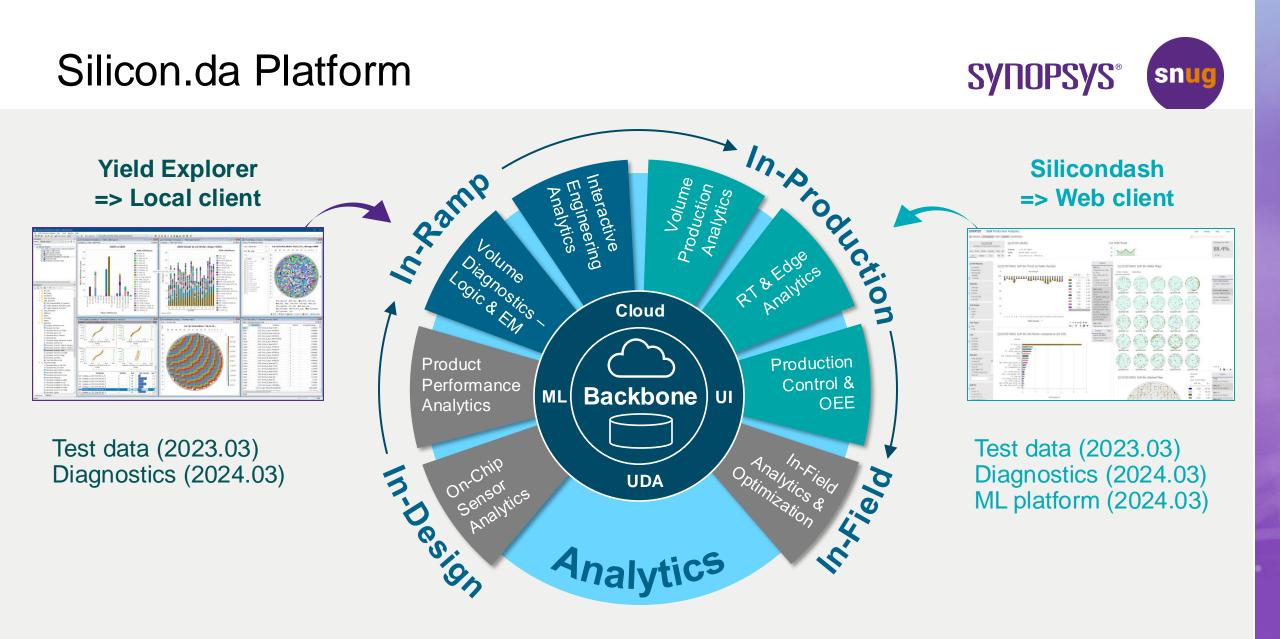


Silicon.da Silicon Insights and Data Analytics from Design to Manufacturing Christophe Suzor, Director, R&D, Synopsys June 2024

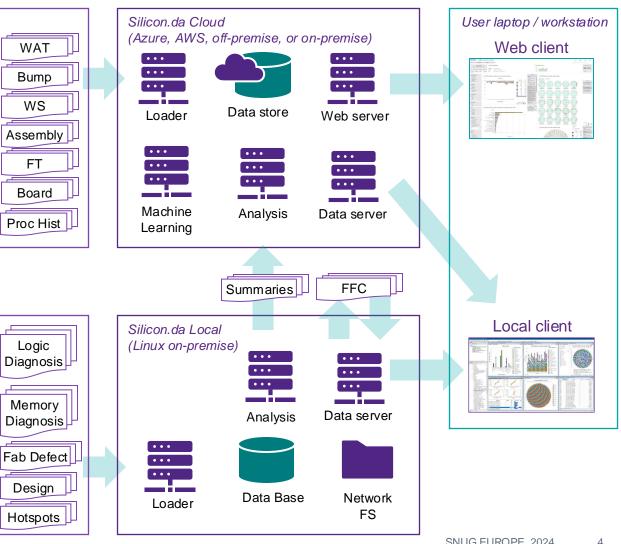
Yield Explorer + Silicondash = Silicon.da

Product Manufacturing ... from NPI through HVM


- New Product / Process
- Design Centric Analytics
- Interactive Test Analytics
- For systematic failure mechanisms
- For design process interactions
- Logic and Memory diagnostics
- New Product Introduction and Process characterization
- Interactive data preparation and data analysis
- · Custom analytics flows and reporting
- Failure Analysis link

SYNOPSYS[®]

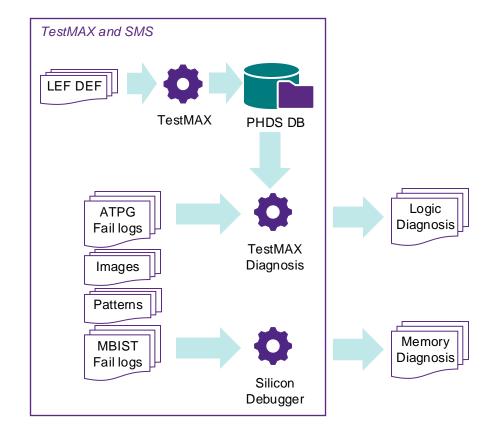
- Yield Management System
- Production / Quality Control
- Volume Test Analytics Automation
- For random and systematic yield and performance issues
- For operational issues and excursions on manufacturing flow
- Automated data mining on large volumes
- · All incoming material analyzed automatically
- Web-browser high-speed analytics and reporting
- Automated production control strategies


2

Platform architecture

Engineering and production data analytics

- Test results and diagnosis summaries are loaded to cloud (or local) data servers
- Design and diagnosis details are loaded to ٠ local data servers
- Machine Learning runs in cloud servers •
- Additional test and fab data (if available) are loaded to cloud or local servers
- Web client for cloud data
- Local client for any data •


SNUG EUROPE 2024

Diagnosis flow

Test fail diagnosis

- LEF DEF is converted to PHDS Data Base
- ATPG fail logs are diagnosed with TestMAX Diagnosis (or 3rd party tools) to identify fail logic and chain candidates with probability scores
- MBIST fail logs are diagnosed with SMS Yield Accelerator Silicon Debugger (or 3rd party tools) to identify failed memories and bits
- Design images and test patterns are used during diagnosis process
- Logic and Memory diagnosis results are loaded to Silicon.da

Start the analysis with Local client

Application Assistant

Application Library > 🖄 BackOffice

Collaboration

> 📾 Utilities

FailureAnalysis

Production Analytics

 Volume Diagnostics

> 🖄 Personal

🕨 🐝 🔁 📑 Data snapshot: 🗆 none

Data snapshot

Automated Analysis

Open Existing Results

Exploratory Data Analysis

O Database

Applications

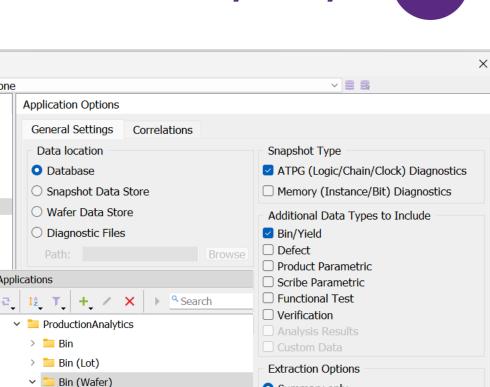
> 🚞 Bin

III Bin First Fail Test (Wafer)

Fail Bin Summary (Wafer) First Fail Test (Wafer) 📮 First Fail Test Pareto (Wafer) HBIN by Concentric Zones (Wafer)

🐮 HBIN by Wafer, TestSite HBIN Details (Wafer) HBIN fails trend by TestSite

HBIN Summary by Wafer, TestSite


🔀 Bin Trend per BinType, Stage (Wafer)

Bin Summary (Wafer)

Using Local (Diagnostics) or Cloud (Test) data

- Open the local app (windows or linux)
- Login to the Local or Cloud database •
- Use Application Assistant to create a local snapshot
- Use predefined Application Tasks and Flows for analytics
- Continue with custom analysis if needed ٠

