Taming formal with mtelllgent
automation? |

» e, =
oo

Tobias Ludwig, CEO
LUBIS EDA

> LUBISEDA

&> LUBISEDA

' HTML und
JavaScript

1. Ausﬁhrllcbe Schntt-fur—Schmt-Aatettun'en
2. Referenz: Wichtiges von A-Z

QN

SNUG EUROPE 2024 2

Bug detection machine 6

Learn best practices on
implementing a formal
friendly RISC-V AIP

Learn how to use Large

Language Models to Learn how to

automate establish a modern
CI/CD flow
Your RTL Resu‘lts
design Cloud Verification App
N\
—

Upload configuration

design to

cloud

fix & rerun a

@» LUBISEDA _ Automatic SNUG EUROPE 2024 3

BN You

Bug detection machine @

1) How to deal with common blocks
2) Free your schedule if you're an expert
3) Why the cloud makes formal feasible

& LUBISEDA . SNUGEUROPE 2024 4

The jack of all trades! e

simple idea in Large Language complex solution out

—— Model

LLM
(LLM) a This creates a lot of

noise

@» LUBISEDA SNUG EUROPE 2024 5

Smart prompting @

Design Under Test

(DuT)
LLM _, Verification App
Instance
Verification Apps
Library
Dear LLVM:

Figure out what the design does

Select the verification apps from the library
Connect everything together

Create a loadscript

@» LUBISEDA SNUG EUROPE 2024 6

Ambiguous DUT

module design_x (
input logic clk,
input logic [1:0] a,
output logic b

H

logic [1:0] x = 2'b@@;

always_ff @(posedge clk) begin
if (a != 2'b@0) begin
X <= x + 1'b1;
if (x == 2'b1@)

Example

What does it do?

X <= 2'b00;
end
end Large Language
assign b = (a & (x == 2'b00)) | ((a >> 1) & (x == 2'b01)); MOdel
endmodule

Verification Apps
Library

&> LUBISEDA

(LLM)

Smart Prompt

Verification Wrapper

module wrapper
#(

parameter num_reqs = 2
M

input clk,

input a,

output b

fv_lubis_rr_arbiter_vapp
#(
.num_reqs (num_reqs)
} fv_lubis_rr_arbiter_vapp_inst
(
.clk(clk),
.reqs(a),
.grant(b)
)

design_x design_x_inst
(

.clklclk],

.alal,

.b(b)
)

endmodule

SNUG EUROPE 2024 7

What's the buzz about CI/CD o

And how does that fit into hardware world?

Software CI/CD Hardware CI/CD

Continuous
Verification

We need two items: We need two items:
= Unit tests = Formal Properties
= Pipelines = Pipelines

@» LUBISEDA SNUG EUROPE 2024 8

Unit Tests vs Formal Properties

Software Unit Test

// Test case for Car::accelerate method

TEST_F(CarTest, AccelerateIncreasesSpeed) {
// Arrange: Set initial speed
car->setSpeed(50);

// Act: Accelerate the car
car—=accelerate(20);

// Assert: Check if the speed has increased by 20
EXPECT_EQ(car->getSpeed(), 70);

= Checks specific situation
= Abugin accelerating by 40 cannot be
caught

&> LUBISEDA

Hardware Formal Property

property p_acceleration_behavior;

accelerate == 1'bl
| ==

speed_next == (speed + acceleration_amount)
endproperty

= Checks a behavior
= Any bug in acceleration can be caught

SNUG EUROPE 2024 9

Formal is different than Unit Testing!

How does a good and a bad formal property look like?

JAL: Jump and Link instruction

property p_jal_instruction;
jal_instruction_executed
| —>

dut_register_file == expected_register_file
dut_pc == expected_pc
dut_csr == expected_csr

endproperty

ﬁ Very high complexity

@» LUBISEDA SNUG EUROPE 2024 10

Formal is different than Unit Testing! @

How does a good and a bad formal property look like?

JAL: Jump and Link instruction

property p_jal_instruction_regfile; property p_jal_instruction_csr;
jal_instruction_executed jal_instruction_executed
| —> | —>
dut_register_file == expected_register_file dut_csr == expected_csr
endproperty endproperty

property p_jal_instruction_pc;
jal_instruction_executed
| —>
dut_pc == expected_pc
endproperty

@» LUBISEDA SNUG EUROPE 2024 11

Piecing it all together @

Formal RISC-V ISA

Symbolic
Sequence

.., add, load, branch, store, ...

check

DUT

@» LUBISEDA SNUG EUROPE 2024 12

Instruction 1 Instruction 1

_> _> ey
Instruction 2 Instruction 2

_> _> pe——

— — —> —

Instruction 3 Instruction 3

_’ —> —
Instruction N Instruction N

_> —> —

@» LUBISEDA SNUG EUROPE 2024 13

Results/Benchmarks

How much time does it take to setup and find the first bug? o

Setup Time <1 hour on most cores

<5 min after setup

Average time per
instruction

Any 3 instructions 1hr to 12hr

@» LUBISEDA SNUG EUROPE 2024 14

Make sure you get your AIP quick! @

¢» SHA 512 Model & LuBls — [NAIPTE

executable model in-house tool

RTL DUT > LLM —

* RTL BUG?

