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About This User Guide

The DFTMAX Design-for-Test User Guide describes the process for inserting standard 
scan, compressed scan, and self-test logic into a design using the Synopsys DFT Compiler 
and DFTMAX™ tools. You can then generate test patterns for these designs with the 
Synopsys TetraMAX® tool.

The DFTMAX Design-for-Test User Guide is organized into the following parts:

• Part I: DFT Overview – Provides overview of design-for-test (DFT) concepts and flows

• Part II: DFT Compiler Scan – Describes DFT configuration and insertion for standard 
scan logic

• Part III: DFTMAX Compression – Describes configuration and insertion for DFTMAX 
compressed scan, including serialized compressed scan logic

• Part IV: DFTMAX Ultra Compression – Describes configuration and insertion for 
DFTMAX Ultra streaming compressed scan logic

• Part V: DFTMAX LogicBIST Self-Test – Describes configuration and insertion for 
DFTMAX LogicBIST self-test logic

Audience

This manual is intended for ASIC design engineers who have some experience with 
testability concepts and for test and design-for-test (DFT) engineers who want to understand 
how basic test automation concepts and practices relate to the DFT Compiler and DFTMAX 
tools.

Related Publications

For additional information about the DFTMAX Design-For-Test tool suite, see the 
documentation on the Synopsys SolvNet® online support site at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to see the documentation for the following related Synopsys products:

• Design Compiler®

• Design Vision™

• Library Compiler™

• PrimeTime®
Preface
About This User Guide xxxviii

https://solvnet.synopsys.com/DocsOnWeb


DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
• Power Compiler™

• TetraMAX®

Release Notes

Information about new features, enhancements, changes, known limitations, and resolved 
Synopsys Technical Action Requests (STARs) is available in the DFTMAX Design-For-Test 
Release Notes on the SolvNet site.

To see the DFTMAX Design-For-Test Release Notes,

1. Go to the SolvNet Download Center located at the following address:

https://solvnet.synopsys.com/DownloadCenter

2. Select “DFT Compiler (Synthesis),” and then select a release in the list that appears.
Chapter 1: Preface
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Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as 
write_file design_list.

Courier bold Indicates user input—text you type verbatim—in 
examples, such as

prompt> write_file top

[ ] Denotes optional arguments in syntax, such as 
write_file [-format fmt]

... Indicates that arguments can be repeated as many 
times as needed,  such as 
pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as 
low | medium | high

Ctrl+C Indicates a keyboard combination, such as holding 
down the Ctrl key and pressing C.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as 
opening the Edit menu and choosing Copy.
Preface
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Customer Support

Customer support is available through SolvNet online customer support and through 
contacting the Synopsys Technical Support Center.

Accessing SolvNet

The SolvNet site includes a knowledge base of technical articles and answers to frequently 
asked questions about Synopsys tools. The SolvNet site also gives you access to a wide 
range of Synopsys online services including software downloads, documentation, and 
technical support.

To access the SolvNet site, go to the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name 
and password, follow the instructions to sign up for an account.

If you need help using the SolvNet site, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical 
Support Center in the following ways:

• Open a support case to your local support center online by signing in to the SolvNet site 
at https://solvnet.synopsys.com, clicking Support, and then clicking “Open A Support 
Case.”

• Send an e-mail message to your local support center.

❍ E-mail support_center@synopsys.com from within North America. 

❍ Find other local support center e-mail addresses at

https://www.synopsys.com/support/global-support-centers.html

• Telephone your local support center.

❍ Call (800) 245-8005 from within North America.

❍ Find other local support center telephone numbers at 

https://www.synopsys.com/support/global-support-centers.html
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1
Introduction to Synopsys DFT Tools 1

DFT Compiler is the Synopsys test synthesis solution. It enables transparent 
implementation of DFT capabilities into the Synopsys synthesis flow without interfering with 
functional, timing, signal integrity, or power requirements.

This chapter introduces the basic features, benefits, and components of the DFT Compiler 
and DFTMAX tools. It includes the following topics:

• Key Features

• Key Benefits

• DFT Compiler and the Galaxy Test Automation Solution

• DFTMAX Scan Compression

• DFTMAX Ultra Scan Compression

• DFTMAX LogicBIST Self-Test

• Other Tools in the Synopsys Test and Yield Solution
1-1
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Key Features

The DFT Compiler and DFTMAX tools offer the following features:

• One-pass test synthesis 

• Comprehensive RTL and gate-level DFT design rule checking

• Rapid scan synthesis

• DFTMAX scan compression

• Hierarchical scan synthesis (standard scan and compressed scan)

• Test point insertion

• Automatic fixing of DFT violations (AutoFix)

• Location-based scan ordering

• Timing-based scan ordering

Key Benefits

DFT Compiler enables you to quickly and accurately account for testability and resolve any 
test issues early in the design cycle. RTL test design rule checking enables you to create 
test-friendly RTL that can then be easily synthesized in the one-pass test synthesis 
environment. The integration of test within the Design Compiler topographical environment 
ensures predictable timing closure and achieves physically optimized scan designs.

Note the following key benefits of DFT Compiler:

• Offers transparent DFT implementation within the synthesis flow

• Accounts for testability early in the design cycle at RTL

• Removes unpredictability from the back end of the design process

• Achieves predictable timing, power, and signal integrity closure concurrent with test

DFT Compiler and the Galaxy Test Automation Solution

The DFT Compiler and DFTMAX tools, along with the TetraMAX tool, form the Galaxy test 
automation solution within the Galaxy Design Platform, as shown in Figure 1-1.
Chapter 1: Introduction to Synopsys DFT Tools
Key Features 1-2



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 1-1 Galaxy Test Automation Solution
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DFTMAX Scan Compression

The Synopsys DFTMAX tool provides a one-pass test synthesis solution that enables you to 
implement test data volume scan compression without affecting the functional, timing, or 
power requirements of your design.

DFTMAX scan compression provides the following key benefits and features:

• Significant test time and test volume reduction

• Same high test coverage and ease of use as standard scan

• No impact on design timing or design physical implementation

• One-pass test compression synthesis flow

• Hierarchical scan synthesis flows

The DFTMAX tool also provides additional capabilities beyond scan compression, such as 
boundary-scan insertion, core wrapping with maximized register reuse, and automatic test 
point insertion.

See Also

• Chapter 17, “Introduction to DFTMAX” for more information about DFTMAX scan 
compression

DFTMAX Ultra Scan Compression

The Synopsys DFTMAX Ultra tool provides an advanced one-pass test compression 
solution that is designed for hierarchical flows to deliver high quality results as measured by 
test time, data volume, design area and congestion, and time to implementation.

DFTMAX Ultra scan compression provides the following key benefits and features:

• Familiar user interface for DFTMAX users

• Very high scan compression ratios, even with few scan I/O pins

• Same high test coverage and ease of use as standard scan

• Minimal impact to the clock tree (no codec clock controller required)

• Improved ease of use for hierarchical scan synthesis flows
Chapter 1: Introduction to Synopsys DFT Tools
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See Also

• Chapter 23, “Introduction to DFTMAX Ultra” for more information about DFTMAX Ultra 
scan compression

DFTMAX LogicBIST Self-Test

Built-in self-test (BIST) capability enables a design to test itself autonomously without using 
external test data. The DFTMAX LogicBIST tool provides a low-overhead logic BIST 
(LBIST) solution for digital logic designs, such as automotive applications.

DFTMAX LogicBIST self-test provides the following key benefits and features:

• Low BIST controller area overhead

• Reuses the scan chain and test-mode control logic already implemented for 
manufacturing test

• Low LogicBIST-mode pin requirements

• Easy interface to functional logic

• Seed and expected signature values can be hardcoded or programmable

• Targets stuck-at and transition-delay faults

• Simple one-pass DFT insertion flow

See Also

• Chapter 30, “Introduction to LogicBIST” for more information about DFTMAX LogicBIST 
self-test

Other Tools in the Synopsys Test and Yield Solution

Synopsys provides a complete test and yield solution that accelerates higher quality, 
reliability, and yield. It spans the full flow from IP all the way through post-silicon test, and it 
covers all the key design blocks: logic, memory, I/O, and analog and mixed-signal (AMS). 
The return loop indicates the ability to optimize design rules, layouts, circuit design, and so 
on, based on learning from silicon analysis.

This solution includes:

• TetraMAX® II ATPG and TetraMAX ATPG

Provides high-coverage pattern generation for digital-logic designs
Chapter 1: Introduction to Synopsys DFT Tools
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• SpyGlass® DFT ADV

Provides RTL testability analysis and improvement for maximum ATPG coverage

• DesignWare® STAR Hierarchical System

Provides IEEE standards-based hierarchical SoC test and pattern-porting capabilities

• DesignWare STAR Memory System® IP

Provides advanced test, diagnostics and repair for embedded and external memory 
manufacturing defects (including FinFET technologies); and provides error correction for 
lifetime transient errors

• DesignWare IP

Provides high-speed interfaces (such as USB, DDR, and PCIe) with embedded self-test 
capability

• Yield Explorer

Identifies dominant yield loss mechanisms by combining fabrication plant, test, and 
design data

• Camelot™

Enables product engineers to exactly identify the failure mechanisms to drive quick 
resolution of the problems
Chapter 1: Introduction to Synopsys DFT Tools
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2
Designing for Manufacturing Test 2

The manufacturing test process ensures high-quality integrated circuits by screening out 
devices with manufacturing defects. You can attain maximum test coverage of your 
integrated circuit by using DFT Compiler when you adopt structured DFT techniques.

This chapter includes the following topics:

• Functional Testing Versus Manufacturing Testing

• Modeling Manufacturing Defects

• Achieving Maximum Fault Coverage for Sequential Cells

• Understanding the Full-Scan Test Methodology

• Scan Styles Supported by DFT Compiler

• Describing the Test Environment

• Test Design Rule Checking Functions

• Getting the Best Results With Scan Design
2-1
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Functional Testing Versus Manufacturing Testing

IC test is composed of two primary approaches: functional testing and manufacturing 
testing.

Functional testing verifies that your circuit performs as it is designed to perform. For 
example, assume that your design is an adder circuit. Functional testing verifies that your 
circuit performs the addition function and computes the correct results over the range of 
values tested. However, exhaustive testing of all possible input combinations grows 
exponentially as the number of inputs increases. To maintain a reasonable test time, you 
need to focus functional test patterns on the general function and corner cases.

Manufacturing testing verifies that your circuit does not have manufacturing defects by 
focusing on circuit structure rather than functional behavior. 

Manufacturing defects include problems such as

• Power or ground shorts

• Open interconnect on the die caused by dust particles

• Short-circuited source or drain on the transistor, caused by metal spike-through

Manufacturing defects might remain undetected by functional testing yet cause undesirable 
behavior during circuit operation. To provide the highest-quality products, development 
teams must prevent devices with manufacturing defects from reaching customers. 
Manufacturing testing enables development teams to screen devices for manufacturing 
defects.

Typically, development teams perform both functional and manufacturing testing of devices.

Modeling Manufacturing Defects

When a manufacturing defect occurs, the physical defect has a logical effect on the circuit 
behavior. An open connection can appear to float either high or low, depending on the 
technology. A signal shorted to power appears to be permanently high. A signal shorted to 
ground appears to be permanently low. Many manufacturing defects can be represented 
using the industry-standard stuck-at fault model. 

This topic covers the following:

• Understanding Stuck-At Fault Models

• Determining Coverage

• Understanding Fault Simulation
Chapter 2: Designing for Manufacturing Test
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• Automatically Generating Test Patterns

• Formatting Test Patterns

Understanding Stuck-At Fault Models

The stuck-at-0 model represents a signal that is permanently low, regardless of the other 
signals that normally control the node. The stuck-at-1 model represents a signal that is 
permanently high, regardless of the other signals that normally control the node.

For example, assume that you have a 2-input AND gate that has stuck-at-0 fault on the 
output pin. As shown in Figure 2-1, the output is always 0, regardless of the logic level of the 
two inputs.

Figure 2-1 2-Input AND Gate With Stuck-At-0 Fault on Output Pin

Controllable and Observable Faults

The node of a stuck-at fault must be controllable and observable for the fault to be detected.

A node is controllable if you can drive it to a specified logic value by setting the primary 
inputs to specific values. A primary input is an input that can be directly controlled in the test 
environment.

A node is observable if you can predict the response on it and propagate the fault effect to 
the primary outputs, where you can measure the response. A primary output is an output 
that can be directly observed in the test environment.

To detect a stuck-at fault on a target node:

• Control the target node to the opposite of the stuck-at value by applying data at the 
primary inputs.

• Make the node’s fault effect observable by controlling the value at all other nodes 
affecting the output response, so the targeted node is the active (controlling) node.

The set of logic 0s and 1s applied to the primary inputs of a design is called the input 
stimulus. The resulting values at the primary outputs, assuming a fault-free design, are 

1

1
1/0

Stuck-at-0 fault

Output response = 0

Expected response = 1
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called the expected response. The actual values measured at the primary outputs are called 
the output response.

If the output response does not match the expected response for a given input stimulus, the 
input stimulus has detected the fault.

Detecting Stuck-At Faults

To detect a faulty node that is stuck-at-0, you need to apply an input stimulus that forces a 
particular node to 1. For the 2-input AND gate shown in Figure 2-1, for example, apply a 
logic 1 at both inputs. The expected response for this input stimulus is logic 1, but the output 
response is logic 0. This input stimulus detects the stuck-at-0 fault. 

This method of determining the input stimulus to detect a fault uses the single stuck-at fault 
model. The single stuck-at fault model assumes that only one node is faulty and that all other 
nodes in the circuit are good.

The single stuck-at fault model greatly reduces the complexity of fault modeling and is 
technology independent, enabling the use of algorithmic pattern generation techniques.

A more complicated example shows the requirement of controlling all other nodes to ensure 
the observability of a particular target node. 

Figure 2-2 shows a circuit with a detectable stuck-at-0 fault at the output of cell G2.

Figure 2-2 Simple Circuit With Detectable Stuck-At Fault

To detect the fault, control the output of cell G2 to logic 1 (the opposite of the faulty value) by 
applying a logic 0 value at primary input C. 
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To ensure that the fault effect is observable at primary output Z, control the other nodes in 
the circuit so that the response value at primary output Z depends only on the output of cell 
G2, as follows:

• Apply a logic 1 at primary input D so the output of cell G3 depends only on the output of 
cell G2. The output of cell G2 is the controlling input of cell G3.

• Apply logic 0s at primary inputs A and B so the output of cell G4 depends only on the 
output of cell G2.

Given the input stimulus of A = 0, B = 0, C = 0, and D = 1, a fault-free circuit produces a 
logic 1 at output port Z. If the output of cell G2 is stuck-at-0, the value at output port Z is a 
logic 0 instead. Thus, this input stimulus detects a stuck-at-0 fault on the output of cell G2.

This set of input stimulus and expected response values is called a test vector. Following the 
process previously described, you can generate test vectors to detect stuck-at-1 and
stuck-at-0 faults for each node in the design.

Determining Coverage

A common definition of the testability of a design is the extent to which the design can be 
tested for the presence of manufacturing defects, as represented by the single stuck-at fault 
model.

Common metrics for measuring coverage are:

• Test coverage—the percentage of detected faults for all detectable faults; gives the most 
meaningful measure of test pattern quality

• Fault coverage—the percentage of detected faults for all faults; gives no credit for 
undetectable faults

• ATPG effectiveness—the percentage of faults that are resolvable by the ATPG process; 
full credit is given to faults which are detected and faults which are proven to be 
untestable

For larger combinational designs and sequential designs, it is not feasible to analyze the 
coverage results for existing functional test vectors or to manually generate test vectors to 
achieve high fault coverage results. Fault simulation tools determine the coverage of a set 
of test vectors. Automatic test pattern generation (ATPG) tools generate manufacturing test 
vectors. Both types of automated tools require models for all logic elements in your design 
to correctly calculate the expected response. Your semiconductor vendor provides these 
models.
Chapter 2: Designing for Manufacturing Test
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See Also

• “Coverage Calculations” in TetraMAX Online Help for more details on how these metrics 
are calculated

Understanding Fault Simulation

Fault simulation determines the fault coverage of a set of test vectors. It can be thought of 
as performing many logic simulations concurrently—one that represents the fault-free circuit 
(the good machine) and many that represent the circuits containing single stuck-at faults 
(the faulty machines). Fault simulation detects a fault each time the output response of the 
faulty machine differs from the output response of the good machine for a given vector. 

Fault simulation determines all faults detected by a test vector. Fault simulating the test 
vector generated to detect the stuck-at-0 fault on the output of G2 in Figure 2-2 shows that 
this vector also detects the following single stuck-at faults:

• Stuck-at-1 on all pins of G1 (and ports A and B)

• Stuck-at-1 on the input of G2 (and port C)

• Stuck-at-0 on the inputs of G3 (and port D)

• Stuck-at-1 on the output of G3

• Stuck-at-1 on the inputs of G4

• Stuck-at-0 on the output of G4 (and port Z)

You can generate manufacturing test vectors by manually generating test vectors and then 
fault-simulating them to determine the fault coverage. For large or complex designs, this 
process is time-consuming and often does not result in high fault coverage results.

Automatically Generating Test Patterns

You use an ATPG tool (such as the TetraMAX tool) to generate test patterns and provide 
fault coverage statistics for the generated pattern set. The difference between test vectors 
and test patterns is defined in Chapter 3, “Scan Design Techniques.” For now, consider the 
terms test vector and test pattern as synonymous.

When using ATPG for combinational circuits, it is usually possible to generate test vectors 
that provide high fault coverage for combinational designs. Combinational ATPG tools use 
both random and deterministic techniques to generate test patterns for stuck-at faults on cell 
pins.

During random pattern generation, the tool assigns input stimulus in a pseudorandom 
manner and then fault-simulates the generated vector to determine which faults are 
Chapter 2: Designing for Manufacturing Test
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detected. As the number of faults detected by successive random patterns decreases, 
ATPG shifts to a deterministic technique.

During deterministic pattern generation, the tool uses a pattern generation algorithm based 
on path-sensitivity concepts to generate a test vector that detects a specific fault in the 
design. After generating a vector, the tool fault simulates the vector to determine the 
complete set of faults detected by the vector. Test-pattern generation continues until all 
faults have either been detected or have been identified as undetectable by this algorithm.

Because of the effects of memory and timing, ATPG for sequential circuits is much more 
difficult than for combinational circuits. It is often not possible to generate 
high-fault-coverage test vectors for complex sequential designs, even when using 
sequential ATPG. Sequential ATPG tools use deterministic pattern generation algorithms 
based on extended applications of the path-sensitivity concepts.

Structured DFT techniques, such as internal scan, simplify the test-pattern generation task 
for complex sequential designs, resulting in higher fault coverage and reduced testing costs.

See Also

• Chapter 3, “Scan Design Techniques” for more information about testing a design with 
internal scan

Formatting Test Patterns

To screen out manufacturing defects in your chips, you need to translate the generated test 
patterns into a format acceptable to the automated test equipment (ATE). On the ATE, the 
logic 0s and 1s in the input stimulus are translated into low or high voltages to be applied to 
the primary inputs of the device under test. The logic 0s and 1s in the output response are 
compared with the voltages measured at the primary outputs. One test vector corresponds 
to one ATE cycle. 

You might use more than one set of test vectors for manufacturing testing. The collection of 
all test vector sets used to test a design is often referred to as the test program.

Achieving Maximum Fault Coverage for Sequential Cells

You can achieve the best fault coverage results for sequential cells when all the nodes in 
your design are controllable and observable. Adding scan logic to your design enhances its 
controllability and observability.
Chapter 2: Designing for Manufacturing Test
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Controllability of Sequential Cells

For sequential cells, controllability requirements ensure that all state elements can be 
controlled, by scan or other means, to desired state values from the boundary of the design. 
These requirements are involved primarily with the shift operations in scan test. 

In an ideal full-scan design, the scan chain contains all state elements, the scan chain 
operates correctly, and the circuit is fully controllable. In this ideal full-scan circuit, any circuit 
state can be achieved. 

Observability of Sequential Cells

For sequential cells, observability requirements ensure predictable capture of the next state 
of the circuit and visibility at the boundary of the design. These requirements are involved 
primarily with the capture operations in scan test. Although scan shift problems affect the 
observability of sequential cells, they are typically detected during controllability checks.

In the context of scan design, a circuit is observable when the tester can successfully clock 
the scan cells in the circuit and then shift their state to the scan outputs.

For a circuit to be observable, the tester must be able to

1. Observe the primary outputs of the circuit after shifting in a scan pattern.

Normally, this involves no DFT and does not present problems.

2. Reliably capture the next state of the circuit.

If the functional operation is impaired, unpredictable, or unknown, the next state is 
unknown. This unknown state makes at least part of the circuit unobservable.

3. Extract the next state by shifting out the output response of the scan cells.

This process is similar to shifting in a scan pattern. The additional requirement is that the 
shift registers pass data reliably to the output ports.

The rules governing the controllability and observability of scan cells are called test design 
rules.

See Also

• Chapter 14, “Pre-DFT Test Design Rule Checking” for more information about checking 
for test design rule violations before DFT insertion
Chapter 2: Designing for Manufacturing Test
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Understanding the Full-Scan Test Methodology 

In the full-scan methodology, DFT Compiler replaces all sequential cells in your design with 
their scannable equivalents during scan insertion.

A sequential cell might not be scannable because of test design rule violations or because 
you have explicitly excluded the cell from the scan chain. In this case, DFT Compiler 
classifies the cell as a black-box sequential cell during test design rule checking. Black-box 
sequential cells lower fault coverage results.

Because it is a more predictable methodology, full scan typically provides higher fault 
coverage in a shorter period of time than partial scan. Full scan also provides improved 
diagnostic capabilities compared to partial scan.

However, because full scan substitutes scannable equivalents for all sequential cells, it 
increases design area and decreases design performance. Integration with synthesis 
minimizes the area and performance overhead of full scan. In most cases, performance can 
be maintained in a full-scan design, but at the cost of additional area.

See Also

• Chapter 3, “Scan Design Techniques” for more information about full scan testing of a 
design

Scan Styles Supported by DFT Compiler

DFT Compiler supports the following scan styles:

• Multiplexed Flip-Flop Scan Style

• Clocked-Scan Scan Style

• Level-Sensitive Scan Design (LSSD) Style

• Scan-Enabled Level-Sensitive Scan Design (LSSD) Style

• Summary of Supported Scan Cells

These scan styles are described in the following topics.
Chapter 2: Designing for Manufacturing Test
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Multiplexed Flip-Flop Scan Style

The multiplexed flip-flop scan style uses a multiplexed data input to provide serial shift 
capability. In functional mode, the scan-enable signal, acting as the multiplexer select line, 
selects the system data input. During scan shift, the scan-enable signal selects the scan 
data input. The scan data input comes from either the scan-input port or the scan output pin 
of the previous cell in the scan chain. 

The following test pins are required on a multiplexed flip-flop equivalent cell:

• Scan-input

• Scan-enable

• Scan-output (can be shared with a functional output pin)

Test pins are identified in the test_cell group of the cell description in the logic library. For 
information on modeling test cells in your logic library, see the Library Compiler user guides.

Multiplexed flip-flop is the scan style most commonly supported in logic libraries. Most 
libraries provide multiplexed flip-flop equivalents for D, JK, and master-slave flip-flops.

See Also

• “Multiplexed Flip-Flop Scan Style” on page 4-2 for more information about the 
multiplexed flip-flop scan style

Clocked-Scan Scan Style 

The clocked-scan scan style uses a dedicated, edge-triggered test clock to provide serial 
shift capability. In functional mode, the system clock is active and system data is clocked into 
the cell. During scan shift, the test clock is active and scan data is clocked into the cell. 

The following test pins, identified in the test_cell group of the scan cell description in the 
logic library, are required on a clocked-scan cell:

• Scan-input

• Test-clock

• Scan-output (can be shared with a functional output pin)

DFT Compiler supports clocked-scan cells for both flip-flops and latches.
Chapter 2: Designing for Manufacturing Test
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See Also

• “Clocked-Scan Scan Style” on page 4-5 for more information about the clocked-scan 
scan style

Level-Sensitive Scan Design (LSSD) Style

DFT Compiler supports three variations of the level-sensitive scan design (LSSD) style: 

• Single-latch

• Double-latch

• Clocked

These variations can be mixed in a single design. The following section briefly describes 
these variations.

Both the single-latch and double-latch variations use the classical LSSD scan cell, which 
consists of two latches acting as a master-slave pair. The master latch has dual input ports 
and can latch either functional data or scan data. In functional mode, the system master 
clock input controls the data input. In scan mode, the test master clock input controls the 
transfer of data from the data input to the master latch. The slave clock input controls the 
transfer of data from the master latch to the slave latch.

The following test pins, identified in the test_cell group of the scan cell description in the 
logic library, are required on an LSSD cell:

• Scan-input

• Test master-clock

• Test slave-clock (except for double-latch LSSD)

• Scan-output (can be shared with a functional output pin)

See Also

• “LSSD Scan Style” on page 4-9 for more information about the LSSD scan style, 
including the single-latch, double-latch, and clocked LSSD scan styles

Scan-Enabled Level-Sensitive Scan Design (LSSD) Style

The scan-enabled LSSD scan style provides edge-triggered flip-flop behavior in functional 
mode, but it uses master-slave test clocks to provide skew-tolerant serial shift capability in 
test mode. In functional mode, when the scan-enable signal is de-asserted, system data is 
clocked into the cell on clock edges. In test mode, when the scan-enable signal is asserted, 
Chapter 2: Designing for Manufacturing Test
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test data is clocked through the cell using master-slave clocking. In test mode, the system 
clock is repurposed as the scan-shift slave clock, and a separate scan-shift master clock 
signal is required.

The following test pins, identified in the test_cell group of the scan cell description in the 
logic library, are required on a clocked-scan cell:

• Scan-input

• Test master-clock

• Test slave-clock (shared with functional clock pin)

• Scan-enable

• Scan-output (can be shared with a functional output pin)

See Also

• “Scan-Enabled LSSD Style” on page 4-18 for more information about the scan-enabled 
LSSD scan style

Summary of Supported Scan Cells

Table 2-1 shows the scan cells supported by DFT Compiler. The columns represent circuit 
clocking in functional mode; the rows represent circuit clocking in scan mode. Use this table 
to determine scan cell support and the corresponding scan style for your design.

Table 2-1 Supported Scan Cells 

Functional mode

Scan mode Edge-triggered 
clock

Single 
level-sensitive clock

Dual master-slave
level-sensitive clocks

Same
edge-triggered 
clock

MUX flip-flop

(multiplexed_
flip_flop)

Same master-slave 
level-sensitive
clocks

MUX master-slave latch

(multiplexed_
flip_flop)

Note: The scan_style argument is shown in parentheses.
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For example, if your design has one level-sensitive clock (C) in functional mode and two 
nonoverlapping clocks (A and B) for scan shift, you need to set the scan style to lssd.

Logic Library Considerations

The ability of DFT Compiler to support a particular scan style depends on whether the scan 
cells can be modeled in the logic library.

With the Library Compiler tool, you can use a state table to model sequential cells. State 
table models can accurately model the behavior of complex scan cells, such as those that 
have multiple clocks active at the same time. DFT Compiler does not support every complex 
sequential cell that can be modeled by using state table models.

See Also

• Library Compiler User Guide for more information about modeling scan cells

Describing the Test Environment

A test protocol completely describes the test environment for a design. The test protocol 
includes

Different 
edge-triggered 
clock

Clocked-scan flip-flop

(clocked_scan)

Clocked-scan latch

(clocked_scan)

Different dual 
master-slave 
level-sensitive 
clocks

Clocked LSSD

(lssd)

Single-latch LSSD

(lssd)

Master-slave 
clocks with 
different master 
clock, same slave 
clock

Scan-enabled LSSD

(scan_enabled_lssd)

Double-latch LSSD

(lssd)

Table 2-1 Supported Scan Cells (Continued)

Functional mode

Scan mode Edge-triggered 
clock

Single 
level-sensitive clock

Dual master-slave
level-sensitive clocks

Note: The scan_style argument is shown in parentheses.
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• The test timing information

• The initialization sequence used to configure the design for scan testing

• The test configuration used to select between scan shift and parallel cycles during 
pattern application

• The pattern application sequence

The process for scan-testing a design is basically the same for every design. It consists of 
scanning data in, performing the normal operation sequence, and scanning data out. 

The instructions for performing scan testing, however, are unique to each design. Those 
instructions include how to configure the design for scan testing, what ports are involved, 
and so on. A test protocol is the set of specific instructions for scan testing a design.

Test Design Rule Checking Functions

The test design rule checker has two distinct functions:

• As a standalone program, it provides feedback on the testability of the design to guide 
DFT.

• As a preprocessor to scan insertion, it flags valid sequential cells for scan replacement. 
In this mode, it produces no user output.

In test DRC, scan data is simulated symbolically, but the design is simulated 
deterministically.

Because rule checking depends on the dynamic operation of the design, design rule 
violations can be caused by both structural problems and operational problems. You can 
often modify the dynamics of the scan operation to fix a problem that appears to be 
structural.

Getting the Best Results With Scan Design

To get the best scan design results, your ATPG tool must be able to control the inputs and 
observe the outputs of individual cells in a circuit. By observing all the states of a circuit 
(complete fault coverage), the ATPG tool can check whether the circuitry is good or faulty for 
each output. The quality of the fault coverage depends on how well a device’s circuitry can 
be observed and controlled.

If the ATPG tool cannot observe the states of individual sequential elements in the circuit, 
fault coverage is lowered because the distinction between a good circuit and a faulty circuit 
is not visible at a given output. 
Chapter 2: Designing for Manufacturing Test
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To maximize your fault coverage, follow these recommendations:

• Use full scan.

• Fix all design rule violations.

• Follow these design guidelines:

❍ Be careful when you use gated clocks. If the clock signal at a flip-flop or latch is gated, 
a primary clock input might not be able to control its state. If your design has 
extensive clock gating, use AutoFix or provide another way to disable the gating logic 
in test mode.

Note:   
DFT Compiler supports gated-clock structures inserted by the Power Compiler 
tool.

❍ Generate clock signals off-chip or use clock controllers compatible with DFT 
Compiler. If uncontrollable clock signals are generated on-chip, as in frequency 
dividers, you cannot control the state of the sequential cells driven by these signals. 
If your design includes internally generated, uncontrollable clock signals, use AutoFix 
or provide another way to bypass these signals during testing.

❍ Minimize combinational feedback loops. Combinational feedback loops are difficult to 
test because they are hard to place in a known state.

❍ Use scan-compatible sequential elements. Be sure that the library you select has 
scannable equivalents for the sequential cells in your design.

❍ Avoid uncontrollable asynchronous behavior. If you have asynchronous functions in 
your design, such as flip-flop preset and clear, use AutoFix so that you can control the 
asynchronous pins or make sure you can hold the asynchronous inputs inactive 
during testing.

❍ Control bidirectional signals from primary inputs.

The scan design technique does not work well with certain circuit structures, such as

• Large, nonscan macro functions, such as microprocessor cores

• Compiled cells, such as RAM and arithmetic logic units

• Analog circuitry

For these structures, you must provide a test method that you can integrate with the overall 
scan-test scheme.
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Scan Design Techniques 3

A variety of scan design techniques are available to help you prepare your design to take 
advantage of manufacturing test techniques. Each major technique is discussed in this 
chapter.

This chapter includes the following topics:

• Internal Scan Design

• Test for System-On-A-Chip Designs

• Boundary Scan Design
3-1
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Internal Scan Design

Internal scan design is the most popular DFT technique; it also has the greatest potential for 
high fault coverage results. This technique simplifies the pattern generation problem by 
dividing complex sequential designs into fully isolated combinational blocks (full-scan 
design) or partially isolated combinational blocks (partial-scan design). Internal scan 
modifies existing sequential elements in the design to support a serial shift capability in 
addition to their normal functions. This serial shift capability enhances internal node 
controllability and observability with a minimum of additional I/O pins.

Scan Cells

Figure 3-1 shows a D flip-flop modified to support internal scan by the addition of a 
multiplexer (this scan style is called multiplexed flip-flop). Inputs to the multiplexer are the 
data input of the flip-flop (d) and the scan-input signal (scan_in). The active input of the 
multiplexer is controlled by the scan-enable signal (scan_enable). Input pins are added to 
the cell for the scan_in and scan_enable signals. One of the data outputs of the flip-flop (q 
or qb) is used as the scan-output signal (scan_out). The scan_out signal is connected to the 
scan_in signal of another scan cell to form a serial scan (shift) capability.

Figure 3-1 D Flip-Flop With Scan Capability

Scan Chains

The modified sequential cells are chained together to form one or more large shift registers, 
called scan chains or scan paths. The sequential cells connected in a scan chain are scan 
controllable and scan observable. A sequential cell is scan controllable when it can be set to 
a known state by serially shifting in specific logic values. ATPG tools consider 
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scan-controllable cells pseudo-primary inputs of the design. A sequential cell is scan 
observable when its state can be observed by serially shifting out data. ATPG tools consider 
scan-observable cells pseudo-primary outputs of the design.

Scan Cells in Semiconductor Vendor Libraries

Most semiconductor vendor libraries include pairs of equivalent nonscan and scan cells that 
support a given scan style. One special test cell is a scan flip-flop that logically combines a 
D flip-flop and a multiplexer, as shown in Figure 3-1. 

The Effect of Adding Scan Circuitry to a Design

Adding scan circuitry to a design usually has the following effects:

• Design size and power increase slightly because scan cells are usually larger than the 
nonscan cells they replace and the nets used for the scan signals occupy additional 
area.

• Design performance (speed) decreases marginally because of changes in the electrical 
characteristics of the scan cells that replace the nonscan cells.

• Global test signals that drive many sequential elements might require buffering to 
prevent electrical design rule violations.

The effects of adding scan circuitry vary, depending on the scan style and the semiconductor 
vendor library you use. For some scan styles, such as LSSD, introducing scan circuitry 
produces a negligible local change in performance.

By integrating DFT capabilities within synthesis, the DFT Compiler tool minimizes the 
overhead of scan circuitry based on performance, area, and electrical design rules.

ATPG and Internal Scan

For scan designs, ATPG tools generate input stimulus, for the primary inputs and 
pseudo-primary inputs, and expected responses, for the primary outputs and 
pseudo-primary outputs. The set of input stimulus and output response that includes primary 
inputs, primary outputs, pseudo-primary inputs, and pseudo-primary outputs is called a test 
pattern or scan pattern. 
Chapter 3: Scan Design Techniques
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A test pattern represents many test vectors because

• The pseudo-primary input data must be serialized to be applied at the input of the scan 
chain

• The pseudo-primary output data must be serialized to be measured at the output of the 
scan chain

Applying Scan Patterns

Test patterns are applied to a scan-based design through the scan chains. The process is 
the same for full-scan and partial-scan designs.

Scan cells operate in one of two modes: parallel mode or shift mode. For the multiplexed 
flip-flop scan style shown in Figure 3-1 on page 3-2, the mode is controlled by the 
scan-enable pin. In parallel mode, the input to each scan element comes from the 
combinational logic block. In shift mode, the input comes from the output of the previous 
scan cell or a scan-input port. Other scan styles work similarly.

The target tester applies a scan pattern, as illustrated in Figure 3-2.

Figure 3-2 Scan Pattern Application Sequence
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To apply a scan pattern, the target tester

1. Selects shift mode by setting the scan-enable port. This test signal is connected to all 
scan cells.

2. Shifts in the input stimulus for the scan cells (pseudo-primary inputs) at the scan-input 
ports. 

3. Selects parallel mode by inverting the scan-enable port. 

4. Applies the input stimulus to the primary inputs.

5. Checks the output response at the primary outputs after the circuit has settled and 
compares it to the expected fault-free response. This process is called parallel measure.

6. Pulses one or more clocks to capture the steady-state output response of the nonscan 
logic blocks into the scan cells. This process is called parallel capture.

7. Selects shift mode by resetting the scan-enable port.

8. Shifts out the output response of the scan cells (pseudo-primary outputs) at the 
scan-output ports and compares the scan cell contents with the expected fault-free 
response.

Full-Scan Design

In the full-scan design technique, all sequential cells in your design are modified to perform 
a serial shift function. Sequential elements that are not scanned are treated as black-box 
cells (cells with unknown function).

Full scan divides a sequential design into combinational blocks, as shown in Figure 3-3 on 
page 3-6. In the figure, clouds represent combinational logic and rectangles represent 
sequential logic. The full-scan diagram shows the scan path through the design.
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Figure 3-3 Scan Path Through a Full-Scan Design

Through pseudo-primary inputs, the scan path enables direct control of inputs to all 
combinational blocks. Through pseudo-primary outputs, the scan path enables direct 
observability of outputs from all combinational blocks. You can use efficient combinational 
ATPG algorithms to achieve high fault coverage results on the full-scan design.

Test for System-On-A-Chip Designs

SoC Test provides a standards-based infrastructure for automatically incorporating a variety 
of structured and scalable DFT structures into system-on-a-chip (SoC) designs, all within 
the Synopsys synthesis environment. The value of SoC DFT directly parallels that of SoC 
functional design. By incorporating functional block test reuse, you can focus attention and 
effort on the integration of system components and optimization of the final test system.

Boundary Scan Design

Boundary scan is a DFT technique that simplifies printed circuit board testing using a 
standard chip-board test interface. The Institute of Electrical and Electronics Engineers 
(IEEE) has established the industry standard for this test interface. This standard is known 
as the IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std 1149.1). 

The boundary-scan technique is often referred to as JTAG. JTAG stands for Joint Test Action 
Group, the group that initiated the standardization of this test interface.

With Full Scan

scan_out

scan_enable

scan_in

Without Scan
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Boundary scan enables board-level testing by providing direct access to the input and 
output pads of the integrated circuits on a printed circuit board. Boundary scan modifies the 
I/O circuitry of individual ICs and adds control logic so the input and output pads of every 
boundary-scan IC can be joined to form a board-level serial scan chain. 

The boundary-scan technique uses the serial scan chain to access the I/O ports of chips on 
a board. Because the scan chain is composed of the input and output pads of a chip’s 
design, the chip’s primary inputs and outputs are accessible on the board for applying and 
sampling data. Boundary scan supports the following board-level test functions:

• Testing the interconnect wiring on a printed circuit board for shorts, opens, and bridging 
faults

• Testing clusters of non-boundary-scan logic

• Identifying missing, misoriented, or wrongly selected components

• Identifying fixture problems

• Limited testing of individual chips on a board

Note:   
Although boundary scan addresses several board-test issues, it does not directly 
address chip-level testability. Combine chip-test techniques (such as internal scan) 
with boundary scan to provide testability at both the chip and board level.

Figure 3-4 depicts a simple printed circuit board with several boundary-scan ICs and 
illustrates some of the failures that boundary scan can detect. 
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Figure 3-4 Board Testing With IEEE Std 1149.1 Boundary Scan

In the Synopsys design environment, the DFTMAX tool supports implementation of 
boundary-scan ports, interconnections, and control.

See Also

• The DFTMAX Boundary Scan User Guide and the DFTMAX Boundary Scan Reference 
Manual for more information about IEEE Std 1149.1 and IEEE 1149.6 boundary-scan
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cluster
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Open

Short to
ground

Serial
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Serial test interconnect
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4
Scan Styles 4

DFT Compiler supports a variety of scan styles. This chapter discusses each supported 
scan style.

This chapter includes the following topics:

• Multiplexed Flip-Flop Scan Style

• Clocked-Scan Scan Style

• LSSD Scan Style

• Scan-Enabled LSSD Style
4-1
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Multiplexed Flip-Flop Scan Style

The multiplexed flip-flop scan style uses a multiplexed data input to provide scan shift 
capability. In functional mode, the scan-enable signal, acting as the multiplexer select line, 
selects the system data input. During scan shift, the scan-enable signal selects the scan 
data input. The scan data input comes from either the scan-input port or the scan-output pin 
of the previous cell in the scan chain. 

The following test pins are required on a multiplexed flip-flop equivalent cell:

• Scan-input

• Scan-enable

• Scan-output (can be shared with a functional output pin)

Test pins are identified in the test_cell group of the cell description in the logic library. For 
information on modeling test cells in your logic library, see the Library Compiler user guides.

Multiplexed flip-flop is the scan style most commonly supported in logic libraries. Most 
libraries provide multiplexed flip-flop equivalents for D flip-flops.

Flip-Flop Equivalents

Figure 4-1 shows an example of a D flip-flop before and after scan substitution, using the 
multiplexed flip-flop scan style. The pin connection mappings are shown in parentheses. In 
this example, the scan-in pin is SI, the scan-enable pin is SE, and the scan-out pin is shared 
with the functional output pin Q.

Figure 4-1 D Flip-Flop After Multiplexed Scan Cell Substitution

Figure 4-2 shows the generic model used by DFT Compiler for multiplexed scan flip-flops. 
The library model’s test_cell ports are shown in parentheses.

Previous cell’s 
scan output

Next cell’s 
scan input

D Q

CLK

D
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SE
CLK

Q

New globally-routed test signals
Flip-flop Flip-flop

scan equivalent

(1)

(3)

(2)

(1)

(3)

(2)
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Figure 4-2 Default Multiplexed Flip-Flop Scan Cell 

Table 4-1 lists the signal-type pin connections for the multiplexed scan flip-flop cell.

Master-Slave Latch Equivalents

Figure 4-3 shows an example of a master-slave latch before and after scan substitution, 
using the multiplexed scan style. The pin connection mappings are shown in parentheses. 
In this example, the scan-in pin is SI, the scan-enable pin is SE, and the scan-out pin is 
shared with the functional output pin Q.

Figure 4-3 Latch After Multiplexed Scan Cell Substitution

Figure 4-4 shows the logic diagram for the generic model of a multiplexed master-slave 
latch. The library model’s test_cell ports are shown in parentheses.

Table 4-1 Signal-Type Pin Connections for Multiplexed Scan Flip-Flop 

Pin Signal type

SI ScanDataIn

SE ScanEnable

Q ScanDataOut

QB ScanDataOut

D
SI

CLK

1D

C1
Q
QB

(test_scan_enable)

(test_scan_out)

(test_scan_out_inverted)

SE

(test_scan_in)

Previous cell’s 
scan output

Next cell’s 
scan input

D Q

CLKB

D
SI
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CLKA

Q

Master-slave 
latch Master-slave latch 

scan equivalent

CLKA

CLKB

(1) (2)

(3)
(4)

(1)

(3)
(4)

(2)

New globally-routed test signals
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Figure 4-4 Default Multiplexed Master-Slave Latch Scan Cell

Table 4-2 is the truth table for this model. Note that the master clock CLKA and slave clock 
CLKB are nonoverlapping, as shown in Figure 4-5. 

Figure 4-5 Nonoverlapping Master-Slave Scan Clocks 

Table 4-2 Truth Table for Multiplexed Master-Slave Latch Scan Cell 

D SI SE CLKA CLKB Q QB Mode

0 X 0 0 1 Functional

1 X 0 1 0 Functional

X 0 1 0 1 Scan

X 1 1 1 0 Scan

X X X 0 0 Q QB Either

Note: The master clock (CLKA) pulse precedes the 
slave clock (CLKB) pulse, and the clocks are non-
overlapping.

D
SI
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(Master)
1D

C1

Q
QB

(test_scan_enable)

(test_scan_out)

(test_scan_out_inverted)

SE

(Slave)
1D

C1CLKB
(test_scan_clock_a)

(test_scan_clock_b)

(test_scan_in)

= Positive pulse

= Don’t careX

ScanMasterClock

ScanSlaveClock
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Table 4-3 lists the signal-type pin connections for the multiplexed master-slave latch scan 
cell.

Multiplexed Flip-Flop Scan Style Characteristics

The multiplexed flip-flop scan style has the following general characteristics:

• Additional delay caused by the multiplexer in the functional path.

• Low cell area overhead. A multiplexed D-type flip-flop is typically 15 percent to 30 
percent larger than a standard D-type flip-flop.

• Low routing overhead due to one additional global scan-enable signal. Skew is not 
critical on this signal.

• A minimum of one additional I/O port (scan-enable). You might not need an additional I/O 
port for scan-in or scan-out if you can multiplex these functions with existing functional 
ports in your design.

• Typically used with edge-triggered design styles.

Clocked-Scan Scan Style 

The clocked-scan scan style uses a separate dedicated edge-triggered test clock to provide 
scan shift capability. In functional mode, the system clock is active and system data is 
clocked into the cell. During scan shift, the test clock is active and scan data is clocked into 
the cell.

Table 4-3 Signal-Type Pin Connections for Multiplexed Master-Slave Latch Cell 

Pin Signal type

SI ScanDataIn

SE ScanEnable

Q ScanDataOut

QB ScanDataOut
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The following test pins, identified in the test_cell group of the scan cell description in the 
logic library, are required on a clocked-scan cell:

• Scan-input

• Test-clock

• Scan-output (can be shared with a functional output pin)

DFT Compiler supports clocked-scan cells for both flip-flops and latches. 

Flip-Flop Equivalents 

Figure 4-6 shows an example of a D flip-flop before and after scan substitution with the 
clocked-scan scan style. The pin connection mappings are shown in parentheses. In this 
example, the scan-in pin is SI, the dedicated edge-triggered test clock pin is SCLK, and the 
scan-out pin is shared with the functional output pin Q.

Figure 4-6 D Flip-Flop After Clocked-Scan Cell Substitution

Figure 4-7 shows the generic model used by DFT Compiler for clocked-scan flip-flops. The 
library model’s test_cell ports are shown in parentheses.

Figure 4-7 Default Clocked-Scan Flip-Flop Scan Cell 
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Table 4-4 is the truth table for this model.

Table 4-5 lists the signal-type pin connections for the clocked-scan flip-flop cell.

Latch Equivalents 

Clocked-scan cells for latches are level sensitive in functional mode but are edge triggered 
during scan shift.

Figure 4-8 shows an example of a latch before and after scan substitution with the 
clocked-scan scan style. The pin connection mappings are shown in parentheses. In this 
example, the scan-in pin is SI, the dedicated edge-triggered test clock pin is SCLK, and the 
scan-out pin is shared with the functional output pin Q.

Table 4-4 Truth Table for Clocked-Scan Flip-Flop Cell

D SI SCLK CLK Q QB Mode

0 X 0  0 1 Functional

1 X 0  1 0 Functional

X 0  0 0 1 Scan

X 1  0 1 0 Scan

X X 0/1 0 Q QB Either

Table 4-5 Signal-Type Pin Connections for Clocked-Scan Flip-Flop 

Pin Signal type

SI ScanDataIn

SCLK ScanMasterClock

Q ScanDataOut

QB ScanDataOut

= Positive pulse

= Rising edge of clock
= Don’t careX
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Figure 4-8 Latch After Clocked-Scan Cell Substitution

Figure 4-9 shows the logic diagram of the default model used by DFT Compiler for a 
clocked-scan latch. The library model’s test_cell ports are shown in parentheses.

Figure 4-9 Default Clocked-Scan Latch Cell

Table 4-6 is the truth table for this model.

Table 4-6 Truth Table for Clocked-Scan Latch Cell 

D SI SCLK CLK Q QB Mode

0 X 0 0 1 Functional

1 X 0 1 0 Functional

X 0  0 0 1 Scan

X 1  0 1 0 Scan

X X 0/1 0 Q QB Either
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Table 4-7 lists the signal-type pin connections for the clocked-scan latch cell.

Clocked-Scan Scan Style Characteristics 

Characteristics of the clocked-scan scan style include the following:

• It has negligible performance overhead.

• Low cell area overhead. A clocked-scan cell is typically 15 percent to 30 percent larger 
than a standard D-type flip-flop. 

• Moderate increased routing overhead due to an additional global test clock signal. This 
clock signal is an edge-triggered clock signal, and skew must be managed to avoid hold 
violations along the scan path.

• Logic libraries supporting this scan style typically have both flip-flop and latch-equivalent 
cells.

• It is well suited to use in partial-scan designs. A dedicated test clock provides a 
mechanism for easily maintaining the state of nonscan cells during scan shift.

• It supports latches with asynchronous preset or clear pins.

• It is typically used with edge-triggered design styles.

LSSD Scan Style

DFT Compiler supports three variations of the LSSD scan style, depending on the type of 
sequential cell being scan-replaced:

• Single-latch

Scan-replaces standard latch cells with LSSD scan cells

Table 4-7 Signal-Type Pin Connections for Clocked-Scan Latch Cell 

Pin Signal type

SI ScanDataIn

SCLK ScanMasterClock

Q ScanDataOut

QB ScanDataOut
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• Double-latch

Scan-replaces master-slave latch cells with LSSD scan cells

• Clocked

Scan-replaces edge-triggered flip-flops with LSSD-compatible flip-flop scan cells

These variations can be mixed in a single design.

Both the single-latch and double-latch variations use a classical LSSD scan cell for scan 
replacement, which consists of two latches acting as a master-slave pair. The master latch 
has dual input ports and can latch either functional data or scan data. In functional mode, the 
system master clock input controls the functional data input. In scan mode, the test master 
clock input controls the transfer of data from the scan data input to the master latch. The 
slave clock input controls the transfer of data from the master latch to the slave latch.

The clocked variation uses a special LSSD-compatible flip-flop cell that operates as a 
flip-flop during functional mode, but operates as an LSSD cell during scan shift.

The following test pins, identified in the test_cell group of the scan cell description in the 
logic library, are required on an LSSD scan cell:

• Scan-input

• Test master-clock

• Test slave-clock (except for double-latch LSSD)

• Scan-output (can be shared with a functional output pin)

Single-Latch LSSD

In the single-latch variation, DFT Compiler replaces simple latches in your design with LSSD 
scan cells. 

Figure 4-10 shows a latch before and after scan substitution, using the single-latch LSSD 
scan style. The pin connection mappings are shown in parentheses. In this example, the 
scan-in pin is SI, the master test clock is CLKA, the slave test clock is CLKB, the system 
master clock is CLK, and the scan-out pin is SQ.
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Figure 4-10 Latch After LSSD Single-Latch Scan Replacement

Figure 4-11 shows the generic model used by DFT Compiler for single-latch LSSD. The 
library model’s test_cell ports are shown in parentheses.

Figure 4-11 Default Single-Latch LSSD Scan Cell 

Table 4-8 is the truth table for the LSSD master latch.

Table 4-8 Truth Table for LSSD Master Latch 

D SI CLKA CLK MQ Mode

0 X 0 0 Functional

1 X 0 1 Functional

X 0 0 0 Scan

X 1 0 1 Scan

Previous cell’s 
scan output

D Q

CLK

D
CLK

SI SQ

MQ

CLKA

CLKBSimple 
latch cell

LSSD 
scan cell

(1) (2)

(3)

(1) (2)
(3)

Next cell’s 
scan inputNew globally-routed test signals

D
CLK

SI
CLKA

CLKB

(Master)

1D

C1

2D

C2 (Slave)
1D

C1

MQ
MQB

SQ
SQB

(test_scan_clock_a)

(test_scan_clock_b)

(test_scan_in)
(test_scan_out)

(test_scan_out_inverted)

= Positive pulse

= Don’t careX
Chapter 4: Scan Styles
LSSD Scan Style 4-11
Chapter 4: Scan Styles
LSSD Scan Style 4-11



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Table 4-9 lists the signal-type pin connections for the LSSD master latch.

Table 4-10 is the truth table for the LSSD slave latch.

X X 0 0 MQ Either

Table 4-9 Signal-Type Pin Connections for LSSD Master Latch 

Pin Signal type

SI ScanDataIn

CLKA ScanMasterClock

Table 4-10 Truth Table for LSSD Slave Latch

MQ CLKB SQ Mode

0 0 Scan

1 1 Scan

X 0 SQ Scan

Table 4-8 Truth Table for LSSD Master Latch (Continued)

D SI CLKA CLK MQ Mode

= Positive pulse

= Don’t careX

= Positive pulse

= Don’t careX
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Table 4-11 lists the signal-type pin connections for the LSSD slave latch.

In functional mode, the master latch of the scannable LSSD cell functions like the original 
latch in the design. When the level-sensitive clock CLK is asserted, data is transferred from 
input pin D to master latch output pin MQ. During functional operation, the scan shift master 
clock CLKA remains quiet.

In scan shift mode, the two nonoverlapping test clocks CLKA and CLKB are used to shift 
data from the scan input through both master and slave latches to the slave output pin SQ. 
Figure 4-5 illustrates the nonoverlapping master-slave test clocks.

Single-Latch LSSD Scan Style Characteristics

The characteristics of the single-latch LSSD variation are the following:

• Negligible performance overhead.

• High cell area overhead. Replacing a simple latch with an LSSD cell can increase 
sequential logic area by 100 percent or more, because the new cell adds a slave latch.