						Synopsys Silico	n.da Client - [Default proje	ect]						<u>р</u> –	
Home	Tools V	Vorkspace	/iew Help Sp	preadsheet											
🦲 Ope	en		📄 Сору 🝷	- Options	💼 New Ch	art 🔹 📅 Table 🔹	🗛 Font 🛛 📃	+	New X	🕂 Add 🔹	🗙 🖳 Append 🔹	• 🐨	Properties	Column Prop	perties 🗮
🗄 Sav	e •	C	🗋 Paste Segmen		New Ma	ар 🝷	B≣	‡≜ s	Sort 🔹 🕕	🖅 Sort & Filter 🔹	V ×		Segments	Status Bar	
📑 Ret	rieve Additiona	l Data 🛛 🔁	💏 Find 🝷		fx Functio	n	I	Ð		Щ.	*		💶 Table	Spreadsheet	t Panel
	File		E	dit		Open	Font and Alignment		Segment	Column	Row			View	То
dfe_0	- DftCandidate	e													
	CellFault	DiagClass	FaultModel	FaultNum	FaultType	InternalFault	NumCandidatesInDefeo	ct	NumDefect	s NumFailures	ScanCellPosition	Sco	re SubNet		2
23	Y	CellAware	СТМ	23 sa	0	D83		36		1 12			100	0 NAND2X0_HVT	u0_0/U103
24	Y	CellAware	СТМ	24 sa	0	D88		36		1 12			100	0 NAND2X0_HVT	u0_0/U103
25	Y	CellAware	СТМ	25 sa	0	D101		36		1 12			100	NAND3X0_HVT	u0_0/U254
6		Driver	Stuck-at	26 sa	1			36		1 12			100	0 NAND2X0_HVT	u0_0/U103
27		Receiver	Stuck-at	27 sa	0			36		1 12			100	5 NAND2X0_HVT	u0_0/U103
28		Receiver	Stuck-at	28 sa	0			36		1 12			100	9 NAND2X0_HVT	u0_0/U103
29		Receiver	Stuck-at	29 sa	1			36		1 12			100	0 NAND3X0_HVT	u0_0/U254
80	Y	CellAware	СТМ	30 sa	0	D1		36		1 12			100	NAND3X0_HVT	u0_0/U254
31	Y	CellAware	СТМ	31 sa	0	D11		36		1 12			100	NAND3X0_HVT	u0_0/U254
2	Y	CellAware	СТМ	32 sa	0	D13		36		1 12			100	NAND3X0_HVT	u0_0/U254
33	Y	CellAware	СТМ	33 sa	0	D24		36		1 12			100	NAND3X0_HVT	u0_0/U254
4	Y	CellAware	СТМ	34 sa	0	D27		36		1 12			100	NAND3X0_HVT	u0_0/U254
5	Y	CellAware	СТМ	35 sa	0	D105		36		1 12			100	NAND3X0_HVT	u0_0/U254
36	Y	CellAware	СТМ	36 sa	0	D126		36		1 12			100	NAND3X0_HVT	u0_0/U254
37	Y	CellAware	СТМ	1 sa	0	D45		26		1 18			100	NOR2X0_HVT	u0_3/p0_iu
38		Driver	Stuck-at	2 sa	0			26		1 18			100	0 NAND4X0_HVT	u0_3/p0_iu
-					_			_							

- Summary only
- O Summary and Details
- Merge Wafer Split Definition
- Merge Wafer Scribe Attributes

6

Automated Volume Diagnostics

Cell

Cell + Lavers

Equipment

FaultMode FaultType

Instance

ViaLayer

Net + Subnet PhysicalLayer

Using Logic / Chain diagnosis results

- Automated analysis identifies statistical outliers for multiple control factors
- Design statistics and critical area are • CellGroup Component used to normalize results and determine DesignBlock expected fail ratios DiagClass Diagnosable
- Review fails by standard cell, cell internal, instance, net, via, design block, fault model, layers, etc.
- Strength of each outlier and the Yield impact is calculated
- Review trends, select outliers and drilldown to maps and failure analysis selection

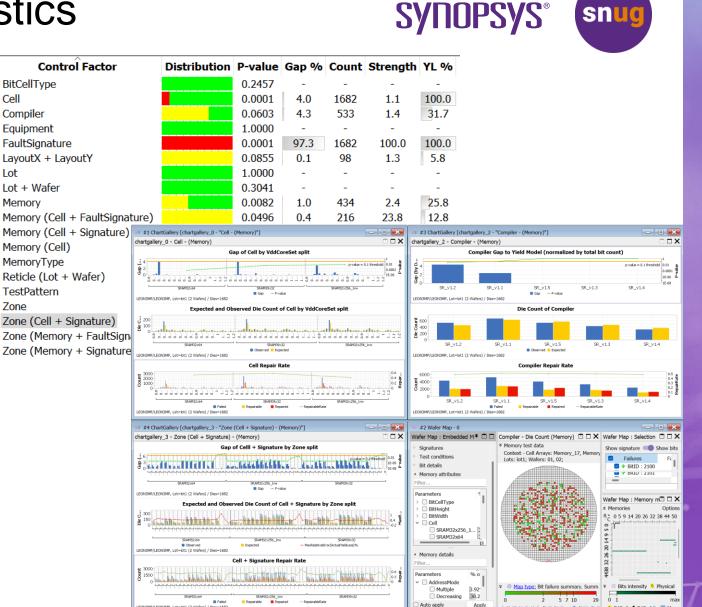
SYNOPSYS

ΦOX

Automated Volume Diagnostics

Cell

l ot

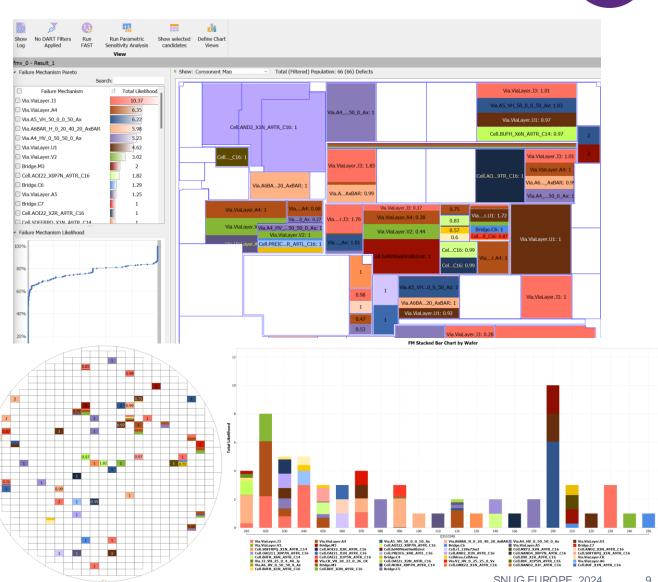

Memory

Zone

Compiler

Using Memory diagnosis results

- Automated analysis identifies statistical outliers for multiple control factors
- Memory design attributes are used to ٠ normalize results and determine expected fail ratios
- Review fails by memory design, bit cell • type, compiler, topological and electrical fault signature, zone, etc.
- Strength of each outlier and the Yield impact is calculated
- Review trends, select outliers and drilldown to maps and failure analysis selection



8

Failure Mode Analysis

Using Logic diagnosis results

- Bayesian inference identifies the most • important failure modes
- Design statistics and critical area and • cell test models are used to improve results
- Results are analyzed by component design block
- Likelihood of each failure is estimated and aggregated
- Review trends, select outliers and drilldown to maps and failure analysis selection

SYNOPSYS[®]

Diagnostics trends

Using all diagnosis results

- Diagnostics summaries are shown in the web client ٠
- Paretos and trends by wafer / lot or time-scope •
- Single and stacked wafer maps

Distributions

Chain

Diagnosis Results

Trends

Pareto

Logic

Failure Modes

Stacked Maps

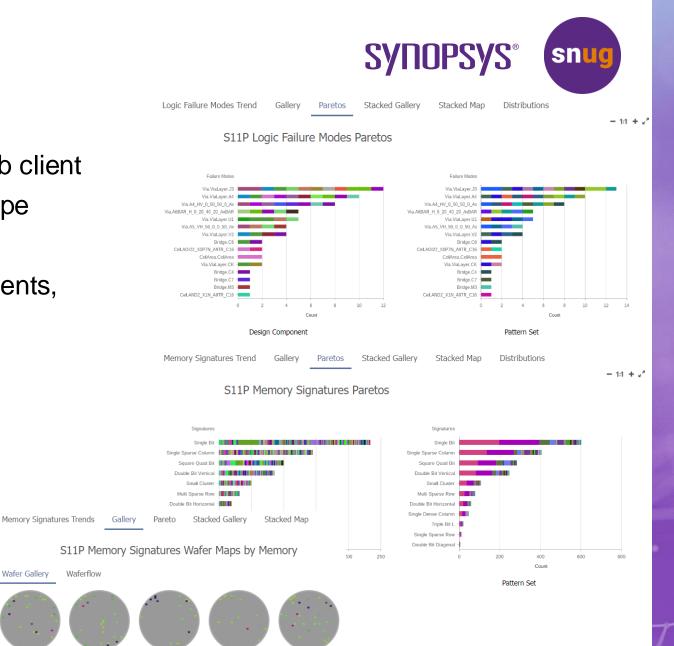
S11P Diagnosis Trends

Results using failure modes, design components, ٠ memories, bit signatures, etc.

