
SNUG SILICON VALLEY 2024 1

Clock-in Early:
Integrated Structural Multisource
Clock Tree Synthesis to Push PPA
in High-speed GPU Designs

Presenter: Francisco Rivera Valverde
Co-authors: Huy Cao, Milind Mahajan, Atul Walimbe
Intel

SNUG SILICON VALLEY 2024 2

Agenda

Context on
Multisource CTS

What/Why/How? Early Clock-in
Features

Results &
Recommendations

SNUG SILICON VALLEY 2024 3

Common Acronyms

Abbreviation Definition
CTS Clock Tree Synthesis
MSCTS Multisource CTS Flow
SMSCTS Structural Multisource CTS
RMSCTS Regular Multisource CTS
ISMSCTS Integrated SMSCTS
IRMSCTS Integrated RMSCTS

SNUG SILICON VALLEY 2024 4

Multisource Clock Tree Synthesis
Focusing on Local Clock Tree Distribution

SNUG SILICON VALLEY 2024 5

Multisource Clock Tree Synthesis
• On-chip-variation (OCV) motivates

advanced clock techniques to achieve
lower skew, improved shared clock
paths and other PPA targets.

• MSCTS consists of two components:
– Global clock distribution: clock mesh,

spine, …
– Local clock distribution: subtree’s that

connect the global network to the sinks

• We focus on local clock distribution
techniques!

SNUG SILICON VALLEY 2024 6

Local Clock Tree Synthesis

• There are 2 main mechanisms in which local clock trees are created
in MSCTS:

Structural MSCTS (SMSCTS) Regular MSCTS (RMSCTS)

SNUG SILICON VALLEY 2024 7

Structural MSCTS

• Optimize for latency and skew, while
minimizing clock power

• Consists of:
– Balance: add cells to level subtrees
– Merge: merges equivalent clock cells
– Optimize: splitting, sizing, relocation of clock

cells
– Route
– Refine: sizing and cell relocation

• Typically, less OCV, better skew but
slightly more demanding flow/power

SNUG SILICON VALLEY 2024 8

Regular MSCTS
• Sink distributed among tap drivers

during tap assignment

• Regular CTS is used for building the
subtrees
– No restriction on adding/removing buffers

• Lesser power than SMSCTS, very
useful skew friendly

SNUG SILICON VALLEY 2024 9

A Better Way to Do Structural MSCTS
• RMSCTS “simplicity” gives the tool a lot of flexibility to:

– Enable compile_fusion clock-aware optimizations – better clock gate optimization, concurrent clock/data
(CCD) opt => Integrated Regular MSCTS

– Easier useful skew implementation as there is no restriction on adding/removing buffers on subtrees

• Traditionally, SMSCTS clock trees are frozen during build clock – CCD mainly
used for sizing/relocation of clock cells
– Push/pull can be done on a post-CTS optimized database also, but limited room for CCD as compared

to full flow enabling

SNUG SILICON VALLEY 2024 10

• Enable early SMSCTS clock
construction during compile_fusion
to take advantage of clock-aware
optimization features

Presentation Goal

SNUG SILICON VALLEY 2024 11

Compile_fusion clock_opt route_optRMSCTS setup

CCD

ECGL

In a Nutshell….
IR

M
SC

TS

WHY?WHAT?

Compile_fusion clock_opt route_opt

SM
SC

TS

SMSCTS setup CCD

IS
M

SC
TS

Compile_fusion clock_opt route_optSMSCTS setup

CCD

ECGL

HOW?

SNUG SILICON VALLEY 2024 12

Integrated SMSCTS
The What, Why and How this Feature Is Enabled

SNUG SILICON VALLEY 2024 13

Compile_fusion clock_opt route_optRMSCTS setup

CCD

ECGL

In a Nutshell….
IR

M
SC

TS

WHAT?

Compile_fusion clock_opt route_opt

SM
SC

TS

SMSCTS setup CCD

IS
M

SC
TS

Compile_fusion clock_opt route_optSMSCTS setup

CCD

ECGL

SNUG SILICON VALLEY 2024 14

What Is Integrated SMSCTS? (Traditional)

• Clock cell insertion (balancing, splitting, DRC fixing, …) happens until clock_opt

• After new cell insertion, clock network is routed

• Refine optimization are performed, with post clock data optimization as well
(clock_opt –from final_opto)

Traditional

compile_fusion

Ideal clock

clock_opt

New clock cells
Clock opt

Clock route
Clock refine

route_opt

SNUG SILICON VALLEY 2024 15

What Is Integrated SMSCTS?

