

Laker CDPR Tutorial for Timing-driven Flow

1	Introduction	. 3
2	Environment Setup	. 4
2.′	1 Tool Installation Version	.4
2.2	2 Open Cell Library	.4
2.3	3 Custom Digital Tutorial	.4
2.4	4 Enhanced CustomDigital Toolbox	.6
3	Technology File Preparation	.7
3.′	1 Lab-1A: Routing rules	.8
3.2	2 Lab-1B: Foundry DRC rules	.9
4	Library Preparation	11
4.′	1 Standard Cell Design Kit	11
4.2	2 Lab-2A: Library Preparation by GDS	12
	4.2.1 Import Stream files	12
	4.2.2 Net/Port Extraction	13
	4.2.3 Define Global Power/Ground Net	14
	4.2.4 Antenna Pin Information	15
	4.2.5 Define Site information	16
	4.2.6 Update Macro Cell Property	17
4.3	3 Lab-2B: Library Preparation by LEF	18
	4.3.1 Import LEF Files	18
	4.3.2 Export Stream of Abstract Views	19
4.4	4 Lab-2C: Verilog and SPICE library files	20
	4.4.1 Import Verilog library Files	21
	4.4.2 Define Primitive Symbol	21
4.5	5 RC Table Preparation	22
	4.5.1 ITF Flow	22
	4.5.2 Third Party Correlation Flow	23
4.6	6 Dual View Library Preparation	24
5	Design Preparation	24
5.1	1 Lab-3A: Design Preparation by CDL	24
_	5.1.1 Import CDL files	24
5.2	2 Lab-3B: Design Preparation by Verilog	26
-	5.2.1 Import Verilog Files	26
5.3	3 Lab-3C: Design Preparation by Verilog to CDL	27
_	5.3.1 Verilog to CDL Conversion by LVS Utility	27
5.4	Lab-3D: Design Preparation by DEF	27
	5.4.1 Import DEF files	27
5.5	5 Lab-3E: Design Preparation by GDS	28
	5.5.1 Import Stream Files	28
~	5.5.2 Assign Net Names	29
6	Floorplan	29
6.	Lab-4A: Floorplan Initialization	29
	6.1.2 Set Deuting Levers	29
	6.1.2 Jet NUULII LAYEIS	21
	0.1.3 IIIIuaiize Alea Estillation	31 21
	615 Create Cell Boundary	22 22
	616 Initial Din Assignment	27 27
7	0.1.0 Initian III Assignment	36
' 7 ·	1 Jah-54: Add Physical Only Cells (Ontional)	36
		50

7.1.1 Introduction of Dhusical Only Calls	26
7.1.1 Introduction of Physical Only Cells	
7.1.2 Add Moll Top	
7.1.5 AUU Well Tap	
7.1.4 Wark Placement Status of Physical Cells	
7.1.5 PG Connection of Physical Cells	
8 Power Plan	
8.1 Lab-6A: Create Core Ring and Stripe	
8.1.1 Introduction of PG Route Type	
8.1.2 Create Core Rings	
8.1.3 Create Stripes	
9 In-Placement	
9.1 Lab-7A: Row Placement	
9.1.1 Preparation of Placement Constraint File	
9.1.2 Assign Placement Constraint File	
9.1.3 Create Placement Blockage	
9.1.4 Row-based Placement in SDL	
10 Post-Placement	
10.1 Lab-8A: Post-Placement	
10.1.1 Pin Optimization	
10.1.2 Check Placement	
10.1.3 Check Spare Cell Placement	
10.1.4 Connect PG Rails of Standard Cells	
10.1.5 Add Core Fillers	
11 In-Route	
11.1 Introduction	51
11.2 Lab-9A: Auto Route	51
11.2.1 Auto Route	51
11.2.2 Routing Quality of Result	53
11.2.3 Antenna Check and Fix	
11.3 Lab-9B: Congestion Analysis	55
11.3.1 Remove Signal Routing (optional)	55
11.3.2 Congestion Analysis and Map	
12 Timing Driven Flow	
12.1 Introduction	57
12.2 Lab-10A: Configuration Setup	
12.2.1 Prepare Data	
12.3 Lab-10B: Net Optimization	
12.3.1 Fan out Based Optimization	
12.3.2 Length Based Optimization	60
12.3.3 Level Based Optimization	61
12.4 Lab-10C: Timing Driven CDPR Window	61
12.4.1 Report Timing Path and Constraint	61
12.4.2 Recommend Implementation Flow	
12.5 Lab-10D Realize Timing Driven CDPR Implementation	
12.5.1 Synchronize Database	65
12.6 Lab-10E Post Layout Timing ECO	66
13 Other Topics	67
13.1 Lab-A1: LEE/DEE Elow in Laker DB	67
13.1.1 Introduction	67
13.1.2 TF/LEF Library Creation	יוס אא
13.1.3 DEF Library Creation	00 גא
13.2 $1 \text{ ab-} \Delta 2 \cdot 1 \text{ EE/DEF Elow in Laker } \Delta \Delta$	
13.21 Introduction	
13.2.1 Introduction	
13.2.2 DEF Library Creation	
13.2.3 DEF LIDIALY OTEAUUIT	

10.0		
13.3	Lab-B1: Matrix Constraint	12
13.3.1	Introduction of Matrix Constraint	72
13.3.2	2 Define Matrix Constraint	72
13.3.3	B Row Placement in SDL	73
13.4	Lab-C1: Limited Layer Routing	75
13.4.1	Introduction	75
13.4.2	2 Channel Floorplan	75
13.4.3	Automatic Pseudo blockage	75
13.4.4	SPINE Style Routing	76
13.4.5	Manual SPINE Pre-wiring	77
13.5	Lab-D1: Cell Level OD Sharing	78
13.5.1	Introduction	78
13.5.2	Cell Level OD Sharing	78
13.6	Lab-E1: Cell Level ESD Spacing	80
13.6.1		80
13.6.2	Cell Level ESD Spacing	81
13.7	Lab-F1: Laker OpenAccess Incremental Technology	83
13.7.1	Introduction	83
13.7.2	Create an Incremental Technology Library	83
13.7.3	Create a Design Library	84
14 Limita	tions and Known Problems	85
14 1	Laker OA Flow	85
14.2	Laker Import Verilog Flow	85
14.3	Laker Cell Level ESD Spacing and OD Sharing	85
14.0	Laver Manning for Notch Gan Fill	85
14.5	New SDI Model Man File in $\Omega \Delta$	86
1/ 6	Preferred Routing Direction	87
14.0		01

1 Introduction

The Laker Custom Digital solution is for cell based designs in an environment of custom layout automation system. The recommended flow described in this documentation will guide you through the typical flow starting from data preparation, floor planning, power planning, cell placement, and finishing digital routing.

Data Preparation is covered by the following topics:

- 2 Environment Setup
- 3 Technology File Preparation
- 4 Library Preparation
- 5 Design Preparation

Recommended Flow is covered by the following topics:

- 6 Floorplan
- 7 Pre-Placement
- 8 Power Plan
- 9 In-Placement
- 10 Post-Placement
- 11 In-Route

Recommended Timing Driven Flow is covered by the following topics:

12 Timing Driven Flow

2 Environment Setup

2.1 Tool Installation Version

Laker 2011.06p1 for PG router, digital router, and timing driven Automatic Place and Route (APR). LakerOA 2011.08p1 for PG router, digital router, and timing driven APR.

2.2 Open Cell Library

The Si2 Nangate Open Cell Library is a generic open-source, standard-cell library provided for the purposes of research, testing, and exploring EDA flows. Therefore, Si2 Nangate 1 PDKv1.3_2009_07 release of the Open Cell Library was selected for the common library preparation.

For more information, refer to the following website page: http://www.si2.org/openeda.si2.org/projects/nangatelib

Both Laker DB and Laker OA utilize the basic Open Cell Library in data preparation.

The following steps are optional if you only want to install the original package for reference.

2.3 Custom Digital Tutorial

On top of previous work of Open Cell Library database, the following derivatives are created for the Custom Digital tutorial.

source/technology

OpenCellLibrary.tf	Laker technology file with advanced routing rules
ref_oa.tf	Laker OpenAccess technology file for reference library creation
laker.dsp	Laker display file
OpenCellLibrary.itf	Laker OpenCellLibrary Interconnect Technology File
OpenCellLibrary_x2d.captbl	Laker OpenCellLibrary reference RC Table file
source/library	Laker revised GDS file with new cells.
OpenCellLibrary.gds	Laker revised SPICE file with new cells and PG ports.
OpenCellLibrary.sp	Laker revised LEF file with modified metal1 fat metal rules,
OpenCellLibrary_RC_ANT.lef	antenna rule, antenna data and RC values.
OpenCellLibrary.cp	Laker cell property file for updating Cell Property
OpenCellLibrary_ANT.cp	Laker cell property file of antenna data for updating Cell Property
OpenCellLibrary.idx	Laker generic cell content index file for Row Placement
TAPCELL_X1.gds	Laker generic TAP cell, necessary for tap-less standard cell flow
FILLCELL_X3.gds	Laker generic FILL3 cell, it is necessary for nofiller1 flow
PGMUX2_X1.gds	Laker generic pass-gate MUX2 design for PG ESD spacing flow

¹ The example information was obtained from the Si2 website (<u>http://www.si2.org/openeda.si2.org/projects/nangatelib</u>).

PGMUX2_X1.sp	Laker genetic pass-gate MUX2 design for PG ESD spacing flow
source/openaccess NCSU_FreePDK_45nr NangateOpenCellLibra	n OpenAccess library for custom via ry OpenAccess library for standard cell layout
source/liberty	Laker liberty timing libraries with modified foot print and scan
NangateOpenCellLibra NangateOpenCellLibra NangateOpenCellLibra	ry_slow_conditional_nldm.lib worst case timing library ry_typical_conditional_nldm.lib typical case timing library ry_fast_conditional_nldm.lib best case timing library
source/design Divide.sp Divide_pl.def Divide_pl.gds Divide.v	CDL netlist of Divide example DEF floorplan file GDS floorplan file gate level Verilog netlist of Divide example
CPU.sp CPU.v CPU_eco.v	CDL netlist of CPU example gate level Verilog netlist of CPU example gate level Verilog netlist of CPU ECO example
source/constraint pin_bus.const pin_opt.const placement.const matrix_rp.tcl	Laker pin constraint for Auto Pin Assignment in bus format Laker pin optimization constraint for Auto Pin Assignment Laker placement constraint Laker hierarchical matrix constraint Tcl file
CPU_init_pin.const CCU.sdc CCU_timing.tcl	Initial pin placement constraint Timing constraint file for CCU block Timing Configuration file for CCU block
source/map lef_layer.map lef_layer_out.map lef2oa.map gds_layer.map gds_font.map SDL_def.map SDL_def_abs.map SDL_def_oa.map SDL_ref_nangate.map	Laker layer map file for Import LEF Laker layer map file for Export LEF Laker OA lef2oa layer map file for Import LEF Laker layer map file for Import Stream Laker font size map file for Import Stream Laker model map file for SDL flow Laker model map file for SDL flow with abs view Laker OA model map file for SDL flow Laker OA model map file for reference library flow
source/script route.tcl	sample script for batch procedure of digital routing
The following steps ins 1. Unzip the Cust > tar zxvf	tall tutorial source files and a working directory. om Digital Tutorial source files in your tutorial directory. Custom_Digital_Tutorial_xxxxyyzz.tgz
2. Set up a new v	vorking directory environment.

- > copy work_clean work
- > cd work

2.4 Enhanced CustomDigital Toolbox

The original CustomDigital Toolbox version installed in the Laker released package provides essential features. An enhanced toolbox of power route and digital route is prepared for a quick start tutorial. It includes a customized menu and frequently used features.

- 1. Set search path for LakerAPR window because it needs several commands.
 - > set path = (<laker_install_path>/bin \$path)
 > which laker
 - > which april
- 2. Unzip the enhanced Digital Flow Toolbox in your working directory.
 > tar zxvf CustomDigital_Enhanced_Toolbox_xxxxyyzz.tgz

You can also create a soft link for central installation. > ln -s <your_install_path>/CustomDigital .

3. Set up a few environment variables.
> source CustomDigital/integ.cshrc

```
# Environment variable settings for integration
setenv DIGITALROUTER_INTEG_PATH .
setenv DIGITALROUTER_INTEG_VERSION_CHECK 1
```

```
unsetenv LAKER_TCL_DIGITAL_ROUTEALL
```

The DIGITALROUTER_INTEG_VERSION_CHECK environment variable is enabled to check the Enhanced CustomDigital ToolBox compatibility with the Laker tool version. This check can be disabled by removing this environment variable.

The LAKER_TCL_DIGITAL_ROUTEALL environment variable is used to invoke the basic CustomDigital menu of **PG Route**, **Route** and **Delete Route** packed in the released package. It is disabled by removing the environment variable.

The **PG Route**, **Route** and **Delete Route** forms from release package are reused in the enhanced Digital Flow.

4. Add the following lines in your *laker.rc* resource file to automatically enable this tool box in the Laker Design Window.

```
[SourceTcl]
Source1 = $env(DIGITALROUTER_INTEG_PATH)/CustomDigital/integ.tcl
```

5. Create an *april.rc* resource file is used for timing-driven window.

```
[SourceTcl]
Source1 = $env(DIGITALROUTER_INTEG_PATH)/CustomDigital/apr/flow.tcl
```


Source2 = \$env(DIGITALROUTER_INTEG_PATH)/CustomDigital/apr/integ.tcl

Contact your support AE for feature feedback and suggestions about this enhanced toolbox. Useful scripts will be integrated in later versions.

6. Invoke the Laker system and check for a successful message in the *Main* window.

3 Technology File Preparation

There are two main parts of routing technology. One is routing rules, including layer, pitch, offset, default width, default space, preferred track direction and cost. The other is foundry DRC rules for metal and cut layers in a higher abstract description.

How does a library developer define a routing rule before creation of a standard cell library?

- Preferred direction depends on a standard layout style. Both HVH and VHV style are popular in advanced process nodes.
- Minimum routing width might be larger than minimum width defined in a Design Rule Manual (DRM). For example, larger routing width is used to cover the whole via closure.
- Pitch value is decided by minimum wire-wire spacing or minimum wire-via spacing. For example:
 - Horizontal metal1 pitch is wire-wire spacing style.
 - Pitch value = 0.5 * routing width + routing spacing + 0.5 * routing width
 - Vertical metal2 pitch is wire-via spacing style.
 Pitch value = 0.5 * routing width + routing spacing + 0.5 * via enclosure width

- A larger value of via enclosure width can be used to guarantee easy routing because no via rotation is necessary.
- Vertical pitch offset value is usually half of vertical pitch. This offset value matches pin offset of a standard cell layout. Otherwise, a short problem occurs when two standard cells are abutted.
- A common standard cell is 7-track, 9-track or 12-track of horizontal track (wire-wire spacing). The smallest driving inverter is 2-track of vertical track (wire-spacing).

The figure illustrates OpenCellLibrary INV_X1 routing pitch and offset. It is a 10-track height cell.

You can also get reference information from OA technology database, a LEF file or a third party technology file if it is available.

3.1 Lab-1A: Routing rules

Name:	Specify a valid routing layer. Poly layer can be defined if poly routing.
Cost XY:	Specify horizontal cost and vertical cost for a routing layer.
Width:	Specify the minimum width for a routing layer.
Spacing:	Specify the minimum spacing for a routing layer.
Pitch XY:	Specify the pitch or track value.
Track Direction	Specify available track direction.
Offset XY:	Specify the offset value of a pitch.

How does a library developer define a routing rule?

 Cost XY values need to be matched with track direction. For example, ratio of {1 8} for metal1 layer means horizontal cost is smaller. It results in X-preferred direction. A ratio of {8 1} for metal2 layer results in Y-preferred direction.

The *tfNetRouteRule* section defines routing rules with the conditions of routing tracks, and also defines other routing constraints and spacing rules. For detailed information, please refer to the *Laker Command Reference* document.

L####	LayerType	Layer	Cost Value	minW	minS Dir	MaxL Pi	tchXY	OffsetXY	Avail :	Disp	
#	defPolyLayer { defMetalLayer {}	poly metal1 metal2 metal3 metal4 metal5 metal6 metal7 metal9 metal10	4 8 1	0.05 0.07 0.07 0.07 0.14 0.14 0.14 0.4 0.4 0.8 0.8	0.14 HV 0.065 H 0.07 V 0.07 H 0.14 V 0.14 H 0.14 V 0.4 H 0.4 V 0.8 H 0.8 V	25 } { 0. { } 0.	, 19 0, 14 , 19 0, 14 , 19 0, 14 , 28 0, 28 , 16 } , 16 }	$ \left\{ \begin{array}{c} 0. \ 0.95 \\ 0.95 \\ 0.9$	0.07 } 0.07 } 0.07 } 0.07 } 0.07 } 0.07 } 7 } NO 7 } NO 7 } NO 7 } NO 7 } NO	YES NO NO NO NO NO NO NO	YES } NO } NO } NO } NO } NO }

3.2 Lab-1B: Foundry DRC rules

Advanced process has new rules for width, space, fat metal space, end of line, enclosure edge, min area, min enclosure, min edge, min cut, max stack via, etc.

A technology LEF file is another high level description for necessary DRC information for routing. The following table is a brief example for one-to-one syntax format mapping between tfNetRouteRule and LEF.

tfNetRouteRule syntax format	LEF syntax format
<pre>defRouteRule{ layerName { M1 } endofLine { { Spacing 0.1 } { Threshold 0.1 } { WithIn 0.04 } { ParallelEdge 0.1 } { ParallelEdge 0.1 } { MinLength 0.07 } } endofLine { { Spacing 0.12 } { Threshold 0.1 } { WithIn 0.04 } { ParallelEdge 0.1 } { MinLength 0.07 } } { RinLength 0.1 } { WithIn 0.04 } { ParallelEdge 0.1 } { MinLength 0.1 } { MinLength 0.07 } { BelowEncloseCut 0.05 } </pre>	SPACING 0.10 ENDOFLINE 0.10 WITHIN 0.04 PARALLELEDGE 0.10 WITHIN 0.10 MINLENGTH 0.07
<pre>{ CutSpacing 0.15 } }</pre>	SPACING 0.12 ENDOFLINE 0.10 WITHIN 0.04 PARALLELEDGE 0.1 WITHIN 0.10 MINLENGTH 0.07 ENCLOSECUT BELOW 0.05 CUTSPACING 0.15 ;
<pre>defViaRouteRule{ viaName { VIA1 } minCutRule { {</pre>	MINIMUMCUT 2 WIDTH 0.3 WITHIN 0.2 MINIMUMCUT 4 WIDTH 0.3 WITHIN 0.25

tfNetRouteRule syntax format	LEF syntax format
{ MetalWithIn 0.8 } } { { CutNum 2 } } } }	MINIMUMCUT 2 WIDTH 0.3 LENGTH 0.3 WITHIN 0.8
<pre>defMaxViaStackRule { {maxViaStack 4} {range { M1 M6 }} }</pre>	MAXVIASTACK 4 RANGE M1 M6;
<pre>defRouteRule { layerName {M1} minArea { { Area 0.027 } } }</pre>	AREA 0.027
<pre>minArea {</pre>	AREA 0.06 EXCEPTEDGELENGTH 0.21 EXCEPTMINSIZE 0.07 0.21;
	MINENCLOSEDAREA 0.20
<pre>defRouteRule { minEdges { {</pre>	MINSTEP 0.1 MAXEDGES 1
<pre>defViaRouteRule{ viaName { VIA1 } cutSpacing { 0.1 } cutSpacing { 0.13 ParallelOverlap} adjCutSpacing { { Spacing 0.13 } { AdjacentCuts 3 } { WithIn 0.14 } } }</pre>	SPACING 0.1 SPACING 0.13 PARALLELOVERLAP SPACING 0.13 ADJCENTCUTS 3 WITHIN 0.14 [EXCEPTSAMEPGNET]
spacingRule { VIA1 VIA1 0.1 { SameNet Stack } }	LEF5.6: SPACING SAMENET VIA1 VIA2 0 STACK ; SAMENET VIA1 VIA1 0.1 ; END SPACING LEF5.7: SPACING 0 LAYER VIA1 STACK ;

tfNetRouteRule syntax format	LEF syntax format				
<pre>defViaRouteRule{ viaName { VIA1 } enclosure { {Below} {EnclosureEdge 0.015} {MetalWidth 0.11} {ParallelLength 0.27} {ParallelWithIn 0.08} {ExceptExtraCut} } }</pre>	ENCLOSUREEDGE BELOW 0.015 WIDTH 0.11 PARALLEL 0.27 WITHIN 0.08 EXCEPTEXTRACUT				
<pre>space { M1 0.07 { { 0.08 { parallel > 0.30 } { width > 0.17 } } { 0.12 { parallel > 0.30 } { width > 0.24 } { 0.14 { parallel > 0.40 } { width > 0.31 } } { 0.21 { parallel > 0.62 } { width > 0.62 } { width > 1.50 } { width > 1.50 } } }</pre>	PARALLELRUNLENGTH 0.00 0.30 0.40 0.62 1.50 WIDTH 0.00 0.07 0.07 0.07 0.07 0.07 WIDTH 0.17 0.07 0.08 0.08 0.08 0.08 WIDTH 0.24 0.07 0.12 0.12 0.12 0.12 WIDTH 0.31 0.07 0.12 0.14 0.14 0.14 WIDTH 0.62 0.07 0.12 0.14 0.21 0.21 WIDTH 0.62 0.07 0.12 0.14 0.21 0.21 WIDTH 1.50 0.07 0.12 0.14 0.21 0.50 ;				
antennaRule { { AntennaCumSideDiffAreaRatio { { 0 200 } { 0.010 200 } { 0.015 500 } { 0.110 550 } { 1.010 1000 } } } }	ANTENNACUMDIFFSIDEAREARATIO PWL ((0 200) (0.01 200) (0.015 500)(0.11 550) (1.01 1000)) ; THICKNESS 0.13 ;				
<pre> } antennaRule { { AntennaDiffAreaRatio { { 0 20 } { 0.010 20 } { 0.015 99999 } { 0.110 99999 } { 0.110 99999 } } } { AntennaCumDiffAreaRatio { { 0 40 } { 0.010 40 } { 0.015 211 } { 0.110 215 } { 1.010 250 } } } </pre>	ANTENNADIFFAREARATIO PWL ((0 20) (0.01 20) (0.015 99999)(0.11 99999)) ; ANTENNACUMDIFFAREARATIO PWL ((0 40) (0.01 40) (0.015 211) (0.11 215)(1.01 250)) ;				

Regarding technology file preparation for poly routing, please refer to the *Laker Command Reference* document.