• Significant increased routing overhead due to two additional global master-slave test 
clock signals. However, master-slave test clocks do not require as much careful skew 
control as edge-triggered clock signals.

• It supports latches with asynchronous preset or clear pins. 

• It is well suited for use in partial-scan designs because of the dedicated test clocks.

Double-Latch LSSD

In the double-latch LSSD variation, DFT Compiler replaces master-slave latch pair cells with 
LSSD scan cells. Figure 4-12 shows a cell before and after scan substitution. The pin 
connection mappings are shown in parentheses. In this example, the scan-in pin is SI, the 
master test clock is CLKA, the slave test clock is CLKB, and the scan-out pin is shared with 
the functional output pin Q.

Table 4-11 Signal-Type Pin Connections for LSSD Slave Latch 

Pin Signal type

CLKB ScanSlaveClock

SQ ScanDataOut
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Figure 4-12 Master-Slave Latch After LSSD Double-Latch Scan Replacement

Figure 4-13 shows the generic model used by DFT Compiler for double-latch LSSD. The 
library model’s test_cell ports are shown in parentheses. The truth tables for this model are 
the same as for the single-latch LSSD model (see Table 4-8 and Table 4-10). 

Figure 4-13 Default Double-Latch LSSD Scan Cell

In functional mode, the master and slave latches in the LSSD cell take over the function of 
both the master and the slave latches in the original flip-flop. Data from input pin D is clocked 
through the latch pair using master-slave clocking on the master clock CLK and slave clock 
CLKB inputs. Data is clocked out to the slave output Q. A master latch output cannot be 
used in the double-latch LSSD scan style.

In scan shift mode, two-phase, nonoverlapping master-slave test clocks CLKA and CLKB 
are applied to the clock inputs to shift data from the scan input through both master and 
slave latches to the slave output pin Q.

Note that in the double-latch LSSD variation, the slave clock input CLKB is used in both 
functional mode and scan shift mode. In the single-latch LSSD variation, the slave clock 
input CLKB is used only in scan shift mode.
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Table 4-12 is the truth table for this model.

Table 4-13 lists the signal-type pin connections for the clocked LSSD scan cell.

Table 4-12 Truth Table for Double-Latch LSSD Scan Cell

D SI CLK CLKA CLKB Q QB Mode

0 X 0 0 1 Functional

1 X 0 1 0 Functional

X 0 0 0 1 Scan

X 1 0 1 0 Scan

X X 0 0 0 Q QB Either

Note: The master clock CLK or CLKA 
pulse precedes the slave clock CLKB 
pulse, and the clocks are nonoverlapping, 
as shown in Figure 4-5 on page 4-4.

Table 4-13 Signal-Type Pin Connections for Double-Latch LSSD Scan Cell 

Pin Signal type

SI ScanDataIn

CLKA ScanMasterClock

CLKB ScanSlaveClock

Q ScanDataOut

QB ScanDataOut

= Positive pulse

= Rising edge of clock

= Don’t careX
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Double-Latch LSSD Scan Style Characteristics

The characteristics of the double-latch LSSD variation are as follows:

• Negligible performance overhead.

• Low cell area overhead (15 percent to 30 percent).

• Moderate increased routing overhead due to one additional global master test clock 
signal. However, master-slave test clocks do not require as much careful skew control as 
edge-triggered clock signals.

• Support for latches with asynchronous preset or clear pins.

• Suitability for partial-scan designs because of the dedicated test clocks.

Clocked LSSD

In the clocked LSSD variation, DFT Compiler replaces edge-triggered flip-flops with 
LSSD-compatible flip-flop cells that use the standard LSSD master-slave test clocks for 
scan shift. In functional mode, a clocked LSSD cell functions as an edge-triggered cell with 
the system clock active and system data clocked into the cell. In scan mode, two-phase, 
nonoverlapping master-slave test clocks are applied to the master test and slave test clock 
inputs to shift data from the scan-input pin to the scan-output pin. 

Figure 4-14 shows an edge-triggered flip-flop before and after clocked LSSD scan cell 
substitution. The pin connection mappings are shown in parentheses. In this example, the 
scan-in pin is SI, the master test clock is CLKA, the slave test clock is CLKB, and the 
scan-out pin is shared with the functional output pin Q. The functional system clock is CLK.

Figure 4-14 Edge-Triggered Flip-Flop After Clocked LSSD Scan Replacement

Different implementations of the clocked LSSD scan cell can be modeled by use of a state 
table. Figure 4-15 shows the generic model used by DFT Compiler for clocked LSSD if the 
logic library does not include an explicit state table model. The library model’s test_cell ports 
are shown in parentheses.
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Note:   
The generic model provides backward compatibility with previous versions of DFT 
Compiler. This model is compatible with either A-before-B clocking during shift or 
B-before-A clocking during shift if the right protocol is used. If the generic model is not 
adequate, it is strongly recommended that you use a logic library with an explicit state 
table model for the clocked LSSD scan style.

Figure 4-15 Default Clocked LSSD Scan Cell

Table 4-14 is the truth table for this model.

Table 4-14 Truth Table for Clocked LSSD Scan Cell

D SI CLKA CLKB CLK Q QB Mode

0 X 0 0  0 1 Functional

1 X 0 0  1 0 Functional

X 0 0 0 1 Scan

X 1 0 1 0 Scan

X X 0 0 0/1 Q QB Either

Note: The master clock CLKA pulse precedes the 
slave clock CLKB pulse, and the clocks are non-
overlapping, as shown in Figure 4-5 on page 4-4.
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Table 4-15 lists the signal-type pin connections for the clocked LSSD scan cell.

Clocked LSSD Scan Style Characteristics

The characteristics of the clocked LSSD variation are as follows:

• Negligible performance overhead.

• Moderate cell area overhead. A scan cell is 40 percent to 80 percent larger than a 
flip-flop.

• Significant increased routing overhead due to two additional global master-slave test 
clock signals. However, master-slave test clocks do not require as much careful skew 
control as edge-triggered clock signals.

• Suitability for partial-scan designs because of the dedicated test clocks.

Scan-Enabled LSSD Style

The scan-enabled LSSD scan style uses a scan-enable signal to control the behavior of the 
scan cell. In functional mode, the de-asserted scan-enable signal causes the cell to behave 
like an edge-triggered flip-flop. During scan shift, the asserted scan-enable signal causes 
the cell to behave like a master-slave latch scan cell.

Figure 4-16 shows a flip-flop before and after scan substitution, using the scan-enabled 
LSSD style. The pin connection mappings are shown in parentheses. In this example, the 
scan-in pin is SI, the scan-enable pin is SE, the master test clock is CLKA, the slave test 
clock is shared with the functional clock pin CLK, and the scan-out pin is shared with the 
functional output pin Q.

Table 4-15 Signal-Type Pin Connections for Clocked LSSD Scan Cell 

Pin Signal type

SI ScanDataIn

CLKA ScanMasterClock

CLKB ScanSlaveClock

Q ScanDataOut

QB ScanDataOut
Chapter 4: Scan Styles
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Figure 4-16 Edge-Triggered Flip-Flop After Scan-Enabled LSSD Scan Replacement

Figure 4-17 shows the generic model used by DFT Compiler for scan-enabled LSSD. The 
library’s test_cell ports are shown in parentheses.

Figure 4-17 Default Scan-Enabled LSSD Cell

Table 4-16 is the truth table for this model.

Table 4-16 Truth Table for Scan-Enabled LSSD Scan Cell 

D SI SE CLKA CLK Q QB Mode

0 X 0 0  0 1 Functional

1 X 0 0  1 0 Functional

X 0 1 0 1 Scan

X 1 1 1 0 Scan

Note: The master clock CLKA pulse precedes the 
slave clock CLK pulse, and the clocks are nonover-
lapping, as shown in Figure 4-5 on page 4-4.
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scan output
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scan input
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(test_scan_out)
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= Positive pulse
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= Don’t careX
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Table 4-17 lists the signal-type pin connections for the scan-enabled LSSD cell.

Note:   
The functional clock pin CLK should be defined as a master clock signal, but with slave 
clock timing.

In functional mode, the primary clock signal CLK is provided to the master-slave latches in 
inverted/noninverted form, resulting in edge-triggered operation. In scan shift mode, the 
primary clock is blocked from the master latch, and CLKA is used as a master clock to clock 
scan data into the master latch from the SI pin instead. The CLK signal is still used as a 
slave clock to transfer data from the master latch to the slave latch.

The scan-enabled LSSD style is similar to the clocked LSSD style, except that the 
scan-enable signal is used to repurpose an existing clock signal.

X X X 0 0/1 Q QB Either

Table 4-17 Signal-Type Pin Connections for Scan-Enabled LSSD Cell 

Pin Signal type

SI ScanDataIn

SE ScanEnable

CLKA ScanMasterClock

Q ScanDataOut

QB ScanDataOut

Table 4-16 Truth Table for Scan-Enabled LSSD Scan Cell (Continued)

D SI SE CLKA CLK Q QB Mode

Note: The master clock CLKA pulse precedes the 
slave clock CLK pulse, and the clocks are nonover-
lapping, as shown in Figure 4-5 on page 4-4.

= Positive pulse

= Rising edge of clock

= Don’t careX
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Scan-Enabled LSSD Scan Style Characteristics

The characteristics of the scan-enabled LSSD scan style are as follows:

• Negligible performance overhead.

• Moderate area overhead. A scan cell is 30 percent to 60 percent larger than a flip-flop.

• Significant increased routing overhead due to two additional global test signals. 
However, minimal skew control is needed on the scan-enable signal, and master-slave 
test clocks do not require as much careful skew control as edge-triggered clock signals.

• Suitability for partial-scan designs because of the dedicated test clocks.
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5
Scan Design Requirements 5

This chapter discusses the scan design requirements for test ports, test timing, test clocks, 
and test protocols in design-for-test strategies.

This chapter includes the following topics:

• Test Port Requirements

• Test Timing Requirements

• Test Clock Requirements

• Test Protocol Requirements
5-1



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Test Port Requirements

One goal of the scan design technique is to minimize the number of physical I/O pins 
(corresponding to logic ports) allocated for test purposes. The following I/O ports are 
required by the different scan styles:

• Scan In

This input port, required by all scan styles, drives a serial scan chain. If your design has 
multiple scan chains, each scan chain must have its own scan-in port. On the clock 
transition when the scan cells are shifted, the data at each scan-in port is clocked into the 
first cell in the corresponding scan chain.

In some cases, you can use a functional data input port as a scan-in port, thus saving an 
additional test port in your design. Confirm that this configuration is acceptable to your 
ASIC vendor.

• Scan Out

This output port, required by all scan styles, sees the value at the end of a serial scan 
chain. If your design has multiple scan chains, each scan chain must have a scan-out 
port. On the clock transition when the scan cells are shifted, the data at each scan-out 
port changes to reflect the value held in the last cell of the corresponding scan chain.

You can use a functional data output pin as a scan-out port in one of two ways:

❍ The scan-out pin of the last scan cell in a scan chain is connected directly (or through 
buffers or inverters) to a functional output port.

❍ Use the scan-enable signal to multiplex scan-out data and functional data at a pin, as 
shown in Figure 5-1. DFT Compiler inserts this multiplexing logic automatically when 
you define a functional output as a scan-output port before routing the scan chains.
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Figure 5-1 Multiplexing Scan-Out Data and Functional Data 

• Scan Clock A (master)

This input port, required by all LSSD variations, is a level-sensitive signal that controls 
the latching of serial scan data into the master latch of LSSD.

• Scan Clock B (slave)

This input port is optional for double-latch LSSD but is required for other types of LSSD. 
The port is a level-sensitive signal that controls latching of data from the master latch to 
the slave latch of LSSD cells.

• Scan Enable

This input port, required by the multiplexed flip-flop scan style, configures scan cells for 
their serial shift mode. For all scan styles, you can use a scan-enable input to control the 
behavior of other devices, such as disabling logic for three-state drivers or multiplexing 
logic between individual scan cells or between scan cells and I/O ports.

The scan-enable signal can be active high or active low, if the sense is consistent 
throughout the design.

• Test Scan Clock

This input port, required by the clocked-scan scan style, is an edge-sensitive signal that 
controls the clocking of serial scan data.
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Table 5-1 shows the additional I/O ports used by each scan style. The term sharable means 
that the port is required and can be shared. The I/O ports in the table are named according 
to their function, but you can assign another name.

Test Timing Requirements

The default timing in DFT Compiler is appropriate for most pre-clock measure (strobe before 
clock) implementations. End-of-cycle measure (strobe after clock) timing can be manually 
configured, but is strongly discouraged. For more information, see “Setting Timing 
Variables” on page 14-19.

Your semiconductor vendor might have timing requirements that are different from those set 
by default in DFT Compiler and those recommended for use with TetraMAX ATPG. At the 
start of the design process, discuss test timing requirements with your semiconductor 
vendor. Understand semiconductor vendor test timing requirements before running DFT 
Compiler.

Semiconductor vendors commonly specify the following timing parameters:

• Test period

• Input timing

Table 5-1 Additional I/O Port Requirements for Scan Styles 

I/O signal
function

Multiplexed
flip-flop Clocked-scan LSSD

Scan in Sharable Sharable Sharable

Scan out Sharable Sharable Sharable

Scan clock A Don’t use Don’t use Required

Scan clock B Don’t use Don’t use Required for 
single-latch; 
optional for 
double-latch

Scan enable Required Required for 
multiplexed 
outputs and 
three-state 
disabling

Required for 
multiplexed 
outputs and 
three-state 
disabling

Test scan clock Don’t use Required Don’t use
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• Bidirectional timing

• Output strobe timing

• Clocking requirements

Test Clock Requirements

Each scan style imposes requirements on the scan chain clocks. When you specify design 
constraints involving clock control, the default settings are the safest. If you override the 
defaults, consider the issues in this topic.

Clock Requirements in Edge-Sensitive Scan Shift Styles

Scan chain clocking issues for edge-sensitive scan shift are different from those for LSSD 
scan styles. Edge-sensitive scan shift scan styles include multiplexed flip-flop and clocked 
scan.

To avoid timing-related problems in edge-sensitive scan shift styles, you must align the 
clocks to all flip-flops in each chain. The safest way to align the clocks is to make all flip-flops 
share a common clock with the same phase and no skew. Under these conditions, if the path 
from the clock-to-Q to the test input of the next stage is longer than the hold time of that 
stage, the shift occurs reliably on the active edge of the clock. The clock must have a 
controlled path from an external primary input so the shift function can be performed on 
demand in any state.

Skew Issues

Skew can arise from clock tree buffers, but a more serious source of skew is gating and 
multiplexing logic that is inserted on clock lines to obtain supposedly congruent clocks for 
the scan chain. Gating logic is not necessarily discouraged, but its introduction can cause 
hold time problems that must be addressed. Fortunately, the Synopsys environment 
includes timing analysis that detects hold time problems.

Construct scan chains to reduce the risk of skew outside of tolerable limits. Skew can result 
in hold time violations if it delays downstream flip-flop clocks longer than it delays upstream 
flip-flop clocks. This condition is illustrated in Figure 5-2. 
Chapter 5: Scan Design Requirements
Test Clock Requirements 5-5
Chapter 5: Scan Design Requirements
Test Clock Requirements 5-5



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 5-2 Hold Time Violation Caused by Delayed Downstream Clock 

If the skew is bad enough, two flip-flops can share a single state, causing data to fall through 
and resulting in incorrect scan operation.

Use the set_scan_configuration -internal_clocks [single|multi] to avoid 
problems when placing gating logic on the clock lines. Alternatively, you can enable hold 
time violation fixing by using the set_fix_hold command before running the insert_dft 
command.

Although unlikely, skew can also cause setup violations. 

Mixed Edges

If clocking on the scan chain is both inverted and noninverted, a problem similar to 
excessive skew can occur. For example, if the upstream flip-flop is rising-edge triggered and 
the downstream flip-flop is falling-edge triggered, a positive clock pulse first clocks a value 
into the upstream flip-flop. Then, on the same pulse’s falling edge, it clocks the same value 
into the downstream flip-flop. Figure 5-3 illustrates this condition. 

Figure 5-3 Mixing Edges in a Scan Chain
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If you must mix edges, there can be only one point in the chain where the clock phase 
reverses and clocks upstream flip-flops on the trailing edge of the clock. You must clock 
downstream flip-flops on the leading edge. For a positive pulse, the falling-edge-triggered 
flip-flop must be clocked first; for a negative pulse, the rising-edge-triggered flip-flop must be 
clocked first.

If you specify an invalid arrangement, the preview_dft command rejects the specification.

Multiple Clocks

If clocks originate from different sources, you must consider whether these clocks can be 
constrained to the same timing, given real-world tester constraints. The timing is determined 
from the waveforms defined with the set_dft_signal command. If optimistic assumptions 
are made in the defined waveforms, the circuit might not test properly. Consequently, using 
multiple clocks results in greater risk and lower predictability than using a single clock for all 
cells on a scan chain. 

The insert_dft command reduces risks by

• Allowing only one clock per scan chain (default)

• Minimizing clock domain crossing

• Inserting lockup latches between clock domains (default)

If you change the defaults, you must pay attention to these risks.

Clock Requirements in LSSD Scan Styles

The same clocking requirements apply to all of the LSSD scan styles: 

• Single-latch LSSD

• Double-latch LSSD

• Clocked LSSD

LSSD implements the shift function by using separate scan clocks on the master latch and 
the slave latch. Each master-slave latch pair is called a shift register latch. Test data 
transferred from a preceding shift register latch is stored in the master latch of the shift 
register latch when the “a scan clock” is active. The master test clock then changes to the 
inactive state, causing all latches to retain their stored values. The slave test clock then 
changes to the active state, permitting the slave latch to take on the state held in the master 
latch.

Scan mode does not require a scan mode control. Scan control is performed by using a 
clock different from the one used in functional mode. 
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Master Scan Clock and Slave Clock

To make an LSSD circuit scan-controllable, the scan chain must be complete from the scan 
input to the last flip-flop in the chain. The master scan clock and slave clock must be 
controllable from primary inputs.

Synchronized Clocks

You must synchronize the clocks for the various scan cells in the chain. Master latches must 
be enabled by the same clock pulse; slave latches must be enabled by a different, 
nonoverlapping clock pulse. If there is overlap, all latches are simultaneously transparent, 
causing incorrect operation.

If you specify an invalid arrangement, the preview_dft command rejects the specification.

Skew Control

Unlike edge-sensitive scan shift scan styles, LSSD scan styles do not require skew control 
because there is no race between clock and data. Correct low-frequency operation of the 
circuit for scan is ensured with LSSD.

Test Protocol Requirements

This topic discusses valid and invalid test protocols, methods of generating test protocols, 
and protocol types.

Valid and Invalid Test Protocols

DFT Compiler uses the test protocol for test design rule checking. TetraMAX ATPG uses the 
test protocol generated by DFT Compiler for its own test design rule checking, as well as 
pattern generation and vector formatting steps. Using a single test protocol throughout these 
steps ensures consistency in processing the design for test.

Protocols are valid or invalid, depending on the following:

• Valid protocol

A protocol is valid when the design, test attributes, or test specifications have not 
changed since the last use of the create_test_protocol or read_test_protocol 
command.
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• Invalid protocol

A protocol is invalid if there are any changes to a design’s test attributes or test 
specifications since the last create_test_protocol or read_test_protocol 
command.

A protocol can become invalid if any of the following commands change the design, test 
attributes, or test specifications and you do not rerun the create_test_protocol or 
read_test_protocol command:

• create_port

• link

• compile

• compile_ultra

• set_dft_signal -view spec -type

• set_dft_signal -view existing_dft

• set_dft_signal -view existing_dft -type constant -active_state

Methods of Generating Test Protocols

DFT Compiler requires a test protocol before you can perform test design rule checking. 
This topic discusses the ways you can generate a test protocol.

Reading In an Existing Test Protocol

You might want to use an existing test protocol that was created for the current design or for 
another design that has a similar structure. You do this with the read_test_protocol 
command.

Creating a Fully User-Specified Test Protocol

A fully specified test protocol, in which all timing and test configuration constraints are 
defined, produces the most accurate results for your design. It also provides the shortest 
runtime. You do this with the create_test_protocol command.

Inferring a Test Protocol Based on Partial Specification

DFT Compiler can infer a test protocol for test design rule checking if you do not fully specify 
the test timing and configuration. Because DFT Compiler has to infer timing and test 
configuration, this protocol might not provide results that are as accurate as a fully specified 
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protocol. Also, the runtime might be significantly slower than the fully specified protocol. You 
infer a test protocol with the -infer_clock and -infer_asynch options of the 
create_test_protocol command.

Inferring a Test Protocol

If you do not provide a test protocol, the protocol creation step can infer a protocol for your 
design. However, you are advised to fully specify your design and create a test protocol from 
that full specification. Certain environment variables and design characteristics determine 
the specific scan test instructions generated in the test protocol. 

Initialization Protocol

An initialization protocol consists of the default pattern application sequence plus a 
user-defined initialization sequence. The initialization protocol is a series of initialization 
sequences read in from disk with the read_test_protocol -section test_setup 
command plus the create_test_protocol command, with or without the 
-infer_clock and -infer_asynch options.

Protocol Types

When test design rule checking infers a test protocol, the relationship between clock timing 
and strobe time determines the type of protocol it uses. If the tester strobe occurs in the 
middle of the cycle, before active clock edges, test design rule checking uses the 
strobe-before-clock protocol. If the tester strobe occurs at the end of the cycle, after the 
active edge of the clock, test design rule checking uses the strobe-after-clock protocol.

TetraMAX ATPG uses the strobe-before-clock protocol.

Strobe-Before-Clock Protocol

If DFT Compiler infers a strobe-before-clock protocol, it uses the following steps to expand 
each scan pattern:

1. Data scan in

2. Parallel measure and capture cycle

3. Data scan out

The strobe-before-clock protocol is used by TetraMAX ATPG.
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Because the strobe occurs before the active edge of the clock, parallel measure and capture 
can take place in the same vector. Also, because the scan output is strobed before the scan 
data is shifted, an extra vector is not required to compare the first scan out. The 
strobe-before-clock protocol provides a small savings in vector count because you save two 
cycles for each operation.

A Strobe-Before-Clock Example

Figure 5-4 provides a simple multiplexed flip-flop design example. 

Figure 5-4 Strobe-Before-Clock Multiplexed Flip-Flop Design Example

The test protocol generated by DFT Compiler for the design in Figure 5-4 contains the 
following instructions for scan testing the design:

1. Initialize the tester and configure the design.

a. Initialize the tester.

Place the system clock (CLK) in inactive state. 

All nonclock input ports (IN1, IN2, TEST_SI, TEST_SE, and CDN) are “don’t care” 
values.

The output ports (OUT1 and OUT2) are masked.

b. Configure the design.

Disable the asynchronous pins by applying a logic 1 to the asynchronous control port 
(CDN). 

All other ports are unchanged.
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2. For each scan pattern, perform the following steps:

a. Scan in data.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port 
(TEST_SE).

Disable the asynchronous pins on the scan cells by applying a logic 1 to the 
asynchronous control port (CDN).

For each bit in the scan chain, apply data to the scan-input port (TEST_SI) and toggle 
the clock port (CLK).

All other input ports (IN1 and IN2) are don’t care values; the output ports (OUT1 and 
OUT2) are masked.

b. Perform parallel measure and capture.

Apply parallel data to all nonclock inputs.

Measure the response at the outputs, then pulse the system clock to capture the 
response in the scan cells.

Note:   
In strobe-after-clock protocols, this step must be split into two steps, where 
measure is one step and pulse is the next.

c. Scan out data.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port 
(TEST_SE).

Disable the asynchronous pins on the scan cells by applying a logic 1 to the 
asynchronous control port (CDN).

All other input ports (IN1, IN2, and TEST_SI) are unchanged.

The nonscan-output ports (OUT1) are masked.

For each bit in the scan chain, measure the response at the scan-output port (OUT2), 
then toggle the clock port (CLK). 

Strobe-After-Clock Protocol

If DFT Compiler infers a strobe-after-clock protocol, it uses the following steps to apply a 
scan pattern:

1. Data scan in

2. Parallel measure cycle

3. Parallel capture cycle
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4. Measure first scan out

5. Data scan out

Note:   
Older versions of DFT Compiler used default timing values that required a 
strobe-after-clock protocol. This is no longer the default behavior and using a 
strobe-after-clock protocol is strongly discouraged.

A Strobe-After-Clock Example

Figure 5-5 provides a simple multiplexed flip-flop design example. 

Figure 5-5 Strobe-After-Clock Multiplexed Flip-Flop Design Example

The test protocol generated by DFT Compiler for the design in Figure 5-5 contains the 
following instructions for scan testing the design:

1. Initialize the tester and configure the design:

a. Initialize the tester.

Place the system clock (CLK) in inactive state. 

All nonclock input ports (IN1, IN2, TEST_SI, TEST_SE, and CDN) are “don’t care” 
values.

The output ports (OUT1 and OUT2) are masked.

b. Configure the design.

Disable the asynchronous pins by applying a logic 1 to the asynchronous control port 
(CDN). 

All other ports are unchanged.
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2. For each scan pattern, perform the following steps:

a. Scan in data.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port 
(TEST_SE).

Disable asynchronous pins on the scan cells by applying a logic 1 to the 
asynchronous control port (CDN).

For each bit in the scan chain, apply data to the scan-input port (TEST_SI) and toggle 
the clock port (CLK).

All other input ports (IN1 and IN2) are don’t care values; the output ports (OUT1 and 
OUT2) are masked.

b. Perform parallel measure.

Apply parallel data to all nonclock inputs; the clock is held inactive.

Measure the response at the outputs.

c. Perform capture.

Pulse the system clock to capture the response in the scan cells.

All nonclock inputs remain unchanged; all outputs are masked.

d. Measure the first scan out.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port 
(TEST_SE).

Disable asynchronous pins on the scan cells by applying a logic 1 to the 
asynchronous control port (CDN).

All other input ports (IN1, IN2, and TEST_SI) are unchanged.

Nonscan-output ports (OUT1) are masked.

Measure the response at the scan-output port (OUT2).

e. Scan out data.

For each bit in the scan chain, toggle the clock port (CLK) and measure the response 
at the scan-output port (OUT2). The values applied to nonclock inputs are 
unchanged. All nonscan outputs (OUT1) are masked.
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6
Getting Started 6

This chapter provides an overview of the basic flows, processes, and reports for DFT 
Compiler. References are provided throughout this chapter to more detailed information in 
subsequent chapters.

The basic processes, flows, and reports for using DFT Compiler are described in the 
following topics:

• Preparing to Run DFT Compiler

• Performing Scan Synthesis

• Analyzing Your Post-DFT Design

• Reporting

• Designing Block by Block

• Performing Scan Extraction

• Hierarchical Scan Synthesis

• Physical DFT Features in Design Compiler

• DFT Flows in DC Explorer

Figure 6-1 shows a typical DFT insertion design flow that starts from RTL.
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Figure 6-1 Typical Flat Design Flow for an Unmapped Design
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Preparing to Run DFT Compiler

Before running DFT Compiler, you need to set up your interface, prepare your design 
environment, and read in your design.

This topic covers the following:

• Invoking the Synthesis Tool

• Setting Up Your Design Environment

• Reading In Your Design

• Setting the Scan Style

• Configuring the Test Cycle Timing

• Defining the DFT Signals

Invoking the Synthesis Tool

You can use DFT Compiler from within any of the following synthesis tools:

• Design Compiler

• Design Vision

• DC Explorer

The invocation commands are shown in Table 6-1. DC Explorer runs in topographical mode 
by default, and it does not support DFT insertion or post-DFT commands.

Table 6-1 Available Commands for Invoking DFT Compiler 

User interface Invocation command Prompt

Design Compiler dc_shell dc_shell>

dc_shell -topographical_mode dc_shell-topo>

Design Vision design_vision design_vision>

design_vision -topographical_mode design_vision-topo>

DC Explorer de_shell de_shell>
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Setting Up Your Design Environment

To set up your design environment, you need to define the paths for the logic libraries and 
designs you are using, and define any special reporting parameters. The following 
Synopsys system variables enable you to define the key parameters of your design 
environment:

For example,

# configure logic libraries
set_app_var target_library {my_library.db}
set_app_var link_library {* my_library.db}
set_app_var hdlin_enable_rtldrc_info true

Logic library configuration commands are normally included in the .synopsys_dc.setup file 
or user script, rather than entered manually at a tool prompt.

If you are using the Design Compiler tool in topographical mode, you must also configure 
your physical libraries. For example,

# configure physical libraries for topographical mode
if {![file isdirectory my_mw_design_library ]} {
  create_mw_lib -technology my_technology.tf \
    -mw_reference_library mw_reference_library \
    my_mw_design_library
} else {

Table 6-2 Common Configuration Variables 

Variable Description

link_library The ASIC vendor logic library where your design is 
initially represented.

target_library Usually the same as your link_library, unless 
you are translating a design between technologies.

symbol_library A file that contains definitions of the graphic 
symbols that represent cells in design schematics.

search_path A list of alternative directory names to search to 
find the link_library, target_library, 
symbol_library, and design files.

hdlin_enable_dft_drc_info Reports file names and line numbers associated 
with each violation during test design rule checking 
(DRC). This makes it easier for you to later edit the 
source code and fix violations.
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  set_mw_lib_reference my_mw_design_library \
    -mw_reference_library my_mw_reference_library
}

open_mw_lib my_mw_design_library

set_tlu_plus_files \
  -max_tluplus my_TLUPLUS_MAX.tluplus \
  -min_tluplus my_TLUPLUS_MIN.tluplus \
  -tech2itf_map my_tech.map

Physical library configuration commands are normally included in your user script.

See Also

• The “Setting Up the Libraries” chapter in the Design Compiler User Guide for more 
information about setting up your design environment, including logic and physical 
libraries

Reading In Your Design

To read in your design, specify the appropriate file read commands depending on the file 
format: read_ddc, read_verilog, read_vhdl. The following example reads in a list of 
Verilog files:

dc_shell> read_verilog {my_design.v my_block.v}

Use the current_design and link commands to link the top level of the current design:

dc_shell> current_design my_design
dc_shell> link

If DFT Compiler is unable to resolve any references, you must provide the missing designs 
before proceeding.

After linking, use the read_sdc command (or the source command) to apply the design 
constraints:

dc_shell> read_sdc top_constraints.sdc

Note:   
If you read in the top-level design in the Synopsys logic database (.ddc) format, the 
design constraints might already be applied.

See Also

• The “Reading Designs” section in the Design Compiler User Guide for more information 
about reading in your design
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Setting the Scan Style

DFT Compiler uses the selected scan style to perform scan synthesis. A scan style dictates 
the appropriate scan cells to insert during optimization. This scan style is used on all 
modules of your design.

There are four types of scan styles available in DFT Compiler, shown in Table 6-3.

The default style is multiplexed flip-flop. To specify another scan style, use the -style 
option of the set_scan_configuration command. For example,

dc_shell> set_scan_configuration -style clocked_scan

See Also

• Chapter 4, “Scan Styles” for more information about the supported scan styles

• “Specifying a Scan Style” on page 9-13 for more information about the process for 
selecting and specifying a scan style for your design

Configuring the Test Cycle Timing

Set the test timing variables to the values required by your ASIC vendor. If you are using 
TetraMAX ATPG to generate test patterns, and your vendor does not have specific 
requirements, the default settings produce the best results: 

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100

These are the default settings; you do not need to add them to your script.

Table 6-3 Available DFT Compiler Scan Styles 

Scan style Keyword

Multiplexed flip-flop
(default)

multiplexed_flip_flop

Clocked scan clocked_scan

Level-sensitive scan design lssd

Scan-enabled level-sensitive scan design scan_enabled_lssd
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Defining the DFT Signals

Most DFT Compiler commands include the concept of a view, specified with the -view 
option. The valid view values are:

• -view existing_dft

The existing DFT view is descriptive and describes an existing signal network. An 
example is an existing functional clock signal that is also used as a scan clock in test 
mode.

• -view spec

The specification view is prescriptive and describes action that must be taken during 
DFT insertion. It indicates that the signal network or connection does not yet exist, and 
the insert_dft command must create it. An example is a scan-enable signal network 
that must be routed to all scannable flip-flops during DFT insertion.

A view is typically specified in scan specification commands, such as set_dft_signal. 
When performing scan synthesis, you use a combination of the two views. When you define 
existing signals that are used in test mode, you use the existing DFT view. When you define 
the DFT structure you want inserted, you use the specification view.

Define any clocks and asynchronous set and reset signals in the existing DFT view:

dc_shell> set_dft_signal -view existing_dft -type ScanClock ...
dc_shell> set_dft_signal -view existing_dft -type Reset ...

If you have a dedicated scan-enable port, define it in the specification view:

dc_shell> set_dft_signal -view spec -type ScanEnable \
            -port scan_enable_port -active_state 1

If no scan-enable port is identified, DFT Compiler creates a new scan-enable port.

If you are using existing ports as scan-in and scan-out ports, define them in the specification 
view (even if they have existing functional logic connections):

dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[0]
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[0]

Otherwise, DFT Compiler creates new scan-in and scan-out ports as needed.

After defining your DFT signals, create a test protocol:

dc_shell> create_test_protocol
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See Also

• Chapter 10, “Architecting Your Test Design” for more information about defining DFT 
signals

Performing Scan Synthesis

The scan synthesis process tests and prepares your RTL design for test-ready compilation, 
synthesizes it, tests it again, performs scan insertion, and analyzes your post-DFT design.

This topic covers the following processes:

• Performing RTL Test Design Rule Checking

• Performing One-Pass Scan Synthesis

• Performing Scan Insertion

• Performing Post-DFT Optimization

Note:   
The first two steps pertain only to RTL designs. If your design is already mapped to logic 
gates, start with the Performing Pre-DFT Test DRC step.

Figure 6-2 shows a basic scan synthesis flow.
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Figure 6-2 Basic Scan Synthesis Flow
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Performing RTL Test Design Rule Checking

RTL test DRC provides early warnings of test-related issues, based on the scan style 
specified by the set_scan_configuration command. By correcting these problems before 
the compile phase, you can reduce time-consuming iterations that occur later in the design 
process. This topic provides an overview of the RTL test design rule checking process. 

Figure 6-3 shows a typical RTL test flow.

Figure 6-3 Typical RTL Test DRC Flow
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To perform RTL test design rule checking:

1. Define the test protocol by using the set_dft_signal commands. Note the use of the 
-view existing_dft option:

dc_shell> set_dft_signal -view existing_dft \
            -type ScanClock -port CLK \
            -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \               
            -type Reset -port RESETN \
            -active_state 0

2. Configure your design for scan testing by generating a test protocol:

dc_shell> create_test_protocol

3. Run RTL test design rule checking by using the dft_drc command:

dc_shell> dft_drc

4. Check for violations, then do one of the following:

❍ If violations are reported, change the RTL code and repeat steps 2 and 3.

❍ If no violations are reported, proceed to one-pass scan synthesis.

See Also

• Chapter 7, “Running RTL Test Design Rule Checking” for more information about 
debugging violations using RTL test DRC

Performing One-Pass Scan Synthesis

After fixing all violations during the RTL test DRC process, you are ready to perform 
one-pass scan synthesis, which performs test-ready compilation. To do this, specify the 
compile -scan command, as shown in the following example: 

dc_shell> compile -scan

When using the DC Ultra tool (such as with topographical mode), use the following 
command:

dc_shell> compile_ultra -scan

The -scan option performs a test-ready compile, which maps directly to scan cells. This 
helps eliminate logically untestable circuitry and is an important part of the Synopsys test 
methodology. The resulting netlist with unstitched scan cells is called an unrouted scan 
design.
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See Also

• Chapter 9, “Performing Scan Replacement” for more information about one-pass scan 
synthesis

Performing Scan Insertion

The scan insertion process consists of four primary phases:

• Configuring Scan Insertion

• Previewing Scan Insertion

• Performing Pre-DFT Test DRC

• Inserting the DFT Logic

This topic briefly describes each of these phases.

For a complete description of the scan insertion process, see Chapter 10, “Architecting Your 
Test Design.”

Figure 6-4 illustrates the scan insertion flow.

Figure 6-4 Scan Insertion Flow
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Configuring Scan Insertion

To configure scan insertion, you can specify test ports, define test modes, and identify and 
mark any cells that you do not want to have scanned. You can set many of these 
configuration parameters by using commands such as set_scan_configuration, 
set_dft_signal, or set_scan_element.

The following example shows some typical DFT configuration commands:

dc_shell> set_scan_configuration -chain_count 4

dc_shell> set_dft_signal -view spec \
            -type ScanDataIn -port TEST_SI

dc_shell> set_dft_signal -view spec \
            -type ScanDataOut -port TEST_SO

dc_shell> set_dft_signal -view spec \
            -type ScanEnable -port TEST_SE

See Also

• Chapter 10, “Architecting Your Test Design” for more information about configuring scan 
insertion

Performing Pre-DFT Test DRC

Pre-DFT test design rule checking (DRC) process analyzes your unrouted scan design, 
based on a set of constraints applicable to your selected scan style, then outputs a set of 
violations. Based on the violations, you make changes to your design to prepare it for DFT 
insertion. Figure 6-5 illustrates the pre-DFT test DRC flow.
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Figure 6-5 Pre-DFT Test DRC Flow
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2. Run pre-DFT test DRC.

dc_shell> dft_drc

3. Check for violations, then do one of the following:

❍ If violations are reported, make changes to the design or test protocol and repeat 
steps 1 and 2.

❍ If no violations are reported, proceed to scan insertion.

See Also

• Chapter 14, “Pre-DFT Test Design Rule Checking” for more information about checking 
for test design rule violations before DFT insertion

Previewing Scan Insertion

Before performing scan insertion, you can preview your scan design by running the 
preview_dft command. This command generates a scan chain design that satisfies scan 
specifications on your current design and displays the scan chain design. This allows you to 
preview your scan chain design without synthesizing it and change your specifications as 
necessary. The following example shows how to specify the preview_dft command:

dc_shell> preview_dft

Example 6-1 shows an example of the report generated by the preview_dft command.

Example 6-1 Report Generated by the preview_dft Command

****************************************
Preview DFT report
Design: P
Version: 1998.02
Date: Wed Apr 21 11:25:53 1999
****************************************
Number of chains: 1
Test methodology: full scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix
Scan chain '1' (test_so) contains 4 cells

See Also

• “Previewing the DFT Logic” on page 15-2 for more information about previewing scan 
insertion
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Inserting the DFT Logic

After configuring and previewing your design, assemble the scan chains by using the 
insert_dft command:

dc_shell> insert_dft

See Also

• “Inserting the DFT Logic” on page 15-10 for more information about how DFT insertion 
performs scan replacement, scan stitching, and signal routing

Performing Post-DFT Optimization

Post-DFT optimization is gate-level optimization performed after inserting and mapping the 
new DFT structures. It performs optimizations such as selecting scan-out signal connections 
(Q or QN) to minimize constraint violations. This reduces the scan-related overhead on 
timing performance and area, and it eliminates synthesis design rule errors.

The insert_dft command creates scan chains that are functional under zero-delay 
assumptions using the scan clock waveforms described by the set_dft_signal command. 
However, post-DFT optimization uses the clock waveforms described by the create_clock 
command; it does not use the scan clock timing values described by the set_dft_signal 
command.

To include scan clock timing in post-DFT optimization, you can use multicorner-multimode 
optimization in the Design Compiler Graphical tool to define a mode where the scan clocks 
are defined with the create_clock command. For more information, see “Optimizing 
Multicorner-Multimode Designs” in the Design Compiler User Guide.

The post-DFT optimization flow depends on the Design Compiler mode.

Post-DFT Optimization in Design Compiler Wire Load Mode

In Design Compiler wire load mode, the insert_dft command automatically performs 
basic gate-level post-DFT optimization by default. If needed, you can disable it with the 
following command:

dc_shell> set_dft_insertion_configuration \
            -synthesis_optimization none

In this case, you can still manually perform a post-DFT incremental compile if you disable 
automatic post-DFT synthesis optimization:

dc_shell> # for a DC Expert compile
dc_shell> insert_dft
dc_shell> compile -scan -incremental
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dc_shell> # for a DC Ultra compile
dc_shell> insert_dft
dc_shell> compile_ultra -scan -incremental

Post-DFT Optimization in Design Compiler in Topographical Mode

In Design Compiler topographical mode, the insert_dft command maps new logic, but 
does not perform post-DFT optimization. In this mode, you perform post-DFT optimization 
by manually running an incremental post-DFT topographical compile after the insert_dft 
command completes. For example,

dc_shell-topo> insert_dft
dc_shell-topo> compile_ultra -scan -incremental  ;# topographical

The Design Compiler tool synthesis optimizes the newly inserted DFT logic, and it optimizes 
the design to accommodate the additional area and timing overhead of the DFT logic.

The tool issues a warning message if you attempt to enable post-DFT optimization in 
topographical mode:

dc_shell-topo> set_dft_insertion_configuration \
                 -synthesis_optimization all

Warning: Synthesis optimizations for DFT are not allowed in
DC-Topographical flow. Turning off all the optimizations.
Accepted insert_dft configuration specification.

This incremental compile behavior also applies to the Design Compiler Graphical tool, which 
runs from within Design Compiler topographical mode. However, the incremental compile 
command also requires the -spg option:

dc_shell-topo> insert_dft
dc_shell-topo> compile_ultra -scan -spg -incremental

Analyzing Your Post-DFT Design

After you perform DFT insertion, you should perform design rule checking again to ensure 
that no new violations have been introduced into your design:

dc_shell> dft_drc

This is called post-DFT DRC. DFT Compiler checks for and describes potential problems 
with the testability of your design. These checks are more comprehensive than those in 
pre-DFT DRC, and they check for the correct operation of the scan chain. After you correct 
all the reported violations, you can proceed with the next step. Failure to correct the reported 
violations typically results in lower fault coverage.
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Note:   
Some features and flows do not support post-DFT DRC, as noted in “Post-DFT DRC 
Limitations” on page 15-27. In such cases, use TetraMAX DRC to validate the 
DFT-inserted design.

To analyze your post-DFT design:

1. Save your design and test protocol.

dc_shell> write -format ddc -hierarchy \
            -output my_design.ddc

dc_shell> write_test_protocol \
            -output my_design_final.spf

2. Run post-DFT test DRC.

dc_shell> dft_drc

Note:   
Some features and flows do not support post-DFT DRC in DFT Compiler; you must 
perform DRC in the TetraMAX tool.

3. Report the scan structures.

dc_shell> report_scan_path -view existing_dft \
            -chain all

dc_shell> report_scan_path -view existing_dft \
            -cell all

See Also

• “Post-DFT Insertion Test Design Rule Checking” on page 15-13 for more information 
about analyzing your post-DFT design

Reporting

All DFT specification commands have corresponding reporting commands. To report what 
exists in the design, use the -view existing_dft option of the reporting command. To 
report what you have specified for insertion, use the -view spec option, which is also the 
default.

Example 6-2 DFT Configuration Report

dc_shell> report_dft_configuration

****************************************
Report : DFT configuration
Design : test
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Version: 2003.12
Date : Fri Aug 22 16:10:05 2003
****************************************

DFT Structures                  Status
--------------                  --------
Scan:                           Enable
Autofix:                        Enable
Test point:                     Disable
Wrapper:                        Disable
Integration:                    Disable
Boundary scan:                  Disable

Example 6-3 Scan Configuration Report

dc_shell> report_scan_configuration

****************************************
Report : Scan configuration
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 15:48:24 2003
****************************************

========================================
TEST MODE: Internal_scan
VIEW : Specification
========================================

Chain count:                Undefined
Scan Style:                 Multiplexed flip-flop
Maximum scan chain length:  Undefined
Preserve multibit segments: True
Clock mixing:               Not defined
Internal clocks:                 False
Add lockup:                      True
Insert terminal lockup:          False
Create dedicated scan out ports: False
Shared scan in:                  0
Bidirectional mode:              No bidirectional type

Example 6-4 DFT Signal Report

dc_shell> report_dft_signal -view existing_dft

****************************************

Report : DFT signals
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 15:48:51 2003
****************************************

========================================
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TEST MODE: Internal_scan
VIEW : Existing DFT
========================================
Port   SignalType      Act Hkup Timing
-----  -----           --- ---- ----
hrst_L Reset           0   -    P 100.0 R 55.0 F 45.0
mrxc   ScanMasterClock 1   -    P 100.0 R 45.0 F 55.0
mrxc   MasterClock     1   -    P 100.0 R 45.0 F 55.0
clk3   ScanMasterClock 1   -    P 100.0 R 45.0 F 55.0
clk3   MasterClock     1   -    P 100.0 R 45.0 F 55.0
clk2   ScanMasterClock 1   -    P 100.0 R 45.0 F 55.0
clk2   MasterClock     1   -    P 100.0 R 45.0 F 55.0

dc_shell> report_dft_signal -view spec
****************************************
Report : DFT signals
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 16:25:11 2003
****************************************

========================================
TEST MODE: Internal_scan
VIEW : Specification
========================================
Port SignalType Active Hookup Timing
---- ---------- -----  ------ ------
SI1 ScanDataIn  -      -      Delay 5.0

Example 6-5 Report on a User-Specified Scan Path

dc_shell> report_scan_path -view spec -chain all

****************************************
Report : Scan path
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 15:50:07 2003
****************************************

========================================
TEST MODE: Internal_scan
VIEW : Specification
========================================
Scan_path ScanDataIn (h) ScanDataOut(h) ScanEnable (h)
--------- -------------  -------------- -------------
chain1    -              -              - 

Example 6-6 AutoFix Configuration Report

dc_shell> report_autofix_configuration

****************************************
Report : Autofix configuration
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Design : example
Version: V-2004.06-SP1
Date : Fri Jul 2 12:11:19 2004

****************************************
========================================
TEST MODE: all_dft
VIEW : Specification
========================================

Fix type:                      Set
Fix method:                    Mux
Fix latches:                   Disable
Fix type:                      Clock
Fix latches:                   Disable
Fix clocks used as data:       Disable
Fix type:                      Internal_bus
Fix method:                    Enable_one
Fix type:                      External_bus
Fix method:                    Disable_all

Designing Block by Block

If you develop your designs on a block-by-block basis, you can use pre-DFT DRC (or RTL 
DRC) to check the test design rules of any particular block without also performing DFT 
insertion in that block. This allows you to assess the testability as you develop each block of 
your design, which helps you identify and fix testability problems at an early stage.

To do this, define the existing DFT signals in the block, such as scan clocks, then run 
pre-DFT DRC.

Although fixing testability problems on a block-by-block basis is an important 
“divide-and-conquer” technique, testability problems are global in nature. A completely 
testable subblock might show testability problems when it is embedded in its environment. 

See Also

• Chapter 14, “Pre-DFT Test Design Rule Checking” for more information about checking 
for test design rule violations before DFT insertion

Performing Scan Extraction

Scan extraction is the process of reading in an ASCII netlist that lacks test attributes, then 
analyzing the netlist to determine the scan chain structures. After identifying the scan 
structures, you can write out test model and test protocol files for design reuse.
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The scan chain extraction process extracts scan chains from a design by tracing scan data 
bits through the multiple time frames of the protocol simulation. For a given design, 
specifying a different test protocol can result in different scan chains. As a corollary, scan 
chain-related problems can be caused by an incorrect protocol, by incorrect 
set_dft_signal specifications, or even by incorrectly specified timing data.

When performing scan extraction, define your test structures in the existing DFT view (by 
using the -view existing_dft option) because they already exist in your design.

Scan extraction only supports standard scan designs. You cannot extract scan structures for 
compressed scan designs.

To perform scan extraction:

1. Perform the steps described in “Preparing to Run DFT Compiler” on page 6-3: read in 
and link the design, configure the scan style, and define the basic DFT signals.

2. Specify that the design contains existing scan structures:

dc_shell> set_scan_state scan_existing

3. Define the scan input and scan output for each existing scan chain using the 
set_scan_path and set_dft_signal commands, as shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
            -type ScanDataIn -port {TEST_SI1 TEST_SI2}

dc_shell> set_dft_signal -view existing_dft \
            -type ScanDataOut -port {TEST_SO1 TEST_SO2}

dc_shell> set_dft_signal -view existing_dft \
            -type ScanEnable -port TEST_SE

dc_shell> set_scan_path chain1 \
            -view existing_dft \
            -scan_data_in TEST_SI1 \
            -scan_data_out TEST_SO1

dc_shell> set_scan_path chain2 \
            -view existing_dft \
            -scan_data_in TEST_SI2 \
            -scan_data_out TEST_SO2

4. Create the test protocol by using the create_test_protocol command:

dc_shell> create_test_protocol

5. Extract the scan chains by using the dft_drc command:

dc_shell> dft_drc
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6. Report the extracted scan chains by using the report_scan_path commands, and 
ensure that the reports are as expected:

dc_shell> report_scan_path -view existing_dft \
               -chain all

dc_shell> report_scan_path -view existing_dft \
               -cell all

Hierarchical Scan Synthesis

In hierarchical scan synthesis, you perform DFT insertion at a lower level of hierarchy, then 
incorporate those completed scan structures into DFT insertion at a higher level of 
hierarchy. Test models represent DFT-inserted blocks during DFT operations, which 
improves tool performance and capacity for multi-million-gate designs.

Hierarchical scan synthesis is described in the following topics:

• Top-Down Flat Versus Bottom-Up Hierarchical

• Introduction to Test Models

• Writing Out a CTL Model at the Core Level

• Reading In and Using CTL Models at the Top Level

• Checking Connectivity to Cores at the Top Level

• Using Advanced Clock Feedthrough Analysis

• Connecting the Scan-Enable Pins of Cores

• Hierarchical Synthesis, DFT Insertion, and Layout Flows

• Linking Test Models to Library Cells

• Checking Library Cells for CTL Model Information

Top-Down Flat Versus Bottom-Up Hierarchical

In top-down flat scan synthesis, you perform a single DFT insertion operation at the top level 
of your design. See Figure 6-6. This flow is simple, but it requires that DFT insertion be 
repeated for the entire design if any part of the design changes, which is time-consuming for 
large designs.
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Figure 6-6 Top-Down Flat Scan Synthesis

In bottom-up hierarchical scan synthesis, you perform DFT insertion at a lower level of 
hierarchy, then incorporate those completed scan structures into DFT insertion at a higher 
level of hierarchy. See Figure 6-7. This is also simply called a hierarchical scan synthesis 
(HSS) flow.

Figure 6-7 Bottom-Up Hierarchical Scan Synthesis

Hierarchical scan synthesis uses test models to represent core designs during top-level DFT 
operations, which improves tool performance and capacity for multimillion-gate designs. 
This is useful when

• You have a very large design that is not suitable for a single top-down DFT insertion

• You want to be able to rearchitect DFT structures in a block independently of its 
surrounding design logic

• You want to create a DFT-inserted block that can be reused in future designs

TOP
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Top-down flat DFT insertion in TOP

TOP
BLK

TOP before DFT insertion

insert_dft

TOP

BLK
BLK

Core-level DFT insertion
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A lower-level block that is DFT-inserted is called a core. When a core is incorporated into 
scan structures at a higher level of DFT insertion, the core is said to be integrated at that 
level. The level of hierarchy where a core is integrated is sometimes referred to as the top 
level (as opposed to the core level), although this DFT-inserted top level can itself become 
a core in an even higher level of hierarchy.

Note:   
In the DFT documentation, the term “block” refers to any hierarchical design, while the 
term “core” refers specifically to DFT-inserted blocks with CTL model information.

After a core is created, its scan structures are fixed. However, core-level scan chains 
become scan segments that are incorporated into top-level scan chain balancing.

Introduction to Test Models

In a hierarchical scan synthesis flow, the tool creates a test model for a DFT-inserted core 
that describes only the information needed to integrate the core at a higher level of design 
hierarchy. Test models store information about

• Port names

• Port directions (input, output, bidirectional)

• Scan structures (such as scan chains, pipeline registers, and terminal lockup latches)

• Scan clock signals

• Asynchronous sets and reset signals

• Three-state disable signals

• Other test-related signals

• Multiple test modes

• Test protocol information, such as initialization, sequencing, and clock waveforms

Figure 6-8 shows a test model representation of a design example.
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Figure 6-8 Test Model Representation of a Design Example

Test models are described using Core Test Language (CTL); thus, test models are typically 
called CTL models. CTL models can be written and read in three file formats:

• .ddc format

This is a binary file that is typically written out in a synthesis flow. When you write out a 
design in .ddc format after performing DFT insertion, it automatically includes the binary 
CTL model description of that design.

• .ctl format

This is an ASCII file that contains the ASCII Core Test Language description of a core.

