

Alleviate Crosstalk and Congestion Challenges with Automated Full Crossbar and Memory Channel Implementation

Naman Gupta Harsha K. Ranjan Yash Gehlot Sr. Staff Engineer Staff Engineer SiFive SiFive

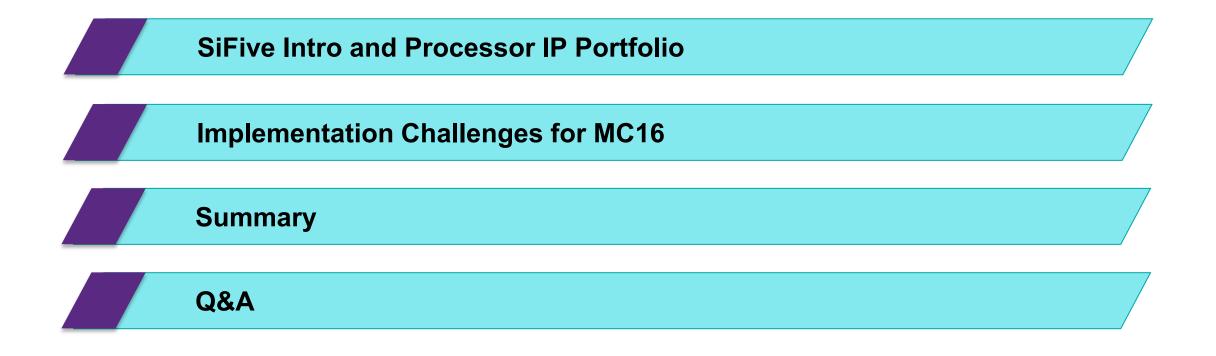
Vaibhav Gupta Warren Lew Sr. Staff FAE Director SiFive SiFive

Senior Engineer SiFive

Shingo IBA **R&D** Engineering, Sr. Staff Engineer Synopsys

Synopsys + SiFive – Broad and Deep Partnership

• Co-optimize Tools, Flows, Methodologies, and Cores


- Synopsys access to SiFive IP, including cores under development
- Executive sponsorship and synchronization

Agenda

SiFive Intro and Processor IP Portfolio

SiFive is the leader of the RISC-V era

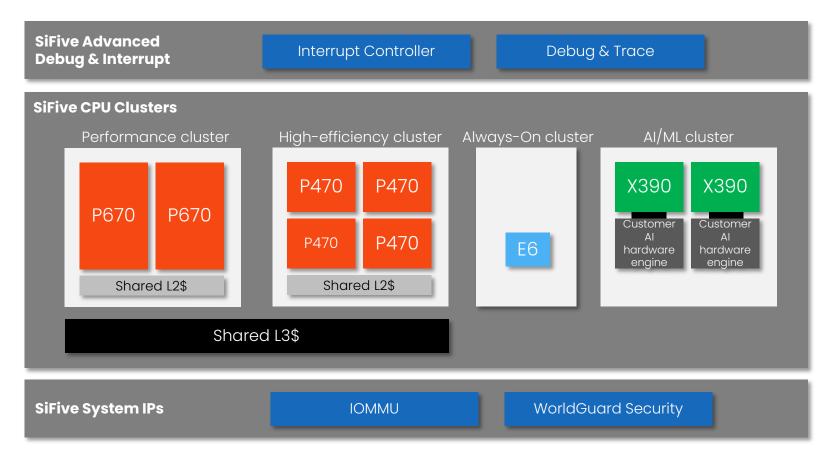
- SiFive is first-to-market with RISC-V features, standards, and technologies
- Broadest RISC-V portfolio enables highperformance computing for both AI (NPU) and general purpose CPUs
- Full system-level solutions with security, coherent interconnect, IOMMU and D2D
- SiFive solutions are silicon proven with more than 350 design wins in consumer, infra. and auto.
- Extensive software offering & partner ecosystem

design wins

Multiple Top 10 Semi manufacturers Multiple Top 5 Robotaxi manufacturers Multiple Top 5 US Datacenter & Storage suppliers Multiple Top Datacenter vendors in Asia Publicly Listed Chinese Car OEM Multiple A&D Prime Contractors