- 1:1 + 2

Memory

Wafer Gallery

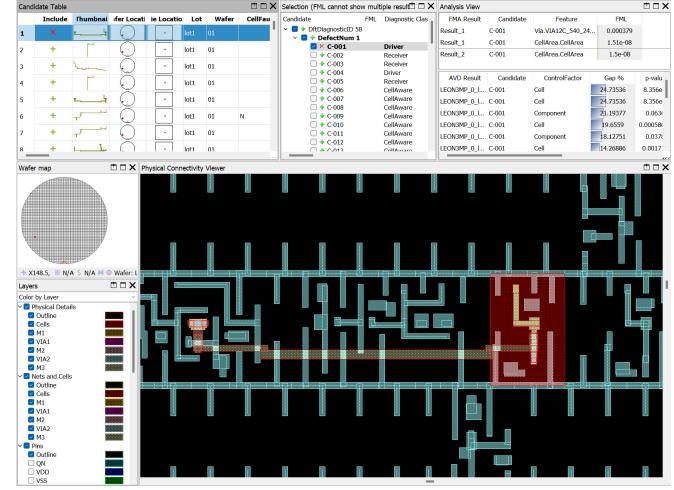

Q351C040 w01

Q351C040 w02

Q351C040 w03

Q351C040 w04

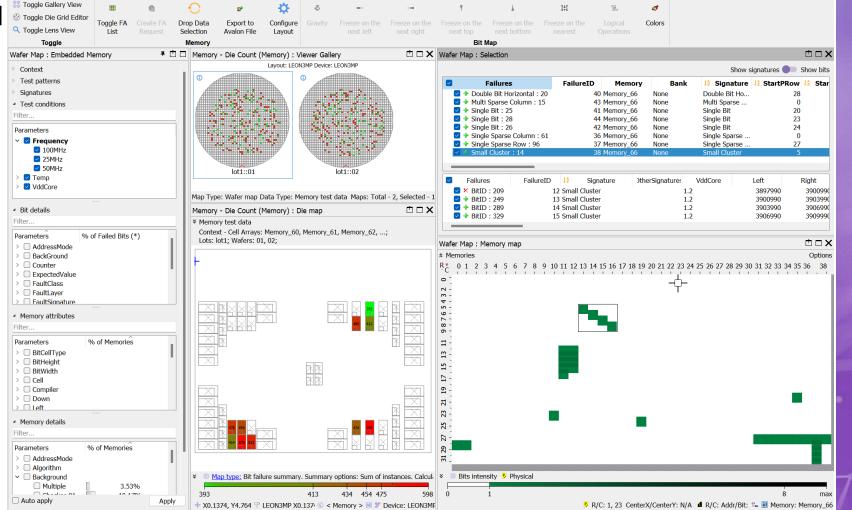
Q351C040 w05



Failure Analysis Selection

Using Logic / Chain diagnosis results

- Fail candidates identified as main Yield problems are reviewed and selected for failure analysis
- Filter by attributes, AVD and FMA results, overlay with GDS/OASIS, etc.
- Selected candidates are saved in a cart, and exported to Avalon or 3rd party format



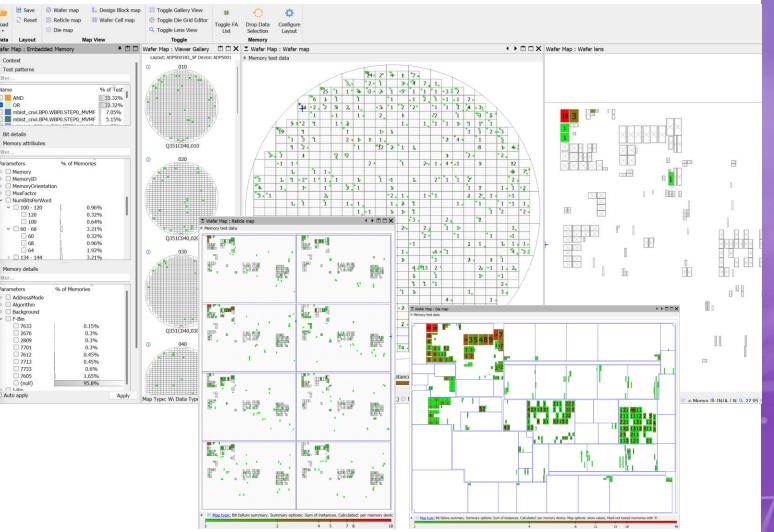
Failed Memory and Bit Signatures

Using Memory diagnosis results

- Interactive UI to review failed memories and bit signatures
- Filter fails by test conditions, memory attributes, and algorithm or bit-level details
- Wafer, reticle or die stacks
- View fail bits with physical or logical maps
- Selected bits and signatures are saved in a cart, and exported to Avalon or 3rd party format

SNUG EUROPE 2024

12

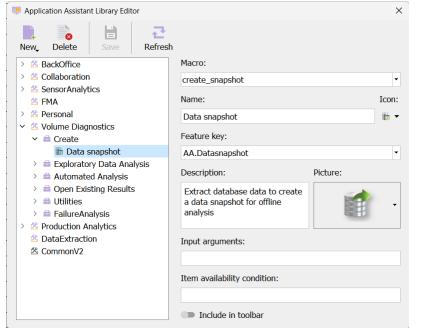

SYNOPSYS

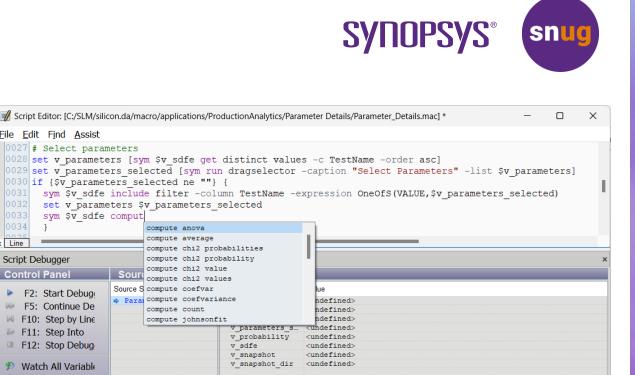
snug

Failed Memories

Using MBIST production test results

- Failed or repaired MBIST results are converted to memories using test pattern definitions
- Applies to high volume test, no additional data logging required
- Fails are filtered by test conditions, memory attributes, and algorithm details
- Wafer, reticle or die stacks
- Trends and paretos available by memory attributes
- Compatible with automated volume diagnostics analysis


SYNOPSYS[°]


sn

Commands and macros

Automation for the local application

- Use GUI or commands for any analytics
- Use predefined or custom macros
- Build macros using TCL or Python or R •
- Script Designer includes lookahead help
- Package macros into applications

	compute anova compute average compute chi2 probabilities compute chi2 probability compute chi2 value compute chi2 value	sym sdf_? compute anova -way way_type -segments -segment -seg -s seg_list [-into mi_name] -columns -column -col -c col_list
Command Pane	compute coefvar compute coefvariance compute count compute johnsonfit	[-firstfactor]-factor1 f1_col [-divpoints1 div_list] [-test test_method]] [-factor2]-secondfactor f2_col
sym sdfe_0 compute		

File Edit Find Assist

Line

Ready

Script Debugger

Control Panel

F2: Start Debug

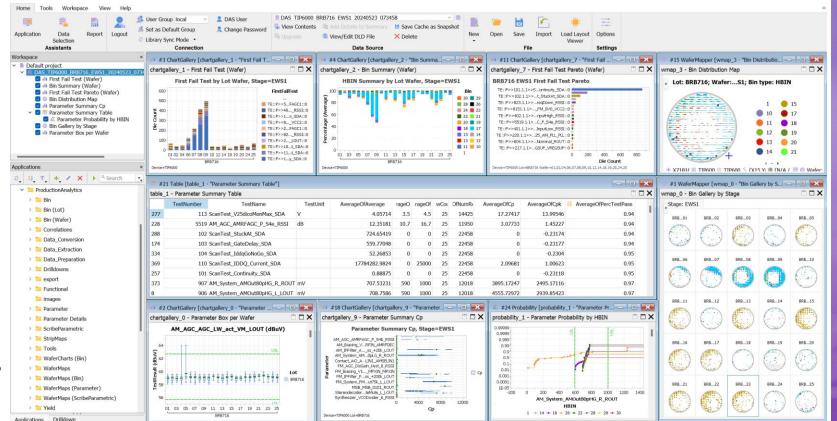
F5: Continue De

F10: Step by Line

F12: Stop Debug

🦻 Watch All Variable

Trace Execution


F11: Step Into

0

Custom analysis with Local client

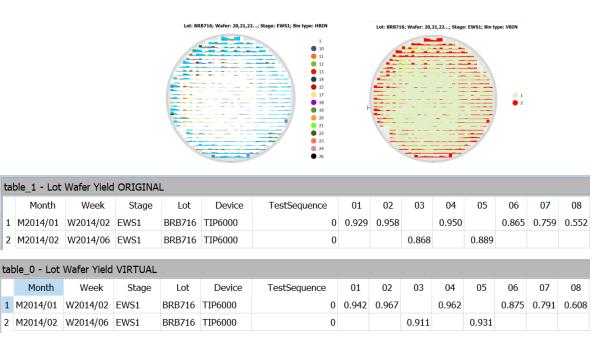
Using any test results

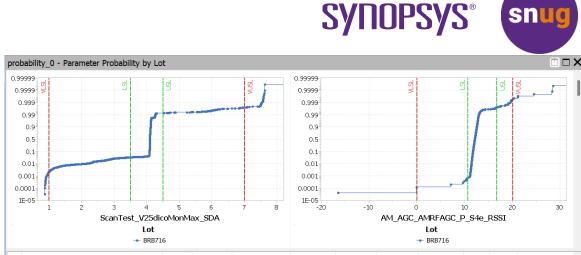
- Download data from cloud, and/or import local files
- Create a local data snapshot with any data types required
- Use existing tasks and flows, or create your own
- Use analysis tools: charts, spreadsheet functions, statistics, maps, correlations
- Use TCL / Python / R macros
- Save, reuse and share tasks, macros and data snapshots

