SYNOPSYS[®]

Laker CDPR Data Preparation and SDL Tutorial

1	Overviev	W	. 2
2	Technol	ogy Overview	. 2
2	2.1 The	e Laker™ Custom Digital Placer	2
2	2.2 The	e Laker™ Custom Digital Router	.3
3	Environ	ment Setup	. 4
:	3.1 Too	Installation Version	4
:	3.2 Ope	en Cell Library	4
:	3.3 Lak	er CDPR Data Preparation Tutorial	5
4	Technol	ogy File Preparation	. 6
4	4.1 Lab	-4A: Routing Rules	7
4	4.2 Lab	-4B: Foundry DRC Rules	. 8
5	Library I	Preparation	10
ļ	5.1 Lab	-5A: Library Preparation by GDS	10
	5.1.1	Import Stream Files	10
	5.1.2	Net/Port Extraction	11
	5.1.3	Define Global Power/Ground Net	12
	5.1.4	Abstract Creation (Optional)	13
	5.1.5	Define Site Information	13
	5.1.6	Update Macro Cell Property	14
!	5.2 Lab	-5B: Verilog and SPICE Library Files	15
6	Design I	Preparation	16
(5.1 Lab	I-6A: Design Preparation by CDL	16
	6.1.1	Import CDL Files	16
(5.2 Lab	-6B: Design Preparation by Verilog	17
	6.2.1	Import Verilog Files	17
7	CDPR T	utorials	18
8	Floorpla	n	19
8	3.1 Lab	-8A: Floorplan Initialization	19
	8.1.1	Routing Resource Plan	19
	8.1.2	Set Routing Layers	20
	8.1.3	Initialize Area Estimation	20
	8.1.4	Create Row	21
	8.1.5	Create Cell Boundary	23
_	8.1.6	Initial Pin Assignment	24
9	Pre-Plac	cement	25
ę	9.1 Lab	-9A: Add Physical Only Cells (Optional)	25
	9.1.1	Introduction of Physical Only Cells	26
	9.1.2	Add End Cap	26
	9.1.3	Add Well Tap	27
	9.1.4	Mark Placement Status of Physical Cells	28
10	Power F		28
	10.1 L	ab-10A: Create Core Ring and Stripes	28
	10.1.1	Introduction of PG Route Type	28
	10.1.2	Create Core Rings	29
	10.1.3	Create Stripes	31
11	In-Place	ment	32
	11.1 L	ap-11A: Kow Placement	32
	11.1.1		32
	11.1.2	Assign Placement Constraint File	33
	11.1.3	Create Placement Blockage	33

	11.1.4	Row-based Placement in SDL	34
12 I	Post-P	lacement	35
12	.1	Lab-12A: Post-Placement	35
	12.1.1	Pin Optimization	35
	12.1.2	Check Placement	37
	12.1.3	Check Spare Cell Placement	37
	12.1.4	Add Core Fillers	39
	12.1.5	PG Connection of Physical Cells	39
	12.1.6	Connect PG Rails of Standard Cells	39
13 I	In-Rou	ite	40
13	.1	Introduction	40
13	.2	Lab-13A: Digital Route	41
	13.2.1	Digital Route	41
	13.2.2	Routing Quality of Result	43
14 I	Limitat	ions and Known Problems	44
14	.1	Laker OA Flow	44
14	.2	Laker Import Verilog Flow	44
14	.3	New SDL Model Map File in OA	44

1 Overview

The Laker[™] Custom Digital Placer and Router (CDPR) provide unique automation for placement and routing of custom and standard cells within the Laker Custom Layout environment. It allows precise custom design of the digital blocks often used in mixed signal and custom digital designs in order to meet the critical performance requirements that often times cannot be achieved with a standalone digital automatic place and route (P&R) tool. Its proprietary technology allows you to:

- Save time with automated creation of digital blocks without leaving the Laker Custom Layout environment
- Achieve the performance of full-custom layout with the speed of P&R
- Enjoy the confidence of using proven standard cells while maintaining hand-crafted quality
- Leverage all the features of the Laker Custom Layout Automation System for things like hand-routing of critical nets, or hand-drawing of routing spines.
- Save time using proven standard cells for high performance digital applications that previously had to be done by hand
- Avoid time-consuming switching between digital automatic place and route (P&R) and custom layout environments and the associated data preparation and translation
- Improve yield with post-route optimization that includes double via insertion, antenna fixing, and jog removal

2 Technology Overview

2.1 The Laker[™] Custom Digital Placer

The Laker[™] Custom Digital Placer can obtain optimum placement results with ease by allowing the user to:

- Quickly and automatically place standard cells, optimized for minimum wire length
- · Perform incremental selection and placement with drag-and-drop simplicity

- · Pack the placement area or selected regions automatically
- Manually optimize placement, layout, or routing with any of the features of the Laker Custom Layout Automation System
- Automatically place pins
- Avoid the set-up, data translation, and time penalty of using a standalone P&R tool
- · Work seamlessly with the Laker Custom Digital Router

		Laker_L3:2.	cdl_in:Divide	e[micron][**	Edit: 0]					
Cell View Create Edit SDL MCel	Options Qu	ery EIP Verity Plac	er Router Wind	ow Schematic	CustomDigital					Help
_ _ <i>∎ ⊕</i> <u>⊃</u> ⊂ ∈ ∈ € !	E B. [WE] SI	it 0 X: 20.35	Y: 25.52	DK: -	92.335 DV	14.17	Cmd	Selecting		
	10 D (D)	• • • • • • • •	60000		Instance -		22 (21)	17.01	2	
0 N # # # # # N H *	1								¥1	
Source Object										
Scene: Divide	1									
Scope. Unite	4									
Find:										
1257 (XOR2_X2)	1									
1258 (IVV_X16)	ी जिस	न न	111	TE TE	TTT er					111
[260 (MUX2_X2)	1 1 1 1	ा भा जन्मनी भी	111111	111111	2 2 2 2 2 2 4 4	2 2 2 2	15.0	97.02	DT 32	11111 1
[261 (MUX2_X2)	111		8 28 8 8 8	1 1 1 1 1 1	1 5 5 2 1		#53	97.52	07.02	POR #
[262 (MUX2_X2)	111		1 1 1 1	1111-	1111-1		95.0	97.0	brue.	artici a
263 (MUX2_X2)	100	11 10 1 11	1 10 1 1 1	1 10 1 11			97.92	97.52	DTUE	2737
1264 (MUX2_X2)	100	1 1 1 -	E E E E ==				97.42	arie 👔	p1.e	10.00
[266 (MUX2 X2)	10 D		3 34 8 8 4	1	8 264 1465		PE02	94032 B	97.02	100 B
				1 1 1 1 -	11111	<u> </u>	#532	97.32	DL755	NO.
		비친 번원원원~~	2 94 2 1 4	1 10 1 1 1			9530	97.02	DT.C	3121
						<u> </u>	27.32 ME-12	97.32	DTOC	9731
					E SERVICE	10.00 L	97.92	97.47 E		10101
					- Filler -		10.0	1000 B	DT.e.	arter t
	1000				1 4 14 14 14					
									11 cm	
5 /3	1 - 0 5H4	RoutingSet • 📃 a	g poly 🛄 di	p metail 🚺 d	ig metal2	dg metal3	dig me	694	81	12
Tet			PreSelect Info P	alygon layer+Co	oneBidry(249) purp	pose+cell(25	40.	121	do metai	3 🔸

Figure 1: The Laker Custom Digital Placer

2.2 The Laker[™] Custom Digital Router

The Laker[™] Custom Digital Router saves time with unique automation technology for routing of digital blocks within the Laker Custom Layout Automation System in the following ways:

• Unique hybrid routing technology combines grid-and shape-based routing for very high route completion rates. Global routing enables congestion analysis, mapping, and display during the floor-planning and placement stage (see Figure 2).

Figure 2: Optimize Placement and Routing Channels Using Congestion Maps

- Next, shape-based routing is used to go off the digital routing grid to connect to off-grid pins, complete routes, and avoid DRC violations.
- Spine-style routing is available that is ideally suited for the routing of memory blocks.

3 Environment Setup

3.1 Tool Installation Version

Laker OA2011.03 for PG router and digital router is required.

3.2 Open Cell Library

The Si2 Nangate Open Cell Library is a generic open-source, standard-cell library provided for the purposes of research, testing, and exploring EDA flows. Therefore, the Si2 Nangate 1 PDKv1.3_2009_07 release of the Open Cell Library was selected for common library preparation.

For more information, refer to the following website page: http://www.si2.org/openeda.si2.org/projects/nangatelib

Both Laker DB and Laker OA utilize the basic Open Cell Library in data preparation.

The following steps are optional if you only want to install the original package for reference:

- 1. Download the Open Cell Library and unzip the tar file.
 - > tar zxvf NangateOpenCellLibrary_PDKv1_3_v2009_07.tgz
- 2. You can also create a soft link for central installation.
 - > ln -s <your_install_path>/NangateOpenCellLibrary_PDKv1_3_v2009_07 .

¹ The example information was obtained from the Si2 website (<u>http://www.si2.org/openeda.si2.org/projects/nangatelib</u>).