• .ctlddc format

This is a binary file that can be optionally written out in a synthesis flow. This format 
includes only the binary CTL model description of the design. It can be read in and linked 
like a .ddc file.

A CTL model does not include SCANDEF information. However, a .ddc file can contain both 
CTL model information and SCANDEF information.

CTL models are not adequate for the generation of test patterns; you must use an actual 
netlist representation for automatic test pattern generation (ATPG).

Writing Out a CTL Model at the Core Level

To create a CTL model for a core, you perform DFT insertion for the core design, then you 
write out its CTL model information.
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Cores can be written in the file formats shown in Table 6-4. Different formats contain 
different information.

It might be useful to write out the design in multiple formats. For example, you can write out 
a .ddc file containing the CTL model information for use by the tool at the integration level, 
along with an ASCII CTL model for reference.

Example 6-7 shows a simple core-level script.

Example 6-7 Core-Level Script Example

# configure libraries
set link_library {* my_lib.db}
set target_library {my_lib.db}

# read and link the design
read_verilog RTL/core.v
current_design core
link

# perform test-ready compile
compile -scan

# configure DFT
set_dft_signal -view existing_dft -type ScanClock \
  -port clk -timing [list 45 55]

# preview and insert DFT
create_test_protocol
dft_drc
set_scan_configuration -chain_count 2
preview_dft

Table 6-4 Design Compiler Commands for Writing Out CTL-Modeled Designs 

Format Command Output data description

.ddca

a. Includes block abstractions

write -format ddc
  -hierarchy -output core.ddc

Complete binary database for the current 
design; includes netlist, constraints, 
attributes, and CTL model information

.ctl write_test_model -format ctl
  -output core.ctl

ASCII CTL model representation of the 
current design; does not include netlist, 
constraints, or attributes information

.ctlddc write_test_model -format ddc
  -output core.ctlddc

Binary CTL model representation of the 
current design; does not include netlist, 
constraints, or attributes information
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insert_dft

# write out core-level design information
write -format ddc -hierarchy -output DDC/core.ddc      ;# full design
write_test_model -format ctl -output CTL/core.ctl      ;# ASCII CTL model
write -format verilog -hierarchy -output GATES/core.vg ;# ATPG netlist
write_test_protocol -output SPF/core.spf               ;# ATPG protocol

Reading In and Using CTL Models at the Top Level

At the top level of your design, you read in CTL-modeled core designs along with the other 
design logic, then you perform scan insertion. The tool automatically incorporates the 
core-level scan structures into the top-level scan structures.

You can read CTL-modeled core designs into a top-level design in multiple formats. Different 
formats provide different types of information, as shown in Table 6-5. For multiple cores, you 
can read in a mix of formats.

Table 6-5 Commands for Reading In CTL-Modeled Designs 

Format Commands Input data description

.ddca

a. For this case, you can include the .ddc or .ctlddc files in the link_library list instead of explicitly reading it in, 
or you can rely on the link process to read them in (for files that have a .ddc extension).

read_ddc core.ddc Complete binary database for the core;
includes netlist, constraints, attributes, and 
CTL model information

.ctl read_test_model -format ctl
   -design core
   core.ctl

ASCII CTL model of the core;
does not include netlist, constraints, or 
attributes information

.ctl
(with 
netlist)

read_verilog core.v

read_test_model -format ctl
   -design core
   core.ctl

ASCII CTL model of the core with netlist;
does not include constraints or attributes 
information

.ctlddca read_test_model -format ddc
   core.ctlddc

Binary CTL model of the core;
does not include netlist, constraints, or 
attributes information

.ctlddc
(with 
netlist)

read_verilog core.v
read_test_model -format ddc
   core.ctlddc

Binary CTL model of the core with netlist;
does not include constraints or attributes 
information
Chapter 6: Getting Started
Hierarchical Scan Synthesis 6-28



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
The read_test_model command attaches CTL model information to a design. If the design 
already has CTL model information, the newly read CTL model replaces the existing model. 
If the design does not exist, the command creates a black-box design using the port 
information in the CTL model information.

When you link the top-level design, the link process looks for .ddc files in the search path to 
resolve any unresolved references. It does not consider .ctl or .ctlddc files, although it does 
consider .ctlddc files that have a .ddc extension.

You can use the list_test_models command, before or after linking, to see what designs 
have CTL test models attached to them. For example,

dc_shell> list_test_models
  core1                     /home/hier_dft/top.db
  core2                     /home/hier_dft/top.db

For CTL-modeled cores, DFT and synthesis commands use different types of information:

• DFT commands

When DFT commands (such as the preview_dft and insert_dft commands) are run, 
they use the CTL model information attached to CTL-modeled cores in place of any 
netlist information. They also use test attributes, if present.

If the use_test_model -false command is applied to a core, the CTL model 
information is ignored and the netlist information is used instead.

• Synthesis reporting and optimization commands

When synthesis reporting and optimization commands (such as report_timing and 
compile) are run, they use only the netlist, constraints, and attributes information for 
CTL-modeled cores. Synthesis commands do not use CTL model information at all.

Important:   
If a CTL-modeled core contains no netlist information, it is treated as a black box. Use 
this representation only in a flow that performs DFT insertion without synthesis 
optimization.

When using the Design Compiler tool in topographical mode, you can use test models 
from DFT Compiler together with block abstractions from Design Compiler topographical 
mode or IC Compiler. For more information, see “Compile Flows in Topographical Mode” 
in the Design Compiler User Guide.

Note that the post-insertion incremental optimization performed by the insert_dft 
command in Design Compiler wire load mode is a synthesis operation, not a DFT operation, 
and it uses netlist information if available.

Example 6-8 shows a simple top-level script that integrates two cores: one saved in .ddc 
format, and another saved in Verilog format with an ASCII CTL model.
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Example 6-8 Top-Level Core Integration Script Example

# configure libraries
set link_library {* my_lib.db}
set target_library {my_lib.db}

# read two cores and top-level netlist, then link the design
read_ddc DDC/core.ddc  ;# contains netlist and CTL model information

read_verilog GATES/IPBLK.vg    ;# Verilog netlist for IP block
read_test_model -format ctl \
  -design IPBLK CTL/IPBLK.ctl  ;# attach CTL model to Verilog design

read_verilog RTL/top.v

current_design top
link

# perform test-ready compile
compile -scan

# configure DFT
set_dft_signal -view existing_dft -type ScanClock \
  -port clk -timing [list 45 55]

# preview and insert DFT
create_test_protocol
dft_drc
set_scan_configuration -chain_count 2
preview_dft
insert_dft

# write out top-level design information
write -format ddc -hierarchy -output DDC/top.ddc      ;# full design
write -format verilog -hierarchy -output GATES/top.vg ;# ATPG netlist
write_test_protocol -output SPF/top.spf               ;# ATPG protocol

Checking Connectivity to Cores at the Top Level

In a core integration flow, you must ensure that the TestMode and Constant signals entering 
a block match what is required to shift the scan chains through the block. If conditions do not 
match, scan blockages can result.

You can use design rule checking (DRC) to confirm that these conditions are met before 
DFT insertion. Before running the dft_drc command, set the following variable:

dc_shell> set_app_var test_validate_test_model_connectivity true

The dft_drc command simulates the test_setup procedure and reports any mismatches 
between actual and expected values on the TestMode and Constant signals of instances 
represented by the test models.
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If a mismatch is detected, the scan segments represented in the test model are not stitched 
onto the scan chains.

Using Advanced Clock Feedthrough Analysis

A clock feedthrough is a logic path in the design where the output pin of the path has the 
same clock behavior as the input pin of the path. The tool uses feedthrough path information 
during DRC. When the tool writes out CTL test model information for the design, the model 
includes any feedthrough paths that span from input to output.

By default, DFT Compiler performs basic analysis of clock network logic to determine clock 
propagation behavior. However, for complex clock network logic, you can enable advanced 
clock feedthrough analysis by setting the following variable:

dc_shell> set_app_var test_fast_feedthrough_analysis true

This variable setting uses the TetraMAX DRC engine (which the dft_drc command runs 
internally) to detect clock feedthrough paths in the logic of the current design.

Enabling fast feedthrough analysis can help during both core creation and core integration:

• During core creation, feedthroughs from input port through complex logic to output port 
can be detected and included in the CTL model of the core.

• During core integration, if you have CTL-modeled cores that contain unidentified 
feedthrough paths, you can also set the test_simulation_library variable to 
configure the TetraMAX DRC engine to use a netlist simulation model for that core.

If you created the core with advanced feedthrough analysis, the CTL model should 
include any feedthrough paths through complex logic and you should not need to 
reanalyze the logic using a netlist simulation model. However, verify that the CTL model 
includes all expected feedthrough paths in this case.

Note:   
Although feedthroughs that vary on a per-test-mode basis can be understood by DFT 
DRC and insertion of the current design, they cannot be described in the resulting CTL 
model.

Connecting the Scan-Enable Pins of Cores

When you insert DFT at a top level that contains cores, the cores already contain complete 
scan-enable networks. Instead of connecting the top-level scan-enable signal to target pins 
inside the core, DFT Compiler must connect to scan-enable signal pins at the core 
boundary.
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You can use the -usage option of the set_dft_signal command to give DFT Compiler 
more information about the intended use of the scan-enable signal. Signals with a usage of 
scan enable scan cells during scan shift, while signals with a usage of clock_gating 
enable clock-gating cells during scan shift.

When scan-enable signals at the core and/or top level are defined with the -usage option, 
DFT Compiler attempts to determine which top-level signal should drive each core-level 
signal, using the priorities shown in Table 6-6. The column headers along the top denote 
various core-level scan-enable usages. For each usage, that column shows the priorities 
used to determine how top-level signals are connected to that core-level signal.

These connection priorities propagate signal usages upward through the hierarchy while 
preserving the original usage intent as much as possible. You can use the set_dft_signal 
-connect_to command and related options to specify specific source-to-pin signal 
connections that override these default signal connection behaviors.

See Also

• “Connecting the Scan-Enable Signal in Hierarchical Flows” on page 10-37 for more 
information about how you can connect the scan-enable signal to cores

Table 6-6 Core-Level and Top-Level Scan-Enable Usages With Priorities 

                              Core
Top

scan clock_gating scan plus 
clock_gating

No usage 
specified

scan 1 2 1

clock_gating 1

scan plus 
clock_gating

2 2 1 2

No usage specified 3 3 3 3

New port created
(test_se)

4a

a. Only one new port is created for all core pin configurations requiring a new port; this new port will 
behave like a scan-enable signal with no usage specified for all further DFT integration purposes.

4a 4a 4a
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Hierarchical Synthesis, DFT Insertion, and Layout Flows

When designing your hierarchical flow, remember that synthesis, DFT insertion, and layout 
tool domains each have their own independently configurable hierarchical flows. Not all 
synthesized blocks require DFT insertion, and not all synthesized or DFT-inserted blocks 
require layout.

In Figure 6-9, BLK1 uses bottom-up synthesis, top-down DFT insertion, and is placed and 
routed only as part of a higher level design.

Figure 6-9 Independent Hierarchical Synthesis, DFT, and Layout Flows

In addition, different blocks can use different tool features:

• For synthesis, some blocks can use wire load synthesis, some blocks can use DC Ultra 
synthesis, and some blocks can use synthesis in Design Compiler topological mode.

• For DFT, some blocks can use standard scan insertion, while other blocks can use 
compressed scan insertion.

For each tool domain, create a hierarchical flow that considers the needs of each design 
block. Also, consider interactions between the tool domains, such as

• Ensuring that mapped designs are provided to DFT insertion and layout

• Providing test-ready designs to DFT insertion for better results

• Including SCANDEF information when writing out DFT-inserted core designs to enable 
scan chain reordering in layout

When you write out a synthesis block abstraction of a DFT-inserted core in .ddc format, the 
.ddc file contains CTL model information for use by DFT insertion.

See Also

• “Generating SCANDEF Information in Hierarchical DFT Flows” on page 16-13 for more 
information about using SCANDEF information in hierarchical flows
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• “Using Hierarchical Models” in the Design Compiler User Guide for more information 
about hierarchical synthesis flows

• “Compile Flows in Topographical Mode” in the Design Compiler User Guide for more 
information about hierarchical flows in Design Compiler topographical mode

Linking Test Models to Library Cells

When complex library cells have built-in scan chains, Core Test Language (CTL) test 
models must be linked to the library cells for DFT Compiler to connect the scan chains at the 
top level.

If you have the original library source file, you can use the read_lib -test_model 
command to annotate test model information to a library cell when the library is read in. After 
the library has been read and annotated with the test model, a library .db file containing the 
test model can be written out. For example,

read_lib lib_file.lib -test_model [lib_cell_name:]model_file.ctl
write_lib lib -output lib_file.db 

If the CTL model name differs from the intended library cell name, an optional library cell 
name prefix can be used to specify the model’s intended library cell. 

To link multiple test models to multiple cells within a single library, supply the model files to 
the -test_model option as a list:

read_lib lib_file.lib -test_model [list \
    [lib_cell_name:]model_file1.ctl \
    [lib_cell_name:]model_file2.ctl]

Note:   
The read_lib command is a Library Compiler command. To use it in a DFT flow, you 
must link the Design Compiler and Library Compiler tools together. For more information, 
see the Synthesis Tools Installation Notes and Library Compiler Installation Notes.

If you only have a compiled library .db file, you can use the read_test_model command to 
link a test model to an existing library cell or design in memory. Specify the library cell or 
design name with the -design option. The library cell name can be provided with or without 
the logic library name prefix. For example,

read_test_model -format ctl \
  -design design_name model_file.ctl

read_test_model -format ctl \
  -design lib_cell_name model_file.ctl

read_test_model -format ctl \
  -design logic_lib/lib_cell_name model_file.ctl
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If you have subdesigns that are modeled using extracted timing models (ETMs), you can 
also link CTL test models to the ETM library cells just as you would with logic library cells.

You can use the report_lib command to determine if a library cell has CTL test model 
information applied to it, using either the read_lib -test_model or read_test_model 
command.

Note:   
When you link a test model to a library cell with the read_test_model command, it takes 
precedence over any existing test model information present in the library.

Checking Library Cells for CTL Model Information

To determine if a library cell has CTL model information attached to it, read in the library, 
then run the report_lib command. If a library cell in the library has CTL model information 
attached, the report will indicate ctl in the attributes column, as shown in Example 6-9.

Example 6-9 Simple report_lib Output for Library Cell With Test Model

Cell         Footprint    Attributes
------------------------------------
my_memory    "MEM"            b, d, s, u, ctl, t
Chapter 6: Getting Started
Hierarchical Scan Synthesis 6-35
Chapter 6: Getting Started
Hierarchical Scan Synthesis 6-35



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Physical DFT Features in Design Compiler

When you use the Design Compiler tool with physical libraries and design information, 
several DFT features directly use physical information to improve the DFT implementation.

Table 6-7 shows the DFT features and their supported physical synthesis flows.

See Also

• “Invoking the Synthesis Tool” on page 6-3 for more information about invoking the 
Design Compiler tool in topographical mode and Design Compiler Graphical

Table 6-7 DFT Features That Use Physical Information

DFT feature Design Compiler in
topographical mode?

Design Compiler 
Graphical?

Scan chain reordering

Scan cells are ordered by physical 
proximity to minimize wire length. See 
“Physical Reordering and Repartitioning” 
on page 10-15.

Yes Yes

DFTMAX reduced-congestion codec

Codecs are implemented with a logic 
structure that minimizes congestion. See 
“Performing Congestion Optimization on 
Compressed Scan Designs” on 
page 18-44.

No Yes

Test point insertion

Test points are grouped by physical 
proximity to share registers. See “Sharing 
Test Point Registers” on page 11-12.

Yes Yes

Pipelined scan-enable signals

Scan cells are grouped by physical 
proximity to share pipeline registers. See 
“Implementation Considerations for 
Pipelined Scan-Enable Signals” on 
page 11-60.

Yes Yes
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DFT Flows in DC Explorer

DC Explorer can improve your productivity during development of RTL and constraints by 
enabling fast synthesis in the early design stages. During this exploratory phase, you can 
also use DC Explorer to evaluate the DFT DRC readiness of the design.

In general, DC Explorer accepts all DFT specification commands that can be applied before 
DFT insertion. This includes (but is not limited to)

• Standard scan and compressed scan configuration commands

• Scan path and scan group definition commands

• Test-mode creation commands

• OCC controller configuration commands

• DFT partition commands

• Test point configuration commands

• The create_test_protocol command

• The read_test_model command

• The read_test_protocol command

• The report_scan_path command (when used to report user-specified scan structures)

• The dft_drc command

• The write_test_protocol command

Note that although some of these DFT specification commands do not affect pre-DFT DRC, 
they are accepted without warning or error. This allows typical pre-DFT DRC scripts to 
execute cleanly.

DC Explorer does not support the DFT preview or insertion commands or DFT commands 
that are run after DFT insertion. This includes

• The preview_dft and insert_dft commands

• The report_scan_path command (when used to report DFT-inserted scan structures)

• The write_scan_def command

• The write_test_model command
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If you attempt to use an unsupported command that would not significantly affect the 
structure of the design, DC Explorer issues a warning:

de_shell> preview_dft
Warning: Command 'preview_dft' is not supported in DC Explorer. The
command is ignored.  (DESH-009)
0

If you attempt to use an unsupported command that would significantly affect the structure 
of the design, DC Explorer issues an error:

de_shell> insert_dft
Error: Command 'insert_dft' is not supported in DC Explorer. (DESH-008)
0

IEEE Std 1149.1 and IEEE Std 1149.6 boundary-scan configuration and insertion, which is 
provided by the DFTMAX tool, is not supported in DC Explorer.

See Also

• “Invoking the Synthesis Tool” on page 6-3 for more information about invoking DC 
Explorer
Chapter 6: Getting Started
DFT Flows in DC Explorer 6-38



7
Running RTL Test Design Rule Checking 7

This chapter describes how to prepare for and run RTL test design rule checking (DRC) and 
analyze DRC violations.

The RTL test design rule checking (DRC) process provides early warnings of test-related 
issues. This feedback is crucial because it provides you with an opportunity to correct your 
RTL code before the compile phase of the design flow. By correcting these problems during 
this stage, you can reduce time-consuming iterations that would occur later in the design 
process.

This chapter includes the following topics:

• Understanding the Flow

• Specifying Setup Variables

• Generating a Test Protocol

• Running RTL Test DRC

• Understanding the Violations

• Limitations
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Understanding the Flow

Figure 7-1 shows a typical RTL test DRC flow.

Figure 7-1 RTL Test DRC Design Flow

Set variables

Read HDL source

Set scan style

Define test protocol

Review report

Manually fix RTL

Violation report
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Violations

dc_shell

Run RTL test DRC
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Specifying Setup Variables

To begin preparing for RTL test DRC checking, you need to specify a series of setup 
variables, as described in the following steps:

1. Set the hdlin_enable_rtldrc_info variable to true. This variable reports file names 
and line numbers associated with each violation, which makes it easier for you to later 
edit the source code and fix violations.

dc_shell> set hdlin_enable_rtldrc_info true

2. Make sure you define the list of searched logic libraries by using the link_library 
variable.

3. Read in your HDL source code by using the read variable. The following variable reads 
in a Verilog file called my_design.v:

dc_shell> read_file -format verilog my_design.v

Generating a Test Protocol

A test protocol is required for specifying signals and initialization requirements associated 
with design rule checking. This topic covers the following topics related to generating a test 
protocol:

• Defining a Test Protocol

• Setting the Scan Style

• Design Examples

Defining a Test Protocol

To define the test protocol, you need to 

• Identify all test clock signals by using the set_dft_signal command, as shown in the 
following example:

dc_shell> set_dft_signal -view existing_dft \ 
               -type ScanClock -timing {45 55}

Make sure you identify a clock signal as a clock and not as any other signal type, even if 
it has more than one attribute. An error message will appear if you identify a clock signal 
with any other attribute.

• Identify all nonclock control signals, such as asynchronous presets and clears or 
scan-enable signals, using the set_dft_signal command.
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You should identify the following nonclock control signals:

❍ Reset

❍ ScanEnable

❍ Constant

❍ ScanDataIn

❍ ScanDataOut

❍ TestData

❍ TestMode

For example,

dc_shell> set_dft_signal -view existing_dft \
               -type Reset -active_state 1

• Define constant logic value requirements.

If a signal must be set to a fixed constant value, use the set_dft_signal command, as 
shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
               -type constant -active_state 1

• Define test-mode initialization requirements.

Your design might require initialization to function in test mode. Use the 
read_test_protocol command to read in a custom initialization sequence. You can 
define a custom initialization sequence by modifying the protocol created by the 
create_test_protocol command.

Reading in an Initialization Protocol in STIL Format

The following example reads in a STIL initialization protocol:

dc_shell> read_test_protocol -section test_setup my_protocol_file.spf

Example 7-1 shows a complete STIL procedure file, including an initialization sequence. 
The initialization sequence is found in the test_setup section of the MacroDefs block.

Example 7-1 Complete Protocol File (init.spf)

STIL 1.0 {
   Design P2000.9;
}
Header {
   Title "DFT Compiler 2000.11 STIL output";
   Date "Wed Jan  3 17:36:04 2001";
Chapter 7: Running RTL Test Design Rule Checking
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   History {
   }
}
Signals {
   "ALARM" In; "BSD_TDI" In; "BSD_TEST_CLK" In; "BSD_TMS" In; 
   "BSD_TRST" In; "CLK" In; "HRS" In; "MINS" In; "RESETN" In; 
   "SET_TIME" In; "TEST_MODE" In; "TEST_SE" In; "TEST_SI" In; 
   "TOGGLE_SWITCH" In;
   "AM_PM_OUT" Out; "BSD_TDO" Out; "HR_DISPLAY[0]" Out; 
   "HR_DISPLAY[1]" Out; "HR_DISPLAY[2]" Out; "HR_DISPLAY[3]" 
Out; 
   "HR_DISPLAY[4]" Out; "HR_DISPLAY[5]" Out; "HR_DISPLAY[6]" 
Out; 
   "HR_DISPLAY[7]" Out; "HR_DISPLAY[8]" Out; "HR_DISPLAY[9]" 
Out; 
   "HR_DISPLAY[10]" Out; "HR_DISPLAY[11]" Out; 
"HR_DISPLAY[12]" Out; 
   "HR_DISPLAY[13]" Out; "MIN_DISPLAY[0]" Out; 
"MIN_DISPLAY[1]" Out; 
   "MIN_DISPLAY[2]" Out; "MIN_DISPLAY[3]" Out; 
"MIN_DISPLAY[4]" Out; 
   "MIN_DISPLAY[5]" Out; "MIN_DISPLAY[6]" Out; 
"MIN_DISPLAY[7]" Out; 
   "MIN_DISPLAY[8]" Out; "MIN_DISPLAY[9]" Out; 
"MIN_DISPLAY[10]" Out; 
   "MIN_DISPLAY[11]" Out; "MIN_DISPLAY[12]" Out; 
"MIN_DISPLAY[13]" Out; 
   "SPEAKER_OUT" Out;
} 
SignalGroups {
   "all_inputs"   ’"ALARM" + "BSD_TDI" + "BSD_TEST_CLK" + 
"BSD_TMS" + 
   "BSD_TRST" + "CLK" + "HRS" + "MINS" + "RESETN" + "SET_TIME" + 
   "TEST_MODE" + "TEST_SE" + "TEST_SI" + "TOGGLE_SWITCH"’; // 
#signals=14
   "all_outputs"   ’"AM_PM_OUT" + "BSD_TDO" + "HR_DISPLAY[0]" 
+ 
   "HR_DISPLAY[1]" + "HR_DISPLAY[2]" + "HR_DISPLAY[3]" + 
   "HR_DISPLAY[4]" + "HR_DISPLAY[5]" + "HR_DISPLAY[6]" + 
   "HR_DISPLAY[7]" + "HR_DISPLAY[8]" + "HR_DISPLAY[9]" + 
   "HR_DISPLAY[10]" + "HR_DISPLAY[11]" + "HR_DISPLAY[12]" + 
   "HR_DISPLAY[13]" + "MIN_DISPLAY[0]" + "MIN_DISPLAY[1]" + 
   "MIN_DISPLAY[2]" + "MIN_DISPLAY[3]" + "MIN_DISPLAY[4]" + 
   "MIN_DISPLAY[5]" + "MIN_DISPLAY[6]" + "MIN_DISPLAY[7]" + 
   "MIN_DISPLAY[8]" + "MIN_DISPLAY[9]" + "MIN_DISPLAY[10]" + 
   "MIN_DISPLAY[11]" + "MIN_DISPLAY[12]" + "MIN_DISPLAY[13]" 
+ 
   "SPEAKER_OUT"’; // #signals=31
   "all_ports"   ’"all_inputs" + "all_outputs"’; // 
#signals=45
   "_pi"   ’"all_inputs"’; // #signals=14
   "_po"   ’"all_outputs"’; // #signals=31
} 
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ScanStructures {
   ScanChain "c0" {
      ScanLength 40;
      ScanIn "TEST_SI";
      ScanOut "SPEAKER_OUT";
   } 
} 
Timing {
   WaveformTable "_default_WFT_" {
      Period ’100ns’;
      Waveforms {
         "all_inputs" { 0 { ’5ns’ D; } }
         "all_inputs" { 1 { ’5ns’ U; } }
         "all_inputs" { Z { ’5ns’ Z; } }
         "all_outputs" { X { ’0ns’ X; } }
         "all_outputs" { H { ’0ns’ X; ’95ns’ H; } }
         "all_outputs" { T { ’0ns’ X; ’95ns’ T; } }
         "all_outputs" { L { ’0ns’ X; ’95ns’ L; } }
         "CLK" { P { ’0ns’ D; ’45ns’ U; ’55ns’ D; } }
         "BSD_TEST_CLK" { P { ’0ns’ D; ’45ns’ U; ’55ns’ D; } }
         "RESETN" { P { ’0ns’ U; ’45ns’ D; ’55ns’ U; } }
      }
   }
} 
PatternBurst "__burst__" {
   "__pattern__" {
   }
} 
PatternExec {
   Timing "";
   PatternBurst "__burst__";
} 
Procedures {
   "load_unload" {
      W "_default_WFT_";
      V {  "BSD_TEST_CLK"=0; "BSD_TRST"=0; "CLK"=0; "RESETN"=1;
       "TEST_MODE"=1; "TEST_SE"=1; "_so"=#; } 
      Shift { 
         W "_default_WFT_";
         V {  "BSD_TEST_CLK"=P; "BSD_TRST"=0; "CLK"=P; 
"RESETN"=1;
       "TEST_MODE"=1; "TEST_SE"=1; "_so"=#; "_si"=#; } 
   }
}
   "capture" {
      W "_default_WFT_";
      F {  "BSD_TRST"=0; "TEST_MODE"=1; } 
      V { "_pi"=\r14 #; "_po"=\r31 #; }
   }
   "capture_CLK" {
      W "_default_WFT_";
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      F {  "BSD_TRST"=0; "TEST_MODE"=1; } 
      "forcePI": V { "_pi"=\r14 #; }
      "measurePO": V { "_po"=\r31 #; }
      "pulse": V { "CLK"=P; }
   }
   "capture_BSD_TEST_CLK" {
      W "_default_WFT_";
      F {  "BSD_TRST"=0; "TEST_MODE"=1; } 
      "forcePI": V { "_pi"=\r14 #; }
      "measurePO": V { "_po"=\r31 #; }
      "pulse": V { "BSD_TEST_CLK"=P; }
   }
   "capture_RESETN" {
      W "_default_WFT_";
      F {  "BSD_TRST"=0; "TEST_MODE"=1; } 
      "forcePI": V { "_pi"=\r14 #; }
      "measurePO": V { "_po"=\r31 #; }
      "pulse": V { "RESETN"=P; }
   }
} 
MacroDefs {
   "test_setup" {
      W "_default_WFT_";
      V {  "BSD_TEST_CLK"=0; "CLK"=0; } 
      V {  "BSD_TEST_CLK"=0; "BSD_TRST"=0; "CLK"=0; "RESETN"=1;
       "TEST_MODE"=1; } 
   }
} 

Note:   
The read_test_protocol -section test_setup command imports only the 
test_setup section of the protocol file and ignores the remaining sections.

Setting the Scan Style

The scan style setting affects messages generated by test design rule checking. This is 
because some design rules apply only to specific scan styles. To set the scan style, use the 
following syntax for the set_scan_configuration command:

set_scan_configuration -style scan_style

You can use any of the following arguments for the scan_style value:

• multiplexed_flip_flop

• clocked_scan

• lssd
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• scan_enabled_lssd

• combinational

If you do not set the scan style before performing test design rule checking, 
multiplexed_flip_flop is used as the default scan style.

Design Examples

This topic contains two simple design examples that illustrate how to generate test 
protocols. The first example shows how to use the set_dft_signal command to control the 
clock signal, the scan-enable signal, and the asynchronous reset. The second example 
describes a two-pass process for defining an initialization sequence in a test protocol.

Test Protocol Example 1

Figure 7-2 shows a schematic and the Verilog code for a simple RTL design that needs a 
test protocol.

Figure 7-2 RTL Design That Needs a Simple Protocol

module tcrm (in1, in2, in3, clk, cdn, out1, out2);
input in1, in2, in3, clk, cdn;
output out1, out2;
reg U1, U2;
wire gated_clk;
 
always @(posedge clk or negedge cdn) begin
    if (!cdn) U1 <= 1'b0;
    else U1 <= in1;
end

U1

U2

in2

out1

out2

in3
in1

cdn

clk
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assign gated_clk = clk & in3;
 
always @(posedge gated_clk or negedge cdn) begin
  if (!cdn) U2 <= 1'b0;
   else U2 <= in2;
  end
 
assign out1 = U1;
assign out2 = U2;
 
endmodule

In this design, you must define the clock signal, clk. You must also specify that in3 be held 
at 1 during scan input to enable the clock signal for U2. Finally, you must hold the cdn signal 
at 1 during scan input so that the reset signal is not applied to the registers.

The following command sequence specifies a test protocol for the design example:

dc_shell> set_dft_signal -view existing_dft \
               -type ScanClock -timing [list 45 55] \
               -port clk

dc_shell> set_dft_signal -view existing_dft -port cdn \
               -type Reset -active_state 0

dc_shell> set_dft_signal -view spec -port in3 \
               -type ScanEnable -active_state 1

dc_shell> create_test_protocol

dc_shell> write_test_protocol -output design.spf

Test Protocol Example 2

Figure 7-3 shows a schematic and the corresponding Verilog code for an RTL design that 
requires initialization.
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Figure 7-3 Design That Requires an Initialization Sequence

module ssug (in1, in2, clk, cdn, out1, out2);
input in1, in2, clk, cdn;
output out1, out2;
reg ff_a, ff_b, ff_c, ff_d;
wire resetn;
 
  always @(posedge clk) begin
    ff_b <= ff_a;
    ff_a <= cdn;
  end
  assign resetn = cdn & ff_b;
  always @(posedge clk or negedge resetn) begin
    if (!resetn) begin
      ff_c <= 1'b0;
      ff_d <= 1'b0;
    end
    else begin
      ff_c <= in1;
      ff_d <= in2;
    end
  end
  assign out1 = ff_c;
  assign out2 = ff_d;
endmodule

ff_a_reg/Q ff_b_reg/Q

resetn

in1 out1

out2in2

cdn

clk

ff_a ff_b

ff_d

ff_c
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In this design, you must define the clock signal, clk. You must also make sure that cdn and 
the Q output of ff_b_reg remain at 1 during the test cycle, so that the resetn signal 
remains at 1.

If you do not initialize the design, test DRC assumes that the resetn signal is not 
controllable and marks the ff_c and ff_d flip-flops as having design rule violations. 

To initialize the design, you must hold cdn at 1 and pulse the clk signal twice so that the 
resetn signal is at 1.

For this example, the protocol is generated in a two-pass process. In the first pass, the 
generated protocol contains an initialization sequence based on the test attributes placed on 
clk and cdn ports. The command sequence that defines the preliminary protocol is as 
follows:

dc_shell> set_dft_signal -view existing_dft \
               -type ScanClock -timing [list 45 55] \
               -port clk

dc_shell> set_dft_signal -view existing_dft \
                -type Constant -active_state 1 -port cdn

dc_shell> create_test_protocol

dc_shell> write_test_protocol -output first.spf

The resulting protocol contains the initialization steps shown in Example 7-2.

Example 7-2 Preliminary Initialization Sequence

MacroDefs {
   "test_setup" {
      W "_default_WFT_";
      V {  "clk"=0; }
      V {  "cdn"=1; "clk"=0; }
   }
}

If you run test design rule checking without modifying these initialization steps, it reports the 
following violation:

Warning: Reset input of DFF ff_d_reg was not controlled. (D3-1)

For the second pass of the protocol generation process, modify the initialization sequence 
as shown:

1. Add the three lines shown in bold to the test_setup section of the MacroDefs block:

MacroDefs {
   "test_setup" {
      W "_default_WFT_";
      V {  "clk"=0; }
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      V {  "cdn"=1; "clk"=0; }
      V {  "cdn"=1; "clk"=P; }
      V {  "cdn"=1; "clk"=P; }
      V {  "cdn"=1; "clk"=0; }   }
}

The added steps pulse the clock signal twice while holding the cdn port to 1. The final 
step holds clk to 0 because the test design rule checker expects all clocks to be in an 
inactive state at the end of the initialization sequence.

2. Save the protocol into a new file. In this case, the file is called second.spf.

3. Read in the new macro in one of two ways:

a. Reread the whole modified protocol file:

 read_test_protocol second.spf

b. Read just the initialization portion of the protocol, and use the 
create_test_protocol command to fill in the remaining sections of the protocol:

 remove_test_protocol
 read_test_protocol -section test_setup second.spf
 create_test_protocol

4. After you have read in the initialization protocol, perform test DRC again. The following 
violation is reported:

Warning: Cell ff_b_reg has constant 1 value. (TEST-505)

This is to be expected because the outputs of ff_a and ff_b did not reach 0. Constant 
flip-flops are not included in the scan chain.

Running RTL Test DRC

After generating the test protocol, you are ready to run the test DRC process. To do this, 
specify the dft_drc command at the shell prompt, as shown in the following example:

dc_shell> dft_drc

This command generates a set of report files containing all known design violations. You’ll 
need to review these reports and manually fix any violations before advancing to design 
compilation and scan insertion.
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Understanding the Violations

The Test DRC process checks your design to determine if you have any test design rule 
violations. Before you can fix your design, you must understand what types of violations are 
checked and why these checks are necessary.

This topic explains the test design rule checks that are performed on your design, describes 
messages you see when you encounter test design rule violations, and describes the 
methods you can use to fix the violations.

This topic covers the following:

• Violations That Prevent Scan Insertion

• Violations That Prevent Data Capture

• Violations That Reduce Fault Coverage

Violations That Prevent Scan Insertion

Scan design rules require that in test mode the registers have the functionality to operate as 
cells within a large shift register. This enables data to get into and out of the chip. The 
following violations prevent a register from being scannable:

• The flip-flop clock signal is uncontrollable.

• The latch is enabled at the beginning of the clock cycle. 

• The asynchronous controls of registers are uncontrollable or are held active. 

Uncontrollable Clocks

This violation can be caused by undefined or unconditioned clocks. DFT Compiler considers 
a clock to be controlled only if both of these conditions are true:

• The clock is forced to a known state at time = 0 in the clock period, which is the same as 
the “clock off state” in the TetraMAX tool.

• The clock changes state as a result of the test clock toggling.

Going to an unknown state (X) is considered to be a change of state. However, if the 
clock stays in a single known state no matter what state the test clock is in, the clock will 
generate a violation for not being reached by any test clock.

You must use the set_dft_signal command to define test clocks in your design. For more 
information, see “Defining a Test Protocol” on page 7-3.
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Also use the set_dft_signal command to condition gated clocks to reach their 
destinations, as shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
               -type constant -active_state 1

The violation message provides the name of the signal that drives the clock inputs and the 
registers that ATPG cannot control.

If a design has an uncontrollable register clock pin, it generates one of the following warning 
messages:

Warning: Clock input I of DFF S was not controlled. (D1-N)

Warning: Clock input I of DLAT S was not controlled. (D4-N)

Asynchronous Control Pins in Active State

Asynchronous pins of a register must be capable of being disabled by an input of the design. 
If they cannot be disabled, this is reported as a violation. This violation can be caused by 
asynchronous control signals, such as the preset or clear pin of the flip-flop or latch, that are 
not properly conditioned before you run DFT Compiler. You might be able to fix this by 
setting a signal as active_state that has a hold value of 0 during scan shift or by defining 
a signal as active_state that has a hold value of 1. If you create all signal definitions 
correctly before running DFT Compiler, this violation indicates registers that ATPG cannot 
control.

If a register has an asynchronous pin that is not controlled by an asynchronous control 
signal, you get one of the following warning messages:

Warning: Set input I of DFF S was not controlled. (D2-N)

Warning: Reset input I of DFF S was not controlled. (D3-N)

Warning: Set input I of DLAT S was not controlled. (D5-N)

Warning: Reset input I of DLAT S was not controlled. (D6-N)

Violations That Prevent Data Capture

After DFT Compiler checks for violations that prevent scan insertion, the next step is to verify 
that your design can get valid data during the capture phase of ATPG.

Note that ATPG does not consider timing when generating vectors for a scan design. If you 
do not fix the violations in this topic, ATPG might generate vectors that fail functional 
simulation or fail on the tester, although in the TetraMAX tool you would also have to override 
the TetraMAX default settings.
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The violations are described in the following topics:

• Clock Used As Data

• Black Box Feeds Into Clock or Asynchronous Control

• Source Register Launch Before Destination Register Capture

• Registered Clock-Gating Circuitry

• Three-State Contention

• Clock Feeding Multiple Register Inputs

Clock Used As Data

When a clock signal drives the data pin of a cell, as in Figure 7-4, ATPG tools cannot 
determine the captured value. Modify the logic leading to the datapath to eliminate 
dependency on the clock.

Figure 7-4 Clock Signal Used As Data Input 

If the clock and data input to a register are interdependent, you might get the following 
warning message:

Warning: Clock C connects to clock and data inputs I1/I2 of DFF S.
  (D11-N)

Black Box Feeds Into Clock or Asynchronous Control

If the output of a black box indirectly feeds into the clock of a register, the register might not 
be able to capture data. An example is shown in Figure 7-5.

D Q
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Figure 7-5 Black Box Feeds Clock Input

See Also

• “Black Boxes” on page 7-22 for more information about how black boxes affect testability

Source Register Launch Before Destination 
Register Capture

This topic describes the violations caused by source registers that launch new data to the 
destination registers before they can capture and shift out the original data.

When two latches are enabled by the same clock but have a combinational datapath 
between them, data can propagate through both latches in a single clock cycle. This 
reduces the ability of ATPG to observe logic along this path. Modify the logic leading to the 
affected latches to eliminate any paths affected by latches that are enabled by the same 
clock.

An example of this violation is shown in Figure 7-6. When the clock turns off, that is, pulses 
from an inactive state to an active state and then back, the second latch (U2) can capture 
the value originally on port D1 or on its data pin, depending on the relationship between the 
clock width and the delay on the datapath. The possibility of data feedthrough causes the 
destination latch (U2) to capture data unreliably.
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Figure 7-6 Latch-Based Circuit With Source Register Launch Before Destination Register 
Capture

If multiple latches are enabled so that the latches feed through capture data, you get the 
following warning message:

Warning: Clock C cannot capture data with other clocks off. (D8-N)

Registered Clock-Gating Circuitry

If you gate the register output with the same clock signal that is used to clock the register, 
you cannot use the same phase of the resulting signal as a clock. An example is shown in 
Figure 7-7.

Figure 7-7 Invalid Clock-Gating Circuit 

The U1 output invalidly clocks register U2. The OR gate, U1, has two inputs, where one is 
the output of register U3 and the other is the signal used to clock U3.

Note that Power Compiler clock gating does not lead to this violation because Power 
Compiler uses opposite edge-triggered flip-flops or latches to create the clock-gating 
signals.
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This circuit configuration results in timing hazards, including clock glitches and clock skew. 
Modify the clock-gating logic to eliminate this type of logic.

If you implement this type of clock-gating circuitry, you get the following warning message: 

Warning: Clock input I of DFF S was not controlled. (D1-N)

Three-State Contention

DFT Compiler can check to see if your RTL code contains three-state contention conditions. 
If floating or contention is found, one of the following three warning messages is issued:

Warning: Bus gate N failed contention ability check for drivers G1 and
G2. (D20-N)

Warning: Bus gate N failed Z state ability check. (D21-N)

Warning: Wire gate N failed contention ability check for drivers G1 and
G2. (D22-N)

Clock Feeding Multiple Register Inputs

A clock that feeds multiple register inputs reduces the fault coverage attainable by ATPG. 
The signal can be one of the following:

• A clock signal that feeds into more than one register clock pin

• A clock signal that feeds into a clock pin and an asynchronous control of a register

The logic that feeds the same clock into multiple clock pins or asynchronous pins should be 
modified so that the clock reaches only one port on the register. Figure 7-8 shows an 
example of this violation.

Figure 7-8 Clock Signal Feeds Register Clock Pin and Asynchronous Reset
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If you implement this type of design circuitry, you get the following warning message:

Warning: D12 Clock C connects to clock/set/reset inputs (G1 / G2) of
DFF I. (D12-N)

Violations That Reduce Fault Coverage

Violations that can reduce your fault coverage are discussed in the following topics:

• Combinational Feedback Loops

• Clocks That Interact With Register Input

• Multiple Clocks That Feed Into Latches and Flip-Flops

• Black Boxes

Combinational Feedback Loops

An active (or sensitizable) feedback loop reduces the fault coverage that ATPG can achieve 
by increasing the difficulty of controlling values on paths containing parts of the loop.

A loop that oscillates causes severe problems for ATPG and for fault simulation. You can 
break these loops by placing test constraints on the design. This creates a feedback loop 
that is not active. DFT Compiler does not report violations on loops that you have broken by 
setting constraints.

If you are using the loop as a latch, convert the combinational elements that make up this 
feedback loop into a latch from your ASIC vendor library. Figure 7-9 shows this type of loop.

Figure 7-9 Highlighted Combinational Feedback Loop 

If your design contains a sensitizable feedback loop, you get the following warning 
message:

Warning: Feedback path network X is sensitizable through source gate G.
(D23-N)
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Clocks That Interact With Register Input

A clock that affects the data input of a register reduces the fault coverage attainable by 
ATPG, because ATPG pulses only one clock at a time, keeping all other clocks in their off 
states. Attempting to fix this purely in the ATPG setup can result in timing hazards. Do not 
use the circuit shown in Figure 7-10, because testing this logic requires multiple ATPG 
iterations and might also require special scan chain design considerations (not discussed 
here). Redesign the logic feeding the data inputs of the registers to eliminate dependency 
on other clocks.

Figure 7-10 Clock Interacting With Register Input

If a clock affects the data of a register, you might get the following warning message:

Warning: Clock C connects to data input of DFF S. (D10-N)

Multiple Clocks That Feed Into Latches and Flip-Flops

The following topics describe the types of clock-gating configurations that can reduce fault 
coverage:

• Latch Requires Multiple Clocks to Capture Data

• Latches Are Not Transparent

See Also

• “Violations That Prevent Scan Insertion” on page 7-13 for more information about other 
clock-gating configurations that prevent scan insertion

•  “Violations That Prevent Data Capture” on page 7-14 for more information about other 
clock-gating configurations that prevent data capture
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Latch Requires Multiple Clocks to Capture Data

For a latch to be usable as part of a scan chain, it must be enabled by one clock or by a clock 
ANDed with data derived from sources other than that clock. Multiple clocks and gated 
clocks must be ORed together so that any one of the clocks can capture data. ATPG forces 
all but one clock off at any time. Latches that can capture data as a result of more than one 
clock must be able to capture data with one clock active and all others off.

If your design has an OR gate with clock and data inputs, the output clock of the OR gate 
has extra pulses that depend on the data input. If your design has an AND gate with more 
than one clock input, the output of the AND gate never generates a clock pulse. Both of 
these cases are violations, and DFT Compiler generates a warning message.

You can create valid clock-gating logic for latches if your circuitry contains an

• AND gate with only one clock input and one or more data inputs

• OR gate with clock or gated clock inputs

A combination of these valid clocking rules is shown in Figure 7-11.

Figure 7-11 Valid Latch Clock Gating 

If you generate logic that violates these clock rules, you get the following warning message:

Warning: Clock C cannot capture data with other clocks off. (D8-N)

Latches Are Not Transparent

Latches should be transparent in certain types of scan styles. If a latch is not transparent, 
ATPG might have more difficulty controlling it. This could cause a loss of fault coverage on 
the path through the latch.

U1
A

B
Z

OPD

G

Q

U4

my_clock1

D_1
U2

A

B

my_clock2

D_2
U3

A

B

Chapter 7: Running RTL Test Design Rule Checking
Understanding the Violations 7-21
Chapter 7: Running RTL Test Design Rule Checking
Understanding the Violations 7-21



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Black Boxes

Logic that drives or is driven by black boxes cannot be tested because it is unobservable or 
uncontrollable. This violation can drastically reduce fault coverage, because the logic that 
surrounds the black box is unobservable or uncontrollable. Figure 7-12 shows an example.

Figure 7-12 Effect of Black Boxes on Surrounding Logic

If there are any black boxes in your design, the dft_drc command issues the following 
warning message:

Warning: Cell U0 (black_box) is unknown (black box) because
functionality for output pin Z is bad or incomplete. (TEST-451)

Limitations

Note the following limitations:

• The set_svf command is not supported in the RTL test DRC flow. You should comment 
out any dft_drc command that performs test DRC checking on elaborated RTL before 
you perform design synthesis, which generates the verification setup file.

• The compile_ultra -gate_clock -scan command is not supported in the RTL test 
DRC flow. When the create_test_protocol command is run on the elaborated RTL, 
subsequent compile_ultra -gate_clock -scan commands might not properly 
incorporate clock-gating cells into the scan chains. You should comment out any 
create_test_protocol commands performed on elaborated RTL before you perform 
design synthesis with this command.
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8
Running the Test DRC Debugger 8

This chapter describes debugging design rule checking (DRC) violations by using the 
Design Vision graphical user interface (GUI).

Design Vision provides analysis tools for viewing and analyzing your design. It allows you to 
view the design violations, and it can provide an early warning of test-related issues. The 
GUI provides the debug environment for pre-DFT DRC violations, post-DFT DRC violations, 
and Core Test Language (CTL) models.

This chapter includes the following topics:

• Starting and Exiting the Graphical User Interface

• Exploring the Graphical User Interface

• Viewing Design Violations

• Commands Specific to the DFT Tools in the GUI
8-1
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Starting and Exiting the Graphical User Interface

To invoke Design Vision and view test DRC results, you need to

• Execute the design_vision command or, for topographical mode, the design_vision 
-topographical_mode command from the command line.

• Choose File > Execute Script to run dc_shell script.

• Choose Test > Run DFT DRC to check the design for DRC violations. This brings up the 
violation browser.

Alternatively, 

• Enter the dft_drc command on the Design Vision command line. Then choose Test > 
Browse Violations to invoke the violation browser.

To exit Design Vision,

• Choose File > Exit

You can also enter exit or quit on the command line or press Control-c three times in the 
Linux shell.

To invoke Design Vision directly from dc_shell, enter

dc_shell> gui_start

To use options with this command, see the Design Vision User Guide for further information.

Note:   
Before invoking Design Vision or opening the GUI, make sure you have correctly set your 
display environment variable. See the Design Compiler User Guide for information on 
setting this variable.

Exploring the Graphical User Interface

The Design Vision window is a top-level window in which you can display design information 
in various types of analysis views. The GUI functions as a visual analysis tool to help you to 
visualize and analyze the violations in your design.

Figure 8-1 shows the Design Vision window running in the Design Vision foreground.
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Figure 8-1 The Design Vision Window

The window consists of a title bar, a menu bar, and several toolbars at the top of the window 
and a status bar at the bottom of the window.

You use the workspace between the toolbars and the status bar to display view windows 
containing graphical and textual design information. You can open multiple windows and use 
them to compare views, or different design information within a view, side by side.

Logic Hierarchy View

The logic hierarchy view helps you navigate through your design and gather information. 
The view is divided into the following two panes:

• Instance tree

• Objects list

The instance tree lets you quickly navigate the design hierarchy and see the relationships 
among its levels. If you select the instance name of a hierarchical cell (one that contains 
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subblocks), information about that instance appears in the object table. You can Shift-click 
or Control-click instance names to select combinations of instances.

By default, the object table displays information about hierarchical cells belonging to the 
selected instance in the instance tree. To display information about other types of objects, 
select the object types in the list above the table. You can display information about 
hierarchical cells, all cells, pins and ports, pins of child cells, and nets.

Console

The console provides a command-line interface and displays information about the 
commands you use in the session in the following two views:

• Log view

• History view

The log view is displayed by default when you start Design Vision. The log view provides the 
session transcript. The history view provides a list of the commands that you have used 
during the session. To select a view, click the tab at the bottom of the console. 

Command Line

You can enter dc_shell commands on the command line at the bottom of the console. Enter 
these commands just as you would enter them at the dc_shell prompt in a standard Linux 
shell. When you issue a command by pressing Return or clicking the prompt button to the 
left of the command line, the command output, including processing messages and any 
warnings or error messages, is displayed in the console log view.

You can display, edit, and reissue commands on the console command line by using the 
arrow keys to scroll up or down the command stack and to move the insertion point to the 
left or right on the command line. You can copy text in the log view and paste it on the 
command line.

You can also select commands in the history view and edit or reissue them on the command 
line.

Viewing Man Pages

The GUI provides an HTML-based browser that lets you view, search, and print man pages 
for commands, variables, and error messages.
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To view a man page in the man page viewer,

1. Choose Help > Man Pages.

2. Click the category link for the type of man page you want to view: Commands, Variables, 
or Messages.

3. Click the title link for the man page you want to view.

Menus

The menu bar provides menus with the commands you need to use the GUI. Choose 
commands on the Test menu to view design violations and to open the violation browser.

Checking Scan Test Design Rules

Check the current design for DRC violations in your scan test implementation before you 
perform other DFT Compiler operations such as inserting scan cells. You can use the 
violation browser and the violation inspector to examine and debug any DRC violations that 
you find.

To view DRC violations,

• Choose Test > Run DFT DRC.

DFT Compiler checks the design for DRC violations and displays messages in the console 
log view. If violations exist, Design Vision automatically opens a new Design Vision window 
and displays the violation messages in the violation browser.

Examining DRC Violations

You can use the DRC violation browser to search for and view information about DRC 
violations in the current design.

To open the violation browser and view violations,

• Choose Test > Browse Violations

The violation browser view window appears in a new Design Vision window, docked to the 
left side of the window.

See Also

• “Viewing Design Violations” on page 8-6 for more information about viewing and 
debugging DRC violations in the GUI
Chapter 8: Running the Test DRC Debugger
Exploring the Graphical User Interface 8-5
Chapter 8: Running the Test DRC Debugger
Exploring the Graphical User Interface 8-5



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Viewing Test Protocols

You can view details about the default test protocol and any user-defined test protocols that 
you created for the design.

To view test protocols,

1. Choose Test > Browse Test Modes. The Test Modes Details dialog box appears. 
Alternatively, you can open this dialog box by clicking the Test Modes button in the 
violation inspector.

2. Select a test protocol name in the Test Modes list.

Viewing Design Violations

This topic covers the following:

• Reporting DRC Violations

• Inspecting DRC Violations

Reporting DRC Violations

The violation browser lets you examine detailed information about violations and also 
provides a variety of tools for viewing the different aspects of a violation. The violation 
browser groups the warning and error messages into categories that help you find the 
problems you are concerned about.

To report the DRC violations,

• Choose Test > Browse Violations.

This opens the violation browser view window, as shown in Figure 8-2. 
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Figure 8-2 Violation Browser View Window

The violation browser window consists of two panes: a violation category tree on the left and 
a violation pin list on the right. The Violation Categories pane lists different categories of 
violations, for example, Modeling and Pre-DFT.

To see the violations:

1. Click the expansion button (plus sign) of the violation category to display the violations of 
that group.

The expanded view displays the types and number of violations.

2. Select a DRC violation type in the left pane.

A list of violating pins appears in the right pane.

3. (Optional) To filter the violating pins list, enter pin names or name patterns in the Include 
box, the Exclude box, or both, and click Apply.

❍ To show only violating pins that match the names or name patterns, enter them in the 
Include box.

❍ To suppress violating pins that match the names or name patterns, enter them in the 
Exclude box.

