

Revamping SoC Design with RTL Architect and NoC Innovations

Frank Schirrmeister, VP Solutions & Business Development Arteris

Arteris – A Leading SoC System IP Company ARTERIS

s 📭 🛛 snu

Global customer base deploying Arteris interconnect IP and SoC Integration Software

- Silicon-proven IP used in ~3.5 billion+ SoCs shipped to date
- 200+ customers and 725+ SoC design starts to date
- 70-80% market share of automotive ADAS SoC market¹
- Strong presence in Artificial Intelligence/Machine Learning (AI/ML) system IP
- Broad interoperability any processor, any IP, any EDA, any foundry
- Innovative technology coupled with expert support results in a 90+% customer retention rate
- 71 patents and 77 patent applications (As of July 31, 2023)
- ISO 9001:2015 Quality Management System (QMS) Certified

Source: Arteris Q4'23 Earnings Call, ¹ Management estimates

Diversified Customer Base Subset of Publicly Disclosed Customers								
BOSCH	Міскоснір	tenstorrent	HAILO	👋 Texas Instruments				
NP°	TOSHIBA	NEUREALITY	SAMSUNG	Bai都百度				
mobileye-		socionext	sondrel	MAXLINEAR				
🔰 SiMaª.	MOBIS	() synaptics	Indie	RENESAS				
life.ougmented	GUC	RapidSilicon	bos	Telechips				
Dream CHIP	supergate		AXELERA	SPEEDATA				
\bigwedge	Achronix	FURIOSA 🗲	NutoChips	eyenix the great eyes				
SAPEON	VeriSilicon			🗘 Canaan				
Horizon Robotics		DEEPX	€ UHNDER					
Blu Wireless		INNOSILICON	() Hanwha Vision					
arbe	JLG	leidos	mobilint	Autotalks				
SEMORVE	CALTERAH	ANDES	rebellions_					
SiFive	AXIADO	GCT-	Fulthan	I nextchip				
	NationalChip	6	超書科技 Witheruse	AINSTEC				
SEQUANS	文炬 to Actions			SANALOGINFERENCE				
	StarFive 賽師科技	🔀 KYOCERƏ	后摩智能	BLACK SESAME TECHNOLOGIES				
ESWIN	O-O-O MORNINGCORE 股乙科技	MegaChips	■ 蓝洋智能 BlueOceanSmart	団 บทเรอด				
	pixelworks	octașic	御博半导体 Vastal Technologies	ASICLAND				
V-SILICON	☐ Ta微智能 TSING MICRO		🛃 auradine	Rockchip 瑞芯城电子				
📢 vayyar	Hisense		METAX	S I Icon Mobility				

Challenges Challenges with Traditional Flow

Semiconductor Complexity, SoC Integration and Networks-on-Chips(NoCs)

Growing SoC Integration Complexity

- # of IP Blocks in SoC has grown from 10s to 100s
- Disaggregation offers design version variety
- Standards like IP-XACT need to extend too

Growing Network-on-Chip Complexity

- Complexity of NoC protocols have grown 10x (# of pages)
- Variety of NoC protocols has grown
- NoCs evolve into Super-NoCs when split across chiplets

5

Interconnect Timing Design Challenges

- No standard methodology for timing closure for on-chip IP communications
- Process node advances add to RC delays for long, cross-chip distances traveled
- Interconnects that connect different IP blocks span long distances and hence suffer from RC delays

Interface-Layer Effects and Grain Scattering Impact Resistance Scaling

Source: Serkan Kincal, et al., "RC Performance Evaluation of Interconnect Architecture Options Beyond the 10-nm Logic Node," IEEE (2014)

Interconnect RC Trend

SoC Timing Issues

Can't Cross Advanced Node SoCs in One Clock Cycle

Physical distance impacts the number of pipeline stages

Clock Cycles

Transport delay = F (foundry, routing stack, type of driving cell, process voltage, temperature, ...)

The EDA Flow & NoC Design

Customer uses Arteris tools to design the Network on Chip (NoC)

Customer uses Synopsys tools to implement from RTL to GDSII

The EDA Flow & NoC Design

SNPS Platform Architect

The EDA Flow & NoC Design

The Customer PPA Struggle

NoC RTL is different for every refinement

A Customer Example

ARTERIS

snug

Automation Opportunities

Abstract estimations of interconnect delay after layout

Physical Exploration with RTL Architect Limitations of the Existing Flow

Slow to converge with many customer iterations

ARTERIS P

SNU

Slow to converge with many customer iterations

ARTERIS

Snuc

NoC IP Development Frameworks

NoC Interconnect IP Hardware Library

Protocol converters, switches, rate adaptors, etc

Tools Generation & Implementation Generation of Implementation RTL, Collaterals Links to EDA Implementation