3.3 Laker CDPR Data Preparation Tutorial

On top of the previous work of the Open Cell Library database, the following derivatives are created for the Laker CDPR Data Preparation Tutorial.

source/technology OpenCellLibrary.tf laker.dsp OpenCellLibrary.captbl	Laker technology file with advanced routing rules Laker display file OpenCellLibrary reference CapTable file
source/library OpenCellLibrary.gds OpenCellLibrary.sp OpenCellLibrary.lef OpenCellLibrary.cpf OpenCellLibrary.idx TAPCELL_X1.gds FILLCELL_X3.gds PGMUX2_X1.gds PGMUX2_X1.sp	Laker revised GDS file with new cells Laker revised SPICE file with new cells and PG ports Laker revised LEF file with modified metal1 fat metal rules and new cells Laker cell property file for updating Cell Property Laker generic cell content index file for Row Placement Laker generic TAP cell (necessary for tap-less standard cell flow) Laker generic FILL3 cell (necessary for nofiller1 flow) Laker generic pass-gate MUX2 design for PG ESD spacing flow Laker genetic pass-gate MUX2 design for PG ESD spacing flow
source/liberty	OpenCellLibrary Liberty Timing Library
source/design Divide.sp Divide_pl.def Divide_pl.gds Divide.v Divide_vlog.f	CDL netlist of Divide example DEF floorplan file GDS floorplan file Gate level Verilog netlist of Divide example List file for Import Verilog
CPU.sp CPU.v CPU_vlog.f	CDL netlist of CPU example Gate level Verilog netlist of CPU example List file for Import Verilog
source/constraint pin_bus.const pin_opt.const placement.const matrix_rp.tcl	Laker pin constraint for Auto Pin Assignment in bus format Laker pin optimization constraint for Auto Pin Assignment Laker placement constraint Laker hierarchical matrix constraint Tcl file
source/map lef_layer.map lef_layer_out.map lef2oa.map gds_layer.map gds_font.map SDL_def.map SDL_oa_def.map SDL_ref_nangate.map	Laker layer map file for Import LEF Laker layer map file for Export LEF Laker OA lef2oa layer map file for Import LEF Laker layer map file for Import Stream Laker font size map file for Import Stream Laker model map file for SDL flow Laker OA model map file for SDL flow Laker OA model map file for reference library flow
source/script route.tcl	Sample script for batch procedure of digital routing

Taking the following steps will install tutorial source files and a working directory:

- 2. Set up a new working directory environment.
 - > copy work_clean work
 - > cd work

4 Technology File Preparation

The two main parts of routing technology should be defined for Laker CDPR. One is routing rules, including layer, pitch, offset, default width, default space, preferred track direction and cost. The other is foundry DRC rules for metal and cut layers in a higher abstract description.

How does a library developer define a routing rule before creation of a standard cell library?

- Preferred direction depends on a standard layout style. Both HVH and VHV styles are popular in advanced process nodes.
- Minimum routing width might be larger than minimum width defined in a Design Rule Manual (DRM). For example, larger routing width is used to cover the whole via closure.
- Pitch value is decided by minimum wire-wire spacing or minimum wire-via spacing. For example:
 - Horizontal metal1 pitch is wire-wire spacing style.
 Pitch value = 0.5 * routing width + routing spacing + 0.5 * routing width
 - Vertical metal2 pitch is wire-via spacing style.
 Pitch value = 0.5 * routing width + routing spacing + 0.5 * via enclosure width

Figure 3: Pitch Value

- The pitch offset value is usually half of pitch. This offset value matches pin offset of a standard cell layout. Otherwise, a short problem occurs when two standard cells are abutted.
- A common standard cell height is 10 ~ 12 tracks of horizontal track (wire-wire spacing). The width of the smallest driving inverter is 2-track of vertical track (wire-spacing).

Figure 4: Routing Pitch and Offset

The figure illustrates OpenCellLibrary INV_X1 routing pitch and offset. It is a 10-track height cell.

You can also get reference information from the OA technology database, an LEF file, or a third party technology file if it is available.

4.1 Lab-4A: Routing Rules

Name:	Specify a valid routing layer. Poly layer can be defined for poly routing.
Cost XY:	Specify horizontal cost and vertical cost for a routing layer.
Width:	Specify the minimum width for a routing layer.
Spacing:	Specify the minimum spacing for a routing layer.
Pitch XY:	Specify the pitch or track value.
Track Direction	Specify the available track direction.
Offset XY:	Specify the offset value of a pitch.

How does a library developer define a routing rule?

 Cost XY values need to be matched with track direction. For example, a ratio of {1 8} for metal1 layer means the horizontal cost is smaller. It results in an X-preferred direction. A ratio of {8 1} for metal2 layer results in a Y-preferred direction.

The *tfNetRouteRule* section defines routing rules with the conditions of routing tracks, and also defines other routing constraints and spacing rules. For detailed information, please refer to the *Laker Command Reference* document.

***	ŧ
H determine the second s	t.

ţf	NetRouteRule {		Coat								
##_	LayerType	Layer	Value	min₩	minS Dir	MaxL	PitchXY	OffsetXY	Avail 1	Disp	
#-	defPolyLayer { defMetalLayer {	poly metal1 metal2 metal3 metal4 metal5 metal6 metal7 metal8 metal9 metal10	8181 1818 1818 1818 1818 1818 1818 181	0.05 0.07 0.07 0.14 0.14 0.14 0.4 0.4 0.8 0.8	$ \begin{array}{ccccc} 0.14 & HV \\ 0.065 & H \\ 0.07 & V \\ 0.07 & H \\ 0.14 & V \\ 0.14 & H \\ 0.14 & H \\ 0.4 & H \\ 0.4 & V \\ 0.8 & H \\ 0.8 & V \end{array} } $	25 }	$\left\{\begin{array}{c} 0, 19 \\ 0, 19 \\ 0, 19 \\ 0, 19 \\ 0, 14 \\ 0, 28 \\ 0, 28 \\ 0, 28 \\ 0, 28 \\ 0, 28 \\ 0, 28 \\ 0, 28 \\ 0, 28 \\ 0, 8 \\ 0, 8 \\ 0, 8 \\ 1, 6 \\ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $	$\left\{\begin{array}{c} 0, 095\\ \{ 0, 095\\ \} \\ \{ 0, 095\\ \} \\ \{ 0, 095\\ \} \\ \{ 0, 095\\ \} \\ \{ 0, 095\\ 0, 095\\ 0, 07\\ 0, 00\\ 0, 07\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 00\\ 0, 0\\ 0\\ 0, 0\\ 0\\ 0, 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	0.07 } 0.07 } 0.07 } 0.07 } 0.07 } 0.07 } 0.07 } 0.07 } 7 } NO 7 } NO	YES NO NO NO NO NO NO NO NO	YES } NO } NO } NO } NO } NO }

4.2 Lab-4B: Foundry DRC Rules

Advanced process requires new rules for width, spacing, fat metal spacing, end of line, enclosure edge, minimum area, minimum enclosure, minimum edge, minimum cut, and maximum stack via.

A technology LEF file is another high level description for necessary DRC information for routing. The following table is a brief example for one-to-one syntax format mapping between *tfNetRouteRule* and LEF.

tfNetRouteRule syntax format	LEF syntax format
<pre>defRouteRule{ layerName { M1 } endofLine { { Spacing 0.1 } { Threshold 0.1 } { WithIn 0.04 } { ParallelEdge 0.1 } { ParallelEdge 0.1 } { MinLength 0.07 } } endofLine { { Spacing 0.12 } { Threshold 0.1 } { WithIn 0.04 } { ParallelEdge 0.1 } { MinLength 0.07 } } { MinLength 0.07 } { MinLength 0.01 } { MinLength 0.01 } { ParallelEdge 0.1 } { ParallelEdge 0.1 } { BelowEncloseCut 0.05 } </pre>	SPACING 0.10 ENDOFLINE 0.10 WITHIN 0.04 PARALLELEDGE 0.10 WITHIN 0.10 MINLENGTH 0.07
{ CutSpacing 0.15 } } }	SPACING 0.12 ENDOFLINE 0.10 WITHIN 0.04 PARALLELEDGE 0.1 WITHIN 0.10 MINLENGTH 0.07 ENCLOSECUT BELOW 0.05 CUTSPACING 0.15 ;
<pre>defViaRouteRule{ viaName { VIA1 } minCutRule { {</pre>	MINIMUMCUT 2 WIDTH 0.3 WITHIN 0.2 MINIMUMCUT 4 WIDTH 0.3 WITHIN 0.25

tfNetRouteRule syntax format	LEF syntax format
{ MetalWithIn 0.8 } } { { CutNum 2 } } } }	MINIMUMCUT 2 WIDTH 0.3 LENGTH 0.3 WITHIN 0.8
<pre>defMaxViaStackRule { {maxViaStack 4} {range { M1 M6 }} }</pre>	MAXVIASTACK 4 RANGE M1 M6;
<pre>defRouteRule { layerName {M1} minArea { { Area 0.027 } } }</pre>	AREA 0.027
<pre>minArea {</pre>	AREA 0.06 EXCEPTEDGELENGTH 0.21 EXCEPTMINSIZE 0.07 0.21;
	MINENCLOSEDAREA 0.20
<pre>defRouteRule { minEdges { {</pre>	MINSTEP 0.1 MAXEDGES 1
<pre>defViaRouteRule{ viaName { VIA1 } cutSpacing { 0.1 } cutSpacing { 0.13 ParallelOverlap} adjCutSpacing { { Spacing 0.13 } { AdjacentCuts 3 } { WithIn 0.14 } } }</pre>	SPACING 0.1 SPACING 0.13 PARALLELOVERLAP SPACING 0.13 ADJCENTCUTS 3 WITHIN 0.14 [EXCEPTSAMEPGNET]
spacingRule { VIA1 VIA1 0.1 { SameNet Stack } }	LEF5.6: SPACING SAMENET VIA1 VIA2 0 STACK ; SAMENET VIA1 VIA1 0.1 ; END SPACING LEF5.7: SPACING 0 LAYER VIA1 STACK ;

tfNetRouteRule syntax format	LEF syntax format	
<pre>defViaRouteRule{ viaName { VIA1 } enclosure { {Below} {EnclosureEdge 0.015} {MetalWidth 0.11} {ParallelLength 0.27} {ParallelWithIn 0.08} {ExceptExtraCut} } }</pre>	ENCLOSUREEDGE BELOW 0.015 WIDTH 0.11 PARALLEL 0.27 WITHIN 0.08 EXCEPTEXTRACUT	
<pre>space { M1 0.07 { { 0.08 { parallel > 0.30 } { width > 0.17 } } { 0.12 { parallel > 0.30 } { width > 0.24 } { 0.14 { parallel > 0.40 } { width > 0.31 } } { 0.21 { parallel > 0.62 } { width > 0.62 } , { 0.5 { parallel > 1.50 } { width > 1.50 } } } </pre>	PARALLELRUNLENGTH 0.00 0.30 0.40 0.62 1.9 WIDTH 0.00 0.07 0.07 0.07 0.07 0.07 WIDTH 0.17 0.07 0.08 0.08 0.08 0.09 WIDTH 0.24 0.07 0.12 0.12 0.12 0.12 WIDTH 0.31 0.07 0.12 0.14 0.14 0.14 WIDTH 0.62 0.07 0.12 0.14 0.21 0.25 WIDTH 1.50 0.07 0.12 0.14 0.21 0.56	50 7 8 2 4 1 0 ;

Refer to the *Laker Command Reference* manual for more details on the technology file preparation of poly routing.