You can use the ? and * wildcard characters to create name patterns. Separate multiple 
names or name patterns with blank spaces.
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For example,

• Expand the Pre-DFT category view.

• Select violation D1.

The resulting D1 violations are shown in the right-side pane.

• Click a specific violation pin or violation ID, and the corresponding description is 
displayed in the description pane.

• Click the Inspect Violation button to view the violation schematic. For more details, see 
“Inspecting DRC Violations” on page 8-8.

(Optional) To view the man page of a violation, click the Help button.

Inspecting DRC Violations

You can analyze and debug DRC violations by using the violation inspector window. You can 
inspect multiple violations of the same type together. Use the schematic view to inspect the 
logic structure of the DRC violation, including pin data. You can also display waveforms for 
test_setup pin data.

This topic covers the following:

• Viewing a Violation

• Viewing Multiple Violations Together

• Viewing CTL Model Scan Chain Information

• Viewing test_setup Pin Data Waveforms

Viewing a Violation

When you select a violation in the violation browser, the corresponding path schematic is 
displayed in the violation inspector so that you can investigate the violations. A path 
schematic can contain cells, pins, ports, and nets. 

To open the violation schematic, 

• Click the Inspect Violation tab at the bottom of the console.

This opens the violation inspector window, as shown in Figure 8-3. 

This window displays the path schematic for visually examining any violations and the 
violation source. A path schematic provides contextual information and details about the 
path and its components. Red-colored cells indicate pins with violations.
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Figure 8-3 Violation Inspector: Viewing a Violation

• (Optional) Select the data type name in the “Pin data type” menu to display a different pin 
data type. 

• Display object information in an InfoTip by moving the pointer over a pin, cell, net, or 
other type of object.

• Pin information includes the cell name, pin direction, and simulation values.

• Cell information includes the cell name and the names and directions of the attached 
pins.

• Net information includes the net name, local fanout value, and fanout value.

• If you define a DFT signal with the set_dft_signal command, the signal source is 
highlighted with a hatched fill pattern, as shown in Figure 8-4.

Pin data 
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Figure 8-4 Highlighted DFT Signal Sources 

Viewing Multiple Violations Together

To view the path schematics for multiple violations,

1. Shift-click to select multiple violation IDs in the violation browser.

2. Click the Inspect Violation button at the bottom of the window.

The schematics of the selected violations are displayed in the schematic viewer of the 
violation inspector.

Figure 8-5 shows the selection of multiple violations.
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Figure 8-5 Viewing Multiple Violations

Viewing CTL Model Scan Chain Information

A CTL model provides information about scan cells and the test modes in which they are 
active. It also describes characteristics of each scan chain, such as the chain length and the 
scan-in, scan-out, scan clock, and scan-enable pins.

If your design contains CTL-modeled cells, the violation schematic displays them as black 
boxes with a hatched fill pattern to distinguish them from other cells.

When you click on a scan-in or scan-out pin of a CTL-modeled cell, the tool displays an 
abstract representation of that scan chain with following information, as shown in Figure 8-6:

• Scan input

• Scan output

• Scan enable

• Scan clock
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the violations
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Inspect Violation 
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Figure 8-6 Displaying CTL Model Scan Chain Information

Clicking on scan clock or scan-enable pins of a CTL-modeled cell does not display any scan 
chain information.

Viewing test_setup Pin Data Waveforms

In the Violation Inspector window, the “Pin data type” menu lets you choose what data to 
annotate on pins in the design schematic. Most pin data types are one or three characters 
(test cycles) long. However, pin data from the test_setup procedure is arbitrarily long and 
cannot be annotated on the schematic.

When you select “Test setup” in the “Pin data type” list, a waveform viewer appears that 
displays pin data waveforms for one or more pins. You can add, remove, and group pins 
together. The waveform viewer is integrated with the schematic display, so you can explore 
the logic cone and add additional pins of interest as needed.

To display test_setup waveforms for pins,

1. Select one or more pin names in the violation browser.

2. Click the Inspect Violation button.

3. Select “Test setup” in the “Pin data type” list.

The waveform view appears below the schematic view in the violation inspector window, 
as shown in Figure 8-7. You can adjust the relative heights of these views by dragging 
the split bar up or down.

The waveform view consists of two panes: an expandable signal list on the left and the 
waveform viewer on the right. You can adjust the relative widths of the panes by dragging 
the split bars left or right.
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Scan 
clock 
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4. Select one or more objects (pins, cells, nets, or buses) for the signals that you want to 
inspect.

5. Click the “Add to Wave View” button.

The signal names and values appear in the signal list, and a waveform for each signal 
appears in the waveform viewer.

Figure 8-7 Waveform Viewer

To change the visible time range,

• Drag the pointer left or right over the portion of the global time range that you want to 
view.

You can use the reference and target markers, C1 and C2, to measure the time between 
events. C1 marks the current event and C2 marks the event you want to measure. The 
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number of events or time units between the markers appears in the marker region above the 
upper timescale.

• To move C1, left-click or drag the pointer in the marker region.

• To move C2, middle-click or drag the pointer with the middle mouse button in the marker 
region.

You can move or copy signals into a group or from one group to another. You can also 
remove selected signals or clear the waveform view.

To move signals into a group or from one group to another,

1. Select the signal names in the signal list pane.

2. Drag the selected signals over the group name.

To copy signals into a group or from one group to another,

1. Select the signal names in the signal list pane.

2. Shift-drag the selected signals over the group name.

To remove signals from the waveform view,

1. Select the signal names in the signal list pane.

2. Click the Selected button.

To clear the waveform view, click the All button.

Commands Specific to the DFT Tools in the GUI

Detailed descriptions of the DFT-specific commands and options in the GUI are listed in this 
topic.

gui_inspect_violations

The gui_inspect_violations command brings up the specified DFT DRC violations in a 
new violation inspector window unless a violation inspector window has been marked for 
reuse. If no violation inspector window exists, a new violation inspector window is created as 
a new top-level window. Subsequent windows are created in the active top-level window. 
The new violation inspector window that is created is not marked reusable.

The syntax for this command is

gui_inspect_violations -type violation_type violation_list
Chapter 8: Running the Test DRC Debugger
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To inspect multiple violations (5, 9,13) of type D1, for example, use the following syntax:

gui_inspect_violations -type D1 {5 9 13}

To inspect a single violation 4 of type D2, for example, use the following syntax:

gui_inspect_violations -type D2 4

or

gui_inspect_violations D2-4

gui_wave_add_signal

The gui_wave_add_signal command adds specified objects to the waveform view of a 
specified violation inspector window. If you specify a cell, a group is created in the waveform 
view and all the pins of the cell are added to this group as a list of signals. For a bus, all nets 
are added. The objects that are added will be selected.

The syntax of the command is

gui_wave_add_signal
     [-window inspector_window]
     [-clct list]

To add a port object i_rd, for example, use the following syntax:

# This command adds the port object to the first violation in
# the inspector window with a waveform view
gui_wave_add_signal i_rd

To add selected objects, use the following syntax:

# Adds selected objects to the waveform view of the violation inspector
# named ViolationInspector.3
gui_wave_add_signal -window ViolationInspector.3 -clct [get_selection]

gui_violation_schematic_add_objects

The gui_violation_schematic_add_objects command adds specified objects to the 
schematic view of a specified violation inspector window and selects them.
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The syntax of this command is

gui_violation_schematic_add_objects
     [-window inspector_window]
     [-clct list]

Table 8-1 gui_violation_schematic_add_objects Command Syntax 

Options Descriptions

-window 
inspector_window

Specifies a signal to be added to the specified violation 
inspector window.

If inspector_window is not a valid violation in the inspector 
window, an error message displays and the command exits.

If no -window option is specified, the signal is added to the 
waveform viewer of the first launched violation inspector.

-clct list Specifies that  list is to be considered as a collection of object 
handles. 

In the absence of the -clct option, list is considered as a 
collection of object names. 
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Performing Scan Replacement 9

This chapter describes the scan replacement process, including constraint-optimized scan 
insertion.

The scan replacement process inserts scan cells into your design by replacing nonscan 
sequential cells with their scan equivalents. If you start with an HDL description of your 
design, scan replacement occurs during the initial mapping of your design to gates. You can 
also start with a gate-level netlist; in this case, scan replacement occurs as an independent 
process.

With either approach, scan synthesis considers the design constraints and the impact of 
both the scan cells themselves and the additional loading due to scan chain routing to 
minimize the overhead of the scan structures on the design.

This chapter includes the following topics:

• Scan Replacement Flow

• Preparing for Scan Replacement

• Specifying a Scan Style

• Verifying Scan Equivalents in the Logic Library

• Scan Cell Replacement Strategies

• Test-Ready Compilation
9-1
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• Validating Your Netlist

• Performing Constraint-Optimized Scan Insertion
Chapter 9: Performing Scan Replacement
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Scan Replacement Flow

Figure 9-1 shows the flow for the scan replacement process. This flow assumes that you are 
starting with an HDL description of the design. If you are starting with a gate-level netlist, you 
must use constraint-optimized scan insertion. (See “Preparing for Constraint-Optimized 
Scan Insertion” on page 9-35).

Figure 9-1 Synthesis and Scan Replacement Flow
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The following steps explain the scan replacement process:

1. Select a scan style.

DFT Compiler requires a scan style to perform scan synthesis. The scan style dictates 
the appropriate scan cells to insert during optimization. You must select a single scan 
style and use this style on all the modules of your design.

2. Check test design rules of the HDL-level design description.

3. Synthesize your design.

Test-ready compile maps all sequential cells directly to scan cells. During optimization, 
DFT Compiler considers the design constraints and the impact of both the scan cells 
themselves and the additional loading due to scan chain routing to minimize the 
overhead of the scan structures on the design.

Preparing for Scan Replacement

This topic discusses what to consider before starting the scan replacement process, and it 
covers the following:

• Selecting a Scan Replacement Strategy

• Identifying Barriers to Scan Replacement

• Preventing Scan Replacement

Selecting a Scan Replacement Strategy

You should select the scan replacement strategy based on the status of your design. If you 
have an optimized gate-level design and will not be using the compile command to perform 
further optimization, you should use constraint-optimized scan insertion. In all other cases, 
you should use test-ready compile to insert the scan cells.

Figure 9-2 shows how to determine the appropriate scan replacement strategy.
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Figure 9-2 Selecting a Scan Replacement Strategy

Test-ready compile offers the following advantages:

• Single-pass synthesis

With test-ready compile, the Synopsys tools converge on true one-pass scan synthesis. 
As a practical matter, design constraints usually result in some cleanup and additional 
optimization after compile, but test-ready compile is more straightforward compared with 
other methods.

• Better quality of results

Test-ready compile offers better quality of results (QoR) compared with past methods. 
Including scan cells at the time of first optimization results in fewer design rule violations 
and other constraint violations due to scan circuitry. 

• Simpler overall flow

Test-ready compile requires fewer optimization iterations compared with previous 
methods. 

See Also

• “Test-Ready Compilation” on page 9-24 for more information about test-ready 
compilation

• “Performing Constraint-Optimized Scan Insertion” on page 9-32 for more information 
about constraint-optimized scan insertion

Optimized
gate-level
design?

Yes

No

Use
constraint-optimized

scan insertion

Use
test-ready compile
Chapter 9: Performing Scan Replacement
Preparing for Scan Replacement 9-5
Chapter 9: Performing Scan Replacement
Preparing for Scan Replacement 9-5



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Identifying Barriers to Scan Replacement

You should perform pre-DFT DRC by running the dft_drc command to identify conditions 
that prevent scan replacement. The following topics cover DRC violations that prevent scan 
replacement:

• Logic Library Does Not Contain Appropriate Scan Cells

• Support for Different Types of Sequential Cells and Violations

• Attributes That Can Prevent Scan Replacement

• Invalid Clock Nets

• Invalid Asynchronous Pins

See Also

• Chapter 14, “Pre-DFT Test Design Rule Checking” for more information about checking 
for test design rule violations prior to DFT insertion

Logic Library Does Not Contain Appropriate Scan Cells

If a scan equivalent does not exist for a sequential cell, scan replacement cannot occur for 
that cell. DFT Compiler generates the following warning message when a scan equivalent 
does not exist for a sequential cell:

Warning: No scan equivalent exists for cell %s (%s). (TEST-120)

This warning message can occur when

• The logic library does not contain scan cells.

• The logic library contains scan cells, but it does not provide a scan equivalent for the 
indicated nonscan cell.

• The logic library contains scan cells, but it incorrectly models the scan equivalent for the 
nonscan cell.

• The logic library contains scan cells, but all possible scan equivalents have the dont_use 
attribute applied.

If DFT Compiler cannot find scan equivalents for any sequential cell in the logic library, it 
generates the following warning message:

Warning: Target library for design contains no scan-cell models.
(TEST-224)

If you see this warning, check with your library vendor to see if the vendor provides a logic 
library that supports scan synthesis.
Chapter 9: Performing Scan Replacement
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If DFT Compiler finds a scan cell in the logic library that is not the obvious replacement cell 
you expect, the reason could be that

• The chosen scan equivalent results in a lower-cost implementation overall.

• The exact scan equivalent does not exist in the logic library or it has the dont_use 
attribute applied.

• The logic library has a problem. In that case, contact the library vendor for more 
information.

Support for Different Types of Sequential Cells and Violations

DFT Compiler supports sequential cells that have the following characteristics:

• During functional operation, the cell functions as a D flip-flop, a D latch, or a master-slave 
latch.

• During scan operation, the cell functions as a D flip-flop or a master-slave latch.

• The cell stores a single bit of data.

Edge-triggered cells that violate this requirement cause DFT Compiler to generate the 
following warning message:

Warning: Cell %s (%s) is not supported because it has
too many states (%d states). This cell is being
black-boxed. (TEST-462)

Master-slave latch pairs with extra states cause DFT Compiler to generate one of these 
warning messages, depending on the situation:

Warning: Master-slave cell %s (%s) is not supported
because state pin %s is neither master nor slave. This
cell is being black-boxed. (TEST-463)

Warning: Master-slave cell %s (%s) is not supported
because there are two or more master states. This cell
is being black-boxed. (TEST-464)

Warning: Master-slave cell %s (%s) is not supported
because there are two or more slave states. This cell
is being black-boxed. (TEST-465)

• The cell has a three-state output.

Cells that violate this requirement cause DFT Compiler to generate this warning 
message:

Warning: Cell %s (%s) is not supported because it is a
sequential cell with three-state outputs. This cell is
being black-boxed. (TEST-468)
Chapter 9: Performing Scan Replacement
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• The cell uses a single clock per internal state.

Cells that violate this requirement cause DFT Compiler to generate one of these warning 
messages:

Warning: Cell %s (%s) is not supported because state
pin %s has no clocks. This cell is being black-boxed. (TEST-466)

Warning: Cell %s (%s) is not supported because state
pin %s is multi-port. This cell is being black-boxed. (TEST-467)

Note that the cell might use different clocks for functional and test operations.

Note:   
Your design will contain unsupported sequential cells only if you explicitly instantiate 
them. DFT Compiler does not insert unsupported sequential cells.

Attributes That Can Prevent Scan Replacement

The following attributes affect scan replacement:

• scan_element == false

The scan_element attribute is applied by the set_scan_element command. When set 
to false, it excludes sequential cells from scan replacement and scan stitching. The 
behavior depends on the type of cell the attribute is applied to:

❍ If the scan_element attribute is set to false on an unmapped sequential cell or a 
nonscan cell, the cell is never scan-replaced or scan-stitched.

❍ If the scan_element attribute is set to false on a test-ready cell,

■ Subsequent test-ready compile commands do not unscan it.

■ In wire load mode, the insert_dft command unscans it (unless the 
set_dft_insertion_configuration -synthesis_optimization option is set 
to none) and does not stitch it into scan chains.

■ In topographical mode, the insert_dft command keeps the cell scan-replaced 
(to minimize layout disturbance) but does not stitch it into scan chains.

• dont_touch == true

The dont_touch attribute is applied by the set_dont_touch command. When set to 
true, it prevents the cell type from being changed, which indirectly affects scan 
replacement. The behavior depends on the type of cell the attribute is applied to:

❍ Test-ready cell: If the dont_touch attribute is set to true on a test-ready cell, the cell 
is kept as a scan-replaced cell. If the cell is a valid scan cell, it is stitched into scan 
chains. If not, due to other directives such as set_scan_element false, it remains 
as an unstitched test-ready cell.
Chapter 9: Performing Scan Replacement
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❍ Nonscan cell: If the dont_touch attribute is set to true on a nonscan cell, the cell is 
kept as a nonscan cell. It is not scan-replaced or stitched into scan chains. Pre-DFT 
DRC notes such cells with the following information message:

Information: Cell %s (%s) could not be made scannable as
it is dont_touched. (TEST-121)

Nonscan cells identified as shift register elements can be stitched into scan chains.

❍ Unmapped sequential cell: If the dont_touch attribute is set to true on an unmapped 
sequential cell before the initial compile, the attribute prevents the cell from being 
mapped. As a result, DFT insertion fails with the following error message:

Error: DFT insertion isn't supported on designs with unmapped cells.
(TEST-269)

The dont_touch attribute is ignored when an identified shift register is split by the scan 
architect; the head scan flip-flops of any new shift register segments are scan-replaced 
even if they have the dont_touch attribute applied.

A dont_touch attribute on the top-level design does not affect scan replacement of the 
design.

Note:   
Although the -exclude_elements option of the set_scan_configuration excludes 
cells from scan stitching, it does not prevent scan replacement, and it does not cause 
excluded test-ready cells to be unscanned. To prevent cells from being scan-replaced, 
use the set_scan_element false command.

Nonscan sequential cells generally reduce the fault coverage results for full-scan designs. If 
you do not want to exclude affected cells from scan replacement, remove the script 
commands that apply the attributes, then rerun the script.

Invalid Clock Nets

The term system clock refers to a clock used in the parallel capture cycle. The term test 
clock refers to a clock used during scan shift. Multiplexed flip-flop designs use the same 
clock as both the system clock and the test clock.

In a nonscan design, an invalid clock net, whether a system clock or a test clock, prevents 
scan replacement of all sequential cells driven by that clock net.

The requirements for valid clocks in DFT Compiler include the following:

• A system or test clock used during scan testing must be driven from a single top-level 
port.

An active clock edge at a sequential cell must be the result of a clock pulse applied at a 
top-level port, not the result of combinational logic driving the clock net.
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• A system or test clock used during scan testing can be driven from a bidirectional port.

DFT Compiler supports the use of bidirectional ports as clock ports if the bidirectional 
ports are designed as input ports during chip test. If a bidirectional port drives a clock net 
but the port is not designed as an input port during chip test mode, DFT Compiler forces 
the net to X and cells clocked by the net to become black-box sequential cells.

• A system or test clock used during scan testing must be generated in a single tester 
cycle.

The clock pulse applied at the clock port must reach the sequential cells in the same 
tester cycle. DFT Compiler does not support sequential gating of clocks, such as clock 
divider circuitry.

• A system or a test clock used during scan testing cannot be the result of multiple clock 
inputs.

DFT Compiler does not support the use of combinationally combined clock signals, even 
if the same port drives the signal. 

Note:   
If the same port drives the combinationally combined clock signal, as shown in the 
design on the left in Figure 9-3 or the design in Figure 9-4, DFT Compiler does not 
detect the problem in nonscan or unrouted scan designs.

Figure 9-3 shows design examples that use combinationally combined clocks. When 
multiple clock signals drive a clock net, DFT Compiler forces the net to X and cells 
clocked by the net become black-box sequential cells.

Figure 9-3 Examples of Combinationally Combined Clock Nets

DFT Compiler supports the use of reconvergent clocks, such as clocks driven by parallel 
clock buffers. Figure 9-4 shows a design example that uses a reconvergent clock net.
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Figure 9-4 Example of a Reconvergent Clock Net

• A test clock must remain active throughout the scan shift process.

To load the scan chain reliably, make sure the test clock remains active until scan shift 
completes. For combinationally gated clocks, you must configure the design to disable 
the clock gating during scan shift. 

DFT Compiler supports combinational clock gating during the parallel capture cycle.

Test design rule checking on a nonscan design might not detect invalid clock nets. DFT 
Compiler identifies all invalid clock nets only in existing scan designs.

DFT Compiler cannot control the clock net when

• A sequential cell drives the clock net

• A multiplexer with an unspecified select line drives the net of a test clock

• Combinational clock-gating logic can generate an active edge on the clock net

DFT Compiler generates this warning message when it detects an uncontrollable clock:

Warning: Normal mode clock pin %s of cell %s (%s) is
uncontrollable. (TEST-169)

Because uncontrollable clock nets prevent scan replacement, you should correct 
uncontrollable clocks. Sequentially driven clocks require test-mode logic to bypass the 
violation. You can bypass violations caused by other sources of uncontrollable clocks by 
using test configuration or test-mode logic.

DFT Compiler can control a combinationally gated test clock that cannot generate an active 
clock edge. However, DFT Compiler considers this type of clock invalid, because the clock 
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might not remain active throughout scan shift. In this case, DFT Compiler generates this 
warning message:

Warning: Shift clock pin %s of cell %s (%s) is illegally
gated. (TEST-186)

Because invalid gated-clock nets prevent scan replacement, you should correct invalid 
gated clocks. You can use AutoFix to bypass invalid gated clocks when using the 
multiplexed flip-flop scan style. You might also be able to change the test configuration to 
bypass the violation.

See Also

• “Using AutoFix” on page 11-40 for more information about fixing uncontrollable clocks 
with AutoFix

Invalid Asynchronous Pins

DFT Compiler considers a net that drives an asynchronous pin as valid if it can disable the 
net from an input port or from a combination of input ports. DFT Compiler cannot control an 
asynchronous pin driven by ungated sequential logic.

In a nonscan design, a net with an uncontrollable asynchronous pin prevents scan 
replacement of all sequential cells connected to that net.

DFT Compiler generates this warning message when it detects an uncontrollable 
asynchronous pin:

Warning: Asynchronous pins of cell FF_A (FD2) are uncontrollable.
(TEST-116)

Because nets with an uncontrollable asynchronous pin prevent scan replacement, you 
should correct uncontrollable nets. Use AutoFix if you are using the multiplexed flip-flop 
scan style, test configuration, or test-mode logic to bypass uncontrollable asynchronous pin 
violations.

Preventing Scan Replacement

You can use the following attributes to prevent scan replacement during test-ready compile 
and DFT insertion:

• scan_element == false

• dont_touch == true
Chapter 9: Performing Scan Replacement
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Setting the scan_element attribute to false prevents a cell from being scan-replaced and 
scan stitched. Setting the dont_touch attribute to true on a nonscan cell prevents it from 
being scan replaced and scan stitched.

See Also

• “Attributes That Can Prevent Scan Replacement” on page 9-8 for more information 
about synthesis and test attributes that can affect scan replacement

Specifying a Scan Style

This topic explains the process for selecting and specifying a scan style for your design. It 
covers the following:

• Types of Scan Styles

• Scan Style Considerations

• Setting the Scan Style

Types of Scan Styles

DFT Compiler supports the scan styles listed in the following topics:

• Multiplexed Flip-Flop Scan Style

• Clocked Scan Style

• LSSD Scan Style

• Scan-Enabled LSSD Scan Style

Note:   
The LSSD scan style includes the LSSD and clocked LSSD scan styles.

This topic briefly describes each scan style.

See Also

• Chapter 4, “Scan Styles” for more information about scan styles
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Multiplexed Flip-Flop Scan Style

DFT Compiler supports multiplexed flip-flop scan equivalents for D flip-flops and 
master-slave flip-flops. The multiplexed flip-flop scan equivalents for all flip-flop styles must 
be fully functionally modeled in the logic library. This scan style has the following 
advantages:

• Multiplexed flip-flop is the most widely known and understood scan style.

• Multiplexed flip-flop scan cells are easy to design and characterize, as they consist of a 
conventional flip-flop plus a data selection MUX.

The multiplexed flip-flop scan style has the disadvantage that hold time or clock skew 
problems can occur on the scan path because of a short path from a scan cell’s scan output 
pin to the next scan cell’s scan input pin. DFT Compiler can reduce the occurrence of these 
problems by considering hold time violations during optimization.

Clocked Scan Style

DFT Compiler supports clocked-scan equivalents for D flip-flops and latches. The 
clocked-scan style is well suited for use in multiple-clock designs because of the dedicated 
test clock.

The clocked-scan style also has some disadvantages:

• Hold time or clock skew problems can occur on the scan path because the path from a 
scan cell’s scan output pin to the next scan cell’s scan input pin is too short. DFT 
Compiler can reduce the occurrence of these problems by considering hold time 
violations during optimization.

• This scan style requires the routing of two edge-triggered clocks. Routing clock lines is 
difficult because you must carefully control the clock skew.

LSSD Scan Style

DFT Compiler supports level-sensitive scan design (LSSD) equivalents for D flip-flops, 
master-slave flip-flops, and D latches. Timing problems on the scan path are unlikely in 
LSSD designs because of the use of nonoverlapping two-phase clocks during the scan 
operation.

The LSSD scan style also has some disadvantages:

• This scan style requires a greater wiring area than the multiplexed flip-flop or 
clocked-scan styles.

• DFT Compiler does not support the scan replacement of more complex LSSD cells, such 
as multiple data port master latches.
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When you use the LSSD scan style, define the clock waveforms so that the master and 
slave clocks have nonoverlapping waveforms because master and slave latches should 
never be active simultaneously.

Scan-Enabled LSSD Scan Style

DFT Compiler supports scan-enabled level-sensitive scan design (LSSD) equivalents for D 
flip-flops. This scan style is similar to the LSSD scan style, except that a global scan-enable 
signal is used to repurpose the functional clock as the slave test clock in test mode. Timing 
problems on the scan path are unlikely in LSSD designs because of the use of 
nonoverlapping two-phase clocks during the scan operation.

The scan-enabled LSSD scan style also has some disadvantages:

• This scan style requires a greater wiring area than the multiplexed flip-flop or 
clocked-scan styles.

• DFT Compiler only supports the scan replacement of flip-flops.

When you use the scan-enabled LSSD scan style, define the clock waveforms so that the 
master and slave clocks have nonoverlapping waveforms because master and slave latches 
should never be active simultaneously.

Scan Style Considerations

You must select a single scan style and use this style for all modules of your design. 
Consider the following questions when selecting a scan style:

• Which scan styles are supported in your logic library?

To make it possible to implement internal scan structures in the scan style you select, 
appropriate scan cells must be present in the logic libraries specified in the 
target_library variable. 

Use of sequential cells that do not have a scan equivalent always results in a loss of fault 
coverage in full-scan designs. Techniques to verify scan equivalents are discussed in 
“Verifying Scan Equivalents in the Logic Library” on page 9-17.

• What is your design style?

If your design is predominantly edge-triggered, use the multiplexed flip-flop, clocked 
scan, clocked LSSD, or scan-enabled LSSD scan style.

If your design has a mix of latches and flip-flops, use the clocked scan or LSSD scan 
style.

If your design is predominantly level-sensitive, use the LSSD scan style.
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• How complete are the models in your logic library?

The quality and accuracy of the scan and nonscan sequential cell models in the 
Synopsys logic library affect the behavior of DFT Compiler. Incorrect or incomplete 
library models can cause incorrect results during test design rule checking.

DFT Compiler requires a complete functional model of a scan cell to perform test design 
rule checking. The Library Compiler UNIGEN model supports complete functional 
modeling of all supported scan cells. However, the usual Library Compiler sequential 
modeling syntax supports only complete functional modeling for multiplexed flip-flop 
scan cells.

When the logic library does not provide a functional model for a scan cell, the cell is a 
black box for DFT Compiler.

For information on the scan cells in the logic library you are using, see your ASIC vendor. 
For information on creating logic library elements or to learn more about modeling scan 
cells, see the information about defining test cells in the Library Compiler documentation. 

Setting the Scan Style

DFT Compiler uses the selected scan style to perform scan synthesis. A scan style dictates 
the appropriate scan cells to insert during optimization. This scan style is used on all 
modules of your design.

There are four types of scan styles available in DFT Compiler, shown in Table 9-1.

The default style is multiplexed flip-flop. To specify another scan style, use the -style 
option of the set_scan_configuration command. For example,

dc_shell> set_scan_configuration -style clocked_scan

Table 9-1 Scan Style Keywords 

Scan style Keyword

Multiplexed flip-flop multiplexed_flip_flop

Clocked scan clocked_scan

Level-sensitive scan design lssd

Scan-enabled level-sensitive scan design scan_enabled_lssd
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Verifying Scan Equivalents in the Logic Library

Before starting scan synthesis, you need to confirm that your logic library contains scan cells 
and then verify that the scan cells are suitable for the selected scan style.

This topic covers the following:

• Checking the Logic Library for Scan Cells

• Checking for Scan Equivalents

Checking the Logic Library for Scan Cells

You can determine whether the logic library contains scan cells by using either of the 
following methods:

• Search the library .ddc file.

Every scan cell, regardless of the scan style, must have a scan input pin and a scan 
output pin. You can determine whether the logic library contains scan cells by using the 
filter command to search for scan input or scan output pins. 

Depending on its polarity, a scan input pin can have a signal_type attribute of either 
test_scan_in or test_scan_in_inverted in the logic library. A scan output pin can 
have a signal_type attribute of either test_scan_out or test_scan_out_inverted in 
the logic library, depending on its polarity.

The following command sequence shows the use of the filter command:

dc_shell> read_ddc class.ddc

dc_shell> get_pins class/*/* -filter "@signal_type = test_scan_in"

If the library contains scan cells, the filter command returns a list of pins; if the library 
does not contain scan cells, the filter command returns an empty list.

• Check the test design rules.

As one of the first checks it performs, the dft_drc command determines the presence 
of scan cells in the logic library. If the logic libraries identified in the target_library 
variable do not contain scan cells, the dft_drc command generates the following 
warning message:

Warning: Target library for design contains no scan-cell models.
(TEST-224)

You must a design loaded and linked before you run the dft_drc command.
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If your logic library does not contain scan cells, check with your semiconductor vendor to see 
if the vendor provides a logic library that supports test synthesis.

Checking for Scan Equivalents

To verify that the logic library contains scan equivalents for the sequential cells in your 
design, run the dft_drc command on your design or on a design containing the sequential 
cells likely to be used in your design.

If the logic library does not contain a scan equivalent for a sequential cell in a nonscan 
design or the scan equivalent has the dont_use attribute applied, the dft_drc command 
generates the following warning message:

Warning: No scan equivalent exists for cell instance (reference).
(TEST-120)

In verbose mode (dft_drc -verbose), the TEST-120 message lists all scan equivalent 
pairs available in the target library in the selected scan style. If the target library contains no 
scan equivalents in the chosen scan style, no scan equivalents are listed. 

Suppose you have a design containing D flip-flops but the target logic library contains scan 
equivalents only for JK flip-flops. Example 9-1 shows the warning message issued by the 
dft_drc command, along with the scan equivalent mappings to the available scan cells.

Example 9-1 Scan Equivalent Listing

Warning: No scan equivalent exists for cell q_reg (FD1P). (TEST-120)

Scan equivalent mappings for target library are:

        FJK3      -> FJK3S 
        FJK2      -> FJK2S 
        FJK1      -> FJK1S 

Scan Cell Replacement Strategies

This topic describes how to select the set of scan cells and multibit components to use in 
your scan replacement strategy. It covers the following:

• Specifying Scan Cells

• Multibit Components
Chapter 9: Performing Scan Replacement
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Specifying Scan Cells

Before you perform scan cell replacement, you need to specify the set of scan cells to be 
used by DFT Compiler. This topic covers the following:

• Restricting the List of Available Scan Cells

• Scan Cell Replacement Strategies

• Mapping Sequential Gates in Scan Replacement

Restricting the List of Available Scan Cells

The set_scan_register_type command lets you specify which flip-flop scan cells are to 
be used by compile -scan to replace nonscan cells. The command restricts the choices of 
scan cells available for scan replacement. You can apply this restriction to the current 
design, to particular designs, or to particular cell instances in the design. 

Note:   
The set_scan_register_type command applies to the operation of both the compile 
-scan command and the insert_dft command.

The set_scan_register_type command has the following syntax: 

    set_scan_register_type [-exact] 
        -type scan_flip_flop_list [cell_or_design_list]

The scan_flip_flop_list value is the list of scan cells that the compile -scan command 
is allowed to use for scan replacement. There must be at least one such cell named in the 
command. Specify each scan cell by its cell name alone, without the library name. 

The cell_or_design_list value is a list of designs or cell instances where the restriction 
on scan cell selection is to be applied. In the absence of such a list, the restriction applies to 
the current design, set by the current_design command, and to all lower-level designs in 
the design hierarchy. 

The -exact option determines whether the restriction on scan cell selection also applies to 
back-end delay and area optimization done by the insert_dft command or by subsequent 
synthesis operations such as the compile -incremental command. If the -exact option 
is used, the restriction still applies to back-end optimization. In other words, scan cells can 
be replaced only by other scan cells in the specified list. If the -exact option is not used, the 
optimization algorithm is free to use any scan cell in the target library. 

Scan Cell Replacement Strategies

Here are some examples of set_scan_register_type commands:

dc_shell> set_scan_register_type -exact -type FD1S
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This command causes the compile -scan command to use only FD1S scan cells to replace 
nonscan cells in the current design. Because of the -exact option, this restriction applies to 
both initial scan replacement and subsequent optimization. 

dc_shell> set_scan_register_type -exact \
               -type {FD1S FD2S} {add2 U1}

This command causes compile -scan to use only FD1S or FD2S scan cells to replace each 
nonscan cell in all designs and cell instances named add2 or U1. In all other designs and 
cell instances, compile -scan can use any scan cells available in the target library. The 
-exact option forces any back-end delay optimization to respect the scan cell list, thus 
allowing only FD1S and FD2S to be used. 

dc_shell> set_scan_register_type \
               -type {FD1S FD2S} {add2 U1}

This command is the same as the one in the previous example, except that the -exact 
option is not used. This means that the back-end optimization algorithm is free to replace the 
FD1S and FD2S cells with any compatible scan cells in the target library. 

If you use the set_scan_register_type command on generic cell instances, be sure to 
use the -scan option with the compile command. Otherwise, the scan specification will be 
lost.

To report scan paths, scan chains, and scan cells in the design, use the report_scan_path 
command, as shown in the following examples:

dc_shell> report_scan_path -view existing_dft \
               -chain all

dc_shell> report_scan_path -view existing_dft -cell all

To cancel all set_scan_register_type settings currently in effect, execute the following 
command: 

dc_shell> remove_scan_register_type

Mapping Sequential Gates in Scan Replacement

To use the set_scan_register_type command effectively, understanding the scan 
replacement process is important. 

The compile -scan command maps sequential gates into scan flip-flops and latches, using 
three steps:

1. The compile -scan command maps each sequential gate in the generic design 
description into an initial nonscan latch or flip-flop from the target library. In the absence 
of any set_scan_register_type specification, compile -scan chooses the smallest 
area-cost flip-flop or latch. For a design or cell instance that has a 
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set_scan_register_type setting in effect, compile -scan chooses the nonscan 
equivalent of a scan cell in the scan_flip_flop_list. 

2. The compile -scan command replaces the nonscan flip-flops with scan flip-flops, using 
only the scan cells specified in the set_scan_register_type command, where 
applicable. If compile -scan is unable to use a scan cell from the 
scan_flip_flop_list, it uses the best matching scan cell from the target library and 
issues a warning. 

3. If the -exact option is not used in the set_scan_register_type command, the Design 
Compiler and DFT Compiler tools attempt to remap each scan flip-flop into another 
component from the target library to optimize the delay or area characteristics of the 
circuit. If the -exact option is used, optimization is restricted to using the scan cells in 
the scan_flip_flop_list.

The operation of step 1 can be controlled by the set_register_type command. The 
set_register_type command specifies a list of allowed cells for implementing functions 
specified in the HDL description of the design, but you need to be careful about using this 
command in conjunction with scan replacement. For example, if you tell the compile 
command to use a sequential cell that has no scan equivalent, DFT Compiler will not be able 
to replace the cell with a corresponding scan cell.

The set_scan_register_type command affects only the replacement of nonscan cells 
with scan cells. It cannot be used to force existing scan cells to be replaced by new scan 
cells. To make this type of design change, you need to go back to the original nonscan 
design and apply a new set_scan_register_type specification, followed by a new 
compile -scan or insert_dft operation.

Multibit Components

Multibit components are supported by DFT Compiler during scan replacement. This topic 
covers the following:

• What Are Multibit Components?

• How DFT Compiler Creates Multibit Components

• Controlling Multibit Test Synthesis

• Performing Multibit Component Scan Replacement

• Disabling Multibit Component Support
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What Are Multibit Components?

A multibit component is a sequence of cells with identical functionality. It can consist of 
single-bit cells or the set of multibit cells supported by Design Compiler synthesis. Cells can 
have identical functionality even if they have different bit-widths. Multibit synthesis ensures 
regularity and predictability of layout.

HDL Compiler infers multibit components through HDL directives. Specify multibit 
components by using the Design Compiler create_multibit command and 
remove_multibit command. Control multibit synthesis by using the 
set_multibit_options command. For further information, see the Design Compiler User 
Guide. 

When you create a new multibit component with the create_multibit command, choose 
a name that is different from the name of any existing object in your design. This will prevent 
possible conflicts later when you use the set_scan_path command.

See Also

• The HDL Compiler for Verilog User Guide for more information about multibit inference 
from RTL

• The “Multibit Register Synthesis and Physical Implementation Application Note” for 
detailed information on multibit cells and flows across multiple tools

How DFT Compiler Creates Multibit Components

Multibit components have the following properties:

• All the synthesis and optimization that DFT Compiler performs is as prescribed by the 
multibit mode in effect.

• Scan chain allocation and routing result in a layout that is as regular as possible.

To achieve these goals, DFT Compiler groups sequential multibit components into 
synthesizable segments.

A synthesizable segment, an extension of the user segment concept, has the following 
properties: 

• Its implementation is not fixed at the time of specification.

• It consists of a name and a sequence of cells that implicitly determine an internal routing 
order.

• It lacks access pins and possibly internal routing.
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• It does not need to be scan-replaced.

• Test synthesis controls the implementation.

A synthesizable segment that cannot be synthesized into a valid user segment is invalid. 
Only multibit synthesizable segments are supported.

Controlling Multibit Test Synthesis

You control multibit test synthesis through the specification of the scan configuration by 
using the following commands: 

• set_scan_configuration

• reset_scan_configuration

• set_scan_path

• set_scan_element

Commands that accept segment arguments also accept multibit components. You can refer 
by instance name to multibit components from the top-level design through the design 
hierarchy. Commands that accept sets of cells also accept multibit components. When you 
specify a multibit component as being a part of a larger segment, the multibit component is 
included in the larger user-defined segment without modification.

Performing Multibit Component Scan Replacement

Use the compile -scan command or the insert_dft command to perform multibit 
component scan replacement. These commands perform a homogeneous scan 
replacement. Bits of a multibit component are either all scan-replaced or all not 
scan-replaced. Bits are then assembled into multibit cells as specified by the 
set_multibit_options command.

The number of cells after scan replacement can change. For example, a 4-bit cell can be 
scan-replaced by two 2-bit cells. If this occurs, the two 2-bit cells get new names. If the cell 
is scan-replaced with a cell of equal width, a 4-bit cell replaced by a 4-bit cell for example, 
the name of the cell remains the same.

You control the scan replacement of multibit components by using the set_scan_element 
command. 

When specifying individual cells by using either of these commands, do not specify an 
incomplete multibit component unless you previously disabled multibit optimization.
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Disabling Multibit Component Support

You can disable structured logic and multibit component support by doing one of the 
following: 

• Remove some or all of the multibit components by using the remove_multibit 
command.

• Remove a previously defined scan path by using the remove_scan_path command. 

Test-Ready Compilation

Scan cell replacement works most efficiently if it is done when you compile your design. This 
topic describes the following topics related to the test-ready compilation process:

• What Is Test-Ready Compile?

• Preparing for Test-Ready Compile

• Controlling Test-Ready Compile

• Comparing Default Compile and Test-Ready Compile

• Complex Compile Strategies

What Is Test-Ready Compile?

Test-ready compile integrates logic optimization and scan replacement. During the first 
synthesis pass of each HDL design or module, test-ready compile maps all sequential cells 
directly to scan cells. The optimization cost function considers the impact of the scan cells 
themselves and the additional loading due to the scan chain routing. By accounting for the 
timing impact of internal scan design from the start of the synthesis process, test-ready 
compile eliminates the need for an incremental compile after scan insertion. 

During optimization, DFT Compiler cannot determine whether the sequential cells in your 
HDL description meet the test design rules, so it maps all sequential cells to scan cells. Later 
in the scan synthesis process, DFT Compiler can convert some sequential cells back to 
nonscan cells. For example, test design rule checking might find scan cells with test design 
rule violations. In other circumstances, you might manually specify some sequential cells as 
nonscan elements. In such cases, DFT Compiler converts the scan cells to nonscan 
equivalents during execution of the insert_dft command.

Typically, the input to test-ready compile is an HDL design description. You can also perform 
test-ready compile on a nonscan gate-level netlist that requires optimization. For example, 
a gate-level netlist resulting from technology translation usually requires logic optimization 
to meet constraints. In such a case, use test-ready compile to perform scan replacement.
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The Test-Ready Compile Flow

Figure 9-5 shows the test-ready compile flow and the commands required to complete this 
flow.

Figure 9-5 Test-Ready Compile Flow

Before performing test-ready compile:

• Select a scan style

For information about selecting a scan style, see “Specifying a Scan Style” on page 9-13.

• Prepare for logic synthesis

For information about preparing for logic synthesis, see “Preparing for Test-Ready 
Compile” on page 9-26.

Select scan style

(set_scan_configuration -style)

Read design description

(read)

Prepare for synthesis

Perform test-ready compile

(compile -scan)
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The result of test-ready compile is an optimized design that contains unrouted scan cells. 
The optimization performed during test-ready compile accounts for both the impact of the 
scan cells and the additional loading due to the scan chain routing. A design in this state is 
known as an unrouted scan design.

Preparing for Test-Ready Compile

Figure 9-6 shows the synthesis preparation steps. For more information about these steps, 
see the Design Compiler User Guide.

Figure 9-6 Synthesis Preparation Steps
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Performing Test-Ready Compile in the Logic Domain

The compile -scan command invokes test-ready compile. You must enter this command 
from the dc_shell command line; the Design Analyzer menus do not support the -scan 
option.

dc_shell> compile -scan

See Also

• The Design Compiler User Guide for details of how to constrain and compile your design

Controlling Test-Ready Compile

You can use the following variable and commands to control scan implementation by 
compile -scan: 

• set_scan_configuration -style

• set_scan_element element_name true | false

• set_scan_register_type  [-exact] -type scan_flip_flop_list 
[cell_or_design_list]

• set_scan_configuration -preserve_multibit_segment

The set_scan_configuration -style command determines which scan style the 
compile -scan command uses for scan implementation.

You might not want to include a particular element in a scan chain. If this is the case, first 
analyze and elaborate the design. Then, use the set_scan_element false command in 
the generic technology (GTECH) sequential element. Subsequently, when you use the 
compile -scan command, this element is implemented as an ordinary sequential element 
and not as a scan cell. The following example shows a script that uses the 
set_scan_element false command on generics:

analyze -format VHDL -library WORK switch.vhd
elaborate -library WORK -architecture rtl switch
set_scan_element false Q_reg
compile -scan

Note:   
Use the set_scan_element false statement sparingly. For combinational ATPG, using 
nonscan elements generally results in lower fault coverage.

You might want to specify which flip-flop scan cells are to be used for replacing nonscan 
cells in the design. In that case, use the set_scan_register_type command as described 
in “Specifying Scan Cells” on page 9-19.
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Comparing Default Compile and Test-Ready Compile

The following example shows the effect of test-ready compile on a small design. The Verilog 
description shown in Example 9-2 describes a small design containing two flip-flops: one a 
simple D flip-flop and one a flip-flop with a multiplexed data input.

Example 9-2 Verilog Design Example

module example (d1,d2,d3,sel,clk,q1,q2);
input d1,d2,d3,sel,clk;
output q1,q2;
reg q1,q2;
   always @ (posedge clk) begin
      q1 = d1;
      if (sel) begin
         q2=d2;
      end else begin
         q2=d3;
      end
   end
endmodule

The following command sequence performs the default compile process on the Verilog 
design example:

dc_shell> set target_library class.db 
dc_shell> read_file -format verilog example.v 
dc_shell> set_max_area 0 
dc_shell> compile

Example 9-3 shows the VHDL equivalent to the Verilog design example provided in 
Example 9-2.

Example 9-3 VHDL Design Example

--------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
--------------------------------------------------
entity EXAMPLE is
   port( d1:in       STD_LOGIC;
         d2:in       STD_LOGIC;
         d3:in       STD_LOGIC;
         sel:in      STD_LOGIC;
         clk:in      STD_LOGIC;
         q1:out      STD_LOGIC;
         q2:out      STD_LOGIC
   );
end EXAMPLE;
--------------------------------------------------
architecture RTL of EXAMPLE is
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begin
   process
   begin
     wait until (clk'event and clk = '1');
     q1 <= d1;
     if (sel = '1') then
        q2 <= d2;
     else 
        q2 <= d3;
     end if;
   end process;
end RTL;

The following command sequence performs the default compile process on the VHDL 
design example:

dc_shell> set target_library class.db 
dc_shell> analyze -format vhdl \
               -library work example.vhd 
dc_shell> elaborate -library work EXAMPLE
dc_shell> set_max_area 0 
dc_shell> compile

Figure 9-7 shows the result of the default compile process on the design example. Design 
Compiler synthesis uses the D flip-flop (FD1) and the multiplexed flip-flop scan cell (FD1S) 
from the class logic library to implement the specified functional logic.

Figure 9-7 Gate-Level Design: Default Compile

Using default compile increases the scan replacement runtime and can result in sequential 
cells that do not have scan equivalents.

FD1

FD1S

d1

d3
clk

d2
sel

q1

q2
Chapter 9: Performing Scan Replacement
Test-Ready Compilation 9-29
Chapter 9: Performing Scan Replacement
Test-Ready Compilation 9-29



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
To invoke test-ready compile, specify the scan style before optimization and use the -scan 
option of the compile command:

dc_shell> set_scan_configuration -style multiplexed_flip_flop
dc_shell> compile -scan 

Figure 9-8 shows the result of the test-ready compile process on the design example.

Figure 9-8 Gate-Level Design: Test-Ready Compile

During test-ready compile, DFT Compiler

• Implements the scan equivalent cells by using the multiplexed flip-flop scan cell (FD1S) 

• Ties the scan-enable pins (SE) to logic 0 so that the functional data input pins are active

• Ties the inactive scan input pins (SI) to logic 0

During scan routing, DFT Compiler replaces the temporary scan connections with the final 
scan connections.

A scan equivalent might not exist for the exact implementation defined, such as for the 
simple D flip-flop in the previous example. In that case, DFT Compiler might use a scan cell 
that can be logically modified to meet the required implementation. For example, if the target 
library contains a scan cell with asynchronous pins that can be tied off, test-ready compile 
automatically uses that scan cell.

Complex Compile Strategies

For larger designs or for designs with more aggressive timing goals, you might need to use 
more complex compile strategies, such as bottom-up compile, or you might need to use 
incremental compile a number of times. To include test-ready compile in your compile 
scripts, always use the -scan option of the compile command when compiling each current 
design, even if there are no sequential elements in the top level of the current design.
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Example 9-4 illustrates this guideline. It shows you how to perform a bottom-up compile for 
the a design, TOP, that has no sequential elements at the top level but instantiates two 
sequential modules A and B. (For clarity, details on how you might constrain the designs are 
omitted.) Note that the compile -scan command is used at the top level even though there 
are no sequential elements at the top level of the design.

Example 9-4 Bottom-Up Compile Script

dc_shell> current_design A 
dc_shell> compile -scan 

dc_shell> current_design B 
dc_shell> compile -scan 

dc_shell> current_design TOP 
dc_shell> compile -scan 

Validating Your Netlist

Before you assemble the scan structures, you need to use the link and check_design 
commands to check the correctness of your design. You should fix any errors reported by 
these commands to guarantee the maximum fault coverage.

This topic discusses the procedures for running the link and check_design commands.

Running the link Command

The link command attempts to find models for the references in your design. The 
command searches the design files and library files defined by the link_library variable. 
If the link_library variable does not specify a path for a design file or library file, the link 
command uses the directory names defined in the search path. Specifying the asterisk 
character (*) in the link_library variable forces the link command to search the designs 
in memory.

If the link command reports unresolved references, such as missing designs or library cells 
in the netlist, resolve these references to provide a complete netlist to DFT Compiler. DFT 
Compiler operates on the complete netlist. DFT Compiler does not know the functional 
behavior of a missing cell, so it cannot predict the output of that cell. As a result, output from 
the missing reference is not observable. Each missing reference results in a large number 
of untestable faults in the vicinity of that cell and lower total fault coverage.

If the unresolved reference involves a simple cell, you can often fix the problem by adding 
the cell to the library or by replacing the reference with a valid library cell. 
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Handling a compiled cell requires a more complex solution. If the compiled cell does not 
contain internal gates, such as a ROM or programmable logic array, you can compile a 
behavioral model of the cell into gates and then run DFT Compiler on the equivalent gates.

See Also

• The Design Compiler User Guide for more information about missing references and link 
errors

• The man page for the link command

Running the check_design Command

The check_design command reports electrical design errors, such as port mismatches and 
shorted outputs that might lower fault coverage. For best fault coverage results, correct any 
design errors identified in your design.

See Also

• Design Compiler User Guide for more information about the check_design command

Performing Constraint-Optimized Scan Insertion

During the scan replacement process, constraint-optimized scan insertion does the 
following:

• Inserts the scan cells

• Optimizes the scan logic, based on the design constraints

• Fixes all compile-related design rule violations

Scan insertion is the process of performing scan replacement and scan assembly in a single 
step. You use the insert_dft command to invoke constraint-optimized scan insertion. 
However, you can also perform scan replacement and scan assembly in separate steps.

Constraint-optimized scan insertion is covered in the following topics:

• Supported Scan States

• Locating Scan Equivalents

• Preparing for Constraint-Optimized Scan Insertion

• Scan Insertion
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Supported Scan States

Constraint-optimized scan insertion supports mixed scan states during scan insertion. 
Modules can have the following scan states:

• Nonscan

The design contains nonscan sequential cells. Constraint-optimized scan insertion must 
scan-replace and route these cells.

• Unrouted scan

The design contains unrouted scan cells. These unrouted scan cells can result from 
test-ready compile or from the scan replacement phase of constraint-optimized scan 
insertion. Constraint-optimized scan insertion must include these cells in the final scan 
architecture.

• Scan

The design contains routed scan chains. Constraint-optimized scan insertion must 
include these chains in the final scan architecture.

Because the focus of this chapter is the scan replacement process, this discussion assumes 
that

• The input to constraint-optimized scan insertion is an optimized nonscan gate-level 
design

• The output from constraint-optimized scan insertion is an optimized design that contains 
unrouted scan cells. Note that constraint-optimized scan insertion performs scan 
replacement only.

Note:   
When you do not route the scan chains, the optimization performed during 
constraint-optimized scan insertion accounts for the timing impact of the scan cell, but it 
does not take into account the additional loading due to the scan chain routing.

Locating Scan Equivalents

To perform scan replacement, constraint-optimized scan insertion first locates simple scan 
equivalents by using the identical-function method. If this method does not achieve scan 
replacement, then sequential-mapping-based scan replacement is used.

Like test-ready compile, constraint-optimized scan insertion supports degeneration of scan 
cells to create the required scan equivalent functionality.

Replacing sequential cells with their scan equivalents modifies the design timing, as shown 
in Figure 9-9. DFT Compiler performs scan-specific optimizations to reduce the timing 
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overhead of scan replacement. By using focused techniques, constraint-optimized scan 
insertion optimizes the scan logic faster than the incremental compile process could. 

Figure 9-9 Timing Changes Due to Scan Replacement

Figure 9-10 shows the flow used to insert scan cells with constraint-optimized scan insertion 
and the commands required to complete this flow.
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Figure 9-10 Constraint-Optimized Scan Insertion Flow 
(Scan Replacement Only)

See Also

• “Performing Test-Ready Compile” in the Design Compiler User Guide for details about 
scan replacement methods

Preparing for Constraint-Optimized Scan Insertion

Before performing constraint-optimized scan insertion,

• Verify the timing characteristics of the design.

Constraint-optimized scan insertion results in a violation-free design when the design 
has the following timing characteristics:

❍ The nonscan design does not have constraint violations.