SYNOPSYS

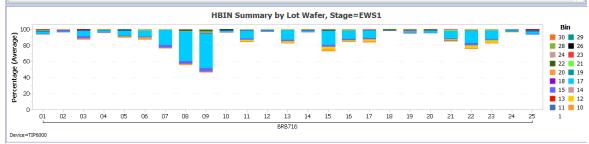
snuc

Virtual test limits analysis

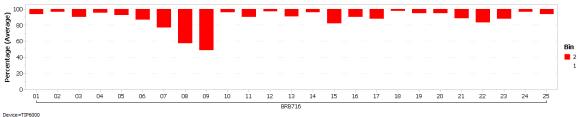

Using production test results


- Review results with existing limits
- Set new virtual limits as desired

Month


Month

- Recalculate virtual fails and virtual bins.
- Compare existing and virtual results



	Parameter	Lot	Box	Rel. Cp/Cpk	Cp/Cpk	Ср	Cpk	K-Factor	LSL	USL	Total Points
8	AM_System_AMOut80pHG_R_ROUT	BRB716	++++		1.56719	2.53726	1.61899	0.36192	590	1000	12018
9	AM_System_AMOut80pHG_L_LOUT	BRB716	++++		1.55161	2.67173	1.72191	0.35551	590	1000	12018
10	AM_System_AMOut80pLG_L_LOUT	BRB716			1.34081	2.74262	2.04549	0.25418	240	413	12018
11	AM_System_AMOut80pLG_R_ROUT	BRB716			1.35306	2.68415	1.98376	0.26094	240	413	12018
10	EM System EMMonolISND2245 I LOUT	000716			2 62405	2 06274	1 00245	0 70407	50	00	10100 -

VBIN Summary by Lot Wafer, Stage=EWS1

sn

Start the analysis with Web client

Using Cloud data

Product Families

28 nm FD SOI

Wafers/Sublots

Test Events

Finders

Lots

Parts

Files

Events

Testers

Products

- Open the web browser and login
- Start the analysis from a Dashboard
- Browse recent test results by product / lot (filtered by user permissions)
- Find data by product / stage / lot / file / any of the chip IDs / etc.
- · Review insights and drilldown to details

Parts

Any tag

Any tag

FABLOT

ORTAG

Serial

ULTTAG

VISUAL_ID

MAC

CLASSTAG

OTPVIRGIN

Search for 1K

parts

D--

ct

EAK

EAK

EAK

T

✓ begins with ✓ i S146

Ince, use "begins with" or "in". Use Enter

C135Y0S0

S146JICW

C135Y0S0

Lot

eb c)	ien	t								S	УΠ	OPS	SYS°	snu	g
		_	Produ	icts l	ots	Wafer Ma	aps									
			Мо	st Rec	ently	Update	d Produ	ucts								
			*											н	1 of	7)
						Volume	Volume					Most	recently up	dated lot		
				Produc	t	(lots)	(wafers)	L	oading Time			Lot	Туре	Insights	(top 2)	
			м			439	10279	21/05/2	2024 - 14:03	:54	Q		WS			
' lot			М			679	16522	21/05/2	2024 - 14:03	:22	C		WS	2 wafers: clusters hbi	n 93 (31.0)%)
														Lot vs. W21 2024 (up	to 71.2%), Outlier yie
			м			2488	-	21/05/2	2024 - 14:02	:33	84		FT			
001/			М			3352			2024 - 14:02		C:		WS	Zonal yield loss (3.7%)	
any			м			833	5269	21/05/2	2024 - 14:01	:49	C.		WS	Zonal yield loss (1.9%		
	Filte	rs:														
	Yield	d		 not 	is gre	ater than	•	20								
S	T 1	å ≕ G / <	þ-													
3		Produc	t 🔺	Stage Type	Sta	ge	Mode	Scope	Volume (lots)		Volume ers/sub		Total Quantity (dies/parts)	Last update time	D0	Yield
		FTR6002		FT	FT1	Ρ		ALL	10			245	2546	38 15/11/2023 - 10:43:33	N/A	93.05
		P1216		WS	EWS2	P		ALL	177			4223	51351		0.21	89.66
		P1216 P17486		ws ws	PAT1 EWS1	P		ALL ALL	177			4238 155	51534 21905		0.21 2.77	89.78 90.02
		PF0500		ws	EWS2	P		ALL	10			199	2797		0.13	97.39
				WS	EWS2	Р		ALL	12			228	3205		0.21	95.95
		PF0632		WS	EWS2	Р		ALL	8			181	2544	86 15/11/2023 - 10:45:03	0.13	97.39
1.		PROD204693		WS	XXX	Р		ALL	1			1	2046	93 14/11/2023 - 19:35:23	73.14	89.98
to specify multip		TIP0065	aren ou	WS	ROOM2		aunen sear	ALL	32			381	3941	78 21/11/2023 - 02:39:09	1.65	82.57
Wafer	/Sub	olot	Х	Y		(CLASSTA	١G			(QRTAG	i -			
C135Y0S0	w11		2	26	-30 S	146JICV_	11182228	_01908	88 S14	46JIC	V025	504				
S146JICW					S	146JICW_	1117172	4_0015	32 S14	46JIC	W03	747				
C135Y0S0	w24		3	32	-55				S14	46JIC	V101	192		SNUG EUROPE 2	024	17

Production Traffic Light Dashboards

Using production test results

• Browse Yield and D0 trends, review insights, click to continue the analysis

Al S1 0 0.30 20 NA 89.52 18 NA 89.69 4 NA 89.69 Al OQA-FAB 0 0 24 0.00 99.78 24 0.00 99.73 Al OQA-FAB - 0 0 75 0.000 99.83 75 0.000 99.83 75 0.01 85.70 25 0.04 85.70	7å≞⊭,*≎-																		Showir	ng 1-20 of 173	🔍 🔍 Page	1 of 9 🕨	► Show 2	J 🔻 Items
Image: Normal state								Rolling	Quarter							С	urrent Quarter					Last Quarter		
A1 0 0.30 20 NA 89.52 18 NA 99.59 4 NA 69.50 A1 0.04-FAB 0 0 24 0.00 99.71 24 0.00 99.75 A1 0.00-FAB 0 0 75 0.000 99.83 75 0.000 99.83 75 0.001 85.70 25 0.041 85.77 A2 0.0 0 178 0.003 99.71 15 0.002 99.73 16 0.041 85.77 A1 0.0 0 178 0.003 99.71 15 0.002 99.73 16 0.041 85.77 A2 0.0 178 0.003 99.71 15 0.002 99.73 16 0.041 85.77 Colar Hab 0.0 0 178 0.003 99.71 15 0.002 99.73 16 0.004 95.75 Colar Hab 0.001 0.0178 0.024 99.71 15 0.002 99.73 15 0.004 95.75 <th>Product</th> <th>Stage</th> <th>Trend</th> <th></th> <th></th> <th></th> <th>Weq +/-</th> <th>Fin. \$</th> <th>Fin. +</th> <th>+/-</th> <th>D0</th> <th></th> <th>Yield</th> <th></th> <th></th> <th>D0</th> <th></th> <th>Yield</th> <th>•</th> <th></th> <th>D0</th> <th></th> <th>Yield</th> <th>Target Yield</th>	Product	Stage	Trend				Weq +/-	Fin. \$	Fin. +	+/-	D0		Yield			D0		Yield	•		D0		Yield	Target Yield
A1 0.0 0 2.4 0.00 97.8 2.4 0.00 99.7 A1 0.04-F48 - 0 0 7.5 0.000 99.3 7.5 0.001 99.7 2.5 0.04.1 65.7	A)	S1	~	3	0.11	13185	-157.25				0.15	0.13	87.44	88.50	7390	0.14	0.13	87.56	88.50	17732	0.15	0.13	87.10	88.5
Al Oda-AB - 0 0 75 Oddo 9.83 75 Oddo 99.83 Al S1 - 0 0 100 0.001 9.83 75 0.001 99.83 Al Oda-AB - 0 0 100 0.001 9.83 75 0.041 85.70 25 0.041 85.70 25 0.041 85.70 0.03 97.1 0.002 97.3 0.04 95.7 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 0.041 95.70 97.70 0.041 95.70 97.70 0.041 95.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70 97.70	41	S1	-	0	0.30	20					N/A		89.52		18	N/A		89.69		4	N/A		89.65	
Al OA PAB I O O 75 OOO 99.83 75 OOO 99.83 Al S1 I O O O OO OOO POOL	AI	OQA-FAB	-	0	0	24					0.00		99.78							24	0.00		99.78	
Al S1 0 0 100 0.041 8570 75 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 8570 25 0.041 9573 156 0.004 9573 156 0.004 9573 156 0.004 9573 156 0.004 9573 156 0.004 9573 156 0.004 9573 156 0.004 9573 156 0.004 9573 156 0.004 9573 156	AJ	OQA-FAB																						
Al 0 0 178 0.003 9971 150 0.002 99.73 156 0.004 99.55 S1 Insights Last 90 Days S1 WS Trends Last 90 Days Yeid Caller to 3.1%0 Yeid Outler waters (to to 0.4%) Yeid			-																					
S1 Insights Last 90 Days refedstyle			-	0	0																		85.72	
S1 Lnsights Last 90 Days tid tangking Last 90 Days Tang 10 0 2.1%) Outlier wafes (up to 0.1%) Product degendence (v to 0.1%) Text subgendence (v to 1.%) Text subgendence (v to 1.%) Te	41	OQA-FAB	-	0	0	178					0.003				150	0.002		99.73		136	0.004		99.58	
Probe card dependence 00 Tester dependence wafers tegrity Insights (5 parts) 2000	Probe card dependence (Tester dependence (< 0. Test site dependence (< Partial wafer test Insights Facility dependence Outlier wafers	(up to 0.1%) .1%)							_	•		•	~~~	<u> </u>					~			🚽 Limit		
	Probe card dependence Tester dependence																							
oduct Insights	High retest count on pas								2000															
Valde tat limits Ntern Analysis (< 0.1%) Yield patterns (< 0.1%) Gruphets	Wide test limits t tern Analysis (< 0.1%) Yield patterns (< 0.1%)								1000 -															