5 Library Preparation

Physical Layout, port information, cell boundary (PR boundary for PR tools) and SITE (minimum placement unit) should be available for custom cell or standard cells for running CDPR. The following Laboratories show you how to build this data.

5.1 Lab-5A: Library Preparation by GDS

In this lab, you will learn how to create a GDS library, assign net/port information, define a site, and update cell property files.

5.1.1 Import Stream Files

- 1. Open the *Import Stream* form by invoking **File** \rightarrow **Import** \rightarrow **Stream**.
- 2. Select an Open Cell Library GDS file named OpenCellLibrary.gds.
- 3. Assign a Library name to the OpenCellLibrary. Import Stream → Library Name: OpenCellLibrary
- 4. Assign Technology file to OpenCellLibrary.tf Import Stream → Technology → ASCII File: OpenCellLibrary.tf
- 5. Assign a Layer Map File to gds_layer.map Import Stream → Basic → Layer Map File: gds layer.map

In general, a standard cell library has one dedicated PR boundary layer for placement abutment. Usually, this layer is smaller than the data extension bounding box (BBOX) to share power and ground rails. The special layer 235, data type 0 is defined as PR boundary of the Open Cell library. Therefore, add one layer mapping rule in the layer mapping file.

[gds_layer.map] CellBdry boundary 235 0

- 6. Assign a Font Map File to gds_font.map Import Stream → Basic → Font Map File: gds_font.map
- 7. Click **OK** and finish importing geometry data of the library GDS file.
- 8. Open a cell of NAND2_X1 to display the imported layout, text, and CellBdry layer.

5.1.2 Net/Port Extraction

SYNOPSYS[®]

Based on layout geometry and annotated text, connectivity information can be added by assigning net and port information on the cell layout view (not abstract view). The related rules are defined in the *tfAbstractCell* section.

- 1. Invoke the Library → Assign Net/Port command for library level net/port assignment.
- 2. Select a library named as OpenCellLibrary. Do not select any cell for library level net/port assignment.
- 3. In the Assign Net/Port form, change Methods to Assign to Shapes and click OK.

Figure 5: Assign Net/Port Form

The following section is an example of *tfAbstractCell* for OpenCellLibrary.

```
tfAbstractCell {
    #-------
# define cell pin extraction rule
    #-------
# mapText2Pin { { textLayerName } { ExtractedLayer1 ...} $ExtractAll }
    mapText2Pin { { poly drawing } { poly drawing } }
    mapText2Pin { { metal1 drawing } { metal1 drawing } }
    mapText2Pin { { metal2 drawing } { metal2 drawing } }
    mapText2Pin { { metal3 drawing } { metal3 drawing } }
    mapText2Pin { { metal4 drawing } { metal4 drawing } }
    mapText2Pin { { metal5 drawing } }
```



```
mapText2Pin { { metal6 drawing } { metal6 drawing } }
mapText2Pin { { metal7 drawing } { metal7 drawing } }
mapText2Pin { { metal8 drawing } { metal8 drawing } }
mapText2Pin { { metal9 drawing } { metal9 drawing } }
mapText2Pin { { metal10 drawing } { metal10 drawing } }
defPower { vdd VDD pwr PWR vcc VCC }
defGround { vss VSS gnd GND }
#_____
# define rules for extracting blockage for routing layers
# genBlockage { { SourceLayerName1 ...} $fill-value { BlockageLayer } }
      SourceLayerName1 ... only assign LayerName, because the
#
#
      blockage generation # need not only "drawing" but also "pin"
# genBlockage { { MT2VDD MT2VSS } 0.505 { MT2 blockage } }
# please use 0 for full shape model
genBlockage { metal1 0 { metal1 blockage } }
genBlockage { metal2 0 { metal2 blockage } }
genBlockage { metal3 0 { metal3 blockage } }
genBlockage { metal4 0 { metal4 blockage } }
genBlockage { metal5 0 { metal5 blockage } }
genBlockage { metal6 0 { metal6 blockage } }
genBlockage { metal7 0 { metal7 blockage } }
genBlockage { metal8 0 { metal8 blockage } }
genBlockage { metal9 0 { metal9 blockage } }
genBlockage { metal10 0 { metal9 blockage } }
#-----
# define rules for extracting boundary for routing layers
#_____
# genBoundary { cellBBox offset };# 1.cellBBox
                                 2.cellBoundary
#
                                 3.pinBBox
                                 4.pinBoundary
genBoundary { cellBoundary 0 };# the same size as routing layers
```

5.1.3 Define Global Power/Ground Net

}

The Global Power/Ground (PG) net has an impact on several features such Flight Line and PG Router. There are several ways to define the global PG net.

1. Add *defPower* and *defGound* definitions in the *tfAbstractCell* section of a technology file.

```
defPower { vdd VDD pwr PWR vcc VCC }
defGround { vss VSS gnd GND }
```

Invoke Library \rightarrow Technology File \rightarrow Replace to update a new technology file for an existing library.

2. Add the GLOBAL_NET section in a model map file used in a SDL flow.

[GLOBAL_NET] VDD P VSS G

Invoke Library → Replace Model Map File to update a new model map file for an existing library.

3. Use the lakerDefGlobalNet Tcl command to append, query, and remove global nets.

```
lakerDefGlobalNet -lib myLib -power VDD -ground VSS
lakerDefGlobalNet -lib myLib -remove -power VDD -ground VSS
```

5.1.4 Abstract Creation (Optional)

This step is optional for third party tool by Export LEF if necessary. The Laker Custom Digital flow will generate hierarchical pin and blockage representation on-the-fly. It does not need abstraction preparation.

- 1. Perform abstract view generation to extract boundary and/or pin information (optional)
- 2. Invoke the Library → Abstract Cell command.
- 3. In the *Abstract Cell* form, enable the **Generate from Layer** option and select [v] **CellBdry** under the **Extract Rule for Boundary** section.

Figure 6: Abstract Cell Form

5.1.5 Define Site Information

Library level SITE information is strongly recommended for SITE related applications (e.g. row placer, row snapping, cell legalization, and filter insertion).

How does a library developer to define a SITE for the Laker system in GDS flow?

• Refer to the SITE definition in a library technology LEF file if applicable. For example:

```
SITE NCSU_FreePDK_45nm
SYMMETRY y ;
CLASS core ;
SIZE 0.19 BY 1.4 ;
END NCSU_FreePDK_45nm
```


 Refer to the smallest inverter (e.g. "INV_X1"), of a vendor-provided standard library. Width of (SITE) = 0.5 * Width of (INV_X1) Height of (SITE) = Height of (INV_X1)

```
MACRO INV_X1
CLASS core ;
FOREIGN INV_X1 0.0 0.0 ;
ORIGIN 0 0 ;
SYMMETRY X Y ;
SITE NCSU_FreePDK_45nm ;
SIZE 0.38 BY 1.4 ;
```

- Use the minimum dbResolution for custom cells which have no strict vertical track planning.
- 1. Invoke the **Floorplan** \rightarrow **Site** \rightarrow **Create** command in the *Main* window.

	Laker_L3	
File Library Category Cell Options	Floorplan Window	<u>H</u> elp
a	Site Create	
1 0:tcl> 2 source Senv(DIGITALROUTEF 3 0:tcl)	LINTEG_ Modify pitalRouteAll/integ.tcl	

Figure 7: Select Floorplan → Site → Create

 Define site information according to the SITE declared in the OpenCellLibrary.lef file. Site symmetry (usually Y only) is different from cell symmetry. Check Y symmetry carefully.

-	Create Site				
Library Name:	OpenCellLibrary 🔄				
Site Name:	NCSU_FreePDK_45nm				
Site Width:	0.19				
Site Height:	1.4				
Class:	Core 🔾 Pad				
Symmetry:	🗆 X 💌 Y 💷 R90				
	Apply OK Cancel				

Figure 8: Create Site Form

5.1.6 Update Macro Cell Property

An additional Macro cell property defined in an LEF file can be equivalently set by a macro cell property file for GDS In flow.

 Invoke the Library → Update Cell Property command in the Main window for a library level update.