❍ The timing budget is good.
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❍ You have properly applied realistic path constraints.

❍ You have described the clock skew. 

Note:   
If your design enters constraint-optimized scan insertion with violations, long runtime 
can occur.

• Select a scan style.

• Identify barriers to scan replacement.

Scan Insertion

To alter a default scan design, you must specify changes to the scan configuration. You can 
make specifications at any point before scan synthesis. This topic describes the 
specification commands you can use.

With the DFT Compiler scan insertion capability, you can

• Implement automatically balanced scan chains

• Specify complete scan chains

• Generate scan chains that enter and exit a design module multiple times

• Automatically fix certain scan rule violations

• Reuse existing modules that already contain scan chains

• Control the routing order of scan chains in a hierarchy

• Perform scan insertion from the top or the bottom of the design

• Implement automatically enabling or disabling logic for bidirectional ports and internal 
three-state logic

• Share functional ports as test data ports. DFT Compiler inserts enabling and disabling 
logic, as well as multiplexing logic, as necessary

You can design scan chains by using a specify-preview-synthesize process, which consists 
of multiple specification and preview iterations to define an acceptable scan design. After 
the scan design is acceptable, you can invoke the synthesis process to insert scan chains. 
Figure 9-11 shows this specify-preview-synthesize process.
Chapter 9: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 9-36



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 9-11 The Scan Insertion Process 

Example 9-5 is a basic scan insertion script.

Example 9-5 Basic Scan Insertion Script

current_design Top
set_dft_configuration -fix_set enable -fix_reset enable
set_scan_configuration -chain_count ...
create_test_protocol -infer_clock -infer_asynch
dft_drc
preview_dft
insert_dft
dft_drc
report_scan_path  -view existing_dft -chain all
report_constraints -all_violators
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User dc_shell 

Scan architecture 
dc_shell script 

"What-if" report

Modified scan 

Synthesis

script

preview

chain design

created by
DFT Compiler 
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In this example, the following DFT configuration command enables AutoFix. For more 
information, see “Using AutoFix” on page 11-40.

dc_shell> set_dft_configuration -fix_reset enable -fix_set enable

The scan specification command is set_scan_configuration -chain_count 1. It 
specifies a single scan chain in the design.

The preview_dft command is the preview command. It builds the scan chain and produces 
a range of reports on the proposed scan architecture.

The insert_dft command is the synthesis command. It implements the proposed scan 
architecture.

The following topics describe these steps in the design process.

Specification Phase

During the specification phase, you use the scan and DFT specification commands to 
describe how the insert_dft command should configure the scan chains and the design. 
You can apply the commands interactively from the dc_shell or use them within design 
scripts. The specification commands annotate the database but do not otherwise change 
the design. They do not cause any logic to be created or any scan routing to be inserted.

The specification commands apply only to the current design and to lower-level subdesigns 
within the current design.

If you want to do hierarchical scan insertion by using a bottom-up approach, use the 
following general procedure:

1. Set the current design to a lower-level subdesign (current_design command).

2. Set the scan specifications for the subdesign (set_scan_path, set_scan_element, and 
so on).

3. Insert the scan cells and scan chains into the subdesign (dft_drc, preview_dft, and 
insert_dft).

4. Repeat steps 1, 2, and 3 for each subdesign, at each level of hierarchy, until you finish 
scan insertion for the whole design.

By default, the insert_dft command recognizes and keeps scan chains already inserted 
into subdesigns at lower levels. Thus, you can use different sets of scan specifications for 
different parts or levels of the design by using the insert_dft command separately on each 
part or level.

Note that each time you use the current_design command, any previous scan 
specifications no longer apply. This means that you need to enter new scan specifications 
for each newly selected design.
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Scan Specification

Using the scan specification commands, you can specify as little or as much scan detail as 
you want. If you choose not to specify any scan detail, the insert_dft command 
implements the default full-scan methodology. If you choose to completely specify the scan 
design that you require, you explicitly assign every scan element to a specific position in a 
specific scan chain. You can also explicitly define the pins to use as scan control and data 
pins.

Alternatively, you can create a partial specification, where you define some elements but do 
not issue a complete specification. If you issue a partial specification, the preview_dft 
command creates a complete specification during the preview process.

The scan specification commands are

• set_scan_configuration

• set_scan_path

• set_dft_signal

• set_scan_element

• reset_scan_configuration

These commands are described in detail later in this section.

DFT Configuration

The DFT configuration commands are as follows:

• reset_dft_configuration

• set_autofix_configuration

• set_autofix_element

• set_dft_configuration

• set_dft_signal

Preview

The preview_dft command produces a scan chain design that satisfies scan specifications 
on the current design and displays the scan chain design for you to preview. If you do not 
like the proposed implementation, you can iteratively adjust the specification and rerun 
preview until you are satisfied with the proposed design.
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The preview_dft command performs the following tasks:

• It checks the specification for consistency. For example, you cannot assign the same 
scan element to two different chains.

• It creates a complete specification if you have specified only a partial specification.

• It runs AutoFix.

• It produces a list of test points that are to be inserted into the design, based on currently 
enabled utilities.

When you use the preview_dft command, you can use the -script option to create a 
dc_shell script that completely specifies the proposed implementation. You can edit this 
script and use the edited script as an alternative means of iterating to a scan design that 
meets your requirements.

Limitation:   
The preview_dft command does not annotate the design database with test 
information. If you want to annotate the database with the completed specification, use 
the -script option to create a specification dc_shell script and then run this script. The 
specification commands in this script add attributes to the database.

Synthesis

You invoke the synthesis process by using the insert_dft command, which implements 
the scan design determined by the preview process. If you issue this command without 
explicitly invoking the preview process, the insert_dft command transparently runs 
preview_dft.

Execute the dft_drc command at least one time before executing the insert_dft 
command. Executing the dft_drc command provides information on circuit testability 
before inserting scan into your design.
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Architecting Your Test Design 10

This chapter describes the basic processes involved in configuring and architecting your test 
design for scan insertion.

This chapter includes the following topics:

• Configuring Your DFT Architecture

• Architecting Scan Chains

• Architecting Scan Signals

• Architecting Test Clocks

• Configuring Clock-Gating Cells

• Specifying a Location for DFT Logic Insertion

• Partitioning a Scan Design With DFT Partitions

• Modifying Your Scan Architecture

The standard DFT architecture process consists of configuring your architecture, building 
scan chains, connecting test signals, setting test clocks, and analyzing your configurations 
before and after scan insertion. Figure 10-1 shows the basic flow of the scan chain 
generation process.
10-1
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Figure 10-1 Scan Chain Generation Process
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Configuring Your DFT Architecture

Before you run scan insertion, you need to configure your DFT architecture. This topic 
includes the following topics related to the configuration process:

• Defining Your Scan Architecture

• Specifying Individual Scan Paths

Defining Your Scan Architecture

To define your scan architecture, you need to set design constraints, define any test modes, 
specify test ports, and identify and mark any cells that you do not want to have scanned.

Use the following script for the basic scan assembly flow:

current_design top

# specify the scan architecture
set_scan_configuration -chain_count 4

# create the test protocol
create_test_protocol

# check pre-DFT DRC test design rules
dft_drc

# preview the scan structures
preview_dft

# assemble the scan structures
insert_dft

# check post-DFT DRC test design rules
dft_drc

Scan configuration is the specification of global scan properties for the current design. Use 
the set_scan_configuration command to specify global scan properties such as

• Scan style and methodology

• Length and number of scan chains

• Handling of multiple clocks

• Internal and external three-state nets

• Bidirectional ports
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Note:   
This list of the set_scan_configuration command’s options is not exhaustive. For a 
complete listing, as well as a description of each option’s purpose, see the man page.

DFT Compiler automatically generates a complete scan architecture from the global 
properties that you have defined. 

Setting Design Constraints

You should set constraints before running the insert_dft command because it minimizes 
constraint violations. Use Design Compiler commands to set area and timing constraints on 
your design. If you have already compiled your design, you do not need to reset your 
constraints.

See Also

• The Synopsys Timing Constraints and Optimization User Guide for more information 
about setting area and timing constraints on your design

Defining Constant Input Ports During Scan

If your design requires a signal to be held constant to enable DFT logic or satisfy test design 
rules, use the set_dft_signal command to define a constant or test-mode signal.

See Also

• Chapter 14, “Pre-DFT Test Design Rule Checking” for more information about running 
test design rule checking prior to DFT insertion

Specifying Test Ports

The insert_dft command adds scan signals that use existing ports. These ports are 
identified by using the set_dft_signal command. If the tool cannot find existing ports that 
it can use as test ports, it adds new ports to the design. The insert_dft command names 
the new ports according to the following variables:

• test_clock_port_naming_style

• test_scan_clock_a_port_naming_style

• test_scan_clock_b_port_naming_style

• test_scan_clock_port_naming_style

• test_scan_enable_inverted_port_naming_style

• test_scan_enable_port_naming_style
Chapter 10: Architecting Your Test Design
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• test_clock_in_port_naming_style

• test_clock_out_port_naming_style

Specifying Individual Scan Paths

DFT Compiler supports detailed specification of individual scan paths. Use the following 
commands to specify the scan architecture:

• set_scan_element

Use this command to specify sequential elements that are to be excluded from scan 
replacement. By default, all nonviolating sequential cells with equivalent scan cells are 
scan-replaced. You can specify leaf cells, hierarchical cells, references, library cells, and 
designs.

Use the set_scan_element command sparingly. For best results, use the command 
only on leaf or hierarchical cells.

• set_scan_path

Use this command to specify properties specific to a scan chain, such as name, 
membership, chain length, clock association, and ordering.

• set_dft_signal

Use this command to specify desired port connections and scan chain assignments for 
test signals.

• set_autofix_element

Use this command to control particular bidirectional ports on the top level of the current 
design.

In case you are unfamiliar with some of the scan path components used in the scan 
specification commands, Figure 10-2 illustrates the scan path components.
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Figure 10-2 Scan Path Components

Figure 10-2 shows a single scan path that starts at port test_si, which receives the 
test_scan_in scan signal, and ends at port test_so, which drives the test_scan_out scan 
signal. Cells instA/dff1, instA/dff2, instB/dff1, and instB/dff2 are examples of scan elements. 
The shift register in instC is a defined scan segment. In the bottom-up flow, the scan chains 
in instA and instB are considered subchains or inferred scan segments. The thick lines 
represent scan links. The latch (instance latch1) is also a scan link.

The topics in this chapter discuss some of the situations you might encounter during scan 
specification. See Chapter 9, “Performing Scan Replacement,” for scan style selection 
considerations.

Architecting Scan Chains

The set_scan_configuration command enables you to specify the scan chain design. 
This command controls almost all aspects of how the insert_dft command makes designs 
scannable. Exceptions are specific to particular scan chains and are specified in the 
set_scan_path command options. 
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This topic covers the following topics related to architecting scan chains:

• Controlling the Scan Chain Length

• Determining the Scan Chain Count

• Defining Individual Scan Chain Characteristics

• Balancing Scan Chains

• Physical Reordering and Repartitioning

• Controlling the Routing Order

• Retiming Scan-Ins and Scan-Outs to the Leading Clock Edge

• Routing Scan Chains and Global Signals

• Rerouting Scan Chains

• Stitching Scan Chains Without Optimization

• Scan Stitching Only Scan-Replaced Cells

• Using Existing Subdesign Scan Chains

• Uniquifying Your Design

• Reporting Scan Path Information on the Current Design

Controlling the Scan Chain Length

You can globally specify the length of scan chains. Controlling the length of the scan chain 
can help to balance the scan configuration in a design that has bottom-up or 
system-on-a-chip (SoC) scan insertion.

Specifying the Global Scan Chain Length Limit

Setting the scan chain length limit helps with bottom-up scan insertion by balancing scan 
chains more efficiently at the top level. Setting a limit on the length of scan chains allows for 
design constraints related to pin availability or test vector depth.

Use the set_scan_configuration -max_length command to specify the length of a scan 
chain:

dc_shell> set_scan_configuration -max_length 7

For example, if you set the scan chain length limit to 7 registers for a single-clock, 
single-edge design with 29 flip-flops, the insert_dft command creates five scan chains 
Chapter 10: Architecting Your Test Design
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with lengths of 6, 6, 6, 6, and 5 registers. This scan chain allocation meets the scan chain 
length limit while also balancing the scan chain lengths as closely as possible.

Note:   
Specifying both the -max_length option and the -chain_count option (described in the 
next section) might result in conflicting scan chain allocations. In such a case, the 
-max_length option takes precedence. 

Specifying the Global Scan Chain Exact Length

You can specify an exact length for all scan chains by using the -exact_length option of 
the set_scan_configuration command.

For example, suppose your design has 420 flip-flops, and you want an exact length of 80 
flip-flops per scan chain. In this case, specifying set_scan_configuration 
-exact_length 80 creates five chains with 80 flip-flops and one chain with 20 flip-flops.

Warning:   
The exact length feature is meant to be used only with standard scan, including standard 
scan configured for multiple test modes. It is not currently supported with DFTMAX 
compressed scan modes. Do not use this feature with DFTMAX scan compression.

Note the following properties of the -exact_length option:

• This option disables scan chain balancing.

• The -exact_length option should not be used with the -max_length or -chain_count 
option.

• The report_scan_configuration command reports the value of the exact length 
configuration.

• The user-specified chain configuration is preserved.

• The quality of results cannot be guaranteed when this option is used on designs 
containing complex segments.

Determining the Scan Chain Count

You can specify the number of scan chains. DFT Compiler attempts to create the specified 
number of scan chains while minimizing the longest scan chain length. Use these questions 
to decide how many scan chains to request:

• How many scan chains does your semiconductor vendor allow?

Many semiconductor vendors restrict the maximum number of scan chains due to 
software or tester limitations. Before performing scan specification, check with your 
semiconductor vendor for the maximum number of scan chains supported.
Chapter 10: Architecting Your Test Design
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• How many clock domains exist in your design?

To prevent timing problems on the scan path in multiplexed flip-flop designs, allocate a 
scan chain for each clock domain (DFT Compiler default behavior). DFT Compiler 
considers each edge of a clock a unique clock domain. Multiple clock domains do not 
affect the number of scan chains in scan styles other than multiplexed flip-flop.

• How much time will it take to test your design?

Because the test time is proportional to the length of the longest scan chain, increasing 
the number of scan chains reduces the test time for a design.

Use the set_scan_configuration -chain_count command to specify the number of scan 
chains. 

dc_shell> set_scan_configuration -chain_count 7

By default, DFT Compiler generates

• One scan chain per clock domain if you select the multiplexed flip-flop scan style

• One scan chain if you select any other scan style

Note:   
The -max_length and -chain_count options are mutually exclusive. If you use both 
options, the -max_length option takes precedence over the -chain_count option.

Defining Individual Scan Chain Characteristics

Typically, scan chains are configured using global chain count or chain length settings. Use 
the set_scan_path command to specify one or more additional requirements for individual 
scan chains in the current design.

The set_scan_path command enables you to

• Specify a name for a scan chain

• Allocate scan cells, scan segments, and subdesign scan chains to scan chains and 
specify the ordering of the scan chain

• Specify a dedicated scan-out port

• Limit a scan chain’s elements to only those components you specify or enable DFT 
Compiler to balance scan chains by adding more elements

• Specify individual exact scan chain lengths

• Assign scan chains to clock domains
Chapter 10: Architecting Your Test Design
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Scan chain elements cannot belong to more than one chain. The command options are not 
incremental. Where set_scan_path commands conflict, the preview command 
(preview_dft) and scan insertion command (insert_dft) apply the most recent 
command.

For example, the following command sets the length of an individual scan chain:

dc_shell> set_scan_path C1 -exact_length 40

Balancing Scan Chains

The insert_dft command always attempts to balance the number of cells in each scan 
chain. However, some scan chain requirements can limit or disable balancing, such as

• Disabling clock mixing or clock edge mixing

• Defining scan chains with the set_scan_path command

• Using test models

• Using a hierarchical DFT insertion flow

• Specifying a global scan chain exact length

When overriding the default behavior, always use the preview_dft command to verify that 
the result meets your requirements.

Concatenating Scan Cells and Segments

When concatenating scan cells or segments to form scan chains, the insert_dft 
command can join them using only the scan cell sequences shown in Figure 10-3. The tool 
might insert additional synchronization elements, such as lock-up latches or retiming 
flip-flops (not shown), to create the sequences.
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Figure 10-3 Valid Scan Cell and Segment Concatenation Sequences

The irregularly dashed blue lines indicate sequences allowed only in the specific scenario 
described in SolvNet article 1656177, “Why Does insert_dft Add Extra Retiming Registers in 
a Shared Codec I/O Flow?“

This figure is relevant within a single clock domain or between clock domains with the same 
test clock waveforms. Between test clocks with differing waveforms, the tool determines the 
valid scan cell sequences using the waveform timing.

Multiple Clock Domains

The clock edge of a scan cell represents both the clock identity and the active clock edge of 
the cell. For multiplexed flip-flop designs, DFT Compiler allocates cells to scan chains based 
on clock edges by default. You can override this default behavior by using the 
set_scan_configuration -clock_mixing command. 

For example, assume that you have a design with three clock domains and your desired 
scan architecture contains two balanced scan chains. 

dc_shell> set_dft_signal -view existing_dft \
            -type ScanClock -timing [list 45 55] \
            -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

In the default case shown in Figure 10-4, DFT Compiler overrides your request for two 
chains and generates three scan chains, one for each clock edge (clk1, positive-edge clk2, 
negative-edge clk2). Because the clock domains contain unequal numbers of cells, DFT 
Compiler generates unbalanced scan chains.
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Figure 10-4 Unbalanced Scan Chains Due to Multiple Clock Domains

You can reduce the number of scan chains and achieve slightly better balancing by mixing 
clock edges within a single chain.

dc_shell> set_dft_signal -view existing_dft  \
               -type ScanClock -timing [list 45 55] \
               -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_scan_configuration -clock_mixing mix_edges

Mixing clock edges in a single scan chain produces a small timing risk. DFT Compiler 
automatically orders the cells within the scan chain so the cells clocked later in the cycle 
appear earlier in the scan chain, resulting in a functional scan chain. Figure 10-5 shows the 
scan architecture when you allow edge mixing.
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Figure 10-5 Better Balancing With Mixed Clock Edges

You can balance the scan chains by mixing clocks:

dc_shell> set_dft_signal -view existing_dft \
            -type ScanClock -timing [list 45 55] \
            -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_scan_configuration -clock_mixing mix_clocks

Directly mixing clock edges in a single scan chain could produce a large timing risk. To 
reduce this risk, DFT Compiler adds lock-up latches to the scan path wherever clock skew 
issues might occur. Figure 10-6 shows the resulting scan architecture.
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Figure 10-6 Balanced Scan Chains With Mixed Clocks

See Also

• “Architecting Test Clocks” on page 10-49 for details about scan lock-up latches and other 
clock-mixing considerations

Multibit Components and Scan Chains

A multibit component is a group of cells with identical functionality, inferred from RTL code 
or created by the create_multibit command. Depending on tool configuration and design 
constraints, synthesis implements a multibit component using multibit cells or single-bit 
cells.

By default, the insert_dft command treats the cells inside a multibit component as 
discrete sequential cells that can be reordered, split up, and rebalanced across scan chains 
as needed.

If you want to treat each sequential multibit component as a scan segment to retain cell 
grouping and order, use the following command:

dc_shell> set_scan_configuration -preserve_multibit_segment true
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In this case, the cells inside a multibit component cannot be separated for length-balancing 
purposes. You can report the multibit scan segments that will be used by using the 
preview_dft -show {segments} command.

The -preserve_multibit_segment option applies globally to the current design and 
overrides any specification on subdesigns.

Physical Reordering and Repartitioning

In Design Compiler topographical mode and in Design Compiler Graphical, the tool orders 
scan cells by physical proximity to minimize wire length. To use this feature, you must use 
both the -spg and -scan options in the initial and incremental compile_ultra commands. 
See Example 10-1.

Example 10-1 Performing Physical Reordering and Repartitioning of Scan Chains

compile_ultra -scan  ;# initial compile

# ...apply DFT configuration settings...

preview_dft
insert_dft
compile_ultra -scan -incremental  ;# incremental post-DFT compile

Note:   
This feature requires a license corresponding to the type of scan inserted in the design—
a DFT Compiler license for standard scan designs and a DFTMAX license for 
compressed scan designs.

After DFT insertion, when you incrementally optimize the design, the tool reorders and 
repartitions the scan elements as needed to further reduce congestion. In this case, the 
compile_ultra command issues the following message:

Information: Performing scan chain reordering in the SPG flow. (SPG-126)

Repartitioning uses the multi_directional repartitioning method by default. You can use 
the set_optimize_dft_options command to configure scan repartitioning. For example,

dc_shell> set_optimize_dft_options \
            -repartitioning_method single_directional

To perform reordering but not repartitioning, use the following command:

dc_shell> set_optimize_dft_options -repartitioning_method none

To disable both reordering and repartitioning, set the following variable:

dc_shell> set_app_var \
            test_enable_scan_reordering_in_compile_incremental false
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Reordering and repartitioning follow the same rules used to generate the SCANDEF 
information that drives reordering and repartitioning in layout.

See Also

• “Introduction to SCANDEF” on page 16-9 for more information about reordering and 
repartitioning

Controlling the Routing Order

Use the set_scan_path command to control the routing order explicitly. You can specify the 
routing order of nonscan as well as scanned sequential cells. Each set_scan_path 
command generates a scan chain; DFT Compiler uses the first command argument as the 
scan chain name. If you enter multiple set_scan_path commands with the same scan 
chain name, DFT Compiler uses only the last command entered. 

You can provide partial or complete scan ordering specifications. Use the -complete true 
option to indicate that you have completely specified a scan chain. DFT Compiler does not 
add cells to a completely specified scan chain. If you provide a partial scan-ordering 
specification, DFT Compiler might add cells to the scan chain. DFT Compiler places the 
cells specified in a partial ordering at the end of the scan chain.

DFT Compiler validates the specified scan ordering. The checks performed by DFT 
Compiler include

• Cell assignment

DFT Compiler verifies that you have not assigned a cell to more than one scan chain. A 
violation triggers the following error message during execution of the set_scan_path 
command:

Error: Scan chains ’%s’ and ’%s’ have common elements. (TESTDB-256)
Common elements are:
  %s

DFT Compiler discards the second scan path specification, keeping the first scan path 
specification which contains the common element.

• Clock ordering

DFT Compiler verifies that the active clock edge of the next scan cell occurs concurrently 
or before the active clock edge of the current scan cell or that the active edge can be 
synchronized with a scan lock-up latch. 
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If your multiplexed flip-flop design violates this requirement, DFT Compiler reorders the 
invalid mixed-clock scan chains and triggers the following warning message during 
execution of the preview_dft command:

Warning: User specification of chain ’%s’ has been reordered.
(TEST-342)

• Clock mixing 

DFT Compiler verifies that all cells on a scan path have the same clock unless you have 
specifically requested clock mixing. A violation triggers the following warning message 
during execution of the preview_dft command:

Warning: Chain ’%s’ has elements clocked by different clocks.
(TEST-353)

DFT Compiler creates the requested scan chain. Unless you have disabled scan lock-up 
latch insertion, DFT Compiler inserts a scan lock-up latch between clock domains.

• Black-box cells

DFT Compiler verifies that the specified cells are valid scan cells. If a sequential cell has 
a test design rule violation or has a scan_element false attribute, DFT Compiler 
considers it a black-box cell. A violation triggers the following warning message during 
execution of the preview_dft command:

Warning: Cannot add ’%s’ to chain ’%s’. The element is not being
scanned. (TEST-376)

DFT Compiler creates the requested scan chain without the violating cells.

Retiming Scan-Ins and Scan-Outs to the Leading Clock Edge

In some cases, hierarchical blocks can contain scan chains with a mix of positive 
edge-triggered and negative edge-triggered flip-flops. When these block-level scan chains 
are combined at a higher level in the design hierarchy to form longer scan chains, half-cycle 
paths across clock edges might be created between the scan chains. Meeting timing for 
these half-cycle scan chain paths can be challenging at higher frequencies, especially for 
chips with long top-level routes between blocks.

To avoid these half-cycle paths when block-level scan chains are combined, use the 
-add_test_retiming_flops option of the set_scan_configuration command. For 
example,

dc_shell> set_scan_configuration -add_test_retiming_flops begin_and_end

When this option is specified for block-level scan chain insertion, flip-flops triggering on the 
leading edge of the test clock are added as needed to any scan chains that begin or end with 
trailing-edge-triggered flip-flops. For return-to-zero clocks, rising-edge flip-flops are used to 
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retime to the leading edge. For return-to-one clocks, falling-edge flip-flops are used to retime 
to the leading edge. The tool automatically chooses the edge-triggered retiming cell from the 
target library.

Valid keywords for the -add_test_retiming_flops option are begin_and_end, 
begin_only, end_only, and none. The default is none, which disables retiming register 
insertion.

Table 10-1 shows the retiming behaviors provided by the -add_test_retiming_flops 
option.

To report the locations where these retiming flip-flops are to be added, use the preview_dft 
command. For details on this command, see “Previewing the DFT Logic” on page 15-2.

In addition, when this feature is enabled (with any value other than none), the following are 
clocked on the leading edge:

• Head pipeline registers

• DFT-inserted clock chains

• Shift-power control (SPC) chains

• DFTMAX Ultra decompressor registers

• DFTMAX serializer decompressor registers

If you generate a SCANDEF file for a design with retiming flip-flops, the retiming flip-flops 
are not included between the START and STOP points in the SCANDEF file. Only the 
original design scan cells are included between the START and STOP points.

Table 10-1 Retiming Behaviors Provided by the -add_test_retiming_flops Option 

If the scan chain begin_only end_only begin_and_end

Begins with a 
leading-edge flip-flop

Begins with a 
trailing-edge flip-flop

Adds retiming flip-flop to 
beginning of scan chain

Adds retiming flip-flop to 
beginning of scan chain

Ends with a 
leading-edge flip-flop

Ends with a 
trailing-edge flip-flop

Adds retiming flip-flop to 
end of scan chain

Adds retiming flip-flop to 
end of scan chain
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This feature controls only one aspect of retiming flip-flop insertion. The tool can also insert 
retiming flip-flops as described in “Codec I/O Sharing and Standard Scan Chains” on 
page 21-50.

See Also

• “Mixed Edges” on page 5-6 for more information about the scan chain timing 
requirements of mixed edges

Routing Scan Chains and Global Signals

Most scan cells have both a scan output pin (test_scan_out) and an inverted scan output pin 
(test_scan_out_inverted) defined in the logic library. If the functional path through a 
sequential cell has timing constraints, DFT Compiler automatically selects the scan output 
pin with the most timing slack for use as the scan output. To disable this behavior, set the 
test_disable_find_best_scan_out variable to true.

Scan chain allocation and ordering might differ between a top-down implementation and a 
bottom-up implementation because

• DFT Compiler does not modify subdesign scan chains unless explicitly specified in your 
scan configuration.

• DFT Compiler overrides alphanumeric ordering to provide a shared scan output 
connection on the current design but not on subdesigns.

Rerouting Scan Chains

The scan specification process previously discussed enables both initial routing and 
rerouting of your design. However, the specify-preview loop runs faster than the 
specify-synthesize loop. Try to avoid rerouting by iterating through the specify-preview loop 
until the scan architecture meets your requirements.

To optimize the design during scan assembly, DFT Compiler

• Performs scan-specific optimizations to reduce the timing impact of scan routing.

In many cases, the scan path uses the functional output as the scan output. The scan 
path routing increases the output load on the functional output. If you used test-ready 
compile for scan replacement, this additional loading is compensated for during 
optimization. If you used constraint-optimized scan insertion, DFT Compiler uses 
focused optimization techniques during scan assembly to minimize the impact of the 
additional load on the overall design performance.
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• Replaces unrouted scan cells with their nonscan equivalents.

If you used test-ready compile for scan replacement, your design might contain unrouted 
scan cells. These unrouted scan cells occur because the cell has a test design rule 
violation.

DFT Compiler replaces these unrouted scan cells with their nonscan equivalents during 
execution of the insert_dft command.

Your design might contain sequential cells that are defined in the logic library as scan 
cells but can also implement functional logic in your design. These cells have functional 
connections to both the data and scan inputs, and DFT Compiler does not modify these 
cells during scan assembly.

• Fixes hold time violations on the scan path if the clock net has the fix_hold attribute.

Stitching Scan Chains Without Optimization

In some circumstances, you might want to stitch your design’s scan chains together but 
avoid the optimization step. This process is referred to as “rapid scan synthesis.” Such 
circumstances might include

• Stitching completed subdesigns together

• Performing synthesis and scan insertion in the logic domain and optimizations in the 
physical domain

• Performing analysis on the design

Specifying a Stitch-Only Design

When DFT Compiler performs scan stitching without optimization, it still performs 
comprehensive logic DFT design rule checks, but it eliminates the runtime-intensive 
synthesis mapping, timing violation fixing, and design rule fixing steps. 

Consequently, the design is only stitched and no further optimizations are performed on the 
design.

To enable scan stitching without optimization, use the following command:

dc_shell> set_scan_replacement

Mapping the Replacement of Nonscan Cells to Scan Cells

You might want to stitch a design that has not been scan-replaced. The 
set_dft_insertion_configuration -synthesis_optimization none command can 
perform scan replacement on designs of this sort.
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If a simple one-to-one mapping of a nonscan to a scan cell is not available in the library, DFT 
Compiler performs a cell decomposition followed by a sequential mapping algorithm. You 
can avoid this step by using the following command:

dc_shell> set_scan_replacement  \
               -nonscan nonscan_cell_list \
               -multiplexed_flip_flop scan_cell

The options in this command should always be specified as a pair. If they are not, an error 
results. Many cells can be listed in the -nonscan option, but only one cell can be listed in the 
-multiplexed_flip_flop option. You can use the -lssd option in place of the 
-multiplexed_flip_flop option.

If you use this command and a scan cell definition exists in the ASIC library, the mapping 
you specified with the set_scan_replacement command overrides the library definition. 
This command is global in nature; it affects the entire design.

For example, the scan cell DFFS1 is a direct mapping of the nonscan cell DFFD1, but with 
scan pins. To specify the mapping of the DFFD1 nonscan cell to the DFFS1 scan cell, use 
the following command:

dc_shell> set_scan_replacement -nonscan DFFD1 \
               -multiplexed_flip_flop  DFFS1

Few-Pins-to-Many-Pins Scan Cell Replacement Situation

If you select a scan cell that has more pins than the nonscan cell it replaces, the extra pins 
are tied to the inactive state and a warning is issued. You can fix this problem by respecifying 
a more appropriate cell with the set_scan_replacement command.

Figure 10-7 Few-to-Many Scenario (Accepted)

In Figure 10-7, the replacement cell has more inputs and outputs than required by the 
nonscan cell. The unused pins of the scan cell are left unconnected.

Many-Pins-to-Few-Pins Scan Cell Replacement Scenario
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Alternatively, if you select a scan cell that has fewer pins than the nonscan cell it replaces, 
the extra pins are left unconnected. To avoid problems with incorrect logic, an error message 
is issued and the replacement does not occur. You can fix this problem by respecifying a 
more appropriate cell with the set_scan_replacement command.

In Figure 10-8, for example, the clear and reset pins do not exist on the scan cell. They are 
left unconnected, causing incorrect logic.

Figure 10-8 Many-to-Few Scenario (Rejected)

Criteria for Conversion Between Nonscan and Scan Cells

This topic describes the conditions under which

• A sequential cell is excluded from the DRC violations

• A sequential cell is excluded from the scan chains

• A nonscan cell becomes a scan cell

• A scan cell is unscanned

DRC Violation Report (dft_drc)

A cell XYZ should be reported as a valid nonscan cell by DRC if the following command is 
used:

dc_shell> set_scan_element false XYZ

Scan Architect (insert_dft)
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set_scan_replacement -nonscan DFF1R \
   -multiplexed_flip_flop SDFF1
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A cell XYZ will not be part of the scan chains if any of the following conditions are met: 

• The following command is used:

dc_shell> set_scan_element false XYZ

• The cell XYZ is DRC violated

• The following command is used:

dc_shell> set_scan_configuration -exclude_elements XYZ 

Note:   
You use set_scan_configuration -exclude_elements to prevent flip-flops from 
being stitched into the scan chains. The difference between using 
set_scan_configuration -exclude_elements and set_scan_element false is 
that the former command does not unscan the specified flip-flops during insert_dft 
whereas the latter command does unscan the flip-flops. 

Scan Replacement (insert_dft)

A nonscan flip-flop cell, FF, will become a scan cell in either of the two following cases:

• Both of the following conditions are met:

❍ The nonscan flip-flop cell is not DRC violated

❍ The following command is used:

 dc_shell> set_scan_element true FF

• Both of the following conditions are met:

❍ The following command is used:

 dc_shell> set_scan_element true FF

❍ The following command is used:

 dc_shell> set_scan_configuration -exclude_elements FF

A scan cell, SFF, will be converted to a nonscan cell in either of the two following cases:

• The following command is used:

dc_shell> set_scan_element false SFF

• Both of the following conditions are met:

❍ The scan cell, SFF, is DRC violated
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❍ The following command is used:

 dc_shell> set_dft_insertion_configuration \
               -unscan true

Scan Stitching Only Scan-Replaced Cells

By default, the insert_dft command performs scan replacement for all cells that are not 
scan replaced, but have scan equivalents and do not violate DRC.

If you have a design that is already scan-replaced and you do not want the insert_dft 
command to perform scan replacement of nonscan cells, specify the following command 
before running the insert_dft command:

dc_shell> set_scan_configuration -replace false

With this setting, DRC evaluates only scan-replaced cells for inclusion in scan chains; 
nonscan cells are left as-is.

If you read in a .ddc file for a test-ready design, you do not need to specify the 
set_scan_configuration -replace false command. The design database contains the 
test attributes needed for the tool to recognize the scan-replacement results.

Using Existing Subdesign Scan Chains

A subdesign scan chain uses subdesign ports for all test signals. DFT Compiler can infer 
subdesign scan chains during test design rule checking.

To reuse existing subdesign scan chains, follow these steps:

• Set the current design to the subdesign containing the existing scan chain.

• Use the set_dft_signal command to identify the existing scan ports. 

• Create a test protocol by using the create_test_protocol command.

• Set the current design to the design where you are assembling the scan structures.

• Use the set_scan_path command to control the scan chain connections, if desired.

For example, subdesign sr in Figure 10-9 contains a shift register. The shift register 
performs a serial shift function, so DFT Compiler can use this existing structure in a scan 
chain. The scan input signal connects to subdesign port sr_D. The scan output signal 
connects to subdesign port sr_Q. The shift register always performs the serial shift function, 
so the shift register does not need a scan-enable signal. 
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Figure 10-9 Subdesign Scan Chain Example Before Scan Insertion

Use the following command sequence to infer the subdesign scan chain in module sr:

dc_shell> current_design sr
dc_shell> set_dft_signal -view spec -port sr_D -type ScanDataIn
dc_shell> set_dft_signal -view spec -port sr_Q -type ScanDataOut
dc_shell> create_test_protocol
dc_shell> dft_drc

Use the following command sequence to include this scan chain in a top-level scan chain:

dc_shell> current_design top
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> insert_dft
dc_shell> dft_drc

Figure 10-10 shows the top-level scan chain, which includes the subdesign scan chain. DFT 
Compiler added a multiplexer, controlled by the scan-enable signal, to select between the 
functional data input and the scan input. The hierarchical cell name determines the location 
of the subdesign scan chain in the top-level scan chain.

Figure 10-10 Subdesign Scan Chain Example After Scan Insertion
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Uniquifying Your Design

When you run the insert_dft command, DFT Compiler automatically assigns a unique 
name to any subdesigns that changed during the scan insertion process. The default 
naming convention saves subdesign A as A_test_1. If two instances of subdesign A are 
different, they are saved as A_test_1 and A_test_2. The following scenarios illustrate 
examples in which unique names are assigned to instances of a subdesign:

• You specify a different scan ordering in each instance of the same reference design.

For example, if you route and rebalance a design so that two instances of the subdesign 
have different scan chain ordering, the insert_dft command uniquifies the design.

• The insert_dft command identifies different solutions during constraint optimization 
and design rule fixing.

Constraint optimization and design rule fixing are features of the insert_dft command. 
To eliminate unnecessary uniquification, turn off these features by entering the following 
commands:

dc_shell> set_dft_insertion_configuration \ 
               -synthesis_optimization none

• There are scan violations in one instance but not in another instance, and insert_dft 
repairs one but not the other.

You can choose the suffix that gets appended to the design name to create the unique 
name. The naming convention for the suffix appended to the design name is controlled by 
the following command:

dc_shell> set_app_var insert_test_design_naming_style name

In the previous example, the default name is design_name_test_counter.

Note:   
To prevent uniquification of your design, enter the command:

dc_shell> set_dft_insertion_configuration \
              -preserve_design_name true

Reporting Scan Path Information on the Current Design

Use the report_scan_path command to display scan path information for the current 
design.

Note:   
To show changes caused by running the insert_dft command, you must run the 
dft_drc command before the report_scan_path command. Running an incremental 
compile or any other command that changes the database causes the dft_drc results 
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to be discarded. In such a case, you need to run dft_drc again before you use 
report_scan_path. 

Example 10-2 shows the type of information displayed by the report_scan_path 
-chain all command.

Example 10-2 Scan Path Information Displayed by the report_scan_path Command

========================================
AS BUILT BY insert_dft
========================================

Scan_path    Len   ScanDataIn  ScanDataOut ScanEnable  MasterClock SlaveClock
-----------  ---- ----------- ----------- ----------- ----------- -----------
I 1          22    test_si1    test_so1    test_se     CLK         -
I 2          21    test_si2    test_so2    test_se     CLK         -
I 3          21    test_si3    test_so3    test_se     CLK         -

See Also

• The man page for the report_scan_path command

Architecting Scan Signals

For test design rule checking to recognize test ports in your design, your scan-inserted 
design must have appropriate signal_type attributes on the test ports. If you are using your 
own placeholder test ports, you must set these attributes with the set_dft_signal 
command. If the insert_dft command creates any needed ports, these attributes are 
automatically set.

The following topics discuss the process for architecting scan signals:

• Specifying Scan Signals for the Current Design

• Selecting Test Ports

• Controlling Scan-Enable Connections to DFT Logic

• Controlling Buffering for DFT Signals

• Suppressing Replacement of Sequential Cells

• Changing the Scan State of a Design

• Removing Scan Configurations

• Keeping Specifications Consistent

• Synthesizing Three-State Disabling Logic

• Configuring Three-State Buses
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• Handling Bidirectional Ports

• Assigning Test Port Attributes

Specifying Scan Signals for the Current Design

Use the set_dft_signal command to specify one or more scan signals for the current 
design.

Table 10-2 provides a list of signal_type attribute values.

The following is an example of the set_dft_signal command specifying a scan-in port. If 
you enter

dc_shell> set_dft_signal -view spec -port scan_in -type ScanDataIn

DFT Compiler responds with the following:

Accepted dft signal specification for modes: all_dft

In the preceding example, the -view spec option indicates that the specified ports are to be 
used during DFT scan insertion and that DFT Compiler is to perform the connections. In this 
example, scan_in is the name of the scan-in port that the insert_dft command uses. (The 
other value of the -view argument is -existing_dft, which directs the tool to use the 
specified ports as is because they are already connected.)

Table 10-2 signal_type Attribute Values for Test Signals 

Test I/O 
port signal

signal_type 
value

Valid on
input

Valid on
output

Valid on 
three-state
output

Valid on
bidirectional
input/output

Scan-in ScanDataIn Yes No No Yes

Scan-out ScanDataOut No Yes Yes Yes

Scan-enable ScanEnable Yes No No Yes

Bidirectional 
enables

InOutControl Yes No No 1

1. Not recommended; complex methodologies required

Asynchronous 
control ports

Reset Yes No No Yes
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When the insert_dft command creates additional ports for scan test signals, it assigns a 
name to each new port. You can control the naming convention by using the port naming 
style variables shown in Table 10-3.

Follow these guidelines when using the set_dft_signal command:

• Use the set_dft_signal command for scan insertion and for design rule checking. The 
set_dft_signal command indicates I/O ports that are to be used as scan ports. After 
the insert_dft command connects these ports, it places the necessary signal_type 
attributes on the ports for post-insertion design rule checking.

• Use the set_dft_signal -view existing_dft command if you read in an ASCII 
netlist and you need to perform design rule checking. Before you use the 
set_dft_signal command, the ASCII netlist does not contain the signal_type 
attributes annotated by scan insertion. Without these attributes,  dft_drc does not know 
which ports are scan ports and therefore reports that the design is untestable.

• Use the set_dft_signal -view existing_dft command if the ports in your design 
are already connected and no connection is to be made by DFT Compiler.

• Use the set_dft_signal -view spec command if the connections do not exist in your 
design and you expect DFT Compiler to make the connections for you.

Table 10-3 Port Naming Style Variables 

Name Default

test_scan_in_port_naming_style test_si%s%s

test_scan_out_port_naming_style test_so%s%s

test_scan_enable_port_naming_style test_se%s

test_scan_enable_inverted_port_naming_style test_sei%s

test_clock_port_naming_style test_c%s

test_scan_clock_port_naming_style test_sc%s

test_scan_clock_a_port_naming_style test_sca%s

test_scan_clock_b_port_naming_style test_scb%s

test_mode test_mode%s

test_point_clock none
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Using the -view spec and -view existing_dft Arguments

Unlike other tools used in the implementation flow, DFT Compiler changes the functionality 
of your design such that the design can operate in either functional (“mission”) mode or test 
mode.

To construct this dual modality, DFT Compiler needs to know what already exists in the 
design. You use the -view existing_dft option with the set_dft_signal command to 
provide such information. The tool then uses this information to perform pre-insertion design 
rule checking (DRC) to determine the elements that can be incorporated into scan chains.

Typical examples that use the -view existing_dft option include 

• Clock signals:

set_dft_signal -view existing_dft -type ScanClock -port \
     clk -timing {45 55}

• Asynchronous set and reset signals:

set_dft_signal -view existing_dft -type  Reset -port rst \
     -active_state 0

By default, DFT Compiler creates new ports in the design if they are needed. You can 
specify which existing ports the tool uses to build the DFT structures by using the -view 
spec option with the set_dft_signal command.

Typically, the -view spec option is used to specify ports that are to function as scan-in and 
scan-out ports (either dedicated scan-in and scan-out ports or shared functional ports used 
also as scan-in and scan-out ports), such as

set_dft_signal -view spec -type ScanDataIn -port scan_in_1
set_dft_signal -view spec -type ScanDataOut -port scan_out_1

and

set_dft_signal -view spec -type ScanDataIn -port data_in_bus_2
set_dft_signal -view spec -type ScanDataIn -port data_out_bus_2

As a general rule, 

• If the information is needed for pre-insertion DRC, then it should be specified by using 
the -view existing_dft option.

• If the information is needed to build DFT structures, then is should be specified by using 
the -view spec option.

Allocating Scan Ports

Ports that are defined to be scan-in and scan-out data ports are used in the order specified 
by the commands. For example, suppose that you identify three scan-in data ports and three 
scan-out data ports as follows: 
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set_dft_signal -type ScanDataIn -port [list SIN1 SIN2 SIN3]
set_dft_signal -type ScanDataOut -port [list SOUT1 SOUT2 SOUT3]

DFT Compiler allocates the listed ports to scan-in and scan-out functions as follows: 

• If you specify two standard scan chains, the tool uses only the first two of the listed 
scan-in ports, SIN1 and SIN2, and only the first two listed scan-out ports, SOUT1 and 
SOUT2. SIN3 and SOUT3 are not used for scan chain connection purposes. 

• If you specify three standard scan chains, the tool uses all of the listed scan-in and 
scan-out ports: SIN1, SIN2, SIN3, SOUT1, SOUT2, and SOUT3. 

• If you specify four standard scan chains, the tool first uses the three designated scan-in 
and three designated scan-out ports. For the fourth chain, it creates an additional 
dedicated scan-in port and an additional scan-out port. The scan-out port can be an 
existing output port connected to the output of a flip-flop, which can be reused as a 
scan-out port, or it can be a new dedicated output port. 

Using -type Constant versus Using -type TestMode

The difference between Constant and TestMode signal definitions is as follows:

• Constant signal definitions specify the value of the signal in test mode, but they do not 
specify anything about the signal's value in functional mode. Figure 10-11 shows the 
behavior of a Constant signal in the functional and test modes.

Figure 10-11 Constant Signal Specification 

• TestMode signal definitions specify the value of the signal in both test mode and 
functional mode. Figure 10-12 shows the behavior of a Constant signal in the functional 
and test modes.

Figure 10-12 Design With a Controlled Clock Signal
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This difference affects the generation of verification setup files, which are specified with the 
set_svf command. Verification setup files contain information about the functional mode 
values for any defined DFT signal. This allows Formality equivalence checking to disable the 
test logic added by DFT Compiler when the synopsys_auto_setup variable is set to true.

This difference affects verification setup file generation for the preceding examples as 
follows:

• The Constant signal definition does not result in any verification setup file directives 
because it contains no information about the functional mode value of CLK_EN.

• The TestMode signal definition specifies that the functional mode value for the RST_DIS 
signal is 1. This results in the following verification setup file directive:

guide_scan_input \
  -design { top } \
  -disable_value 0 \
  -ports { RST_DIS }

Selecting Test Ports

By default, DFT Compiler creates dedicated test ports as needed, but it also minimizes the 
number of dedicated test ports by sharing scan outputs with functional ports when the 
design contains scannable cells that directly drive functional ports.

You can also share ports between test and normal operation, which minimizes the number 
of dedicated test ports required for internal scan. If your semiconductor vendor does not 
support this configuration, you can request dedicated scan output ports. Always use 
dedicated ports for scan-enable and test clock signals.

The following topics describe how to select and define existing ports in your design as test 
ports:

• Defining Existing Unconnected Ports as Scan Ports

• Sharing a Scan Input With a Functional Port

• Sharing a Scan Output With a Functional Port

• Controlling Subdesign Scan Output Ports

Defining Existing Unconnected Ports as Scan Ports

You can define existing unconnected ports in your RTL description for use as test ports. 
These are known as placeholder scan ports or dummy scan ports. This approach allows you 
to use the same testbench for the RTL and gate-level implementations of your design.
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Use the set_dft_signal command to instruct DFT Compiler to use these ports:

dc_shell> set_dft_signal -type ScanDataIn -view spec \
            -port SI1

dc_shell> set_dft_signal -type ScanEnable -view spec \
            -port SE \
            -active_state 1

dc_shell> set_dft_signal -type ScanDataOut -view spec \
            -port SO

Sharing a Scan Input With a Functional Port

By default, DFT Compiler always creates a dedicated scan input port. To share a scan input 
port with a specified existing functional port, use the set_dft_signal command.

dc_shell> set_dft_signal -type ScanDataIn -view spec \
            -port DATA_in[0]

If you select a bidirectional port as the scan input port, DFT Compiler automatically inserts 
the necessary bidirectional control logic to enable the input path during scan shift.

Sharing a Scan Output With a Functional Port

By default, if a scannable cell directly drives an output port in the current design, DFT 
Compiler automatically uses it as the last cell in the scan chain. DFT Compiler disrupts the 
ordering to place this cell at the end of the scan chain. If multiple scannable sequential cells 
directly drive output ports, DFT Compiler uses the cell that would have been stitched closest 
to the end of the scan chain. If the scan cell is the last cell in a scan segment, the entire scan 
segment is placed at the end of the scan chain. Use the preview_dft command to see if a 
cell or segment has been moved to the end of the scan chain to prevent a dedicated scan 
output port.

To select the functional port to be used as a scan output port, use the set_dft_signal 
command.

dc_shell> set_dft_signal -type ScanDataOut -view spec \
            -port DATA_out[0]

If a scannable sequential cell drives the specified output port, DFT Compiler places that cell 
last in the scan chain. Otherwise, DFT Compiler automatically adds the control or 
multiplexing logic required to share the scan output port with the functional output port. If you 
select a bidirectional or three-state port as the scan output port, DFT Compiler automatically 
inserts the necessary control logic to enable the output path during scan shift.

By default, if the specified port is tied to logic 0 or logic 1, DFT Compiler ignores the constant 
value during scan insertion and drives the port directly as a scan output, as shown in 
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Figure 10-13. This behavior ensures that no additional logic is added at the port if it was 
undriven in the RTL and tied to logic 0 during synthesis.

Figure 10-13 Scan Output Port With Constant MUXing Disabled

If the existing constant value driving the port is required for proper operation in functional 
mode, set the test_mux_constant_so variable to true. In this case, DFT Compiler 
multiplexes the scan-out signal with the constant value, using the scan-enable signal to 
control the multiplexer, as shown in Figure 10-14.

Figure 10-14 Scan Output Port With Constant MUXing Enabled

If your semiconductor vendor requires dedicated top-level scan output ports or you prefer 
them, use the set_scan_configuration command to always use dedicated scan outputs:

dc_shell> set_scan_configuration \
               -create_dedicated_scan_out_ports true

Controlling Subdesign Scan Output Ports

By default, when DFT Compiler routes scan chains through subdesigns, it uses existing 
subdesign output ports driven by scan cells wherever possible. This minimizes the number 
of new output ports added to subdesigns, and it can reduce the amount of design 
uniquification required for multiply-instantiated designs. However, it can also add the loading 
of external scan routes outside the subdesign to functional nets inside the subdesign.

To always create dedicated scan-out ports on subdesigns, set the following variable:

dc_shell> set_app_var test_dedicated_subdesign_scan_outs true

Note that this variable setting alone does not guarantee isolation of the functional path from 
external scan path loading. You must also apply the set_fix_multiple_port_nets 
command to subdesigns where the functional subdesign outputs should be isolated from 
external scan path loading. For more information about this command, see the man page.
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Controlling Scan-Enable Connections to DFT Logic

By default, DFT Compiler uses a global scan-enable signal for DFT logic connections. In 
some cases, you might want to create multiple scan-enable signals and control how they 
connect to the DFT logic.

The following topics describe how to control scan-enable connections to DFT logic:

• Associating Scan-Enable Ports With Specific Scan Chains

• Defining Dedicated Scan-Enable Signals for Scan Cells

• Connecting the Scan-Enable Signal in Hierarchical Flows

• Preserving Existing Scan-Enable Pin Connections

Associating Scan-Enable Ports With Specific Scan Chains

To associate a specific port with specific scan chains, use the set_dft_signal and 
set_scan_path commands, as follows:

dc_shell> set_dft_signal -type ScanEnable -view spec \
             -port port_name -active_state 1

dc_shell> set_scan_path {chain_names} -view spec \
            -scan_enable port_name

If the condition set with these commands cannot be met, a warning is issued during scan 
preview and scan insertion.

Defining Dedicated Scan-Enable Signals for Scan Cells

By default, DFT Compiler chooses an available ScanEnable signal to connect to the 
scan-enable pins of scan cells. However, you can also define a dedicated ScanEnable 
signal to use for these scan-enable pin connections.

Specifying a Global Scan-Enable Signal

You can define a global ScanEnable signal to use for the scan-enable pins of scan cells by 
using the -usage scan option when defining the signal with the set_dft_signal 
command:

set_dft_signal
    -type ScanEnable
    -view spec
    -usage scan
    -port port_list

To define a signal with the scan usage, the -view option must be set to spec.
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When you define a ScanEnable signal with the scan usage, the insert_dft command is 
limited to using only that signal to connect to the scan-enable pins of scan cells. If there are 
insufficient ScanEnable signals for other purposes, DFT Compiler creates additional 
ScanEnable signals as needed.

You can use the report_dft_signal and remove_dft_signal commands for reporting 
and removing the specification, respectively.

Specifying Object-Specific Scan-Enable Signals

You can also define dedicated ScanEnable signals for specific parts of the design by using 
the -connect_to option and associated options of the set_dft_signal command:

set_dft_signal
    -type ScanEnable
    -view spec
    -usage scan
    -port port_list
    [-connect_to object_list]
    [-connect_to_domain_rise clock_list]
    [-connect_to_domain_fall clock_list]
    [-exclude object_list]

The -connect_to option specifies a list of design objects that are to use the specified 
ScanEnable signal. The supported object types are

• Scan cells

• Hierarchical cells

• Designs

• Test clock ports

This allows you to make clock-domain-based signal connections. It includes scan cells 
clocked by the specified test clocks. The functional clock behavior is not considered.

• Scan-enable pins of CTL-modeled cores

The -connect_to_domain_rise and -connect_to_domain_fall options accept a test 
clock port list and work the same as the -connect_to option, except that they apply only to 
rising-edge and falling-edge scan cells, respectively.

