B

Exploring Formality with UPF for
Low-Power verification

» e, =
oo

Zhang Chaochao (IC design staff engineer)
Bridgetek Pte Ltd

TECHNOLDGY

{4 Bridgetek

Background

SNUG SINGAPORE 2024

Problem to be solved 4 °

* A low power design utilizing UPF

« Formality without UPF
— Checks logic equivalence only
— Troublesome manual setup

« Formality with UPF
— Checks both logic & power equivalence
— Setup Is automatic in Formality

***Golden UPF flow is not discussed here

SNUG SINGAPORE 2024 3

Designs with one power domain/supply 4

« All digital cells are on/off together

VDD
« RTL entry is enough to describe the l
hardware TOP (VDD)
« Formality for logic equivalence is e
enough 4 VDD
BLOCK (VDD)

-

SNUG SINGAPORE 2024 4

Low power designs 4 o

« Multi-power domains, multi-voltage supplies

— Multiple supplies may turn on/off independently and with different voltage
levels

— UPF is required as supplement to RTL about power specification
TOP Block1 TOP Block1 TOP %}%
Vdd=1.8 | Vdd1=1.8 Vdd=1.8 | Vdd1=1.8 Vdd=1.8 /P’

= | A e

« Formality with UPF flow is required

— Check through different power domains

SNUG SINGAPORE 2024 5

TECHNOLDGY

{4 Bridgetek

What i1s UPF?

SNUG SINGAPORE 2024

UPF (Unified Power Format) 4 °

« UPF specifies the power intent of the design
— Power supplies and power domains
— Power State Table for legal combination of port state
— Control of power switch cells for gated power
— Control of isolation cells for isolation strategy
— Many others ...

SNUG SINGAPORE 2024 7

UPF example 4 °

« 2 power domains

. VDD is power supply
wl PD_TOP (VDD) « VDDG is the gated power supply
Powgg\?@@ \/\ « PSW_EN controls to turn on/off VDDG
VEDE"/ . * [ISO_EN controls if to force 0 the
PMU signal from PD_BLOCK(VDDG) to
l PD_TOP(VDD)

PD_BLOCK (VDDG)

- PMU is power management unit

7 a \
Q (] =) Power state table
N 7

SNUG SINGAPORE 2024 8

RTL before synthesis

PMU

PSW_EN

PD_BLOCK

ISO_EN

PD_TOP

S

‘
o
"4

-
L)
*

SNUG SINGAPORE 2024

9

*,
»,
°’<

)
£)
h

Formality UPF flow

SNUG SINGAPORE 2024 10

Formality without UPF 4 @

« Without load_upf, RTL vs. netlist will NOT be equivalent

« For example, the insertion of ISO cell will change the behavior
« Additional settings like ISO_EN=1 could make it pass

* It is checking logic only

+ ISC_EN

PD_BLOCK (VDDG)

.f- ..-_.— - - o ...--\IH'..)
- Fi N A
{.-'—\-" f A
' \ "l 150 . <)
) L] can N
) '\-.H T
_—

R - —_

SNUG SINGAPORE 2024 11

Formality UPF flow 4 °

* load_upf will enable Formality UPF flow

« Formality will automatically setup with UPF
— Those cells like isolation cells will be handled based on UPF

« It will do equivalence check on UPF specifications

SNUG SINGAPORE 2024 12

Formality UPF flow : Compare

* Signoff
— RTL+UPF vs. Layout PG netlist

“sLayout netlist has physical power
pin connectivity.

— RTL+UPF vs. Layout nonPG
netlist+UPF”

“*Layout netlist power intent is
controlled by UPF".

*More items are checked like
power state table.

« Optional: compare with syn netlist

N’
+
’<
-
*
‘.