_	Update Cell Property	
L	ibrary Name:	
	OpenCellLibrary	
	OpenCellLibrary OpenCellLibrary_lef analogADP borderADP cdl2_in cdl_in cpu cpu_vlogin def2_in def3_in	
F	ilter:	
А	ssignment File: Irk/route/ocdk/data/OpenCellLibrary.cpf	
А	ssign to View: 🔵 abs 🛛 🌒 layout 🔵 both	
	Apply OK Cancel	

Figure 9: Update Cell Property Form

- 2. In the Update Cell Property form, do the following:
 - a. Select Library Name as OpenCellLibrary
 - b. Set Assignment File to OpenCellLibrary.cpf
 - c. Check Assign to View to layout for GDS flow only
 - d. Click **OK** to finish the library level cell property update.

Here is an example of all supported properties for reference. Refer to reference manuals for more detailed information.

```
defCell AND2_X1 {
   defCellSite NCSU_FreePDK_45nm
   defClass "CORE"
   defCellSymmetry "X Y"
}
```

5.2 Lab-5B: Verilog and SPICE Library Files

Verilog and SPICE library netlists including cells and their port information are useful in building a logic view of custom or standard cells.

In general, a Verilog library netlist file provided by a library vendor is a behavior model of modulea and primitives for post-layout simulation. These behavior sections are not suitable for several backend tools. For Cell level applications, a Verilog library netlist defines the module port name and direction.

A pre-layout SPICE library netlist is provided for transistor level cell creation and LVS purposes. For cell level applications, a SPICE library netlist defines the sub-circuit port name and direction.

How do you create a Verilog library netlist including the module port name and direction based on a Verilog library behavior model?

- It can be easily done by utilizing Unix "egrep" and "vi" commands.
 - a. Sort out module and interface definition
 - > egrep "module|input|output|inout" OpenCellLibrary.v > OpenCellLibrary_dummy.v
 > Open "OpenCellLibrary_dummy.v" and remove some extra lines from a primitive section.
 - b. Sort out module and interface definition
 - > egrep -i "subckt|ends|pininfo" OpenCellLibrary.sp > OpenCellLibrary_dummy.sp
 - > Open "OpenCellLibrary_dummy.sp" and remove some extra lines if necessary.

SYNOPSYS[®]

6 Design Preparation

The Laker SDL flow needs both logic and layout views. The logic view represents the logic connection of a design with full parameters. The layout view represents the layout connection.

There are two ways to build a logic view:

• Design is saved in the schematic view of Laker ADP:

Logic view: Laker ADP schematic + Laker Expand Schematic (File->Expand Schematic)

• Design is in CDL or Verilog netlist:

Logic view: Import→ CDL In, Import→Verilog

The benefits the SDL flow provides are incremental implementation and cross-probing among the design hierarchy browser window, schematic window, and layout window.

Refer to reference manuals for more detailed information for import CDL and Verilog.

The following tutorials will guild you the design preparation flow for CDL netlist and Verilog netlist.

6.1 Lab-6A: Design Preparation by CDL

In this lab, you will learn how to create a CDL In design library with a Laker library in layout view.

6.1.1 Import CDL Files

- 1. Define a cell library in a library mapping path by invoking Library → Mapping Path Make sure *OpenCellLibrary* is listed in the mapping path.
- 2. Invoke File \rightarrow Import \rightarrow CDL In to import a CDL design.
 - A CDL dummy library file is included in the design file to create the necessary logic view.

CDL *PININFO information is highly recommended to provide necessary port direction for automatic smart schematic generation. It provides a more readable schematic for manual selection, and also provides a more meaningful topology relationship for certain topology-driven features. For example:

.subckt XNOR2_X2 A B ZN *.pininfo A:I B:I ZN:O

.ends XNOR2_X2

- 3. In the *CDL In* form, do the following:
 - a. Assign **Design File** to *Divide.sp*
 - b. Assign Top Circuit Name to Divide
 - c. Assign Library Name to cdl_in
 - d. Assign **Technology File** → **Attach to Library** to OpenCellLibrary
 - e. Assign Model Map File to SDL_def.map.
 - f. Click **OK** to finish importing a CDL file.

- CDL In				
Design File:	/work/route/ocdk/data/Divide_adp.sp			
Top Circuit Name:	Divide			
Run Directory:	/home/work/route/ocdk/laker			
Library Name:	cdl_in			
W/L Scale:				
-Technology File-				
ASCII File:				
Attach to Libr	ary: OpenCellLibrary			
Basic	ECO			
Case Sensitivity:	Preserve -			
Bus Parentheses:	○<>●[]			
🗌 Invoke Batch N	lode			
🖉 Extract Port Sw	apping Information			
Model Map File:	route/ocdk/data/SDL_def.map			
Parameter Expand	ling Log File:]		
	Apply OK Cance			

Figure 10: CDL In Form

Here is an example of a model map file to enable cell mapping and removal of the prefix "X" for a CDL file format.

```
[MAP]
X AND2_X1 OpenCellLibrary AND2_X1
X AND2_X2 OpenCellLibrary AND2_X2
...
X XOR2_X1 OpenCellLibrary XOR2_X1
X XOR2_X2 OpenCellLibrary XOR2_X2
X TAPCELL_X1 OpenCellLibrary TAP_X1
[ELEMENT_PREFIX]
X * X
[GLOBAL_NET]
VDD p
VSS g
```

6.2 Lab-6B: Design Preparation by Verilog

In this lab, you will learn how to create a Verilog In design library with a Laker library in layout view.

6.2.1 Import Verilog Files

The Laker system supports a structural Verilog netlist with simple "assign" statements for SDL flow.

- 1. Define a cell library in a library mapping path by invoking the **Library** → **Mapping Path** command. Make sure OpenCellLibrary is listed in the mapping path.
- 2. Invoke File \rightarrow Import \rightarrow Verilog in the *Main* window to import a Verilog netlist design.

	Impor	t Verilog		
Verilog Design				
🔘 Verilog Files:				
Cist File	/source	/design/Divi	de_vlog.f	
Run Directory: .Awork				
Library Name:	vlog_in			
Reference Libraries:	OpenCe	llLibrary		
Technology File				
ASCII File:				
Attach to Library:	OpenCellLibrary			
Basic ECO				
Global Nets				
Power Net Name(1'b1):	VDD		
Ground Net Name(1'b	Ground Net Name(1'b0):			
Remove First Backs	slash of A	All Escaped	Identifiers	
Extract Port Swapping Information				
Model Map File:	/source/m	ap/SDL_def.m	ap 📄	
Parameter Expanding Log File:				
		Apply	ок	Cancel

Figure 11: Import Verilog Form

- 3. In the *Import Verilog* form, do the following:
 - a. Set Verilog Design → List File to ../source/design/Divide_vlog.f
 The following is an example of a Verilog list file: [vlog.f]
 ../source/Divide.v
 - ../source/OpenCellLibrary_dummy.v
 - b. Set Library Name to vlog_in
 - c. Set Reference Library to OpenCellLibrary
 - d. Set Technology File → Attach to Library to OpenCellLibrary
 - e. Set Global Nets → Power Net Name(1'b1) to VDD
 - f. Set Global Nets → Ground Net Name(1'b0) to VSS
 - g. Set Model Map File to ../source/map/SDL_def.map
- 4. Click **OK** to finish importing the Verilog files.

[Note]: The Laker OA version has a new model map file section to support MCells, Tcl PCells, and PyCells in a general SDL flow. Please refer to the *Limitations and Known Problems* section for details. A new example is also available in *source/SDL_oa_def.map* for Laker OA flow.

7 CDPR Tutorials

In the following sections, we will guide you through the typical Laker[™] CDPR flow starting from floor planning, power planning, cell placement, and finishing digital routing on top of the SDL flow. For LEF/DEF flow, refer to the *Laker CDPR LEF/DEF Tutorial*.

Recommended Flow is covered by the following topics:

- 錯誤!找不到參照來源。
- 錯誤!找不到參照來源。
- 錯誤! 找不到參照來源。
- 錯誤! 找不到參照來源。
- 錯誤! 找不到參照來源。
- 錯誤! 找不到參照來源。

8 Floorplan

8.1 Lab-8A: Floorplan Initialization

In this lab, you will learn how to create a row area and initial pin assignment in a layout view after design preparation.

The following procedures apply to the general Laker SDL database either by CDL-In or by Expand Schematic. A CDL-In case will be used to demonstrate..

8.1.1 Routing Resource Plan

In general practice, the area utilization rate is commonly used to decide the size of Row Area for row placement. The area utilization rate is defined as the ratio of the total size of cells over row area in analog design style. The magic utilization rate number differs due to design style and available routing layers. The average magic number for general design is listed below for reference.

Alternatively.	vou can use	higher utilizatio	n for a compac	ct design in a	local net connection.
/ accinacivery,	you oun use	ingrior unizuno	in tor a compac	ot acoign in a	

Available Routing Layer	Average Utilization	Comments
2m	0.5 ~ 0.6 (*)	Channel or pseudo blockage (row abutted)
3m	0.7 ~ 0.75	Channel-less (row abutted)
4m	0.8 ~ 0.9	Channel-less (row abutted)
5m	0.8 ~ 0.9	Channel-less (row abutted)

[*Note]: The site utilization rate will be higher than area utilization rate if row space is reserved for limited route layer in a channel floor plan.

The following conditions will be used for this demo case:

- 4 metal routing layers
- The area multiplier rate used for **Design Hierarchy Browser** \rightarrow **Re-Estimate Area** is 1.2.
- The area utilization rate used for **Placer → Create Row** is 0.8.

The initial utilization rate does not consider placement blockage or physical only cells.. Therefore, the final utilization rate will be higher than the initial utilization rate.

8.1.2 Set Routing Layers

The Custom Digital Router features honor the Laker routing resource files for available routing layer planning.

