

ECO in the Age of AI: Advancing Signoff Convergence with PrimeClosure™

Presenter : Tee, Luck Kuan Co-Authors : Walimbe, Atul S & Kewale, Dhananjay V (Intel Graphics CAD Team)

Objective

Share the signoff ECO (Engineering Change Order) convergence results (timing, power and runtime) observed with the next-generation ECO solution, PrimeClosure[™] (PC) as compared to PTECO[™]

Agenda

- Post-Route/ECO Optimization
- Introduction of Key PrimeClosure[™] Technologies
 - 1. SMSA: Single-Machine Multi-Scenario Analysis
 - 2. Clock-Surgery
 - 3. Al-driven ECO
 - 4. Hierachical ECO
- Conventional Signoff ECO Convergence Flow
- Comparison Results
 - 1. PTECO[™] vs PrimeClosure[™] (Timing, Routing, Power, and Runtime)
 - 2. With Clock-Surgery Enabled
 - 3. Al-driven ECO (Leakage Power Saving)
- Hierarchical ECO Flow at Section/Full-Chip Level (w/ Hyperscale)
- Future Technologies & Enhancements
- Summary

Intra-Block Design Closure Subsystem/Top-Level: Inter-Block/Section Design Closure

Post-Route/ECO Optimization (PTECO[™] & Tweaker[™])

Essential and critical last-mile optimization to meet PPA & tight project schedule

- i. Achieve optimal power.
- ii. Address timing and logical DRC (max-cap & max-trans).
- iii. Meet final signoff goals (>20 vs ~6 dominated PVTs in P&R).
- iv. Reconverge the design after intercepting late functional ECOs, newer design collaterals/PDK, etc.

		<u>PTECO</u>	<u>Tweaker</u>
1	Data Preparation Efforts	Low	Medium
2	Physical Aware (PA)	Yes	Yes+ (Lesser cells displacement)
3	Timing Correlation	100%	~95%
4	Machine Memory	Medium	Low
5	Distributed Machines Feature	Yes	Yes- (Can be split/partition based-on viols)
6	Hierarchical ECO Convergence (Section/Full-chip)	Yes (Hyper-Scale PTECO)	Yes+ (Physical Aware & lesser memory)
7	Debugging GUI	Yes	Yes+
8	Multi Corners/Scenarios Support	Yes	Yes+ (Single Machine & Capable of handing more corners, 100+)

Few Questions?

- 1. Are you encountering challenges with ECO design convergence/closure?
- Are you grappling between PTECO™ and Tweaker™ ECO while also supporting both tools?

PrimeClosure[™]: Next-Generation ECO (Integrated the strengths of PTECO[™] and Tweaker[™] ECO + New Technologies)

Introduction of Key PrimeClosure[™] Technologies 1. SMSA: Single-Machine Multi-Scenario Analysis

 Integrated ECO and STA (Static Timing Analysis) in one cockpit to reduce iterations and to produce better QoR (Quality of Results) by utilizing the full set of PrimeClosure ECO fixing technologies.

- **PrimeTime Accurate QoR** through signoff PT-delay calculation and an automated what-if co-optimization flow.
- **Native Cells Legalizer** to reduce ECO iterations by improving pre and post implementation correlation, as well as minimizing design perturbation.
- High-Capacity and Less Compute Resources -Capable of optimizing 100+ scenarios with fewer machines, and subsystem/top-level.

6

Introduction of Key PrimeClosure[™] Technologies 2. Clock-Surgery

• Address setup timing speed-paths with useful clock skew.

New Options/Enhancements

- Restrict the maximum clock level (*-max_level_in_clock 5*)
- Exclude/Ignore IO related endpoints (*-ignore_boundary_flops 1*)

Fix at the starting point (Green: Pull-in): Decrease clock delay by upsizing and/or bypass Launch Flop, D(Setup) = 110 > 100 Launch Flop, Q(Hold) = 500 > 100 Fix at the endpoint (Red: Push-out): Increase clock delay by downsizing and/or inserting Capture Flop, Q(Setup) = 500 > 100 Capture Flop, D(Hold) = 20 < 100

Introduction of Key PrimeClosure[™] Technologies 3. Al-driven ECO – Early Version

 Integrated DSO.ai (AI-driven Design Space Optimization) technology, which allows users to provide different ECO parameter values (built-in Permutons) to achieve better PPA/design convergence results.