Tools Architecture & Validation

Testbench creation SystemC models for performance analysis

Modular Tool Library

Category	Library units
Network Interface Units	ACE-Lite, AXI, AHB, APB, PIF, OCP, others
Transport	mux, demux, serializer, buffer
Domain adapter	clock, power, voltage
Timing	pipeline stage
QoS	bandwidth limiter/regulator
Security	user defined firewalls
Probes	error, statistics, trace
Interchip link	PSI
Resilience/Safety	timeout, safety controller, checkers

Tool Flow

ARTERIS 🖻 snug

Architecture Refinements

Physical and Performance Co-design

ARTERIS

snug

Signal Processing Design Example

- Use case: Signal processing as part of a larger Communications SoC.
- The design includes x4 DMAs that need to access 'scratchpad' SRAMs.
- A crossbar approach is a good starting point.

ARTERIS

Specifiy Network Interface Units, Connectivity ARTERIS 2 and Address Maps

tion	specDemo	🔺 🖬 🇞 🎕 🤇		$\sigma_{\rm c} \sim \neq \pi ~ \mu$	<i></i>									
ecture 🗸 🔷 Specifica	Global parameters Global parameters Clock Clock Interface Interface Ports Ports Power Controller	Column Row Modifications Defer Cl		olegy	protoc	× 18	Beence nut	, yne t	Junet June	attinood	3 Intone	stods dot	Saling Shite Shite	omotions
chit	Observation	Initiator							Í					
Ā	Mappings Connectivity	init_e	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Initiator		[x0]			Separated	Partial	
>	Memory	init_n	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Initiator		[x0]			Separated	Partial	
ture	User	init_s	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Initiator		[x0]			Separated	Partial	
truc	- Memory Map	init_w	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Initiator		[x0]			Separated	Partial	
S 3	Dependency	□ Target												
-		mem_0	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_1	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_2	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_3	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_4	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_5	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_6	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_7	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_8	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		⊞ mem_9	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_10	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_11	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_12	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_13	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_14	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	
		mem_15	sram_tile_noc_data_	clk_regime/Cm/root	REFERENCE	pcIAXI	Target		[x0]			Separated	Partial	

snug

Consider Floorplan Early

ARTERIS **P**

snug

Physical Socket Placement

- Initial constraints
 - Blockages on Floorplan View
 - Socket Positions

Element	Vis.	Sel.	Mov.	4
Labels	J			
Networks				
Connections	√	\checkmark		
👻 Units		v	\checkmark	
Link		\checkmark	\checkmark	
Switch		\checkmark	\checkmark	
Socket	✓	✓	√	
Internal Socket		\checkmark	\checkmark	
Initiator		\checkmark	\checkmark	
Target		\checkmark	\checkmark	
Firewall		\checkmark	\checkmark	
Probe		\checkmark	\checkmark	
Regions	\checkmark			
Congestion Heatmap	\checkmark			
Floorplan background	\checkmark			

Initial Crossbar Design

- Place the initial topology
 - Automated starting point
 - Note the possible central congestion issue

- · · · · · · · · · · · · · · · · · · ·	11	C 1	N.4	
Element	Vis.	Sel.	Mov.	
 Labels 	\checkmark			
 Networks 				
Connections	\checkmark	\checkmark		
▼ Units		\checkmark	\checkmark	
Link		\checkmark	\checkmark	
Switch	\checkmark	\checkmark	\checkmark	
Socket	✓	✓	√	
Internal Socket		\checkmark	\checkmark	
Initiator	\checkmark	\checkmark	\checkmark	
Target	\checkmark	\checkmark	\checkmark	
Firewall		\checkmark	\checkmark	
Probe		\checkmark	\checkmark	
Regions	\checkmark			
Congestion Heatmap	\checkmark			
Floorplan background	\checkmark			-

ARTERIS

snug

- Reset the initial topology
 - Users can create a more optimal version using the floor plan as a guide

- Add a switch
 - Selecting 5 connections to be connected to a new switch as a group

- Add another switch
 - Selecting another 5 connections to be connected to a new switch as a group

- Add another switch
 - Selecting another 5 connections to be connected to a new switch as a group

- Add another switch
 - Selecting another 5 connections to be connected to a new switch as a group

RTL Architect Exploration

Converge faster with less customer iterations

ARTERIS

Snuc

PPA Review with RTL Architect

Example

Results

RTL Architect

- Provides reliable timing
- Allows assessments early
- ... to fix high logic levels
- Designers review violations
 - Possible timing bug
 - Possible recoding
 - Allowing ULVT
 - Adding a pipe stage
 - Choosing faster memory