When 4 metal routing layers (metal1 ~ metal4) are used, the 6 non-available metal routing layers (metal5 ~ metal10) have to be disabled in the Laker technology file.

- 1. Invoke the **Router** \rightarrow **Digital Router** \rightarrow **Rule Setting** command.
- 2. Disable availability of non-available layers and vias by clicking the **Avail** field of **Metal** and **Via** tabs.
- 3. Click **Save** to save the 4 metal routing conditions to *default* for future use.
- 4. Click **Cancel** to close the *Rule Setting* form.

iale det.				1			_	
Specific	Spacing Rule	ruai		L		VI	a	
Avail	Layer	Direction	Width	Spacing	MWL	MSL	MWWSL	MAR
	dg poly	<u>+ ⊻</u>	0.050	0.075	10.000	0.000	0.000	0.000
~	📉 dg metal1	<u>+</u> ⊻	0.070	0.065	0.000	0.000	0.000	0.012
v	dg metal2	+ <u>⊻</u>	0.070	0.070	0.000	0.000	0.000	0.030
~	dg metal3	<u>+</u> ⊻	0.070	0.070	0.000	0.000	0.000	0.030
~	dg metal4	<u>+ ⊻</u>	0.140	0.140	0.000	0.000	0.000	0.040
	dg metal5	<u>+ ⊻</u>	0.140	0.140	0.000	0.000	0.000	0.040
	dg metal6	<u>+ ⊻</u>	0.140	0.140	0.000	0.000	0.000	0.040
	dg metal7	→ <u>7</u>	0.400	0.400	0.000	0.000	0.000	0.600
	dg metal8	<u>+ ⊻</u>	0.400	0.400	0.000	0.000	0.000	0.600
	dg metal9	+ ⊻	0.800	0.800	0.000	0.000	0.000	0.800
	dg metal10	+ <u>⊻</u>	0.800	0.800	0.000	0.000	0.000	0.800

Figure 12: Rule Setting Form

8.1.3 Initialize Area Estimation

After the CDL is imported, both a schematic view and logic view are created. An initial layout view can be created now.

- 1. Invoke the **File** \rightarrow **Open** command.
- 2. In the Open Cell form, do the following:
 - a. Set Library to cdl_in
 - b. Set Cell to Divide
 - c. Set View to logic
- 3. Click **Okay** to create an initial layout view.
- 4. Estimate design area
- 5. Manually remove power and ground Soft Pins

The Soft Boundary (the softBdry layer in cyan color) is a boundary layer of soft macro used in top down floor planning. It provides flexibility of manual or automatic macro shaping while keeping a reserved area size. You can increase the view level and stretch the softBdry layer of the lower level block.

Stretching the softBdry layer of the cell level (or Edit-In-Place) will not keep the reserved area size.

If it is a flat layout design implementation, the hierarchy of logic view can be flattened by **Design Hierarchy Browser** \rightarrow **Flatten** \rightarrow **All Levels** first followed by **Design Hierarchy Browser** \rightarrow **Reestimate Area.**

Soft Pin (the softPin layer in pink color) is a concept of pseudo pins without a dedicated layer assignment. It is created for manual or automatic pin planning.

8.1.4 Create Row

8.1.4.1 Create Row by Row Area

Given an estimated SoftBdry, you can draw a polygon shape with rough equivalent area size. This is good for polygon shape row area creation.

- 1. Invoke the **Placer** \rightarrow **Create Row** command.
- 2. In the Create Row form, do the following:
 - a. On the **Options** tab, specify an existing pre-defined site by selecting **Name** as *NCSU_FreePDK_45nm*.
 - b. Enable row abutted style by enabling the **Double Back** option.
 - c. On the **Methods** tab, select the **Row Area** method and draw a rough equivalent area size in polygon shapes. For example, a rectilinear polygon is created by referring to the SoftBdry.
 - d. Set **Row Spacing** to 0.0 for a channel-less floor plan.

🗙 Create Row					
Ор	otions		Methods	1	
Site:					
🔷 Name: 🛛	NCSU_FreePDK_4	5nm —			
💠 Size: 🔩	tridth:				
ŀ	Height:				
Row Direction:	Horizontal 🗆				
Orientation:	Ro =				
Double Back	Double Back				
Separated R	☐ Separated Row				
First Row Ab	uts Second Row				
			Hide	Cancel	

Figure 13: Create Row Form

L
L
}

Figure 14: Created Row Area

- 3. Click the **Select All** toolbar icon in the design hierarchy browser pane to select all objects as the Laker system can support partial selection for implementation.
- 4. Invoke the **Design Brower** → **Placement** → **Row Placer** command.
- 5. Click the created polygon shape row area and apply **Design Brower** → **Placement** → **Row Placer** → **Estimate** to get the final utilization rate calculated by the placer engine.

Figure 15: Row-based Placement Report Form

6. Enlarge the created row area by invoking Placer → Stretch Row or Placer → Configure Row to adjust high utilization to a reasonable rate.

You can delete a SofrBdry layer after you have finished the initial floor plan. A CellBdry layer will be created later.

8.1.4.2 Create Row by Utilization

Creating a rectangle row area by utilization is an easier method.

- 1. Invoke the **Placer** → **Create Row** command.
- 2. In the Create Row form, do the following:
 - a. Select the **Options** tab and specify an existing pre-defined site by selecting **Name** as*NCSU_FreePDK_45nm*.
 - b. Enable row abutted style by enabling the **Double Back** option.
 - c. Select the **Methods** tab and enable the **Utilization** option and set the associated utilization rate to 0.8 for 4 metal layer routing.
 - d. Enable the Full Cell option under Mode.
 - e. Set Row Spacing to 0.0 for a channel-less floor plan.

Options	Methods
] Row Area	
Snap Mode:	Orthogonal
A Row Spacing:	0.0
」 Fixed Row	
Row Width:	
Row Number:	
Row Spacing:	0.0
Utilization:	0.8
Mode:	
Row Spacing:	0.0
Aspect Ratio:	
	♦ Width(X)/Length(Y) Ratio: 1.2

Figure 16: Create Row Form

Now, you need to define the origin of the row area using one of the following methods:

- Click the left mouse button (left-click).
- Press **TAB** to enter the (X,Y) value at the top of the Layout window, or
- Press **H** to enter the (X,Y) value from User Input Coordinate window.
- 3. Click **the Select All** icon in the design hierarchy browser pane to select all objects as the Laker system can support partial selection for implementation.
- 4. Invoke the **Design Brower** → **Placement** → **Row Placer** command.
- 5. Click the created rectangle row area and apply **Design Brower** → **Placement** → **Row Placer** → **Estimate** to get the final utilization rate calculated by the placer engine.

You can delete the SofrBdry layer after you have finished the initial floor plan. A CellBdry layer will be created later.

8.1.5 Create Cell Boundary

You can create CellBdry manually by setting CellBrdy layer as the active layer and invoke **Create → Rectangle** to create it. A customized Tcltk script, **createCoreBdry4RowArea.tcl**, is provided to create a CellBdry based on the planned core area, In the *Main* window, source the Tcltk script.

 Create coreBdry for RowArea 				
Enclosure:	Ď			
CellBdry Enclosure: 3				
Apply OK Cancel Default				

Figure 17: Create coreBdry Form

CoreBdry is a layer created for legacy supported features (if necessary).

CellBdry Enclosure is the distance reserved for ring structure around the whole Row Area.

8.1.6 Initial Pin Assignment

At the very beginning stage, pin constraint can be assigned from top-down or bottom-up floor plan tasks. In the case of block level design, how to handle pin assignment with initial pin constraints will be demonstrated.

The common basic pin constraint includes edge, order, layer and size. The following pin constraint file is an example on how to simply arrange bus signals on edge and evenly distribute before cell placement. As top down pin assignment is supported, pin constraint is library and design related.

```
pinConstraint {
  cellName {Divide}
  refLibrary {cdl_in}
  group {
  boundary {
     {Edge1 {
      {CLK {layer metal3 drawing} {size 0.07 0.4}}
      {X[0:11] {layer metal3 drawing} {size 0.07 0.4}}
      {Y[0:11] {layer metal3 drawing} {size 0.07 0.4}}
     } }
     {Edge2 {
     } }
     {Edge3 {
      } }
     {Edge4 {
     } }
  distribution { Edge1 Edge3 }
}
```

8.1.6.1 Create Soft Pin

If you removed the pink SoftPin in previous steps, you can re-generate all of them by invoking CustomDigital \rightarrow Create Soft Pin or SDL \rightarrow Soft Pin \rightarrow Create Soft Pin.

Auto pin assignment will place all pins with Float pin status. If you want to manually place a pin, you can change its status to **Fixed** by invoking **Query** \rightarrow **Connection** \rightarrow **Pin Status**.

8.1.6.2 Dump Template of Pin Constraint

Dumping the template from a pin constraint file is a good start to understanding constraint format and knowing how to create an initial pin constraint with few modifications.

The Placer \rightarrow Pin Placer \rightarrow Dump Constraint Template command can dump a template file.

 Dump Constraint Template 				
Level	🔵 Тор	⊖ Two	Levels	
Dump File:	init_pin.const			
✓ Invoke Editor				
		ок	Cancel	

Figure 18: Dump Constraint Template Form

8.1.6.3 Auto Pin Assignment

After a pin constraint is ready, the **Placer** \rightarrow **Pin Placer** \rightarrow **Auto Pin Placement** command can be used to realize initial pin assignment.

-		Auto Pin Placement			
Mode:					
O Aut	:0				
	Тор	🔿 Two Levels			
Cor	nstraint File:	/source/constraint/pin_bus.const			
_ Sch	nematic				
		OK Cancel			

Figure 19: Auto Pin Placement Form

After this step, the task of initial pin placement is finished.