Al-driven ECO for Last-Mile Closure

Original Timing Fixing Settings

set slk_auto_sizing_max_shift_distance 4 set slk_fix_hold_watch_driving_pin_setup_slack false set slk_fix_hold_watch_driving_pin_hold_slack false set slk_fix_hold_watch_driving_pin_slack false

Built-In Permutons

set slk_auto_sizing_max_shift_distance [0, 4, 8]						
set slk_fix_hold_watch_driving_pin_setup_slack						
set slk_fix_hold_watch_driving_pin_hold_slack						
set slk fix hold watch driving pin slack						

Introduction of Key PrimeClosure[™] Technologies 4. Hierarchical ECO

- Primarily focusing on interface paths only to accelerate inter-block closure for Section-level designs and inter-section closure for Full-chip designs, respectively.
- Support both Hyperscale (HS) and Flat Approaches.

Post-Route/ECO Optimization at Block Level (Intra-Block Design Closure)

Data Exchange from PrimeTime[™] to PrimeClosure[™]

Generate sessions for PT and PC save_session ./pt_session_scen1 -

Reuse/Link the existing STA session to save disk-space

write_eco_session -include {smsa_data} `

-smsa_data_type {setup hold max_transition max_capacitance \
 max_fanout power drc_max_transition drc_max_capacitance pin_slew} \
-link_session \$sh_launch_dir/pt_session_scen1 \

-smsa_data_format binary \

-smsa_pba_mode exhaustive <pre_eco_session_scen1>

Design 1 (~1.3M Inst)	PT Session	PC Session	PC Session (-link_session)
PVT 1	6	7.9	1.9
PVT 2	6	• 7.9	1.9
PVT 3	7.3	8.8	1.5
		•••	
PVT 10	5.9	7.3	1.4
PVT 11	5.9	7.3	1.4
PVT 12	5.9	7.3	1.4
Total	73.9	92.4	▼ 18.5
		125%	25%

Comparison of PT and PC Save Session File Sizes (GB)

PrimeClosure[™] Recipe

pc_script.tcl

set multi_scenario_working_directory PC_DMSA; set_host_options -num_processes 12 set_technology –node <N>

Additional settings from set_eco_options can be included here read_physical_data -tech \$tech_lef -lef \$lef_files \ _physical_icc2_lib design.ndm -physical_icc2_blocks pre_eco

read_eco_session pre_eco_session
start_eco -mode smsa
fix_eco_drc
fix_eco_timing -type setup
fix_clock_setup_endpoint; fix_eco_timing -type setup
fix_eco_timing -type hold

fix_eco_power
start_eco -mode dmsa; report_global_timing;
start_eco -mode smsa
fix_eco_drc -type max_transition -verbose -methods {recovery}
fix_eco_timing -type setup -methods {recovery}
ecotclout -icc2 <eco_changes.tcl>
report_eco_summary -summary

start_eco -mode dmsa
Assess Timing with standard PrimeTime reports within same shell
report_global_timing; report_constraint; report_timing

Configure Machine Resources for STA

Set Technology Node

Read Physical Data

Read pre-ECO sessions

ECO Fixing (LDRC, Timing, Clock-Surgery, and/or Power Recovery)

Changelist

PrimeTime What-if

pc_shell -f pc_script.tcl -output_log ./logs/run.log

An Example of PrimeClosure[™] Log File

report eco summary -summary

Group : all_group	Original setup	hold	Current setup	hold
Critical Path Slack:	-0.26	-0.02	-0.08	$ \begin{array}{r} -0.00 \\ -0.00 \\ 13 \\ -0.00 \\ 6 \end{array} $
Total Negative Slack:	-1719.99	-27.67	-194.12	
No. of Violating Paths:	121578	10947	10254	
TNS of Violating Endpoints:	-82.92	-7.66 Setu	-4.36	
No. of Violating Endpoints:	13231	2613	216	

#

Hold

autofix detail log summary

B004 Blocked by Timing Window (Setup)(1) # B010 Improved slack < min improved slack(75)</pre> # B012 Blocked by sizing non-STD cell(8) # B025 Blocked by Timing Window (Setup) (Input Pin)(5) # B051 Blocked by don't use setting(1787) # B073 Blocked by twf clock pin(34) # B086 Blocked by fix setup/cons without sizing down(1718) B126 Blocked by auto-sizing area ratio(1767)

autofix detail log summary: # B003 Blocked by no setup margin (twf)(1) B004 Blocked by Timing Window (Setup)(3) B006 Blocked by Driving Timing Window (Setup)(1)

