

Unleashing Efficiency: Cloud-Powered Advancements in Physical Verification for Advanced Semiconductor Nodes

Vilesh Shah, Shantanu Divekar, Vikash Tyagi, Evan Chen Astera Labs

- About Astera Labs
- PV Challenges for Connectivity and Ultra-High Bandwidth Designs
- PV Signoff flow in Astera Labs
 - Cloud and ICV
- Synopsys IC Validator(TM) Methodology
 - Explorer, Heat-map and DV diagnostics
 - Short Debugging
 - PERC

Astera Labs

Products and Technology

Silicon and System Products to Address Performance Bottlenecks

Aries Platform PCle/CXL Smart DSP Retimers

Leo Platform CXL memory controller acceleration

- About Astera Labs
- PV Challenges for Connectivity and Ultra-High Bandwidth Designs
- PV Signoff flow in Astera Labs
 - Cloud and ICV
- Synopsys IC Validator Methodology
 - Explorer, Heat-map and DV diagnostics
 - Short Debugging
 - PERC

Physical Verification Requirements

AsteraLabs. Sn

Challenges for high-bandwidth designs

- Fast performance is a key requirement
 - Early design verification with dirty block/chip level data is usually time-consuming
 - Long runtimes due to PG shorts across complex power domains
- DRC closure in 5nm/7nm is challenging
 - Aligning FIN and PO across the blocks
 - Analog/Digital IP from different companies needs to follow different placement grid
- Base density issues near IP edge
 - IP base layers where Foundry fill deck is not friendly
- The LUP violations closer to high voltage IP requires a lot of up-front planning since they must meet very strict LUP density and spacing rules from Foundry
- DRC runs scale very linearly with number of CPUs available we used from 4 cpu to 384 cpu
 jobs spread over multiple servers

Agenda

- About Astera Labs
- PV Challenges for Connectivity and Ultra-High Bandwidth Designs
- PV Signoff flow in Astera Labs
 - Cloud and ICV
- Synopsys IC Validator Methodology
 - Explorer, Heat-map and DV diagnostics
 - Short Debugging
 - PERC

Astera Labs Physical Verification Flow

- Place & Route (Synopsys Fusion Compiler(TM))
 - Floorplan to chip finish
 - Tech file-based DRC
- Chip assembly
 - merged in Synopsys FC
- Full chip Verification (Synopsys IC Validator)
 - DRC (FEOL, BEOL, VDR)
 - LVS
 - Antenna
 - FILL
 - PERC

15+ PV signoff with ICV for N16/N7/N5 Nodes.

Office

Home

AWS Cloud for Physical Verification

On-Demand scaling for fast performance

- AWS Cloud resources used for all design flow, including physical verification
- On-Demand resource access enables to scale physical verification jobs for faster runtime
- Synopsys IC Validator is cloud friendly, easy to setup and great scalability

Agenda

- About Astera Labs
- PV Challenges for Connectivity and Ultra-High Bandwidth Designs
- PV Signoff flow in Astera Labs
 Cloud and ICV
- Synopsys IC Validator Methodology
 - Explorer, Heat-map and DV diagnostics
 - Short Debugging
 - PERC

SNUG SILICON VALLEY 2024 10

Quick Verification During Early Design Stage

- Synopsys IC Validator Explorer DRC enables fast DRC for early design verification
 - Quickly checks fundamental design issues
 - Fix large design issues before signoff
- Easy debugging with DRC heatmap
- Voltage dependent diagnostics for VDR rule

Run Time

DRC Explorer

Runtime (Hrs.)

3:00:50

No of CPUs

32

DRC Heatmap

DRC Run time

Quick Verification During Early Design Stage

- Fill Overlap Diagnostics
 - Heatmap helped to identify the region and the cells causing these violations
 - HDBELT* cells placed in the center have issues.

Quick Verification During Early Design Stage

- Priority Rules
 - ~18 million signoff rules violations were flagged by DRC explorer.
 - Heatmap for all these rule helped to debug these issues faster.