- 1. **Auto** mode is for automatic pin assignment without pin constraints. It is often used for a top down floor plan or after row placement is done.
- 2. **Constraint File** mode follows user defined pin constraints for **Top** or **Two Levels** assignment.
- 3. **Schematic** mode recognizes pin locations placed in the top schematic and honors them for initial pin assignment.

The purpose of initial pin placement before a row placement is to guide a net weight of I/O connection. Otherwise, the first stage instance connected to I/O pins will be biased by the net weight of the second stage instances.

After a row placement, the optional pin optimization step will be introduced at a later time.

9 Pre-Placement

9.1 Lab-9A: Add Physical Only Cells (Optional)

In this lab, you will learn how to add well tap or end cap cells, assign a PG logic connection, create rings, stripes, and follow pins before row placement.

9.1.1 Introduction of Physical Only Cells

Physical only cells are layout only cells which are not included in the imported design netlist. For example, well tap, end cap, core filler, I/O filler, I/O corner, antenna diode, decoupling-cap, and GA spare cells. Standard spare cells are usually planned and included in the original netlist.

- Well tap cell: A well-tie pick-up to prevent latch up issues for tap-less standard cells without built-in well-tie pick up. These cells are placed in a regular format within a defined distance to cover all placeable sites for tap-less cells. You do not need to insert well tap cells for normal standard cells.
- End cap cell: They are placed at the edge of a placeable row area to keep the regularity of layer patterns to minimize the process effect.
- Core filler cell: Generic filler cells can be inserted in empty sites to prevent DRC violations.
- I/O filler cell: Generic I/O filler is added to connect I/O ring power distribution and prevent DRC violations.
- I/O corner cell: Generic cells to connect I/O ring power distribution for different I/O rings.
- Antenna cell: Antenna diode to provide additional diffusion protection for an antenna violation fix.
- Decoupling-cap cell: Power decoupling cells to reduce the current surge and voltage drop.
- GA spare cell: Programmable gate array spare cells for flexible post-silicon ECO.

9.1.2 Add End Cap

TAPCELL_X1 is used for both well tap cells and end cap cells in this tutorial.

- 1. Invoke the **Placer** → **Add End Cap** command.
- 2. In the Add End Cap form, do the following:
 - a. Select an existing pre-defined TAPCELL_X1 by specifying Pre End Cap: Library: OpenCellLibrary Cell: TAPCELL_X1 View: layout
 - b. Select an existing pre-defined TAPCELL_X1 by specifying Post End Cap: Library: OpenCellLibrary Cell: TAPCELL_X1 View: layout
 - c. Set placement status of fixed after placement enabling the Set as Fixed option.
- 3. Click **OK** to finish end cap placement.

-	Add End Cap 🕜
Cells	
Pre End C	Cap:
Library:	OpenCellLibrary 📃
Cell:	TAPCELL_X1
View:	layout
Post End	Cap:
Library:	OpenCellLibrary 📃
Cell:	TAPCELL_X1
View:	layout
🖌 Set as	Fixed
	OK Cancel

Figure 20: Add End Cap Form

9.1.3 Add Well Tap

TAPCELL_X1 is used for both well tap cell and end cap cells in this tutorial.

- 1. Invoke the Placer → Add Well Tap command.
- 2. In the Add Well Tap form, do the following:
 - a. Select an existing pre-defined TAPCELL_X1 by specifying: Library: OpenCellLibrary Cell: TAPCELL_X1 View: layout
 - b. Select End Abutment to add abutted well tap cells.
 - c. Set maximum distance gap to 25.0 um by specifying: Max Gap: 25.0 um Style: Alignment
 - d. Set placement status of fixed after placement enabling the Set as Fixed option.
- 3. Click **OK** to finish well tap and end cap placement.

_	Add Well Tap 📀		
Library:	OpenCellLibrary		
Cell:	TAPCELL_X1		
View:	layout		
💌 End A	Abutment		
Max	Gap: 25.0 um		
Style:	Alignment		
	🔵 Stagger		
🗹 Set as Fixed			
	OK Cancel		

Figure 21: Add Well Tap Form

9.1.4 Mark Placement Status of Physical Cells

You can mark the placement status of physical cells to prevent change due to automatic or manual operation.

- A cell with **Fixed** placement status cannot be touched by automatic tools like Row Placer or Legalization, but it can be moved by manual editing features.
- A cell with **Cover** placement status cannot be touched by either automatic or manual editing features. You can only change its placement status.
- A cell with **Placed** or **Null** placement status can be touched by automatic or manual editing features.
- 1. Invoke the CustomDigital → Mark Placement Status command.
- 2. Fill in the Cell Types field and select one Placement Status.
- 3. Click **OK** to assign placement status to specified cell types.

—		Ma	rk Placeme	nt Status	
Cel	I Types	ĬΤΑΡΟ	CELL*		
Pla	cement St	atus 🜒 Fix	ked 🔵 Plac	ced 🔾 Cover	O Null
		Apply	ОК	Cancel	Default

Figure 22: Mark Placement Status Form

10Power Plan

10.1 Lab-10A: Create Core Ring and Stripes

In this lab, you will learn how to add core rings and stripes around a core area using the Custom Digital enhanced toolbox.

10.1.1 Introduction of PG Route Type

A SHAPE definition is used to specify a wire with special connection requirements because of its shape. This applies to vias as well as wires.

RING	Used as ring, target for connection
PADRING	Connects pad rings
BLOCKRING	Connects rings around the blocks
STRIPE	Used as stripe
FOLLOWPIN	Connects standard cells to power structures
IOWIRE	Connects I/O to target
COREWIRE	Connects endpoints of follow pin to target
BLOCKWIRE	Connects block pin to target
BLOCKAGEWIRE	Connects blockages
FILLWIRE	Represents a fill shape that does not require OPC.
	It is normally connected to a power or ground net. Floating fill
	shapes should be in the FILL section.
FILLWIREOPC	Represents a fill shape that requires OPC. It is normally
	connected to a power or ground net. Floating fill shapes should
	be in the FILL section.

DRCFILL

Used as a fill shape to correct DRC errors, such as SPACING, MINENCLOSEDAREA, or MINSTEP violations on wires and pins of the same net.

PG routing for RING, STRIPE, FOLLOWPIN and COREWIRES are supported in Laker OA2010.08 and later versions.

PG route type in DEF definition

- RING
- STRIPE
- FOLLOWPIN
- COREWIRE
- BLOCKWIRE
- IOWIRE

PG Route supports

- RING
- STRIPE
- FOLLOWPIN (including COREWIRE)

 \mathbf{k}

Figure 23: PG Routing for RING, STRIPE, FOLLOWPIN, and COREWIRES

10.1.2 Create Core Rings

Before creation of core rings, you have to plan ring structure, routing layer, width and offset spacing to the core area. In the meantime, you also have to check the total reserved distance between CellBdry and Row Area. If its value is not large enough to create the whole ring structure, you need to adjust the floor plan in advance.

1. Invoke the **Router** \rightarrow **Digital Router** \rightarrow **PG Route** command.

General Core Ring Macro Ring	Stripe	Follow Pin	1	
Top Layer for Via Connection:	metal4 [V]		Y	
Bottom Layer for \forall ia Connection:	metal1 [H]		<u>_</u>	
Extend Search Range by:	0			
Allow Violations				
Show Violations				

Figure 24: PG Route Form, General Tab

In the General tab, you can set the top and bottom routing metal layer as follows:

- Top Layer for Via Connection: metal4
- Bottom Layer for Via Connection: metal1

2. Switch to the Core Ring tab.

General	Core Ring Macro	Ring Stripe F	ollow Pin	
Net Name	es (Inner to Outer):	VDD VSS		<u> </u>
E Exten	d Inner Rings			
🔲 Unifor	m V alue s			
	🔲 Left	🔲 Right	📕 Тор	🔲 Bottom
Layer:	metal2 [V]	metal2 [V]	metal1 [H]	metal1 [H]
Width:	0.8	0.8	0.8	0.8
Spacing:	0.5	0.5	0.5	0.5
Offset:	0.8	0.8	0.8	0.8
				Apply

Figure 25: PG Route Form, Core Ring Tab

- 3. Fill in power and ground net names in the Core Ring tab: VDD VSS
- 4. Fill in your planned Layer, Width, Spacing and Offset for each Left, Right, Top, and Bottom edges around Row Area. Turning on the Uniform Values button can set the same Width, Spaing and Offset values for all sides.

Minimum spacing of fat metal is automatically checked and updated when a width is changed. After a width becomes smaller, it will not be restored back to the minimum value if the corresponding DRC spacing rule is satisfied.

The definition of four sides also applies to Row Area in a polygon shape.

5. Click **Apply** to realize core ring creation.

Figure 26: Created Core Ring

The current function of core ring creation does not honor a previously created ring structure. Repeated core creation might result in DRC violations and be removed.

10.1.3 Create Stripes

Before creation of stripes, you have to plan the stripe structure, routing layer, width and offset spacing within the core area.

- Routing layers usually follow a routing preferred direction to save routing resources. Horizontal stripes use horizontal routing layers. Vertical stripes use vertical routing layers.
- Decide **Net Group** by bundled group members or a single member. Define width and spacing between members of the **Net Group**.
- Define a **Range** by the Start and End forms valid region to create stripes. It can be **Absolute** and **Offset** mode.
- Define repeated patterns by a combination of Start, End, Group and Step.
- (Start, End, Group) mode automatically calculates the desired Step value between two consecutive net groups.
- (Start, End, Group, Step) mode creates repeated patterns from left to right (bottom-to-top) by Step values. End value is the rightmost (top) boundary to filter out non-valid stripes.
- The default End value is the rightmost (top) edge of the Row Area.