Blocking Codes for Unresolvable **Hold** Viols

Blocking Codes for Unresolvable **Setup** Viols

An Example of ECO Implementation Log File

source <eco_changes.tcl>

ECO:	=== Summary of	dropped ECOs	due to target	pre-check	===	
ECO:	=== Enabled by	PrimeClosure	variable (eco	_tcl_pre_check	_target)	===
ECO:		accept	drop	total	_	
ECO:		·····				
ECO:	insertion	2000	0	2000		
ECO:	deletion	23	0	23		
ECO:	dummy_load	0	0	0		
ECO:	sizing	193872	0	193872		
ECO:	by_pass	0	0	0		
ECO:	pin_swap	0	0	0		
ECO:	other_eco	0	0	0		

legalize_placement -post_route -incremental

Number of cells moved:	2180 (0.16%)	Orientation changes only: 211
Average cell displacement:	0.0003 um (AW:	0.0003 um = 0.0021 rh
Max cell displacement:	1.9433 um = 13	.5902 rh
Number of large displacements:	215	

Conventional Signoff ECO Convergence Flow

Highly leveraging the fully automated signoff ECO convergence flow to address design violations and minimize manual ECO fixing efforts in accelerating design closure.

fix_eco_drc
fix_eco_timing -type setup
fix_eco_timing -type hold
fix_eco_power

Goal: Evaluate potential to accelerate design closure further with PrimeClosure[™]

Comparison Results PTECO[™] vs PrimeClosure[™] (SMSA & U-2022.12-SP5-2)

Total Setup TNS is significantly reduced by >40%

Comparable

Leakage power is improved by ~1.5% for high route_opt DB quality on the more mature advanced process node N

snu

Comparison Results PTECO[™] vs PrimeClosure[™] (Power)

Comparison Results PTECO[™] vs PrimeClosure[™] (Runtime)

Plack	Advanced	Number of	ΡΤΕϹΟ	РС
BIOCK	Node	Instances (M)	(HH:MM)	(HH:MM)
Design 1	N	~1	5:53	4:50
Design 2	N	~1.35	9:30	7:29
Design 3	N	~1.3	9:30	7:58
Design 3	N+1	~0.33	1:54	2:05
Design 4	N+1	~1.44	8:17	6:55
Design 5	N+1	~1.39	8:35	7:31
			Average	15.60%

Faster Runtime

Multiple projects in progress to further speed-up runtime

Comparison Results With Clock-Surgery Enabled

Timing (Intra-Block Only + post-ECO)

	Advanced	# of Now		Total	Total	Total	Total
Block	Node	Clock Cells		Setup TNS	Setup TNS	Hold Viols	Hold Viols
				(Before)	(After)	(Before)	(After)
Design 2	Ν	28		-8.9	-7.7	94	348
Design 5	N+1	1		-3.24	-3.02	409	1108
Average Diff					12%		-953 🕇

Total Setup TNS is further improved by ~12%

An additional ECO loop may be required to address hold degradation at lower buckets, primarily caused by pre- and post-ECO miscorrelation.

Routing

Total DRC Total DRC Total Short Total Short Total PWR Total PWR Leakage PWR Leakage PWR (Before) (After) (After) (Before) (After) (Before) (After) (Before) 852 867 20 17 39.02 39.08 6.64 6.72 97 99 23 24 30.34 30.45 12.5 12.6 -17 2 -0.25% -0.94%

Comparable

Power is only increased slightly

Power

Comparison Results

Al-driven ECO (Leakage Power Saving)

Testcase Configuration

: ~0.33M instances and leakage power dominated design

: Default built-in power Permutons

Design 4	PTECO	<u>PC</u>	<u>PC</u> (Al-driven)	<u>Diff</u> (vs PTECO)	
LVT%	5.63	5.86	5.31	-0.32	
SVT%	67.31	64.65	62.45	-4.86	
HVT%	27.06	29.50	32.24	5.18	
РТРХ					
Total Power [mw]	2.612	2.510	2.419	7%	
Dyanamic Power [mw]	0.330	0.330	0.330	0%	
Leakage Power [mw]	2.281	2.180	2.088	8%	
		4%	4%		
Timing					
R2R Setup TNS	-1.06	-0.32	-0.32	70%	
Number of R2R Setup Viols	8	6	7	-1	
Number of R2R Hold Viols	78	89	87	9	

High-Leakage Cell Usage

Low-Leakage Cell Usage

Total ~8% reduction in leakage power without affecting timing:-

~4% leakage power saving has been achieved with PrimeClosure (vs PTECO).

 ii. Another ~4% leakage power reduction is observed with PrimeClosure Al-driven ECO enabled.