RTL+UPF

synthesis

\ 4

Syn netlist+UPF’

Place&Route

A 4

Layout netlist+UPF”

SignOff

SNUG SINGAPORE 2024

13

Formality UPF flow : UPF’/UPF” 4 Q

« UPF is an input from designer

« UPF’ is from synthesis output
— It additionally reflects changes occurred during synthesis, like isolation cells

« UPF” is from layout output

— It additionally reflects changes occurring during physical implementation, like
power switch cells

SNUG SINGAPORE 2024 14

Formality UPF flow (all supplies on=true) 4 °

« fm_shell> set verification _force upf supplies_on true
— True Is the default setting
— Verify where all UPF supplies are forced on
—This is used for initial debugging

TOP Block1
Vdd=1.8 | Vdd1=1.8

Block2
Vdd2=1.2

SNUG SINGAPORE 2024 15

Formality UPF flow (all supplies on=false) 4 o

« fm_shell > set verification_force upf supplies_on false
— Verify all possible power states as defined by UPF files
— This is a complete low power verification of the design, which is SignOff

setting
dezi.s vgijolcﬁs deii.s vgldo1c=kll.8 Vde(Zi-S ﬁ‘ﬁgﬁ) 4 v dis -;':'::
lock - . ey oc
Vi /%/yﬁ//}///f/f; -ﬁ};ﬂfiﬂ-‘:ﬁfj s
3 legal combinations as defined in UPF Undefined in UPF,

won’t be verified

SNUG SINGAPORE 2024 16

Formality UPF flow: failure example & Bri o

* Inconsistent ON/OFF of power supplies: reference with Block1=0ON,
Implementation with Block1=OFF

— The cut points in implementation/Block1="X", while in reference they are
defined.

— Failure is reported with verification_force upf supplies_on=false, but NOT
when it is true.

TP | Blockt TOP [~BiookL]
Vdd=1.8 | Vdd1=1.8 Vdd=1.8 _\fc_zldfl_;-()_l-‘-F_
T T
"'% Bl @fg}fﬁ f"'f’-___.-'"f Aloth j-':;
\/dd.z o A’qu “off”.

Reference Block1l=0ON Implementation Block1l=OFF

SNUG SINGAPORE 2024 17

TECHNOLDGY

{4 Bridgetek

Formality issues

SNUG SINGAPORE 2024

Issue #1: Layout PG netlist + UPF” (2 errors) &

 Run: RTL+UPF vs. Layout PG netlist+UPF” (layout)

« FM_UPF-232 error. Name space conflicts between Layout PG netlist & UPF”
— This is because PG netlist has the PG connection. And UPF” tries to re-connect.
— Upf_allow _rtl_ pgnet name_space_conflict=true will merge duplicated connections.

« FM_UPF-2006 error: UPF” supply port does not exist on those power switches.
— UPF" has connect_supply _net on all power switches. Formality merges power switches.
— Disable merge of power switches by hdlin_merge parallel _switches=false.
— However, disable merge of power switches makes Formality hard to pass.

SNUG SINGAPORE 2024 19

Issue #1: Layout PG netlist + UPF” (-target) 4 °

» A better alternative: the dedicated option for PG netlist + UPF” run
— Load_upf —target pg_netlist

* The 2 errors will not appear.

« Formality can pass easily.

SNUG SINGAPORE 2024 20

Issue #2: nonPG lib (RTL fix) < D

« Our case: 10 PAD is of nonPG lib
— The power pins of PADs is defined as some signal pin

* Issues
— DC will issue errors if UPF defines PG connection for IO PAD power pins

— It requires power pins of PADs to be pg_pin instead of signal_pin

 Solution (used in tape out)
— RTL connects those IO PAD VDD/VSS directly

SNUG SINGAPORE 2024 21

Issue #2: nonPG lib (converted PG lib)

nonPG.lib (old)
cell(IUMA) {

« Convert IO PAD lib: nonPG.lib -> PG.lib
— add_pg_pin_to_lib $nonPG.lib —output $PG.lib ...

« UPF connects power pins of 10 PADs

}

pin(VDD) {
capacitance : 0 ;

direction : inout :

function : "1" ;
three state : "0"

1

J

pin(VDDIO) {
capacitance : 0 ;

direction : inout ;

function : "1"
three state : "0O"
}
pin(VSS) {
capacitance : 0 ;

direction : inout ;

function : "@" ;
three_state : "0"

1

J

pin(VSSIO) {
capacitance : 0 ;

direction : inout :

function : "O@" :
three state : "@"

J|..