4 Library Preparation

4.1 Standard Cell Design Kit

The standard cell design kit is a set of deliverables for the timing driven design flow. Usually, it is well defined and prepared by library vendors or foundry design service teams.

Name	Purpose	Comments
Technology LEF	1. Define routing pitch, direction, DRC/Antenna	
(.lef)	check rules for layer and via	
	2. Define standard via and custom via	

The following is a list of common deliverables for reference.

Macro LEF	1. Define cell size, pin, blockage, etc.				
(.lef)	(.lef) 2. Define antenna gate and diffusion area info				
Timing Liberty (.lib)	Supports Non-Linear Delay Model (NLDM)				
Verilog library (.v)	1. Simulation model for post-layout SDF back-annotation simulation.				
RC Technology file (.itf)	 Define process profile with layer thickness, height, width, spacing, dielectric, etc. Define resistance by layer and via 	Supports Interconnect Technology File (ITF)			

Usually, the standard cell layout view is fixed with multiple modes of timing characterization in each official release. To get better performance and interoperability, it is recommended to use technology LEF and macro LEF files for a quick start of timing driven CDPR.

The abstract layout view can be replaced with the full layer layout view in the Laker system before stream out for final layout merge.

4.2 Lab-2A: Library Preparation by GDS

In this lab, you will learn how to create a GDS library, assign net/port information, define a site, and update cell property files.

4.2.1 Import Stream files

- 1. Open the *Import Stream* form by invoking **File** \rightarrow **Import** \rightarrow **Stream**.
- 2. Select Open Cell Library GDS file named OpenCellLibrary.gds.
- Assign Library name to OpenCellLibrary.
 Import Stream → Library Name: OpenCellLibrary
- Assign Technology file to OpenCellLibrary.tf
 Import Stream → Technology → ASCII File: OpenCellLibrary.tf
- Assign a Layer Map File to gds_layer.map
 Import Stream → Basic → Layer Map File: gds_layer.map

In general, a standard cell library has one dedicated PR boundary layer for placement abutment. Usually, this layer is smaller than the data extension bounding box (BBOX) to share power and ground rails. The special layer 235, data type 0 is defined as PR boundary of the Open Cell library. Therefore, add one layer mapping rule in the layer mapping file.

[gds_layer.map] CellBdry boundary 235 0

- Assign a Font Map File to gds_font.map
 Import Stream → Basic → Font Map File: gds_font.map
- 7. Click **OK** and finish importing geometry data of the library GDS file.
- 8. Open a cell of NAND2_X1 to display imported layout, text and CellBdry layer.

4.2.2 Net/Port Extraction

Based on layout geometry and annotated text, connectivity information can be added by assigning net and port information on cell layout view (not abstract view). The related rules are defined in the *tfAbstractCell* section.

- 1. Invoke the Library → Assign Net/Port command for library level net/port assignment.
- 2. Select a library named as OpenCellLibrary. Do not select any cell for library level net/port assignment.
- 3. In the Assign Net/Port form, change Methods to Assign to Shapes and click OK.

– Assign	Net/Port
Library Name:	Cell Name:
OpenCellLibrary	
OpenCellLibrary OpenCellLibrary_lef analogADP borderADP cdl2_in cdl_in cpu cpu_vlogin	AND2_X1 AND2_X2 AND3_X2 AND3_X1 AND3_X2 AND3_X2 AND3_X4 AND3_X4 AND3_X4 AND4_X1 AND4_X1
Filter:	Filter:
Methods:	
Generate System Pin	
Assign to Shapes	
Options:	
Shape Extraction Level: 0	▲ ▼
Label Extraction Level: 0	
🖉 Use Virtual Connection	
Create Pins from Instances	
Pin Stze Width: 0.0	
	Apply OK Cancel

The following section is an example of *tfAbstractCell* for OpenCellLibrary.

```
tfAbstractCell {
    #------
    # define cell pin extraction rule
    #------
    #mapText2Pin { { textLayerName } { ExtractedLayer1 ...} $ExtractAll }
    mapText2Pin { { poly drawing } { poly drawing } }
    mapText2Pin { { metal1 drawing } { metal1 drawing } }
    mapText2Pin { { metal2 drawing } { metal2 drawing } }
    mapText2Pin { { metal3 drawing } { metal3 drawing } }
    mapText2Pin { { metal4 drawing } { metal4 drawing } }
    mapText2Pin { { metal5 drawing } { metal6 drawing } }
    mapText2Pin { { metal7 drawing } { metal6 drawing } }
    mapText2Pin { { metal8 drawing } { metal6 drawing } }
    mapText2Pin { { metal8 drawing } { metal8 drawing } }
    mapText2Pin { { metal9 drawing } { metal9 drawing } }
    mapText2Pin { { metal10 drawing } { metal9 drawing } }
    mapText2Pin { { metal10 drawing } { metal10 drawing } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } }
    mapText2Pin { { metal10 drawing } { metal10 drawing } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal10 drawing } { metal20 drawing } } }
    mapText2Pin { { metal20 drawing } { metal20 drawing } } }
    mapText2Pin { { metal20 drawing } { metal20 drawing } } }
}
```



```
#
      SourceLayerName1 ... only assign LayerName, because the
#
      blockage generation # need not only "drawing" but also "pin"
# genBlockage { { MT2VDD MT2VSS }
                               0.505  { MT2 blockage } }
# please use 0 for full shape model
genBlockage { metal1 0 { metal1 blockage } }
genBlockage { metal2 0 { metal2 blockage } }
genBlockage { metal3 0 { metal3 blockage }
genBlockage { metal4 0 { metal4 blockage } }
genBlockage { metal5 0 { metal5 blockage }
genBlockage { metal6 0 { metal6 blockage }
genBlockage { metal7 0 { metal7 blockage } }
genBlockage { metal8 0 { metal8 blockage }
genBlockage { metal9 0 { metal9 blockage } }
genBlockage { metal10 0 { metal9 blockage } }
#_____
# define rules for extracting boundary for routing layers
# genBoundary { cellBBox offset };# 1.cellBBox
                               2.cellBoundary
#
                               3.pinBBox
#
                               4.pinBoundary
genBoundary { cellBoundary 0 };# the same size as routing layers
```

4.2.3 Define Global Power/Ground Net

}

The Global Power/Ground (PG) net has an impact on several features like Flight Line, PG Router, etc. There are several ways to define the global PG net.

1. Add *defPower* and *defGound* definitions in the *tfAbstractCell* section of a technology file.

defPower { vdd VDD pwr PWR vcc VCC }
defGround { vss VSS gnd GND }

Invoke Library \rightarrow Technology File \rightarrow Replace to update a new technology file for an existing library.

2. Add the GLOBAL_NET section in a model map file used in a SDL flow.

```
[GLOBAL_NET]
VDD P
VSS G
```

Invoke Library → Replace Model Map File to update a new model map file for an existing library.

3. Use the lakerDefGlobalNet Tcl command to append, query and remove global nets.

```
lakerDefGlobalNet -lib myLib -power VDD -ground VSS
lakerDefGlobalNet -lib myLib -remove -power VDD -ground VSS
```

You can invoke a customized script **CustomDigital** \rightarrow **PG** in the *Main* window to define simple global power and ground nets as shown above for a library.

	Global PG Net	
Library:	OpenCellLibrary —	
Power Net Name:	[VDD	
Ground Net Names:	l∕vss	
Mode:	Append O Delete	
	Apply OK Cancel	Default

4.2.4 Antenna Pin Information

Library preparation for antenna rule check has two parts. One part is defining the antenna rule in the tfNetRouteRule section of a Laker technology file. The other part is extracting the antenna gate area and diffusion area from the physical layout view. This step is also optional for third party tool by Export LEF if necessary.

The following section is an example of the *tfAbstractCell* for OpenCellLibrary.

```
tfAbstractCell {
   # define pin/port/blockage extraction over here
   #_____
   # define rules for extracting boundary for routing layers
   #_____
   # genBoundary { cellBBox offset };# 1.cellBBox
   #
                               2.cellBoundary
  #
                               3.pinBBox
   #
                               4.pinBoundary
  genBoundary { cellBoundary 0 };# the same size as routing layers
  genPinAntennaInfo {
  defPolyLayer { poly }
  defODLayer { active }
  defMET1Layer { metal1 }
  defODContLayer { contact }
   }
```

Perform abstract view generation to extract antenna gate area, antenna diffusion area, boundary, and pin information.

- 1. Invoke the Library → Abstract Cell command.
- 2. In the Abstract Cell form, enable the Generate from Layer option and select [v] CellBdry under the Extract Rule for Boundary section.

}

Abstra	act Cell		
Library Name: Cell Name:			
OpenCellLibrary OpenCellLibrary OpenCellLibrary_lef analogADP borderADP cdl2_in cdl_in cpu_vlogin	AND2 X1 AND2 X2 AND2 X2 AND3 X1 AND3 X2 AND3 X4 AND4 X1 AND4 X2		
Filter: f Extraction Level: 0 Image: Comparison of the second se	Filter:		
Use Virtual Connection Extract On-MET1-Grid POLY	Pins		
Extract Pins through Via/Conta Extraction Rule for Boundary: Get from Technology File	ict		
Generate from Layer:	by CellBdry		
	Apply OK Cancel		

4.2.5 Define Site information

Library level SITE information is strongly recommended for SITE related applications. For example, row placer, row snapping, cell legalization, filter insertion, etc.

How does a library developer to define a SITE for the Laker system in GDS flow?

• Refer to a SITE definition in a library technology LEF file if applicable. For example:

```
SITE NCSU_FreePDK_45nm
SYMMETRY y ;
CLASS core ;
SIZE 0.19 BY 1.4 ;
END NCSU_FreePDK_45nm
```

 Refer to the smallest inverter, e.g. "INV_X1", of a vendor-provided standard library. Width of (SITE) = 0.5 * Width of (INV_X1) Height of (SITE) = Height of (INV_X1)

```
MACRO INV_X1
CLASS core ;
FOREIGN INV_X1 0.0 0.0 ;
ORIGIN 0 0 ;
SYMMETRY X Y ;
SITE NCSU_FreePDK_45nm ;
SIZE 0.38 BY 1.4 ;
```

- Use minimum dbResolution for custom cells which have no strict vertical track planning.
- 1. Invoke the **Floorplan** \rightarrow **Site** \rightarrow **Create** command in the *Main* window.

_		_	_
	Laker_L3		
File	Library Category Cell Options Floorplan Window	H	elp
$\overline{\Box}$	Site 🟱 Create		
	1 0:tcl> 2 source Senv(DIGITALROUTER_INTEG. Delete pitalRouteAll/integ.tcl 3 0:tcl>		
12 I I I I I I I I I I I I I I I I I I I			2

 Define site information according to SITE declared in the OpenCellLibrary.lef Site symmetry (usually Y only) is different from cell symmetry. Check Y symmetry carefully.

-	Create Site
Library Name:	OpenCellLibrary 🔄
Site Name:	NCSU_FreePDK_45nm
Site Width:	0.19
Site Height:	1.4
Class:	Core 🔘 Pad
Symmetry:	🗌 X 💌 Y 🛄 R90
	Apply OK Cancel

4.2.6 Update Macro Cell Property

An additional Macro cell property defined in a LEF file can be equivalently set by a macro cell property file for GDS In flow.

 Invoke the Library → Update Cell Property command in the Main window for library level update.

-	Update Cell Property	
l	Library Name:	
	OpenCellLibrary	
	OpenCellLibrary analogADP borderADP digitaIADP sourceADP vlog_in	
ł	Filter:	
A	ssignment File: source/library/OpenCellLibrary.cp	
А	ssign to View: 🔵 abs 🛛 🌒 layout 🔵 both	
	Apply OK Cancel	

- 2. In the Update Cell Property form, do the following:
 - a. Select Library Name as OpenCellLibrary
 - b. Set Assignment File to OpenCellLibrary.cp
 - c. Check Assign to View: to layout for GDS flow only
 - d. Click **OK** to finish library level cell property update.

Here is an example of all supported properties for reference. Refer to reference manuals for more detailed information.

```
defCell AND2_X1 {
   defCellSite NCSU_FreePDK_45nm
   defClass "CORE"
   defCellSymmetry "X Y"
}
```

You can invoke a customized script **CustomDigital** \rightarrow **Simple Cell Property** in the *Main* window to define simple default site, X and Y symmetry shown as above for a standard cell library.

imes Define Simpl	e Cell Property
Library:	OpenCellLibrary =
Site: NCSU_FreePDK_45nm -	
Assign to View: 4	♦ layout 💠 abs 🗇 both
Apply	OK Cancel Default

4.3 Lab-2B: Library Preparation by LEF

LEF library preparation is only necessary for pure LEF/DEF flows. In this lab, you will learn how to create a LEF library in abs (abstract) view.

4.3.1 Import LEF Files

Usually, the library vendor provides a LEF file as a phantom/abstract view for DEF/LEF design flows. This standard file can be read into the Laker system to create physical shapes with Pin/Port information.

- 1. Invoke **File** \rightarrow **Import** \rightarrow **LEF** to input a LEF file.
- 2. In the Import LEF form, do the following:
 - a. Select Design File as OpenCellLibrary_RC_ANT.lef
 - b. Assign Library Name to OpenCellLibrary_lef
 - c. Assign Technology → ASCII File to OpenCellLibrary.tf
 - d. Assign Layer Map File to lef_layer.map.

After a LEF file is imported with a Laker technology file, macro cell information is from a LEF file and router rule information is from the *tfNetRouteRule* section defined in a Laker technology file.

Route Via has higher priority than MCell via if both of them exist.

	Import LEF
Design File:	rce/library/OpenCellLibrary_RC_ANT.lef
Top Cell Name:	
Run Directory:	
Library Name:	OpenCellLibrary_lef
- Technology File	
ASCII File:	./OpenCellLibrary.tf
C Attach to Libr	ary:
Create Pin Nan	ne as Text
Text Layer Nan	ne: Purpose Name:
Text Font Heig	ht: 0.2
🗌 Snap Vertices	to Min Grid Resolution
🖉 Overwrite Dupl	icated Information
🗌 Invoke Batch N	/lode
Cell Map File:	
Layer Map File:	/source/map/lef_layer.map
Log/Error File:	
	Apply OK Cancel

4.3.2 Export Stream of Abstract Views

If you want to reuse LEF macro cell information in an annotated GDS file, refer to the following steps. Because an abstract view cannot be streamed out from the Laker system, all abstract views have to be instantiated in a layout cell in advance.

 Use the script CustomDigital → Create All Abstract Cells in the Main window to create a layout view named "CreateAll".

	Create All	Abstract Cel	ls
Library:	OpenCellLibr	rary_lef —	
Apply	ок	Cancel	Default

- Invoke File → Export → Stream to open the Export Stream form and stream out the cell of "CreateAll".
- 3. In the *Export Stream* form, do the following:
 - a. On the **Basic** tab, set **Layer Map File** to lef_layer_out.map Usually, contact, metal1, via1 and metal2 blockage are also mapped to normal drawing layers without net information.
 - b. On the Advanced tab, set Export Abstract Cell View: All This is necessary because the Laker system does not stream out the Abstract view by default.
 - c. On the **Property** tab, enable the **Generate Logic Info to Prop No.:** option and set the value to 103.

An annotated GDS can easily recover pin/port information by Import Stream.

-	Expor	t Strea	m				
Library Name:		Top C	ell Na	me:			
OpenCellLibrary_lef		Create	eAll				1
DpenCellLibrary_le analogADP borderADP def_in digitalADP sourceADP		1	Create	All			
Filter:	\leq	Filter:	Ň		_	1	
Output File: OpenCell	Library_lef.gd	3					
Template File: Load	Save					(
Basic Advanced M	liscellaneous	Proper	ty Ì L	og/Err File	1		
Cell Name Case Sens	sitivity:	F	Prese	ve =			
Label Case Sensitivit	y:	F	Prese	ve 🗆			
Append Duplicated C	ell Names w	ith:	Librar	y Name	- 1		
Layer Mapping Mode			Ma	pping	-1		
Rename for Duplic	ated Cell						
🖉 Merge Reference	Library						
Filter System Pin							
Reduce Duplicate	d Device						
🔲 Invoke Batch Mod	le						
Layer Map File:	tutorial/sourc	e/map/le	f_laye	r_out.map			1
Cell Map File:							5
Font Map File:							
		Appl	ly	OK		Cance	

4.4 Lab-2C: Verilog and SPICE library files

Dummy Verilog and SPICE library files are useful for design import in Laker CDL-In and Laker-ADP Verilog In.

In general, a Verilog library file provided by a library vendor is a behavior model of module and primitive for post-layout simulation. These behavior sections are not suitable for several backend tools. Only a dummy Verilog library file is needed to define module port name and direction.

A pre-layout SPICE netlist is provided for transistor level cell creation and LVS purposes. For cell level applications, only a dummy SPICE library file is needed for sub-circuit port name and direction.

How to create a dummy Verilog file based on a Verilog library behavior model?

- It can be easily done by Unix "egrep" and "vi" commands.
 - a. Sort out module and interface definition
 - > egrep "module|input|output|inout" OpenCellLibrary.v > OpenCellLibrary_dummy.v
 - > Open "OpenCellLibrary_dummy.v" and remove some extra lines from a primitive section.
 - b. Sort out module and interface definition
 - > egrep -i "subckt|ends|pininfo" OpenCellLibrary.sp > OpenCellLibrary_dummy.sp
 - > Open "OpenCellLibrary_dummy.sp" and remove some extra lines if necessary.
- A simple script in Perl, Tcl or Python can be written for customized result.
- Use Mentor Calibre v2lvs or Synopsys Hercules "nettran" command

In genral, a verilog netlist of a standard cell does not include power and ground information. Howerwe, a layout view of a standard cell has power and ground shapes and results in port mismatch in Laker SDL flow.

One solution of this port discprepancy issue is adding supply1 and supply0 nets in a verilog netlist.

```
module AND2_X1 (A1, A2, ZN);
supply1 VDD;
supply0 VSS;
input A1;
input A2;
output ZN;
endmodule
```

4.4.1 Import Verilog library Files

This dummy Verilog library file can be read into the Laker system to create symbol views.

