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Agenda

• Birds eye view of features used
• Cisco coverage flow

– Step #1: Selecting/Excluding hierarchies
– Step #2: Constant identification
– Step #3: Coverage/Exclusion management
– Step #4: Unreachability Analysis
– Step #5: Iterative coverage closure

• Coverage Results with the new flow
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Birds eye view of features used
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Coverage Closure Challenges
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Birds eye view of features used

• Benefit: Improve coverage by excluding targets that never occur/not applicable for the design

Feature: Selecting/excluding hierarchies

• Benefit: Tool identifies and eliminates fixed value variables, configurations at compile time

Feature: Constant Analysis

• Benefit: Easier to view
• Coverage is aggregated and reported over a module view rather than instance view

Feature: Mod tree file

• Benefit: Automatically find functionally unreachable targets and exclude them from coverage

Feature: Unreachability analysis
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Exclusion using covermeter

• We can pick and choose which scopes to enable code coverage collection on.

• To limit the scope of coverage, ‘-cm_hier <hier_file.txt>’ can be used

• The following can be enabled/disabled using +/- in the hier_file
– Modules/instances
– Source code files/file lists
– Libraries
– Signals
– Signal bits/transitions
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Constant Analysis

• Automatically eliminates structurally unreachable goals at compile time.

• Implements various methods to improve coverage based on constant 
propagation

• Let’s consider a signal s, is a constant and is set to ‘0’
– p && s will always be zero
– If (s) will never be true
– This will cause a ripple effect if ‘s’ passes through multiple flops.
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Constant Analysis
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Mod tree file

• The combined score of all instances of a module can be made a part of 
coverage calculations

• The option ‘-modtreefile’ can be passed to either urg or Verdi during coverage 
analysis

• Exclusions are propagated to all sibling instances
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Mod tree file
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UNR

• Find functionally unreachable targets and exclude them from coverage 
calculations

• Analysis done by formal engines under the hood
• The coverage VDB, previous exclusion files can be parsed to narrow the scope 

of the analysis region
• Exposes hidden bugs
• Can be deployed at any stage of the design verification cycle
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UNR

case (state)
   8’h00: d_out <= 8’h01;
   8’h01: d_out <= 8’h02; 
   8’h02: d_out <= 8’h04; 
   8’h03: d_out <= 8’h08; 
   8’h04: d_out <= 8’h80;
   8’h05: d_out <= 8’h70; 

fvassume –expr {state < 8’h04}

User 
constraint

Unreachable
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UNR
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UNR
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UNR

case (state)
   8’h00: d_out <= 8’h01;
   8’h01: d_out <= 8’h02; 
   8’h02: d_out <= 8’h04; 
   8’h03: d_out <= 8’h08; 
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Unreachable
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Exclusion file

Previous 
Exclusion file

Cov.vdb
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UNR Use Cases

Use Cases Inputs Project Cycle Scope Purpose
Find Dead Code RTL Early –

No Testbench
Block Find unexpected dead 

code, design bugs
Generate 
Exclusions

RTL + 
Coverage DB

Regressions 
Started

Block/Chip
Find and exclude 
unreachable goals to 
reduce manual 
coverage closure 
effort

Generate 
Exclusions

RTL + 
Cov. DB + 
Exclusions

Regressions 
Mature –
Closing 
Coverage

Block/Chip

Validate 
Exclusions

RTL + 
Cov. DB + 
Exclusions

Late - Closing
Coverage

Block/Chip Validate legacy 
exclusions
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Cisco coverage flow

Step #1: Selecting/Excluding hierarchies
Step #2: Constant identification
Step #3: Coverage/Exclusion management
Step #4: Unreachability Analysis
Step #5: Iterative coverage closure
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Step #1: Selecting/Excluding hierarchies

• Hierarchical exclude/include of tree, modules
– Project wide file identifies reuse modules that are don’t cares from coverage perspective

– e.g. ecc_gen, synchronizers, mbist & dft logic, retimers, memories etc.
– Block level file identifies subtrees where coverage matters
– can pick and choose which scopes to enable code coverage collection on.

– Compile flow merges the two to create a configuration file that’s passed to VCS
 vcs …. –cm_hier <config_file>
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Step #2: Constant Analysis

• Identify constants in the design
– User identified ones provided directly to VCS

– VCS won’t monitor any code that cannot execute as a result of the constant
– Automatically eliminates structurally unreachable goals at compile time.
– Allow tool to parse and explore the design and identify constants

– One time cost (compile flag); cost depends on design complexity
– Flow at cisco identifies constants on each compile, as design can continue to evolve

– At signoff review and checkin the file

 vcs …. '-cm_noconst' '-cm_seqnoconst' '-diag' 'noconst' '-cm_constfile’ ‘<constant_file>’

• Challenges: Generated file needs to be reviewed, potential for bugs
– Solution: Run it after first complete functionality coverage analysis
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Step #3: Exclusion management

• Identify instances where coverage can be signed off at module level
– Upfront identification of identical instances helps save coverage debug time
– Overall coverage numbers can be updated to reflect module coverage numbers

– Specify instances to be mapped onto in <file_name>
– Three instances of module M can be represented with the following entry in <file_name>
top.M1, top.M2, top.M3

urg … -modtreefile <file_name>

• Active exclusions via GUI in Verdi
– Challenges: Can be laborious and a timedrain

– Partial Solution: “connect signal” driven exclusion can help reduce some grunt work
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Step #4: Unreachability Analysis (UNR)

• Setup and run UNR
– Uses formal engines to identify dead code
– No TB dependency, so can be run upfront by the designer
– Can be run via VC formal or directly with VCS

– We ran with VCS, so negligible infra investment

• Challenges
– Can generate huge exclusion files

– Run after a round of coverage review, so exclusions can be trusted
– Run by designer upfront, so we can use the DV ramp up time to review/close the list

– Takes long time to converge
– Use autoscale and provide more workers to help converge faster

9% Coverage Improvement with UNR
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Step #5: Iterative coverage closure

• Two rounds of coverage review
– First round:

– We first exclude all error/debug logic, add them to separate exclusion file
– Review coverage on just the core functionality, so we can focus on areas that really matter
– Iterate through the process of adding more waivers, adding tests, enhancing testbenches

– Second round:
– Unexclude error/debug logic, related waivers
– Run UNR to assist with exclusion list generation
– Final signoff as we converge onto near 100%
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Results with new coverage flow

Near 100% on most block level environments
• None of the blocks in the previous generation ASIC were even close
• Few exceptions to accommodate ASIC specific configs, flow
• Fast and confident elimination of noise helped team focus on holes that matter
• 9% coverage bump with UNR

Dashboard to capture status/progress
• Automated flow to publish converged results in a central area
• Easy tracking of progress as well as the effort left on each block
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