

Outline

- Introduction
- Challenges
- Proposed Model
- Results

Introduction

- Lower technology node:
 - Design complexity
 - Increased runtime
 - increased resource usage
- Break chips into Sub-Chips
 - Introducing pipelining and parallel PPA optimization
 - Reduce runtime of each job

Challenges

- block instantiation in different Sub-Chips
 - $Block_{master}$ in the figure
 - Introduces serial dependency
 - Turnaround time increases because of wait-time
 - Implementing same block multiple times
 - Unnecessary resource usage

Case 1: with one shared block

- merge step
 - Merge ECO feature in Tweaker tool
- Remove serial dependency
- Remove unnecessary implementation job

Case 1: with one shared block

- merge step
 - Merging ECOs of a block from different optimization sessions
 - Conflict analysis:
 - Logical connectivity conflicts
 - Physical conflicts

tweaker > load netlist collaterals tweaker > slackin –nlcmd $ECO_{master1}$ tweaker > slackin –nlcmd $ECO_{master2}$ tweaker > source –skip_conflict $ECO_{master1}$ tweaker > source –skip_conflict $ECO_{master2}$

Case 1: with one shared block

- merge step
 - Merge ECO feature in Tweaker tool
- Remove serial dependency
 - -Sub- $Chip_a$ and Sub- $Chip_b$ use same netlist for PPA
 - Run PPA optimization simultaneously
- Remove unnecessary implementation job
 - One ECO file for $Block_{master}$
 - Only one implementation

Case 2: multiple shared blocks

Multiple instantiation

Results

- Testcase:
 - Two sub-chips, each with 12 blocks
 - 2 blocks are instantiated in both sub-chips
- Runtime improvement
- Better Quality of Results in timing

Metric	Value
% Runtime Improvement	47.32%
% Resource Reduction	4.35%

Metric	Setup % Improvement	Hold % Improvement	Transition % Improvement
Worst Negative Slack	58.66%	45.27%	0.02%
Total Negative Slack	97.54%	98.06%	86.87%
Endpoints	89.50%	95.13%	39.12%