- 1. Invoke File \rightarrow Import \rightarrow Verilog to input a Verilog library file.
- 2. In the *Import Verilog* form, do the following:
 - a. Select Verilog Files as OpenCellLibrary_dummy.v
 - b. Assign Library Name to OpenCellLibrary
 - c. Assign Technology → Attach to Library to OpenCellLibrary
 - d. Assign Global Nets → Power Net Name(1'b1) to VDD
 - e. Assign Global Nets → Ground Net Name(1'b0) to VSS

_	Impor	t Verilog			
Verilog Design					
Verilog Files:	/source/l	ibrary/Open	CellLibrary_d	ummy.v	
🔾 List File					
Top Cell:					
Run Directory:					
Library Name:	OpenCel	lLibrary			
Reference Libraries:					
-Technology File					
ASCII File:					
Attach to Library:	OpenCel	lLibrary			
Basic ECO					
Global Nets					
Power Net Name(1'b1):	VDD			
Ground Net Name(1'b	0):	VSS			
Bus Parentheses: 🔘	<> 🖲 []]			
🖌 Remove First Backs	slash of A	All Escaped	d Identifiers		
🖉 Extract Port Swappi	ng Inform	nation			
Model Map File:		Itorial/sour	ce/map/SDL_c	def.map	
Parameter Expanding L	og File:				
	Γ	Apply	ОК	Can	cel

4.4.2 Define Primitive Symbol

We can define the *verilogStop* attribute on a symbol view to suppress the primitive cells exported by File \rightarrow Export \rightarrow Verilog command.

1. Use the script **CustomDigital** → **Define Primitive Symbol** in the *Main* window to generate a *verilogStop* attribute on all symbol views of the selected standard cell library.

	Define Primitive Symbol		
Library:	OpenCellLibrary 🖃		
Apply	OK Cancel Default		

4.5 RC Table Preparation

Interconnect Technology File format defines the process profile of layer and via, including thickness, height, width, spacing, dielectric, etc. It also defines the resistance of layer and via.

- Based on a RC Technology file in ITF format, the Laker system can create large sets of look-up.
- Tables for pre-defined patterns can be created by built in or third party field solver.
- A LEF file is for reference of routing pitch instead of minimum spacing.
- For third party correlation flow, a correlation SPEF is used.

4.5.1 ITF Flow

Given a pre-defined ITF file, an RC table can be created by the Laker built-in solver.

- 1. Invoke Library \rightarrow Prepare RC Table \rightarrow Generate RC Table from the *Main* window.
- 2. In the *Generate RC Table* form, do the following:
 - a. Select LEF Files as OpenCellLibrary_RC_ANT.lef
 - b. Assign **Reference File** to OpenCellLibrary.itf
 - c. Select Method → ITF
 - Assign **Poly Layer Name** to poly
 - d. Assign **Output File** to OpenCellLibrary_x2d.rcTbl

—	Generate RC Table					
LEF Files:/source/library/OpenCellLibrary_RC_ANT.lef						
Reference File:/source/technology/OpenCellLibrary.itf						
Method:						
🔷 ITF 🛛 Po	ly Layer Name: poly					
💠 Correlation	♦ Correlation SPEF					
Output File:	OpenCellLibrary_x2d.rcTbl					
	ОК	Cancel				

4.5.2 Third Party Correlation Flow

4.5.2.1 Create Correlation Pattern Files

For those who want to use a third-party sign off tool to extract created correlation patterns, the Laker Custom Digital product also provides a smooth correlation flow.

- 1. Invoke Library → Prepare RC Table → Correlation Pattern from *Main* window.
- 2. In the Correlation Pattern form, do the following:
 - a. Select LEF Files as OpenCellLibrary_RC_ANT.lef
 - b. Assign **Output File** to *correlation_def_v*

	Correlation Pattern		
LEF Files:	./source/library/OpenCellLibrary_RC_ANT.lef		
Output File:	correlation_def_v		
	OK	Cance	1

Two files named correlation_def_special.def and correlation_def_special.v are created for third party sign off extraction tool.

4.5.2.2 Create correlation RC Table

A correlation RC table can be generated after a correlation SPEF file is generated by third party tools.

- 1. Invoke Library → Prepare RC Table → Generate RC Table from the *Main* window.
- 2. In the *Generate RC Table* form, do the following:
 - a. Select LEF Files as OpenCellLibrary_RC_ANT.lef
 - b. Assign Reference File to correlaton_dev_v.SPEF
 - c. Select Method → Correlation SPEF
 - d. Assign Output File to OpenCellLibrary_correlation.rcTbl

	Generate RC Table					
LEF Files:/source/library/OpenCellLibrary_RC_ANT.lef						
Reference File:	correlation_def_v.SPEF					
Method:						
🔷 ITF 🛛 F	Poly Layer Name: poly					
♦ Correlation SPEF						
Output File:	OpenCellLibrary_correlation.rcTbl					
	OK Cancel					

4.6 **Dual View Library Preparation**

Dual library preparation is a common method to utilize layout views for custom layout and abstract views for timing driven related environment. The following steps will guide you to preparing a dual view library in the Laker Custom Digital environment.

 Import a complete LEF file with a Laker technology file. A technology database comes from a Laker technology file followed by a LEF file. For example, both MCell and RouteVia are available. Site and antenna information are available from a LEF file as well.

Only abstract view is available at current stage.

- 2. Import a complete stream file with annotated pin/port information if applicable. Both layout view and abstract view are available.
- 3. Assign pin/port information on the layout view.
- 4. Update the cell property if necessary.
- 5. Import a library Verilog netlist with port interface and supply1/supply0 global nets. A symbol view is created for import Verilog flow.
- 6. Define the verilogStop attribute on a symbol view.

Layout, abstract, and symbol views are all ready for Laker timing driven flow information after this stage.

5 Design Preparation

The Laker SDL flow needs both logic and layout views. The logic view represents the logic connection of a design with full parameters. The layout view represents the layout connection.

- Logic view: Laker ADP schematic + Expand Schematic, Laker ADP Import Verilog + Expand Schematic, Laker CDL In
- Layout view: Laker Import DEF with Laker TF/LEF library

The benefits the SDL flow provides are incremental implementation and cross-probing among design hierarchy browser window, schematic window and layout window.

The support of LEF/DEF flow provides the same essential kernel features for third party tools.

5.1 Lab-3A: Design Preparation by CDL

In this lab, you will learn how to create a CDL In design library with a Laker library in layout view.

5.1.1 Import CDL files

- 1. Define a cell library in a library mapping path by Library → Mapping Path Make sure *OpenCellLibrary* is listed in the mapping path.
- Invoke File → Import → CDL In to import a CDL design.
 A CDL dummy library file is included in the design file to create the necessary logic view.

CDL *PININFO information is highly recommended to provide necessary port direction for automatic smart schematic generation. It is not only for a more readable schematic for

manual selection but also for meaningful topology relationship for some topology driven features. For example;

.subckt X	INOR2	_X2 /	A B ZN
*.pininfc	A:I	B:I	ZN:O

.ends XNOR2_X2

- 3. In the CDL In form, do the following:
 - a. Assign Design File to Divide.sp
 - b. Assign Top Circuit Name to Divide
 - c. Assign Library Name to cdl_in
 - d. Assign Technology File → Attach to Library to OpenCellLibrary
 - e. Assign Model Map File to SDL_def.map.
 - f. Click **OK** to finish importing a CDL file.

	CDL In				
Design File:	/work/route/ocdk/data/Divide_adp.sp				
Top Circuit Name:	Divide				
Run Directory:	/home/work/route/ocdk/laker				
Library Name:	cdl_in				
W/L Scale:					
- Technology File-					
🔾 ASCII File:					
Attach to Libr	ary: OpenCellLibrary				
Basic) ECO				
Case Sensitivity:	Preserve 🖂				
Bus Parentheses:	○⇔●[]				
🗌 Invoke Batch N	lode				
🗑 Extract Port Sw	apping Information				
Model Map File:	route/ocdk/data/SDL_def.map				
Parameter Expand	ing Log File:				
Apply OK Cancel					

Here is an example of legacy model map file to enable cell mapping and removal of prefix "X" from CDL file format.

```
[MAP]
X * OpenCellLibrary *
[ELEMENT_PREFIX]
X * X
[GLOBAL_NET]
VDD p
VSS g
```

Here is another example of new model map file to enable cell mapping with view names and removal of prefix "X" from CDL file format.

```
[MAP]
X * OpenCellLibrary { * abs }
[ELEMENT_PREFIX]
X * X
```


[GLOBAL_NET] VDD p VSS g

NOTE: LakerOA has a new model map file section to support MCell, Tcl PCell, PyCell in a general SDL flow. Please refer to <u>Limitations and Known Problems</u> section for details.

5.2 Lab-3B: Design Preparation by Verilog

In this lab, you will learn how to create a Verilog In design library with a Laker library in layout view.

5.2.1 Import Verilog Files

The Laker system supports structural Verilog netlist with simple "assign" statements for SDL flow.

- 1. Define a cell library in a library mapping path by invoking the Library → Mapping Path command. Make sure OpenCellLibrary is listed in the mapping path.
- 2. Invoke File \rightarrow Import \rightarrow Verilog in the *Main* window to import a Verilog netlist design.

-	Impor	t Verilog			
Verilog Design					
Verilog Files:	/source/design/Divide.v				
🔾 List File					
Top Cell:	Divide				
Run Directory:					
Library Name:	vlog_in				
Reference Libraries:	OpenCel	ILibrary			
Technology File					
⊖ ASCII File:					
Attach to Library:	OpenCel	lLibrary			
Basic ECO					
Global Nets					
Power Net Name(1'b1):	VDD			
Ground Net Name(1'b	0):	VSS			
Bus Parentheses: 🔘	<> 🌒 []]			
🖉 Remove First Backs	slash of A	All Escaped	Identifiers		
Extract Port Swapping Information					
Model Map File:	el Map File: ./source/map/SDL_def.map 📄				
Parameter Expanding Log File:					
		Apply	ок	Canc	el

- 3. In the Import Verilog form, do the following:
 - a. Set Verilog Design → Verilog Files to ../source/design/Divide.v It is recommended to create a symbol view and attach the primitive attribute by importing library Verilog files during the library preparation.
 - b. Set Library Name to vlog_in
 - c. Set Reference Library to OpenCellLibrary
 - d. Set **Technology File** → **Attach to Library** to OpenCellLibrary
 - e. Set Global Nets → Power Net Name(1'b1) to VDD
 - f. Set Global Nets → Ground Net Name(1'b0) to VSS
 - g. Set Model Map File to ../source/map/SDL_def.map

- Laker Custom IC Design Solutions Application Note: Laker CDPR Tutorial for Timing-driven Flow
- 4. Click **OK** to finish importing the Verilog files.

NOTE: LakerOA and LakerDB 2011.06 versions have a new model map file section to support MCell, Tcl PCell, PyCell in a general SDL flow. Please refer Limitation and Known Problems for details. A new example is also available in *source/SDL_oa_def.map* for Laker OA flow.

5.3 Lab-3C: Design Preparation by Verilog to CDL

5.3.1 Verilog to CDL Conversion by LVS Utility

Signoff LVS tool provides a utility for LVS schematic netlist preparation converted from Verilog, EDIF, SPICE, CDL netlist, etc.

For example, Mentor Calibre **v2lvs** or Synopsys Hercules "**nettran**" commands can be used for Verilog to CDL conversion.

- 1. Use Mentor Calibre v2lvs command: v2lvs -i -s0 VSS -s1 VDD -v Divide.v -l OpenCellLibrary_dummy.v -o Divide.sp
- 2. Use Synopsys Hercules nettran command: nettran -verilog-b0 VSS -verilog-b1 VDD -verilog Divide.v OpenCellLibrary_dummy.v -outName Divide.sp -outType spice

After a design CDL file is successfully converted, follow the standard flow of Laker design preparation by CDL as described above.

5.4 Lab-3D: Design Preparation by DEF

In this lab, you will learn how to create a DEF In design library with a Laker library in abs (abstract) view.

5.4.1 Import DEF files

- 1. Define a cell library in a library mapping path by the **Library** → **Mapping Path** command. Make sure *OpenCellLibrary_lef* is listed in the mapping path.
- Invoke the File → Import → DEF command to import a DEF design. Standard via, custom via, site information used in a DEF file are pre-defined in a corresponding LEF file. A correct Laker TF/LEF library is necessary for a successful DEF import task.

- Import DEF								
Input File Name:	Divide_pl.def	Divide_pl.def						
Run Directory:	/home/work/route/ocdk/laker							
Library Name:	ibrary Name: def_in							
Technology File								
ASCII File:								
Attach to Libr	ary: OpenC	ellLibrary_lef						
Options Sections]							
🗌 Define Cell Bou	indary Layer							
Layer Name:		Purpose Name:						
🗌 Create Net Na	m e a s T e xt							
Text Layer Nar	ne:	Purpose Name:						
Text Font Heig	ht: 1.0							
🗹 Create Pin Nar	ne as Text							
Text Layer Nar	ne:	Purpose Name:						
Text Font Heig	ht: 0.2							
🗌 Update Top Ce	ell with Increme	ental Mode						
🗹 Create Instanc	e Connection	Information						
□ Snap Vertices	to Min Grid Re	esolution						
🗌 Merge Continu	ous Wires to a	a Single Route						
🗌 Invoke Batch 🗎	/lode							
Log/Error File:								
Apply OK Cancel								

- 3. In the *Import DEF* form, do the following:
 - a. Set Input File Name to Divide_pl.def
 - b. Set Library Name to def_in
 - c. Set Technology File → Attach to Library to OpenCellLibrary_lef
 - d. Set Create Pin Name as Text → Text Font Height to 0.2
 - e. Enable Create Instance Connection Information
- 4. Click **OK** to finish importing a DEF file.

Remember that logic views are not created for pure DEF/DEF flow. Only a layout view is created after Import DEF.

Row area created by DEF/LEF flow cannot be recognized by the Laker SDL flow. You can only use **Placer** → **Place All** from the Layout Design Window.

5.5 Lab-3E: Design Preparation by GDS

In this lab, you will learn how to create a GDS In design library with a Laker library in layout view.

The Laker generated annotated GDS file is well supported to restore instance name, net, port and instance port by Import Stream. If you have an annotated GDS file created by a third party tool, the instance name and net name can be restored with correct property.

The following are known limitations for this flow:

- Standard via and custom via will be mapped to normal instances for a GDS file created from a DEF/DEF database.
- Row information is not stored and recovered.

5.5.1 Import Stream Files

- 1. Open the *Import Stream* form by **File → Import → Stream**.
- 2. Select **Open Cell Library GDS** file named *Divide_pl.gds*.

- 3. In the *Import Stream* form, do the following:
 - a. Assign Library Name: OpenCellLibrary
 - b. Assign Technology file to OpenCellLibrary.tf
 Technology → Attach to Library to OpenCellLibrary
 - c. Assign **Basic** → Layer Map File: gds_layer.map
 - d. Set **Basic** → **Reference Libraries**: to OpenCellLibrary
 - e. Enable Advance → Reference Cell from Other Library First Cell mapping to central library OpenCellLibrary is enforced by this option.
 - f. Enable Property -> Generate Instance Name as Prop No.: 102
 - g. Enable Property → Generate Net as Prop No.: 102
 - h. Enable Property → Generate Logic Info as Prop No.: 103
- 4. Click **OK** and finish importing a stream file.

5.5.2 Assign Net Names

If only instances names are available to be restored, a net name may be recovered by **Design Hierarchy Browser** \rightarrow **Fix Discrepancy** or **Net Propagation**.

- 1. Create Port/Pin by *Query* attribute form for top metal, cut and bottom metal layers of via instances streamed in from a third party tool. This procedure is necessary for Net Propagation.
- 2. In the design hierarchy browser pane, invoke **Fix Discrepancy** after selecting all instances by **Select All**.
- 3. Use toolbox utility by L3TCL \rightarrow Rebuild Connection.

6 Floorplan

6.1 Lab-4A: Floorplan Initialization

In this lab, you will learn how to create a row area and initial pin assignment in a layout view after design preparation.

The following procedures apply to general Laker SDL database either by CDL-In or by Expand Schematic. A CDL-In case will be used for demonstration.

6.1.1 Routing Resource Plan

In general practice, area utilization rate is commonly used to decide the size of Row Area for row placement. The area utilization rate is defined as the ratio of total size of cells over row area in analog design style. The magic utilization rate number differs due to design style and available routing layers. The average magic number for general design is listed below for reference.

Available Routing Layer	Average Utilization	Comments	
2m	0.5 ~ 0.6 (*)	Channel or pseudo blockage (row abutted)	
3m	0.7 ~ 0.75	Channel-less (row abutted)	
4m	0.8 ~ 0.9	Channel-less (row abutted)	
5m	0.8 ~ 0.9	Channel-less (row abutted)	

Of course, you can use higher utilization for a compact design in local net connection.

* Note: site utilization rate will be higher than area utilization rate if row space is reserved for limited route layer in channel floor plan.

The following conditions will be used for this demo case.

- 4 metal routing layers
- The area multiplier rate used for Design Hierarchy Browser \rightarrow Re-Estimate Area is 1.2.
- The area utilization rate used for **Placer** → **Create Row** is 0.8.

The initial utilization rate does not consider placement blockage, physical only cells and so on. Therefore, final utilization rate will be higher than the initial utilization rate.

6.1.2 Set Routing Layers

SYNOPSYS®

The Custom Digital features honor the Laker routing resource files for available routing layer planning.

If 4 metal routing layers are used, non-available routing layers in 10 metal layers have to be disabled in the routing rule setting.

- 1. Invoke the **Router** \rightarrow **Digital Route** \rightarrow **Rule Setting** command.
- Disable availability of non-available layers and vias by clicking the Avail field of Rule Setting → Metal tab.
- 3. Click **Rule Set** \rightarrow **Save** to save the 4 metal routing conditions to *default* for future use.

	Rule Setting								
Rule Set: default 🗾 📑 🖪									
Metal Via									
□ Specific	Spacing Rule								
Avail	Layer	Direction	Width	Spacing	MWL				
	📘 dg poly	🔶 🔁	0.050	0.075	10.000	0.			
 ✓ 	💹 dg metal1	*₊ ∑	0.070	0.065	0.000	0.			
 ✓ 	dg metal2	≒ ⊻	0.070	0.070	0.000	0.			
 ✓ 	🔀 dg metal3	*⊾ 7	0.070	0.070	0.000	0.			
✓	dg metal4	\$ ⊻	0.140	0.140	0.000	0.			
	dg metal5	🔶 🕹	0.140	0.140	0.000	0. 🗸			
			Save	Apply	ОК	Cancel			

- 4. Select Via group of *MCell* or *Route Via* by **Via Group** field of **Rule Setting** \rightarrow **Via** tab.
- 5. Select availability of vias by clicking the Avail field of the Rule Setting \rightarrow Metal tab.

Route Via of **Via Group** is recommended for timing driven flow because most APR tools supports standard LEF/DEF interface.

-	Rule Setting						
Rule Set: default 📝 📑 民							
		Metal			Via		
Via Grou	up: Route	Via <u>V</u>					
Avail	CIRCUIC	Via	Direction	Size	Spacing	Layer1 Enclc	
 ✓ 	1	Via1Array-		0.070 0.070	0.080 0.080	0.035, 0.03	
 ✓ 	1	Via1Array-		0.070 0.070	0.080 0.080	0.000, 0.08	
 ✓ 	1	Via1Array-		0.070 0.070	0.080 0.080	0.035, 0.00	
 ✓ 	1	Via1Array-		0.070 0.070	0.080 0.080	0.000, 0.00	
 ✓ 	1	Via1Array-		0.070 0.070	0.080 0.080	0.035, 0.00	
1	+	Vietterer		0.070.0.070	0.000.0.000	0.005.0.00	
Save Apply OK Cancel							

6. Click **OK** to close the *Rule Setting* form.

6.1.3 Initialize Area Estimation

After the CDL In task is done, both schematic view and logic view are created. An initial layout view can be created now.

- 1. Invoke the **File** \rightarrow **Open** command.
- 2. In the Open Cell form, do the following:
 - a. Set Library to cdl_in
 - b. Set Cell to Divide
 - c. Set View to logic
- 3. Click **Okay** to create an initial layout view.
- 4. Estimate design area
- 5. Manually remove power and ground Soft Pins

Soft Boundary (the *softBdry* layer in cyan color) is a boundary layer of soft macro used in top down floor planning. It provides flexibility of manual or automatic macro shaping while keeping a reserved area size. You can increase view level and stretch *softBdry* layer of lower level block. Stretching the *softBdry* layer of cell level (or Edit-In-Place) will not keep the reserved area size.