Floorplanned Blocks	Wed Mar 8 19:24:44 2023										
]	Flop2Flop Pat	hs		Macro2Flop	Flop2Macro	Errors & Warnings	Bucketizer Link			
Block	WNS (ns)	TNS (ns)	NVP	LOL	WNS	WNS					
aiu_top_a	<u>-0.0116</u>	-0.99	149	36				Bucketizer			
aiu_top_b	0.1731	0.00	0	19	0	0					
aiu_top_c	0.2067	0.00	0	21	0	0					
aiu_top_d	0.1083	0.00	0	19	0	0					
config_dii_a	0.0186	0.00	0	25	0	0					
csr_network_a	0.0328	0.00	0	10	0	0					
dce_a	0.0019	0.00	0	19	0.1519	0.0095					
dii_top_a	0.0103	0.00	0	25	0	0					
dmi_a	<u>-0.0168</u>	-1.87	431	19	-0.0585	-0.0509		Bucketizer			
dmi_b	<u>-0.0105</u>	-0.95	251	35	-0.0530	-0.0403		Bucketizer			
dmi_c	0.2524	0.00	0	16	1.3984	0.3572					
dmi_d	0.2524	0.00	0	16	1.3984	0.3572					
dn_a	0.0008	0.00	0	8	0	0					
dve_a	0.0259	0.00	0	3	0	0					
fsc_a	0.1764	0.00	0	4	0	0					
gen_wrapper	<u>-0.0115</u>	-0.36	178	5	-0.0701	-0.0915		<u>Bucketizer</u>			
grb_a	0.1342	0.00	0	6	0	0					
ioaiu_top_a	0.0026	0.00	0	4	0.0680	0.0090					
ioaiu_top_b	0.0003	0.00	0	20	0.0622	0.0005					
ioaiu_top_c	0.0024	0.00	0	37	0	0					
ioaiu_top_d	0.2839	0.00	0	19	0	0					
ndn1_a	0.0083	0.00	0	3	0	0					
ndn2_a	0.0367	0.00	0	6	0	0					
ndn3_a	0.0722	0.00	0	4	0	0					

Source: Internal Reference Design, 5 nm

PPA Review

- RTL Architect allows early review of placement issues
- Allows to address well before actual layout runs are done
 - Refining Floorplan
 - Exploring with placement bounds
 - Exploring rtl recoding

PPA Review

ARTERIS 🖻 snug

- Using RTL Architect in early congestion analysis with PG
 - Review Cell Density map & Hot spots
 - Review Utilization
 - Make floorplan changes if any

Both Dirs: Overflow = 133855 Max = 140 (1 GRCs) GRCs = 56061 (0.18%) H routing: Overflow = 50390 Max = 140 (1 GRCs) GRCs = 17718 (0.11%) V routing: Overflow = 83465 Max = 90 (1 GRCs) GRCs = 38343 (0.24%) 1

Source: Internal Reference Design, 5 nm

Source: Internal Reference Design, 5 nm

Early Power Estimation

• RTL Architect provides reliable power estimates

		Fusion Compiler	RTL Architect	
	20	Complier	Alchitect	
	18			
	16			
	14			
(M	12			 Comb Dynamic
(m)	10	-		 Register Dynamic Clock Dynamic
Iewo				Comb Leakage
Рс	8			Register Leakage
	б ———	-		 Clock Leakage
	4			
	2			
	0			
		FC	RTLA	

	Clock	Register	Comb	Clock	Register	Comb	
Run	Leakage	Leakage	Leakage	Dynamic	Dynamic	Dynamic	Total
FC	5.12E-04	5.00E-02	4.25E-02	1.25E+01	9.71E-01	3.61E+00	1.72E+01
RTLA	5.10E-04	5.27E-02	4.07E-02	1.23E+01	1.08E+00	3.72E+00	1.72E+01
Deviation	-0.4%	5.4%	-4.2%	-2.1%	10.9%	2.9%	-0.2%

Source: Internal Test Design, 16nm

NoC Implementation with RTL Architect

- RTL Architect QoR results highly correlated to Fusion Compiler
 - Area within 2%
 - Timing within 10%
 - Power within 5%

 RTL Architect runtime 3X+ faster than Fusion Compiler & 6X+ faster than DCNXT

25

Time to Congestion Report

Design Compiler NXT Fusion Compiler

RTL Architect

snug

Applying RTL Architect Earlier Estimations ARTERIS

Accelerate Turn-Around-Time

Further Automation Opportunities

FlexNoC 5

Announced February 2023

Conclusion

Fast RTL Exploration Solution

- Built on implementation and signoff engines for improved convergence
- Will benefit our customers and easy interaction
- Collaboration and Next Steps
 - Arteris IP to update physical constraints generation to drive floor plan refinement based on RTL Architect's timing and power estimation
 - Expand support of abutted vs. channel-based implementation

Synopsys and Arteris are collaborating to improve NoC implementation flows for tough floorplans

THANK YOU

YOUR INNOVATION YOUR COMMUNITY