File Home Edit View ICV Live DRC		Eile View Tools Windows He	elp				
🔍 Zoom In 🔍 👻 🍳 Browse 👻 Ru	ler 🔹 📗 💿 🛄 🧎 Open 👻 👫 Find	Load Results × Run Summa	ry × D <u>R</u> C Errors ×	Heat <u>M</u> ap ×			
🔍 Zoom Out 🖉 🛛 🕞 🎁 Pan 👘 Hig	ghlight 👻 🛄 0	E Search (Alt+E)	N 🔁 🖽				
🔍 🛛 🐨 🐨 🏷 Select 👻 🛃 Inf	o 🔛 1	Violation Category		R Violation Hea	t Man		ର ହ
View 🕞 Tools	🖙 Hierarchy 🖙 Cell	Mada, Euclass Octoordand Eng			. Pa	-	
Task View 🛛 🕅 (Readonly) Layout: /global/dgae.co	rpac//avanish/AsterLab/TOgds/sco_top.fill.gds [1], Cell: s	Si Explorer-Categorized Erro	rs 👻			1	×
ID Progress		Category	Hierarchical Flat				
15 Hogess		 Explorer-Categorized Error 	s 1,489,981,356 3,245,	.042,765			
		Fill Overlap Diagnostics	1,255,427 1,	255,463			
		Priority Rules	18,734,919 32,	.518,908			
		Voltage-Dependent Diagno	stics 1,469,991,010 3,211,	.268,394			
		•					
Layouts @X		Violation Selection		0 🗙			
• we sco_top.fill.		Violation/Function	Hierarchical Flat				
		▶ M4.A.1	58	202			
		▶ M12.S.1		175			
		▶ M5.A.1		147			
		M6.S.1	60	138			
	II AALSIII TAASSII TAAASII TAAASII TAAASSII TAAASSII TAATSII TAATSII TAATSII TAATSII TAATSII TAATSII TAATSII T	VIA5.5.1	33	132			
		M15.5.1	104 91	91			
		▶ M13.S.1	73	73			
		▶ M8.S.1		72			
		▶ M3.A.1		58			⁴ 56k
		▶ M9.S.1		54			
		▶ M7.A.1	43	46			1 6K
		M9.A.1	37	37 •			1 303
La Tree		Color Definitions		0 🗙			1 303
		Error Count		<u> </u>			1 23
Navigation 🖉 🗷		✓ ≤ <= 56k					
		✓					+1
		✓ <= 16k					
		✓ <= 8k		Coarse grid			Fine grid
				•		Id U	

SNUG SILICON VALLEY 2024 13

- Voltage-dependent diagnostic
 - EXPLORER.VOLTAGE.CONFLICT
 - EXPLORER.VOLTAGE.LAYER.CONFLICT
 - EXPLORER.VOLTAGE.SANITY

Quick Verification During Early Design Stage

Voltage-dependent diagnostic

- EXPLORER.VOLTAGE.CONFLICT
- EXPLORER.VOLTAGE.LAYER.CONFLICT
- EXPLORER.VOLTAGE.SANITY

iolation C	ategory		0	🗷 Violati	ion Browser									
lode: Expl	lorer-Categorize	d Errors 👻		Violat	ion/Cell/Function		A 1	Error	To	otal Errors				
			Tabal	•	EFHD128X32_SA				5	5				
ategory			lotal	>	EFHD128X32_WL				34	34				
* Explore	er-Categorized	1 Errors	5,755,7	×	PCLAMPC_H				1	1				
FIII C	rity Pulos	tics	3 302 6	+4	TEF05F128X32H0	D18_PHRM						131	131	
Volta	age-Dependent	Diagnostic	5,592,6	56 .	dwc_pcie6_cm_se	erdes_top_ns_cm_ana_i	nplla_	top				4	4	
Voice	age Dependent	Diagnostic.	5 1,107,0		dwc_pcie6_cm_se	erdes_top_ns_cm_ana_i	npilo_	Lop				4	4	
					dwc_pcie6_cm_se	on ne ry ana ry sigde	t biac	une_comp				1	1	
				, ,	sco top	.op_iis_ix_alia_ix_sigue						2	2	
L)	>	open/ntod fun				ĩ	1				
rror List														
encrypte	d function:4192	5												
Status	ID	Parent Str Cell Struct	uct/ t/ (Child Coo	rds(lower left x, y)) (upper right x, y)	Net	Layer				Fro	m User Comr	nent
🝷 🚫 Erro	or E.90.54606.1	In all insta	ances of											
*		dwc_pcie6	5_cm	(190.641)	0, 31.0910)	(190.6860, 31.1	1	NSD_CORE						
									voltage	=	0.7500			
*		dwc_pcie6	5_cm	(184.402	5, 29.7415)	(184.4525, 29.7	1	M2_09VM						
		_						_	voltage	=	0.9000			
*		dwc pcie6	5 cm	(190.641)	0, 31.4270)	(190.6860, 31.5	1	PSD CORE						
									voltage	=	0.7500			
Ŧ		dwc pcie6	5 cm i	(185.251)	0, 31.9310)	(185.3350, 32.1	1	NSD 12						
								-	voltage	=	1.2000			
*		dwc pcie6	5 cm i	(181.039)	0, 25,2110)	(181.0930, 25.3.,	1	GATE 12						
									voltage	-	1 2000			
iolation D	etail													
												_		