If it is a hierarchical layout design implementation, the L3TCL \rightarrow Hierarchical Re-Area Tcl script can be used to bottom-up estimate area of the whole hierarchy.

The LakerAPR \rightarrow Estimate Area feature was developed for area re-estimation of realized hierarchical instances with *softBdry* layer. The layout area of the referenced cell view is retrieved from the model map file.

If it is a flat layout design implementation, the hierarchy of logic view can be flattened by **Design Hierarchy Browser** \rightarrow **Flatten** \rightarrow **All Levels** first followed by **Design Hierarchy Browser** \rightarrow **Re-Estimate Area.**

Soft Pin (the softPin layer in pink color) is a concept of pseudo pin without dedicated layer assignment. It is created for manual or automatic pin planning.

6.1.4 Create Row

6.1.4.1 Create Row by Row Area

Given an estimated SoftBdry, you can draw a polygon shape with rough equivalent area size. This is good for polygon shape row area creation.

 Define grid size by site width and height by a customized script CustomDigital → Change Grid by Site. Select NCSU_FreePDK_45nm-0.19-1.4 to snap cursor to site grid points. It is an optional step to draw a polygon shape row area.

X Chang Format: Grid:	ge Grid by Site
Apply	OK Cancel Default

- 2. Invoke the **Placer** \rightarrow **Create Row** command.
- 3. In the *Create Row* form, do the following:

- a. On the **Options** tab, specify an existing pre-defined site by selecting **Name** as *NCSU_FreePDK_45nm*.
- b. Enable row abutted style by enabling the **Double Back** option.
- c. On the **Methods** tab, select the **Row Area** method and drawing a rough equivalent area size in polygon shapes. For example, a rectilinear polygon is created referring to rectangle SoftBdry.
- d. Set **Row Spacing** to 0.0 for channel-less floor plan.

5	🗙 Create Row				
	0	ptions	Ĩ	Metho	ds
	Site:				
	🔷 Name:	NCSU_FreePD	K_45nm ⊐		
	🔷 Size:	Width:			
		Height:			
	Bow Direction:	Horizontal			
	Orientation:				
	Double Bac	ik			
	Separated I	Row			
	First Row A	buts Second Ro	w		
				Hide	Cancel
_					
		*			
		0116H05H01H01H2	6940		

- 4. Click **Select All** icon in the design hierarchy browser pane to select all objects because the Laker system can support partial selection for implementation.
- 5. Invoke the **Design Brower** \rightarrow **Placement** \rightarrow **Row Placer** command.
- 6. Click the created polygon shape row area and apply **Design Brower** → **Placement** → **Row Placer** → **Estimate** to get the final utilization rate calculated by placer engine.

🗙 Row-based Placement Report	
Row area: 1750.28 um*um Usable area: 1750.28 um*um Area of selected instances: 1566.74 um*um Placement Utilization: 89.513678%	X
	Close

- 7. Enlarge the created row area by invoking Placer → Stretch Row or Placer → Configure Row to adjust high utilization to a reasonable rate.
- 8. Reset grid size by a customized script **CustomDigital** → **Change Grid by Site**. Select *Default-0.005-0.005* to reset default minimum grid.

You can delete a SofrBdry layer after you have finished the initial floor plan. A CellBdry layer will be created later.

6.1.4.2 Create Row by Utilization

Creating a rectangle row area by utilization is an easier method.

- 1. Invoke the **Placer** \rightarrow **Create Row** command.
- 2. In the *Create Row* form, do the following:
 - a. Select the **Options** tab and specify an existing pre-defined site by selecting **Name** as*NCSU_FreePDK_45nm*.
 - b. Enable row abutted style by enabling the **Double Back** option.
 - c. Select the **Methods** tab and enable the **Utilization** option and set the associated utilization rate to 0.8 for 4 metal layer routing.
 - d. Enable the **Full Cell** option under **Mode**.
 - e. Set **Row Spacing** to 0.0 for a channel-less floor plan.

Options	Methods
🔟 Row Area	
Snap Mode:	Orthogonal -
Row Spacing:	0.0
♦ Row Number:	
🔲 Fixed Row	
Row Width:	
Row Number:	
Row Spacing:	0.0
Utilization:	0.8
Mode:	💠 Selected Objects 🐟 Full Cell
Row Spacing:	0.0
Aspect Ratio:	
	♦ Width(X)/Length(Y) Ratio: 1.2

Now, you need to define the origin of the row area using one of the following methods:

- By mouse left-click, or
- Press TAB to enter (X,Y) value at the top of the Layout window, or
- Press **H** to enter (X,Y) value from User Input Coordinate window.
- 1. Click **Select All** icon in the design hierarchy browser pane to select all objects because the Laker system can support partial selection for implementation.
- 2. Invoke the **Design Brower** \rightarrow **Placement** \rightarrow **Row Placer** command.
- 3. Click the created rectangle row area and apply **Design Brower** → **Placement** → **Row Placer** → **Estimate** to get the final utilization rate calculated by placer engine.

You can delete the SofrBdry layer after you have finished the initial floor plan. A CellBdry layer will be created later.

6.1.5 Create Cell Boundary

Create a CellBdry based on planned core area by a customized script **CustomDigital → Create Core Bdry**.

SYNOPSYS°

— Cr	Create coreBdry for RowArea			
Enclosure:	ĬO			
CellBdry Enclosu	re: [3			
Apply	OK Cancel Default			

CoreBdry is a layer created for legacy supported feature only if necessary.

CellBdry Enclosure is the distance reserved for ring structure around the whole Row Area.

6.1.6 Initial Pin Assignment

At the very beginning stage, pin constraint can be assigned from top-down or bottom-up floor plan tasks. In this case of block level design, how to handle pin assignment with initial pin constraints will be demonstrated.

The common basic pin constraint includes edge, order, layer and size, etc. The following pin constraint file is an example to simply arrange bus signals on edge and evenly distribute before cell placement. Because top down pin assignment is supported, pin constraint is library and design related.

```
pinConstraint {
   cellName {Divide}
# refLibrary {cdl_in}
   group {
   boundary {
       {Edge1 {
        {CLK {layer metal3 drawing} {size 0.07 0.4}}
        \{X[0:11]  {layer metal3 drawing} {size 0.07 0.4}}
        Y[0:11] {layer metal3 drawing} {size 0.07 0.4}
       } }
       {Edge2 {
       } }
       {Edge3 {
        {Q[11:3] {layer metal3 drawing} {size 0.07 0.4}}
        {R[11:0]} {layer metal3 drawing} {size 0.07 0.4}} {Q[0:2]} {layer metal3 drawing} {size 0.07 0.4}}
       {Edge4 {
       } }
   distribution { Edge1 Edge3 }
}
```

6.1.6.1 Create Soft Pin

If you removed the pink SoftPin in previous steps, you can re-generate all of them by CustomDigital \rightarrow Create Soft Pin or SDL \rightarrow Soft Pin \rightarrow Create Soft Pin.

Auto pin assignment will place all pins with Float pin status. If you want to manually place a pin, you can change its status to *Fix* by **Query** \rightarrow **Connection** \rightarrow **Pin Status**.

6.1.6.2 Create Pin Blockage

If you want to protect some regions to avoid pin placement in these regions, you can add PinBlockage (249:246) layer in the floor plan layout. For example, you can add PinBlockage around four corners to prevent any pin placed far away from Row Area.

-	Layer Table Editor	
Layer Setting Category Set	ting	
User System	Main Attributes	Add
Select All	Layer Name: PinBlockage	
II	Layer Number: 249 💆	Delete
by metal10	Purpose Name:	
be metal10		
🗸 🔲 dg marker	Stream IO Attributes	Modify
V dg nodrc	Set Stream IO Mapping	
V D PinBorder	Stream Number: 249	
Place Block:	Data Type Number: 246	
PassThroug	Drawing Attributes	Diopley File
SoftBdry		
✓ RouteBlock		Load
Mark	Outline Color:	Save
	age [249:246] view	Edit
TLRPadBdi	Ayle.	
CellBdry	Fill Color:	
SoftPin	Stipple:	Preview
C ShortErr		
V D R_Extent	✓ Unify Outline and Fill Colors	
CoreBdry	Bedraw Layout Window Immediately	
Save TF Default	ок	Cancel

6.1.6.3 Dump Template of Pin Constraint

Dumping a template of pin constraint file is a good start to understanding constraint format and knowing how to create an initial pin constraint with few modifications.

The Placer → Pin Placer → Dump Constraint Template command can dump a template file.

 Dump Constraint Template 				
Level	🔵 Тор	() Two	Levels	
Dump File:	init_pin.cons	t		
🗹 Invoke Editor				
	[ок	Cano	cel

6.1.6.4 Auto Pin Assignment

After a pin constraint is ready, the **Placer** \rightarrow **Pin Placer** \rightarrow **Auto Pin Placement** command can be used to realize initial pin assignment.

SYNOPSYS°

-	Auto Pin Placement
Mode:	
🔾 Auto	
🔾 Тор	Two Levels
Place Bus In	Order
Constraint File:	/source/constraint/pin_bus.const 🔲 🔯
 Schematic 	
	OK Cancel

After this step, the task of initial pin placement is finished.

- Auto mode is for automatic pin assignment without pin constraints. It is often used for top down floor plan or after row placement is done.
 Enabling the Place Bus in Order option can automatically recognize the bus structure of pin names in square brackets [] and angle brackets <>.
- Constraint File mode follows user defined pin constraints for Top or Two Levels assignment.
- 3. **Schematic** mode recognizes pin locations placed in the top schematic and honor them for initial pin assignment.

The purpose of initial pin placement before a row placement is to guide a net weight of I/O connection. Otherwise, the first stage instance connected to I/O pins will be biased by the net weight of the second stage instances.

After a row placement, the optional pin optimization step will be introduced later.

7 Pre-Placement

7.1 Lab-5A: Add Physical Only Cells (Optional)

In this lab, you will learn how to add well tap or end cap cells, assign PG logic connection, create ring, stripes and follow pin before row placement.

7.1.1 Introduction of Physical Only Cells

Physical only cells are layout only cells which are not included in the imported design netlist. For example, well tap, end cap, core filler, I/O filler, I/O corner, antenna diode, decoupling-cap, GA spare cells, etc. Standard spare cells are usually planned and included in the original netlist.

- Well tap cell: a well-tie pick-up to prevent latch up issues for tap-less standard cells without built-in well-tie pick up. These cells are placed regular within defined distance to cover all place-able sites for tap-less cells. You do not need to insert well tap cells for normal standard cells.
- End cap cell: They are placed at the edge of place-able row area to keep the regularity of layer patterns to minimize process effect.
- Core filler cell: generic filler cells can be inserted in empty sites to prevent DRC violations.
- I/O filler cell: generic I/O filler is added to connect I/O ring power distribution and prevent DRC violations.

- I/O corner cell: generic cells to connect I/O ring power distribution for different I/O ring.
- Antenna cell: antenna diode to provide additional diffusion protection for antenna violation fix.
- Decoupling-cap cell: power decoupling cells to reduce current surge and voltage drop.
- GA spare cell: programmable gate array spare cells for flexible post-silicon ECO.

7.1.2 Add End Cap

TAPCELL_X1 is used for both well tap cell and end cap cells in this tutorial.

- 1. Invoke the Placer → Add End Cap command.
- 2. In the Add End Cap form, do the following:
 - a. Select an existing pre-defined TAPCELL_X1 by specifying Pre End Cap: Library: OpenCellLibrary
 Cell: TAPCELL X1
 - View: layout
 - b. Select an existing pre-defined TAPCELL_X1 by specifying Post End Cap: Library: OpenCellLibrary Cell: TAPCELL_X1 View: layout
 - c. Set placement status of fixed after placement enabling the Set as Fixed option.
- 3. Click **OK** to finish end cap placement.

-	Add End Cap				
Cells					
Pre End (Cap:				
Library:	OpenCellLibrary 📃				
Cell:	TAPCELL_X1				
View:	layout				
Post End	Cap:				
Library:	OpenCellLibrary 📃				
Cell:	TAPCELL_X1				
View:	layout				
🖉 Set as Fixed					
	OK Cancel				

7.1.3 Add Well Tap

TAPCELL_X1 is used for both well tap cell and end cap cells in this tutorial.

- 1. Invoke the **Placer** → **Add Well Tap** command.
- 2. In the Add Well Tap form, do the following:
 - a. Select an existing pre-defined TAPCELL_X1 by specifying: Library: OpenCellLibrary
 Cell: TAPCELL X1
 - View: lavout
 - b. Select End Abutment to add abutted well tap cells.
 - c. Set maximum distance gap to 25.0 um by specifying: Max Gap: 25.0 um Style: Alignment
 - d. Set placement status of fixed after placement enabling the Set as Fixed option.

3. Click **OK** to finish well tap and end cap placement.

	Add Well Tap				
Library:	OpenCellLibrary				
Cell:	TAPCELL_X1				
View:	layout				
💌 End A	Abutment				
Max	Max Gap: 25.0 um				
Style:	Alignment				
🔘 Stagger					
🖌 Set as Fixed					
	ОКС	ancel			

7.1.4 Mark Placement Status of Physical Cells

You can mark placement status of physical cells to prevent change due to automatic or manual operation.

- A cell with **Fixed** placement status cannot be touched by automatic tools like Row Placer, Legalization, etc. but it can be moved by manual editing features.
- A cell with **Cover** placement status cannot be touched by either automatic or manual editing features. You can only change its placement status.
- A cell with **Placed** or **Null** placement status can be touched by automatic or manual editing features.
- 1. Invoke the **CustomDigital** → **Mark Placement Status** command.
- 2. Fill in the Cell Types field and select one Placement Status.
- 3. Click **OK** to assign placement status to specified cell types.

- Mark Placement Status					
Cell Types TAPCELL*					
Placement Status Fixed Placed Cover Null					
Ар	ply OK	Cancel	Default		

You can use **Query** \rightarrow **Attribute** to see the placement status is successfully assigned.

7.1.5 PG Connection of Physical Cells

Power and ground ports of a physical only cell are floating because they are not defined during design import. An explicit procedure is needed to connect the power and ground ports to global PG nets.

- 1. Invoke the Router → Digital Router → Assign Instance Port to Net command.
- 2. Set Net Type to Power
- 3. Fill in both **Net** and **Port** fields as VDD
- 4. Select the **Cell Types** and **Names** options.
- 5. Fill in wildcard * for all cell types.
- 6. Click **Apply** to assign power nets to a physical cell by cell type.
- 7. Set Net Type to Ground.
- 8. Fill in both Net and Port fields as VSS.
- 9. Click **OK** to assign ground nets to a physical cell by cell type.

As	sign Instance Port to Net	Assign Instance Port to Net
Mode: Net Type: Net:	 Connect	Mode: Connect Disconnect Net Type: Global Power Ground Net: VSS
Port:	VDD	Port: VSS
 ♦ Instances ♦ Names: 	Cell Types	 ♦ Instances ♦ Cell Types ♦ Names:
♦ File:		↓ File: □
	Apply OK Cancel	Apply OK Cancel

You can use **Query** \rightarrow **Connectivity** to see if power and ground names are successfully assigned to power and ground ports.

8 Power Plan

8.1 Lab-6A: Create Core Ring and Stripe

In this lab, you will learn how to add core ring and stripe around a core area using the Custom Digital enhanced toolbox.

8.1.1 Introduction of PG Route Type

A SHAPE definition is used to specify a wire with special connection requirements because of its shape. This applies to vias as well as wires.

RING	Used as ring, target for connection
PADRING	Connects padrings
BLOCKRING	Connects rings around the blocks
STRIPE	Used as stripe
FOLLOWPIN	Connects standard cells to power structures
IOWIRE	Connects I/O to target
COREWIRE	Connects endpoints of follow pin to target
BLOCKWIRE	Connects block pin to target
BLOCKAGEWIRE	Connects blockages
FILLWIRE	Represents a fill shape that does not require OPC. It is normally connected to a power or ground net. Floating fill shapes should be in the FILL section.
FILLWIREOPC	Represents a fill shape that requires OPC. It is normally connected to a power or ground net. Floating fill shapes should be in the FILL section.
DRCFILL	Used as a fill shape to correct DRC errors, such as SPACING, MINENCLOSEDAREA, or MINSTEP violations on wires and pins of the same net.

PG routing for RING, STRIPE, FOLLOWPIN and COREWIRES are supported in Laker 2010.03 and later versions.

PG route type in DEF definition

- RING
- STRIPE
- FOLLOWPIN
- COREWIRE
- BLOCKWIRE
- IOWIRE

PG Route supports

- RING
- STRIPE
- FOLLOWPIN (including COREWIRE)

Dz.

8.1.2 Create Core Rings

Before creation of core rings, the ring structure, routing layer, width and offset spacing to core area should be planned. In addition, the total reserved distance between CellBdry and Row Area needs to be checked. If its value is not large enough to create the whole ring structure, the floor plan needs to be adjusted in advance.

1. Invoke the **Router** \rightarrow **Digital Router** \rightarrow **PG Route** command.

			PG Rout	te		
General	Core Ring	Block Ring	Block Wire	Stripe	Follow Pin	1
Global F	lule:		default		I Q	
Top Lay	er for Via Co	nnection:	metal4 [V]		Y	
Bottom I	_ayer for ∨ia	Connection:	metal1 [H]		Ā	
Extend S	Search Range	e by:	0			
	w Violations					
Ø S	ihow Violation	15				

The PG route is designed in non-blocking mode which allows interactive Laker operations.

- The **Apply** button of an action tab executes its dedicated parameters with global options in the **General** tab.
- The **Undo** button reverses the previous action.
- The **Close** button closes the form.
- 2. Select the **Core Ring** tab.

i			PG	Rou	te			
General	Core Ring	Block	Ring Block	Wire	Stripe F	ollow F	'in	
Net Name	Net Names (Inner to Outer): VDD VSS							
E Extend Inner Rings								
🔲 Unifor	rm V alue s							
	🔲 Lef	t	🔲 Right		🔲 Тор			Bottom
Layer:	metal2 [V]	Ā	metal2 [V]	Ā	metal1 [H]	4	metal1 (H] 🗵
Width:	0.8		0.8		0.8		0.8	
Spacing:	0.5		0.5		0.5		0.5	
Offset:	0.8		0.8		0.8		0.8	
								Apply
						Ur	ndo	Close

- 3. Fill in power and ground net names in the **Core Ring** tab by entering *VDD VSS* under **PG Route** → **Core Ring** → **Net Names**.
- 4. Click **Uniform Values** for rapid input of the same width, spacing and offset values.
- 5. Default setting of sides is all enabled for Left, Right, Top and Bottom.
- 6. Fill in your planned Layer, Width, Spacing and Offset for each Left, Right, Top, Bottom edges around Row Area.

Minimum spacing of fat metal is automatically checked and updated when a width is changed. After a width becomes smaller, it will not be restored back to the minimum value if the corresponding DRC spacing rule is satisfied.

The definition of four sides also applies to the Row Area in a polygon shape.

- 7. Click **Apply** to realize core ring creation.
- 8. Click **Close** to close the form or keep it for the next stripe creation.

885		الللجاد
		-+ 80
	+	
	+	
1 8 8 H	+	-+ 111
······		
		_
	 	
	 	- 1 111
3 H H		

The current function of core ring creation does not honor previously created ring structure. Repeated core creation might result in DRC violations and be removed.

8.1.3 Create Stripes

Before creation of stripes, you have to plan the stripe structure, routing layer, width and offset spacing within the core area.

- Routing layers usually follow routing preferred direction to save routing resources. Horizontal stripes use horizontal routing layers. Vertical stripes use vertical routing layers.
- Decide **Net Names** by bundled group members or single member. Define width and spacing between members of **Net Names**.
- Define a **Coordinates** by Start and End forms valid region to create stripes. It can be **Relative** or **Absolute** mode.
- Define repeat patterns by combination of Start, End, Groups and Step.
 - (Start, End, Groups) mode automatically calculates desired Step value between two consecutive net groups.
 - (Start, End, Groups, Step) mode creates repeated patterns from left to right (bottom-to-top) by Step values. End value is the most right (top) boundary to filter out non-valid stripes.
 - Default End value is the most right (top) edge of Row Area.
- 1. Invoke the **Router** \rightarrow **Digital Router** \rightarrow **PG Route** command again if it is closed.
- 2. Select the **Stripe** tab.
- 3. Fill in your planned **Net Names**, **Direction**, **Coordinates**, **Start**, **End** and **Groups** of **Positions**.