@» LUBISEDA SNUG EUROPE 2024 15

The generated assertion

//SHA ROUNDS: Compute a new digest SHA Rounds_to SHA Rounds 1 a: assert property (disable iff(!rst) SHA Rounds_to SHA Rounds 1 p);

P . . property SHA Rounds to SHA Rounds 1 p;
for {1—!3, i=NUM ROUNDS; ++i) { SHA Rounds &&
insert state("SHA Rounds"); | (i >= 'sd16) &&

(('sdl + i) < 'sdse)

k = KI[1l; |_:#1 (SHA Input notify 0) and
if (i< 16}'{ ##1 {out_notiﬁ == @) and
w=W[i]; ##1 -
} felse { SHA Rounds &&
tmp_w = deltal(W[14]) + W[9] + delta®(W[1]) + w[0]; HO == spast(H 0, 1) &
for (j=0; j<15; ++j) { T_l - $past(H 1, 1) &&
Wil = WE(j+1)1; H 7 == $past(H 7, 1) &&
}: W 0 == 3past(w 1, 1) &&
w[lS] = tmp W W_l@ == $past{'|n|_11, 1) &&
B - W11 == $past(W_12, 1) &&
W = tmp_Ww; W 12 == $past(w 13, 1) &&
i W 13 == $past(W 14, 1) &&
W 14 == $past(W 15, 1) &&
t1 = Tl(e, f, g, h, k, w); W 15 == 64'((((deltal($past(w 14, 1)) + $past(wW 9, 1)) + deltad(spast(W 1, 1))) + $past(w 0, 1))) &&
W 1 == gpast(W 2, 1) &&

t2 = T2(a, b, c); W2 == $past(W 3, 1) &

qg=T; W 8 == $past(w 9, 1) &&
f=e: W 9 == $past(W_10, 1) &&
e = (d+ t1): a == 64" ((T1l(spast(e, 1), $past(f, 1), spast(g, 1), $past(h, 1), (($past(i, 1) == 'sdl6) ? 64'd1647287
’ b == $pasti(a, 1) &&
d=c; ¢ == $past(b, 1) &&
c = b; d == ¢$past(c, 1) &&
b = a; e == 64'(($pastid, 1) + Tl($pastie, 1), $past(f, 1), $pastig, 1}, spast(h, 1), (($pastii, 1) == 'sdld)
_ . f == ¢$pastie, 1) &&
a = (11 + 12); g == $past(f, 1) &&
s h == $past(g, 1) &&
//Done: Provide the new digest to the output interfae i == ('sdl + $past(i, 1)};
insert state("DONE"); endproperty

@» LUBISEDA SNUG EUROPE 2024 16

ABOUT US

We are helping our customers find simulation-resistant and corner-case bugs in o
high-risk silicon design or IP blocks

LUBIS on cloud enables you to:

Reach your silicon design verification goals faster Team 20+

Kaiserslautern,
Germany

Stay within your budget and tape-out schedule We love formal

1
Uncover hard to find functional bugs in your design @

@» LUBISEDA SNUG EUROPE 2024 17

Demo

riscifier.lubis-eda.com @

Login

1-click signup with:

@» LUBISEDA SNUG EUROPE 2024 18

+| User

(+) Direct Upload

& GitLab

C) GitHub

Elaborate and Compile

&> LUBISEDA

Setup

<5 min

Creates a new project

Integrate right into your infrastructure

Analyze Sources Hit when done

Click after each step

SNUG EUROPE 2024 19

Configure

Upload Design Configure Design Choose AIP Configure AIP

Top ~
TOP RiscVTop

Parameters ~
Defines v

Elaborate and Compile

@» LUBISEDA SNUG EUROPE 2024 20

AlIP selection

Upload Design Configure Design Choose AIP Configure AIP

Search

Recommended AIPs ~

RISC-V

An open standard instruction set architecture (ISA) that is based on established reduced instruction set computing (RISC) principles, enabling flexible and
efficient processor design.
Cache

Hardware component that stores data so future requests for that data can be served faster. Caches are used to reduce access time to data and increase
processing speed by storing copies of frequently accessed data in faster storage layers.