EXPLORER.VOLTAGE.LAYER.CONFLICT : Conflicting Marker Layer Voltage:

encrypted function (../drc:41925)

Delta Voltage Rule debugging

- Delta voltage debug features helped to debug DV rule faster
- Traditionally we just see error markers

Error List											Ø
dv_error_v	oltage_source	error_nets:217912									
		(lower left x, y)	(upper right x, y)	Distance	Delta-voltage	Extra-link					1
Status ID	ID	,.			5		Property1	Property1 source	Property2	Property2 source	
💌 🚫 Error	E.10.101.1	(0.7070, 6963.6700)	(0.7630, 6963.6710)	0.0480	1.9800	NONE					
							high = 1.9800	(group = MVH, property = high)	low = 0.0	(group = MVL, property	
							high = 0.7500	(group = NSD_CORE, property = high)	low = 0.0	(hard-coded)	Т

Faster Delta Voltage Rule Debugging

Delta Voltage Rule debugging

- Delta voltage debug GUI provides controls to highlight source voltages
- All the source voltages available on the net causing this error can be highlighted.

Faster Delta Voltage Rule Debugging

AsteraLabs.

snuc

Delta Voltage Rule debugging

•

Faster Delta Voltage Rule Debugging

Agenda

- About Astera Labs
- PV Challenges for Connectivity and Ultra-High Bandwidth Designs
- PV Signoff flow in Astera Labs
 Cloud and ICV
- Synopsys IC Validator Methodology
 - Explorer, Heat-map and DV diagnostics
 - Short Debugging
 - PERC

LVS Short-Finder

- Interactive short debugging using short finder utility.
- The shorted path of the short is highlighted with the option to emulate the fixes without re-running LVS again

AsteraLabs.

Snuc

LVS Short-Finder

File View Tools Windows Hel

- Emulate the possible fixes by analyzing the short
- Once the short is clean do those fixes in the layout. All required information are available in VUE.

				Aste	ra Labs.	snug
		High	light Path (on snpsamd006)	\odot \otimes
	😑 😒 🔀 🤅) × 💊 🍳	€ Q 0	a G 🛛		
	Highlight Sche	me : Remove	Polygon	Physical Layer		•
	Discovered Pat	th				
	🕆 🖶 Search I	By Cell (Alt+E)			Q G	F. 🔠 🔕
	Cell					Layer
I	EFHD32 EFHD32	2X32_POWER_9 2X32_POWER_9	SWITCH_IO_BA	ASE_2K/EFHD32X3 ASE_2K/EFHD32X3	2_POWER_SWIT 2_POWER_SWIT	CH M2_A CH VIA1
	✓ EFHD32	2X32_POWER_S		SE_2K/EFHD32X3	2_POWER_SWIT	CH M1_A
						b
	ghlight Filter					P
	Layers Ne	et Cell Ne	et Type			
cell shorts o	M1_A M1_A M2_A 7 M2_B 2 VIA1					
Expo	ort _					
ge	A					

<u>-</u> c	<u></u>																		
Load	I Results \times	Run <u>S</u> ummary ×	Ext <u>r</u> action Erro	rs X	<u>L</u> VS Errors \times	Short Fi <u>n</u> der >	×												Þ
	😒 🔯 🕀 🗨	🖲 Text 🔿 LVS										gniight i Lavers	Net	Cell	Net Type	1			
Short	List										6	z 🖂	iver	Cell	местуре		 	 	
Search	NKeyword :									Show top-cell	shorts only	/ 🛄 М1 / 🔲 М2	2_A						
ID	•		Cell				PWR	GND		Nets		7 🔲 м2	2_B						
0	- 28 EFHD32X	32_POWER_SWITCH_	IO_BASE_2K					VSS	VQPS		8	7 🔲 VIA	41						
4								-			×.								
Net Cł	nange										0								
								✓ Show I	Loaded Short (Only Import	Export _								
ID 🔻	Change	Cell		Laye	er	C	Coordinat	tes		Revert Change	*								
0	Removed	EFHD32X32_POV	WER_SWIT M1_	A	(0.7	09 , -0.158) - (0.76	69,11.6	76)		Revert									
0	Removed	EFHD32X32_POV	VER_SWIT VIA	1	(0.7	31 , 0.335) - (0.74	7,0.351	.)		Revert									

