

Faster, Secure PV Signoff using IC Validator In the Cloud

Avanish Singh, Sr Manager Synopsys

Agenda

- •Synopsys SaaS and ICV
- •Customer use model example
- BYOC and ICV

Flows set up and ready to use

Project, User, Application, Data

... all delivered on Microsoft Azure

3

Verification Instance

Silicon Photonic Instance

PV Infrastructure setup on Synopsys Cloud

Snuc

SaaS Compute option for Physical Verification

	FXv1	М	E-Series
CPU	Intel Xeon Gold "Cascade Lake"	Intel Xeon Platinum "Skylake"	AMD EPYC 7763v (Milan) processor
Cores/VM	48	4 – 208	32-96
CPU Frequency	3.4 GHz/4.1 GHz	2.5 GHz	3.5 GHz
Memory	21GB/core, 1008 GB	1 – 12 TB	672 GB of RAM
Local Disk	~2 TB NVMe	2 TB SATA	2.4TB
Network	<u>32 GbE</u>	16 GbE	32 GbE

5

IC Validator Applications on Synopsys SaaS

	RTL AND GATE-LEVEL SIMULATIONS (VCS)	DETAILS	Physical Verification (IC Validator)
	STATIC TIMING ANALYSIS (PRIMETIME)	DETAILS	Select compute types you want to use once the the project is created.
\sim	PHYSICAL VERIFICATION (IC VALIDATOR)	DETAILS	Compute Type
	DIGITAL INSTANCE - SYNTHESIS	DETAILS	PV: Block level
	DIGITAL INSTANCE - RTL TO SIGN-OFF	DETAILS	PV: Mid-size Block level
	PRIMELIB CHARACTERIZATION AND VALIDATION	DETAILS	PV: Full-chip level
	PRIMESIM CONTINUUM SAAS	DETAILS	
	VERIFICATION INSTANCE FOR SIMULATION	DETAILS	PV: Full-chip level HighMem
	ANALOG INSTANCE - FULL FLOW	DETAILS	PV: Full-chip level ExtremeMem

- 4 SaaS applications for Physical Verification
 - Stand-alone app for Physical Verification (IC Validator) Signoff
 - Full digital flow with "Digital Instance"
 - Full analog flow with "Analog Instance"
 - Full Silicon Photonic flow with "Photonic Instances"
- Customizable options to chose different kind of resources as per design type

Setting Up Design on SaaS

Create project and clusture

• Once project is created then open "Access Desktop" for the Citrix session

Setting Up Design on SaaS

Create run script and launch job

- Cluster creations automatically sets up the tool path, tool licenses and network disk
- Next, create a run script and start the run. Example run script:

```
#!/bin/sh
#$ -P a\
#$
#$
#$
#$
icv -f oasis -i /proj053/project/data/Tan 2.oas -c Tanage -vue -host_init SGE /proj053/p
roject/data/ICVN: _cloud.encrypt
```

• SaaS default usage LSF for job submission.

IC Validator[™] on Synopsys Cloud

Quick Start Guide

Monitoring IC Validator Run in SaaS

• Graphical viewer to monitor ICV runs

icv_dashboard

• Graph for memory and CPU utilization

Synopsys SaaS use Models and Customers

Cloud Migration Review

Node

N3

N5

N7

Foundry Certified

Resources:

x **912** cores

- 2 days for environment setup •
- 5 days to finish ICV cloud runs ٠ on cell-based and LVL cases
- 5 days to finish cross check of ٠ on-perm vs cloud

Nodes	Categories	Number of cases
	IP cases	400+
	Full cell-based cases	10+
	Bump Pad cases	7
	Antenna cases	~10
3nm / 5nm / 7nm	SRAM cases	50+
	Real cases	20+
	lssue and Regression cases	20+
	Hierarchy related cases	<5
	RTO cases	<10

Number of Checking items

92k

28k

10k

Cloud Migration Review (Dummy Fill)

Cases:

Node	FEOL	BEOL
N3	70+	25+
N5	40	45+
N7	25+	30+
Total case	130+	100+

Resources:

Total 240+ cases for ICV FILL N3/N5/N7 cloud migration. We complete the whole cloud migration flow within one week

- Data preparation (~1 day)
- Run job (~18h)
- QA review (~1 day)
- Report preparation (~1 day)

Customer Example

Achronix

Achronix Data Acceleration

Scalability Run Numbers

Design Size: 360mm2 **TSMC7nm** Process

No of Cores	VM's	Run Time (Hrs.)	Peak Mem (GB)	Licenses used
256 HT	8*32HT(512GB RAM, Standard_E64ds_v5)	22:59:44	486.9	64
440 HT	10*32HT (512GB RAM, Standard_E64ds_v5) + 5*24HT (1TB RAM, 1X FX48md)	15:42:33	879.787	110

- Good scalability with more cores.
- Running all rules, including LUP, ESD, VDR, and G0.
- Different kinds of VMs can be used for the same run.

