

Yield-Aware Logic Design Through Cell Fail Rate Analysis

Ritochit Chakraborty, FPGA Silicon Design Engineer Astrid T. Thomas, FPGA Silicon Design Engineer Satish Sankaralingam, FPGA Silicon Design Engineer Mahesh K. Kumashikar, Sr. Principal Engineer

Intel Corp

Agenda

Cell Fail Rate Driven ECO Framework

- Problem Statement
- Cell Fail Rate (CFR)
	- Yield-Aware Logic Design
	- Design-for-Yield (DFY) Modeling Prediction
- CFR-Driven Design Methodology
	- Identify Design Methodology Intercept Strategy
	- ECO Framework
- Results
- Recommendations

Problem Statement

PPA optimization natively does not consider silicon health of standard cells

- Cell characterization does not embed yield information for APR engine to rank cells
	- Sufficient silicon data collection is necessary to identify cells with inferior yield
	- Layout data mining of cells can flag responsible critical areas within each cell
- Silicon yield sightings trigger unwanted ECOs and product steppings in the fab
	- Outlawing defect-prone cells via ECO is limited in scope
		- Heavily modulated by cell usage and timing criticality of paths with cell presence

Cell Fail Rate (CFR)

CFR-Driven Yield-Aware Logic Design

Block-Level & Full-chip Yield Improvement

Intra-block cell swaps

1.Improves block yield per cell swap with another cell from same family but lower relative CFR

2.Improvement is *multiplicative* across different instantiations of swapped out cells within the block

For i unique cells swapped

$$
p_{fail,block} = 1 - \left(1 - p_{fail,cell_1}\right)^{Ncell_1} \cdots \left(1 - p_{fail,cell_i}\right)^{Ncell_i}
$$

Improvement to full-chip yield accumulates across multiple instantiations of the same block

BPR for M blocks is $\left(1 - p_{fail, block}\right)^M$

Design-for-Yield (DFY) Modeling Prediction

Automating Design For Yield: Silicon Learning to Predictive Models and Design Optimization Srikanth Venkat Raman et al., International Test Conference, 2020

• Sequential cells are identified through scan-shift test fails while combinational cells are identified via scan capture ATPG tests

If cell internal features are identified early in the technology, cells can be redrawn to avoid these features, or a golden cell list may outlaw such cells once PPA implications are fully evaluated

Relative Cell Fail Rates

CFR-Driven Design Methodology

Possible Design Methodologies

Different options of solution scope

- Do-not-use (DNU) cell list for logic synthesis through place-and-route
	- Outlaw cells which are most susceptible to yield fallout, but this may impact PPA
- Comprehend yield as an additional metric natively during logic synthesis through place-and-route

- Penalize (but not preclude) usage of certain cells, but cell libraries today do not embed any yield information for EDA tools to consume

• ECO framework

- Cell swaps within the same family with targeted Block Fail Rate (BFR) improvement
- Managing ECO runtime complexity and additional design rule violations is critical
- Cell swaps should still be able to meet design Quality of Results (QoR)

ECO Framework Flowchart

Criteria for cell swap

- \triangleright same family
- \triangleright same V_t
- > same cell height
- \triangleright +/-1 drive strength
- \triangleright equal area or smaller footprint

Timing path considerations

- \triangleright exclusion of inout cells
- \triangleright exclusion of clock network cells
- \triangleright inclusion of cells only in reg-to-reg data paths

Step #1 – Determining Cell Swap List

Yield sensitivity to cells used in logic design

- Locate lower CFR candidate cells for each cell in the design based on a predetermined cell swap criteria
- Set BFR improvement target (typically 5-10%) to trim the number of unique cells for swapping
	- Reduces ECO complexity and targets highest ROI cell swaps in the design
	- swapping ~100-150 unique cells sufficient

Representative reg-to-reg data path shown here

swap cell

Original cell Recommended

A0 A1 B0 B1 C0 C1 D0 D0 **E0** E0

Step #2 – ECO Cell Swap in Multi-Scenario Analysis

Case 1. All cell swaps meet max and min delay in STA

• Timing is met for this reg-to-reg path and algorithm will accept the CFR swaps

- Additionally, max transition and max capacitance are also monitored

Case 2. Max delay is met but min delay violation is introduced in STA

• The next phase of the algorithm will restore the violating timing paths to their original composition via **ECO reversal**

Step #3 – ECO Reversal in Multi-Scenario Analysis

Case 2a. Fixing only the min delay path is necessary in STA

- Restore entire min delay path to original cell composition
	- ECO flow does not insert additional min delay buffer to fix hold path
- Timing met along max delay path
	- A1 and B1 swaps are accepted

Snl

Step #3 – ECO Reversal in Multi-Scenario Analysis

Case 2b. Fixing min delay path introduces max delay violation in STA which needs a fix as well

- With min delay fix, if the max delay violation crops up again
	- Restore entire max delay path
	- CFR-based swap is rejected for this reg-to-reg path

- *Cell which underwent ECO reversal to fix min delay violation*
- *Cells which have undergone ECO reversal to fix max delay violation*

Step #4 – APR-ECO

Taking it all the way through with DR/LV fixes

Results and Recommendations

Cell Swap Across Test Cases

- POC on Intel FinFET technology currently in High Volume Manufacturing (HVM)
- Run on 128G/4-core machines employing two virtual workers per machine
	- >150 PT sessions were attempted per block via PrimeTime DMSA *remote_execute* option
- CFR models are modulated by library architecture choices as well
	- Tall height library vs short height library

Yield Improvement from CFR-Driven ECO

Conceptual floorplan demonstrates net yield gain

- In the table below, all logic blocks are modeled as being at 95% yield (5% fail rate)
- Yield improvement could be significant based on number of instances

Net yield improvement for Block #1 which has (100-95)%=5% fail rate: $\left[1-\left(1-\frac{1.3}{100}\right)\right]$

Implementation Recommendations

Faster runtime and minimize APR-ECO perturbations

Employ a block specific swap list

Multi-scenario analysis is essential in STA

Focus on register-to-register data paths

Drive optimality via full-blown place-and-route

Translate CFR to cell weightage during gate-level synthesis to facilitate correct-by-construction design to mitigate yield

Clone the cell reversal algorithm into the synthesis flow to swap out cells upfront prior to initiating place-and-route

Summary

- Current place-and-route tools are blind to silicon health of standard cells used in logic design
	- PPA and yield trade-offs happen late in the game leading to unwanted ECOs and silicon steppings
	- Cell Fail Rate (CFR) can alleviate this shortcoming by presenting an insight into logic block yield during PPA
- CFR-based design methodology is a novel approach
	- Leverages silicon monitored fail rates across an entire library of standard cells to preclude cells which pose higher yield risk
	- The approach is feasible for mature processes and new process nodes

THANK YOU

YOUR INNOVATION *YOUR* COMMUNITY

SNUG SILICON VALLEY 2024