Product Families

Using production test results

- Create groups of similar products •
- Compare trends and results within each ٠ group, by product or by lot
- Use Dashboards to compare summaries **Product Families**
- Click on any row in the table to go to the full analysis for the selected data

Family Product Family Reports Last 7 Days

▼ 🛔 🖽 💁

	١	Wafer Acceptar	nce			Wafer Sort				Asse	mbly			Assembly	- Wafer			Final	Test			Final Test	- Wafer	
Product Family	Ciana	Volume	Volume	Class	Volume	Volume	Yield	D0	Class	Volume	Volume	Yield	Class	Volume	Volume	Yield	Ciana	Volume	Volume	Yield	Channe	Volume	Volume	Yield
	Stage	(lots)	(wafers)	Stage▼	(lots)	(wafers)	(%)	DU	Stage	(lots)	(sublots)	(%)	Stage	(lots)	(wafers)	(%)	Stage	(lots)	(sublots)	(%)	Stage	(lots)	(wafers)	(%)
Family	PCM	13	247	S2S	7	25	99.7	N/A	EOL	65	65	100.0	EOL	33	94	100.0	B6	24	24	62.3	B6	23	53	96.7
	PCM-C	11	225	S2	49	203	88.1	N/A	\								B6:	13	13	68.1	B6	20	39	82.
	PCM-Fl	1	5	S1-Gr	55	294	82.4	N/A	\								B6:	1	1	100.0	B6	1	3	76.4
	PCM-FU	1	5	S1-F	73	366	81.6	N/A	1								B6:	47	47	66.4	B6	38	69	74.
	PCM-O	13	247	S1	73	366	86.0	N/A									B6:	7	7	15.8	B6	13	17	20.

A

L

N

A S81

A

A H68

A GPU SOC

A IOE GPL

SOC

Personal Dashboards

Using production test results

- Create a personal dashboard for each project
- It is refreshed automatically every time
- Add any chart to the personal dashboard
- Click on any chart to go to the full analysis

Add chart to a dashboard

Select dashboard

Create new dashboard

Create new tab

My Dashboard

Select tab

WS

FT

Share dashboards between colleagues

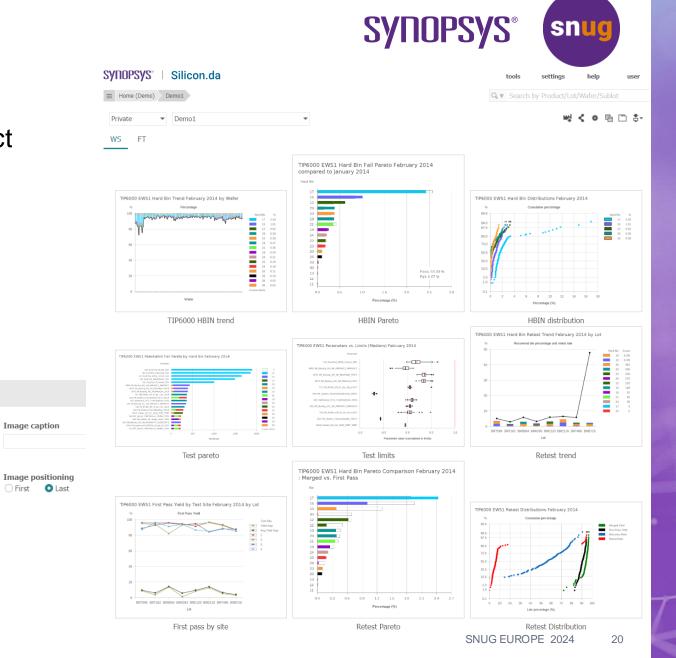
Dashboards

My Dashboard Silicon.da Dashboard

File Dashboard

My shared Dashboards

Shared Dashboards


My Product Set Dashboard

shboard (rami.... 🔺

A PCM (jeff.ch... M HVOK Analv...

-P_Performanc... PCM (jeff.che... 5 B PCM (jeff.c... 5 B Performanc...

Home

Automated Insights

Using production test results

- Data is analyzed for typical Yield and test problems
- Additional metrics are checked and reported when significant
- Insights are calculated at lot and wafer level, and aggregated to day, week, month, quarter, year, all scope
- Mouse hover shows mini charts for each insight, and click opens the report
- Start from the insights to identify the most important problems for each product on any time scope

TIP6000 EWS1 Insights Week 06 2014

Yield Insights (up to 2.2%)

- Outlier lots (up to 2.2%)
- Zonal (up to 1.7%)
- Periodic effects
- Clusters (up to 0.5%)
- Outlier wafers (up to 0.3%)
- Reticle/repetitive effect (< 0.1%)

Test Hardware Insights (up to 0.3%)

- Test site dependence (up to 0.3%)
- ▶ Loadboard dependence (up to 0.2%)
- Probe card dependence (up to 0.2%)
- Tester dependence (up to 0.2%)
- Gap in testing

Retest Insights

- Outlier wafers
- Outlier lots
- Loadboard dependence
- Probe card dependence
- Program name dependence more...

Process Insights (< 0.1%)

- Distribution tails (< 0.1%)
 - 3 wafers: tails on 730, FM_IFFilter_FM_IF_bw_min_LOUT (< 0.1%)

Integrity Insights (2 parts)

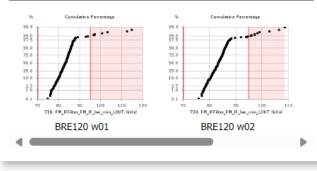
High retest count on pass parts (2 parts)

Product Insights (up to 0.8%)

- ▶ Test limit sensitivity (up to 0.8%)
- Wide test limits
- Program name dependence (< 0.1%)</p>
- Program version dependence (< 0.1%)

W06 2014 vs. W05 2014

Average yield drop (-2.6%) Baseline degradation for hbin 15 (+0.6%) Baseline yield stable

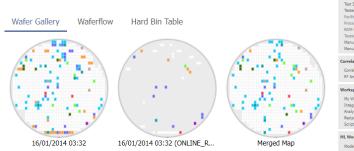

Degradation (up to 0.8%)

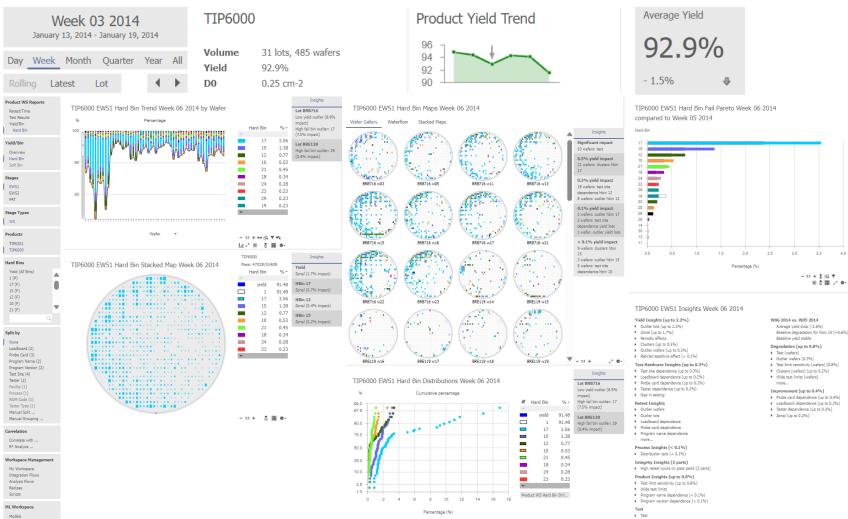
- Test (wafers)
- Outlier wafers (0.3%)
- Test limit sensitivity (wafers) (0.8%)
- Clusters (wafers) (up to 0.2%)
- Wide test limits (wafers) more...