Net Names:	VDD VSS		
Layer:	metal2 [V]	<u>v</u>	
Width:	0.2	Spacing: 0.09	
Direction:	💠 Horizontal	 Vertical 	
Coordinates	: 🔷 Relative	Absolute	
Positions:	Start: 10	End: 10	
	Groups: 3	Step:	
🔲 Swap Ne	t Order		
🔲 Shifting F	Range: 0		
Extend to	b Boundary		
			Apply

Figure 27: PG Route Form, Stripe Tab

- 1. Switch to the **Stripe** tab again if it is closed.
- 2. Fill in your planned **Net Names**, **Layer**, **Direction**, **Shifting Range**, **Start**, **End**, and **Groups**.
- 3. Click **Apply** to realize the creation of stripes.

Figure 28: Created Stripe

4. Click **Close** to close the form.

11 In-Placement

11.1 Lab-11A: Row Placement

In this lab, you will learn how to create placement constraints and invoke row placement in a specified row area.

11.1.1 Preparation of Placement Constraint File

Row Placer provides rich placement constraints to control the placement result. It can support spare cell even distribution, net weight, group, and placement effort.

An initial placement constraint is provided.

 Invoke the Placer → Placement Constraint command, and type in the constraint file name.

Figure 29: Placement Constraint File Form

2. Click Template to generate a template for placement constraint.

In this demo case, spare cells, NoFiller1 and Cell Index Aware flow will be enabled. A simple placement constraint is illustrated as follows.

```
##### Assign spare instances
.BeginSection Spare
*spare_*
.EndSection Spare
###### Cell-Index-aware placement
```



```
##### Use 'lakerCellIndexPlacementScore' to show the score of current
placement. #####
##### Cell index file format: #####
##### CellMasterName SingleScore AbutScore #####
.CellIndexFile OpenCellLibrary.cell_index
# No Filler1 flow
# FILL3 Cell is necessary for library preparation to avoid consecutive
filler1
.NoFiller1
# Ignore via instances from gds import flow
.IgnoreMaster VIAGEN*
#.PlacementEffort high
```

11.1.2 Assign Placement Constraint File

1. Invoke the **Placer** → **Placement Constraint** command, and type in the constraint file name.

_	Placement Constraint File
File:	placement.const
💌 Inv	voke Editor
Tem	nplate OK Cancel

Figure 30: Placement Constraint File Form

2. Click **OK** to assign a placement constraint for placer related features.

11.1.3 Create Placement Blockage

To protect some regions from cell placement, add the PlacementBlockage (249:241) layer in the floor plan layout.

SYNOPSYS[®]

-	Layer Table Editor	
Layer Setting Category Se	tting	
User System	Main Attributes	Add 1
Select All	Layer Name: PlaceBlockage	Add
	Layer Number: 249 🗹	Delete
by metal10	Purpose Name:	
be metal10		
🧹 🔲 dg marker	Stream IO Attributes	Modify
V dg nodrc	Set Stream IO Mapping	
V 🔲 PinBorder	Stream Number: 249	
V PlaceBlock	Data Type Number: 241	
PlaceBlockag	je [249:241]]
V SoftBdry	Drawing Attributes	Display File
RouteBlock	🗇 Group:	Load
Mark	Outline Color:	Save
PinBlockag		
	Line Style:	
	Fill Color:	
SoftPin	Stipple:	Preview
ShortErr		
V D R_Extent	Unify Outline and Fill Colors	
CoreBdry	Redraw Layout Window Immediately	
ľ′	· · · · · · · · · · · · · · · · · · ·	
Save TF Default	ОК	Cancel

Figure 31: Layer Table Editor Form

11.1.4 Row-based Placement in SDL

- 1. Click the **Select All** icon in the design hierarchy browser pane to select all objects as the Laker system can support partial selection for implementation.
- 2. Invoke the **Design Brower** \rightarrow **Placement** \rightarrow **Row Placer** command.
- Select the Rule Set according to the original routing layer plan.
 Available routing layers have an impact on congestion driven placement results. Confirm in the Router → Net Router → Rule tab if necessary.
- 4. Fill in the **Constraint File** field with the file name of a placement constraint.
- 5. Click one Row area and apply **Design Brower** → **Placement** → **Row Placer** → **Estimate** to get the utilization rate calculated by the placer engine.

🗙 Row-based Placement	_ ×
🗖 Compact to 🐟 Left	♦ Center ♦ Right
🔲 Honor Soft Pin Position	
Rule Set: default =	
Constraint File: placement.	const 📃
Estimate	OK Cancel

Figure 32: Row-based Placement Form

6. Click one Row area and apply **Design Brower** → **Placement** → **Row Placer** → **OK** to finish the row placement task.

Figure 33: Row-based Placement

It takes longer to explore a possible smaller size by enabling the **Compact to** option. This option is useful for getting a compact design in a sparse initial floor plan and adjusting the floor plan by editing features.

12Post-Placement

12.1 Lab-12A: Post-Placement

In this lab, you will learn how to perform pin optimization, placement check, PG follow pin, and core filler insertion.

12.1.1 Pin Optimization

This is an optional step and can be used to optimize evenly distributed pins based on the new cell placement.

- Redo auto pin assignment again by removing edge distribution. The pin order and edge constraint are kept while pin placement is not evenly distributed.
- Redo auto pin assignment again without any constraints. The pin order and edge are decided by wire length minimization.
- Redo row placement by increasing the net weight cost of I/O nets in the placement constraint file.

#.NetWeight netName netWeight_int_1_to_50

- 1. Use the **Placer** \rightarrow **Pin Placer** \rightarrow **Optimize Pin Placement** command for pin optimization.
 - a. Set Scope as Top for top pins.
 - b. Enable Keep Pin Order without changing the current pin order

-	Optimize Pin Placement
Scope:	🕐 Тор
	Selected Cells
	Selected Ports
🖉 Con	sider Nets inside Cells
🖌 Keej	p Pin Order
Pin Pitc	h: H 1 V 1 Track(s)

Figure 34: Optimize Pin Placement Form

2. After this step, finish the task of pin optimization while keeping edge and order.

Figure 35: Optimized Pin Placement

- 3. Click the **Undo** button to check the difference between results without keeping the pin order.
- 4. Use the Placer → Pin Placer → Optimize Pin Placement command for pin optimization.
 - a. Set **Scope** as **Top** for top pins.
 - b. Disable Keep Pin Order without changing the current pin order.

— Optimize Pin Placement
Scope: 🌑 Top
Selected Cells
 Selected Ports
🗹 Consider Nets inside Cells
Keep Pin Order
Pin Pitch: H 1 V 1 Track(s)
OK Cancel

Figure 36: Optimize Pin Placement Form

Figure 37: Optimized Pin Placement

5. Click **OK** to perform pin optimization by only keeping the edge constraint.

12.1.2 Check Placement

A placement check utility is used to check cell placement in a row area, including cell overlap, legalization, and filler1 gap. It is especially useful for manual cell placement.

- 1. Invoke the **Placer** \rightarrow **Check Placement** command.
- 2. In the *Check Placement* form, enable the **NO Filler1 Space** option.
- 3. Click **OK** to check cell placement in a row area.

Figure 38: Check Placement Form

Invoke Verify \rightarrow View Error to bring up an error view for review if a placement error is found.

12.1.3 Check Spare Cell Placement

Silicon ECO spare cells are evenly spread during row placement. These spare cells can be highlighted to make sure the correct spare cell constraint is set.

1. Invoke Query → Spare Cell → Add to define spare cell groups.

- 2. In the Add Spare Cell form, do the following:
 - a. Set Group to spare_group
 - b. Set Instance to spare_*

_	Add Spare Cell	
Group:	spare_group	
Match C	ase 🛛 🗑 Regular Expressions	
Instance:	spare_*	
	Apply OK Cancel	

Figure 39: Add Spare Cell Form

3. In the Spare Cell form, click the spare cell name to highlight cell placement in a row area.

- Spare Cell (8/16)	
Match Case ▼ Regular Expressions Instance ▼ == ▼	
Spare Cell List Group by: ○ Group ● Cell ■ Fit Selected Obj	
■ NAND2_X2 ■ INV_X2	
Clear Add Delete Load Save Cance	

Figure 40: Spare Cell Form

Figure 41: Spare Cells

- Click Query → Spare Cell → Clear or the bind key F8 to clear the highlights of selected spare cells.
- 5. Click Query \rightarrow Spare Cell \rightarrow Cancel to close the form.

12.1.4 Add Core Fillers

Core filler insertion can be done before routing or after routing. The benefit of post-route insertion is to have better performance and database size without lots of core filler cells in an ASIC chip design. If the metal structure of the core filler design is not simple, pre-route insertion is recommended to avoid potential DRC violations in advance.

A FILL3 cell is necessary in library preparation to avoid consecutive filler1 cells. One FILLCELL_X3 will be created for this tutorial.

- 1. Invoke the **Placer** → **Add Filler Cell** command.
- 2. In the Add Filler Cell form, set filler cell names by specifying Filler Cell → FILLER*.

🗶 Add Fille	r Cell			_ ×
Mode:	🔷 Full Cell	🔷 Area		
Filler Cell:	FILL*			
2			ок	Cancel

Figure 42: Add Filler Cell Form

3. Click OK to finish core filler insertion in a row area.

12.1.5 PG Connection of Physical Cells

Power and ground ports of a physical only cell are floating because they are not defined during design import. It is necessary to connect the power and ground ports to global PG nets.