• Moved clock cell creation (balancing, merging, splitting,…) to final_place**
• CTS performs incremental skew optimization, routing and post route opt
• Clocks are not propagated**, but cell presence enables clock-aware optimization

Traditional

Integrated

compile_fusion

Ideal clock

clock_opt

New clock cells
Clock opt

Clock route
Clock refine

route_opt

compile_fusion

Ideal clock
New clock cells

Clock opt

clock_opt

Incr. Clock opt
Clock route
Clock refine

route_opt

SNUG SILICON VALLEY 2024 16

Compile_fusion clock_opt route_optRMSCTS setup

CCD

ECGL

In a Nutshell….
IR

M
SC

TS

WHY?WHAT?

Compile_fusion clock_opt route_opt

SM
SC

TS

SMSCTS setup CCD

IS
M

SC
TS

Compile_fusion clock_opt route_optSMSCTS setup

CCD

ECGL

SNUG SILICON VALLEY 2024 17

Why We Do ISMSCTS?

• Goals:
1. (ISMSCTS) Leverage the latest

fusion_compiler enhancements that
enable compile fusion to create the
SMSCTS clock subtree structure
logically

2. (CCD) Enable useful skew
computation leveraging the already
inserted clock cells

3. (ECGL) Enable estimate clock gate
latency to have a better optimization
perspective on enable paths

• Motivation
– Cts network inserted upfront great for clock cell

prioritization (placement)
– Clock delay not propagated, expected in future

releases

– Full flow CCD has more opportunity to optimize

– Realistic clock gate picture enables ECGL

Goals Motivation

How?

SNUG SILICON VALLEY 2024 18

Compile_fusion clock_opt route_optRMSCTS setup

CCD

ECGL

In a Nutshell….
IR

M
SC

TS

WHY?WHAT?

Compile_fusion clock_opt route_opt

SM
SC

TS

SMSCTS setup CCD

IS
M

SC
TS

Compile_fusion clock_opt route_optSMSCTS setup

CCD

ECGL

HOW?

SNUG SILICON VALLEY 2024 19

Traditional Post Compile SMSCTS

• SMSCTS settings make sense only on
a post compile/place_opt context

• Clock network is constructed only after
compile_fusion/place_opt is done
(build_clock).

• Typically, CCD is enabled only on a
post-CTS fashion (from final_opt)

init_design (elab, analyze, constrain,…)

compile_fusion –to initial_opt

compile_fusion –from final_place

source cts_settings.tcl

clock_opt –from build_clock –to route_clock

route_opt

clock_opt –from final_opt

SNUG SILICON VALLEY 2024 20

Feature#1: Integrated SMSCTS (Precompile)
• Provide CTS settings before

compile_fusion final_place
– Exceptions, balance points, clock cells to use
– set_multisource_clock_subtree_options
– set_app_options -name

compile.flow.enable_multisource_clock_trees -
value true

• Make sure no user don’t touch on clock
network

• Compile_fusion will trigger Trial CTS
where clock cells are physically
inserted in the DB and placed
– No routing happens on subtree at this stage**

init_design (elab, analyze, constrain,…)

compile_fusion –to initial_opt

compile_fusion –from final_place

source cts_settings.tcl

SNUG SILICON VALLEY 2024 21

Feature#1: Integrated SMSCTS (Trial CTS)

compile_fusion –from final_place

• New Trial CTS stage will be executed during compile fusion
final_place
– Watch for CTS-* messages which traditionally would have been in clock_opt command

SNUG SILICON VALLEY 2024 22

Feature#1: ISMSCTS (Postcompile)

• Keep SMSCTS settings same as the
ones used in pre-compile

• Clock_opt will understand the already
created logical clock network
– Will only perform incremental optimizations
– Route and refine clock network
– This typically allows a better skew as compared

to non Integrated flow

• Route-aware optimization on clock
network happens on this stage

clock_opt –from build_clock –to route_clock

route_opt

clock_opt –from final_opt

SNUG SILICON VALLEY 2024 23

Feature#2: Full Flow CCD (Enable)
• CCD can be enabled via app options:

– set_app_options -name compile.flow.enable_ccd -value true
– set_app_options -name clock_opt.flow.enable_ccd -value true
– set_app_options -name route_opt.flow.enable_ccd -value true

compile_fusion

Ideal clock
New clock cells

Clock opt
Offsets computed

clock_opt

Offsets implement
Incr. Clock opt

CCD
Clock route
Clock refine

route_opt

CCD

SNUG SILICON VALLEY 2024 24

Feature#2: Full Flow CCD (Level Control)

• SMSCTS tree target level (set_multisource_clock_subtree_options –target_level A) can be
different that CCD target levels (set_clock_tree_options -max_levels B), where B > A.