-	PG Route
General Co	re Ring Block Ring Block Wire Stripe Follow Pin
Net Names:	VDD VSS
Layer:	metal2 [V]
Width:	0.2 Spacing: 0.09
Direction:	
Coordinates	
Positions:	Start: 10 End: 10
	Groups: 3 Step:
🔲 Swap Ne	t Order
🔲 Shifting F	lange: 0
Extend to	Boundary
	Apply
	Undo Close

4. Click **Apply** to realize stripes creation.

5. Click **Close** to close the form.

9 In-Placement

9.1 Lab-7A: Row Placement

In this lab, you will learn how to create placement constraints and invoke row placement in a specified row area.

9.1.1 Preparation of Placement Constraint File

Row Placer provides rich placement constraints to control the placement result. It can support spare cell even distribution, net weight, group, placement effort, etc.

An initial placement constraint is provided and is a good start of study.

1. Invoke **Placer** → **Placement Constraint** command, type in constraint file name.

 Placement Constraint File 					
File:	placement.const				
💌 Inv	✓ Invoke Editor				
Tem	nplate OK Cancel				

2. Click Template to generate a template of placement constraint.

In this demo case, spare cells, NoFiller1 and Cell Index Aware flow will be enabled. A simple placement constraint is illustrated as follows.

```
##### Assign spare instances
.BeginSection Spare
*spare_*
.EndSection Spare
###### Cell-Index-aware placement
###### Use 'lakerCellIndexPlacementScore' to show the score of current
placement. #####
###### Cell index file format: #####
###### CellMasterName SingleScore AbutScore ######
```


.CellIndexFile OpenCellLibrary.cell_index

<pre># No Filler1 flow # FILL3 Cell is necessary for filler1 .NoFiller1</pre>	library preparation	to avoid	consecutive
<pre># Ignore via instances from gds .IgnoreMaster VIAGEN*</pre>	import flow		
#.PlacementEffort high			

9.1.2 Assign Placement Constraint File

1. Invoke the **Placer** \rightarrow **Placement Constraint** command, type in constraint file name.

 Placement Constraint File 					
File:	placement.const				
💌 Inv	voke Editor				
Terr	plate	ОК	Cancel		

2. Click **OK** to assign a placement constraint for placer related features.

9.1.3 Create Placement Blockage

If you want to protect some regions to avoid cell placement in these regions, you can add the PlacementBlockage (249:241) layer in the floor plan layout.

-	Layer Table Editor	
Layer Setting Category Set	tting	
User System	Main Attributes	A did
Select All	Layer Name: PlaceBlockage	Add
	Layer Number: 249	Delete
by metal10	Purpose Name:	
be metal10		
🗸 🔲 dg marker	Stream IO Attributes	Modify
V dg nodrc	□ Set Stream IO Mapping	
V D PinBorder	Stream Number: 249	
PlaceBlock	Data Type Number: 241	
PlaceBlockag	pe [249:241]	- Dioplay File -
SoftBdry	Drawing Attributes	Display File
Route Block	Group:	Load
Mark Dis Plasta in	Outline Color:	Save
TI BDevBd		Edit
TLRPadBdi		
	Fill Color:	
SoftPin	Stipple:	Preview
ShortErr		
V II R_Extent	Unify Outline and Fill Colors	
	Redraw Layout Window Immediately	
Save TF Default]ок	Cancel

9.1.4 Row-based Placement in SDL

- 1. Click the **Select All** icon in the design hierarchy browser pane to select all objects because the Laker system can support partial selection for implementation.
- 2. Invoke the **Design Brower** \rightarrow **Placement** \rightarrow **Row Placer** command.
- 3. Select the **Rule Set** according to the original routing layer plan. Available routing layers have an impact on congestion driven placement results. You can confirm in the **Router** → **Net Router** → **Rule** tab if necessary.
- 4. Fill in the **Constraint File** field with the file name of a placement constraint.
- 5. Click one Row area and apply **Design Brower** → **Placement** → **Row Placer** → **Estimate** to get the utilization rate calculated by placer engine.

X Row-based Placement	
🗖 Compact to 🐟 Leit	♦ Center ♦ Right
🔲 Honor Soft Pin Position	
Rule Set: default =	
Constraint File: placement.c	const 📃
Estimate	OK Cancel

6. Click one Row area and apply **Design Brower** → **Placement** → **Row Placer** → **OK** to finish row placement task.

|--|--|

It will take a longer time to explore a possible smaller size by enabling the option of **Compact to**. This option is useful for getting a compact design in a sparse initial floor plan and adjusting the floor plan by editing features.

10Post-Placement

10.1 Lab-8A: Post-Placement

In this lab, you will learn how to perform pin optimization, placement check, PG follow pin, core filler insertion.

10.1.1 Pin Optimization

This is an optional step and can be used if you want to optimize evenly distributed pins based on the new cell placement.

- Redo auto pin assignment again by removing edge distribution. The pin order and edge constraint are kept while pin placement is not evenly distributed.
- Redo auto pin assignment again without any constraints. The pin order and edge are decided by wire length minimization.
- Redo row placement by increasing net weight cost of I/O nets in placement constraint file.

#.NetWeight netName netWeight_int_1_to_50

- Use the Placer → Pin Placer → Optimize Pin Placement command for pin optimization.
 a. Set Scope as Top for top pins.
 - b. Enable Keep Pin Order without changing current pin order

- (Optimize Pin Placement
Scope:	🔵 Тор
	 Selected Cells
	 Selected Ports
🖌 Cons	ider Nets inside Cells
😿 Кеер	Pin Order
Pin Pitch	H 1 V 1 Track(s)
	OK Cancel

2. After this step, finish the task of pin optimization while keeping edge and order.

- 3. Click the **Undo** button to check the difference of results without keeping pin order.
- 4. Use the **Placer** → **Pin Placer** → **Optimize Pin Placement** command for pin optimization.
 - a. Set **Scope** as **Top** for top pins.
 - b. Disable Keep Pin Order without changing the current pin order.

— Optimize Pin Placement
Scope: 🔵 Top
Selected Cells
 Selected Ports
🗹 Consider Nets inside Cells
🗌 Keep Pin Order
Pin Pitch: H 1 V 1 Track(s)
OK Cancel

5. Click **OK** to perform pin optimization by only keeping edge constraint.

10.1.2 Check Placement

A placement check utility is to check cell placement in a row area, including cell overlap, legalization, filler1 gap, etc. It is useful especially for manual cell placement.

- 1. Invoke the **Placer** \rightarrow **Check Placement** command.
- 2. In the *Check Placement* form, enable the **NO Filler1 Space** option.
- 3. Click **OK** to check cell placement in a row area.

You can invoke **Verify** \rightarrow **View Error** to bring up an error view for review if a placement error is found.

10.1.3 Check Spare Cell Placement

Silicon ECO spare cells are automatic even spread during Row Placement procedure. These spare cells can be highlighted to make sure correct spare cell constraint is set.

- 1. Invoke Query → Spare Cell → Add to define spare cell groups.
- 2. In the Add Spare Cell form, do the following:
 - a. Set Group to spare_group
 - b. Set Instance to spare_*

_	Add Spare Cell
Group:	spare_group
🗌 Match C	ase 🛛 🗑 Regular Expressions
Instance:	spare_*
	Apply OK Cancel

3. In the Spare Cell form, click the spare cell name to highlight cell placement in a row area.

— Spare C	ell (8/16)		
☐ Match Case ✓ Regular Express Instance ✓	sions		Find
Spare Cell List Group by: 🔿 Group 🌒 Cell	Fit Selected Obj		
NAND2_X2			
Clear Add Delete	e Load	Save	Cancel

- Click Query → Spare Cell → Clear or F8 bind key to clear highlight of selected spare cells.
- 5. Click **Query** \rightarrow **Spare Cell** \rightarrow **Cancel** to close the form.

10.1.4 Connect PG Rails of Standard Cells

PG rails routing has an impact on routing resources and DRC checking in a limited layer design. It is recommended to finish PG rails before starting signal routing.

- 1. Invoke **Router → Digital Router → PG Route** command.
- 2. Select the Follow Pin tab.
- 3. Fill in Net Names as VDD VSS.

_				PG Rout	e		
-	J			10 Kout			
	General	Core Ring	Block Ring	Block Wire	Stripe	Follow Pin	(
	Net Nam	es: VDD VS	SS				Ā
	🔲 Enat	ole Layer Jun	ip with 1	Via A	Array(s)		
	ΠU	se Layers in	Non-preferre	d Direction			
	🔲 Exte	nd to Bounda	ry				
							Apply
						Undo	Close

4. Click **Apply** to realize stripes creation.

- 1			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 BF5-02	06542 B5542	
	8	IIII NIII NII	 		DIFFLICE	
- 1			ġ ─ ġ 		875.22 0FF.22	
					OFF.UI OFF.X	
			1.0.1.1	1 107.22 1000 1 100 1 10 1 1 1 1 1	INTERE I DIFFERENCE	
- 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A A A A A A A A A A A A A A A A A A A	
	B 11		 	#7-33 		
- 1	113					
	1				01732	
-			— 0FJ2 0FJ1	 - -		
11						
- 1	B ES .		1	#733 I		
	12					
•						
	12				A	
18	18		RH32 DEL2			1 1
						8.
						1 1 1
	15					
	13					- 11 11
		PT-22				- 11
						1 1 2 2
- 1	12	FEAZ		IFFAN I BIR I MFAN I R HA		- 18
		06522 06532	RUT OFEN FELS		DEFENSI	3
*		IFELS	8F22 0F22 0F22	FE/2 FE/2 06/2		1 H B -
	a di sa d					

5. Click **Close** to close the form.

If wire extension is blocked by end cap cells or tap cells, connect power and ground ports to power and ground nets with the Router \rightarrow Digital Router \rightarrow Assign Instance Port to Net command.

10.1.5 Add Core Fillers

Core filler insertion can be done before routing or after routing. The benefit of post-route insertion is to have better performance and database size without lots of core filler cells in an ASIC chip design. If the metal structure of core filler design is not simple, pre-route insertion is recommended to avoid potential DRC violations in advance.

A FILL3 cell is necessary in library preparation to avoid consecutive filler1 cells. One FILLCELL_X3 will be created for this tutorial.

1. Invoke the **Placer** \rightarrow **Add Filler Cell** command.

2. In the Add Filler Cell form, set filler cell names by specifying Filler Cell → FILLER*.

Mode:	🔷 Full Cell	💠 Area		
Filler Cel	l: FILL*			
			OK	Cancel

3. Click **OK** to finish core fillers insertion in a row area.

11 In-Route

11.1 Introduction

The Custom Digital router flow is a series of routing kernels executed in a pre-defined sequence for global router, track assignment, detail route, violation check, violation fix, and notch gap filling.

- Auto Route flow is recommended to serve most of typical designs.
- Primitive commands provide flexibility of routing procedure customization to fulfill different routing requirements. Usually, they are written in a script and executed in a batch.

11.2 Lab-9A: Auto Route

In this lab, you will learn how to easily finish routing most typical designs, analyze quality of results.

11.2.1 Auto Route

- 1. Invoke the **Router→ Digital Router → Digital Route** command.
- 2. In the Digital Router form, set up global options under the General tab.
- 3. Click the Global Rule icon to confirm available routing layers from metal1 to metal4

_	Digital Route	
Г	Settings	
	Applied Nets: Nets 🔄 📩	
	Ignored Nets: Nets I	
	Routing Area:	
	Global Rule: default 🝸 🔍	More>>
	General Advanced Net Priority Run Step R	eport
	Run Threads: Auto	
	Routing Track: Auto	
	☐ Spine Routing Pattern	
	🔟 Do Not Use Pins as Feedthrough	
	Via Settings	
	Via Enclosed by Pins Style of Vias: Single Via	<u> </u>
	Do Not Use Wire Touch Pins Via Pattern: Auto	<u> </u>
	Load Save Dump	Close

- 4. On the *Digital Router* form, select the **Run Step** tab.
 - a. Make sure Initial Route, Detail Route, Post Optimization and Notch Gap Fill procedures are enabled.
 - b. Enable Pattern option of Post Optimization. Set iteration to 1.

_	Digital Route
Г	Settings-
	Applied Nets: Nets 🝸 📩
	Ignored Nets: Nets
	Routing Area:
	Global Rule: default 1 @ More>>
	General Advanced Net Priority Run Step Report
	■ Initial Route
	Detail Route Iteration: 5 If On Track No Pushing
	Post Optimization Detour Iteration: 3 Pattern Iteration: 1 Align Via Edge
	Double Via Insertion
	Notch Gap Filling
	Default Apply
	Load Save Dump Close

5. Click **Apply** to complete auto routing tasks.

11.2.2 Routing Quality of Result

- Switch to the Router → Digital Router → Digital Route → Report tab for reporting several routing quality results.
 - a. Enable **Violations** and **Show Violations** options to bring up the Error Viewer if any DRC violations are found.
 - b. Enable **Connectivity** option to check routing connectivity.
 - c. Enable **Route Information** to report wire and via statistics. Double cut rate per layer can be reported this way.
 - d. Enable Jog information to get jog counts.
 - e. Enable **Corner information** to get checksum values per layer. It is a useful index to verify frozen layer checksum before and after automatic or manual ECO routing.

— Digi	tal Route	, -
Settings		
Applied Nets: Nets 🗹 🔭		
Ignored Nets: Nets		
Routing Area:		
Global Rule: default 🝸 💽		More>>
General Advanced Net I	Priority Run Step	Report
_ Options		
Design Information	🔲 Layout Data Validation	
Rule Information	Suggested Routing Pitch	
Route Information	Violations	
Connectivity	Sub-optimal Patterns	
☐ Nets with Detour Ratio >= 2.000	🔟 Antenna Rule	
Jog Information	Skip Primitive Violations	
Corner Information	Show Violations	
	Options:	
Output File:		
,		
		Apply
Load Save Dump		Close

- 2. Click Apply to complete router verification tasks.
- 3. Select the **Router** → **Digital Router** → **Digital Route** → **Close** command to close the Digital Route form.

11.2.3 Antenna Check and Fix

Antenna rules and pin information are necessary to check and fix antenna violations. Refer to sections 3.2 and chapter 4.2.4 for more detailed information.

- 1. Invoke **CustomDigital** → **Antenna DRC** script for reporting antenna violations.
 - a. Set File Name as AntennaCheck.rpt
 - b. Set Metal Ratio Margin to -20
 - c. Set VIA Ratio Margin to -5

Usually, a small margin of antenna rules is set to eliminate iterations due to minor mismatch of calculations between routers and signoff tools.

	Antenna DR	c
File Name:	[AntennaCheck.rpt	
Metal Ratio Margin:	[-20	
Via Ratio Margin:	[-5	_
	_ Fix Antenna	
	Show All	
	Apply	OK Cancel Default

d. Click Apply to check antenna rules.

Several side metal cumulative antenna violations are found. An error browser is automatically invoked to review these violations.

SYNOPSYS[®]

	Q TR 91 1 IOBJI SI	0 X 18.01	Y 45.23	DX 18.01	DY: 4523	Cred Selecting	
in a word war		A	E P P BA	M 🗮 Instanc	e • 🖬 🖸		
- View Errors	vlog_in:Divide	[vio_drc]	0 cf 0 144			- Rule Set detaut	10
Content Setting					The second s		Mult - 2 Mult
Major Types -		in the second					Service Service
metal2_ANTEN	INA -	FRAI		1 1000			Drawingset •
metals ANTEN	NA NA	Datal					dg marter
TE Indeans_Anticia		UC(dl.)	let ha			I Stanning	ay nore
	13	6	13. 31		2 2		lot loost
Hint materia data	ANTER ANTER				and the second second		I da lovat
Time Junior (inc	signeen strate.		8 8	11 12 12	2 2 3	1 S - 1	Int Invet
-Minor Types -				S 1 1 1 15	1 1 1 S 1		C'ilda lvta
84-1(2)		Fit All					Eline vop
P4-2(1)			13.	TEEX2 L	5		Cida Ivin
P4-4(1)				allowing the second			Ent lum
-			***********	******			dg active
1.1.1.1	Called MI I	of rat	Dist.	X2	FF_X2		Int active
1 or 2							dg ningbet
			l l	Der wa	1/ 1-	T HOLE	do pinusient
					فتقدعه وإيد		Bas pow
Reset	Cancel	Hide				and service and se	nt poly
		in the second	AFF XS		AFE V		be poly
		3 3			Di F		dg Péck
	1000 0000						K dg contact
							nt contact
							a metal
						81	12

e. Enable the **Fix Antenna** option to fix existing antenna violations.

	Antenna DRC	·
File Name:	[AntennaCheck.rpt	
Metal Ratio Margin:	-20	
Via Ratio Margin:	-5	
	🗑 Fix Antenna	
	Show All	
	Apply	OK. Cancel Default

f. Click **OK** to fix antenna rules.

Antenna violations are fixed now after antenna fixing.

11.3 Lab-9B: Congestion Analysis

In this lab, you will learn how to perform congestion analysis and review congestion map.

11.3.1 Remove Signal Routing (optional)

Delete existing signal routing by invoking the Router \rightarrow Digital Router \rightarrow Delete Route command if necessary.

_	Dele	ete Route	
🔲 Ву Туре			
🔲 Signal Nets			
🔲 Notch Meta			
🔲 PG Nets			
🔜 Ring	🛄 Stripe	📕 FollowPin	IOWire
🛄 PinConn	🛄 BlockWire	CoreWire	
🔲 By Name:			
		Apply	OK Cancel

The **CustomDigital** \rightarrow **Delete Route All By** \rightarrow **Name** script can be used to delete existing nets which are not created by the router. It is a fast script to remove all routing signals by traversing property or names.

_	Delete Route All								
Net Names:	I*								
Ignored Net Names	VDD VSS								
Match Mode	Property&Name Find								
A	pply OK Cancel Default								

11.3.2 Congestion Analysis and Map

Post-placement congestion map can be rapidly analyzed by global route kernel. This feature is useful for manual placement of high performance designs. You can also review the congestion map whenever a highly congested design is reported after automatic row placement.

- 1. Invoke Router \rightarrow Congestion Analysis command.
- Check the available routing layer settings of Rule Set with the Router → Digital Router
 → Rule Setting command.
- 3. Enable **Display Congestion Map** option.
- 4. Click **Apply** to analyze global route congestion and display the color map on layout window.

The congestion map is displayed in different color by capacity range definition. Negative values mean the estimated routing is overflowed based on the given floor plan and routing setting.

- 5. After reviewing the congestion region, disable **Congestion Analysis** → **Display Congestion Map**.
- 6. Select the **Congestion Analysis** \rightarrow **OK** button to close the congestion map.

Here are a few methods to solve the issue of routing congestion.

- Add placement blockage to relax hot spot of local congestion.
- Adjust floor plan aspect ratio and size
- Adopt fine power stripes or hierarchical mesh in power plan

12 Timing Driven Flow

12.1 Introduction

The Laker timing driven CDPR window is a dedicated working window for timing driven related features, including parasitic extraction, delay calculation, static timing analysis, clock tree synthesis, timing optimization, and interactive ECO.

- Add a configuration file to define RC table, timing library, timing constraints and timing analysis views.
- A recommended implementation flow is provided to serve most of typical designs.
- Timing driven CDPR In-memory database can be synchronized back to Laker database for milestone check points.
- Individual features provide flexibility of procedure customization to fulfill different requirements.

Integrated APR Window for Timing Driven flow

12.2 Lab-10A: Configuration Setup

In this lab, you will learn how to set up timing configuration for timing driven CDPR window.

12.2.1 Prepare Data

A configuration file is used to define the RC table, timing library, timing constraint and timing analysis views.

If you have only need net based optimization without RC table, timing library and constraint files, you can create an empty configuration file.