Improvement (up to 0.4%)

- Probe card dependence (up to 0.4%)
- Loadboard dependence (up to 0.3%)
- Tester dependence (up to 0.3%)
- Zonal (up to 0.2%)

3 wafers: tails on 730, FM_IFFilter_FM_IF_bw_min_LOUT (< 0.1%)

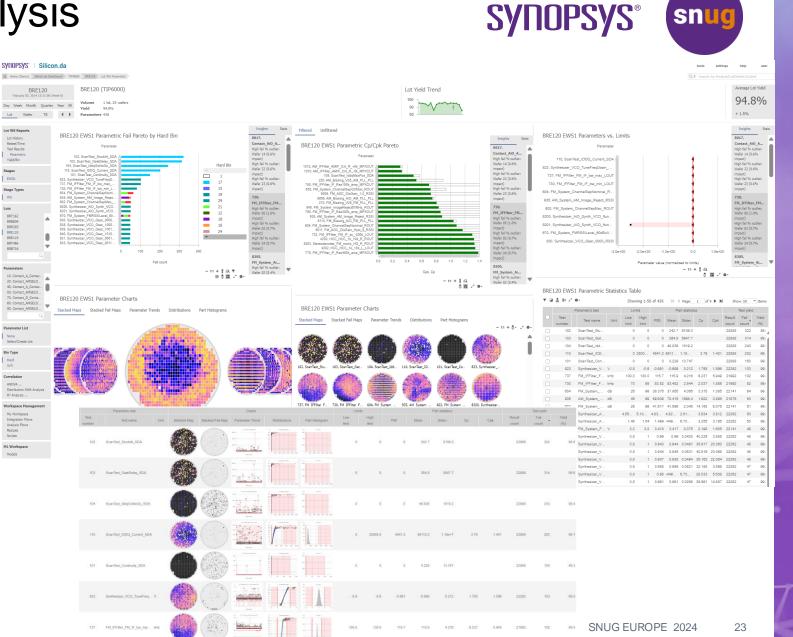




Yield and Bin analysis

Using production test results

- Review hard, soft and custom bin trends and maps and insights
- Navigate between wafer, lot, day, week, month, quarter, year, all scope
- Separate reports available for retests and merged results



Parametric Result analysis

Using production test results

- Review parametric results, statistics, trends, maps and insights
- Review bins associated to each failed test
- Navigate between tests, wafer, • lot, day, week, month, quarter, year, all scope
- Sort tables and galleries by typical statistics and Cp Cpk

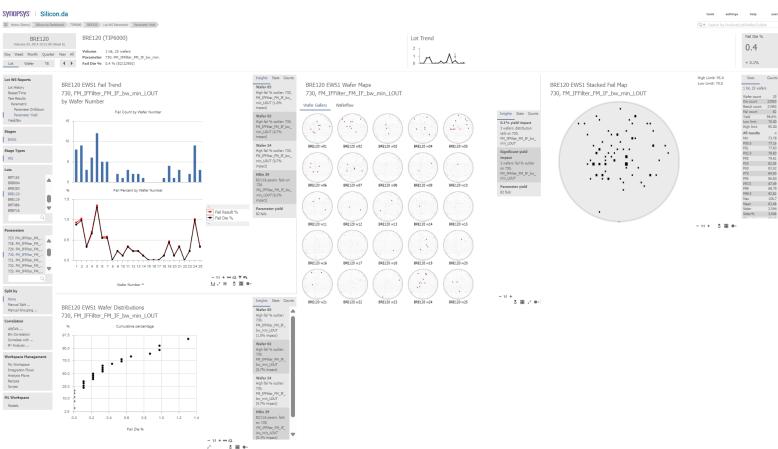
sn

Parametric Result Drilldown analysis

Using selected production test results

- Review trends, maps, statistics for any selected parameter
- Compare results of current lot / wafer to larger population
- Adjust test limits to evaluate yield impact

/ 古田の


SYNOPSYS[®]

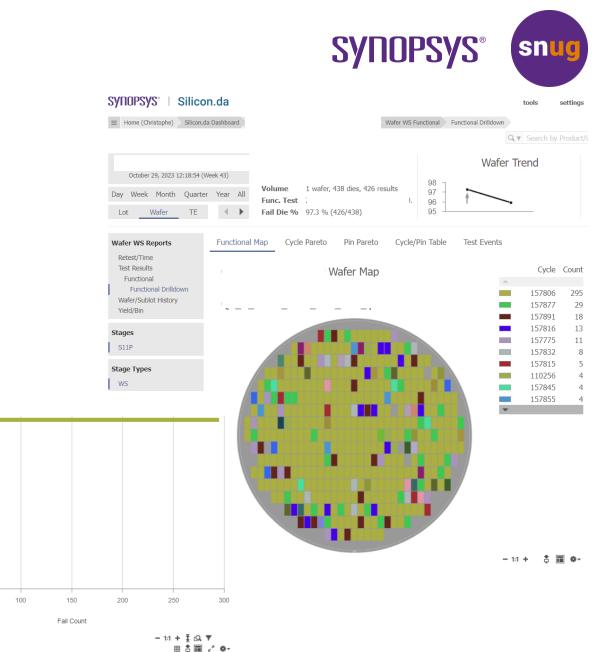
snug

Parametric Yield Drilldown analysis

Using selected production test fail results

- Review trends, maps, statistics of failures for any selected parameter
- Failures are based on test limits and/or test fail flags
- Limits can be adjusted to estimate impact of changes

SYNOPSYS[®]

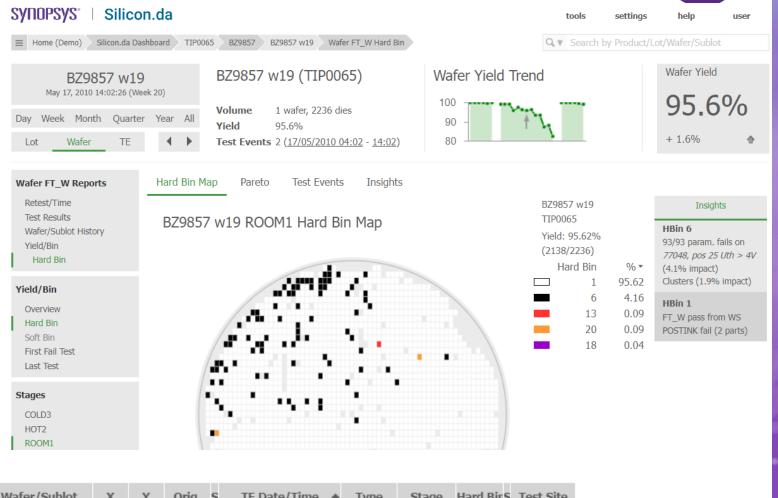

snug

Functional Test analysis

Using production test results

- Review pareto, trends, and maps of failures of tests
- Review pareto and maps of failed cycles and patterns of tests
- Correlate functional fails and parametric test results
- Typically used for ATPG scan, MBIST, Vmin search, etc.