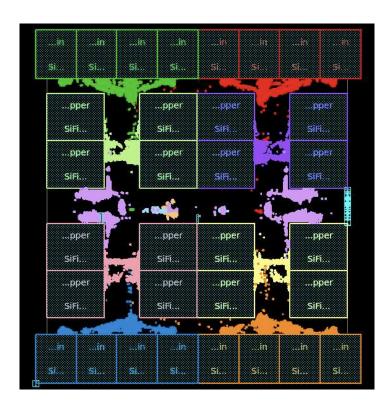
SiFive broad IP portfolio

Scalable from MCU to high-performance compute


	Intelligence				Performance		
X200-Series 512-bit VLEN Single Vector ALU VCIX	Up to	0-Series 1024-bit VLEN Ə / Dual Vector ALU	P200-Series 2-wide in-order core 256b vector length WorldGuard RVA20	P400-Series 3-wide OoO core 128b vector length Hypervisor extension Vector crypto IOMMU & AIA WorldGuard RVA22	P500-Series 3-wide OoO core Hypervisor extension WorldGuard RVA20	P600-Series 4-wide OoO core 128b vector length Hypervisor extension Vector crypto IOMMU & AIA WorldGuard RVA22	P800-Series 6-wide OoO core 128b vector length Hypervisor extension Vector crypto IOMMU & AIA WorldGuard Shared cluster cache RVA23
	Essential				Automotive		
	Essential U6-Series 64-bit, high performance	U7-Series 64-bit, superscalar performance	E6-A 32-bit, balanced performance and efficiency ASIL B, D	S7-A 64-bit, high performance embedded A	X280 512-bi Single		P870-A 6-wide OoO core 128b vector length Hypervisor extension
S2-Series 64-bit, Area optimized	U6-Series 64-bit, high	64-bit, superscalar	32-bit, balanced	64-bit, high	X280 512-bi Single	t VLEN	6-wide OoO core

SiFive Consumer platform

- Heterogeneous architecture
- Superior performance efficiency
- System-level solution
- Optimized for Android

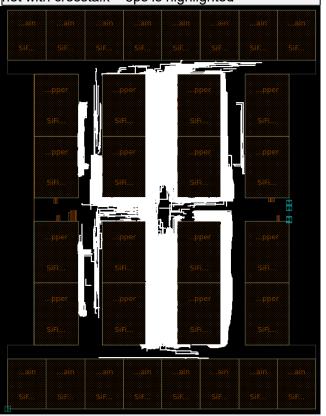


Implementation Challenges for MC16

Design Details

items	Value
RTL Configuration	MC16 / SiFive_CoreIPSubsystem
Frequency goal	1.xx GHz
Design Details	3~4M inst. 16xP670 cores and 32 MB L3 Cache
FC version	T-SP5 20230424

Challenges

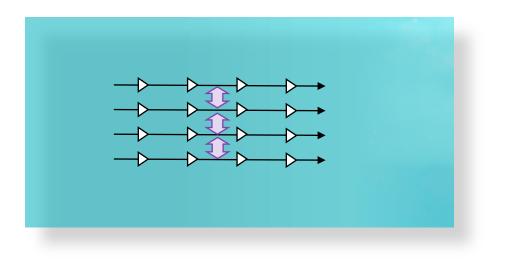

- Large crosstalk in post route.
- Register placement control for pipeline structure.
- Minimize user implementation effort and design iterations.

Initial Results: Large Crosstalk in Post-Route synopsys

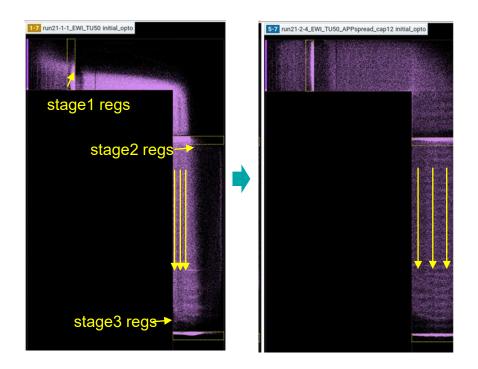
Initial Results:

- Large cross talk overserved in highest layers
- Preroute stage layer assignment is not causing heavy congestion. However, high route density cause large xtalk in post route even with track SI opt.
- SiFive used dummy PG for preventing excessive layer promotion in early phase

route_opt net with crosstalk > 5ps is highlighted

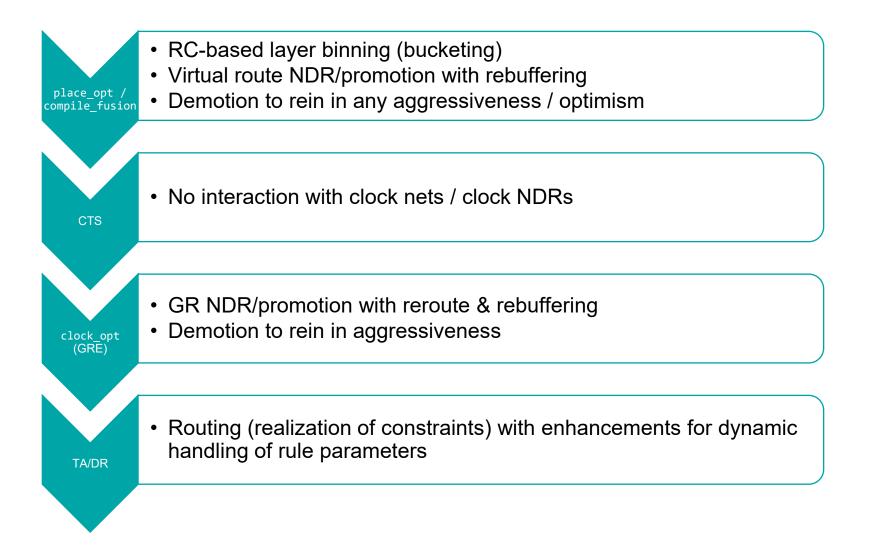

Track availability

	Available Resources	route_opt Results
Middle Layer	6K	1.6K
	6K	2.1K
Intermediate Layers	6K	2.1K
	6K	1.2K
High Layer	3.2K tracks	2.3K tracks


Repeater Spreading

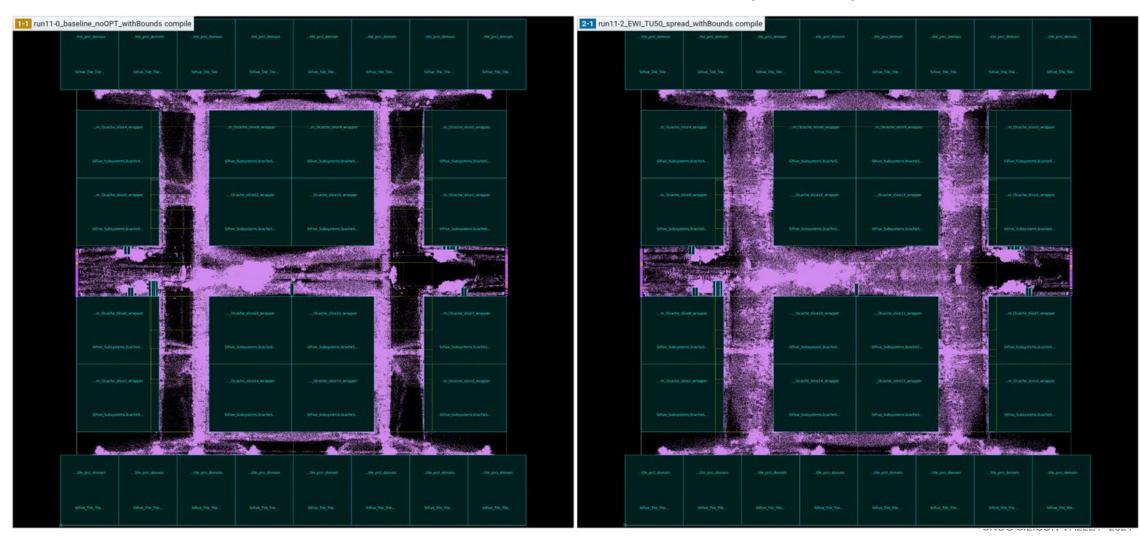
Repeater spreading give spacing between repeater paths in channel region.

Results with repeater spreading tuning


Enable Wire-opt Improvement (EWI)

- Wire delay dominates over cell delay in advanced nodes.
- Wire-opt utilizes opportunity to reduce wire delay on critical nets through effective usage of ultra-fast low-resistance upper layers and NDRs.
- During timing optimization, critical nets are selectively chosen for layer promotion & NDR application together with re-buffering.
 - Natively integrated into core optimization engines with accurate costing of timing & congestion impact
- Tool evaluates multiple combinations of layer promotion & different types of NDRs with or without rebuffering.
 - NDR can be spacing (3s) or width + spacing (2w2.5s) both possibilities are considered (latter needs extra app option)
- Global & detailed routing engines honor the guidance from pre-route while selectively ignoring un-realizable constraints to ensure best congestion & DRCs.