< Bridgetek

BRIDGING TECHNOLOGY

E# PG.1lib (new)
cell(IUMA) {

pg pin (VDD) {
pag type : primary power;
voltage name : VDD;
direction inout;

1

J

pg pin (VDDIO) {
pag type : primary power;
voltage name : VDDIO;
direction inout;

}

pg pin (VSS) {
pg type : primary ground;
voltage name : VSS;
direction inout;

1

J

pg pin (VSSIO) {
pg_type :
voltage name : VSSIO;
direction inout;

SNUG SINGAPORE 2024 22

orimary ground: B
g =

Summary X o

« This presentation has covered
— A brief introduction on UPF
— The necessity and benefits to include UPF in Formality
— Some settings & issues for Formality UPF

« Working through Formality UPF has improved the signoff flow
— Better understanding on the principle of Formality
— More aware of UPF impact on Formality
— Enhanced debugging skills in Formality UPF

SNUG SINGAPORE 2024 23

Conclusion 4 o

* Running Formality with UPF has enhanced our consistency check
—Including UPF, the formality setup becomes automatic
— It checks for all the legal combinations of supply ON/OFF as defined in UPF

» Formality with UPF Is now Integrated
In our standard design flow

SNUG SINGAPORE 2024 24

References 4

* https://spdocs.synopsys.com/dow _retrieve/qsc-v/dg/forecoolh/V-2023.12-
SP2/forecoolh/smvfug/upf script examples/upf script examples.html

—The link contains a few examples about UPF scripts.

» https://solvnetplus.synopsys.com/s/article/Adding-PG-Pin-Syntax-to-Logical-
Libraries-Application-Note-1576148257314

—This link is the application note for add_pg_pin_to _lib (convert nonPG to PG)

SNUG SINGAPORE 2024 25

https://spdocs.synopsys.com/dow_retrieve/qsc-v/dg/forecoolh/V-2023.12-SP2/forecoolh/smvfug/upf_script_examples/upf_script_examples.html
https://spdocs.synopsys.com/dow_retrieve/qsc-v/dg/forecoolh/V-2023.12-SP2/forecoolh/smvfug/upf_script_examples/upf_script_examples.html
https://solvnetplus.synopsys.com/s/article/Adding-PG-Pin-Syntax-to-Logical-Libraries-Application-Note-1576148257314
https://solvnetplus.synopsys.com/s/article/Adding-PG-Pin-Syntax-to-Logical-Libraries-Application-Note-1576148257314

Our
Technology,
Your
Innovation”

*,
»,
°’<

)
£)
h

Questions & Answers

SNUG SINGAPORE 2024 27

	Slide 1: Exploring Formality with UPF for Low-Power verification
	Slide 2: Background
	Slide 3: Problem to be solved
	Slide 4: Designs with one power domain/supply
	Slide 5: Low power designs
	Slide 6: What is UPF?
	Slide 7: UPF (Unified Power Format)
	Slide 8: UPF example
	Slide 9: RTL before synthesis
	Slide 10: Formality UPF flow
	Slide 11: Formality without UPF
	Slide 12: Formality UPF flow
	Slide 13: Formality UPF flow : Compare
	Slide 14: Formality UPF flow : UPF’/UPF’’
	Slide 15: Formality UPF flow (all supplies on=true)
	Slide 16: Formality UPF flow (all supplies on=false)
	Slide 17: Formality UPF flow: failure example
	Slide 18: Formality issues
	Slide 19
	Slide 20: Issue #1: Layout PG netlist + UPF’’ (-target)
	Slide 21: Issue #2: nonPG lib (RTL fix)
	Slide 22: Issue #2: nonPG lib (converted PG lib)
	Slide 23: Summary
	Slide 24: Conclusion
	Slide 25: References
	Slide 26
	Slide 27: Questions & Answers