Scalability Run Numbers

- All machine resources and licenses are locked during the run.
- Resources are not fully utilized.

Elastic Run

• Tool started the run with 1 VM.

No of Cores	VM's	Run Time (Hrs.)	Peak Mem (GB)	Licenses used
Elastic Run, 320 HT	10*32HT (512GB RAM , Standard_E64ds_v5)	16:17:55	462.23	Min 8, Max 80

• Added and released VMs automatically.

SYNOPSYS° snug

No of Cores	VM's	Run Time (Hrs.)	Peak Mem (GB)	Licenses used
Elastic Run, 320 HT	10*32HT (512GB RAM , Standard_E64ds_v5)	16:17:55	462.23	Min 8, Max 80
320 HT	10*32HT (512GB RAM , Standard_E64ds_v5)	15:51:34	460.73	80

33% Resource saving with less than 5% run time penalty

Run Time Details

Running all rules, including LUP, ESD, VDR and G0.

TSMC N3E design run Numbers Run in SaaS Env

Design & Flow Details

Technology TSMC N3E Design Size 304mm2 **Rules** All DRC rules incusing ESD, LUP, VDR

Setting Up Design on SaaS

Create project and clusture

- VM selection and Project Creation
 - Select VM type and number of cores
 - Create a project
 - Cerate a cluster

 \checkmark

1

1

Description

CPU

CPU Speed:

Total RAM

Mem/Core:

2

← N3E Scaleout

Cluster View

Local Storage

Physical Cores:

• Once project is created then open "Access Desktop" for the Citrix session

Results: DRC Scalability to 1200 CPU Cores

- Design: Large TSMC N3E case
- IC Validator scales to 1200+ cores on Synopsys SaaS
- Full-chip DRC runtime: ~18 hrs.
 - Includes all rules LUP/ESD, VDR
 - Excellent scalability

Results: Elastic CPU Saves 25% Resources

SYNOPSYS°

- Elastic CPU automatically optimizes CPU resources based on job requirements
- Flexibility on cloud to dynamically provision resources and optimize computes costs
- Easy to use, fully automated, no user intervention

	VMs	CPUs	Runtime (hours)	Allocated CPU hours
Non-Elastic	37	888	20:41	18,367
Elastic	37 (Peak)	888 (Peak)	22:47	13,716

25% Cost Savings on Cloud with Elastic CPU Technology

AMD Case Study: Scales to 4000+ Cores

400 sq-mm, TSMC N7 design

IC Validator Scaling Results to 4000 CPUs

- ▲ Scale with multiple HBv2 instances
- ▲ From 5 VMs (600 CPUs) to 33 VMs (3960 CPUs)
- ▲ Deployed using Azure VM Scale Set
- Excellent IC Validator DRC scalability
 - ▲ Scales to ~4000 CPUs

27 | TSMC OIP 2

Achieved overnight runtimes

Webinar: <u>TSMC collaboration</u>; IC Validator Scaling on Azure Cloud

- Deployed on Azure cloud
- Scales to 4000+ cores
- Overnight full chip DRC
 runtime

AWS- ICV Run Times x2ezn

- Design size 320mm2
- Scalability runs up to 1056 cpus.
- Less than 500 GB of machine memory used.

No of Cores	No of Hosts	Run time (Hrs)	Peak Memory (GB)	Peak Disk (GB)	Comments
320 (160 HT)	10	16:54:00	463.322	1107.4	x2ezn
544 (272 HT)	17	11:38:34	446.028	1222.191	x2ezn
640 (320 HT)	20	10:31:47	417.59	1197.251	x2ezn
736 (368HT)	23	9:42:23	372.159	1026.83	x2ezn
1056 (528 HT)	33	9:31:58	368.8	1086.2	x2ezn

- SNPS SaaS, fully tested and ready for all kinds of PV needs
- ICV fully enabled with all cloud providers.

THANK YOU

YOUR INNOVATION YOUR COMMUNITY