as the effort left on each block

SNUG SILICON VALLEY 2024 24

THANK YOU
YOUR
INNOVATION
YOUR
COMMUNITY

	�Strategies to Reach the 100% Coverage Goal
	Agenda
	Birds eye view of features used
	Coverage Closure Challenges
	Birds eye view of features used
	Exclusion using covermeter
	Constant Analysis
	Constant Analysis
	Mod tree file
	Mod tree file
	UNR
	UNR
	UNR
	UNR
	UNR
	UNR Use Cases
	Cisco coverage flow�
	Step #1: Selecting/Excluding hierarchies
	Step #2: Constant Analysis
	Step #3: Exclusion management
	Step #4: Unreachability Analysis (UNR)
	Step #5: Iterative coverage closure
	Results with new coverage flow
	Slide Number 24