Agenda

- About Astera Labs
- PV Challenges for Connectivity and Ultra-High Bandwidth Designs
- PV Signoff flow in Astera Labs
 Cloud and ICV
- Synopsys IC Validator Methodology
 - Explorer, Heat-map and DV diagnostics
 - Short Debugging
 - PERC

Synopsys IC Validator PERC Results

	ICV PERC Results on N5 Design									
PERC Flow	No of CPUs	Runtime (Hrs.)								
Netlist/Topological checks	32	1:54:13								
Point to Point (P2P) Resistance check	32	11:11:07								
Current Density (CD) checks	32	10:18:20								

- Running all rules form foundry provided PERC deck
- Synopsys StarRC(TM) bases extraction for P2P and CD checks

Synopsys ICV PERC Flow Run Result Reports

Summary of Clamp Network Ground **Clamp Type** nfin Power VSS Single 4923840.00 VDD Single 1168128.00 VDDIO VSS Single 3878400.00 VPGD 775680.00 VPDIG GD Single VPH GD Single 5564928.00 7425024.00 VPOD GD Single VQPS VSS Cascoded (2-stage) 85078.00

			ESE	ESD Network File								
I/0	Power	Ground	Primary Up	(Type)	Primary Down	(Type)	Secondary Up	(Type)	Secondary Down	(Type)	Clamp Type	nfin
A PERNO A PERNI A PERNIO A PERNIO A PERNIO A PERNII A PER	VPH VPH VPH VPH VPH VPH VPH VPH VPH VPH	GD GD GD GD GD GD GD GD GD GD GD GD GD G	PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO PRIMARYUPDIO	(Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single)	PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO PRIMARYDOWNDIO	(Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single)	SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO SECONDARYUPDIO	(Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single)	SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO	(Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single) (Single)	Single Single Single Single Single Single Single Single Single Single Single Single Single Single	5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00 5564928.00
A_PERN7 A_PERN8	VPH VPH	GD GD	PRIMARYUPDIO	(Single) (Single)	PRIMARYDOWNDIO PRIMARYDOWNDIO	(Single) (Single)	SECONDARYUPDIO SECONDARYUPDIO	(Single) (Single)	SECONDARYDOWNDIO SECONDARYDOWNDIO SECONDARYDOWNDIO	(Single) (Single)	Single Single	5564928.00

SD Path Re	e colors indicate a group		P2P measurements by rule check / path							
urce Pin : Secondary o	lown anode -> Sink Pin	s : Closest cl	amp grouj							
Path ID	Source	Sink	Segment	Net	Segment Res (Ohms)	Total Path R (Ohms)	les	Rule Limit (Ohms)	Rule Name	Pass / Fail
01213_0_01213_00000	I 7194D1FA372805 I 7194D1FA2135819 I 7194D1FA2135819 I 7194D1FA3680736 I 7194D1FA2774518 N 2564235 (IO: A PETP5)	GD	1 of 1	GD	2.7265	2.7265		10.0	ESD.14.5.1gU	•
01214_0_01214_00000	I 7194D1FA372805 I 7194D1FA2135819 I 7194D1FA2135819 I 7194D1FA3680736 I 7194D1FA2774518 N 2564236 (IO: A PETN5)	GD	1 of 1	GD	2.7167	2.7167		10.0	ESD.14.5.1gU	•
01142_0_01142_00000	I 7194D1FA372805 I 7194D1FA2135819 I 7194D1FA2135819 I 7194D1FA3680736 I 7194D1FA2783956 N 1662209 (IO: A_PERP5)	GD_VPH	1 of 1	GD	4.3672	4.3672		10.0	ESD.14.5.1gU	
01217_0_01217_00000	I_7194D1FA372805 I_7194D1FA2135819 	GD_VPH	1 of 1	GD	4.3369	4.3369		10.0	ESD.14.5.1gU	•

- Synopsys IC Validator delivered full flow performance and productivity for physical signoff of leading Astera Labs design
 - DRC Explorer provided a quick and efficient method for early analysis and finding and debugging hot spots
 - Complete reliability and ESD verification with Synopsys ICV PERC
- 15+ successful tapeouts with Synopsys ICV for N16/N7/N5 designs.

THANK YOU

YOUR INNOVATION YOUR COMMUNITY