• Because ISMSCTS preserve subtree level structure, special handshaking is required from the
tool perspective to physically implement offsets

compile_fusion

Ideal clock
New clock cells

Clock opt
Offsets computed

clock_opt

Offsets implement
Incr. Clock opt

CCD
Clock route
Clock refine

route_opt

CCD

A B

SNUG SILICON VALLEY 2024 25

Feature#2: Full Flow CCD (handshake)
• In ISMSCTS context, following options are required so compile

fusion is aware of the subtrees while computing offsets
– set_app_options -name cts.multisource.enable_subtree_synthesis_aware_ccd -value true
– set_app_options -name clock_opt.flow.enable_multisource_clock_trees -value true

• The specified offsets must be realistically implementable during
clock_opt build tree:
– set_app_options -name ccd.max_prepone -value <>
– set_app_options -name ccd.max_postpone -value <>

SNUG SILICON VALLEY 2024 26

Feature#2: Full Flow CCD (Hierarchical)

• Hierarchical convergence can be taxing with CCD enabled.

• FC supports different boundary CCD options:
– No ccd on boundary (ccd.optimize_boundary_timing)
– Skew targets for boundary paths (recommended value is global skew pre-ccd)

– set_app_options -name ccd.skew_opt_input_boundary_max_prepone -<>
– set_app_options -name ccd.skew_opt_input_boundary_max_postpone -value <>
– set_app_options –name ccd.skew_opt_output_boundary_max_prepone -value <>
– set_app_options –name ccd.skew_opt_output_boundary_max_postpone -value <>

SNUG SILICON VALLEY 2024 27

Feature#3: Native Clock Splitting

• With ISMSCTS, it is advisable to enabled native clock enable logic
splitting feature:
– set_app_options -name cts.multisource.enhanced_enable_logic_splitting –value true

– set_multisource_clock_subtree_options -split_enable_max_width <> -
split_enable_max_height <> -split_enable_max_latch_level <> -split_enable_max_fanout <>

• With realistic clock splitting, it is advisable to enable ECGL feature to
help enable path closure on clock gates
– set_app_options -name opt.common.estimate_clock_gate_latency -value true

SNUG SILICON VALLEY 2024 28

Results and Conclusions

SNUG SILICON VALLEY 2024 29

Context of the Blocks Used

• Used Synopsys Fusion Compiler tool version U-2022, highly tuned
flow recipe for best PPA

• Blocks details:
– ~1 million instances blocks
– highly congested blocks (both wire and placement)
– 70% > utilization
– Graphics designs with many datapaths, and muxing
– Non-macro dominated

SNUG SILICON VALLEY 2024 30

Experiment Setup

• Data is always presented after route_opt, with fill-insertion, and apples-to-
apples comparison

• Baseline for all experiments is a traditional SMSCTS flow, with CCD size only

• Target experiments use the best recommendations from before: ECGL, CCD
since final_place, ISMSCTS

• We also provide equivalent IRMSCTS results

SNUG SILICON VALLEY 2024 31

Compile_fusion clock_opt route_optRMSCTS setup

CCD

ECGL

In a Nutshell….
IR

M
SC

TS

Compile_fusion clock_opt route_opt

SM
SC

TS

SMSCTS setup CCD

IS
M

SC
TS

Compile_fusion clock_opt route_optSMSCTS setup

CCD

ECGL

BASELINE

ISMSCTS

IRMSCTS

SNUG SILICON VALLEY 2024 32

Highlights of the Feature: TNS

• ISMSCTS+features provide a significant
improvement as compared to baseline
– Some blocks are still better with RSMSCTS

• Min convergence in general is more
controlled in Structural flow impacting overall
optimization

• TNS reduction can be mapped to ease of
convergence:
– Less congested/buffer polluted designs at route_opt
– Lesser violations means lesser effort for PR/manual work