You can also use the -exclude option to specify a list of scan cells, hierarchical cells, or 
design names to exclude from the object-specific control signal.

The following example defines two ScanEnable signals, named SE_CLK1 and SE_CLK2, to 
connect to the scan-enable pins of test clock domains CLK1 and CLK2, respectively:

dc_shell> set_dft_signal -type ScanClock -view existing_dft \
            -port {CLK1 CLK2} -timing {45 55}
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dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
            -port SE_CLK1 -connect_to {CLK1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
            -port SE_CLK2 -connect_to {CLK2}

Note the following limitation:

• You cannot specify object-specific scan-enable specifications for pipelined scan-enable 
signals.

Connecting the Scan-Enable Signal in Hierarchical Flows

When you insert DFT at a top level that contains cores, which are DFT-inserted blocks 
represented by CTL models, the cores already contain complete scan-enable networks. 
Instead of connecting the top-level ScanEnable signal to target pins inside the core, DFT 
Compiler must connect to ScanEnable signal pins at the core boundary.

When ScanEnable signals at the core and/or top level are defined with the -usage option of 
the set_dft_signal command, DFT Compiler attempts to determine which top-level signal 
should drive each core-level signal, using the priorities shown in Table 6-6 on page 6-32.

You can override the default connection behaviors for cores by using object-specific signal 
definitions at the top level, applied using the set_dft_signal -connect_to command and 
associated options:

set_dft_signal
    -type ScanEnable
    -view spec
    -usage scan | clock_gating
    -port port_list
    [-connect_to object_list]
    [-connect_to_domain_rise clock_list]
    [-connect_to_domain_fall clock_list]
    [-exclude object_list]

Object-specific specifications are described in “Specifying Object-Specific Scan-Enable 
Signals” on page 10-36. However, not all object types accepted by the object_list argument 
apply to cores. The object types that apply to cores are

• Test clock ports

This allows you to make clock-domain-based signal connections to cores. It includes 
core-level scan-enable pins associated with the specified test clocks. The functional 
clock behavior is not considered.

• Scan-enable pins of CTL-modeled cores

This allows you to make direct pin-to-pin connections from top-level signal sources to 
core-level pins.
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Specifying Domain-Based Connections to Core Scan-Enable Pins

When you specify a top-level domain-based signal connection, DFT Compiler uses 
information inside a core’s CTL model to determine the core scan-enable pins associated 
with each core clock. To ensure that this information is present in the model, the following 
requirements must be observed during core creation:

• Core-level ScanEnable signals must be defined using the -usage option of the 
set_dft_signal command. This ensures that the core’s internal scan-enable signal is 
not used outside its intended usage.

• Core-level ScanEnable signals defined with a usage of clock_gating must also be 
defined as domain-specific signals using the -connect_to clock_list option of the 
set_dft_signal command. This ensures that clock-specific clock-gating annotations 
are included in the CTL model.

 Example 10-3 shows part of a core-level ASCII CTL model that contains clock domain 
information for a scan-enable signal defined with a usage of scan.

Example 10-3 Scan Chain Clock Information in an ASCII CTL Model

CTL all_dft {
    ...
    Internal {
        "SE_SCAN" {
            CaptureClock "CLK" {
                LeadingEdge;
            }
            DataType User "ScanEnableForScan" {
                ActiveState ForceUp;
            }
        }
    }
}

Example 10-4 shows part of a core-level ASCII CTL model that contains clock domain 
information for a scan-enable signal defined with a usage of clock_gating. The 
domain-based signal specification causes the CaptureClock constructs to be included.

Example 10-4 Clock-Gating Clock Information in an ASCII CTL Model

CTL all_dft {
    ...
    Internal {
        "SE_CG" {
            CaptureClock "CLK" {
                LeadingEdge;
            }
            DataType User "ScanEnableForClockGating" {
                ActiveState ForceUp;
            }
        }
Chapter 10: Architecting Your Test Design
Architecting Scan Signals 10-38



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
    }
}

The CTL model information for a signal can contain multiple DataType constructs (for 
signals defined with multiple usages) and multiple CaptureClock constructs (for signals 
associated with multiple clocks). 

Consider a core with two scan-enable pins, where pin SE1 is associated with CLK1 and pin 
SE2 is associated with CLK2. The following top-level commands connect corresponding 
top-level scan-enable signals TOP_SE1 and TOP_SE2 to these core-level pins indirectly 
using domain-based specifications:

dc_shell> set_dft_signal -type ScanClock -view existing_dft \
            -port {CLK1 CLK2} -timing {45 55}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
            -port TOP_SE1 -connect_to {CLK1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
            -port TOP_SE2 -connect_to {CLK2}

Specifying Connections Directly to Core Scan-Enable Pins

You can specify pin-based signal connection specifications that connect any top-level 
ScanEnable signal to any core-level ScanEnable pin. These pin-based connection 
specifications override the default connection behavior, and there is no requirement for the 
top-level and core-level signal usages to match.

Consider a core with two scan-enable pins, where pin SE1 is associated with CLK1 and pin 
SE2 is associated with CLK2. The following top-level commands connect top-level 
scan-enable signals to corresponding core-level pins using direct core pin specifications:

dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
            -port TOP_SE1 -connect_to {CORE/SE_SCAN1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
            -port TOP_SE2 -connect_to {CORE/SE_SCAN2}

Preserving Existing Scan-Enable Pin Connections

During DFT insertion, DFT Compiler identifies the scan-enable pins of scan cells and scan 
cores that should be connected to the global scan-enable signal. These are known as 
scan-enable target pins.

By default, if a scan-enable target pin already has a connection, DFT Compiler disconnects 
it to make the connection to a scan-enable signal. During DFT insertion, the insert_dft 
command issues a TEST-394 warning to note the disconnection:

Warning: Disconnecting pin 'memwrap/UMEM/SE' to route scan enable.
(TEST-394)
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To preserve existing connections to scan-enable target pins during DFT insertion, set the 
following variable:

dc_shell> set test_keep_connected_scan_en true

In this case, the insert_dft command issues a TEST-410 warning to confirm that the 
existing connection is kept:

Warning: Not disconnecting pin 'memwrap/UMEM/SE' to route scan enable.
(TEST-410)

For more information, see the man page. For an example application, see SolvNet article 
034774, “How To Connect DFT Signals to Hierarchical Pins of Verilog Wrappers.”

Controlling Buffering for DFT Signals

To have synthesis buffer a DFT signal, use the set_driving_cell command to specify the 
source port’s drive characteristics:

dc_shell> set_driving_cell -lib_cell BUFX4 test_scan_enable

To prevent synthesis from buffering a DFT signal, use the set_ideal_network command to 
configure the source port as the driver of an ideal network:

dc_shell> set_ideal_network test_scan_enable

Suppressing Replacement of Sequential Cells

Use the set_scan_element command to determine whether specific sequential cells are to 
be replaced by scan cells that become part of the scan path during the insert_dft 
command.

For full-scan designs, the insert_dft command replaces all nonviolated sequential cells 
with equivalent scan cells by default. Therefore, you do not need to set the scan_element 
attribute unless you want to suppress replacement of sequential cells with scan cells. To 
prevent such replacement for certain cells, set the scan_element attribute to false for 
those cells. 

Note:   
If you want to specify which scan cells are to be used for scan replacement, use the 
set_scan_register_type command. 

You should not use the set_scan_element true command if you use the compile -scan 
command to replace elements.
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In Logic Scan Synthesis

In logic scan synthesis, the set_scan_element false command unscans the cell on a 
design in which scan replacement has already occurred. 

Changing the Scan State of a Design

In certain circumstances, you might find it necessary to manually set the scan state of a 
design. Use the set_scan_state command to do so. The set_scan_state command has 
three options: unknown, test_ready, and scan_existing.

If there are nonscan elements in the design, use the set_scan_element false command 
to properly identify them.

You can check the test state of the design by using the report_scan_state command.

One situation in which you would set the scan state is if you needed to write a netlist of a 
test-ready design and read it into a third-party tool. After making modifications, you can bring 
the design back into DFT Compiler as shown in Example 10-5.

Example 10-5 Changing the Scan State of a Design

dc_shell> read_file -format verilog my_design.v

dc_shell> report_scan_state

****************************************
Report : test
          -state
Design : MY_DESIGN
Version: 2002.05
Date   : Wed Jul 25 18:12:39 2001
****************************************

Scan state                   : unknown scan state

1
dc_shell> set_scan_state test_ready
Accepted scan state.
1
dc_shell> report_scan_state

****************************************
Report : test
          -state
Design : MY_DESIGN
Version: 2002.05
Date   : Wed Jul 25 18:14:47 2001
****************************************

Scan state                   : scan cells replaced with loops
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Important:   
You do not need to set the scan state if you are following the recommended design flow.

Removing Scan Configurations

The reset_scan_configuration command removes scan specifications from the current 
design. Note that this command deletes only those specifications you defined with the 
set_scan_configuration command.

Specifications defined using other commands are removed by issuing the corresponding 
remove command. For example, you use the remove_scan_path command to remove the 
path specifications you defined with the set_scan_path command. 

Note that the reset_scan_configuration command does not change your design. It 
merely deletes specifications you have made. 

You can use the reset_scan_configuration command to remove explicit specifications of 
synthesizable segments. When you remove an explicit specification, the multibit component 
inherits the current implicit specification.

Note:   
The reset_scan_configuration command does not affect the settings made with the 
set_scan_register_type command. These settings must be removed with the 
remove_scan_register_type command.

Keeping Specifications Consistent

The set of user specifications contributing to the definition of the scan design must be 
consistent. User-supplied specification commands forming part of a consistent specification 
have the following characteristics:

• Each specification command is self-consistent. It cannot contain mutually exclusive 
requirements. For example, a command specifying the routing order of a scan chain 
cannot specify the same element in more than one place in the chain.

• All specification commands are mutually consistent. Two specification commands must 
not impose mutually exclusive conditions on the scan design. For example, two 
specification commands that place the same element in two different scan chains are 
mutually incompatible.

• All specification commands yield a functional scan design. You cannot impose a 
specification that leads to a nonfunctional scan design. For example, a specification that 
mandates fewer scan chains than the number of incompatible clock domains is 
not permitted.
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The number of clock domains in your design, together with your clock-mixing specification, 
determines the minimum number of scan chains in your design. If you specify an exact 
number of scan chains smaller than this minimum, the insert_dft command issues a 
warning message and implements the minimum number of scan chains.

Synthesizing Three-State Disabling Logic

DFT Compiler can, by default, handle three-state nets. It does so with the following 
functionality:

• By default, it distinguishes between internal and external three-state nets.

• By default, it prevents bus contention by causing only one three-state driver to be active 
at one time.

• By default, it modifies internal three-state nets in bottom-up design methodology to make 
exactly one three-state driver active.

To prevent bus contention or bus float, internal three-state nets in your design must have a 
single active driver during scan shift. DFT Compiler automatically performs this task.

DFT Compiler determines if the internal three-state nets in your design meet this 
requirement.

By default, DFT Compiler adds disabling logic to internal three-state nets that do not meet 
this requirement. The scan-enable signal controls the disabling logic and forces a single 
driver to be active on the net throughout scan shift.

In some cases, DFT Compiler adds redundant disabling logic because the disabling logic 
checks for internal three-state nets are limited.

Figure 10-15 shows the simple internal three-state net used as an example throughout this 
section.
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Figure 10-15 Internal Three-State Net Example

Figure 10-16 shows the disabling logic added by DFT Compiler during the insert_dft 
process.

Figure 10-16 Three-State Output With Disabling Logic

If the design already contains logic that prevents or can be configured to prevent the 
occurrence of bus contention and bus float during scan shift, you can use the 
set_dft_configuration command to prevent DFT Compiler from inserting the disabling 
logic:

dc_shell> set_dft_configuration -fix_bus disable
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During scan shift, DFT Compiler does not check for bus contention or bus float conditions. 
If you do not add the three-state disabling logic, verify that no invalid conditions occur during 
scan shift.

If you want to perform bottom-up scan insertion, you must choose a strategy for handling the 
insertion of three-state enabling and disabling logic. If you use the 
set_dft_configuration -fix_bus disable command, your design will be free of bus 
float or bus contention during scan shift. However, during bottom-up scan insertion, the 
insert_dft command might be forced to modify modules that it has already processed.

This strategy is easy to implement in scripts but can result in repeated modifications to 
subblocks. Note that DFT Compiler does recognize three-state enabling and disabling logic 
that it has previously inserted in a submodule and so does not insert unnecessary or 
redundant enabling and disabling logic.

For example, consider a top-level design with two instances of a module of type sub_type_1. 
Both of these instances drive a three-state bus that, in turn, drives inputs on another module. 
If you perform scan insertion with default settings on the design sub_type_1, then in the top 
design, the three-state ports that drive this common bus will be turned off in scan shift, thus 
creating a float condition. In other words, when you run the insert_dft command at the top 
level with default options selected, the insert_dft command modifies one of the two 
instances of sub_type_1. As a result, each net within the bus has a single enabled driver 
during scan shift.

You can consider two other, nondefault, strategies when you want to use bottom-up scan 
insertion.

You can synthesize three-state disabling logic at the top level only. Synthesis of disabling 
logic at the top level guarantees a consistent implementation across all subdesigns. Use the 
set_dft_configuration -fix_bus disable command to disable synthesis of 
three-state disabling logic in subdesigns.

dc_shell> # subdesign command sequence
dc_shell> current_design subdesign
dc_shell> set_dft_configuration -fix_bus disable
...
dc_shell> insert_dft

dc_shell> # top-level command sequence
dc_shell> current_design top
dc_shell> set_dft_configuration -fix_bus enable
...
dc_shell> insert_dft

A third option is to use the preview_dft -show {tristates} command before you run the 
set_dft_configuration command on each submodule to determine what enabling and 
disabling logic should be inserted on the external three-state nets for each module. This 
strategy is the most complex to use, and your scripts need to be specific to each design. 
However, if you implement this method correctly, you can assemble submodules into a 
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complete testable design without further modification of a submodule by the 
set_dft_configuration command.

See Also

• “Previewing Additional Scan Chain Information” on page 15-3 for more information about 
previewing tristate conditioning logic

Configuring Three-State Buses

The set_dft_configuration command can configure three-state buses according to 
settings applied by the set_autofix_configuration command.

If the -fix_bus option of the set_scan_configuration command is set to disable, no 
changes to the three-state driver logic are made, regardless of any other three-state 
settings.

Configuring External Three-State Buses

On external three-state nets, the -type external_bus option of the 
set_autofix_configuration command controls three-state disabling behavior. If you 
want to make no changes to the external three-state nets, use the -method no_disabling 
option. If you want to allow exactly one three-state driver to be enabled on each external 
three-state net, you can use the -method enable_one option. If you want to ensure that all 
external three-state nets are disabled, use the -method disable_all option, which is the 
default behavior for the external_tristates type.

You might have multiple modules that are stitched together at the top level, and you might 
want to be sure that one of those modules contains the active three-state drivers while the 
other modules are all off. You can do that by using a bottom-up scan insertion methodology 
and by setting the set_autofix_configuration command appropriately for each module 
before you run the insert_dft command on that module.

Configuring Internal Three-State Buses

The same rules apply for internal three-state nets as for external three-state nets. If you 
allow all your subdesigns to be set to the default behavior, insert_dft can choose a 
three-state driver on the net to make active and can disable all others.

Overriding Global Three-State Bus Configuration Settings

You can override these internal and external three-state net settings by using the 
set_autofix_element command, which can be applied to individual nets in your design. 

This command applies only to the nets and not to individual three-state drivers.
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You might have a situation in which multiple instances of the same design must have 
separate three-state configuration settings. You can achieve this by uniquifying the 
particular instances and then using the set_autofix_element command to define the type 
of enabling or disabling logic you want to see applied on that instance.

Disabling Three-State Buses and Bidirectional Ports 

There are several different methods you can use to disable logic to ensure that three-state 
buses and bidirectional ports are properly configured during scan shift:

• To set the default behavior for top-level three-state specifications, use the following 
command:

set_dft_configuration \
   -fix_bus enable | disable

• To set the default behavior for top-level bidirectional port specifications, use the following 
command:

set_dft_configuration \
   -fix_bidirectional enable | disable

• To set global three-state specifications, use the following command:

set_autofix_configuration \
   -type internal_bus | external_bus \
   -method disable_all | enable_one | no_disabling

• To set global bidirectional port specifications, use the following command:

set_autofix_configuration \
   -type bidirectional \
   -method input | output | no_disabling

• To set local three-state specifications on a specific list of objects, use the following 
command:

set_autofix_element \
   -type internal_bus | external_bus \
   -method input | output | no_disabling \
   object_list

• To set local bidirectional port specifications on a specific list of objects, use the following 
command:

set_autofix_element \
   -type bidirectional \
   -method input | output | no_disabling \
   object_list
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Handling Bidirectional Ports

Every semiconductor vendor has specific requirements regarding the treatment of 
bidirectional ports during scan shift. Some vendors require that bidirectional ports be held in 
input mode during scan shift, some require that bidirectional ports be held in output mode 
during scan shift, and some have no preference. DFT Compiler provides the ability to set the 
bidirectional mode both globally and individually.

Before you insert control logic for bidirectional ports, understand your vendor’s requirements 
for these cells during scan shift.

If the -fix_bidirectional disable option of the set_dft_configuration command is 
set, no disabling logic is added to any bidirectional ports, regardless of any other 
bidirectional port settings.

Setting Individual Bidirectional Port Behavior

To specify bidirectional behavior on individual ports, use the set_autofix_element 
command. 

Use the reset_autofix_element command to remove all set_autofix_element 
specifications for the current design.

Use the preview_dft -show {bidirectionals} command to see the bidirectional port 
conditioning that will be implemented for each bidirectional port in a design.

See Also

• “Previewing Additional Scan Chain Information” on page 15-3 for more information about 
previewing bidirectional conditioning logic

Fixed Direction Bidirectional Ports

Bidirectional ports that have enables connected to constant values and that are therefore 
always configured in either input mode or output mode are referred to as degenerated 
bidirectional ports. DFT Compiler does not add control logic for degenerated bidirectional 
ports.

DFT Compiler recognizes constant values on the enable pins of bidirectional ports for the 
following cases:

• Enable forced to a constant value by a tie-off cell in the circuit

• Enable forced to a constant value by a set_dft_signal command
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Assigning Test Port Attributes

If you always save and read mapped designs in the .ddc format, you usually do not need to 
explicitly set signal_type attributes. If you do not save your design in .ddc format, you must 
use the set_dft_signal command.

Note:   
Use the  set_dft_signal command for scan-inserted, existing-scan, and test-ready 
designs.

When insert_dft sets attributes on test ports, for all scan styles, it creates the following 
values: 

• It places either a test_scan_enable or a test_scan_enable_inverted attribute on 
scan-enable ports. The test_scan_enable attribute causes a logic 1 to be applied to the 
port for scan shift. The test_scan_enable_inverted attribute causes a logic 0 to be 
applied to the port for scan shift.

• Scan input ports are identified with the test_scan_in attribute. 

• Scan output ports are identified with the test_scan_out or test_scan_out_inverted 
attribute.

Note that some scan styles require test clock ports on the scan cell.

Architecting Test Clocks

When DFT Compiler creates a test protocol, it uses defaults for the clock timing, based on 
the clock type, unless you explicitly specify clock timing.

This topic shows you how to set test clocks and handle multiple clock designs. It includes 
the following:

• Defining Test Clocks

• Specifying a Hookup Pin for DFT-Inserted Clock Connections

• Requirements for Valid Scan Chain Ordering

• Lock-Up Latch Insertion Between Clock Domains

• Automatically Creating Skew Subdomains Within Clock Domains

• Manually Creating Skew Subdomains at Associated Internal Pins

• Manually Creating Skew Subdomains With Scan Skew Groups

• Defining Scan Chains by Scan Clock
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• Handling Multiple Clocks in LSSD Scan Styles

Defining Test Clocks

To explicitly define test clocks in your design, use the set_dft_signal command. For 
example,

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
            -port CLK -timing {45 55}

Specify the clock signal type with the -type option. For the multiplexed flip-flop style, use 
the ScanClock type. For other scan styles, see the man page.

Define the test clock waveform with the -timing option. The waveform definition is a pair of 
values that specifies the rising-edge arrival time followed by the falling-edge arrival time. 
Figure 10-17 shows a return-to-zero clock waveform definition.

Figure 10-17 Return-to-Zero Test Clock Waveform Definition 

Figure 10-18 shows a return-to-one clock waveform definition.

Figure 10-18 Return-to-One Test Clock Waveform Definition 

If you use the -infer_clock option of the create_test_protocol command to infer test 
clocks in your design, the tool uses the default clock waveforms shown in Table 10-4.

Table 10-4 Default Test Clock Waveform Timing 

Scan clock type First edge (ns) Second edge (ns)

Edge-triggered (non-LSSD styles) 45.0 55.0

Master clock (LSSD styles) 30.0 40.0

45ns 55ns 100ns0ns

set_dft_signal ... -timing {45  55}

45ns 55ns 100ns0ns

set_dft_signal ... -timing {55  45}
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For all test clocks, the clock period is the value defined by the test_default_period 
variable.

After defining or inferring your test clocks, you can verify their timing characteristics by using 
the report_dft_signal command.

The rise and fall clock waveform values are the same as the values specified in the 
statements that make up the STIL waveform section. The rise argument becomes the value 
of the rise argument in the waveform statement in the test protocol clock group. The fall 
argument becomes the value of the fall argument in the waveform statement in the test 
protocol clock group.

Specifying a Hookup Pin for DFT-Inserted Clock Connections

In some cases, DFT Compiler might need to make a connection to an existing scan clock 
network during DFT insertion. Some examples are

• Pipeline clock connections for automatically inserted pipelined scan data registers

• Test point clock connections for test points with flip-flops

• ATE clock connections for DFT-inserted OCC controllers

• Codec clock connections for serialized and streaming scan compression

• Self-test clock connections to the LogicBIST self-test controller and codec

By default, DFT Compiler makes the clock connection at the source port specified in the 
-view existing_dft signal definition. However, if you want DFT Compiler to make the 
clock connection at an internal pin, such as a pad cell or clock buffer output, you can specify 
it with the -hookup_pin option in a subsequent -view spec signal definition. For example,

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
            -port CLK -timing {45 55}
dc_shell> set_dft_signal -view spec -type ScanClock \
            -port CLK -hookup_pin UCLKBUF/Z

You do not specify the clock waveform timing for the -view spec signal definition, but you 
must specify the associated port with the -port option.

Slave clock (LSSD styles) 60.0 70.0

Table 10-4 Default Test Clock Waveform Timing (Continued)

Scan clock type First edge (ns) Second edge (ns)
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Requirements for Valid Scan Chain Ordering

This topic describes the requirements for valid scan chain ordering in the multiplexed 
flip-flop scan style.

DFT Compiler generates valid mixed-clock scan chains based on the ideal test clock timing. 
Scan chain cells are ordered by the ideal test clock edge times, as defined with the -timing 
option of the set_dft_signal command. Cells clocked by later clock edges are placed 
before cells clocked by earlier clock edges. This guarantees that all cells in the scan chain 
get the expected data during scan shift.

Figure 10-19 shows the ideal test clock waveforms for two test clocks. The clock edges are 
numbered by their edge timing order, with the latest clock edge indicated by (1).

Figure 10-19 Ideal Test Clock Waveforms for Two Test Clocks

Figure 10-20 shows how DFT Compiler constructs a scan chain containing a scan cell 
clocked by each clock edge. The scan cells are ordered with the cells clocked by the latest 
clock edges coming first.

Figure 10-20 Scan Chain Cells for Two Test Clocks

To maintain the validity of your scan chains, do not change the test clock timing after 
assembling the scan structures.

Although DFT Compiler chooses an order that ensures correct shift function under ideal 
clock timing, it cannot guarantee that capture problems will not occur. Capture problems are 
caused by your logic functionality; modify your design to correct capture problems. For more 
information, see Chapter 14, “Pre-DFT Test Design Rule Checking.”

By default, when you request clock mixing within a multiplexed flip-flop scan chain, DFT 
Compiler inserts lock-up latches to prevent timing problems. For more information, see 
“Lock-Up Latch Insertion Between Clock Domains” on page 10-53.
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Lock-Up Latch Insertion Between Clock Domains

This topic describes how the tool adds lock-up latches between clock domains in the 
multiplexed flip-flop scan style.

A scan lock-up latch is a retiming sequential cell on a scan path that can address skew 
problems between adjacent scan cells when clock mixing or clock-edge mixing is enabled. 
DFT Compiler inserts them to prevent skew problems that might occur.

Consider the scan structure in Figure 10-21, where a scan cell clocked by CLK1 feeds a 
scan cell clocked by CLK2, and both clocks are defined with the same ideal waveform 
definition.

Figure 10-21 Two Scan Cells Clocked by Two Different Clocks

If both scan cells receive a clock edge at the same time, no timing violations occur. However, 
if the CLK2 waveform at FF2 is delayed, perhaps due to higher clock tree latency, a hold 
violation might result where FF2 incorrectly captures the current cycle’s data instead of the 
previous cycle’s data. Figure 10-22 shows this hold violation for leading-edge scan cells.

Figure 10-22 Timing for Two Leading-Edge Scan Cells Clocked by Two Different Clocks

A lock-up latch prevents hold violations for scan cells that might capture data using a 
skewed clock edge. It is a latch cell that is inserted between two scan cells and clocked by 
the inversion of the previous scan cell’s clock. Figure 10-23 shows the same two scan cells 
with a lock-up latch added.

Figure 10-23 Two Scan Cells With a Lock-Up Latch
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The lock-up latch cell works by holding the previous cycle’s scan data while the current 
cycle’s scan data is captured, effectively delaying the output data transition to the next edge 
of the source clock. Figure 10-24 shows the lock-up timing behavior for the example. 
Although this example uses return-to-zero clock waveforms, lock-up latch operation is 
similar for return-to-one clock waveforms.

Figure 10-24 Timing for Two Leading-Edge Scan Cells With a Lock-Up Latch

Lock-up latch operation for trailing-edge scan cells is similar to that of leading-edge scan 
cells, except that the data is held into the next clock cycle as shown in Figure 10-25.

Figure 10-25 Timing for Two Trailing-Edge Scan Cells With a Lock-Up Latch

By default, DFT Compiler adds scan lock-up latches as needed to multiplexed flip-flop scan 
chains. Scan chain cells are ordered by the ideal test clock edge times, as defined with the 
-timing option of the set_dft_signal command. Cells clocked by later clock edges are 
placed before cells clocked by earlier clock edges. Adjacent scan chain cells clocked by 
different clock edges are handled as follows:

• When the scan cells are clocked by clock edges with different ideal clock edge timing, 
DFT Compiler does not insert a lock-up latch. The second scan cell captures data using 
an earlier clock edge, and DFT Compiler assumes this difference in the ideal clock edge 
timing is sufficient to avoid a hold time violation.

• When the scan cells are clocked by clock edges with identical ideal clock edge timing, 
DFT Compiler inserts a lock-up latch to avoid a potential hold violation due to clock skew.
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Note:   
DFT Compiler builds scan paths that meet zero-delay timing (without clock propagation 
delay or uncertainty). In Figure 10-24, if CLK2 is skewed later than CLK1 by more than 
the active-high pulse width of CLK1, a hold violation can still occur.

Figure 10-26 shows a set of ideal test clock waveforms for a set of overlapping test clocks. 
The clock edges are numbered by their edge timing order, with the latest clock edge 
indicated by (1). Clock edges with identical ideal clock edge timing are highlighted.

Figure 10-26 Ideal Test Clock Waveforms for Overlapping Test Clocks

Figure 10-27 shows how DFT Compiler constructs a scan chain containing a scan cell 
clocked by each clock edge. The scan cells are ordered with the cells clocked by the latest 
clock edges coming first. Lock-up latches are inserted between scan cells clocked by the 
clock edges with identical ideal clock edge timing.

Figure 10-27 Scan Chain Lock-Up Latches for Overlapping Test Clocks

However, in most designs, all test clocks share identical return-to-zero test clock waveforms, 
as shown in Figure 10-28.

Figure 10-28 Ideal Test Clock Waveforms for Simple Test Clocks

In this case, the ordering behavior is simplified. The scan cells are ordered with all 
falling-edge scan cells first and all rising-edge scan cells last, as shown in Figure 10-29. 
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Lock-up latches are inserted between differently-clocked scan cells within the rising-edge 
and falling-edge sections of the scan chain.

Figure 10-29 Scan Chain Lock-Up Latches for Simple Test Clocks

DFT Compiler inserts a lock-up latch at the same level of hierarchy as the scan output pin of 
the preceding scan element:

• If the preceding element is a CTL model or is located in a block containing CTL model 
information, the lock-up latch is inserted at the level of hierarchy where the CTL model 
exists.

• If the preceding element is a leaf scan cell (that does not exist in a CTL-modeled block), 
the lock-up latch is inserted at the level of hierarchy where the scan cell exists.

The set_scan_configuration command provides options to control lock-up latch 
insertion. By default, DFT Compiler performs automatic lock-up latch insertion for 
multiplexed flip-flop scan chains. To disable this feature, use the -add_lockup option of the 
set_scan_configuration command:

dc_shell> set_scan_configuration -add_lockup false

To add lock-up latches at the end of each scan chain to assist with potential block-to-block 
timing issues during core integration, use the -insert_terminal_lockup option of the 
set_scan_configuration command:

dc_shell> set_scan_configuration -insert_terminal_lockup true

The default lock-up element type is a level-sensitive lock-up latch. To use a lock-up flip-flop 
instead, use the -lockup_type option of the set_scan_configuration command:

dc_shell> set_scan_configuration -lockup_type flip_flop

When a lock-up flip-flop is used, the data is held as shown in Figure 10-30.
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Figure 10-30 Timing for Two Scan Cells With a Lock-Up Flip-Flop

Regardless of your selected scan style or configuration, you can explicitly add scan lock-up 
elements to your scan chain by using the set_scan_path command.

For successful lock-up operation, the falling edge of the current scan cell must occur after or 
concurrent with the rising edge of the next scan cell. This requirement is always inherently 
met when DFT Compiler inserts lock-up elements between scan chain cells. However, when 
you are manually inserting lock-up elements with the set_scan_path command, you must 
ensure that this requirement is met.

Use the preview_dft -show cells command to see where the insert_dft command will 
insert scan lock-up elements in your scan chain:

dc_shell> preview_dft
...
Scan chain '1' (test_si --> Z[3]) contains 4 cells:

  Z_reg[0]                      (CLK1, 45.0, rising)
  Z_reg[1] (l)
  Z_reg[2]                      (CLK2, 45.0, rising)
  Z_reg[3]

You can also use the scan_lockup cell attribute to locate lock-up elements:

dc_shell> set lockup_cells \
            [get_cells -hierarchical * -filter {scan_lockup==true}]

Automatically Creating Skew Subdomains Within Clock Domains

This topic describes how the tool can add lock-up latches within a clock domain between 
subdomains that might have higher skew between them.

Note:   
This feature is only supported for the multiplexed flip-flop scan style.

For the purpose of building scan chains, the insert_dft command, by default, treats the 
entire clock network driven by a given clock source as the same-skew clock signal.
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Consider the netlist shown in Figure 10-31, which shows a clock network structure before 
clock tree synthesis. By default, the insert_dft command treats all four flip-flops as 
belonging to the same-skew top-level clock signal, CLK.

Figure 10-31 Circuit With Same Top-Level Clock Driving Internal Clock Signals

Note that the MUX cell introduces a delay in the clock network. If clock tree synthesis 
balances the test mode clock latency equally to all flip-flops, the MUX cell should not cause 
any timing problems. However, since clock tree synthesis might not consider the test mode 
clock tree latencies used for scan shift, a potential scan path hold violation could occur at 
FF3/SI.

To avoid creating this potential hold time violation, you can treat the scan cells downstream 
from any multi-input cell as a different skew subdomain within the clock domain, driven by 
their own internal clock pin (such as the MUX output pin).

To do this, use the following command:

dc_shell> set_scan_configuration -internal_clocks multi

This command instructs the insert_dft command to

• Identify all multiple-input gates (such as MUX cells) in each clock network.

Note:   
Integrated clock-gating cells, which are combinational or sequential cells that have 
the clock_gating_integrated_cell attribute defined, are not considered; they are 
transparent for the determination of skew subdomains.

• Create an internal clock at the output pins of these gates.

• Treat these internal clocks as skew subdomains of the parent clock.

This feature affects only scan chain architecture; the clock network is still a single test clock 
domain for all other DFT operations, including writing out the test protocol.
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The resulting scan chains depend on the current clock-mixing setting, which is controlled by 
the -clock_mixing option of the set_scan_configuration command. If clock mixing is 
disabled by specifying the no_mix or mix_edges clock-mixing mode, the insert_dft 
command creates separate scan chains for each internal clock, as shown in Figure 10-32.

Figure 10-32 Circuit With Internal Clocks With Clock Mixing Disabled

If clock mixing is enabled by specifying the mix_clocks or mix_clocks_not_edges 
clock-mixing mode, the insert_dft command can use lock-up latches to keep the scan 
cells from different internal clocks on the same scan chain, as shown in Figure 10-33.

Figure 10-33 Circuit With Internal Clocks With Clock Mixing Enabled

If global clock mixing is disabled, you can still enable clock mixing for the internal clocks 
within each parent clock domain by using the -mix_internal_clock_driver option of the 
set_scan_configuration command:

dc_shell> set_scan_configuration \
            -internal_clocks multi \
            -clock_mixing no_mix | mix_edges \
            -mix_internal_clock_driver true

D
SI
SE

Q

FF1 D
SI
SE

Q

FF3CLK

D
SI
SE

Q

FF4

D
SI
SE

Q

FF2

PLL

test_mode

test_si1
test_so1

test_so2
test_si2

set_scan_configuration \
  -internal_clocks multi  -clock_mixing no_mix | mix_edges

D
SI
SE

Q

FF1 D
SI
SE

Q

FF3CLK

D
SI
SE

Q

FF4

D
SI
SE

Q

FF2

PLL

test_mode

test_si

test_so
L

set_scan_configuration \
  -internal_clocks multi -clock_mixing mix_clocks | mix_clocks_not_edges
Chapter 10: Architecting Your Test Design
Architecting Test Clocks 10-59
Chapter 10: Architecting Your Test Design
Architecting Test Clocks 10-59



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
You can create skew subdomains within specific clock domains by using the 
-internal_clocks option of the set_dft_signal command. The following command tells 
the insert_dft command to create internal clocks at multiple-input cells only for the CLK 
domain:

dc_shell> set_dft_signal -view existing_dft \
               -type ScanClock -timing [list 45 55] \
               -internal_clocks multi -port CLK

If you set different -internal_clocks values using the set_scan_configuration and 
set_dft_signal commands, the more specific setting applied with the set_dft_signal 
command takes precedence. For example, assume that you set the following opposing 
-internal_clocks values by using these two commands:

dc_shell> set_scan_configuration -internal_clocks none

dc_shell> set_dft_signal -view existing_dft \
               -type ScanClock -timing [list 45 55] \
               -internal_clocks multi -port CLK

Because the value set by the set_dft_signal command takes precedence, signals driven 
by CLK via MUX cells or other multiple-input gates are treated as separate clocks. All other 
clocks in the design are treated according to the default configuration.

This feature is similar to the -associated_internal_clocks feature described in 
“Manually Creating Skew Subdomains at Associated Internal Pins” on page 10-60, except 
that the internal clocks are created at all multi-input cell output pins instead of only 
user-specified pins.

When you use user-defined test points or test points inserted by AutoFix, testability logic 
might be inserted in the clock network. The preview_dft command does not see internal 
clocks created by test points, but the insert_dft command does. For more information 
about test points, see Chapter 11, “Advanced DFT Architecture Methodologies.”

Manually Creating Skew Subdomains at Associated Internal Pins

This topic describes how you can manually define subdomains of a parent clock network 
that might have higher skew between them.

For the purpose of building scan chains, the insert_dft command, by default, treats the 
entire clock network driven by a given clock source as the same-skew clock signal.

Consider the netlist shown in Figure 10-34, which shows a clock network structure before 
clock tree synthesis. By default, the insert_dft command treats all four flip-flops as 
belonging to the same-skew top-level clock signal, CLK.
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Figure 10-34 Circuit With Same Top-Level Clock Driving Internal Clock Signals

Note that the MUX cell introduces a delay in the clock network. If clock tree synthesis 
balances the test mode clock latency equally to all flip-flops, the MUX cell should not cause 
any timing problems. However, since clock tree synthesis might not consider the test mode 
clock tree latencies used for scan shift, a potential scan path hold violation could occur at 
FF3/SI.

To avoid creating this potential hold time violation, you can treat the scan cells downstream 
from the MUX cell as a different skew subdomain within the clock domain, driven by their 
own internal clock pin (the MUX output pin).

To do this, define the scan clock as follows:

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
            -timing {45 55} -associated_internal_clocks {UMUX/Z}

This command instructs the insert_dft command to

• Create an internal clock at each associated internal pin in the list.

• Treat these internal clocks as skew subdomains of the parent clock.

This feature affects only scan chain architecture; the clock network is still a single test clock 
domain for all other DFT operations, including writing out the test protocol.

In the previous example, the clock network contains a skew subdomain driven by UMUX/Z, 
plus the remainder of the parent clock domain, as shown in Figure 10-35. These are treated 
as separate clock domains according to the set_scan_configuration -clock_mixing 
setting applied to the design.
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Figure 10-35 Circuit With Top-Level Clock Source and Associated Internal Clock Pin

This feature is similar to the -internal_clocks feature described in “Automatically 
Creating Skew Subdomains Within Clock Domains” on page 10-57, except that the internal 
clocks are created only at the user-specified pins instead of all multi-input cell output pins.

Associated internal clocks take precedence over any -internal_clocks specifications.

Limitations

Note the following requirements and limitations:

• Associated internal clocks can be defined only on leaf pins, not hierarchical pins.

• Pre-DFT DRC drives the clock signal directly at both the clock source and the internal 
pins, allowing the clock signal to bypass cells that are black boxes in synthesis. However, 
post-DFT DRC drives the clock signal only at the clock source.

To propagate the clock through blockages during post-DFT DRC, use a custom 
test_setup procedure (if initialization vectors are needed) or the 
test_simulation_library variable (if Verilog simulation models are needed).

• This feature is used only with -view existing_dft clock signal definitions.

• The association is valid only when -type is MasterClock, ScanMasterClock, 
ScanSlaveClock, or ScanClock.

• To remove the internal pin associations, you must use the remove_dft_signal 
command to remove both the DFT signal and the association list.

• The -mix_internal_clock_driver option of the set_scan_configuration command 
does not affect associated internal clocks defined in the current design.

• The -hookup_sense option has no effect. You can only associate the same clock edge 
of a list of pins to a top-level clock edge.

• The report_dft_signal command does not show the associated internal pins.
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Manually Creating Skew Subdomains With Scan Skew Groups

This topic describes how you can define a skew subdomain on any arbitrary set of scan 
cells. Such a set of scan cells is called a scan skew group.

Note:   
This feature is only supported for the multiplexed flip-flop scan style.

In some cases, you might want to provide manual guidance for lock-up latch insertion 
between areas of the design with potentially differing clock tree latencies. Consider 
Figure 10-36, in which block BLK has a different clock latency than the top-level logic.

Figure 10-36 Circuit With Clock Tree Containing Multiple Latency Regions 

A lock-up latch at the scan input pin of BLK would prevent hold violations along the scan 
path. However, the scan chain is entirely within the same scan clock domain, and there are 
no multi-input cells that allow the -internal_clocks option to be used.

You can use scan skew groups to provide manual guidance for lock-up latch insertion. A 
scan skew group is a group of scan cells that might have a different clock latency 
characteristic than other parts of the design. The DFT architect treats the scan skew group 
as a unique skew subdomain.

To define a scan skew group, use the set_scan_skew_group command:

set_scan_skew_group
  group_name
  -include_elements {include_list}

Each scan skew group has a unique name for identification. The include list can contain leaf 
cells, hierarchical cells, and CTL-modeled cells. Wildcards and collections are supported. 
You can define as many scan skew groups in your design as needed. You cannot include 
the same scan cell in multiple scan skew groups.

For the previous example, consider the following scan skew group definition:

dc_shell> set_scan_skew_group BLK_SSG -include_elements {BLK/FF*}

If clock mixing is enabled, DFT insertion adds a lock-up latch between the top-level and 
block-level scan cells, as shown in Figure 10-37. (If clock mixing is disabled, DFT insertion 
keeps the top-level and block-level scan cells in separate scan chains, not shown.)
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Figure 10-37 Circuit With Lock-Up Latch Due to Scan Skew Group Definition 

Scan skew groups override the normal scan clock domain identification behaviors such as

• Scan clock name

• The -internal_clocks option of the set_scan_configuration command

• The -mix_internal_clock_driver option of the set_scan_configuration command

The preview_dft -show {scan_clocks} command reports the scan skew group name as 
the clock name. For example,

Scan chain '1' (test_si1 --> test_so1) contains 3 cells:
  FF1 (l)                   (CLK, 45.0, rising)
  BLK/FF2                   (BLK_SSG/Z, 45.0, rising)
  BLK/FF3

If you include scan cells from different scan clock domains in the same scan skew group, the 
preview_dft and insert_dft commands issue a warning message:

Scan skew group 2CLK_SSG contains scan cells from the following clock 
domains: CLK1, CLK2. (TEST-1923)

In this case, the DFT architect treats all cells in the scan skew group as if they are in the 
same clock domain. No lock-up latches will be inserted between them, as shown by the 
example in Figure 10-38. This can occur even if clock mixing is disabled because the scan 
cells in the scan skew group are no longer treated as belonging to different clock domains.

Figure 10-38 Circuit With Scan Skew Group Spanning Multiple Clock Domains
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Scan skew groups override only clock identity considerations. They do not override the clock 
timing considerations of scan chain architecture such as

• Scan clock waveform timing

• Scan clock edge polarity

Defining Scan Chains by Scan Clock

You might want to define a scan chain that is specific to a particular scan clock domain. To 
do this, use the -scan_master_clock option of the set_scan_path command:

dc_shell> set_scan_path chain_name -view spec \
            -scan_master_clock clock_name

If you also use the -exact_length option to define the number of scan cells to be included 
in that scan chain, DFT Compiler includes additional scan cells clocked by other clocks if the 
clock-mixing requirements allow.

If you use the -edge option with the -scan_master_clock option when defining a scan path 
using the set_scan_path command, the tool includes only the elements controlled by the 
specified edge of the specified clock in the scan chain. The valid arguments to the -edge 
option are rising and falling.

For example,

dc_shell> set_scan_path c1 -view spec \
            -scan_master_clock clk1 -edge rising

In this example, scan chain c1 will contain elements that are triggered by the rising edge of 
clock clk1.

Note the following limitations of the -edge option:

• When there are no elements present for the defined scan chains, the scan path name is 
reused.

• This option is not supported with multivoltage designs.

• This option is not supported with the other set_scan_path options, such as the -head, 
-tail,  -ordered, and -length options.

If the specifications in the set_scan_path command cannot be met, they are not applied.

Handling Multiple Clocks in LSSD Scan Styles

This topic provides information on handling multiple clocks in level-sensitive scan designs 
(LSSD) scan styles.
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Using Multiple Master Clocks

In LSSD scan designs, you need not allocate scan chains by clock for timing purposes; 
however, you might want to do so. Assume that you have a latch-based design with two 
system enables, en1 and en2, and you want a scan chain allocated for each enable. The 
command sequence given in Example 10-6 accomplishes this.

Example 10-6 Command Sequence for Multiple Master Clocks in LSSD

dc_shell> set_scan_configuration -style lssd

# create test A clock ports and assign to scan chains
dc_shell> create_port -direction in {A_CLK1 A_CLK2}
dc_shell> set_dft_signal -view spec -port A_CLK1 \

            -type ScanMasterClock
dc_shell> set_scan_path 1 -view spec \
               -scan_master_clock A_CLK1
dc_shell> set_dft_signal -view spec -port A_CLK2 \

            -type ScanMasterClock
dc_shell> set_scan_path 2 -view spec \
               -scan_master_clock A_CLK2

# explicitly allocate cells to scan chains by system enable
dc_shell> create_clock en1 -name cclk1 -period 100
dc_shell> set cclk1_cells [get_object_name [all_registers -clock cclk1]]
dc_shell> set_scan_path 1 -include_elements $cclk1_cells
dc_shell> create_clock en2 -name cclk2 -period 100
dc_shell> set cclk2_cells [get_object_name [all_registers -clock cclk2]]
dc_shell> set_scan_path 2 -include_elements $cclk2_cells

# preview scan configuration and implement
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> preview_dft -show all
dc_shell> insert_dft

Dedicated Test Clocks for Each Clock Domain

The insert_dft command creates clocks that are used only for test purposes when it 
routes scan chains by using the following scan styles:

• LSSD (which includes clocked LSSD)

• Scan-enabled LSSD

The test clocks are dedicated for each system clock domain. This makes clock trees and 
clock signal routing easier. The insert_dft command uses the following guidelines to 
determine how test clocks are added:

• For sequential cells with multiple test clocks, the insert_dft command adds a test 
clock for each unique set of master and slave system clocks. For example, in 
Figure 10-39, cell U1 is clocked by C1 (master) and B1 (slave), cell U2 is clocked by C2 
Chapter 10: Architecting Your Test Design
Architecting Test Clocks 10-66



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
and B1, cell U3 is clocked by C1 and B2, and cell U4 is clocked by C2 and B2, resulting 
in four unique clock sets. As a result, the insert_dft command adds four test clocks, 
one for each unique clock set.

Figure 10-39 Adding Test Clocks for Sequential Cells With Multiple Test Clocks

• For cells that are clocked by the same system clock, the insert_dft command adds the 
same test clock to these cells, even though they are clocked by different clock senses 
(rising edge, falling edge, active low, and active high). When a clock is distributed to pins 
with mixed clock senses, the insert_dft command inserts inverters to ensure design 
functionality.

Controlling LSSD Slave Clock Routing

For designs using either LSSD scan style or clocked LSSD scan style, all single-latch and 
flip-flop elements have an unconnected slave clock pin after scan replacement.

If possible, the insert_dft command uses the slave clocks distributed to double-latch 
elements and does either of the following:

• Creates, at most, one new port per design when you want to use only the slave clocks 
distributed to the double-latch elements

• Creates one or more ports when you want test clocks created according to different 
system clocks

The insert_dft command uses the following guidelines when connecting slave clock pins 
of single-latch and flip-flop elements after scan replacement:

• Connect the unconnected slave clock pin of LSSD scan style single-latch or flip-flop 
elements to the slave clock pin of the double-latch that is clocked by the same system 
clock. See Figure 10-40.

Note:   
For clarity, the A clock is omitted in Figure 10-40 through Figure 10-43 after scan 
replacement.
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Figure 10-40 Single-Latch and Double-Latch Cells With the Same System Clock

• Connect to a new slave clock, creating a new one if necessary, if a system clock drives 
multiple cells with different slave clocks. See Figure 10-41.

Figure 10-41 Single-Latch and Double-Latch Cells Clocked by the Same System Clock

• Connect to a new slave clock port, creating one if necessary, if double-latch cells are 
driven by different clocks. See Figure 10-42.
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Figure 10-42 Single-Latch and Double-Latch Cells Clocked by Separate System Clocks

• Connect to a new slave clock, creating a new port if necessary, if there are no 
double-latch cells. See Figure 10-43.

Figure 10-43 Connecting Slave Clock Pin: No Double-Latch Cells

Configuring Clock-Gating Cells

The following topics discuss how to incorporate clock-gating logic into your DFT design:

• Introduction to Clock Gating in DFT Flows

• Clock-Gating Control Points

• Discrete-Logic Clock-Gating Cells and Integrated Clock-Gating Cells

• Inferred and Instantiated Clock-Gating Cells
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• Choosing a Clock-Gating Control Point Configuration

• Reporting Unconnected Clock-Gating Cell Test Pins During Pre-DFT DRC

• Automatically Connecting Test Pins During DFT Insertion

• Specifying Signals for Clock-Gating Cell Test Pin Connections

• Identifying Clock-Gating Cells in an ASCII Netlist Flow

• Limitations

Introduction to Clock Gating in DFT Flows

Clock gating provides a way to disable, or gate, the clock signal to a set of flip-flops to 
reduce their switching power consumption. However, clock gating requires special 
consideration in DFT-inserted designs.

To be included in scan chains, sequential cells must be reliably clocked during scan shift. In 
the example in Figure 10-44, the clock-gating control signal is driven by scan cells in the 
scan chain, which causes pre-DFT DRC to identify the gated clock signal as uncontrollable. 
As a result, the clock-gated cells are omitted from the scan chain, and test observability is 
reduced at their register inputs and test controllability is reduced at their register outputs.

Figure 10-44 Example of Clock-Gating Cell Without Testability Control Signal

To resolve this, clock-gating cells require an override control signal to keep the clock signal 
always-active in scan shift mode. The following sections describe different ways of 
implementing and controlling this override control signal of clock-gating cells.
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Clock-Gating Control Points

The following topics discuss how clock-gating control points can be configured:

• Configuring Clock-Gating Control Points

• Scan-Enable Signal Versus Test-Mode Control Signal

• Improving Observability When Using Test-Mode Control Signals

Configuring Clock-Gating Control Points

In a clock-gating cell, a control point is a testability logic gate that allows the clock to be 
forced always-active when a test control signal is asserted. There are two degrees of 
freedom in control point implementation, as shown in Figure 10-45:

• The control point can be placed before or after the latch element.

• The control signal can be driven by the scan-enable or test-mode signal.

Figure 10-45 Clock-Gating Control Points Before and After Latch

The set_clock_gating_style command configures these two aspects using the following 
options:

• The -control_point option specifies where to insert the control point relative to the 
latch. It can be set to none, before, or after. The default is none.

• The -control_signal option specifies what type of control signal to use. It can be set 
to test_mode or scan_enable. The default is scan_enable.

You can use the -control_signal option only when the -control_point option is set 
to before or after. If an existing signal of the specified type has been defined with the 
set_dft_signal command, it is used. Otherwise, a new signal is created. See 
“Automatically Connecting Test Pins During DFT Insertion” on page 10-80 for details.

For most designs, the “before” control point style driven by the scan-enable signal is 
recommended for the following reasons:

• The “before” control point ensures that no combinational path exists from the control 
signal input port to the downstream clock pins of the scan cells.
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• If the “after” control point is used and both phases of the clock are gated in the design, 
there is no time at which the control signal can cleanly toggle without truncating an active 
clock pulse.

• Most integrated clock-gating (ICG) cells are implemented using control points before the 
latch. For more information on ICG cells, see “Discrete-Logic Clock-Gating Cells and 
Integrated Clock-Gating Cells” on page 10-74.

• A scan-enable control signal ensures that the gated clocks are always-active during scan 
shift, but that the functional clock-gating paths can still be tested during scan capture.

• A test-mode control signal prevents the functional clock-gating paths from being tested, 
requiring additional testability logic to be inserted in the design.

The following command implements the recommended control point style:

dc_shell> set_clock_gating_style \
            -control_point before -control_signal scan_enable

Scan-Enable Signal Versus Test-Mode Control Signal

The scan-enable and test-mode signals differ in the following ways:

• A scan-enable signal is asserted only during scan shift.

• A test-mode signal is asserted during the entire test (scan shift and scan capture).

Using the scan-enable signal as the clock-gating control signal typically provides higher fault 
coverage than the test-mode signal because the functional clock-gating path is exercised in 
scan capture mode. Fault coverage with the scan-enable signal is comparable to a circuit 
without clock gating, as shown in Figure 10-46.

Figure 10-46 Test Coverage With Scan-Enable Signal

If you use a test-mode signal as the clock-gating control signal, the test-mode signal is 
asserted during both scan shift and scan capture. This bypasses the functional clock-gating 
control logic completely and prevents it from being tested in scan capture mode, as shown 
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in Figure 10-47. In addition, the clock-gating enable signal asserted by the test-mode signal 
can be tested only for stuck-at-0 faults (assuming an active-high test-mode signal).

Figure 10-47 Test Coverage With Test-Mode Signal

Improving Observability When Using Test-Mode Control Signals

If you must use a test-mode signal as the clock-gating control signal, you can enable an 
observability logic feature that improves coverage of the functional logic generating the 
gating signal. Figure 10-48 shows an observability logic example.

Figure 10-48 Observability Logic in Clock-Gating Circuits

In test mode, an XOR tree observes the functional gating control signals from one or more 
clock-gating cells; the output of the XOR tree is captured by a dedicated observability 
register. This observability register is included in the scan chains, but its output is not 
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otherwise connected functionally in the design. AND or NAND gates (depending on 
synthesis) prevent the observability logic from consuming power during mission mode.