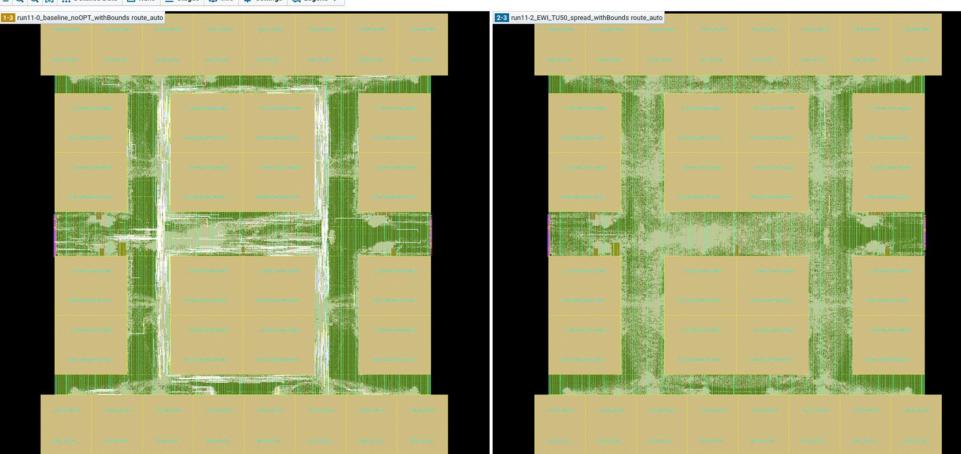
Enable Wire-opt Improvement (EWI)



MC16 Compile Result with Spread Repeaters siFive synopsys (cell placement)

Baseline

Test-run with spread repeaters Path is spreading



Cross Talk Net in route_auto (track SI opt)

Baseline

• Net with cross talk over 50ps is highlighted

Q 🔯 ∰ Detailed Data 📄 Runs 📄 Stages 🛄 Info 🎄 Settings 🕅 Legend >

Test-

run

Cross talk impact is reduced

MC16 Results with Spread Repeater

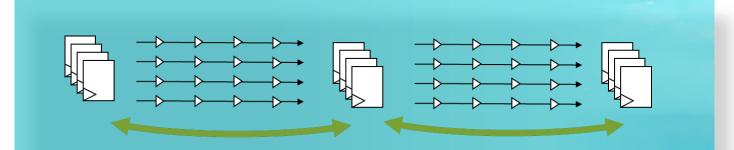
Spread repeater options improved results in post route stage

Baseline :

Tested setting :

track utilization 50%

EWI

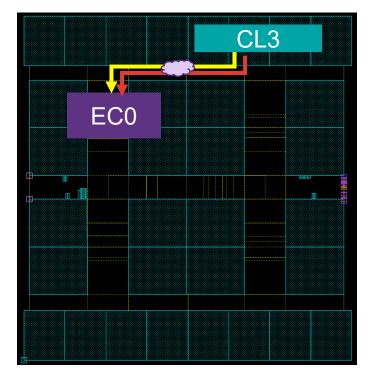

spread repeater settings

Stage	Setup	Setup			Hold		
	r2rWNS	r2rTNS	r2rNVE	HWNS	HTNS	HNVE	
 Run: run11-0_ 	baseline_n	oOPT_withBour	nds (BA	SELINE)			
initial_opto	-3.01	-177.5	5461	-0.060	-9.3	924	
compile	-2.82	-73.3	1652	-0.060	-6.4	685	
clock_opt_opt	-0.29	-479.6	22485	-0.010	-0.2	108	
route_auto	-0.31	-758.4	24015	-0.050	-9.3	2227	
route_opt	-0.20	-60.9	1878	-0.070	-0.6	56	
 Run: run11-1_ 	Run: run11-1_EWI_TU50_withBounds						
initial_opto	-3.16	-368.3	11783	-0.060	-14.1	1453	
compile	-2.59	-74.2	1657	-0.060	-10.1	993	
clock_opt_opt	-0.22	-175.2	14904	-0.010	-0.2	134	
route_auto	-0.23	-209.1	9612	-0.040	-9.6	2321	
route_opt	-0.15	-21.2	604	-0.050	-0.2	33	
Run: run11-2_EWI_TU50_spread_withBounds							
initial_opto	-2.88	-311.4	11458	-0.080	-14.7	1454	
compile	-3.31	-72.8	1445	-0.070	-9.8	1176	
clock_opt_opt	-0.17	-40.9	4899	-0.020	-0.4	152	
route_auto	-0.16	-32.1	2764	-0.020	-6.9	2268	
route_opt	-0.11	-7.1	246	-0.010	-0.1	24	