Here is an example of configuration file named *Divide_timing_cfg.tcl*. Two analysis views are defined for slow and fast timing libraries.

```
set rcTable ../source/technology/OpenCellLibrary_x2d.rcTbl
set normalSdc ../source/constraint/Divide.sdc
set fastLib { ../source/liberty/NangateOpenCellLibrary_fast_conditional_nldm.lib }
set slowLib { ../source/liberty/NangateOpenCellLibrary_slow_conditional_nldm.lib }
readRCTable -rcTable "$rcTable $rcTable" -rcGroup { slowRC fastRC }
initializeRc -rcGroup { slowRC fastRC }
readLib $fastLib
readLib $slowLib
createLibGroup -libGroup worstGroup $slowLib
createLibGroup -libGroup bestGroup $fastLib
readSdc -sdcGroup normalGrp $normalSdc
addView normalSlowView -rcGroup slowRC -libGroup worstGroup -sdc normalGrp
addView normalFastView -rcGroup fastRC -libGroup bestGroup -sdc normalGrp
# Check Active Timing View
setActiveView -enable -all
```

```
listViews
```

- 1. Invoke the LakerAPR → Prepare Data command.
- 2. Set Configuration File as ../source/constraint/Divide_timing_cfg.tcl
- 3. Set Routing Track to User
- 4. Disable ECO option.

	Prepare Data			\mathbb{X}
LEF Library:	OpenCellLibrary			
Design Library :	vlog_in			
Top Cell Name:	Divide	-		
Configuration File:	./source/constraint/Divide_timing_cfg.t	cl		
<u>R</u> outing Track:	User	<u>¥</u>		
ECO				
-	OK	an	cel].

5. Click **OK** to start data preparation from schematic and layout views.

A new timing driven CDPR window is opened for timing driven related features. Laker windows are locked to prevent database inconsistence issue.

SYNOPSYS°

A new timing driven CDPR Command and Message window is also opened for timing driven related messages and commands.

-			LakerAP	R Command/M	lessage Windo	w				
	381	Analysis viev 'no	ormalSlovViev' is	added successful	ly.				7	
	382	==>Command 'addVi	iew' execution ok:	sy (cpu_time: 0.0)	02s, elspsed_time	. 0s)				
	383	(proc_size: 207ME	delta_proc_size	e: 2MB, ics_alloc	nen: 12MB, delta	_ics_alloc_mem:	2MB)		I	
	384	44 JS CMD: addView normalFastView -rcGroup NOM -libGroup bestGroup -sdc normalGrp								
	35 CMD. addView normalFastView -rcGroup NOM -libGroup bestGroup -sdc normalGrp 385 WADIND: No operating conditions specified. Ignore k-factor realing 387 Analysis view 'normalFastView' is added uncessfully. 388 +solomand' inddYiew' execution okay (cpu_time 0.001s, elapsed_time: 0s) 399 (proc_size: 20786, delta_proc_size: 0MS, ics_alloc_mem: 1205, delta_ics_alloc_mem: 0MS) 390 mtats(university).clip).									
	305 (DD. addView normalFastView - redocup NOM -LibGroup bestGroup -sdc normaDGp 305 (MANING No operating conductors specified. Ignore: K-factor scaling 307 Analysis view 'normalFastView' is added successfully. 388 =siGmamad 'addView' execution dAky (rog_line 0 Ouls, alapsed_time: 05) 390 (proc_size: 2070B, delta_proc_size: OMB, ics_alloc_mem: 120B, delta_ics_alloc_mem: 00B) 300 (proc_size: 2070B, delta_proc_size: OMB, ics_alloc_mem: 120B, delta_ics_alloc_mem: 00B) 300 (proc_size: 2070B, delta_proc_size: OMB, ics_alloc_mem: 120B).									
	LakerAPR Command/Message Window 381 Analysis view "normalsEnvoview" is added successfully. 381 Analysis view "normalsEnvoview" is added successfully. 382 (proc_size: SDNM). delta_proc_size: SDN, ics_alloc_man. (DND). delta_ics_alloc_man. (DND) 383 (proc_size: SDNM). delta_proc_size: SDN, ics_alloc_man. (DND). delta_ics_alloc_man. (DND) 384 (MANINO. No operating conditions sprified Igners h-factor scaling 389 (proc_size: SDNM). delta_proc_size: SDN, ics_alloc_man. (DND) 389 (proc_size: SDNM). delta_proc_size: SDN, ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDN, ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (DND). delta_ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (DND). delta_ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (DND). delta_ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (DND). delta_ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (DND). delta_ics_alloc_man. (DND) 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (SNDM). delta_proc_size: SDNM). delta_proc_size: SDNM 380 (proc_size: SDNM). delta_proc_size: SDNM, ics_alloc_man. (SNDM). delta_proc_s									
	 (proc_size: 20700. delta_proc_size: 2000. ics_slloc_mem. 12000. delta_ics_slloc_mem: 2000) (2000. sddView normalFastView -redroup NOM -liböroup bestöroup -sdc normalOrp (2000. sddView normalFastView' is added successfully. (2000. sddView normalFastView is added successfully. (2000. sddView normalFastView' is added successfully. (2000. sddView normalFastView is added successfully. (2000. sddView) 						I			
	389	(proc_size: 207ME	delta_proc_size	e: OMB, ics_alloc	_mem: 12MB, delta	_ics_alloc_mem:	OMB)		I	
	309 (proc_size: 207mb, delta_proc_size: 0mb, ics_ailoc_mem: idmb, delta_ics_ailoc_mem: 0mb) 390 301(rm: asticticaViau _acable _all								I	
	391	CMD: setActiveVie	ev -enable -all						I	
	392	2 ==>Command 'setActiveViev' execution okay (cpu_time: 0.001s, elapsed_time: 0s)								
	392 ->Comand 'setActiveViev' execution okay (cpu_time: 0.001s, elapsed_time: 0s) 393 (proc_size: 207MB, delta_proc_size: 0MB, iss_slloc_mem: 12MB, delta_ics_slloc_mem: 0MB) 394								I	
	334	4 5 AMB: listWiene								
	395	CMD: 115CV16V5								
	396		Mint ib farmer	Martikar					I	
	200	476A	witerpoisedb	Recreated	suc oroop	VCCTAG			I	
	200	and a later of the second s		un ve ko en e		Rature / Hold			I	
	381 [Analysis view rozsalElowiew is added successfully. 302 =>>Coundant 'addview recurstin oksy (pug time. 0.002s, elapsed_time. 0s) 303 [proc_size: 20780. delta_proc_size: 200. is_slloc_mem. 1200. delta_ics_slloc_mem. 200) 304 [proc_size: 20780. delta_proc_size: 200. is_slloc_mem. 1200. delta_ics_slloc_mem. 200) 305 [ADD: addView normalFastView '.cofcoup NOM ~lbdoroup betGroup -sdc normalGrp 306 [MANIMO No operating conditions specified. Ignore. K-factor scaling 307 [proc_size: 20780. delta_proc_size: 000, is_slloc_mem. 1200. delta_ics_slloc_mem. 000) 308 [avocamad 'addView recruction oksy (pug time: 0.001s, elapsed_time: 0s) 309 [proc_size: 20780. delta_proc_size: 000, is_slloc_mem. 1200. delta_ics_slloc_mem. 000) 309 [proc_size: 20780. delta_proc_size: 000, is_slloc_mem. 1200. delta_ics_slloc_mem. 000) 309 [proc_size: 20780. delta_proc_size: 000, is_slloc_mem. 1200. delta_ics_slloc_mem. 000) 309 [proc_size: 20780. delta_proc_size: 000, is_slloc_mem. 1200. delta_ics_slloc_mem. 000) 309 [proc_size: 20780. delta_proc_size: 000, is_malloc_mem. 1200. delta_ics_slloc_mem. 000) 309 [proc_size: 20780. delta_proc_size: 000, is_malloc_mem. 1200. delta_ics_slloc_mem. 000) 309 [proc_size: 20780. delta_proc_size: 000, is_malloc_mem. 1200. delta_ics_slloc_mem. 000) 301 [strivere 302 [strivere 303 [strivere 304 [strivered] 305 [strivere 306 [strivered] 307 [strive 308 [strivered]								I	
	400	NOTRALF SSCATES	peacoroup	pescoroup	normatorp	secup / Hoid			J	
	400	Wiama . 0							1	
	403	webCommand (list)	lieve' execution	kay (con time: 0	003a, elanaed tri	NA: (0.5)			1	
			secoción (way (cho_crue: 0.					3	

12.3 Lab-10B: Net Optimization

High fan-out nets and long distances are common in top-down RTL logic synthesis flow or schematic entry from scratch. For those designs without an RC table, a liberty timing library, or SDC timing constraints, a net optimization flow is provided based on logic information only in the Timing Driven-CDPR Window.

If you have a full set of timing libraries and constraints, the timing driven flow in the next section is recommended.

12.3.1 Fan out Based Optimization

- 1. Invoke the customized script from the CustomDigital → Optimize Net Fanout command and set up the form as follows:
 - a. Select the Mode as Auto
 - b. Set the **Exclude List** field to *VSS
 - c. Set the **Buffer Type** field to *BUF_X2*
 - d. Set the Max Fanout field to 32
 - e. Disable the Report Nets Above Threshold Only option.

You can enable this option to report a netlist first and set an active netlist with **Mode** of **List** or **File**.

- f. Enable the Verbose option for more messages.
- g. Enable the **PostRoute** option.

	Optimize Net Fanout 💷 🛄 💥
Mode:	
🔶 Auto	
💠 List:	
💠 File:	
Exclude List:	*VSS
Buffer Type:	BUF_X2
Max Fanout:	32
🔲 Report Net	s Above Threshold Only
📕 Verbose	
FostRoute	
, 	Apply OK Cancel

2. Click the **OK** button.

You can find *HFN* instances for inserted buffers.

12.3.2 Length Based Optimization

- 1. Invoke the customized script from the **CustomDigital** → **Optimize Net Length** command and set up the form as follows.
 - a. Select the **Mode** as Auto
 - b. Set the **Exclude List** field to *VSS
 - c. Set the Buffer Type field to BUFX2
 - d. Set the Length(um) field to 100
 - e. Disable the **Report Nets Above Threshold Only** option.

You can enable this option to report a net list first and set an active net list with **Mode** of **List** or **File**.

- f. Enable the Verbose option for more messages.
- g. Enable the **PostRoute** option.

	Optimize Net Length 🛛 🗌	X
Mode:		
🔶 Auto		
💠 List:		
💠 File:		
Exclude List:	*VSS	
Buffer Type:	BUF_X2	
Length(um):	100	
🔲 Report Net	s Above Threshold Only	
📕 Verbose		
FostRoute		
	Apply OK Cancel	1

2. Click the **OK** button.

You can find *LEN* instances for inserted buffers.

The naming convention of inserted buffers is **HFN** for *optimizeNetFanout* and **LEN** for *optimizeNetLength*.

12.3.3 Level Based Optimization

Level based net optimization is a bottom up approach of high fan-out net synthesis. The level specification format is defined as follows.

.NetName <net_name>
.Level <number> MaxFanout <number> BufType <buffer_name>
Level based optimization
.NetName CLK_dly
.Level 1 MaxFanout 8 BufType BUF_X4
.Level 2 MaxFanout 8 BufType BUF_X4
.Level 3 MaxFanout 16 BufType BUF_X2

- Invoke the customized script from the CustomDigital → Optimize Net Level command and set up the form as follows:
 - a. Enter ../source/constraint/Divide_net_level.spec in the File text field.
 - b. Enable the **Verbose** option.

Optim	ize Net Level		
/source/cor	nstraint/Divide_n	et_level.spe	: 🗾
e			
	Apply	ок	Cancel
	Optim /source/cor e	Optimize Net Level ./source/constraint/Divide_n e Apply	Optimize Net Level ./source/constraint/Divide_net_level.spec e Apply OK

2. Click the **OK** button.

12.4 Lab-10C: Timing Driven CDPR Window

12.4.1 Report Timing Path and Constraint

Multiple mode multiple view (MMMV) timing analysis is supported. Timing violations can be analyzed to clarify false paths or multiple cycle paths before timing optimization.

- 1. Invoke the **Timing** \rightarrow **Report Timing** command.
- 2. Enable the **Setup time** and **Hold time** of **Delay Type** options.

SYNOPSYS[®]

Repo	ort '	Timing			-	
Delay Type:		Setup Tir	ne 🔳	Hold 7	lim e	
From List:						
To List:						
Max Paths:						
Output File:						
🗐 Highlight						
Propagated Clock:	\$	On	Ŷ	Off		
Zero-wire-load Model:	Ŷ	On	\$	Off		
			OK	Ci	ancel	

Delete existing signal routing by invoking the **Router** \rightarrow **Digital Router** \rightarrow **Delete Route** command if necessary.

 Click OK to analyze all active timing views. Both timing paths of setup time and hold time has violations by previous non-timing driven flow.

	LakerAPR C	ommand/Mess	age Win	dow			
1369	Path Type: min						
1370	Analysis View: normalFastView						
1371	Point	Fanout	Čan.	Trans	Teer	Path	
1373			~~p	*******			
1374	clock CLK (rise edge)				0.000	0.000	
1375	(LK (mod Divide)			0.000	0.000	0.000 r	
1376	CLK (net)	95	0.122				
1377	1236/CK (cell DFF X1)			0.000	0.014	0.014 r	
1378	1236/0 (cell DFF_X1)			0.067	0.109	0.121 r	
1379	N3251 (net)	5	0.010				
1380	1423/D (cell DFF_X1)			0.067	0.000	0.122 r	
1381	data arrival time					0.122	
1382							
1383	clock CLK (rise edge)				0.000	0.000	
1384	CLK (mod Divide)			0.000	0.000	0.000 r	
1385	CLK (net)	95	0.122				
1386	1423/CK (cell DFP_X1)			0.000	0.032	0.032 r	
1387	library hold time				0.132	0.164	
1388	data required time					0.164	
1389							
1390	data arrival time					0.122	
1391	data required time					-0.164	
1392							
1393	slack (VIOLATED)					-0.042	
1394							

To get an overview of timing design slack and design rule, the slack of all end points, max capacitance, max transition time and max fanout load can be reported.

4. Invoke the **Timing** → **Report Slack and Constraint** command.

-

3

- 5. Enable the Setup time, Hold time and Slack on End Pin/Ports of Report Slack options.
- 6. Enable the Max Capacitance, Max Transition and Max Fanout of Report Constraint options.

Report Slack and Constraint
-Report Slack
🗖 Setup Time 📕 Hold Time
Report Slack on Start Pins/Ports
Report Slack on End Pins/Ports
Threshold:
Report Constraint
E Report Max Capacitance
E Report Max Transition
E Report Only Max Fanout
Threshold: 0
Output File:
OK Cancel

7. Click **OK** to analyze all active timing views.

	LakerAPR Command/Message Window	I I I
1451	# Pin : ending	4
1452	1	
1453	# pinName (RiseSlack, FallSlack)	
1454	does not consider CRPR ***	
1400	/ 940.0 (940.0) (70.000.0	
1453	1415/0 (-0.010, 0.050)	
1459	1429/0 (-0.020, 0.050)	
1459	1425/D (-0.038, 0.050)	
1460	1427/D (-0.036, 0.052)	
1461	I431/D (-0.035, 0.052)	
1462	1421/D (-0.034, 0.054)	
1463	1433/0 (-0.034, 0.053)	
1464	1419/D (-0.028, 0.060)	
1463	1417/D (-0.021, 0.066)	
1467	1665/ _ 0.005 _ 0.072 }	
1468		
1469	NrCandidators = 119. NrVioPaths = 12. Total Slack = -0.370. Average Slack = -	0.031
1470		
1471		
1472	Report : constraint	
1473	-mamTapacitance	
1474	-maxTransition	
1475	Design : Divide	
1478	Version Bb.test	
1470	nere : Two Jor 1 20:55:46 5011	
1479		
1480		
1401		
1482	Max Capacitance	
1483		
1484	Analysis View Total Negative Slack	
1405		
1486	normalSlovView 0.0000 (MET)	
1487	normalFastWiew 0.0000 (MET)	
1405		
1		

12.4.2 Recommend Implementation Flow

A recommended implementation flow is ready to use for most typical designs. Major standard steps of timing driven procedures can be enabled or disabled. The benefit is an ease of use environment to handle timing driven blocks by mixed layout designers.

- 1. Invoke the LakerAPR \rightarrow Implementation command.
- 2. Assign Constraint File of Clock Tree Synthesis to ../source/constraint/setCTSOption.tcl

SYNOPSYS[®]

Implementation
Pre-placement Optimization
Placement Timing-driven Placement
Congestion Effort Low , High
Clock Tree Synthesis
Constraint File: ./source/constraint/setCTSOption.tcl Browse
Post-CTS Optimization
Routing Timing Driven Routing Violation Fix Iteration:
Post-route Optimization
Final Process Filler Cell Master: Filler with Metal Cell Master: Instance Power Pin Name: Instance Ground Pin Name:
E Report
Design Report Clock Tree Report
Optimization Effort: 💠 Low 💠 Medium 💠 High
OK Cancel

- 3. Click **OK** to finish all selected steps.
- 4. Analyze slack and constraint again by Invoking Timing → Report Slack and Constraint command.

	LakerAPR Command/Message Window	1
3876	s	_
3877	# Report : design slack	
3878	# Version: DB. test	
3879	# Date : Thu Jul 7 20:47:42 2011	
3880	# Type : setup	
3881	# Pin : ending	
3882	*	
3883	# pinNome (RiseSlack, FallSlack)	
3884	# *** does not consider CRPR ***	
3885	\$	
3886		
3887	NrCandidators = 119, NrVioPaths = 0, Total Slack = 0.000, Average Slack = 0.000	
3888		
3889	2	
3890	# Report : design slack	
3891	# Version: DB.test	
3892	# Date : Thu Jul 7 20:47:42 2011	
3893	# Type : hold	
3894	# Pin : ending	
3895	\$	
3896	# pinName (RiseSlack, FallSlack)	
3897	# *** does not consider CRPR ***	
3898	#	
3899		
3900	NrCandidators = 119, NrVioPaths = 0, Total Slack = 0.000, Average Slack = 0.000	
3901		
3902	***************************************	
3903	Report : constraint	
3904	-maxCapacitance	
3905	-modification	
3906	Design : Divide	
3907	Version: DB.test	
3908	Date : Thu Jul 7 20:47:42 2011	
2000		
3909		

5. Invoke the **Timing** → Write SPEF command to create a SPEF file for post-layout timing analysis.

12.5 Lab-10D Realize Timing Driven CDPR Implementation

12.5.1 Synchronize Database

After analyzing the timing slack and constraints, you can update the timing driven CDPR implementation database back to the Laker database.

Invoke the File → Close command to finish the APR tasks and close the timing driven window.

The new optimized netlist (sizing, clock tree buffer, buffer insertion) and new layout will be updated to the current cell view.

- Save Confirmation					
The design has been modified. Do you want to save your changes?					
Save	Discard Cancel				

Export the post-layout hierarchical Verilog file CCU_apr.v by invoking the File → Export → Verilog command from the main window.

	Export Verilog	- L	
Library:	Cell:	View:	
vlog_in	Divide	schematic	
digitalADP foo sourceADP vlog_in vlog_in_opt	Divide	🖓 schematic	
Filter:	Filter:	Filter:	
Output File: Divide_apr.v			
Call by: 🔷 Name 🛛 💠 Positio	n		
🗖 Expand Bus 🔤 Expa	and Bundle Ports		
Ignore verilogStop			
Hidden Port as: 💠 Input 🔹 🔶 InOut			
Max Characters per Line: 128	-		
-		Apply OK Cancel	

3. Use the **CustomDigital → Change Reference View** command to solve master mismatch issues if necessary.

LakerOA DEF In has a new keyword to define the priority of the reference view list in the *laker.rc* file. The master mismatch issue can be automatically solved in LakerOA.

12.6 Lab-10E Post Layout Timing ECO

The Laker system can export hierarchical Verilog files and SPEF files for post-layout timing analysis. Third party tools can conduct RC extraction based on the physical database using LEF/DEF or stream files.

PrimeTime provides what-if analysis and timing ECO change files. For example:

pt_shell > write_changes -format icctcl Divide_icc_pt_eco.tcl

1. Invoke the LakerAPR \rightarrow Prepare Data command.

	Prepare Data 🛛 🗆 🔀
LEF Library:	OpenCellLibrary
Design Library :	vlog_in
Top Cell Name:	Divide
Configuration File:	/source/constraint/Divide_timing_cfg.tcl 📃
<u>R</u> outing Track:	User <u> </u>
ECO	
	OK Cancel

- 2. Click the **OK** button to start data preparation from the schematic and layout views.
- 3. Finish the post-layout timing ECO by invoking the **CustomDigital** → **PrimeTime ECO** command.