Note that placing the control point after the latch allows the latch to be tested by the 
observability logic.

To enable clock-gating observability logic when using test-mode control signals, use the 
following command:

dc_shell> set_clock_gating_style \
            -control_signal test_mode \
            -observation_point true

The tool inserts an observability logic structure in each design hierarchy level where 
clock-gating cells exist. By default, the maximum depth of each XOR tree is 5, which means 
that a maximum of 25 = 32 clock-gating control signals can be observed within a hierarchy 
level by one observability register. The tool adds more observability registers as needed.

To change the maximum depth of the XOR tree, use the following command:

dc_shell> set_clock_gating_style \
            -observation_logic_depth logic_depth

If you set the logic depth of your XOR tree too small, clock gating creates more XOR trees 
and associated registers to provide enough XOR inputs to accommodate signals from all the 
gated registers. Each additional XOR tree adds some overhead for area and power. Using 
one XOR tree adds the least amount of overhead to the design.

If you set the logic depth of your XOR tree too high, clock gating can create one XOR tree 
with plenty of inputs. However, too large a tree can cause the delay in the observability 
circuitry to become critical. 

Use a value that meets the following two criteria in choosing or changing the XOR logic tree 
depth:

1. High enough to create the fewest possible XOR trees

2. Low enough to prevent critical delay in the observability circuitry

Discrete-Logic Clock-Gating Cells and Integrated Clock-Gating 
Cells

Clock-gating cells can be classified by cell structure into two types:

• Discrete-logic clock-gating cells

These are clock-gating cells that are built from discrete logic library gates, such as a 
latch gate and an AND gate.
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• Integrated clock-gating cells (ICGs)

These are library cells that contain the clock-gating logic within a single integrated library 
cell. Their Liberty library cell models describe information such as the type of control 
point (none, before, or after) and the setup and hold requirements of the gating signal 
versus the clock signal.

Figure 10-49 shows an example of both types of clock-gating cells (with active-high clock 
signals, active-high control signals, and the control points before the latch).

Figure 10-49 Discrete-Logic and Integrated Clock-Gating Cells

For both types of clock-gating cell, the pin that drives the control signal is called the test pin 
of the clock-gating cell.

You can use Power Compiler to insert either type of clock-gating cell. Use the 
set_clock_gating_style command to configure the desired clock-gating cell 
characteristics. For discrete-logic clock-gating cells, Power Compiler builds customized 
gate-level clock-gating structures (contained in a level of hierarchy) according to your 
specifications. For integrated clock-gating cells, Power Compiler searches the available 
target libraries and uses integrated clock-gating cell that match your specifications, or you 
can specify a particular cell by name.

Inferred and Instantiated Clock-Gating Cells

The following topics describe the two ways to incorporate clock-gating logic into your design:

• Inferring Clock-Gating Cells Using Power Compiler

• Instantiating Clock-Gating Cells in the RTL

Inferring Clock-Gating Cells Using Power Compiler

You can use Power Compiler to automatically infer clock-gating logic where load-enabled 
registers are described in the RTL. The resulting gating logic is typically inserted at the 
leaf-level registers of the clock tree based on each register’s functionality, which is referred 
to as fine-grained clock gating.
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When Power Compiler inserts clock-gating cells in the design (either discrete-logic or 
integrated clock-gating cells), it automatically annotates attributes so that DFT Compiler can 
identify the clock-gating cells and make the necessary test signal connections during DFT 
insertion.

To automatically insert clock-gating cells using Power Compiler during initial RTL synthesis, 
use the -gate_clock option of the compile or compile_ultra command. For example,

dc_shell> compile_ultra -scan -gate_clock

Power Compiler ties the test pins of inserted clock-gating cells to ground. The resulting 
clock-gating cells behave only in their functional capacity until you run DFT insertion, at 
which point the test pins are connected to the appropriate test control signals.

See Also

• The “Clock Gating” chapter of the Power Compiler User Guide for more information on 
using Power Compiler to configure and insert clock-gating logic in your design

Instantiating Clock-Gating Cells in the RTL

You can describe clock-gating logic in your RTL. This is often done near clock tree sources 
to gate entire clock domains for power savings, which is referred to as coarse-grained clock 
gating.

Unlike inferred clock-gating cells, instantiated clock-gating (ICG) cells are not automatically 
recognized by DFT insertion. You must manually identify them so that their test pins are 
connected to a clock-gating control signal.

There are three ways to identify instantiated ICG cells:

• set_app_var power_cg_auto_identify true

This variable setting causes the tool to look for and identify any not-yet-identified ICG 
cells. This analysis is performed each time a command that works on clock-gating 
circuitry is called.

• identify_clock_gating [-gating_elements cells]

This command causes the tool to look for and identify any not-yet-identified ICG cells. 
This analysis is performed when the command is run. You can use the 
-gating_elements option to restrict identification to particular cells.

• set_dft_clock_gating_pin -pin_name pin object_list

This command manually identifies ICG cells by specifying their test pins. For details, see 
“Connecting User-Instantiated Clock-Gating Cells” on page 11-127.
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DFT insertion connects only test pins that are undriven or driven by a logic constant; these 
valid test pins are reported by TEST-130 messages during pre-DFT DRC. Test pins with 
other existing connections are left unchanged, and no message is reported for them.

For non-ICG clock-gating logic (built with discrete logic gates), you must incorporate your 
own testability logic; DFT insertion does not make connections to manually instantiated 
discrete-logic clock-gating logic.

Instantiated ICG Cells With Existing RTL Test-Pin Connections

For instantiated ICG cells, an “existing test-pin connection” refers to an ICG test pin driven 
by a non-constant signal in the RTL.

Control signals used by existing test-pin connections must be defined in both the spec and 
existing_dft signal views:

# define ScanEnable signal for clock-gating cells
set_dft_signal -view spec \
  -type ScanEnable -port SE_ICG
set_dft_signal -view existing_dft \
  -type ScanEnable -port SE_ICG  ;# needed for existing RTL connections

The existing_dft signal definition ensures that pre-DFT DRC understands the existence 
and function of that signal. Otherwise, scan cells driven by that ICG cell incur D1 or D9 
violations and are omitted from the scan chains.

Normally, ICG cells with existing test-pin connections do not need to be identified to the tool. 
However, they must be identified if you are also inserting LogicBIST self-test; see “Ensuring 
Testability for Integrated Clock-Gating Cells” on page 31-23.

Table 10-5 Comparison of Existing Clock-Gating Cell Identification Methods 

Clock-gating cell
identification method

Reporting
command

Warning for existing
RTL connections?

set_app_var 
power_cg_auto_identify true

report_clock_gating
(after automatic identification runs)

No

identify_clock_gating report_clock_gating No

set_dft_clock_gating_pin report_dft_clock_gating_pin Yes (TEST-2059)
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Choosing a Clock-Gating Control Point Configuration

Table 10-6 shows the possible combinations of latch-based clock gating, clock waveforms, 
control signals, and control point location you can use.

Table 10-6 Latched-Based Clock-Gating Configurations 

Clock-gating 
style

Clock 
waveform

Control signal Control point 
location

Gated register can 
be scanned?

Latch-based 
gating for 
positive-edge 
flip-flops

test_mode Before latch Yes

After latch Yes

scan_enable Before latch Yes

After latch Yes

test_mode Before latch Yes1

After latch Yes

scan_enable Before latch Yes2

After latch No

Latch-based 
gating for 
negative-edge 
flip-flops

test_mode Before latch Yes

After latch Yes

scan_enable Before latch Yes

After latch Yes

test_mode Before latch Yes1

1. This configuration requires additional initialization cycles to be manually specified for the test protocol.

After latch Yes

scan_enable Before latch Yes2

2. This configuration supports only one level of clock gating.

After latch No
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For each combination, the last column indicates whether the gated register can be included 
in scan chains. Four special cases, marked with footnotes, require additional consideration 
as described in the following section.

Initialization for Special Cases of Before-Latch Control Points

In the four special cases marked by footnotes in Table 10-6, the gating latch is inactive at the 
beginning of the test program (time = 0). This unknown latch state causes an X value to 
reach the gated flip-flops, which would normally prevent them from being included in scan 
chains. Figure 10-50 shows the clock waveform and clock-gating logic for these cases.

Figure 10-50 Special Clock-Gating Cases With Inactive Latch at Beginning of Test Clock Cycle

If you are using a scan-enable control signal, which asserts and de-asserts during every test 
pattern, the DRC engine performs an analysis of the clock-gating logic to verify a known 
state in the latch. This analysis supports only one such level of special-case clock gating, 
although you can have additional levels of non-special-case clock gating.

If you are using a test-mode control signal, to achieve a known state in the latch, you must 
add a clock pulse to the test_setup section of the test protocol. Use the following 
set_dft_drc_configuration command to update the test_setup section with the clock 
pulse:

dc_shell> set_dft_drc_configuration -clock_gating_init_cycles 1

If you have multiple cascaded latch-based clock-gating cells and the first latch is loaded with 
the test-mode signal, use the following set_dft_drc_configuration command to update 
the test_setup section with the specified number of clock pulses:

dc_shell> set_dft_drc_configuration -clock_gating_init_cycles n

Here, n equals the number of clock pulses required to initialize clock-gating latches.

Note the following:

• The set of clock cycles should equal the depth of the chain of clock-gating latches. Make 
sure this is the case.

• Violations still occur when there are multiple cascaded latches and the scan-enable and 
control point location are used as before, with mixed active-high and active-low latches.
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Reporting Unconnected Clock-Gating Cell Test Pins During 
Pre-DFT DRC

When you run pre-DFT DRC, the tool issues a TEST-130 message for every clock-gating 
cell (discrete-logic or integrated) known to DFT Compiler whose test pin is not yet 
connected. For example,

Warning: Clock gating cell sub1/clk_gate_ZI_reg has unconnected test pin.
(TEST-130)
Information: Cells with this violation : sub1/clk_gate_ZE_reg,
sub1/clk_gate_ZI_reg, sub2/clk_gate_ZE_reg, sub2/clk_gate_ZI_reg.
(TEST-283)

If clock-gating cell test pin connections are enabled (which is the default), this message is 
informational and no action is needed. DFT insertion hooks up the test pin to the appropriate 
test signal. Although the test pin is not yet connected, pre-DFT DRC models the clock-gating 
cell as if connected.

If clock-gating cell test pin connections are disabled (using the -connect_clock_gating 
disable option of the set_dft_configuration command), this message is a warning that 
the indicated test pin is unconnected and will not be connected by DFT insertion. For more 
information on this case, see the TEST-130 man page.

This message is reported only for clock-gating cell test pins known to DFT Compiler. For 
clock-gating cells inserted by Power Compiler, no action is needed. For manually 
instantiated integrated clock-gating cells, use the set_dft_clock_gating_pin command 
to identify the test pins to be connected; if you do not identify these test pins, pre-DFT DRC 
does not issue this message or model the clock-gating cells as controllable, and DFT 
insertion will not connect the test pins.

If the test pin of a clock-gating cell is already connected, no TEST-130 message is reported 
by pre-DFT DRC, and the flip-flops controlled by the clock-gating cell are put onto the scan 
chain during DFT insertion provided no other violations exist for the cell.

Automatically Connecting Test Pins During DFT Insertion

When you run the insert_dft command, the tool automatically hooks up any unconnected 
test pins of clock-gating cells known to DFT Compiler, corresponding to the TEST-130 
messages issued during pre-DFT DRC.

Note:   
The insert_dft command preserves any clock-gating test pins with preexisting 
connections; the command creates only missing connections.

DFT insertion makes the connections of the top-level scan-enable or test-mode signals to 
the test pins of the clock-gating cells through the hierarchy. If the design does not have a test 
port at any level of hierarchy, a new test port is created. If a test port exists, it is used.
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Table 10-7 describes the connections made by the insert_dft command.

Note:   
The DFT signal specifications intended for clock-gating cell connections are not 
mode-specific. Therefore you cannot specify a test mode using the -test_mode option 
of the set_dft_signal command.

Clock-gating cell test pins are hooked up by default. To disable this feature, use the following 
command:

dc_shell> set_dft_configuration -connect_clock_gating disable

Specifying Signals for Clock-Gating Cell Test Pin Connections

By default, DFT Compiler chooses an available ScanEnable or TestMode signal to connect 
to clock-gating cell test pins, depending on the type of control signal specified with the 
set_clock_gating_style command. However, you can also define a dedicated 
ScanEnable or TestMode signal to use for these test pin connections.

Table 10-7 Connections Made to the Clock-Gating Cells by insert_dft 

Clock-gating 
control signal

DFT signal defined? Top-level port used

scan_enable No set_dft_signal defined 
with -type ScanEnable

test_se created and connected to test pins 
of clock-gating cells.

scan_enable set_dft_signal
-view spec|exist
-type ScanEnable
-port test_se
-active_state 0|1

No new port created. User-defined port 
test_se used to connect to test pins of 
clock-gating cells.

test_mode No set_dft_signal defined 
with -type TestMode

New port. test_cgtm created to connect to 
test pins of clock-gating cells.

test_mode set_dft_signal
-view spec|exist
-type TestMode
-port test_mode
-active_state 0|1

No new port created. User-defined port 
test_mode used to connect to test pins of 
clock-gating cells.
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Specifying a Global Clock-Gating Control Signal

You can define a global clock-gating ScanEnable or TestMode control signal by using the 
-usage clock_gating option when defining the signal with the set_dft_signal 
command:

set_dft_signal
    -type ScanEnable | TestMode
    -view spec
    -usage clock_gating
    -port port_list

The -type option must be set to ScanEnable or TestMode to match the design’s 
clock-gating control-signal style. You can report the control-signal style using the 
report_clock_gating -style command. If these settings do not match, the signal 
specification is ignored.

The -view option must be set to spec because DFT insertion makes new connections to the 
signal.

When you define a clock-gating control signal with the clock_gating usage, the 
insert_dft command is limited to using only that signal to connect to the test pins of 
clock-gating cells. If there are insufficient ScanEnable or TestMode signals for other 
purposes, DFT Compiler creates additional ScanEnable or TestMode signals as needed.

You can use the report_dft_signal and remove_dft_signal commands for reporting 
and removing the specification, respectively.

Specifying Object-Specific Clock-Gating Control Signals

You can also define dedicated ScanEnable or TestMode clock-gating control signals for 
specific parts of the design by using the -connect_to option of the set_dft_signal 
command:

set_dft_signal
    -type ScanEnable | TestMode
    -view spec
    -usage clock_gating
    -port port_list
    [-connect_to object_list]
    [-exclude object_list]

The -connect_to option specifies a list of design objects that are to use the specified 
clock-gating control signal. The supported object types are

• Clock-gating cells

For Power Compiler clock-gating cells, specify the hierarchical clock-gating cell. For 
existing clock-gating cells identified with the set_dft_clock_gating_pin command, 
specify the leaf clock-gating cell.
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• Hierarchical cells

• Designs

• Test clock ports

This allows you to make clock-domain-based signal connections. It includes clock-gating 
cells that gate the specified test clocks. The functional clock behavior is not considered.

Note:   
This specification requires that a functional clock also be defined on the test clock 
port.

• Scan-enable or test-mode pins of CTL-modeled cores

You can also use the -exclude option to specify a list of clock-gating cells, hierarchical cells, 
or design names to exclude from the object-specific control signal.

The following example defines a ScanEnable signal named SE_CG to connect to the test 
pins of existing clock-gating cells ICG_CLK100 and ICG_CLK200:

dc_shell> set_dft_signal \
            -type ScanEnable -view spec -port SE_CG \
            -usage clock_gating -connect_to {ICG_CLK100 ICG_CLK200}

Identifying Clock-Gating Cells in an ASCII Netlist Flow

If you are using an ASCII netlist flow and clock-gating cell attributes are not present, you 
need to ensure that the required attributes are present for the clock-gating cells so that the 
dft_drc and insert_dft commands can recognize them. You can do this by using the 
identify_clock_gating command or by following a Power Compiler recommended flow 
and manually identifying the clock-gating cells.

Limitations

Note the following limitations:

• The insert_dft command cannot be used on an unmapped design to connect to 
clock-gating cells, that is, when a design is still in the RTL stage.

• Only the clock-gating cells recognized by Power Compiler are supported for automatic 
test pin connection. You must manually specify the test pins of user-instantiated 
integrated clock-gating cells. For more information, see “Connecting User-Instantiated 
Clock-Gating Cells” on page 11-127.
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• If you use the set_dft_signal -connect_to command to make clock-domain-based 
connections to clock-gating cells, only Power Compiler clock-gating cells are considered; 
user-instantiated clock-gating cells are not considered.

• Clock-gating cell connections are not mode-specific.

• The preview_dft and insert_dft commands do not report connections made to 
clock-gating cells.

Specifying a Location for DFT Logic Insertion

By default, DFT Compiler places global test logic, such as test-mode decode logic and 
compressed scan codecs, at the top level of the current design. Other test logic types, such 
as lock-up latches and reconfiguration MUXs, are placed at the local point of use.

You can specify alternative insertion locations for different types of test logic with the 
set_dft_location command:

set_dft_location dft_hier_name
  [-include test_logic_types]
  [-exclude test_logic_types]

The specified instance name must be a hierarchical cell. It cannot be a library cell, black box, 
or black-box CTL model.

If the specified hierarchical cell does not exist, the insert_dft command creates it during 
test insertion. For more information, see “Creating New DFT Logic Blocks” on page 10-88.

By default, all test logic is synthesized inside the specified hierarchical cell. To synthesize 
only some types of test logic at that location, use the -include or -exclude option and list 
the test logic types to be included in or excluded from the specified cell.

For example, to place DFTMAX codec logic inside my_cell, and place the remaining test 
logic at the top level:

dc_shell> set_dft_location my_cell -include CODEC

To place all test logic inside my_cell except for test control module logic, which remains at 
its default top-level location:

dc_shell> set_dft_location my_cell -exclude TCM

The valid test logic types are:

• CODEC

This type includes the compressor and decompressor (codec) logic inserted by the tool 
for compressed scan, serialized compressed scan, and streaming compressed scan 
modes.
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• PIPELINE_SI_LOGIC

This type includes all head and tail pipelined scan data registers.

• PIPELINE_SE_LOGIC

This type includes all pipelined scan-enable logic.

• PLL

This type includes on-chip clock controller (OCC) and clock chain logic. For more 
information, see Chapter 13, “On-Chip Clocking Support.”

• WRAPPER

This type includes core wrapping cells and wrapper mode logic configured by the 
set_wrapper_configuration command. For more information, see Chapter 12, 
“Wrapping Cores.”

• BSR

This type includes the IEEE Std 1149.1 boundary scan register logic inserted when the 
set_dft_configuration -bsd enable command is used.

• TAP

This type includes the IEEE Std 1149.1 TAP controller logic inserted when the 
set_dft_configuration -bsd enable command is used.

• SERIAL_CNTRL

This type includes the serializer clock controller used in serializer flows.

• SERIAL_REG

This type includes the standalone deserializer and serializer registers used in the 
serializer IP insertion flow. This type does not affect the normal serializer insertion flow.

• XOR_SELECT

This type includes the sharing compressor and block-select logic inserted at the 
compressor outputs in the shared codec I/O flow. For more information, see “Sharing 
Codec Scan I/O Pins” on page 21-20.

• TCM

This type includes the test control module logic that decodes test-mode signals in a 
multiple test-mode flow. For more information about multiple test modes, see “Multiple 
Test Modes” on page 11-63.

• LOCKUP_LATCH

This type includes all lock-up latches.
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• RETIMING_FLOP

This type includes all retiming flip-flops.

• REC_MUX

This type includes all scan chain reconfiguration MUXs used to reconfigure scan chains 
for different test modes in a multiple test-mode flow. It also includes scan-out MUXs, 
tristate and bidirectional disable logic, and any other glue logic added during DFT 
insertion.

• IEEE_1500

This type includes all DFT-inserted IEEE 1500 logic used for test-mode control. At the 
chip level, it also includes the server logic that interfaces to the IEEE Std 1149.1 TAP 
controller.

When test logic is placed in an alternative location, new test signal pins are created on 
hierarchical blocks as needed to route the test signals to the specified location. Table 10-8 
lists the possible port types and their naming conventions. If you are moving test logic with 
many individual signals, such as lock-up latch cells, this can result in a large number of 
hierarchy pins being created.

Table 10-8 New Hierarchy Pin Naming Conventions for DFT-Modified Instances 

Port Purpose Direction

test_si%d External scan input pin Input

test_so%d External scan output pin Output

test_se Scan enable (single) Input

test_se%s Scan enables (multiple) Input

test_mode%d Test-mode Input

comp_shift_clk%d External compression shift clock Input

comp_lfsr_clk%d External compression linear 
feedback shift register (lfsr) clock 
pins

Input

comp_load_en%d External compression load pins Input

comp_unload_en%d External compression unload pins Input

scan_in%d Internal scan-in pins Output
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If you issue multiple set_dft_location commands, the insert_dft command uses the 
last specified location for each test logic type during DFT insertion. In Example 10-7, 
reconfiguration MUXs and lock-up latches are kept at their local point of use, test-mode 
decode logic is placed in a top-level UTCM block, and all other test logic types are placed in 
a UTEST_LOGIC block.

Example 10-7 Issuing Multiple set_dft_location Commands

set_dft_location -exclude {REC_MUX LOCKUP_LATCH BSR} UTEST_LOGIC
set_dft_location -include {TCM} UTCM    ;# TCM location is overwritten

You can use the report_dft_location command to see the currently defined locations for 
all DFT logic types. The default location for global test logic types is reported as <top>, 
which represents the top level of the current design. The default location for local test logic 
types is reported as <local>, which represents the local point of use. Example 10-8 shows 
the report resulting from the commands in Example 10-7.

Example 10-8 Example of a report_dft_location Report

Design Name     DFT PARTITION NAME    DFT TYPE    DFT Hierarchy Location
========================================================================
top             default_partition      BSR                <top>
top             default_partition      CODEC              UTEST_LOGIC
top             default_partition      LOCKUP_LATCH       <local>
top             default_partition      XOR_SELECT         <top>
top             default_partition      RETIMING_FLOP      <local>
top             default_partition      TAP                UTEST_LOGIC
top             default_partition      TCM                UTCM
top             default_partition      PIPELINE_SE_LOGIC  UTEST_LOGIC
top             default_partition      PIPELINE_SI_LOGIC  UTEST_LOGIC
top             default_partition      PLL                UTEST_LOGIC
top             default_partition      REC_MUX            <local>
top             default_partition      SERIAL_CNTRL       UTEST_LOGIC
top             default_partition      SERIAL_REG         UTEST_LOGIC

scan_out%d Internal scan-out pins Input

Lockup_latch clock Name of clock driving the lock-up 
latch

Input

Functional input net name Net name where the tool inserts the 
scan-out MUX

Input

Testmode name_out Output test-mode pin for a 
test_mode

Output

Table 10-8 New Hierarchy Pin Naming Conventions for DFT-Modified Instances (Continued)

Port Purpose Direction
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top             default_partition      WRAPPER            UTEST_LOGIC
top             default_partition      IEEE_1500          UTEST_LOGIC

You can use the remove_dft_location command to remove the location specification for 
one or more test logic types. When a test logic type has no location specification, it is 
inserted at its default location.

In a multiple partition flow, only the following test logic types can be specified on a 
per-partition basis: CODEC, SERIAL_REG, PIPELINE_SI_LOGIC, LOCKUP_LATCH, REC_MUX. 
For other test logic types, you can only specify the location for the default partition.

The following test logic types are not affected by the set_dft_location command:

• AutoFix logic

• Automatically inserted test points

• User-defined test points

• AND gates inserted by the insert_dft command to suppress toggling

Creating New DFT Logic Blocks

When using the set_dft_location command, if a specified hierarchical cell does not exist, 
the set_dft_location command issues a warning:

dc_shell> set_dft_location UCODEC -include {CODEC TCM}
Warning: Specified hierarchy name 'UCODEC' doesn't exist in the current
  design 'test'. (UIT-1112)
Accepted DFT location specification.
1
dc_shell> set_dft_location UOCC  -include {PLL}
Warning: Specified hierarchy name 'UOCC' doesn't exist in the current
  design 'test'. (UIT-1112)
Overwriting previous DFT Hierarchy Location specification for type 'PLL'.
Accepted DFT location specification.
1

During DFT insertion, the insert_dft command creates the hierarchical cells before 
inserting the DFT logic and issues information messages with the cell and design names of 
the new DFT blocks:

dc_shell> insert_dft
...
Created instance 'UCODEC' of design 'top_dft_design'
Created instance 'UOCC' of design 'top_dft_design_1'
  Architecting Scan Chains

You can specify cell instance names with the set_dft_location command, but the 
resulting design names are automatically generated. To use specific design names for the 
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new DFT blocks, use the rename_design command after DFT insertion completes. For 
example,

set_dft_location UCODEC -include {CODEC TCM}
set_dft_location UOCC  -include {PLL}
insert_dft
rename_design [get_attribute [get_cells UCODEC] ref_name] CODEC_design
rename_design [get_attribute [get_cells UOCC] ref_name] OCC_design

Partitioning a Scan Design With DFT Partitions

In some cases, you might want to apply different DFT configuration to different parts of the 
design. For example, you might want to use different scan-enable signals for different 
blocks, or you might want to enable clock-mixing for some blocks but not others.

You can use DFT partitions to do this. They allow you to divide up your design logic into 
multiple partitions, then you apply DFT configuration commands to each partition.

The following topics describe how to use DFT partitions:

• Defining DFT Partitions

• Configuring DFT Partitions

• Per-Partition Scan Configuration Commands

• Known Issues of the DFT Partition Flow

Defining DFT Partitions

To use DFT partitions, you must first define them. You can use the following commands to 
define and manage partition definitions in your top-level run:

• define_dft_partition

• report_dft_partition

• remove_dft_partition

You can use the define_dft_partition command to define a partition. The most 
commonly used options are:

define_dft_partition
    partition_name
    [-include list_of_cells_or_references]
    [-clocks list_of_clocks]
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You must provide a unique name for each partition definition. This name is used to reference 
the partition when providing codec information, as well as to identify the partition in 
subsequent DFT reports.

A partition definition can include design references, hierarchical cells, scan cells, core scan 
segments, or clock domains. Although partitions are usually defined along physical or logical 
hierarchy boundaries, it is not a requirement.

To specify a set of cells, design references, or core scan segments, use the -include 
option. Leaf cells can be specified, although only sequential cells are relevant to the partition 
definition. Design references are converted to the set of all hierarchical instances of those 
designs. A particular cell or design reference can exist in only one partition definition. In 
Example 10-9, two partitions are defined using hierarchical cells, and a third partition is 
defined using a design reference.

Example 10-9 Defining Three Partitions Using Cells and References

define_dft_partition P1 -include [get_cells {U_SMALL_BLK1 U_SMALL_BLK2}]
define_dft_partition P2 -include [get_cells {U_BIG_BLK}]
define_dft_partition P3 -include [get_references {my_ip_design}]

A partition can also be defined to include one or more clock domains with the -clocks 
option. The partition includes all flip-flops clocked by the specified clocks. In Example 10-10, 
two partitions are created by clock domain.

Example 10-10 Defining Partitions by Clock Domain

define_dft_partition P1 -clocks {CLK1 CLK2}
define_dft_partition P2 -clocks {CLK3}

The tool creates a default partition named default_partition that includes the flip-flops not 
included in any user-defined partitions. You cannot use the name default_partition when 
defining a partition.

You can use the report_dft_partition command to see what partitions have been 
defined. Example 10-11 shows the output from the report_dft_partition command for 
the three partitions previously defined in Example 10-9. Note that the design reference has 
been converted to the corresponding set of hierarchical instances of that design.

Example 10-11 Example of Output From the report_dft_partition Command

Cells or Designs defined in Partition 'P1':
     U_SMALL_BLK1
     U_SMALL_BLK2
Cells or Designs defined in Partition 'P2':
     U_BIG_BLK
Cells or Designs defined in Partition 'P3':
     U_MY_IP_BLK
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You can use the remove_dft_partition command to remove one or more user-defined 
partition definitions. The default partition cannot be removed.

remove_dft_partition {P1 P2 P3}

Configuring DFT Partitions

After the DFT partitions are defined, you can configure the scan configuration for each 
partition. Use the current_dft_partition command to set the current partition, then apply 
one or more supported test configuration commands to configure scan for that partition.

All DFT partitions share a common global configuration. Partition-specific configuration 
commands are applied incrementally on top of the global configuration.

In a DFT partition flow, the sequence of configuration commands is:

• Apply global DFT configuration settings

• Define DFT partitions with define_dft_partition

• Apply partition-specific DFT configuration settings to each partition with 
current_dft_partition

Example 10-12 shows an example of global and partition-specific configuration commands.

Example 10-12 Configuring Two DFT Partitions

# apply global DFT configuration settings
set_scan_configuration -clock_mixing mix_clocks
set_dft_signal -view existing_dft \
    -type ScanClock -timing [list 45 55] -port CLK
set_dft_signal -view spec -type TestMode -port TM

# define DFT partitions
define_dft_partition P1 -include {BLK1}
define_dft_partition P2 -include {BLK2}

# configure DFT partition P1
current_dft_partition P1
set_dft_signal -view spec -type ScanEnable -port SE1
set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_scan_configuration -chain_count 2

# configure DFT partition P2
current_dft_partition P2
set_dft_signal -view spec -type ScanEnable -port SE2
set_dft_signal -view spec -type ScanDataIn -port {SI3 SI4 SI5}
set_dft_signal -view spec -type ScanDataOut -port {SO3 SO4 SO5}
set_scan_configuration -chain_count 3
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If you are defining scan-in or scan-out signals using the set_dft_signal command, you 
must define them as a part of each partition’s scan configuration. Scan-enable signals can 
be defined globally or on a per-partition basis. However, if a scan-enable signal is defined 
for only one partition, it is automatically applied to the remaining partitions. Other signal 
types, such as reset, clock, and test-mode signals, must be defined globally before any 
partitions are defined, or as part of the default partition configuration.

For the entire design, the total scan chain count is the sum of the scan chain counts across 
all partitions. Each scan chain requires its own scan-in and scan-out pin pair, just as a scan 
chain does in an unpartitioned flow. Scan chains are not combined or rebalanced across the 
partitions.

Figure 10-51 shows the scan mode chain connections for Example 10-12. A total of five 
scan-in and scan-out pins are used, two for partition P1 and three for partition P2.

Figure 10-51 DFT Partition Scan Chains

After configuring the partitions, you can use the preview_dft command to display the scan 
chain distribution across partitions. Example 10-13 shows a report example.

Example 10-13 Output From the preview_dft Command for Multiple DFT Partitions

****************************************
Current mode: Internal_scan
****************************************

Number of chains: 5
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

Scan chain '1' (SI1 --> SO1) contains 32 cells  (Partition 'P1')
  Active in modes: Internal_scan

Scan chain '2' (SI2 --> SO2) contains 32 cells  (Partition 'P1')
  Active in modes: Internal_scan

Scan chain '3' (SI3 --> SO3) contains 22 cells  (Partition 'P2')
  Active in modes: Internal_scan

P1 scan-ins

P1 scan-outs

P1 P2

P2 scan-ins

P2 scan-outs
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Scan chain '4' (SI4 --> SO4) contains 21 cells  (Partition 'P2')
Active in modes: Internal_scan

Scan chain '5' (SI5 --> SO5) contains 21 cells  (Partition 'P2')
Active in modes: Internal_scan

Per-Partition Scan Configuration Commands

This topic lists the commands you can use to configure DFT insertion on a per-partition 
basis. Commands not listed in this section should be applied as part of the global DFT 
configuration.

set_scan_configuration

The following set_scan_configuration options can be specified on a per-partition basis:

• -chain_count

• -max_length

• -exact_length

• -clock_mixing

• -insert_terminal_lockup

• -test_mode

• -exclude_elements

• -voltage_mixing

• -power_domain_mixing

set_dft_signal

The following set_dft_signal options can be specified on a per-partition basis:

• -view

• -type ScanDataIn | ScanDataOut | ScanEnable | LOSPipelineEnable

• -port

• -hookup_pin

• -hookup_sense

• -active_state
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set_dft_location

The following set_dft_location test logic types can be specified on a per-partition basis 
with the -include and -exclude options:

• CODEC

• SERIAL_REG

• PIPELINE_SI_LOGIC

• LOCKUP_LATCH

• REC_MUX

For other test logic types, you can only specify the location for the default partition.

set_scan_path

The following set_scan_path options can be specified on a per-partition basis:

• -include_elements

• -head_elements

• -tail_elements

• -ordered_elements

• -complete

• -exact_length

• -scan_master_clock

• -scan_slave_clock

• -scan_enable

• -scan_data_in

• -scan_data_out
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set_wrapper_configuration

The following set_wrapper_configuration options can be specified on a per-partition 
basis:

• -chain_count

• -max_length

• -mix_cells

Known Issues of the DFT Partition Flow

The following known issues apply to the partition flow:

• The -include option of the set_scan_path command requires lists of cells and design 
names. The option does not accept collections.

• If you repeat the same partition name, no error or warning message is issued. The first 
partition definition is honored and the rest are ignored.

• If you define a scan-enable signal for a partition, that scan-enable signal is reused for 
any subsequently configured partitions for which the signal has not been defined. This 
reuse avoids having to create new scan-enable signals.

• The define_dft_partition command does not perform duplicate object checking 
between cell instances and design modules. The overlapping objects will be included 
only in one of the partitions.

• If you apply commands or options that do not support per-partition specification to a DFT 
partition, they are ignored with no warning.

Modifying Your Scan Architecture

Unless conflicts occur, the set_scan_configuration commands are additive. You can 
enter multiple set_scan_configuration commands to define your scan configuration. If a 
conflict occurs, the latest set_scan_configuration command overrides the previous 
configuration. 

To modify your scan configuration, you can rely on the override capability or remove the 
complete scan configuration and start over. Use the reset_scan_configuration 
command to remove the complete scan configuration. Do not use the reset_design 
command to remove the scan configuration. Configuring the scan chain does not place 
attributes on the design, so the reset_design command has no effect on the scan 
configuration and removes all other attributes from your design, including constraints 
necessary for optimization.
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To make minor adjustments to the scan architecture, modify the scan specification script 
generated by the preview_dft -script command.

dc_shell> preview_dft -script > scan_arch.tcl
dc_shell> # manually modify scan_arch.tcl to reflect desired architecture
dc_shell> source scan_arch.tcl
dc_shell> preview_dft
dc_shell> insert_dft

See Also

• “Previewing the DFT Logic” on page 15-2 for more information about previewing scan 
chain structures
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Advanced DFT Architecture Methodologies 11

This chapter describes advanced features that can be used while inserting scan circuitry into 
your design. These features can be used to improve design testability using manual and 
automatic techniques, improve the frequency of the scan testing logic, reduce power 
consumption during test, and provide improved integration of tool-inserted and user-defined 
test logic.

This chapter describes advanced DFT architecture-related methodologies and processes in 
the following topics:

• Inserting Test Points

• Using AutoFix

• Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

• Multiple Test Modes

• Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

• Multivoltage Support

• Controlling Power Modes During Test

• Reducing Shift Power Using Functional Output Pin Gating

• Controlling Clock-Gating Cell Test Pin Connections

• Internal Pins Flow
11-1
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• Creating Scan Groups

• Shift Register Identification

• Performing Scan Extraction
Chapter 11: Advanced DFT Architecture Methodologies
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Inserting Test Points

Test points are points in the design where the DFTMAX tool inserts logic to improve the 
testability of the design. The tool can automatically determine where to insert test points to 
improve test coverage and reduce pattern count. You can also manually define where test 
points are to be inserted.

The test point capabilities are described in the following topics:

• Test Point Types

• Test Point Structures

• Automatically Inserted Test Points

• User-Defined Test Points

• Previewing the Test Point Logic

• Inserting the Test Point Logic

Important:   
To use any functionality in this section, you must enable the testability client by using 
the following command:

dc_shell> set_dft_configuration -testability enable

Otherwise, the tool provides the legacy test point functionality described in Appendix B, 
“Legacy Test Point Insertion.”

Test Point Types

The available test point types are:

• Force Test Points

• Control Test Points

• Observe Test Points

• Multicycle Test Points

Note:   
The test point schematics in these topics show the functional operation of the test points. 
During synthesis, constant logic is simplified, and the test point logic might be optimized 
into the surrounding logic.
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Force Test Points

Force test points allow a signal to be overridden (always force) throughout the entire test 
program. They are typically used to block some other value (such as an X value) from 
propagating.

The following force test point types are available:

• force_0

• force_1

• force_01

The force_0 and force_1 test point types allow a signal to be replaced with a constant 0 or 
constant 1 value throughout the entire test session. These test point types are useful when 
a particular signal must be forced to a known value for testability purposes. A logic gate is 
used to replace the original signal with a fixed constant 0 or 1 value when the TestMode 
signal is asserted. See Figure 11-1.

Figure 11-1 Example of a force_0 or force_1 Test Point

The force_01 test point type allows a signal to be replaced with a scan-selected value 
throughout the entire test session. A multiplexer is used to replace the original signal with 
the output of this scan register when the TestMode signal is asserted. See Figure 11-2.

Figure 11-2 Example of a force_01 Test Point
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The forced value can vary per-pattern (as the scan register reloads with each pattern), but it 
remains constant for all capture cycles within a given pattern.

Control Test Points

Control test points allow a hard-to-control signal to be controllable (selectively forced) for 
some test vectors but not others. They are typically inserted to increase the fault coverage 
of the design. They provide some control while still allowing some observation of upstream 
logic.

The following control test point types are available:

• control_0

• control_1

• control_01

A control_0 or control_1 test point is built with a controlling logic gate, an enabling AND 
gate, and a source scan register. When TestMode is not asserted, the signal always retains 
its original value. When TestMode is asserted, the signal is forced with a fixed constant 0 or 
1 value only when the output of the scan register selects the constant value. This allows the 
test program to select either the original signal behavior or the constant-forced behavior on 
a per-pattern basis. See Figure 11-3 and Figure 11-4.

Figure 11-3 Example of a control_1 Test Point
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Figure 11-4 Example of a control_0 Test Point

A control_01 test point is similar to the control_0 and control_1 test point types, except 
that a scan-selected source signal value from a scan register is selectively driven onto the 
net on a vector-by-vector basis. As a result, the control_01 test point requires two scan 
cells per control point, one for the source signal value and one for the enable register that 
specifies that the source signal should be driven. See Figure 11-5.

Figure 11-5 Example of a control_01 Test Point

A control point can be enabled or disabled per-pattern, but its assertion behavior remains 
constant across capture cycles within a given pattern.
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Observe Test Points

The observe test point type is typically inserted at hard-to-observe signals in a design to 
reduce test data volume or to increase coverage.

An observe test point is a scan register with its data input connected to the signal to be 
observed. See Figure 11-6.

Figure 11-6 Example of an observe Test Point

Multicycle Test Points

During ATPG, when a scan cell captures a value from a logic path constrained by a 
multicycle path exception, it captures a dynamic X value because the multicycle logic might 
not be stable by the capturing clock edge. These captured X values can affect other 
captured values in compressed designs, and they can propagate through the scan cell into 
other areas of the design when fast sequential ATPG is used.

The multicycle test point prevents these X values from being captured. It implements the 
following scan capture behavior:

• When the TestMode signal is asserted, the register holds state instead of capturing.

• When the TestMode signal is deasserted, the register captures normally.

Scan shift operation and functional operation are unaffected. This test point uses 
reconfigured scan path logic to avoid inserting logic along the functional path. See 
Figure 11-7.
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Figure 11-7 Example of a Multicycle Test Point

The multicycle test point does not provide coverage for the blocked capture path. However, 
it does prevent multicycle X values from propagating into scan compression logic or self-test 
logic.

Multicycle test points can only be inserted using automatic test point insertion.

Test Point Structures

The following topics describe how test point logic is structured:

• Test Point Components

• Test Point Register Clocks

• Test Point Enable Logic

• Sharing Test Point Registers

Test Point Components

Test points are constructed from (up to) three primary components:

• Pin

The functional pin where the test point is inserted to assert its behavior. This is the pin 
where the test point is “located at.” Every test point has a corresponding insertion pin.

• Register

A scan-controllable register that provides source (driving) or sink (capturing) capability to 
the test point logic. A single register can be shared by multiple test points. Some test 
points do not use a register.

• Control signal

The TestMode or lbistEnable signal that activates the test point logic.
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Table 11-1 summarizes which components are used by each type of test point.

Note:   
Test point registers do not have a reset signal; their value is set by scan shift when used 
and blocked by the control signal when not used.

Test Point Register Clocks

As described in “Test Point Components” on page 11-8, some test point types use a register 
to drive (source) or capture (sink) data. By default, the tool clocks this register with the same 
clock as the surrounding logic.

For source registers, the tool uses the dominant clock of the fanout registers, which capture 
data propagating from the test point:

Figure 11-8 Using Dominant Fanout Clock

Table 11-1 Components Used by Each Type of Test Point 

Test point 
type

Source
register?

Sink
register?

Control 
signal?

force_0,
force_1

X

force_01 X X
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X X
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observe X X
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For sink registers, the tool uses the dominant clock of the fanin registers, which drive data 
that propagates to the test point:

Figure 11-9 Using Dominant Fanin Clock

Or, you can specify a dedicated test point clock signal to be used for all test point registers:

• You can specify the name of a scan clock signal, defined as a ScanClock signal type with 
the set_dft_signal command.

• In a DFT-inserted OCC controller flow, you can specify the name of a PLL output pin. In 
this case, the tool maps the test point clock to the output pin of the corresponding OCC 
controller during DFT insertion.

• In a user-defined OCC controller flow, you can directly specify the name of an output pin 
of an existing OCC controller.

For more information about OCC controller flows, see Chapter 13, “On-Chip Clocking 
Support.

For multivoltage designs, the register is associated with the power domain of the block in 
which the test point is inserted.

Test Point Enable Logic

When a test point is not enabled, its register output must be held constant.

When the test_tp_enable_logic_type application variable is set to its default of gate, 
the tool uses a gate-based (AND or OR) enable logic structure to meet this requirement, as 
shown in Figure 11-10.
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Figure 11-10 Default Gate-Based Enable Logic Structure

When the test_tp_enable_logic_type application variable is set to reset or set, the tool 
uses an asynchronous reset- or set-based enable logic structure, as shown in Figure 11-11.

Figure 11-11 Reset-Based and Set-Based Enable Logic Structure

The asynchronous enable logic behaves as shown in Table 11-2.

Note:   
The figures and table in this topic assume active-high DFT signals and active-low 
asynchronous pins for simplicity. The actual logic implementation considers the signal 
and pin polarities in your design.

Table 11-2 Asynchronous Set/Reset Enable Logic Behavior 

TestMode
(control signal)

ScanEnable Register operation

1
(test point enabled)

1 Register scan shifts

1
(test point enabled)

0 Source register holds state,
sink register captures

0
(test point disabled)

1 Register scan shifts
(in a test mode where the test point is not enabled)

0
(test point disabled)

0 Register “captures” set or reset value in test mode,
holds set or reset value in functional mode

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE ScanOut

Source test-point register

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE

ScanOut

Sink test-point register

(observe)
(control
or force)

TestMode

ScanIn

CLK
ScanEnable

ScanOut

Source test-point register

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE

ScanOut

Sink test-point register

(observe)

(control
or force)

D
SI
SE

Q

TPE

QN

TestMode
Chapter 11: Advanced DFT Architecture Methodologies
Inserting Test Points 11-11
Chapter 11: Advanced DFT Architecture Methodologies
Inserting Test Points 11-11



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
The selected enable logic type is used for all DFT-inserted source and sink test point 
registers, including the “control+observe” test point used by the self_gating testability 
target.

See Also

• SolvNet article 2835133, “Why Doesn't a Reset-Based Test Point Register Need a 
Defined Reset Signal?” for details on how the reset signal is used

Sharing Test Point Registers

By default, to reduce the area overhead of test point logic, the DFTMAX tool shares each 
test point register with multiple test points.

Sharing Source and Enable Registers

A source or enable test point register can be shared with multiple force or control test point 
pins. No additional logic gates are required; the register outputs are tied to multiple test point 
logic gates. Figure 11-12 shows the logic for multiple control_0 and control_1 test points 
that share the same enable register.

Figure 11-12 Shared Source Register for Multiple control_0/1 Test Points

Sharing Sink Registers

A sink test point register can be shared with multiple observe test point pins. The tool builds 
an XOR reduction tree which collapses multiple observed signals down to a single sink 
signal connected to the data input of the sink register. See Figure 11-13.
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Figure 11-13 Shared Sink Register For Multiple observe Test Points

Sharing Rules

The test point pins within each sharing group share the same test point type, clock domain, 
and power domain. The pins are chosen to be in close physical or logical proximity. The 
maximum number of pins in a group is set by the -test_points_per_scan_cell option of 
the relevant test point configuration command. The register is inserted in the lowest 
hierarchy level common to all pins.

A register cannot be shared as both a source (data) and enable (control) register.

Physical Test Point Grouping

In Design Compiler topographical mode and in Design Compiler Graphical, the tool groups 
pins that are in close physical proximity, then creates the test point register within the group. 
Test point groups of differing type, clock domain, or power domain are created 
independently and thus might overlap.

Figure 11-14 Shared Source Registers (Red) and Sink Registers (Blue)
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See SolvNet article 2670826, “Visualizing Test-Point Register Sharing in the Layout View” to 
display the sharing groups in your own design.

Wire Load Mode Grouping

In wire load mode, compatible pins are sorted in alphanumerical order, then grouped along 
the sorted list. This method tends to keep pins together with common logical hierarchy, 
which is correlated (to some degree) to physical proximity.

Automatically Inserted Test Points

You can automatically insert test points in your design to improve its testability. With this 
feature, the DFTMAX tool calls the SpyGlass DFT tool to analyze the design and determine 
an optimal set of test points, then the DFTMAX tool implements them during DFT insertion.

You can use one or more test point targets, each focusing on a different aspect of testability:

• random_resistant

This target inserts test points that improve random-pattern coverage. This improves the 
coverage for a given pattern count. It can also improve the maximum coverage 
obtainable for the design.

• untestable_logic

This target inserts test points that make untestable logic testable. This improves the 
maximum coverage obtainable for a design. It also improves the coverage for a given 
pattern count.

• x_blocking

This target inserts test points to block X values at their sources so they cannot propagate 
into downstream logic and be captured.

• multicycle_paths

This target inserts test points to prevent multicycle-path-constrained logic from being 
captured by scan cells (which ATPG treats as an X value).

• shadow_wrapper

This target inserts shadow wrappers around untestable blocks or macrocells so that 
surrounding logic can be tested. The outputs are forced to known values and the inputs 
are observed to ensure coverage.

• core_wrapper

This target inserts a test-point-based wrapper chain at the data I/O ports of the current 
design. Only inward-facing (INTEST) functionality is provided, but test point register 
sharing ensures very low overhead.
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• self_gating

This target inserts test points that improve the testability of XOR self-gating logic. (For 
details on this clock-gating feature, see the “XOR Self-Gating” section of the Power 
Compiler User Guide.)

• user

This target inserts test points whose types and locations are provided by the user.

The following topics describe how to configure automatic test point insertion:

• Enabling Automatic Test Point Insertion

• Configuring Global Test Point Insertion Settings

• Configuring the Random-Resistant Test Point Target

• Configuring the Untestable Logic Test Point Target

• Configuring the X-Blocking Test Point Target

• Configuring the Multicycle Path Test Point Target

• Configuring the Shadow Wrapper Test Point Target

• Configuring the Core Wrapper Test Point Target

• Configuring the XOR Self-Gating Test Point Target

• Configuring the User-Defined Test Point Target

• Enabling Multiple Targets in a Single Command

• Implementing Test Points From an External File

• Customizing the Test Point Analysis

• Running Test Point Analysis

• Automatic Test Point Insertion Example Script

• Limitations

Enabling Automatic Test Point Insertion

To enable automatic test point insertion, issue the following command before pre-DFT DRC:

dc_shell> set_dft_configuration -testability enable

Note:   
A DFTMAX license and a Spyglass® DFT ADV license are required to use the automatic 
test point insertion feature.
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Then, use the set_testability_configuration command to configure one or more 
automatic test point targets:

• To configure global settings, which are shared by all targets, omit the -target option.

• To enable a particular target (and to optionally configure any target-specific options it 
supports), specify that target with the -target option.

To enable multiple test point targets, issue a separate configuration command for each 
target, as shown in “Automatic Test Point Insertion Example Script” on page 11-33.

Before previewing the test points with the preview_dft command, run test point analysis as 
described in “Running Test Point Analysis” on page 11-32.

Configuring Global Test Point Insertion Settings

To configure global aspects of automatic test point insertion, use the 
set_testability_configuration command without the -target option:

set_testability_configuration
  [-clock_signal clock_name]
  [-control_signal control_name]
  [-test_points_per_scan_cell n]
  [-sg_command_file file_name]
  [-max_test_points n]
  [-test_point_file file_name]

Table 11-3 shows the global configuration options.

Table 11-3 Global set_testability_configuration Options 

To do this Use this option

Use a single dedicated clock for all test point 
registers in the design1

-clock_signal clock_name

(default is the dominant clock)

Use a particular TestMode signal to enable 
the test points1

-control_signal control_name

(default is the first available TestMode signal)

Specify the number of force, control, or 
observe points that can share a test point 
register1

-test_points_per_scan_cell n

(default is 8)

Customize the test point analysis with 
user-provided SpyGlass DFT Tcl commands

-sg_command_file file_name
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The -max_test_points option applies to the random_resistant and untestable_logic 
targets. When both targets are enabled, the analysis automatically allocates the global limit 
across them. Any per-target -max_test_points limits apply in addition to, not in place of, 
the global limit.

Configuring the Random-Resistant Test Point Target

You can use the random_resistant test point target to improve the testability of hard-to-test 
logic in your design. This improves the coverage for a given pattern count. It can also 
improve the maximum coverage obtainable and ATPG effectiveness for the design.

The random-resistant target invokes a SpyGlass DFT algorithm that determines an optimal 
set of test points that improves random-pattern test coverage for a given pattern count. It 
provides the following benefits:

• High capacity—No random pattern simulation is used; instead, the pattern count is a 
parameter in a mathematical probabilistic fault-detection analysis.

• Easy to use—The algorithm finds the optimum set of control_0, control_1, and observe 
test points; there is no need to guess at per-type limits.

To enable and configure the random-resistant target, use the following command:

set_testability_configuration
  -target random_resistant
  [-clock_signal clock_name]
  [-control_signal control_name]
  [-test_points_per_scan_cell n]
  [-effort low | medium | high]
  [-max_test_points n]
  [-target_test_coverage coverage_value]
  [-random_pattern_count n]
  [-include_elements cell_list]
  [-exclude_elements cell_list]

Set the maximum number of 
random_resistant and untestable_logic 
test points (combined) that can be inserted

-max_test_points n

(default is 5% of the total register count)

Implement test points defined in an external 
file (see “Implementing Test Points From an 
External File” on page 11-28)

-test_point_file file_name

1. This option can also be specified per-target to override the global value.

Table 11-3 Global set_testability_configuration Options (Continued)

To do this Use this option
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The -target random_resistant option enables the random-resistant target and is 
required to use it. The remaining options, described in Table 11-4, can be specified to 
override their defaults.

If you are inserting LogicBIST self-test, for best results, set the -random_pattern_count 
option to the number of self-test patterns.

See Also

• The Info_random_resistance rule documentation in the SpyGlass DFT documentation 
for details on the random-resistant analysis algorithm and its parameters

Table 11-4 Random-Resistant set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of a 
parameter

-clock_signal clock_name

-control_signal control_name

-test_points_per_scan_cell n

Control the runtime-versus-accuracy tradeoff of 
the analysis

-effort low | medium | high

(default is medium)

Set the number of random-resistant test points 
at which the analysis completes1

1. Random-resistant analysis completes when either of these criteria is met.

-max_test_points n

(default is no target-specific limit)

Set the random-pattern test coverage value at 
which the analysis completes1

-target_test_coverage coverage_value

(default is 100)

Specifies the random pattern count used for the 
analysis

-random_pattern_count n

(default is 64000)

Restrict test point insertion to only particular 
hierarchical cells

-include_elements cell_list

(default is to consider the entire design)

Exclude particular hierarchical cells from test 
point insertion 

-exclude_elements cell_list

(default is not to exclude anything)
Chapter 11: Advanced DFT Architecture Methodologies
Inserting Test Points 11-18

https://solvnet.synopsys.com/dow_retrieve/latest/spyglass/spyglass_olh/htmlhelp/index.html#page/dft%2FInfo_random_resistance.htm


DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Configuring the Untestable Logic Test Point Target

You can use the untestable_logic test point target to make untestable logic testable. This 
improves the maximum coverage obtainable for a design. It also improves the coverage for 
a given pattern count.