A fully automated flow for further advancing PPA

Hierarchical ECO Optimization Flow at Section/Full-chip Level (Inter-Block or Inter-Section Design Closure)

Hierarchical ECO Flow at Section/Full-Chip Level (w/ Hyperscale) snug

write_eco_session

Section STA (w/ HS)

Only focus on inter-block/section optimization to reduce runtime and memory usage

Hierarchical ECO Flow at Section/Full-Chip Level (Recipe)

Optional for Hyperscale

pc_script.tcl

set multi_scenario_working_directory PC_DMSA; set_host_options -num_processes 12 set_technology –node <N>

Additional settings from set_eco_options can be included here read_physical_data -tech \$tech_lef -lef \$lef_files

Voltage areas

read_physical_data -def {Top.def} -physical_constraint_file {Topva.tcl} read_physical_data -def {B1.def} -physical_constraint_file {B1va.tcl} read_physical_data -def {B2.def} -physical_constraint_file {B2va.tcl} ...

read_eco_session section_pre_eco_scen1 -scenario_name scen1 # Section level sessions
read_eco_session section_pre_eco_scen2 -scenario_name scen2 # Section level sessions
start_eco -mode smsa -smsa_data_type {setup hold max_transition pin_slew

drc_max_transition drc_max_capacitance} \

-scope_design_list {SECTION B1 B2} -scope_path_type {interblock} \
-scope_drc_type {interface_wires|interblock}

Enable technology specific settings
fix_eco_drc
fix_eco_timing -type setup
fix_eco_timing -type hold

report_eco_summary or other SMSA reporting commands
ecotclout -icc2 <eco_changes.tcl>

- Configure Machine Resources for STA
- Enable technology specific settings
- Provide the standard LEF, DEF and VA (Voltage Area) inputs for physical information for TOP and blocks
- Read PT pre-ECO sessions
- Conduct ECO operations
- Write out hierarchical changes for implementation.

Hierarchical ECO Flow at Section Level (Comparison Results)

Group : all_group

Ρ

Critical Path Slack:

Total Negative Slack:

No. of Violating Paths:

TNS of Violating Endpoints:

No. of Violating Endpoints:

Section Hyperscale Testcase

Consists of 16 blocks

Scenario

PVT1 vmid min

PVT2 vmid min

PVT3 vhigh min

PVT4 vlow min

PVT5 vlow max

PVT6 vmid min

PVT7 vmid max

PVT8 vlow max

PVT9 vmid max

PVT10 vmid max

PVT11 vhigh max

PVT12 vhigh max

Total

Fix-Rate

~14M instances (~30% involving inter-block logics)

Total Violations

After PTECO

Hold

2

3

55

0

0

1

0

0

0

0

0

0

61

99%

Setup

0

0

0

0

0

0

0

0

25

0

235

366

626

85%

PTECO

Before PTECO

Setup

0

0

0

0

8

0

121

10

835

194

1504

1426

4098

Hold

861

523

6104

356

0

1907

0

0

0

0

0

0

9751

Setup	
Key takeaway: Based on pre-ECO what-if analysis,	
rimeClosure demonstrates >20% better setup timing than PTECO in terms of violations.	
Key takeaway: Based on pre-ECO what-if analysis, rimeClosure demonstrates >20% better setup timing than PTECO in terms of violations.	

PrimeClosure

hold

-0.21

29025

8345

-58.98

-278.73

Total Violating Endpoints

Runtime

Physical-Aware

Original

setup

-0.05

16497

-20.60

1879

-155.68

4:37:57

none

Non-Unique

Current

setup

-0.04

3076

-3.08

284

-33.10

hold

-0.08

-11.17

674

-1.82

164

6:31:35

open site + none

Unique

Hold

Future Technologies & Enhancements

- Production release of new & advanced 'AI-driven ECO' technology.
- Clock-Surgery with splitting/cloning technique (Maintain the same level of clock tree during timing and/or clock max-transition/capacitance fixing).
- Improving Ease-of-Use and Debuggability, e.g. eliminating DEFs and LEFs input collaterals when NDM is provided, generating bottleneck analysis reports including blocking code for each unfixable endpoint, etc.

Summary

- PrimeClosure[™] (The Next-Generation ECO Solution) is demonstrating better timing results than the conventional PTECO[™] signoff ECO convergence flow, by significantly reducing setup TNS by >40%.
- These results are achieved without impacting routing. Additionally, also observed >1.5% leakage power saving & ~15% runtime improvement.
- The new 'Clock-Surgery' & 'Al-driven ECO' features are capable of further improving setup TNS by >10% & leakage power by another ~4%, respectively.
- In conclusion, PrimeClosure[™] has the potential to reduce ECO efforts and iterations at advanced nodes for high-speed and high-density designs, while also accelerating design closure and time-to-market.

THANK YOU

YOUR INNOVATION YOUR COMMUNITY

Introduction of Key PrimeClosure[™] Technologies **Debug GUI and Manual ECO**

- Violations analysis through different views, design analysis through different maps
- Provides clear block messages for unfixable violations
- Versatile and interactive with easy flow control with manual ECOs
- Summarizes the trend of blocking info (unfixable reasons) at the end of each autofix log.
- Let's user to know the specific reason and corresponding variables to set

27