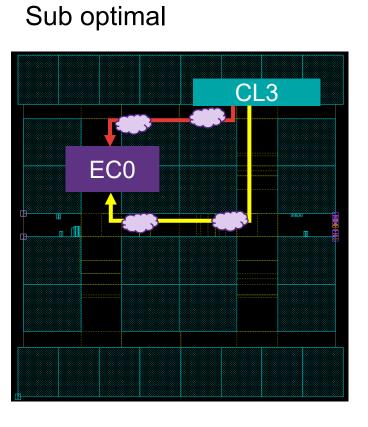
Register Placement Control for Pipeline Structure For Deterministic Placement

- There are many "pipeline" structures.
- In the original runs, 63 bounds were used for pipeline register location control and deterministic register placement.
- Reduction of bounds is desired

Register Balancing in MC16


19

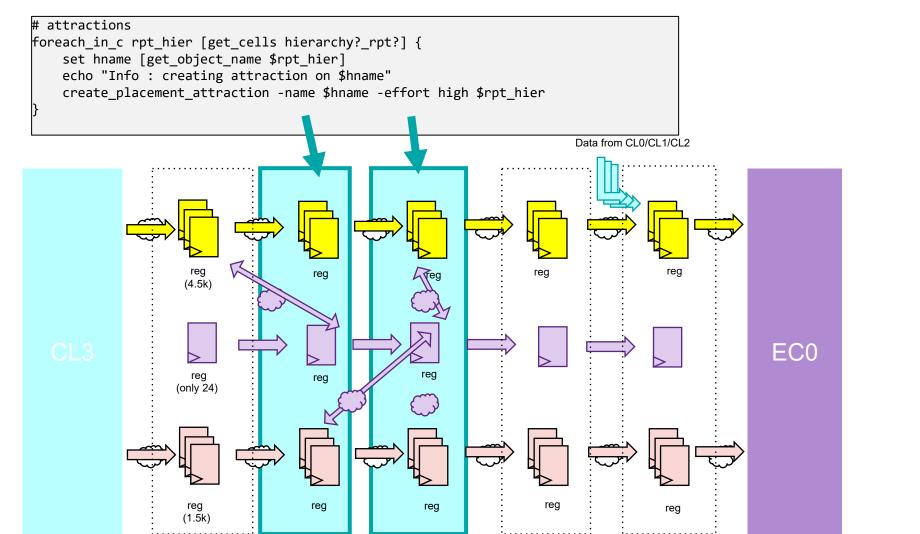
- Balance registers worked on 253K regs (27% of registers in design)
- Initial_place results looks reasonable
- Balance registers also could work on non-pure shift register path where amount of comb. logic is small

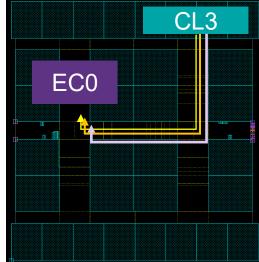


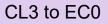
Hierarchy Splitting

- In absence of design bounds, many hierarchies were being split physically.
- This resulted in timing violations due to net detours.

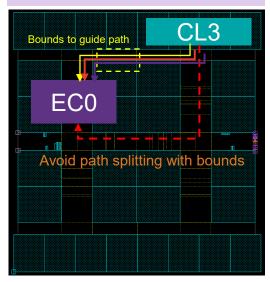
Expected patterns

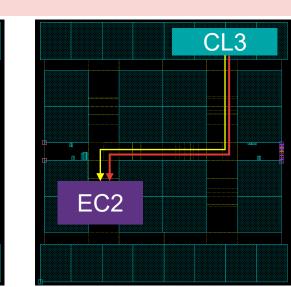


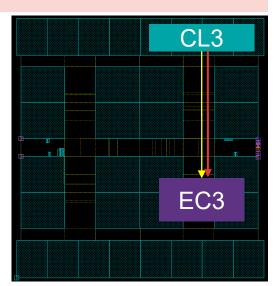

Placement Attraction


We requested for an update to the RTL to align logical structure and physical structure. Placement attraction can bundle the paths without coordinates.