-60,0%

-50,0%

-40,0%

-30,0%

-20,0%

-10,0%

0,0%
block1 block2 block3 block4

Reduction vs Traditional SMSCTS

ISMSCTS TNS

IRMSCTS TNS

SNUG SILICON VALLEY 2024 33

Highlights of the Feature: WNS

• Early CCD has been a great enabler of
frequency push:
– For non-RTL bottle-necks, WNS can be reduced

by with technique

– Late CCD (both sizing or incremental post-CTS
push/pull) has restricted opportunities to push
freq-max

-40,0%

-35,0%

-30,0%

-25,0%

-20,0%

-15,0%

-10,0%

-5,0%

0,0%
block1 block2 block3 block4

Reduction vs Traditional SMSCTS

ISMSCTS WNS

IRMSCTS WNS

SNUG SILICON VALLEY 2024 34

Room for Improvement

• With CCD, min is typically degraded (up to 29% degradation on ISMSCTS and
40% on IRMSCTS)
– CCD hold effort high might be needed for high hold degradation

• With CCD, EGCL and ISMSCTS, runtime can increase up to 10%

• ISMSCTS had ISO power/area as compared to baseline
– IRMSCTS had slightly better total power (<5%) than ISMSCTS

• We observe maximum 2 extra levels added by CCD on ISMSCTS (5% more
clock buffers than baseline) and ISO clock gates

SNUG SILICON VALLEY 2024 35

Conclusions and Future Work

• ISMSCTS flow can be considered another tool for designers to
converge their block
– Some blocks converge better with regular MSCTS as compared to structural MSCTS with

CCD

• How to improve from here
– ISMSCTS happens in final_place – discussion in progress to analyze Trial CTS on

initial_opto

– Clock propagation on compile_fusion could potentially improve total setup cost

SNUG SILICON VALLEY 2024 36

THANK YOU
YOUR
INNOVATION
YOUR
COMMUNITY

SNUG SILICON VALLEY 2024 37

Backup

SNUG SILICON VALLEY 2024 38

Concurrent Clock and Data Opto
• This feature can improve design power along

with timing QoR improvements

• Compile_fusion can estimate offsets saving
area/power

• Clock build_clock push/pull clocks for better
timing

• Clock final_opto/route_opt perform
incremental CCD optimizations

Source: Concurrent Clock and Data, SNUG 2018

SNUG SILICON VALLEY 2024 39

ECGL
• At pre-CTS stages we don’t have correct clock gating latencies:

• Tool can estimate ICG downstream clock delay after specifying set_multisource_clock_subtree_options and
ensuring opt.common.estimate_clock_gate_latency is true (OBD)

SNUG SILICON VALLEY 2024 40

Feature#2: Full Flow CCD (Recommendation)

• Many CCD app options to control flow are available
– report_app_options *ccd*

• For a successful CCD implementation, consider:
– If setup critical design: set_app_options -name ccd.fmax_optimization_effort -value high

– CCD is path group oriented, make sure both ccd.skip_path_groups and
ccd.targeted_ccd_path_groups are properly set

– If CCD hold degradation is not acceptable, consider changing value of ccd.hold_control_effort

	Clock-in Early: �Integrated Structural Multisource Clock Tree Synthesis to Push PPA in High-speed GPU Designs
	Agenda
	Common Acronyms
	Multisource Clock Tree Synthesis
	Multisource Clock Tree Synthesis
	Local Clock Tree Synthesis
	Structural MSCTS
	Regular MSCTS
	A Better Way to Do Structural MSCTS
	Slide Number 10
	Slide Number 11
	Integrated SMSCTS
	Slide Number 13
	What Is Integrated SMSCTS? (Traditional)
	What Is Integrated SMSCTS?
	Slide Number 16
	Why We Do ISMSCTS?
	Slide Number 18
	Traditional Post Compile SMSCTS
	Feature#1: Integrated SMSCTS (Precompile)
	Feature#1: Integrated SMSCTS (Trial CTS)
	Feature#1: ISMSCTS (Postcompile)
	Feature#2: Full Flow CCD (Enable)
	Feature#2: Full Flow CCD (Level Control)
	Feature#2: Full Flow CCD (handshake)
	Feature#2: Full Flow CCD (Hierarchical)
	Feature#3: Native Clock Splitting
	Results and Conclusions
	Context of the Blocks Used
	Experiment Setup
	Slide Number 31
	Highlights of the Feature: TNS
	Highlights of the Feature: WNS
	Room for Improvement
	Conclusions and Future Work
	Slide Number 36
	Backup
	Concurrent Clock and Data Opto
	ECGL
	Feature#2: Full Flow CCD (Recommendation)