Pri Pri	meTime EC(C	
File:/source/script	/Divide_icc_pt	_eco.tcl	
📕 ECO Route			
	Apply	ок	Cancel

13 Other Topics

13.1 Lab-A1: LEF/DEF Flow in Laker DB

In this lab, you will learn how to go through a LEF/DEF flow in Laker DB custom digital environment.

13.1.1 Introduction

LEF/DEF flow from a third party tool is also supported in Laker DB. However, there are differences from the Laker SDL flow. The differences are as listed below.

- MACRO cell layout geometry is from a LEF file by Import LEF. It is stored in an abs (abstract) view.
- Advanced routing rules are not supported by Import LEF yet. They are defined in the same tfNetRouteRule section as Laker SDL flow in DB.
- A TF/LEF library of OpenCellLibrary_lef is created by Import LEF.
- A floor plan DEF generated from a third party tool is imported by Import DEF with referring to *OpenCellLibrary_lef*.
- No logic view is created after Import DEF. Therefore, partial selection and realization from the *design hierarchy browser* pane is not supported.
- Row placement of existing cells in Layout Window can be done by **Placer → Place All**.
- Route Vias have higher priority than MCells for routing if both of them are available.
- Both Edit \rightarrow Others \rightarrow Change Via and Trim Wire are supported.
- Export Stream will not export the abstract cell view. You can turn on Export Stream → Advance → Export Abstract Cell View: All or Via Only to export them.

13.1.2 TF/LEF Library Creation

SYNOPSYS[®]

- 1. Create a TF/LEF library by invoking the **File** \rightarrow **Import** \rightarrow **LEF** command.
- 2. In the Import LEF form, do the following:
 - a. Assign **Design File** to *OpenCellLibrary.lef* for importing MACRO cell layout geometry.
 - b. Assign Library Name to OpenCellLibrary_lef
 - c. Assign Technology File to OpenCellLibrary.tf
 - d. Enable the **Create Pin Name as Text** option and assign the associated **Text Font Height** to 0.02.
 - e. Assign Layer Map File to lef_layer.map.
- 3. Click **OK** button to finish importing a LEF design.

	Import LEF				
Design File:	esign File: ./source/library/OpenCellLibrary.lef				
Top Cell Name:					
Run Directory:					
Library Name:	OpenCellLibrary_lef				
Technology File					
ASCII File:	/technology/OpenCellLibrary.tf				
🔿 Technology Li	🔿 Technology Library:				
💌 Create Pin Nan	ne as Text				
Text Layer Name: Purpose Name:					
Text Font Heig	Text Font Height: 0.02				
🗌 Snap Vertices	to Min Grid Resolution				
🛛 Overwrite Dupl	icated Information				
□ Invoke Batch Mode					
Cell Map File:					
Layer Map File:	/source/map/lef_layer.map				
Log/Error File:					
Apply OK Cancel					

13.1.3 DEF Library Creation

- 1. Create a DEF design library by **File** \rightarrow **Import** \rightarrow **DEF**.
- 2. On the *Import DEF* form, do the following:
 - a. Assign **Input File Name** to *Divide_pl.def* for importing third party floor plan.
 - b. Assign Library Name to def_in
 - c. Assign Technology File to OpenCellLibrary_lef
 - d. Enable the **Create Pin Name as Text** option and assign the associated **Text Font Height** to 0.2.

V Import DEF 📃 🗆 🗙				
Input File Name:				
Run Directory: Awork/route/ocdk/tutorial/work_lef				
Library Name: def_in				
Technology File				
♦ ASCII File:				
Attach to Library: OpenCellLibrary_lef				
Options Sections				
🗇 Define Cell Boundary Layer				
Layer Name: Purpose Name:				
☐ Create Net Name as Text				
Text Layer Name: Purpose Name:				
Text Font Height: 1.0				
Treate Pin Name as Text				
Text Layer Name: Purpose Name:				
Text Font Height: 0.2				
Update Top Cell with Incremental Mode				
Create Instance Connection Information				
□ Snap Vertices to Min Grid Resolution				
☐ Merge Continuous Wires to a Single Route				
☐ Invoke Batch Mode				
Log/Error File:				
Apply OK Cancel				

3. Click the **OK** button to finish importing a DEF design.

13.2 Lab-A2: LEF/DEF Flow in Laker OA

In this lab, you will learn how to go through a pure LEF/DEF flow in the Laker OA custom digital environment.

13.2.1 Introduction

LEF/DEF flow from a third party tool is supported in Laker OA. However, there are differences from the Laker SDL flow. The differences are as listed below.

- Advanced routing rules and MACRO cell layout geometry are supported from a LEF file by Import LEF.
- A LEF library OpenCellLibrary_lef is created by Import LEF.
- A floor plan DEF generated from a third party tool is imported by Import DEF with referring to *OpenCellLibrary_lef*.
- No logic view is created after Import DEF. Therefore, partial selection and realization from the *design hierarchy browser* pane is not supported.
- Row placement of existing cells in Layout Window can be done by Placer → Place All.
- Route Vias have higher priority than MCells for routing if both of them are available.
- Both Edit \rightarrow Others \rightarrow Change Via and Trim Wire are supported.
- Export Stream will not export the abstract cell view. You can turn on Export Stream → Advance → Export Abstract Cell View: All or Via Only to export them.

٠

Other Laker technology file sections can be updated by using the Library → Technology File Import → Replace command. Database unit must be exactly the same in Laker technology file and LEF files. For example:

```
# database unit definition in OpenCellLibrary.lef
UNITS
  DATABASE MICRONS 2000 ;
END UNITS
MANUFACTURINGGRID 0.005 ;
# database unit definition in OpenCellLibrary.tf
tfLayoutSystemUnit {
  userUnit
                             micron
  dbScale
                       0.0005
  dbResolution
                       0.0050
 xGridSpacing
yGridSpacing
majorGridRatio
                       0.0050
                       0.0050
                       5
  gridType
                             Dot
}
```

13.2.2 LEF Library Creation

- 1. Create a LEF library by invoking the **File** \rightarrow **Import** \rightarrow **LEF** command.
- 2. In the Import LEF form, do the following:
 - a. Assign **Design File** to OpenCellLibrary.lef Assign **Library Name** to OpenCellLibrary_lef.
 - b. Assign **Technology File** to *None*.
 - c. Enable the **Create Pin Name as Text** option and assign the associated **Text Font Height** to 0.02.
 - d. Assign Layer Map File to lef_layer.map.

3. Click the **OK** button to finish importing a LEF design.

_	Import LEF			
Design File:	/source/library/OpenCellLibrary.lef			
Run Directory:				
Library Name:	OpenCellLibrary_lef			
Cechnology File				
🔿 Technology L	ibrary:			
None				
🖌 Create Pin Nan	ne as Text			
Text Layer Nar	ne:			
Text Font Heig	ht: 0.02			
🗌 Invoke Batch Mode				
Layer Map File:/source/map/lef_layer.map				
Log/Error File:				
	Apply OK Cancel			

13.2.3 DEF Library Creation

- 1. Create a DEF design library by **File** \rightarrow **Import** \rightarrow **DEF**.
- 2. On the Import DEF form, do the following:
 - a. Assign **Input File Name** to *Divide_pl.def* for importing a third party floor plan.
 - b. Assign Library Name to def_in.
 - c. Assign Technology File to OpenCellLibrary_lef.

_	Impo	ort DEF					
Input File Name:	utorial/so	ource/design/Divide_pl.def					
Run Directory:	g/work/r	oute/ocdk/tutorial/work_oa					
Library Name:	def_in						
C ASCII File:							
Attach to Libr	ary:	OpenCellLibrary_lef					
O None							
Options			_				
Invoke Batch Mode							
Log/Error File:			1				
	A	oply OK Cancel					

3. Click the **OK** button to finish importing a DEF design.

13.3 Lab-B1: Matrix Constraint

In this lab, you will learn how to use the matrix constraint and invoke the row placement in a specified row area.

13.3.1 Introduction of Matrix Constraint

Matrix constraint is a high level planning tool for relative placement in data path style design. Group members or hierarchical groups can be assigned to valid column and row positions of a defined matrix structure. It is also called relative placement or structure placement.

(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)

(col, row) Row Height = Site Row Height

(x, y)

lakerCreateRPGroup –group rpg1 –columns 5 –rows 2 –xOffset x –yOffset y

	INST2	
INST1		

lakerAddToRPGroup –group rpg1 –column 1 –rows 0 –leaf INST1 lakerAddToRPGroup –group rpg1 –column 2 –rows 1 –leaf INST2

13.3.2 Define Matrix Constraint

Usually, data path synthesizer and compiler generate a physical constraint in an ASCII format in a tabular form or a line-by-line format.

Essential Tcl commands are provided for handling matrix constraint, including:

lakerCreateRPGroup, lakerAddToRPGroup, lakerDeleteRPGroup.

Similar relative placement constraints can be converted to Laker generic formats mentioned above by a customized automation script. Refer to the *Laker Tcl Reference* document for complete details on these Tcl commands.

13.3.3 Row Placement in SDL

13.3.3.1 Define Minimum Height of Row Area

The minimum row number should be larger than the number of rows defined in a matrix constraint. After deciding utilization rate and fixing row height, **Placer** \rightarrow **Create Row** can be used to create a valid row area.

Referring to matrix constraint file names as matrix_rp.tcl, row number is 13. Given a site height of 1.4 um, minimum height of a row area is 13×1.4 um = 18.2 um.

13.3.3.2 Create Row by Utilization

Create a rectangle row area by utilization for matrix constraint.

- 1. Invoke the **Placer** \rightarrow **Create Row** command.
- 2. In the *Create Row* form, do the following:
 - a. On the **Options** tab, select an existing pre-defined site by selecting **Name** as *NCSU_FreePDK_45nm*.
 - b. Enable row abutted style by enabling the **Double Back** option.
 - c. On the **Methods** tab, select the **Utilization** option and set the associated utilization rate to 0.75 first for sparse structure placement first and enable the **Full Cell** option for **Mode**.
 - d. Set **Row Spacing** to 0.0 for channel-less floor plan.
 - e. Under **Aspect Ratio**, set **Fixed Length** (Y) to 18.5 as previously calculated for channel-less floor plan.

Now, you need to define the origin of the row area using one of the following methods:

- By mouse left-click, or
- Press **TAB** to enter (X,Y) value at the top of Layout window, or
- Press **H** to enter (X,Y) value from **User Input Coordinate** window.

13.3.3.3 Create Cell Boundary

A CellBdry can be created based on a planned core area by a customized script **CustomDigital** → **Create Bdry by Row**.

	— Creat	e coreBdry	/ for RowAre	а
	Enclosure:	<u>Į</u> o		
ŀ	CellBdry Enclosure:	<u>]</u> 3		
ŀ				
ł	Apply	ОК	Cancel	Default

CoreBdry is a layer created for legacy supported feature only if necessary.

CellBdry Enclosure is the distance reserved for ring structure around the whole Row Area.

13.3.3.4 Auto Pin Assignment

After a pin constraint is ready, the **Placer** \rightarrow **Pin Placer** \rightarrow **Auto Pin Assignment** command can be used to realize the initial pin assignment.

-	Auto Pin Placement
Mode:	
🔾 Auto	
🜒 Тор	🔿 Two Levels
🗌 Place Bus In	Orden
Constraint File:	l/source/constraint/pin_bus.const 🔲 💽
🔵 Schematic	
	OK Cancel

After this step, the task of initial pin placement is finished.

13.3.3.5 Row-based Placement in SDL

1. Load matrix constraint by the customized **CustomDigital** → **Matrix Group Orientation** script.

	Matrix C	Group Orie	ntation	
Constraint File:	utorial/source/d	constraint/ma	trix_rp.tc[Browse
Orientation:	●N ⊖FN	OS OFS	3	
-	Apply	ОК	Cancel	Default

- a. Set Constraint File to ../source/constraint/matrix_rp.tcl
- b. Click **OK** to load the matrix constraint.
- 2. Click **Select All** icon in the design hierarchy browser panel to select all objects because the Laker system can support partial selection for implementation.
- 3. Invoke the **Design Brower** \rightarrow **Placement** \rightarrow **Row Placer** command.
- Select Rule Set according to original routing layer planning Available routing layers have an impact on congestion driven placement results. You can confirm in the Router → Digital Router → Rule Setting tab if necessary.
- 5. Fill in **Constraint File** field with the file name of a placement constraint.

— Row-based Placement
🗆 Compact to 🕘 Left 🔷 Center 🔾 Right
Honor Soft Pin Position
Rule Set: default - 🔍
Constraint File: pe/constraint/placement.const
Estimate OK Cancel

6. Click one Row area and apply **Design Brower** → **Placement** → **Row Placer** → **OK** to finish row placement task.

	П		h	-	П			T			Ш	Т		T								Ш							Ш	П						11	П					1					-71	П	17 23	1			Ш			T			in					
	fΤ	Π	'n	Т	Π	Ľ.	Ē	1	Π	Ħ	ľ٦	ή	П	T	Т	T	Т	T	T.			Ť	÷		٦Ľ	זר		•	PT2 1	T	Π	Π	Т	Т	П	ľΤ	π	٦٢	Т		Ť	ŤΠ	Т	Π	ПŤ	n –		fΠ	H -1	tΠ		ΓĦ	1	П	T)	ŤΤ		ΠT	Ű.	F	4	a a	1 - '	
1	ΠŤ	ГŤ	Т	П	Ľ	r	T	11	Τ	Т			m	m	Ť.	T	T	1T	T	Т	Π		20	ΜЯ		11	E S			tΠ	Т	T	T	Π	Τ	π	11	11	ŕΤ	Т	Ť	T	Π-	ŤΊ			H F	T		**	Т	fπï	ΤÎΠ	Ť	TT	H	m	T			122		Υ.	T
1		Π		Т	П				Г	Г	П		П	П			Ш		а,		п		3						1000	Т	П	П		Т	П	Г			П					П	Т			П	n.n	m	П			ГΠ				Π.		∏ ∘	772	1000	Γ.	
		П	П	I		L	ТГ	111	Т	П			Ш								Г		1			П	10.0		104			П	П			П			П					П				• 11	H .J.I		Ш	ТГ									100	1.0	Т	
1	ΪT	Π	П	Π	Π	î 1	11	1	Ľ	ľ	П		ΠT	Π	ΪT.	î١.	Т	T	n.		Τ		а			٦t	87.		F724	T	ΓŤ	ΪT	T	T	ΓT	r		٦Ľ	Π	Π	ТĨ		Π	Π	Ш	T	1	۰î)	100	ΠT	ΤŤ	П.	٦٣	ТΠ	Ш	П	Î	ΠŤ		1		R IA	T I	
П	П	П	П	Π		Г	ΤΓ	11	Т	Т	П		Ш	П			П		a de la calega de		Ш		e 1			ΠГ			973 (1	Ш	Т	П	Π		Т	Π	٦Г	П	П	Т	П			П					лa	П	Т	ШГ			П						1.0	П		
П		Π	П	Т	П		Т	1	П	П			П	Т			Т	П	T		Т		10	H R		П	115		104	Т	П	П	Т	Т	П	—			П	Г	Т			Т	Т	П		П	п.я	m	тт	ПГ		ГΠ	П			ΠT		T	1.1			2
П		Π	П	Г	Г	Г	ТГ	11	Т	Т	П		Ш	П		11	П	Ш	T		г		3			П			1000	ТП	Т	П	Т	Т	Т	Π	٦Г	П	П	Т	П		П	П				·П	171	ПТ	Т	ТΤ	П	П	П		\square				12			
1		Π	П	Π	Π	î.	T	1	Ľ	ľ	П		Π	Π	ίŢ		Т	T	n.		Τ		18			11	80.0		104	T	ΓŤ	ΪT	T	T	ΓT	r		11	Π	T	Т		Ï	Π	Т	Π	100	T	ли	ΠT	ΤŤ	ΠŤ	T	Π	Ш			TT.		T P	1.2			
I		П		L		L	IC	1U		1			Ш						11	1	22		a		- 1		877		100	Ш																		۰II	821		Ш			Ш.										
Ш		Ш	П								П			Ш			11	8 R		ψı			1	RK			PT . C		FT /A				ш										П					• 11		F	1.5							111						
	Ш	П		П				10			Ш		П	Т			TT		in a				10	M R		Т	H.C		9770	тп				Ш	т	11 2	1	Т	П		2		П	TF	1.4	П	пт	ΠГ	10.00	TT	4.71	Ш	Т	ПТ										

- 7. The width of row area can be reduced by invoking **Placer** → **Stretch** to check the placement result of the matrix constraint.
- Invoke Placer → Placer All → OK to finish a faster placement without cell realization because all cells are available in layout window.

								Т	Ш				۰,	П.							•	124	F (1	1		11								1 11	H				П		Ш	Ш	•	1A	Ш	07 /4	- 11		Ш		Ш	11 •	102	Ш		
Π		Π						Π							П	Ш	П				н,		۳.				цú	Ш		П								Ш	Ш	Ш	Ш		1	1	μų,	•		Ш	Ш	П			щ.			2
	Ц	Ш	IĻ.	Ш	Щ		Ц.				Ш	Ц.	Ш.,	ш.	4.	Ц.	1	Д	Ц	1.	672	L n	ջ ∥	Ш	nn.	4	R 81	Ш	Д.	Ш.,	ш	.Щ	1	Ш.,	Ļ.	Ш.	Ш	_	Щ	1					. 1	Ц.	Ц	Д.	Ш	4	Ш	1.	10			
	Ц	Ш	Д,	Ц.,	Ц	ᅫ	1	Ц,		⊢	Щ.,			Ц.	щ	щ	4	4	ш	1	42		74	_		1	440	Ш.	Ц	Щ	ᄂ	Ш	Щ	4	4	4	Щ.		Ļ	1		- 10		2	Щ.,	ц	ц.	щ	4	4-	197	21		2		
ш		Ш			Ш						Ш				_		_				10	σ.	s		10.5			Ш.										Ш				2				Ш				ш		. 2		87 I.		
ш	Ц	Щ	Д,	Ц.,	Щ,		_	Ц.					ш	Щ.	ш	ш	Ш	ш	Щ	1.	en i	n	a I		n 23		REFE	Ш.	Ц.	Ш	ш	4	Щ.			Ш	_		ц		Ш	_	80	Щ	щ	ц.	1		77	_	Ш	Д,	Ш	Ц.		
		Ш													Ш	Ш,	Ш		×		1.1	n	•		1 1.0		IA.						11									1		Я					Ш		Ш					
Ш					П			Ш						ш.	Ш		П				100	1	n		10.2	3	114	П														11					Ш						M.	2		
		П			Ш															•	472	n	4		n74		11	Ш										Ш				•	21	n	v				П	Ш	П		•	1		
Ш					П		Т	П	Т					Π.	П	П	П				691	n	2	Т	п.п		100	Т	П	П			П			Т	П								114	П		П		П				0		
Ш		П		Т							Ш	П,					Ш	П	H17		122		ы	Т	0 %/9	•	111	Ш	Т		Ш		Π		Т	Ш	Т	Т	Т	Ш	Ш			F		 /	П			П		Π			Т	
					П	1		Ш							Ш	机灰	Ш	301	I		10.0		R		PT.C			П			Ш		Т	П	П					П				Т	П		8		×					П		
	ΠĨ	T	ТТ		Ú7	11	ПŤ	ΠT			tΠ	- 17	10	100	-				îΠ				n 1		10.0	- To		П	τr	T in		T 11	П.	r –	-	÷π	T	ΠT	-	ĒΤ	π	πħ	ΤĤ	1	1	-		- 1	_	-	ìΠ	TT	ΠT	<u>ст</u>		

13.4 Lab-C1: Limited Layer Routing

13.4.1 Introduction

SALINASAS.

Two or three limited layer routing needs careful resource arrangement by several approaches. Assuming a floor plan with horizontal row area and HV or HVH routing preferred direction, the following methods can be applied to limit layer routing:

- Manually define the row spacing to reserve more metal1 routing resource in the blank channel.
- Row spacing is usually an integral multiplier of metal1 routing pitch to avoid unnecessary waste of metal1 routing resources in the channel. This method is useful for small Y/X aspect ratio floor plan. More metal1 resources are available.
- Manually define the placement blockage tile array in a local congested area. This is a heuristic approach.
- Use SPINE style routing to keep an effective routing channel usage.
- Manual SPINE pre-wiring followed by automatic placement. This method reduces high fan out routing resources and gets better routing patterns for critical nets.