Placement results


Minimizing Bounds and Hierarchy Splitting


CL3 to EC1/EC2/EC3 No bounds

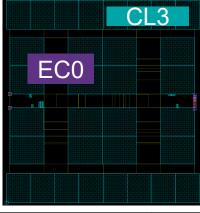

•

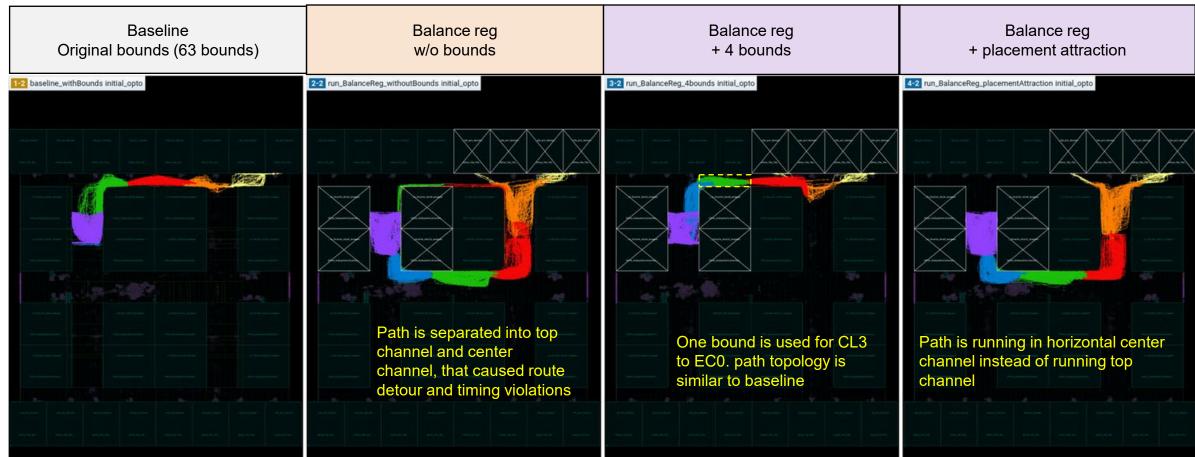
Guide with bounds

CL3 EC1 61 A

Reduced bounds script for whole MC16 block

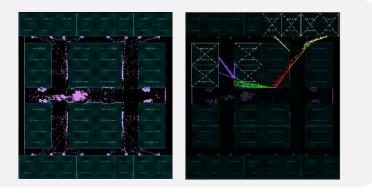
hierarchy1 {{2814. hierarchy2 {{1789. hierarchy3 {{2791. hierarchy4 {{1789. Goreach {hiername	8930 850.0800} 8455 5011.69} 8930 5011.69}	{2814.0975 {3790.2095	1129.9660}} \ 1129.9660}} \ 5262.528}} \ 5262.528}} \
hierarchy4 {{1789.	.8930 5011.69}	•	
Foreach {hiername		{2791.8455	5262.528}
•	hhav) thiannama		
set bounds_cel	· ·		"full_name=~\$hiername/*"]
if [sizeof \$bo	ounds_cells] {		
	0		name [sizeof \$bounds_cells]" nd -boundary \$bbox \$bounds_cells
}			


coordinate hard coding for only 4 bounds.

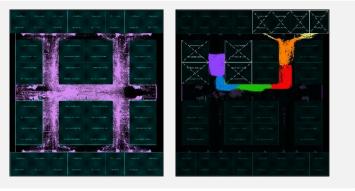

snuc

SiFive

Data Flow from CL3 to EC3



Placement Setting for MC16


initial_place

- Placement attraction to avoid path split
- Balance registers
- (optional) Bounds

initial opto

- Spread repeater to avoid crosstalk
- Control upper layer track utilization for cross talk reduction (EWI)

Summary

With the help of Synopsys, we were able to identify scalable solutions to the following problems:

- Crosstalk issues.
- Excessive usage of higher metal layers.
- Unbalanced pipeline stages.
- Lack of determinism across runs.
- Lack of a scalable recipe that works on any floorplan.

Solution Space that we tried and discussed during this presentation:

- Enable Wire-opt Improvement
- Register Balancing
- Repeater Spreading
- Placement Attractions

QIK flow for MC16 is available for download from SolvNet that contains the major recipe that designers can leverage.

SELECT THE **BEST SOLUTION**...

THEN SIT BACK AND LET THE TOOL DO THE WORK... ...ACCELERATING YOUR PATH TO **BEST PPA**

SiFive

THANK YOU

YOUR INNOVATION YOUR COMMUNITY