

Revolutionizing Advanced Node Processes: Samsung Foundry Embraces Synopsys QuickCap for SF2

Hyungmoo Ha, PDK Engineer Samsung Foundry

SNUG SILICON VALLEY 2024

2

Navigating the Nanoscale

Understanding the Critical Role of RC Parasitics in Adv. Nodes

	Power	Perf	Area
SF2 (vs SF3)	-25%	+12%	-5%
			*Estimated

Importance of Precise RC Parasitic Extraction

- Parasitic RC effect increases with device scaling.
- Accurate Device modeling is critical for accurate target performance setting and circuit design.
- Failure to accurately model RC parasitics will result in significant delays in design cycle.

Challenges in Developing Advanced Node PDK's for Accurate RC Extraction

- Exploring Device, Metal and Via layer interactions for Reference Generation.
- Validating Metal and Via patterns against Silicon data.
- Understanding Complex Device Structures.
- Capturing Device Parasitic for Accurate Device Model generation.
- BSPDN process which need extract R and C even with backside connection to device level.

BSPDN : Back Side Power Delivery Network

Enhancing PDK Development

Current limitations impacting the fast, accurate PDK development

3D representation of Nanosheet device by Quickcap

- Early-Stage Process Development and Structural Testing
 - In the early stages of process development, numerous test versions of structures are required. This is crucial in designing and validating new structures.
 - In advanced nodes, even small changes in shape or material can have a significant impact on device performance. Therefore, it is important to predict and optimize these changes through accurate PEX modeling.
- Limitations of Current 2.5D/3D PEX tools
 - Current 2.5D/3D PEX tools face challenges in rapidly creating early stage PDKs with various process structures.
 - Creating a new structure and building a running PDK from it takes significantly more time with modern 3D extraction tools.
- BSPDN Process
 - The BSPDN process requires a different PEX approach from the typical front-side usage, which has been used so far.

Unlocking flexibility with QuickCap QTF

Samsung Foundry QuickCap QTF generation flow

QuickCap QTF flow benefits:

- Significant TAT gain to implement and simulation process profile.
- Simple and easy to write programing syntax.
- Leverage gds format to quickly generate RC information.

QuickCap QTF advantage vs traditional flow.

- Support for Boolean operations allows foundry to experiment, model and analyze layout parasitic effects.
- 3D viewer of quickcap helps a lot when creating new shapes and check if it's really applied as expected.

Unlocking flexibility with QuickCap QTF

Leveraging QuickCap for accurate reference PDK development

Current Challenges

#1

Traditional 3D Solvers have accuracy and performance limitations.

#1

• Silicon correlated accuracy with linear scalability across hundreds of cores.

QuickCap Benefits

#2

Limited Flexibility to explore the device and metal profiles

#3

• Requires a lot of effort to model, process and analyze the parasitics.

#2

 Offers flexible programming language and 3D profile view for process exploration.

#3

Allows Boolean operation to quickly analyze various parasitic effects.

2nm : QC vs Raphael BEOL comparison

Leveraging Accurate and Efficient Capacitance Modeling

- Samsung uses Raphael as the reference for early test structures.
- QuickCap generated data for 350 structures is compared w/ Raphael.
- QuickCap data is showing tight correlation with Raphael.
- QuickCap ran significantly faster than Raphael

2nm : QC vs Raphael FEOL comparison

Leveraging Accurate and Efficient Capacitance Modeling

3D profile of BSPDN process (not a real caputre)

	Diff (%)	Tcap (Raphael)	Tcap (QuickCap)	Net		
	0.541	1.80E-16	1.81E-16	А		
	0.283	1.16E-16	1.16E-16	Y		
Coupling cap comparison						
	Diff (%)	Ccap (Raphael)	Ccap (QuickCap)	Net Pair		
	0.511	3.69E-17	3.71E-17	A - VSS		
	0.477	4.03E-17	4.05E-17	A - VDD		
	0.577	1.03E-16	1.04E-16	A - Y		
	-2.209	6.10E-18	5.97E-18	VSS - Y		
	-1.953	6.78E-18	6.65E-18	VDD - Y		

Total can comparison

SAMSUNG

Foundry

snug

2nm : QC vs Raphael FEOL comparison

Tcap and Ccap comparison across various design cells

Total cap comparison

Design	Avg Error (%)	STD (%)
INV_D1	-0.404	0.293
INV_D2	0.412	0.129
NAND2_D1	1.169	0.324
NAND2_D4	-1.942	1.128
NOR2_D1	1.762	0.142
NOR2_D1	-2.077	0.852

- QuickCap generated data for a suite of standard cells is compared against Raphael.
- QuickCap shows tight accuracy correlation with Raphael.
- Both Average Error and Standard Deviations bounds are within limits.

Conclusions & Plans:

Conclusions

- QuickCap results are proven accurate for Samsung 2nm BSPDN process.
- QuickCap will be Samsung Foundry's Reference for 2nm BSPDN process and future process nodes.
- As next steps, Samsung Foundry customers will benefit from enhanced StarRC PDK, enabling precise parasitic extraction for Digital, Custom and Multi-Die design.

Future Plans

- Samsung Foundry will leverage QuickCap for 1.4nm and future technologies PDK development.
- Samsung will continue partnership with Synopsys on QuickCap usage.

THANK YOU

YOUR INNOVATION YOUR COMMUNITY