A good floor plan solution is very design dependent for limited layer routing. The Laker Custom Digital solution covers these using several approaches.

13.4.2 Channel Floorplan

- 1. Invoke the Placer → Create Row → Methods → Row Spacing command,
- 2. Disable the Placer \rightarrow Create Row \rightarrow Options \rightarrow Double Back command if necessary.

13.4.3 Automatic Pseudo blockage

Pseudo blockage is automatically triggered during detailed placement optimization.

As illustrated, several continuous empty channels are revered by row placement for SPINE style routing if applicable.

13.4.4 SPINE Style Routing

Enable SPINE routing during Initial Route or fix them as much as possible during Detail Route in the **General** tab of the *Digital Route* form (invoked with **Router** \rightarrow **Digital Route** \rightarrow **Digital Route**).

	Digital Route	
S	Applied Nets: Nets 🏹 📮	
	Ignored Nets: Nets	
	Global Rule: default 🔄 🔍	More>>
	General Advanced Net Priority Run Step	Report
F R	Run Threads: Auto 🧹	
	Spine Routing Pattern Do Not Use Pins as Feedthrough Via Settings	
	Via Enclosed by Pins Style of Vias: Single Via	Ī
Ŀ	Do Not Use Wire Touch Pins Via Pattern: Auto	<u> </u>
	Load Save Dump	Close

Initial Route will automatically create main SPINE and secondary SPINE simultaneously without manual setting. The following example is a large aspect ratio floor plan and a few highlighted long wires after routing.

13.4.5 Manual SPINE Pre-wiring

You can set the placement constraint to honor long pre-wire style for critical signals.

If the pin width or depth is larger than a row height, it is defined as a long pre-wire pin. For example, the following statement identifies that the net weight connects to long pre-wire pins.

```
.NetWeightPreWire netWeight_1_to_255
```

SYNOPSYS®

The left figure illustrates a main SPINE that is defined by manual wiring. The secondary SPINE structure based on the main SPINE is automatically created by Initial Route.

13.5 Lab-D1: Cell Level OD Sharing

13.5.1 Introduction

Custom cells designed with common power and ground portions can be overlapped with each other to reduce chip area if applicable.

- The definition of potential overlapped width and cell type is defined by a generic constraint file.
- The site width must be defined as a new fine width to keep on-site placement results after cell level overlap.

13.5.2 Cell Level OD Sharing

13.5.2.1 Define Fine Site Width

Because the overlapped width is smaller than a normal site width for a standard cell, a fine site width needs to be redefined to ensure on-site legalization.

- 1. Use minimum dbResolution for cell level OD sharing scheme.
- 2. Invoke the **Floorplan** \rightarrow **Site** \rightarrow **Modify** command in the *Main* window.
- 3. In the *Modify Site* form, define **Site Width** as minimum resolution 0.005.

-		Modify Site	
Lib	rary Name:	OpenCellLibrary —	
Site	e Name:	NCSU_FreePDK_45nm -	
Site	e Width:	0.005	
Site	e Height:	1.4	
Cla	ISS:	Core 🔾 Pad	
Syr	mmetry:	🗆 X 🛒 Y 🔲 R90	
		Apply OK Cance	1

13.5.2.2 Define Cell Overlap Region

The library developer has to provide necessary information of legal cell overlap regions in order to prepare for a placement constraint file. According to layout style of Open Cell Library, INV_X8 has the capability for cell level OD sharing on the right side.

The legal overlap value can be calculated based on the design rule manual in a definition file *OpenCellLibrary.od*.

```
# Overlapped region: 0.205
INV_X8 R
```

13.5.2.3 Preparation of Placement Constraint File

A new section of placement constraint is added for cell level OD sharing scheme.

```
# You need to redefine fine site width of 0.005 for valid cell
level OD sharing
.ODSharingLibraryFile ../source/library/OpenCellLibrary.od
```

```
.ODSharingCompactEffort medium
```

13.5.2.4 Row-based Placement in SDL

- 1. Import design and create a floorplan by redefined site.
- 2. Click the **Select All** icon in the design hierarchy browser pane to select all objects because the Laker system can support partial selection for implementation.
- 3. Invoke the **Design Brower** \rightarrow **Placement** \rightarrow **Row Placer** command.
- 4. Select the **Rule Set** according to the original routing layer plan.
- 5. Available routing layers have an impact on congestion driven placement results. You can confirm in the **Router → Net Router → Rule** tab if necessary.
- 6. Fill in the **Constraint File** field with the file name of a placement constraint.
- 7. Click one Row area and apply **Design Brower** → **Placement** → **Row Placer** → **Estimate** to get the utilization rate calculated by placer engine.

– Row–based Placement
Compact to Left O Center O Elgint
Honor Soft Pin Position
Rule Set: default - Q
Constraint File: ce/constraint/placement.const
Estimate OK Cancel

- 8. Click one Row area and apply **Design Brower** → **Placement** → **Row Placer** → **OK** to finish row placement task.
- 9. Check related information about cell level OD sharing process in the log file.

Start Detailed Placement Stage ==>> TOV: 0.00, Skip TOV optimization. Start Compact with OD-Share Stage ==>> Total HPML before OD share: 1047400, longest Row: 9690 sites Process OD Sharing Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: 10749690, longest Row: 9628 sites Total HPML after OD share: Supported when ODShare. WARN: NoFilieri Index score optimization is skipped because it is not supported when ODShare. WARN: NoFilieri Post process is skipped because it is not supported when ODShare. Routing overflow report after placement ==>> Range Count Stud Sum 5.00 0 (0.0%) 4.00 0 (0.0%) 3.00 0 (0.0%)			Placement Information	
Kange Count Sum 5.00 0 (0.0%) 0 4.00 0 (0.0%) 0 (0.0%) 3.00 0 (0.0%) 0 (0.0%)	Start Deta TOV: 0.00, Start Comp Total HPWL Process OD Total HPWL Total Shar ===== OD-S; WARN: Cell	iled Placement Stage Skip TOV optimizati act with OD-Share St before OD share: 11 Sharing after OD share: 107 e Num (legal overlap hare Success ===== index score optimiz lherl post process i	<pre>> ==>> .onage ==>> 474740, longest Row: 9690 sites 49690, longest Row: 9628 sites >): 7 .ation is skipped because it is not supported when ODSha: s skipped because it is not supported when ODShare.</pre>	ce.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Routing ov Horizontal	placement erflow report after	placement ==>>	
4.00 0 (0.0%) 0 (0.0%) 3.00 0 (0.0%) 0 (0.0%)	Routing ov Horizontal Range	placement erflow report after Count	placement ==>> Sum	
3.00 U (U.U%) I	Routing ov Horizontal Range 5.00	placement erflow report after Count 0 ((0.0%)	placement ==>> 	
	Routing ov Horizontal Range 5.00 4.00	placement erflow report after Count 0 (0.0%) 0 (0.0%)	placement ==>> Sum 0 (0.0%) 0 (0.0%)	
	Routing ov Horizontal Range 5.00 4.00 3.00	placement erflow report after Count 0 (0.0%) 0 (0.0%) 0 (0.0%)	placement ==>> Sum 0 (0.0%) 0 (0.0%) 0 (0.0%)	

10. Use **Query** \rightarrow **Find** to search for INV_X8 and check the overlapped placement result.

13.6 Lab-E1: Cell Level ESD Spacing

13.6.1 Introduction

ESD issues within a core area are usually solved by using a tie-high and tie-low cell without directly connecting to power and ground rails in advanced process nodes. For mainstream nodes, direct connection of power and ground rails are still used for traditional flow and compact size in a high utilization design.

When an input in of a pass gate design is tied-high or tied-low, PG connected OD regions will be analyzed and follows a larger spacing rule to avoid direct power ground path due to small resistance. ESD OD spacing checks between PG and normal signals is excluded.

A DRC based rule checker cannot be verified unless tie-high and tie-low signals are completely routed in advanced. The longer iteration cycle is also an issue for high utilization designs.

The Laker system supports this special requirement by a customized rule checker with logic information during the placement stage. It provides a seamless flow and shorter iteration cycle.

The figure above illustrates an example of PG ESD distance check. An input pin B of the left PGMUX2_X1 instance is connected to ground. An OD region connected to power of the right PGMUX2_X1 instance is placed nearby.

13.6.2 Cell Level ESD Spacing

13.6.2.1 Define ESD spacing rule

The library developer has to provide necessary information of PG ESD spacing rules in order to prepare for a placement constraint file. According to design rule manual of Open Cell Library, a placement constraint file can be prepared as follows.

.ESDRuleSpacing 0.2	
.PowerNetName VDD	
.GroundNetName VSS	
.PolyLayerPurpose 9 252	2
.ODNTypeLayerPurpose 1	252
ODPTvpeLaverPurpose 1	252

Open Cell Library uses single diffusion (active area) layout. However, Open Cell Library has no pass gate design style.

Note that the Laker layer number and purpose number can be identified by the yellow tips of the layer panel. It is layer number and data type defined in a GDS stream file.

13.6.2.2 Row-based Placement in SDL

- 1. Import the reference design CPU.sp and create a row area with 0.85 utilization rate as usual.
- 2. Click the **Select All** icon in the design hierarchy browser pane to select all objects because the Laker system can support partial selection for implementation.
- 3. Invoke the **Design Brower** \rightarrow **Placement** \rightarrow **Row Placer** command.
- 4. Select the **Rule Set** according to the original routing layer plan.
- 5. Available routing layers have an impact on congestion driven placement results. You can confirm in the **Router → Net Router → Rule** tab if necessary.
- 6. Leave the **Constraint File** field blank to catch potential PG ESD spacing violations if any.
- 7. Click one Row area and apply the **Design Brower** → **Placement** → **Row Placer** → **Estimate** command to get the utilization rate calculated by placer engine.

- 8. Click one Row area and apply the **Design Brower** → **Placement** → **Row Placer** → **OK** command to finish the row placement task.
- 9. Invoke the **Placer** \rightarrow **Placement Constraint** command.

_	Placement	Constrai	nt File
File:	/source/constra	int/placement	.const 📄
💌 Inv	voke Editor		
Ten	nplate	ОК	Cancel

- 10. Click **OK** to assign a placement constraint for placer related features.
- Invoke the Placer → Check Placement command to check if a PG ESD rule exists after placement. Press "E" or Verify → View Error to display a violation if PG ESD rule violations are found.

Two violations are found for this demo case. For example, measured OD spacing is 0.095 which is smaller than min PG ESD spacing 0.2. The solution is to have a minimum spacing of 0.105 between these two instances.

If you cannot any catch PG ESD rule violations, try to increase the utilization rate and place it again.

Placement Information	
<pre>578 shapes (578 instances) checked. 0 instance has overlap with other instances. 0 invalid cell(s) are found ESD Rule Setting Min spacing: 0.200000 OD N Layer/Purpose: 1/252 OD P Layer/Purpose: 1/252 Poly Layer/Purpose: 1/252 Power net name: VDD Ground net name: VDD Ground net name: VSS </pre>	/i_alu/U125) nee JB/i_alu/U49) ne
Ki	
	Close
1- ,	· · · · · · · · · · · · · · · · · · ·
rrors cpu_cdl_in:CPU [place_drc]	
ting]	
pes	
D-0 Fit All	
D-1 Detail	

- View Content [≲

- 12. Use the **Placer** → **Legalize Cell Placement** command to solve found PG ESD rule violations.
- 13. Invoke the **Placer** → **Check Placement** command to check if PG ESD rule still exists after legalization.

13.7 Lab-F1: Laker OpenAccess Incremental Technology

13.7.1 Introduction

An OA Technology may have any number of references to OA Technologies in other OA Libs. This can result in a hierarchy of references across OA Libs, thereby forming a graph of technology data. An OA Technology that has a reference to another Technology

- 1. is derived from the referenced Technology.
- 2. inherits information from the referenced Technology.

13.7.2 Create an Incremental Technology Library

OpenCellLibrary has two OpenAccess libraries, including *NangateOpenCellLibrary* and *NCSU_FreePDK_45nm*. The goal is to create a new technology library referred to *NangateOpenCellLibrary* and inheriting information from it.

The original OpenCellLibrary library release has two libraries named NCSU_FreePDK_45nm and NangateOpenCellLibrary. You can add these two libraries in the library mapping path in the *lib.defs* file.

DEFINE NCSU_FreePDK_45nm ../source/openaccess/NCSU_FreePDK_45nm ASSIGN NCSU_FreePDK_45nm writePath ../source/openaccess/NCSU_FreePDK_45nm ASSIGN NCSU_FreePDK_45nm libMode shared DEFINE NangateOpenCellLibrary ../source/openaccess/NangateOpenCellLibrary ASSIGN NangateOpenCellLibrary writePath ../source/openaccess/NangateOpenCellLibrary ASSIGN NangateOpenCellLibrary libMode shared

- 1. Create a new library by invoking the **Library** \rightarrow **New** command.
- 2. In the New Design Library form, do the following:
 - a. Assign Library Name to ref_oa
 - b. Enable Technology Setting → Technology Libraries Setting and assign it to NCSU_FreePDK_45nm.

SYNOPSYS[®]

-	New Desi	gn Library						
L	Library Name:							
	ref_oa							
	NCSU_FreePDK_45nm NangateOpenCellLibrary analogADP analogLib basic borderADP	cdl_in digitalADP lakerAMS fei oa sourceADP		I				
F	ilter:		2	~				
Technology Setting								
	○ ASCIT File:			4				
	O Attach to Library:			9				
Reference Technology Libraries: NCSU_FreePDK_45nm								
D	Directory: .							
		Apply OK	Cancel					

3. Click the **OK** button to create a new library.

13.7.3 Create a Design Library

You can import a design with a technology library attached to *ref_oa*. A modified model map file is necessary to map original *NangateOpenCellLibrary* OpenAccess library.

1. Define a cell library in a library mapping path by selecting the Library → Mapping Path command.

Make sure ref_oa, NangateOpenCellLibrary and NCSU_FreePDK_45nm are listed in the mapping path.

- 2. Invoke File \rightarrow Import \rightarrow CDL In to import a CDL design.
- 3. In the CDL In form, do the following:
 - a. Assign **Design File** to *Divide.sp*
 - b. Assign Top Circuit Name to Divide
 - c. Assign Library Name to cdl_in
 - d. Assign **Technology File** → **Attach to Library** to *ref_oa*
 - e. Assign Model Map File to SDL_ref_nangate.map.

-	CDLIn			
Design File:	/source/design/Divide.sp			
Top Circuit Name:	Divide			
Run Directory:				
Library Name:	cdl_in			
W/L Scale:				
-Technology File-				
ASCII File:				
Attach to Libra	ary: ref_oa			
Basic Case Sensitivity ECO				
Invoke Batch Mode				
Extract Port Swapping Information				
Model Map File: >e/map/SDL_ref_nangate.map				
Parameter Expand	ling Log File:	5		
	Apply OK Canc	el		

f. Click **OK** to finish importing a CDL file.

14 Limitations and Known Problems

14.1 Laker OA Flow

- Default name space of bus representation is angle bracket in Laker OA. For example, A[7:0] will become A<7:0>.
- The format of layer map file for Import LEF in Laker OA supports both Si2 lef2oa style and Laker layer map style after OA2010.05 release.

14.2 Laker Import Verilog Flow

Import Verilog support in Laker DB main window is supported.

• Default name space of bus representation is angle bracket. For example, A[7:0] will become A<7:0>.

14.3 Laker Cell Level ESD Spacing and OD Sharing

Cell level PG ESD spacing only checks the same row spacing at the current stage. Cell level OD sharing only supports one value for a library layout at current stage.

Contact Laker Technical Marketing for early access support of this new Custom Digital features.

14.4 Layer Mapping for Notch Gap Fill

Starting from the Laker 2010.07 version, notch gap fill shapes generated by routers are created with gapFill purpose. The main reason is to have consistent behavior with the OpenAccess standard.

- Major Laker features automatically handle gapFill purpose. For example, Flight line, Net Tracer, Short Detector, etc.
- Data import and export features need additional layer mapping descriptions for a layer map file. For example:

```
metal1 gapFill 11 0
metal2 gapFill 13 0
metal3 gapFill 15 0
poly drawing 9 0
contact drawing 10 0
metal1 drawing 11 0
via1 drawing 12 0
metal2 drawing 13 0
via2 drawing 14 0
metal3 drawing 15 0
```


14.5 New SDL Model Map File in OA

Starting from the Laker OA2010.05p1 version, new model map file sections are introduced to support MCells, Tcl PCells, and PyCells in a general SDL flow.

- New sections in OA
 - [MODEL_MAP]

Specify the mapping between logic and realized layout.

[DEVICE_MOS]

Specify the mapping between the *Stick Diagram Compiler* or *Matching Device Creator* windows and the realized layout.

Example:

[MODEL_MAP] X AND2_X1 OpenCellLibrary { AND2_X1 layout } X AND2_X2 OpenCellLibrary { AND2_X2 layout }

Obsoleted sections in OA
 [MAP]

[PARAMETER] [PORTMAP]

Example:

[MAP] X AND2_X1 OpenCellLibrary AND2_X1 X AND2_X2 OpenCellLibrary AND2_X2

Invoke Library → Replace Model Map File to update a new model map file for an existing Laker OA library.

14.6 Preferred Routing Direction

A correct preferred routing direction is important for a clean digital route with good performance. The *tfNetRouteRule* section defines the preferred direction as H, V, or HV. The direction value in a *laker.ro* file copies the direction from the technology database during its initial creation. Rules defined by a *laker.ro* file have higher priority than ones defined in a technology file for routing constraints.

- If H or V is defined in a laker.ro file or a technology file, preferred routing direction is also explicitly defined. X/Y cost has no effect for final preferred direction.
- If HV is defined in a laker.ro or a technology file, lakerICSInput converter decides the final preferred routing direction based on X/Y cost of each layr. For example,
- Preferred routing direction is H when X/Y cost is 1/8.
- Preferred routing direction is V when X/Y cost is 8/1.

By setting the routing direction as HV in the *tfNetRouteRule* section, it is possible to dynamically adjust the routing preferred direction after changing the X/Y cost in the **Rule Tab** of current GUI form.

You can also define explicit preferred routing in form opened with the Router \rightarrow Digital Route \rightarrow Rule Setting command.

Revision History

Revision	Date	Description	
6.2	02/05/13	Updated the footer information.	MY
6.1	12/26/12	2 Updated the header and footer information.	
6.0	6.0 06/14/12 Update net optimization		HSW
		Add PT ECO flow	
5.11	11/23/11	Update dual view library preparation	HSW
		Update dummy Verilog library preparation	
5.1	08/01/11	11/11 Update release schedule to 2011.06p1 and OA2011.08p1	
5.0	07/26/11	Add timing driven flow	HSW
		Add antenna check and fix	
		Add antenna rule example	
		Update symbol view creation of Verilog library file	
		Update Import Verilog flow with standard SDL flow	
		Add RC table preparation	
		Update new PG Route and Digital Route	
4.1	12/03/10	Add description of preferred routing direction	HSW
4.0	09/09/10	Update Model Map file section for Laker OA2010.08	HSW
		Add LEF/DEF flow for Laker OA	
3.0	08/05/10	Update tutorial materials.	HSW
		Remove Tcl scripts which are supported by Laker2010.07 features.	
		For example, Pin Placer, etc.	
		Update Laker OA incremental Tech	
		Update notch gap fill	
2.0	06/11/10	Change DigitalRouteAll to CustomDigital	HSW
		Change routing track definition of OpenCellLibrary.tf for better hierarchical layout implementation	
1.6	04/16/10	Add a limitation of PG routing with read only LEF master library.	HSW
1.5	1.5 04/13/10 Added details to the Introduction, modified Verilog Import, added SPINE. Based on Laker 2010.03.		HSW
1.4	3/31/10	Update OpenCellLibrary source file, change menu name to CustomDigital, add Main window menu. Based on Laker 2010.03.	HSW
1.3	3/23/10 Added cell level ESD spacing. Based on Laker 2010.03.		HSW
1.2	3/18/10	Added Cell level OD spacing and overlap. Based on Laker 2010.03.	HSW
1.1	3/11/10	Added technology file preparation section. Based on Laker 2010.03.	HSW
1.0	3/1/10	Initial release. Based on Laker 2010.03.	HSW

The information in this document is confidential and is covered by a license agreement between Synopsys and your organization. Distribution and disclosure are restricted.

The product names used in this document are the trademarks or registered trademarks of their respective owners.