- 1. Invoke the Router \rightarrow Digital Router \rightarrow Assign Instance Port to Net command.
- 2. Fill in instance names, power, and ground net/port names.
- 3. Click **OK** to assign global power and ground nets to a physical cell by cell type.

🗙 Assign Instance Port to Net 🛛 🗙			🗙 Assign Ins	stance Port to Net	X
Net:	VDD		Net:	VSS	
Instances:	🔶 Names:	*	Instances	: 🔷 Names: 🔭	
	🔶 File:			♦ File:	
Port:	VDD		Port:	VSS	
		Apply OK Cancel		Apply OK Cance	<u> </u>

Figure 43: Assign Instance Port to Net Form

12.1.6 Connect PG Rails of Standard Cells

PG rails routing has an impact on routing resources and DRC checking in a limited layer design. It is recommended to finish PG rails before signal routing is started.

- 1. Invoke the customized **Router** \rightarrow **Digital Router** \rightarrow **PG Route** command.
- 2. Switch to the Follow Pin tab.

	Lump with 1	V/in /		
Use Lave	rs in Non-preferr	ed Direction	Array(s)	
Extend to Bo	undary			

Figure 44: PG Route Form, Follow Pin Tab

Г															5
	-				-						-				
_			-					awawa					****		
		22					015-32	EFF-0		1 06542	2075-12	1 BF	12 11 1	1	1
	1	5					IFF5/2				1 000201		522	1 22	
		Ē			<u> - -</u>		#F./2	101-	11-11-	DIFEXI	015.0	1 D FE	2		
		B		- - I			1 17.2	67.21			IFEII		522	1	
	1	B				1 0 000	87.33						rua.	1	
		22					1 1FE /2			- 1962/A			66 T	1	
	ï	B			THIN		B FF.3/2	- 110		DIFFERI	0#322		EXE	5	
		R		101 - H	1 11-1	9CHD	DIFLXI		-100000	- 065211	I H D H	i i		ł.	
		R.	- 11				6#32							5	
		22					107.53 107.02							1 13	
		ŝ				017.22 017.23				015,211					
	ī	ii.			1	OFF.XI FE				005201		I HHI			
	1	Ē.				6#22 OF	ELE I			DIFFLICE				1	
		2				SCR0 SCR				875,00					
		5				सन्द्र <u>ः</u> तसन्द्रश								2	
		ΕĒ			HIII -	E.02 0FE/2				DRE201					
		£				0ff.)2				FF_H				3	
		8				NECK NECKI								15	
		i.					1281			man 1					
	l	Ě		1 065-11	3 85.0				-	0FF-31	THEFT	TITU			
		H	FER	0F32	I DEFI	2		IFE/A				HI IHI		1	
*		1		2 075.12	820				1 100	85.2 H	Depart				
	i.	55		and a	- -			III acre	100	Di surse				12	1

Figure 45: Inserted Follow Pins

13 In-Route

13.1 Introduction

The Custom Digital Router flow is a series of routing kernels executed in a pre-defined sequence for global router, track assignment, detail route, violation check, violation fix, and notch gap filling.

- Auto Route flow is recommended to serve most typical designs.
- Primitive commands provide flexibility of routing procedure customization to fulfill different routing requirements. Usually, they are written in a script and executed in a batch.

Figure 46: Introduction of In-Route

13.2 Lab-13A: Digital Route

In this lab, you will learn how to easily finish routing most typical designs.

13.2.1 Digital Route

- 1. Invoke the **Router** \rightarrow **Digital Router** \rightarrow **Digital Route** command.
- 2. In the *Digital Route* form, set up global options as default under the **General** tab.

Digital Route	
Settings	
Applied Nets: Nets 🗹 🖈	
Ignored Nets: Nets 🗵	
🖵 Routing Area:	
Global Rule: default 🥑 💁	More>>
General Advanced Net Prior	rity Run Step Report
Run Threads: Auto	Preferred Routing Area: Auto
Routing Track: Auto	
Spine Routing Pattern Do Not Use Pins as Feedthrough Via Settings	
Via Enclosed by Pins	Style of Vias: Single Via
Do Not Use Wire Touch Pins	
Load Save Dump	Close

Figure 47: Digital Route Form, General Tab

- 3. On the *Digital Router* form, switch to the **Run Step** tab.
 - a. Enable Initial Route and Detail Route procedures.
 - b. Enable the **Post Optimization** procedure as the demo case is small.
 - c. Enable the **Double Via Insertion** procedure.
 - d. Enable Notch Gap Filling procedure.

🗙 Digital Route	
Settings	
Applied Nets: Nets I	d M
Ignored Nets: Nets I	
Routing Area:	
Global Rule: default 🝸 🔍	More>>
General Advanced Net Priority Run Step	Report
□ Initial Route □ □ Show Congestion Map	
Detail Route On Track No Pushing	Iteration: 5
 Post Optimization Detour Pattern 	Iteration: 3 1 Iteration: 5 1
Double Via Insertion	
Notch Gap Filling	
Default	Apply
Load Save Dump	Close

Figure 48: Digital Route Form, Run Step Tab

4. Click **Apply** to complete auto routing tasks.

The **Post Route** option on the **Auto Route** tab is disabled by default to enable a fast routing result for debugging once a routing problem is detected.

Figure 49: Routing Results

13.2.2 Routing Quality of Result

- 1. Switch to the **Report** tab for reporting several routing quality results.
 - a. Enable **Route Information** to report wire and via statistics. Double cut rate per layer can be reported this way.
 - b. Enable the Check Connectivity option to check routing connectivity.
 - c. Enable the Jog Information option to get jog counts.
 - d. Enable **Violations** and its sub-option **Show Violations** to bring up the *Error Viewer* form if any DRC violations are found.

Cigital Route		anialalana ana ana ana ana ana ana ana ana
Settings		
Applied Nets: Nets 🗹 🖈		<u> </u>
Ignored Nets: Nets 🗹		
🗖 Routing Area:		Ð
Global Rule: default 🔤 💽		More>>
General Advanced 1	Net Priority Run Step	Report
Design Information	🔲 Layout Data Validation	
Rule Information	Violations	
Route Information	🛄 Sub-optimal Patterns	
Connectivity	🔟 Antenna Rule	
☐ Nets with Detour Ratio >= 2.000	Skip Primitive Violations	
Jog Information	Show Violations	
Corner Information	Options:	
🔟 Output File:		
		Apply
Load Save Dump		Close

Figure 50: Digital Route Form, Report Tab

- 2. Click **Apply** to complete router verification tasks.
- 3. Select the **CustomDigital** → **Route** → **Close** command to close the tool box.

14 Limitations and Known Problems

14.1 Laker OA Flow

Default name space of bus representation is an angle bracket in Laker OA. For example, A[7:0] will become A<7:0>.

14.2 Laker Import Verilog Flow

Default name space of bus representation is an angle bracket. For example, A[7:0] will become A<7:0>.

14.3 New SDL Model Map File in OA

Starting from the Laker OA2010.05p1 version, new model map file sections are introduced to support MCells, Tcl PCells, and PyCells in a general SDL flow.

New sections in OA [MODEL_MAP] Specify the mapping between logic and realized layout. [DEVICE_MOS] Specify the mapping between the *Stick Diagram Compiler*.

Specify the mapping between the *Stick Diagram Compiler* or *Matching Device Creator* windows and the realized layout.

Example: [MODEL_MAP] X AND2_X1 OpenCellLibrary { AND2_X1 layout } X AND2_X2 OpenCellLibrary { AND2_X2 layout }

 Obsolete sections in OA [MAP] [PARAMETER] [PORTMAP]

> Example: [MAP] X AND2_X1 OpenCellLibrary AND2_X1 X AND2_X2 OpenCellLibrary AND2_X2

Invoke Library → Replace Model Map File to update a new model map file for an existing Laker OA library.

Revision History

Revision	Date	Description	
7.2	02/05/13	Updated the footer information.	MY
7.1	12/26/12	Updated the header and footer information.	MY
7.0	03/28/11	Split the Custom Digital Tutorial as CDPR LEF/DEF Tutorial and CDPR_SDL Tutorial, and updated the tutorial contents. Based on Laker OA2011.03.	HLH
6.0	12/16/10	Added an Overview section.	Rich Morse
5.0	11/02/10	Updated "Lab-1B: Foundry DRC rules".	HSW
4.0	09/09/10	Updated Model Map file section for Laker OA2010.08. Add LEF/DEF flow for Laker OA.	HSW
3.0	08/05/10	Updated tutorial materials.	HSW
		Removed Tcl scripts which are supported by Laker2010.07 features. For example, Pin Placer, etc.	
		Updated Laker OA incremental Tech.	
		Updated notch gap fill.	
2.0	06/11/10	Changed DigitalRouteAll to CustomDigital.	HSW
		Changed routing track definition of OpenCellLibrary.tf for better hierarchical layout implementation.	
1.6	04/16/10	Added a limitation of PG routing with read only LEF master library.	HSW
1.5	04/13/10	Added details to Introduction, modified Verilog Import, and added SPINE. Based on Laker 2010.03.	HSW
1.4	3/31/10	Update OpenCellLibrary source file, change menu name to CustomDigital, add Main window menu. Based on Laker 2010.03.	HSW
1.3	3/23/10	Added cell level ESD spacing. Based on Laker 2010.03.	HSW
1.2	3/18/10	Added Cell level OD spacing and overlap. Based on Laker 2010.03.	HSW
1.1	3/11/10	Added a technology file preparation section. Based on Laker 2010.03.	HSW
1.0	3/1/10	Initial release. Based on Laker 2010.03.	HSW

The information in this document is confidential and is covered by a license agreement between Synopsys and your organization. Distribution and disclosure are restricted.

The product names used in this document are the trademarks or registered trademarks of their respective owners.