First Fail Cycle


SNUG EUROPE 2024

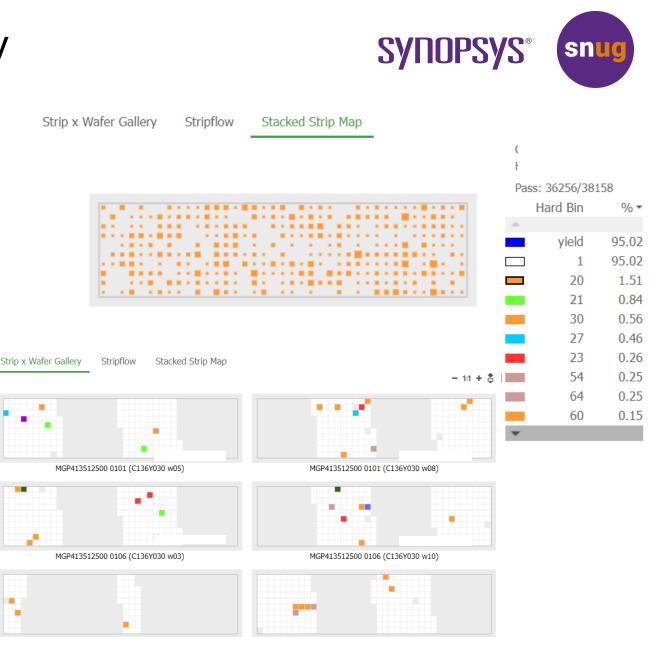
Die Traceability in packages

Using production test results

- Chip ID (ECID, 2DID, etc.) are combined with assembly data to link all test results
- Package test results are viewed as reconstructed wafer maps
- Failed and pass die history is available across all tests
- Multi Chip Modules are recreated as wafers for all included dies

Die History

SYNOPSYS[®]


sn

Lot	Wafer/Sublot	х	Υ	Orig. S	TE Date/Time 🔺	Туре	Stage	Hard BirS	Test Site
BZ9857	BZ9857 w19	28	19	28, 31	30/03/2010 - 18:18:17	WS	HOT1	2	0
BZ9857	BZ9857 w19	28	19	28, 31	14/04/2010 - 17:45:02	WS	POSTINK	1	0
BZ9857	524463104				17/05/2010 - 04:02:18	FT	ROOM1	6	0
BZ9857	BZ9857 w19	28	19	28, 31	17/05/2010 - 04:02:18	FT_W	ROOM1	6	0

Strip analysis from assembly

Using production test results

- Chip ID (ECID, 2DID, etc.) are combined with strip assembly data
- Package test results are viewed as reconstructed strip maps
- Stacked strip maps can show dominant fail bin problems
- Individual strip maps can show assembly problems

Gage Reliability and Reproduceability

Using production test results

- Compare test measurements and identify test ٠ instability or quality problems
- Applies for wafer-to-wafer and packaged parts

0.002

0.00

0.003

0.004

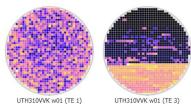
0.002

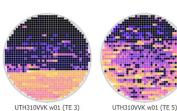
Gage R&R Statistics - ANOVA (Crossed) 80001, vddshort_400mV_TM:VDDIO_33@VDDIO_33[1]

Two-Way ANOVA Table With Interaction

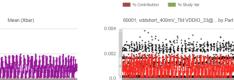
Source	DF	SS	MS	F	Р
Part	982.0	8.89e-4	9.05e-7	1.01	0.428
Split	0.0	0.0	0.0	0.0	1.00
Part*Split	0.0	0.0	0.0	0.0	1.00
Repeatability	1966.0	0.00176	8.97e-7		
Total	2948.0	0.00265			

Two-Way ANOVA Table Without Interaction 🕶

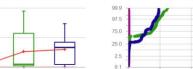

Gage R&R With Interaction

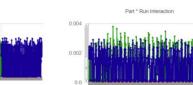

Source	VarComp	%VarComp	StdDev	Study Var (6*SD)	SV/Tolerance (%)	%Study Var
Total Gage R&R	8.97e-7	74.83	9.47e-4	0.00568	63.15	86.50
Repeatability	8.97e-7	74.83	9.47e-4	0.00568	63.15	86.50
Reproducibility	0.0	0.00	0.0	0.0	0.00	0.00
Split	0.0	0.00	0.0	0.0	0.00	0.00
Part*Split	0.0	0.00	0.0	0.0	0.00	0.00
Part-To-Part	3.02e-7	25.17	5.49e-4	0.00330	36.62	50.17
Total Variation	1.20e-6	100.00	0.00110	0.00657	73.00	100.00

Number of distinct categories: 0


Gage R&R Test Events - ANOVA (Crossed) 80001, vddshort 400mV TM:VDDIO 33@VDDIO 33[1]

Gage R&R Charts - ANOVA (Crossed) 80001, vddshort_400mV_TM:VDDIO_33@VDDIO_33[1] 30001, vddshort_400mV_TM:VDDIO_33@VDDIO_ Components of variation Gage R&R Repeat Reprod




Per Run Charts - ANOVA (Crossed) 80001, vddshort_400mV_TM:VDDIO_33@VDDIO_33[1]

Trend by Run

1 2 3

0.003

0.0

Gage R&R Analysis - ANOVA (Crossed)

Part to par

Cumulative percentage

0.006

0.009

ilters:											- +
epeat. (EV) 🔹 🔽 no	ot is	missing	*								- +
≛ ≞ ∠' ≎-		9	Showing 1-	•50 of	153 🕅	< Page	1 of 4	• •	Show 5	• •	Items
Parametric test		%Stuc	ly var	Dist.	%	Tol (6 * stde	ev / tolerance	e)		Matrix	
Test name	Unit	Gage R& R	Part-Part	cat.	Reprod. (AV)	Repeat. (EV)	Total R&R	Part-Part	Parts	Splits	Runs
ddshort_400mV_TM:VDDL		99.89	4.59	0	0	1.30	1.30	0.06	970	1	
ddshort_400mV_TM:VDDA		98.18	18.97	0	0	1.12	1.12	0.22	967	1	;
aram_iddq_chaintest:VDDI		97.96	20.07	0	0	11.73	11.73	2.40	960	1	:
M_video_dac_dynamic_HD		95.04	31.11	0	0	4.67	4.67	1.53	14	1	:
M_audio_dac_dyn_sin_LH:		94.99	31.25	0	0	39.07	39.07	12.85	14	1	:
		Contraverse Contr		43 453 453 454 455 455 455 455 4		Contains proving		N	Constants		0.02

snug

Scripts and recipes

Automation for the cloud system

- Use predefined system scripts, or build your own scripts using JS
- Scripts are version controlled

Libraries

Macros

Run Histor

- Use recipes to schedule or trigger the scripts based on any type of event
- Run from a list of applicable tools

Script Name :	Initialize ink map		i Event generated at end of the a	creation/update of a wafer or sublot repo
ersion Comment:			Scope	
	Copies bin data to a new map. A source stage can be spec	ified if	Facility <i>i</i>	*
	a different stage from the current is to be used.		Product Family i	*
Labels:	INKING		Product i	*
Config Controls:	ON_WAFER, INKING, MAP_EDIT		ROM Code i	*
Max Test Events:			Stage <i>i</i>	*
			Stage Type i	*
Editors:	Users, besides the owner, allowed to edit this script		Mode Code i	*
			Test Equipment Name i	*
		1.	Program Version i	*
Access Level:	ROLE_ADMIN ROLE INTEGRATION		Package i	*
	ROLE_PRODUCTION		Sanity Status i	PASSED
	ROLE_USER			QUARANTINE WARNING
🔽 Hide con	tent			REJECTED V
Output to	o user data set		Reason <i>i</i>	*

Filter	rs:								
Nam	e 🔻 🗌 not contains	▼ ink							
7 🛛	1≛≞⊻∕⇔-							Sho	wing 1-11 of 11
	Name	Description	Owner	Created by	Sharing	Ver.	Last update	State	Actions
	Initialize ink map	Copies bin data to a new map. A source stage can be specified if	system	system	SYSTEM	1.0	12/10/2022 - 00:00:00	Production	â (
	Ink between two selected dies	Ink all pass dies between two selected dies (e.g. scratch).	system	system	SYSTEM	2.0	08/04/2019 - 00:00:00	Production	â 街 <
	Ink bins	Inks dies of specified hard and/or soft bins.	system	system	SYSTEM	1.0	12/08/2022 - 00:00:00	Production	â 街 <
	Ink by manual limit	Ink dies using manually defined limit on parameters values.	system	system	SYSTEM	2.0	08/04/2019 - 00:00:00	Production	÷
	Ink clusters	Ink around clusters of fail dies. In case of die selection, only ink a	system	system	SYSTEM	3.0	08/04/2019 - 00:00:00	Production	â (
	Ink enclosed area	Ink all pass dies in area enclosed by convex hull of selected dies.	system	system	SYSTEM	2.0	08/04/2019 - 00:00:00	Production	â 街 <
	Developm	nent Qualification	Production		Phase Out	0	Obsolete		

All Tools		
Q,	Tools available on current scope	
CORRELATION ANALYSIS		
Correlate with	Gage R&R Analysis	R ² Analysis
COCAL CLIENT ANALYSIS		
Export Parquet files	Export data (SDF)	
署 SYNOPSYS TOOLS		
Check Event Integrity Delete Custom Insights Failing Test on Pass Bin Ink by manual limit Ink insights Judgement Check Data Integ Parametric Prediction	Create Custom Insight Export Assembly Maps Initialize ink map Ink clusters Ink wafer edge grit Judgement Check SBL Multi-Wa Parametric Prediction Training	DPAT Export Lot Summary File Ink bins Ink holes Judgement Action Outliers: Good Die in Bad Neig Part level Parameters Statistics