All AlPs ~

RISC-V
An open standard instruction set architecture (ISA) that is based on established reduced instruction set computing (RISC) principles, enabling flexible and
efficient processor design.
| ‘ AHB
A system bus for high-speed communication that allows the connection of multiple peripherals and supports efficient data transfer.
| ‘ AXI
- Part of the AMBA family of protocols, AXlis designed for high-bandwidth and low-latency on-chip communication.
Cache
Hardware compaonent that stores data so future requests for that data can be served faster. Caches are used to reduce access time to data and increase
processing speed by storing copies of frequently accessed data in faster storage layers.
DMA
| ‘ A feature that allows certain hardware subsystems to access main system memory independently, often used to speed up data transfers without burdening
the processor.

@» LUBISEDA SNUG EUROPE 2024 2]

AlIP selection

Upload Design Configure Design Choose AIP Configure AIP

Search

Recommended AIPs ~

RISC-V

An open standard instruction set architecture (ISA) that is based on established reduced instruction set computing (RISC) principles, enabling flexible and
efficient processor design.
Cache

Hardware component that stores data so future requests for that data can be served faster. Caches are used to reduce access time to data and increase
processing speed by storing copies of frequently accessed data in faster storage layers.

All AlPs ~

RISC-V
An open standard instruction set architecture (ISA) that is based on established reduced instruction set computing (RISC) principles, enabling flexible and
efficient processor design.
| ‘ AHB
A system bus for high-speed communication that allows the connection of multiple peripherals and supports efficient data transfer.
| ‘ AXI
- Part of the AMBA family of protocols, AXlis designed for high-bandwidth and low-latency on-chip communication.
Cache
Hardware compaonent that stores data so future requests for that data can be served faster. Caches are used to reduce access time to data and increase
processing speed by storing copies of frequently accessed data in faster storage layers.
DMA
| ‘ A feature that allows certain hardware subsystems to access main system memory independently, often used to speed up data transfers without burdening
the processor.

@» LUBISEDA SNUG EUROPE 2024 22

AIP config

Upload Design Configure Design Choose AIP Configure AIP
RISC-V A~
CORE_ISA RV32I
SUPPORTS_M_EXTENSION G

SUPPORTS_C_EXTENSION

NUM_REGISTERS 32 :
NUM_PIPELINE_STAGES 5 :
MEMORY_MODEL weak

CACHE_LINE_SIZE 64 <
L1_CACHE_SIZE 16384 <

@» LUBISEDA SNUG EUROPE 2024 23

Post setup

Project overview

simple-riscv ® Passed
https:f/agitlab.com/flubis1flubis-on-cloud/demo-riscv

|
Last analysis: 26/04/2024, 16:26:25
Checks: 705 Passed: 100.00% Failed: 0.00% Skipped: 0.00% Coverage: 100%

Debugging

regfile @ G @ 10 min 39 sec 05 min 04 sec 6260 MB 6169.63 MB - _ i)

Counterexample for state: mcause -

QO @ W 4>

@» LUBISEDA SNUG EUROPE 2024 24

Bug detection machine

1) Everyone: Verify your common blocks!
2) You're an expert? Don't do repeating tasks.

3) Use a cloud to make formal scale

@» LUBISEDA SNUG EUROPE 2024 25

Questions?

Follow us to get notified on news about: services, formal training, software or the
crypto hashing algorithms

LinkedIn

@» LUBISEDA SNUG EUROPE 2024 16

	Titel
	Slide 1: Taming formal with intelligent automation?

	Standardabschnitt
	Slide 2
	Slide 3: Bug detection machine
	Slide 4: Bug detection machine
	Slide 5: The jack of all trades!
	Slide 6: Smart prompting
	Slide 7: Example
	Slide 8: What's the buzz about CI/CD
	Slide 9: Unit Tests vs Formal Properties
	Slide 10: Formal is different than Unit Testing!
	Slide 11: Formal is different than Unit Testing!
	Slide 12: Piecing it all together
	Slide 13
	Slide 14: Results/Benchmarks
	Slide 15: Make sure you get your AIP quick!
	Slide 16: The generated assertion
	Slide 17: ABOUT US
	Slide 18: Demo
	Slide 19: Setup
	Slide 20: Configure
	Slide 21: AIP selection
	Slide 22: AIP selection
	Slide 23: AIP config
	Slide 24: Post setup
	Slide 25: Bug detection machine
	Slide 26: Questions?