SYNOPSYS

Machine Learning

Using production test results

- Train and use predefined ML apps
 - Predict Parametric result at any future test stage from wafer sort results
 - Predict Yield and Bin at any future test stage from wafer sort results
 - Predict Vmin at SLT from monitor results

Engineers 8

Data

Built-in Insights

New Insight

data

model

Managers

roductio

Develop custom ML apps

Parametric Prediction Training

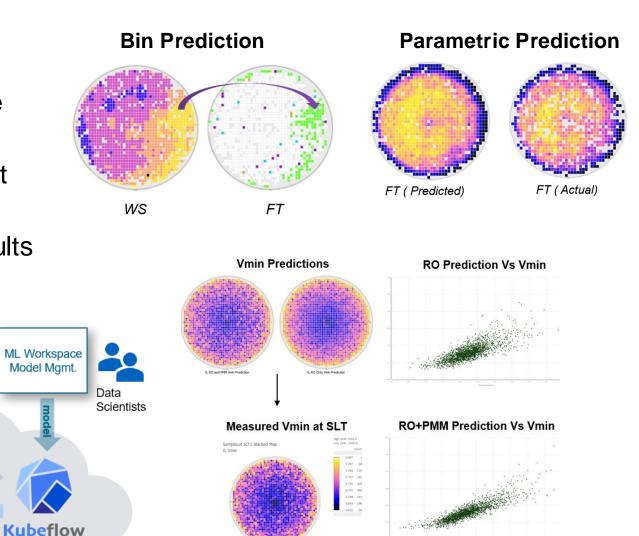
Overwrite Existing Model *i*

Stage Type

Stage

Model Name

Input Stage


WS

EWS1

Target Stage

The target is the currently selected data

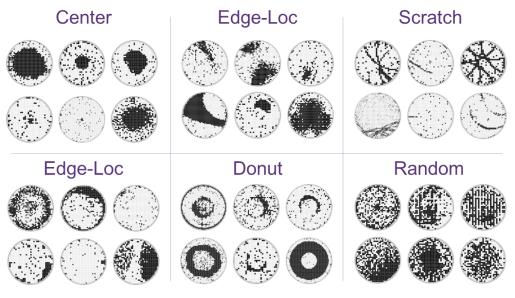
Model Name i TIP6000 EWS1 2

SYNOPSYS[®]

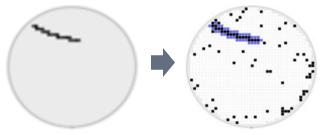
snug

•* ×

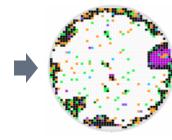
Spatial Patterns and Inking


Using production bin results

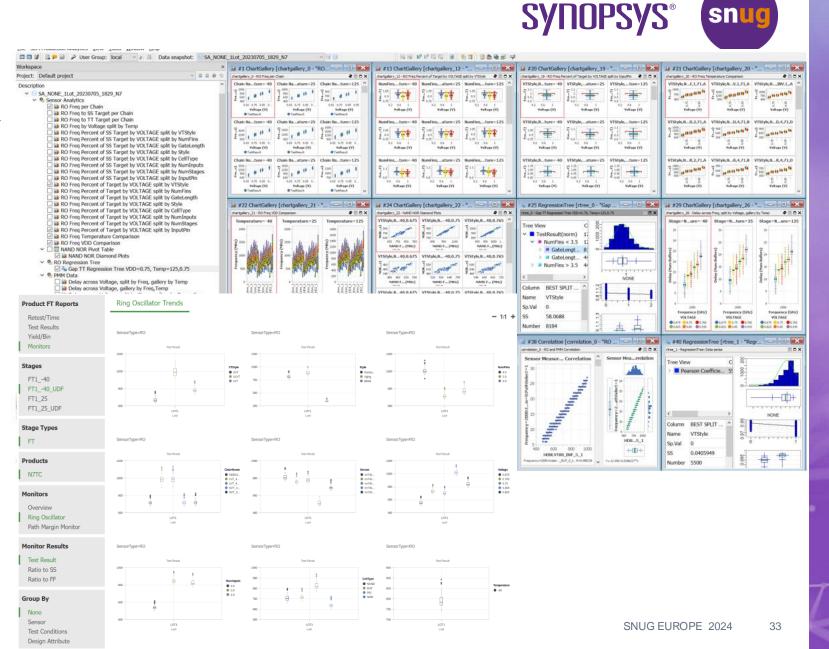
- Spatial wafer pattern classification for typical patterns
- Scratch detection for multiple types of scratches
- Cluster and Good Die Bad Neighbor (GDBN) detection
- Automated inking for the die around • problem areas to improve reliability



snug


Pattern Classification

Scratch Detection and Inking


Clusters and Inking

Monitor Analytics

Using embedded monitors

- Synopsys SLM IP and 3rd party monitors are embedded inside chips, including Voltage, Temperature, Ring Oscillator, Path delay, Clock delay, etc.
- Test results at multiple test conditions identifies process, design, simulation, and reliability problems
- Performance and reliability of chips is monitored through whole product lifecycle
- Local and web apps available

Fab Fabless Collaboration

•

•

٠

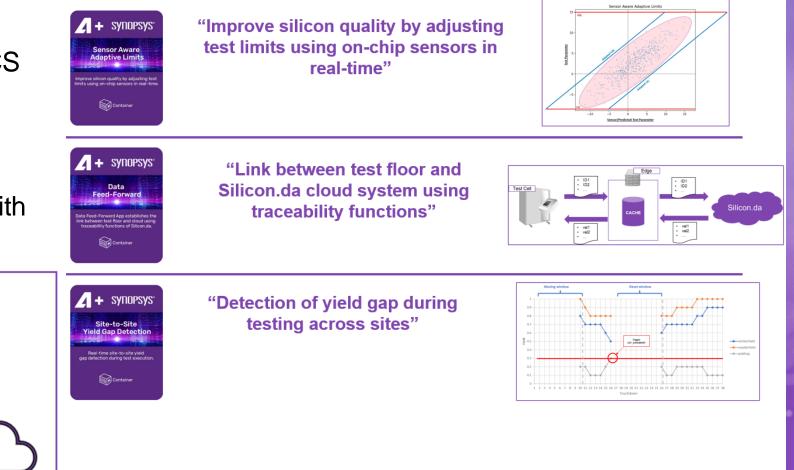
•

Using manufacturing and diagnosis results

 FFC flow allows to securely Fabless / Design share diagnosis results between Fabless/Design and Diagnosis Static Design Test Failure LEF / DEF Results Timing Hotspots Results Analysis Fab/Foundry Design data is protected Automated for each wafer **FFC** Secure Each partner sends only what **Snapshot** they want to share Each partner can continue the analysis with their local data, and share again if needed OPC Defect Wafer Failure Test Wafer Results Inspection Metrology LRC Analysis Test Currently used by all major foundries (with Yield Explorer) Fab / Foundry

SYNOPSYS[®]

snug

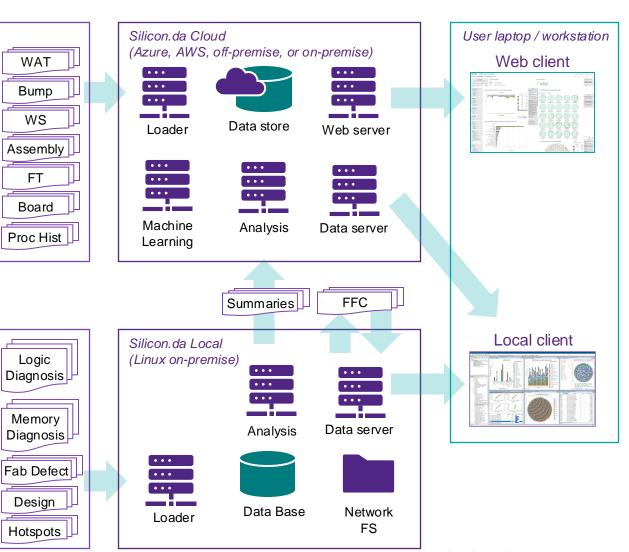

Tester Edge Applications

Using production test results on test floor

- Synopsys provides Silicon.da applications for the Advantest ACS Edge platforms
- The applications connect to the Silicon.da system (local or cloud)
- Further collaborations planned with other tester companies

Edge App Repository

Tester


SYNOPSYS[®]

snug

Silicon.da Summary

Engineering and production data analytics

- A complete solution for Yield ramp
- Analytics for design-centric diagnosis, test program results, packaging and fab data
- Web and local client applications, with machine learning and built-in applications
- Scalable from a few wafers to millions
- Secure data exchange with foundries

THANK YOU

Our Technology, Your Innovation[™]

٠