The untestable logic target invokes a SpyGlass DFT algorithm that determines an optimal 
set of force_01 and observe test points to control uncontrollable nets and observe 
unobservable logic, respectively.

Figure 11-15 Untestable Logic Made Testable

The untestable logic target differs from the X-blocking target as follows:

• It inserts observe test points as well as force_01 test points.

• It performs gain-based analysis, which prefers test points with the highest testability 
improvement first.

• It considers the -max_test_points option.

To enable and configure the untestable logic target, use the following command:

set_testability_configuration
  -target untestable_logic
  [-clock_signal clock_name]
  [-control_signal control_name]
  [-test_points_per_scan_cell n]
  [-max_test_points n]
  [-include_elements cell_list]
  [-exclude_elements cell_list]
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The -target untestable_logic option enables the untestable logic target and is required 
to use it. The remaining options, described in Table 11-5, can be specified to override their 
defaults.

This target is highly recommended for designs with LogicBIST self-test.

See Also

• The TA_10 rule documentation in the SpyGlass DFT documentation for details on the 
untestable logic analysis algorithm

Configuring the X-Blocking Test Point Target

You can use the x_blocking test point target to identify and block X-value sources from 
black-box cells. This target inserts force_01 test points at the sources to force 
scan-controllable values in place of the X values.

Table 11-5 Untestable Logic set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of a 
parameter

-clock_signal clock_name

-control_signal control_name

-test_points_per_scan_cell n

Set the number of untestable logic test points at 
which the analysis completes

-max_test_points n

(default is no target-specific limit)

Restrict test point insertion to only particular 
hierarchical cells

-include_elements cell_list

(default is to consider the entire design)

Exclude particular hierarchical cells from test 
point insertion 

-exclude_elements cell_list

(default is not to exclude anything)
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Figure 11-16 X-Value Source Blocked by force_01 Test Point

The X-blocking target differs from the untestable logic target as follows:

• It blocks all X sources in the design regardless of gain improvement, which is important 
for designs with LogicBIST self-test.

• It does not consider the -max_test_points option.

To enable the X-blocking target, use the following command:

set_testability_configuration
  -target x_blocking
  [-clock_signal clock_name]
  [-control_signal control_name]
  [-test_points_per_scan_cell n]

The -target x_blocking option enables the X-blocking target and is required to use it. 
The remaining options, described in Table 11-6, can be specified to override their defaults.

This target blocks X values from black-box cells. It does not block values from registers with 
uncontrolled clock or asynchronous set/reset signals.

This target is highly recommended for designs with LogicBIST self-test.

Table 11-6 X-Blocking set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of a 
parameter

-clock_signal clock_name

-control_signal control_name

-test_points_per_scan_cell n
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Configuring the Multicycle Path Test Point Target

You can use the multicycle_paths test point target to prevent multicycle-path-constrained 
logic from being captured by scan cells (which ATPG treats as an X value). This target 
inserts multicycle path test points at multicycle-constrained data input pins of scan cells.

To enable the multicycle paths target, use the following command:

set_testability_configuration
  -target multicycle_paths
  [-control_signal control_name]

The -target multicycle_paths option enables the multicycle paths target and is required 
to use it. The remaining options, described in Table 11-7, can be specified to override their 
defaults.

You must apply all multicycle constraints before test point analysis is run. See “Previewing 
the Test Point Logic” on page 11-37.

See Also

• The Atspeed_05 rule documentation in the SpyGlass DFT documentation for details on 
the multicycle paths analysis rule

• “Multicycle Test Points” on page 11-7 for information on the multicycle path test point

Configuring the Shadow Wrapper Test Point Target

You can use the shadow_wrapper test point target to allow logic around untestable blocks 
or macrocells to be tested.

This target inserts force_01 test points at data output pins to drive known values, and it 
inserts observe test points at data input pins to ensure coverage. If the functional logic 
around a pin already allows for testability, the analysis detects this and does not insert a test 
point.

Table 11-7 Multicycle Paths set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of the 
parameter

-control_signal control_name
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Figure 11-17 Shadow Wrapper Around a Black-Box Cell

To enable the shadow wrapper target, use the following command:

set_testability_configuration
  -target shadow_wrapper
  -isolate_elements cell_list
  [-clock_signal clock_name]
  [-control_signal control_name]
  [-test_points_per_scan_cell n]

The -target shadow_wrapper option enables the shadow wrapper target and the 
-isolate_elements option specifies the list of cells to isolate; both are required. The 
remaining options, described in Table 11-8, can be specified to override their defaults.

Configuring the Core Wrapper Test Point Target

You can use the core_wrapper test point target to insert an inward-facing-only wrapper 
chain, constructed using test points, at the data I/O ports of the current design.

This target inserts force_01 test points at data input ports to drive known values, and it 
inserts observe test points at data output ports to ensure coverage. If the functional logic 
around a port already allows for testability, the analysis detects this and reuses the 
functional registers instead of inserting a test point.

Table 11-8 Shadow Wrapper set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of a 
parameter

-clock_signal clock_name

-control_signal control_name

-test_points_per_scan_cell n
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This is not a replacement for full core wrapping in a hierarchical test flow. Instead, it provides 
a lightweight core isolation capability suitable for unwrapped designs with built-in self-test 
(BIST). This isolation method is area-efficient, especially when reused registers are used.

Figure 11-18 Test-Point-Based Wrapper Chain and LogicBIST Self-Test Logic

If an input port is directly registered, its functional register is reused to implement the 
force_01 test point by modifying the scan-enable connection to hold state during capture, as 
shown in Figure 11-19. Similarly, functional output registers can take the place of observe 
test points. Small amounts of logic can be permitted between ports and their registers by 
adjusting fanout and depth threshold values.

Figure 11-19 Functional Input Register Reused as State-Holding force_01 Test Point

Just as with the full core-wrapping DFT client, clock, test, and asynchronous set/reset ports 
are not wrapped. See “Wrapper Cells and Wrapper Chains” on page 12-3 for details.

To enable this lightweight core wrapper target, use the following command:

set_testability_configuration
  -target core_wrapper
  [-clock_signal clock_name]
  [-control_signal control_name]
  [-test_points_per_scan_cell n]
  [-reuse_threshold threshold_value]
  [-depth_threshold threshold_value]
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The -target core_wrapper option enables the core wrapper target and is required to use 
it. The remaining options, described in Table 11-9, can be specified to override their defaults. 
They work the same as described in “The Maximized Reuse Core Wrapping Flow” on 
page 12-13.

The threshold options work the same as with the set_wrapper_configuration command. 
For details, see “Configuring Maximized Reuse Core Wrapping” on page 12-27.

Configuring the XOR Self-Gating Test Point Target

You can use the self_gating test point target to improve the testability of XOR self-gating 
logic. (For details on this clock-gating feature, see the “XOR Self-Gating” section of the 
Power Compiler User Guide.)

XOR self-gating logic is inherently difficult to test. False-positive comparator faults are 
difficult to test, while false-negative comparator faults are redundant and impossible to test. 
The next-state values are often driven by complex datapath logic that is difficult to control.

This target improves XOR self-gating testability by inserting the following:

• Per-comparator control_0 test points

These allow comparators to be masked so that individual comparators can be tested. 
Each test point reuses the functional register from the neighboring bit.

• Per-gating-group observe test point

This allows the clock-gating cell enable signal to be directly tested.

Table 11-9 Core Wrapper set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of a 
parameter

-clock_signal clock_name

-control_signal control_name

-test_points_per_scan_cell n

Specify the maximum number of functional I/O 
registers allowed for reuse before adding a test point

-reuse_threshold threshold_value

(default is 0)

Set the maximum number of combinational logic 
levels (including buffers and inverters) allowed for 
reuse before adding a test point

-depth_threshold threshold_value

(default is 1)

Exclude particular ports from being wrapped -exclude_elements port_list

(default is not to exclude ports)
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• Per-gating-group control_1 test point

This allows the next-state values to be captured and tested independently of the 
self-gating logic. It shares its register with the observe test point.

Figure 11-20 XOR Self-Gating Test Points

For self-gating groups with three or fewer registers, the per-comparator control_0 test 
points are not inserted.

To enable the XOR self-gating target, use the following command:

set_testability_configuration
  -target self_gating
  [-clock_signal clock_name]
  [-control_signal control_name]

The -target self_gating option enables the self-gating target and is required to use it. 
The remaining options, described in Table 11-10, can be specified to override their defaults.

Table 11-10 XOR Self-Gating set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of a 
parameter

-clock_signal clock_name

-control_signal control_name
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Configuring the User-Defined Test Point Target

The user test point target controls the implementation of user-defined test points.

This target applies to the following:

• User-defined test points specified by the -test_point_file option

Non-SpyGlass test points in an external file are assigned to the user test point target. 
User-defined test points from an external file are not implemented unless the user target 
is enabled.

• The set_test_point_element command

User-defined test points defined with the set_test_point_element command are 
always implemented, whether the user target is enabled or not. However, the user 
target allows you to specify implementation defaults for them.

To enable the user-defined target, use the following command:

set_testability_configuration
  -target user
  [-clock_signal clock_name]
  [-control_signal control_name]
  [-test_points_per_scan_cell n]

The -target user option enables the user-defined target and is required to use test points 
from an external file. The remaining options, described in Table 11-11, can be specified to 
override their defaults.

See Also

• “Implementing Test Points From an External File” on page 11-28 for details on SpyGlass 
and non-SpyGlass test point files

Table 11-11 User-Defined set_testability_configuration Options 

To do this Use this option

Override the corresponding global value of a 
parameter

-clock_signal clock_name

-control_signal control_name

-test_points_per_scan_cell n
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Enabling Multiple Targets in a Single Command

You can enable multiple targets in a single set_testability_command by specifying a list 
with the -target option:

dc_shell> set_testability_configuration \
            -target {random_resistant x_blocking}
Information: Creating testability configuration for target
  'random_resistant'.
Information: Creating testability configuration for target 'x_blocking'.
Accepted testability configuration specification for design 'top'.
1

If you specify an option that pertains to some targets but not others, the tool warns of 
unsupported target/option combinations (but accepts the valid combinations):

dc_shell> set_testability_configuration \
            -target {random_resistant x_blocking} -max_test_points 100
Warning: The '-max_test_points' option does not apply to the
'x_blocking' target. (UIT-1810)
Information: Creating testability configuration for target
'random_resistant'.
Information: Creating testability configuration for target 'x_blocking'.
Accepted testability configuration specification for design 'top'.
1

For suggestions on resolving the UIT-1810 warning message, see its man page.

Implementing Test Points From an External File

You can implement test points defined in an external file by using the -test_point_file 
option of the set_testability_configuration command:

set_testability_configuration
  -test_point_file file_name

The -test_point_file option is a global option that specifies the name of the test point file 
to implement.

The test point file must be formatted as follows:

• A test point is described by a line containing three fields, separated by whitespace:

❍ A user-defined label (not used by the tool; can be any string)

❍ The test point type keyword

❍ The net where the test point should be inserted

• For net names, the hierarchy separator character can be “/” (used by the synthesis tools) 
or “.” (used by the SpyGlass DFT tool).
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• Text after “#” is a comment and is ignored.

• Blank lines are ignored.

Note that file-based test points are not implemented unless their targets are enabled (just as 
with analysis-based test points). Test points are assigned to targets as described in the 
following sections.

Using User-Defined Test Point Files

Test points from user-defined test point files are assigned to the user test point target. 
Example 11-1 shows an example user-defined test point file.

Example 11-1 Example User-Defined Test Point File

# Put these memories into test mode
* force_1 MEM0_0/TSTMODE
* force_1 MEM0_1/TSTMODE
* force_1 MEM1_0/TSTMODE
* force_1 MEM1_1/TSTMODE

# these test points come from our in-house Perl script
TP1 control_1 core0/U37641/Z   # my_algorithm.pl result: Q=478 V=479
TP2 control_0 core4/U73087/Z   # my_algorithm.pl result: Q=861 V=22
TP3 control_0 core0/U64599/Z   # my_algorithm.pl result: Q=227 V=964
TP4 control_1 core4/U99749/Z   # my_algorithm.pl result: Q=841 V=9

Using SpyGlass DFT Test Point Files

Test points from a SpyGlass DFT ADV test point file (with in-line comments) are routed to 
their corresponding targets. Example 11-2 shows an example test point file generated by the 
SpyGlass DFT tool that contains random_resistant and x_blocking test points.

Example 11-2 Example SpyGlass DFT Test Point File

# Moment : "TP analysis start  " # Time : 2017- 1-30  9:52:19
# Design : "top"
# Initial Random Pattern Test Coverage : 80.68602
# Stuck At Test Coverage : 99.44180
# Random Pattern Count : 10
# Effort Level : medium
# Requested Test Points : 1
# Cut-Off Gain : 0.00000, (cumulative gain of last '1' test points)
# Thread Count : 8

# Index Test_Point_Type Net  Comment
1  observe    sub3.N50 #Gain : 0.04860 Cov : 80.73462 S@TC : 99.4
# Search completed : 1 (dft_rrf_tp_count(1 - 1)) test points identified.
# BENCHMARK : "COMPLETE TP ANALYSIS " # Time : 5.7086
# Moment : "TP analysis End " # Time : 2017- 1-30  9:52:24
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# X Source Section
# Index force_01 net
* force_01   sub2.nZ[0] # -xsource -cell_name sub2.BBOX
* force_01   sub2.nZ[1] # -xsource -cell_name sub2.BBOX
* force_01   sub2.nZ[2] # -xsource -cell_name sub2.BBOX
* force_01   sub2.nZ[3] # -xsource -cell_name sub2.BBOX

Using SpyGlass DFT Test Point Files Without Rerunning Analysis

By default, analysis is performed for all enabled targets. However, when implementing test 
points from a SpyGlass DFT file, you can prevent analysis from rerunning for its targets by 
specifying the -only_from_file true option for those targets. Analysis is still performed 
for any targets enabled without this option.

The following command implements random_resistant and x_blocking test points from 
a SpyGlass DFT file, then also implements shadow-wrapper test points that are not 
described in the file:

# global options - specify test point file
set_testability_configuration -test_point_file my_rrf_xblocking_TPs.txt

# enable targets for implementation
## implement these from the existing SpyGlass DFT file:
set_testability_configuration -target {random_resistant} \
  -only_from_file true
set_testability_configuration -target {x_blocking} \
  -only_from_file true

## derive these in the current run (during run_test_point_analysis)
set_testability_configuration -target {shadow_wrapper} \
  -isolate_elements {IP_BLOCK1 IP_BLOCK2}

Figure 11-21 shows how the test points are populated in each target for this example.

Figure 11-21 Combining File-Based and Analysis-Based Test Points

SpyGlass DFT

set_testability_configuration

               -target {                                              }

set_testability_configuration

  -test_point_file my_rrf_xblocking_TPs.txt

random_resistant x_blocking shadow_wrapper

insert_dft

run_test_point_analysis

File-based test points (global option) Analysis-based test points

Enabled targets 
for implementation

-only_from_file 
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If you implement SpyGlass test points from a file by enabling its target without specifying the 
-only_from_file true option, both the file-based and analysis-based test points are 
implemented for that target.

Customizing the Test Point Analysis

To customize the test point analysis, you can provide a user file containing one or more 
SpyGlass DFT Tcl commands to be included:

dc_shell> set_testability_configuration -sg_command_file my_sg_cmds.tcl

This user file is an unordered list of one or more of the following commands:

read_file
set_parameter
set_option
set_goal_option

The run_test_point_analysis command automatically places the commands at the 
appropriate points in the internal analysis script (also known as the SpyGlass DFT project 
file):

Figure 11-22 Including User Commands in the SpyGlass DFT Test Point Analysis

Note:   
SpyGlass design constraint (*.sgdc) commands cannot be placed directly in the user file, 
but they can be placed in a separate file and applied by a read_file -type sgdc 
command in the user file.

Comments after commands are preserved; full-line comments are not.

After the run_test_point_analysis command completes, you can examine the SpyGlass 
DFT project file by looking at the sg_config.prj file in the newly created _snpDft* directory.

# my customization

set_goal_option addrules ...

set_parameter ...

read_file -type sgdc ...

set_option ...  ;# comment

***************************************************************************************
*       **** ************ *** *********** ******** *** ** **** ****                   *
*     ** ********** ** * ********* ********* **** ******** ****                       *
*     *** ** **** **** ******* ** *** ******* ******* ** *** ********* ** *********   *
*     ** *** ***** ** ************ *** ********* ****** ** ***********                *
*                    *** ********* **** ******** ****                                 *
*                           *** ****** ********                                       *
*     *** ****** ****** ***** **** ** ********** ** *** ********** *******            *
***************************************************************************************

* ******         * ***
* ** *** ******* * ************
* ****** ******* * *************
* ****           * *** ***  * ******** *** ****

********* ***** **** ***
********* **************************************************************************
********* ***** **** ************************************************************************
********** * *****************************************************************************

******* *******
********** ************ ***
********** ** **
********** ******** ***
********** ****************************** ***
********** **************************** ***
********** *** *******  ** *******

*******
********** *** ***

*********** ************************* ******* * *** ******* * *
    *************** ***** * ************* ************** *
    ***********
    *************** ******** * ************** *
    ************* ******************************** **
    ************* ********************************************* **
    *****************
    *************** ******** * ********************** *
    *****************
    *************** ******** * ***** *
    *************** ******** ***
    ************* ***
    **************************************
    ************* *********************** ******
    ************* *************** ***
    ************* ***************** *
    ************* ******************************* ********
*

my_sg_cmds.tcl

_snpDft*/sg_config.prj
(internal SpyGlass DFT project file)
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Running Test Point Analysis

If you have configured testability analysis features that require SpyGlass DFT analysis, you 
must run the analysis after pre-DFT DRC and prior to previewing the test point 
implementation. To do this, use the run_test_point_analysis command:

create_test_protocol
dft_drc
run_test_point_analysis
preview_dft -test_points all

The run_test_point_analysis command requires that the SPYGLASS_HOME 
environmental variable (not Tcl application variable) be set so it can find the spyglass 
executable. You can check this as follows:

dc_shell> echo $env(SPYGLASS_HOME)
/global/apps/spyglass_2017.09-SP2

Important:   
You must use Spyglass version N-2017.12-SP2 or later.

When you run the run_test_point_analysis command, it automatically reports the status 
of the SpyGlass DFT analysis:

dc_shell> run_test_point_analysis
Information: Starting test point analysis.
Information: Test point analysis directory is '/proj/chip/_snpDft_user3.25145.0'.
Information: SpyGlass run started at 09:06:21 AM on May 01 2018
Information: SpyGlass Predictive Analyzer(R) - Version SpyGlass_vO-2019.06

Estimated stuck-at test coverage: 0.73%
Global test point limit of 20 specified.

Analysis for 'untestable_logic' target started.
 No per-target limit specified.
 4 test points found with estimated test coverage: 64.52%
 4 test points found.
Analysis for 'untestable_logic' target completed.

Analysis for 'random_resistant' target started.
 No per-target limit specified.
 Estimated random pattern test coverage: 78.50%
 1 test points found with estimated random pattern coverage: 84.57%
 2 test points found with estimated random pattern coverage: 87.82%
 3 test points found with estimated random pattern coverage: 88.05%
 ...
 15 test points found with estimated random pattern coverage: 91.31%
 16 test points found with estimated random pattern coverage: 91.33%
 16 test points found.
Analysis for 'random_resistant' target completed.

SpyGlass Message Summary:
 Reported Messages: 0 Fatals, 0 Errors, 0 Warnings, 23 Infos

SpyGlass-DFT Technology Summary:
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 Random pattern fault coverage = 91.2%
 Random pattern test coverage = 91.3%
 Stuck-at fault coverage = 64.5%
 Stuck-at test coverage = 64.5%
 Percentage of scannable flops = 99.7%

Information: SpyGlass critical reports for the current run are present in
  directory './sg_config/consolidated_reports/top_sg_dft_testpoint_analysis/'.

Information: SpyGlass run completed at 09:09:00 AM on May 01 2018
Information: Test point analysis completed.
1

The following targets do not require analysis (although doing so is harmless):

• The core_wrapper target

• The user target

• Any target that has the -only_from_file true option set

Automatic Test Point Insertion Example Script

The following script inserts several kinds of testability test points, using a test-mode control 
signal named TM_TESTPOINTS.

# define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing [list 45 55]
set_dft_signal -view spec -type TestMode \
  -port TM_TESTPOINTS

# enable automatic test point insertion
set_dft_configuration -testability enable

# configure global automatic test point insertion settings
# (shared by all targets)
set_testability_configuration \
  -control_signal TM_TESTPOINTS \
  -test_points_per_scan_cell 16

# enable and configure test point targets
set_testability_configuration \
  -target random_resistant \
  -random_pattern_count 1024

set_testability_configuration \
  -target x_blocking

set_testability_configuration \
  -target shadow_wrappers \
  -isolate_elements {IP_CORE1 IP_CORE2}
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# preview test points
create_test_protocol
dft_drc
run_test_point_analysis  ;# runs SpyGlass DFT to compute test points
preview_dft -test_points all

# insert DFT logic
insert_dft

Limitations

Automatic test point insertion has the following limitations:

• For targets that require SpyGlass DFT analysis, you must use Spyglass version 
N-2017.12-SP2 or later.

• The -control_signal option must be specified, otherwise the control signal for the test 
point logic is tied to logic 0.

• The shadow_wrapper target supports only leaf cells (such as macro cells), not 
hierarchical cells.

• The multicycle_paths target does not process bused endpoints unless the following 
command is run prior to pre-DFT DRC and test point analysis:

dc_shell> change_names -rules verilog -hierarchy

• Test point registers are always positive-edge, even if the dominant clocking around a test 
point is negative-edge. 

• Testability analysis does not consider the presence of user-defined test points.

• Testability analysis does not consider set_scan_element false specifications.

• The report_testability_configuration command does not show the inherited 
global -test_points_per_scan_cell value for targets.

• The reset_testability_configuration command is not supported.

• File names provided to the -sg_command_file or -user_constraints options must be 
absolute. (You can use the Tcl file normalize command for this.) You cannot use 
paths relative to the current directory.

• AutoFix is not supported with the new test point infrastructure.

• Spurious TEST-394 warnings are issued for test point blocks.
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User-Defined Test Points

User-defined test points provide you with the flexibility to insert control and observe test 
points at user-specified locations in the design. User-defined test points can be used for a 
variety of purposes, including the ability to fix uncontrollable clocks and asynchronous 
signals, increase the coverage of the design, and reduce the pattern count.

Note:   
A DFTMAX license is required to use the user-defined test point insertion feature.

The following topics describe how to implement user-defined test points:

• Enabling User-Defined Test Point Insertion

• Configuring User-Defined Test Points

• Limitations

Enabling User-Defined Test Point Insertion

To enable user-defined test point insertion, you must first issue the following command 
before pre-DFT DRC:

dc_shell> set_dft_configuration -testability enable

After you have enabled user-defined test point insertion, you can enable and configure one 
or more user-defined test point specifications with the set_test_point_element 
command, as described in the following topics.

Important:   
If you do not enable the testability client, then the set_test_point_element 
command provides the legacy behavior described in Appendix B, “Legacy Test Point 
Insertion.”

Configuring User-Defined Test Points

You can use the set_test_point_element command to specify the location and type of 
user-defined test points to insert in the design during DFT insertion, as well as other aspects 
of test point construction. User-defined test points can be defined at leaf pins, hierarchy 
pins, and ports. These test points are then inserted by the insert_dft command.

To define a user-defined test point, use the following command:

set_test_point_element
  -type force_0 | force_1 | force_01
    | control_0 | control_1 | control_01 | observe
  [-control_signal control_name]
  [-clock_signal clock_name]
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  [-test_points_per_source_or_sink n]
  pin_port_list

Specify the test point type and the list of signal pins or ports to be forced, controlled, or 
observed. For more information on test point types, see “Test Point Types” on page 11-3.

The remaining options, described in Table 11-12, can be specified to override their defaults.

Important:   
Options not listed above are unsupported. They are used by the legacy user-defined test 
point feature that is used when the testability DFT client is not enabled. See 
Appendix B, “Legacy Test Point Insertion.”

The test points are implemented using clock, control signal, and test points per scan cell 
settings as follows, highest precedence first:

• From the set_test_point_element specification

• From the set_testability_configuration -target user specification

• From the set_testability_configuration global specification

• Using the global testability defaults

Note:   
The user testability target does not need to be enabled to implement test points using 
the set_test_point_element command.

By default, any needed source or sink registers are created by the insert_dft command.

Registers are not shared across multiple set_test_point_element specifications. If test 
points within a limited physical region should share registers, they should all be provided in 
a single set_test_point_element command.

Table 11-12 set_test_point_element Options 

To do this Use this option

Use a particular test clock for any test point 
registers needed by these test points

-clock_signal clock_name

(default is the dominant clock)

Use a particular TestMode, ScanEnable, or 
lbistEnable signal to enable these test points

-control_signal control_name

(default is the first available TestMode signal)

Specify the number of force, control, or observe 
points (in this specification only) that can share 
a test point register

-test_points_per_source_or_sink n

(default is 8)
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If the specified pin list spans multiple clock or power domain configurations, the tool creates 
separate test point registers for each configuration.

After specifying test point definitions with the set_test_point_element command, you can 
report them with the report_test_point_element command, or remove them before DFT 
insertion with the remove_test_point_element command. For more information about 
these commands, see the man pages.

See Also

• “Sharing Test Point Registers” on page 11-12 for details on test point registers sharing

• “Configuring the User-Defined Test Point Target” on page 11-27 for details on the user 
testability target

• “Configuring Global Test Point Insertion Settings” on page 11-16 for details on the global 
testability configuration

Limitations

User-defined test point insertion has the following limitations:

• The -control_signal option must be specified, otherwise the control signal for the test 
point logic is tied to logic 0.

• All specifications must use the same explicitly specified control signal; you cannot use 
multiple control signals across set_test_point_element specifications.

• Test point registers are always positive-edge, even if the dominant clocking around a test 
point is negative-edge.

• User-defined test points do not inherit the -test_points_per_scan_cell value from 
the global or user target set_testability_configuration value.

• Spurious TEST-394 warnings are issued for test point blocks.

Previewing the Test Point Logic

To preview the test point logic that the tool will implement according to your specifications, 
use the following command after running test point analysis:

dc_shell> preview_dft -test_points all

Note:   
If you are using SpyGlass DFT testability features, you must first run analysis as 
described in “Running Test Point Analysis” on page 11-32.
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The test point preview report is organized as follows:

• The legend at the beginning defines attributes used in the report.

❍ Test point registers and test point pins use separate attributes.

• In the table, each line with values in the “Test Point Type” and “Pin” columns indicates a 
test point of that type at that pin.

• For each test point, the “Test Point Register” column indicates the source or sink register 
used for that test point.

❍ An empty value means this test point shares the same register as the previous test 
point.

❍ A value of “-” means no test point register is needed for that test point type.

• The summary at the end reports indicates how many test points and test point registers 
will be implemented.

Example 11-3 shows an example test point preview report.

Example 11-3 Example Test Point Preview Report

********************** Test Point Plan Report *********************

 Test point register attributes:
    d - dedicated (DFT-inserted) test point register
    f - reused (functional) test point register
  tpe - test point enable signal
  src - test point source signal
  snk - test point sink signal

 Test point pin attributes:
    r - random-resistant test point pin
    x - X-blocking test point pin
    m - multicycle path test point pin
    w - core wrapper test point pin
    s - shadow wrapper test point pin
    g - self-gating test point pin
    a - AutoFix test point pin
    u - user-defined test point pin

Index  Test Point Register   Test Point Type     Pins
-----  -------------------   ---------------     ----
 1     U_dft_tp_sdtc_ip_0/dtc_reg ( d, src ) ( CLK1 )
                             force_01            IP_BLOCK/RX0 (u)
                             force_01            IP_BLOCK/RX1 (u)
 2     U_dft_tp_sdtc_ip_1/dtc_reg ( d, snk ) ( CLK1 )
                             observe             IP_BLOCK/TX0 (u)
                             observe             IP_BLOCK/TX1 (u)
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 3     sub3/mult_60/U_dft_tp_sdtc_ip_2/dtc_reg ( d, tpe ) ( CLK3 )
                             control_0           sub3/mult_60/U1057/Z (r)
                             control_1           sub3/mult_60/U1156/Z (r)
                             control_1           sub3/mult_60/U1262/Z (r)
                             control_0           sub3/mult_60/U1343/Z (r)
 4     sub3/mult_60/U_dft_tp_sdtc_ip_3/dtc_reg ( d, snk ) ( CLK3 )
                             observe             sub3/mult_60/U4479/Z (r)
                             observe             sub3/mult_60/U4483/Z (r)
                             observe             sub3/mult_60/U4487/Z (r)
                             observe             sub3/mult_60/U4596/Z (r)
 5     sub2/U_dft_tp_sdtc_ip_4/dtc_reg ( d, src ) ( CLK2 )
                             force_01            sub2/BBOX/Z[0] (x)
                             force_01            sub2/BBOX/Z[1] (x)
 6     sub2/U_dft_tp_sdtc_ip_5/dtc_reg ( d, snk ) ( CLK2 )
                             observe             sub2/BBOX/A[0] (x)
                             observe             sub2/BBOX/A[1] (x)
 7     -                     multicycle          MULT_reg[3]/D (m)
 8     -                     multicycle          MULT_reg[2]/D (m)
 9     -                     multicycle          MULT_reg[1]/D (m)
 10    -                     multicycle          MULT_reg[0]/D (m)

****************** Test Point Summary *******************
 Number of testability force_01 test points:        2
 Number of testability control_0 test points:       2
 Number of testability control_1 test points:       2
 Number of testability observe test points:         6
 Number of testability multicycle path test points: 4
 Number of user-defined force_01 test points        2
 Number of user-defined observe test points:        2

 Total number of test points:                       20
 Total number of DFT-inserted test point registers: 6
*********************************************************

Inserting the Test Point Logic

After you define the test point insertion configuration, the insert_dft command inserts the 
test point logic. Test point scan registers are placed in the lowest level of hierarchy common 
to all test points for that register.

The tool creates a new test-mode signal if one is needed but not defined.
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Using AutoFix

The AutoFix feature automatically fixes scan rule violations resulting from the following 
types of uncontrollable signals:

• Clock signals

• Asynchronous set signals

• Asynchronous reset signals

• Three-state bus enable signals

• Bidirectional enable signals

By default, only the three-state bus and bidirectional fixing capabilities are enabled. You can 
enable fixing for one or more additional signal types to fix testability problems in your design. 
You can specify AutoFix configurations globally or on particular design objects. AutoFix is 
supported in both the multiplexed flip-flop and LSSD scan styles.

When enabled, AutoFix automatically fixes all violations of the specified type(s) found by the 
dft_drc command. If there are no violations, AutoFix makes no changes to the design.

This topic covers the following:

• When to Use AutoFix

• The AutoFix Flow

• Configuring AutoFix

• AutoFix Script Example

When to Use AutoFix

Use AutoFix to resolve testability problems caused by uncontrollable signals, as described 
in the following topics:

• Uncontrollable Clock Signals

• Uncontrollable Asynchronous Set and Reset Signals

• Uncontrollable Three-State Bus Enable Signals

• Uncontrollable Bidirectional Enable Signals
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Uncontrollable Clock Signals

Each scan flip-flop in a design must be clocked by a signal that can be controlled by a 
primary input port. Otherwise, the clocking of data into the flip-flop cannot be controlled 
during test. Uncontrollable clock signals are flagged by the dft_drc command as design 
rule violations. If you do not fix these violations, the associated flip-flops are not included in 
scan chains and faults downstream from the flip-flop outputs might not be detectable.

When AutoFix is enabled for uncontrollable clock signals, it inserts a multiplexer test point to 
select a controllable clock signal during test, as shown in Figure 11-23. The multiplexer is 
controlled by a test-mode signal. For mission-mode operation, the test-mode signal is 
inactive and the circuit operation is unchanged. During test, the signal is asserted and the 
flip-flop is clocked by the controllable primary input signal.

Figure 11-23 AutoFix Controllability Logic for an Uncontrollable Clock Signal

Uncontrollable Asynchronous Set and Reset Signals

The asynchronous set and reset inputs of each flip-flop must be inactive during test. 
Otherwise, the data in the flip-flop can be set or cleared at any time, leaving unknown data 
in the flip-flop.

When AutoFix is enabled for uncontrollable asynchronous set or reset signals, by default it 
inserts a multiplexer test point to select a controllable set or reset signal during test, as 
shown in Figure 11-24. The multiplexer is controlled by a test-mode signal. For 
mission-mode operation, the test-mode signal is inactive and the circuit operation is 
unchanged. During test, the asynchronous signal is driven by the controllable primary input 
signal.

Figure 11-24 AutoFix MUX-Based Controllability Logic for an Uncontrollable Reset Signal
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AutoFix can also insert gating logic to de-assert the uncontrollable asynchronous set or 
reset signal, as shown in Figure 11-25. The gating logic is controlled by a test-mode or 
scan-enable control signal. For mission-mode operation, the control signal is inactive and 
the circuit operation is unchanged. When controlled by a test-mode signal, the 
asynchronous signal is held inactive throughout the entire test program. When controlled by 
a scan-enable signal, the asynchronous signal is held inactive during scan shift but remains 
controlled by the functional logic during scan capture.

Figure 11-25 AutoFix Gating-Based Controllability Logic for an Uncontrollable Reset Signal

Typically, one of the following configurations is used:

• The mux method with a test-mode signal

This method provides direct control of asynchronous resets during scan shift and scan 
capture. However, it blocks the functional reset path; this can cause faults in the reset 
logic to become untestable.

• The gate method with a scan-enable signal

This method disables asynchronous resets during scan shift only. During scan capture, 
the functional reset logic controls the reset line; this does not impose any restrictions on 
reset logic testability.

Uncontrollable Three-State Bus Enable Signals

Three-state bus enable signals must be controllable during scan shift. Otherwise, the 
three-state buses might float or be driven to contention as controlling scan cells shift values 
through the scan chains.

When AutoFix is enabled for an uncontrollable three-state enable signal, it inserts a 
multiplexer test point to select a constant enable signal during test, as shown in 
Figure 11-26. The multiplexer is controlled by a scan-enable signal. For mission-mode and 
scan capture operation, the test-mode signal is inactive and the circuit operation is 
unchanged. During scan shift, the signal is asserted during scan shift and the three-state 
driver is controlled by the constant value. Scan capture operation is unchanged.

test_mode
or

test_se

Uncontrollable 
reset signal

Uncontrollable 
reset signal
Chapter 11: Advanced DFT Architecture Methodologies
Using AutoFix 11-42



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 11-26 AutoFix Controllability Logic for an Uncontrollable Tristate Signal

The constant value applied to the three-state driver depends on the type of three-state bus, 
shown in Figure 11-27. For an internal bus that exists entirely within the current design, only 
a single tristate driver is active on each tristate net during scan shift; the rest are held 
inactive. For an external bus that has a driver outside the current design, none of the drivers 
are active on each tristate net during scan shift.

Figure 11-27 Three-State Bus Types

If you have a three-state bus that spans multiple blocks that are AutoFixed separately, at 
least one block should be fixed as an internal bus so that the bus is driven during scan shift.

Uncontrollable Bidirectional Enable Signals

Bidirectional enable signals must be controllable during scan shift. Otherwise, the 
bidirectional ports might float or be driven to contention as controlling scan cells shift values 
through the scan chains.

When AutoFix is enabled for an uncontrollable bidirectional enable signal, it inserts a 
multiplexer test point to select a constant enable signal during test, as shown in 
Figure 11-28. By default, the constant value is chosen so that the bidirectional driver is in 
input mode during scan shift; scan capture operation is unchanged.
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Figure 11-28 AutoFix Controllability Logic for an Uncontrollable Bidirectional Signal

Scan-out ports driven by bidirectional drivers are always forced to the output direction during 
scan shift, regardless of whether AutoFix bidirectional fixing is enabled or how it is 
configured. For more information, see “Sharing a Scan Output With a Functional Port” on 
page 10-33.

If a bidirectional driver cell drives an output port instead of an inout port, AutoFix classifies 
the driver as a three-state bus driver instead of a bidirectional driver because data values 
cannot propagate in the input direction.

The AutoFix Flow

The AutoFix design flow is very similar to the ordinary scan synthesis design flow. The 
general steps in the design flow are illustrated in Figure 11-29.
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Figure 11-29 Scan Synthesis Design Flow With AutoFix

You start with the compile -scan and dft_drc commands. Then you specify the 
parameters for scan insertion and AutoFix. After you set these parameters, you run the 
preview_dft command to get a preview of the scan chains and AutoFix test points. If 
necessary, you repeat the setup steps to obtain the desired configuration of scan chains and 
test points.

When this configuration is satisfactory, you perform scan chain routing and test point 
insertion with the insert_dft command. Finally, you check the results with the dft_drc 
and report_scan_path commands.
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Configuring AutoFix

The following topics explain how to use AutoFix:

• Enabling AutoFix Capabilities

• Configuring Clock AutoFixing

• Configuring Set and Reset AutoFixing

• Configuring Three-State Bus AutoFixing

• Configuring Bidirectional AutoFixing

• Applying Hierarchical AutoFix Specifications

• Previewing the AutoFix Implementation

Enabling AutoFix Capabilities

You can enable or disable individual AutoFix capabilities using the options of the 
set_dft_configuration command shown in Table 11-13.

By default, only the three-state bus and bidirectional fixing capabilities are enabled. To show 
the current set_dft_configuration settings, use the report_dft_configuration 
command. To remove the current settings, use the reset_dft_configuration command.

After enabling an AutoFix capability, configure it using the set_autofix_configuration 
command.

Table 11-13 Options of the set_dft_configuration Command to Enable AutoFix 

Signal type to AutoFix Enabling option of the
set_dft_configuration command

Default

Clock signals -fix_clock disable | enable disable

Asynchronous set signals -fix_set disable | enable disable

Asynchronous reset signals -fix_reset disable | enable disable

Three-state bus enable signals -fix_bus disable | enable enable

Bidirectional enable signals -fix_bidirectional disable | enable enable
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Configuring Clock AutoFixing

Use the following options of the set_autofix_configuration command to configure clock 
AutoFixing:

set_autofix_configuration
  -type clock
  [-test_data clock_signal]
  [-control_signal test_mode_signal]

To specify an existing scan clock signal to use, define it as a TestData signal as well as a 
ScanClock signal, then specify it with the -test_data option of the 
set_autofix_configuration command:

set_dft_signal -view existing_dft -type ScanClock -port CLK \
  -timing [list 45 55]
set_dft_signal -view spec -type TestData -port CLK

set_autofix_configuration -type clock -test_data CLK

If no clock signal is specified, AutoFix chooses an available scan clock signal that is also 
defined as a TestData signal. If no such signal exists, AutoFix creates a dedicated scan 
clock signal to use for fixing uncontrollable asynchronous clock signals.

To specify an existing test-mode signal to use for AutoFixed clock test points, use the 
-control_signal option of the set_autofix_configuration command:

set_dft_signal -view spec -type TestMode -port AUTOFIX_TM

set_autofix_configuration -type clock -control_signal AUTOFIX_TM

If no control signal is specified, AutoFix chooses an available test-mode signal that is not 
already used for another purpose. If no such signal exists, AutoFix creates a dedicated test 
mode signal.

Configuring Set and Reset AutoFixing

Use the following options of the set_autofix_configuration command to configure set 
and reset AutoFixing:

set_autofix_configuration
  -type set | reset
  [-method mux | gate]
  [-test_data set_reset_signal]
  [-control_signal control_signal]
  [-fix_latch disable | enable]

By default, AutoFix uses MUXs to fix uncontrollable asynchronous set or reset signals. To 
specify an existing controllable set or reset signal to be selected by the MUXs, define it as a 
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TestData signal as well as a Set or Reset signal, then specify it with the -test_data option 
of the set_autofix_configuration command:

set_dft_signal -view existing_dft -type Reset -port RSTN -active_state 0
set_dft_signal -view spec -type TestData -port RSTN -active_state 0

set_autofix_configuration -type set -test_data RSTN
set_autofix_configuration -type reset -test_data RSTN

If no such signal is specified, AutoFix chooses a set or reset signal that is also defined as a 
TestData signal. If no such signal exists, AutoFix creates a dedicated asynchronous reset 
signal to use for fixing uncontrollable asynchronous set and reset signals.

Use the -type set or -type reset option of the set_autofix_configuration command 
to configure set or reset AutoFixing, respectively. You can use a single existing 
asynchronous set or reset signal to AutoFix both uncontrollable set and reset signals. 
However, the same asynchronous signal cannot be used to AutoFix both the set and reset 
pins of the same cell. If this occurs in your design, you must specify separate set and reset 
signals.

The mux fixing method can use only a test-mode control signal. To specify an existing 
test-mode signal to control the MUXs, use the -control_signal option of the 
set_autofix_configuration command:

set_dft_signal -view spec -type TestMode -port AUTOFIX_TM

set_autofix_configuration -type set -control_signal AUTOFIX_TM
set_autofix_configuration -type reset -control_signal AUTOFIX_TM

If no control signal is specified, AutoFix chooses an available test-mode signal that is not 
already used for another purpose. If no such signal exists, AutoFix creates a dedicated test 
mode signal.

To fix uncontrollable sets and resets using gating logic instead of a MUX, use the -method 
option to specify the gate fixing method:

set_autofix_configuration -type set -method gate
set_autofix_configuration -type reset -method gate

The gate fixing method can use either a scan-enable or test-mode control signal. To specify 
a scan-enable or test-mode signal to control the gating logic, use the -control_signal 
option of the set_autofix_configuration command:

set_autofix_configuration -type set -method gate -control_signal SE_FIX
set_autofix_configuration -type reset -method gate -control_signal SE_FIX

If no control signal is specified, AutoFix chooses an available test-mode signal that is not 
already used for another purpose. If no such signal exists, AutoFix creates a dedicated test 
mode signal.
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By default, AutoFix does not consider set or reset pins of latch cells. To consider latch set 
and reset pins, use the -fix_latch enable option of the set_autofix_configuration 
command.

Note:   
If you use the gate fixing method along with a scan-enable control signal, you must also 
allow unstable reset signals in both DFT DRC and TetraMAX DRC. For more information, 
see SolvNet article 021644, “How Can I Improve Testability for Internally Generated 
Asynchronous Set and Reset Signals?”

Configuring Three-State Bus AutoFixing

Use the following options of the set_autofix_configuration command to configure 
three-state bus AutoFixing:

set_autofix_configuration
  -type internal_bus | external_bus
  [-method no_disabling | enable_one | disable_all]

The internal_bus type configures three-state buses that do not drive ports of the current 
design. The external_bus type configures three-state buses that drive ports of the current 
design.

Use the -method option to control how the tristate drivers are to be enabled during scan 
shift. The values are

• no_disabling – do not insert controlling logic

• enable_one – enable one driver; disable all other drivers

• disable_all – disable all drivers

The default methods for the internal_bus and external_bus types are enable_one and 
disable_all, respectively. If you have a three-state bus that spans multiple blocks that are 
AutoFixed separately, configure one block to use the enable_one method to avoid bus float 
during scan shift.

AutoFix combines all scan-enable signals defined without the -usage option into a single 
merged signal to enable all three-state bus AutoFix test points. This ensures that no 
three-state contention occurs when data is scanned though the shift chains. You cannot use 
the -control_signal option to specify a control signal for three-state bus AutoFixing.
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Configuring Bidirectional AutoFixing

Use the following options of the set_autofix_configuration command to configure 
bidirectional AutoFixing:

set_autofix_configuration
  -type bidirectional
  [-method input | output | no_disabling]

Use the -method option to control how the bidirectional drivers are to be enabled during 
scan shift. The values are

• input – force bidirectional drivers to input direction

• enable_one – force bidirectional drivers to output direction

• no_disabling – do not insert controlling logic

The default method for the bidirectional type is input.

AutoFix combines all scan-enable signals defined without the -usage option into a single 
merged signal to enable all bidirectional AutoFix test points. This ensures that no 
bidirectional contention occurs when data is scanned through the shift chains. You cannot 
use the -control_signal option to specify a control signal for bidirectional AutoFixing.

Applying Hierarchical AutoFix Specifications

By default, AutoFix specifications applied with the set_autofix_configuration command 
apply to the entire design. To fix only particular design objects, specify them with the 
-include_elements option of the set_autofix_configuration command. For example,

set_autofix_configuration -type set -include_elements {MY_CORE}
set_autofix_configuration -type reset -include_elements {MY_CORE}

To fix the design globally except for some particular design objects, specify them with the 
-exclude_elements option of the set_autofix_configuration command. For example,

set_autofix_configuration -type set -exclude_elements {U_IP_CORE}
set_autofix_configuration -type reset -exclude_elements {U_IP_CORE}

You can specify both the -include_elements and -exclude_elements options to exclude 
cells within an included cell, but not vice versa.

The set_autofix_configuration command applies a global configuration; subsequent 
specifications for a capability take precedence over previous specifications. If you need to 
specify different fixing configurations for different areas of the design, use the 
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set_autofix_element command, which differs from the set_autofix_configuration 
command as follows:

• The set_autofix_element command applies a local fixing configuration to the 
specified list of design objects.

• Multiple set_autofix_element command specifications can be applied to the design.

You can mix global and local specifications. The global fixing configuration is used where no 
local configuration applies. For example,

# specify global fixing configuration
set_autofix_configuration -type clock -test_data CLK

# specify local fixing configuration
set_autofix_element -type clock -test_data RXCLK {UBLK_RX}
set_autofix_element -type clock -test_data TXCLK {UBLK_TX}

To apply local fixing configurations only to particular parts of the design without also globally 
fixing the design, specify a global fixing configuration that includes all of the local design 
objects (to limit global fixing), then apply the local fixing specifications. For example,

# specify global configuration that prevents fixing outside UBLK_RX
# and UBLK_TX
set_autofix_configuration -type clock -include_elements {UBLK_RX UBLK_TX}

# specify local fixing configuration
set_autofix_element -type clock -test_data RXCLK {UBLK_RX}
set_autofix_element -type clock -test_data TXCLK {UBLK_TX}

Note the following precedence rules:

• Local specifications (applied with the set_autofix_element command) take 
precedence over global specifications (applied with the set_autofix_configuration 
command).

• Local specifications at lower hierarchy levels take precedence over local specifications 
at higher levels.

• If multiple specifications apply to the same object, later specifications take precedence 
over earlier specifications.

• Specifications for different fixing types are independent and do not affect each other.
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Table 11-14 shows the valid design object types you can use in AutoFix specifications for 
each fixing type.

Previewing the AutoFix Implementation

After you enable and configure the AutoFix capabilities, you can preview the scan 
architecture with the fixes included. To do this, use the preview_dft -test_points all 
-show {cells} command, which provides the following information:

• The number of test points implemented by AutoFix

• The scan chain configuration with AutoFix considered

The test point section of the preview report shows the test points to be implemented. It does 
not include three-state bus or bidirectional test points.

The scan cells section of the preview report shows only the sequential cells included in scan 
chains; it does not show the cells omitted due to DRC violations. Check to see if the 
DRC-violating cells to be AutoFixed exist in the report. If needed, you can revise the AutoFix 
configuration and rerun the preview_dft command.

Note:   
Before DFT insertion, the dft_drc command always reports the DRC violations without 
AutoFix considered; use the preview_dft command to assess the effects of AutoFix.

When you are satisfied with the scan chains and test points reported by the preview_dft 
command, insert DFT using the insert_dft command. You should always run the dft_drc 
command after DFT insertion to check for any remaining design rule violations.

Table 11-14 Valid Design Object Types for AutoFix Specifications 

Fixing type Valid design object types

clock cell (hierarchical and leaf)

set cell (hierarchical and leaf)

reset cell (hierarchical and leaf)

internal_bus net

external_bus net

bidirectional port
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AutoFix Script Example

The script in Example 11-4 fixes uncontrollable clock and reset signals using AutoFix.

Example 11-4 Scan Synthesis With Test Point Insertion

current_design MY_DESIGN
compile -scan
create_test_protocol
dft_drc

# configure scan
set_scan_configuration -clock_mixing mix_edges ...

# configure DFT signals
set_dft_signal -view spec -type TestMode -port TEST_MODE

set_dft_signal -view existing_dft -type ScanClock \
  -port {CLK RXCLK TXCLK} -timing {45 55}
set_dft_signal -view existing_dft -type Reset -port RSTN -active_state 0

# configure signals for AutoFix
set_dft_signal -view spec -type TestData -port {CLK RXCLK TXCLK RSTN}

# configure clock AutoFix
set_dft_configuration -fix_clock enable
set_autofix_configuration -type clock -test_data CLK
set_autofix_element -type clock -test_data RXCLK {U_RX_BLK}
set_autofix_element -type clock -test_data TXCLK {U_TX_BLK}

# configure reset AutoFix
set_dft_configuration -fix_reset enable
set_autofix_configuration -type reset -test_data RSTN \
  -exclude_elements {U_IP_CORE}

preview_dft -test_points all
insert_dft
dft_drc
report_scan_path -chain all

Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

You can use pipelined scan-enable signals to provide launch-on-extra-shift (LOES) 
transition-delay timing in TetraMAX ATPG, which improves ATPG efficiency and reduces 
pattern count. This is described in the following topics:

• The Pipelined Scan-Enable Architecture

• Pipelined Scan-Enable Requirements
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• Implementing Pipelined Scan-Enable Signals

• Pipelined Scan-Enable Signals in Hierarchical Flows

• Implementation Considerations for Pipelined Scan-Enable Signals

• Pipelined Scan Enable Limitations

The Pipelined Scan-Enable Architecture

Transition-delay fault testing requires two at-speed clock cycles in a row—one to launch and 
one to capture—so that the launched data must propagate through the logic cones at-speed 
to be captured properly. These at-speed clock pulses are typically provided by an on-chip 
clocking (OCC) controller, as described in Chapter 13, “On-Chip Clocking Support.”

By default, DFT Compiler implements a simple scan-enable signal, which is externally 
controlled at test clock frequencies. This requires the use of Launch-on-Capture (LOC) 
transition-delay timing, shown in Figure 11-30, where scan enable is de-asserted before 
both the launch and capture clock pulses.

Figure 11-30 Launch-on-Capture (LOC) Transition-Delay Timing

Because scan enable is de-asserted for the launch clock pulse, the launch data must be 
controlled indirectly (captured through the logic cones) by the data from the previous 
scan-shift cycle. This requires fast-sequential ATPG, which imposes additional constraints 
and overhead on ATPG.

To avoid this limitation, you can implement pipelined scan-enable signals, which can 
generate the scan-enable transition at-speed. This allows launch-on-extra-shift (LOES) 
transition-delay timing, as shown in Figure 11-31, where TetraMAX ATPG directly controls 
the launch data.
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Figure 11-31 Launch-On-Extra-Shift (LOES) Transition-Delay Timing

The waveforms for the external signals are identical between LOC and LOES, but the 
scan-enable signal that reaches the scan cells is different.

The pipelined scan-enable feature works by creating a registered scan-enable transition on 
the chip, just as an OCC controller generates controlled at-speed clock pulses on the chip. 
Figure 11-32 shows the pipelined scan-enable logic structure.

Figure 11-32 Pipelined Scan-Enable Logic

The global_pipe_se signal controls whether the output scan-enable signal operates in 
nonpipelined or pipelined mode:

• When the global_pipe_se signal is de-asserted, the register is bypassed and the output 
scan-enable signal is a simple non-pipelined scan-enable signal.

• When the global_pipe_se signal is asserted,

❍ When the input scan-enable signal is asserted, the output scan-enable signal is 
immediately asserted.

❍ When the input scan-enable signal is de-asserted, the register holds the output 
scan-enable asserted until the next leading clock edge of the at-speed clock.

Each clock domain and clock edge has its own pipelined scan-enable logic construct that 
de-asserts the scan-enable signal synchronized to that clock edge.
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Note:   
The pipelined scan-enable feature and the pipelined scan data feature are independent 
and unrelated. Either can be used separately, or they can be used together, but the 
commands, limitations, and messages are specific to one or the other and must not be 
confused.

See Also

• “Transition-Delay Fault ATPG Timing Modes” in TetraMAX Online Help for more 
information on launch-on-capture (LOC) and launch-on-extra-shift (LOES) timing.

Pipelined Scan-Enable Requirements

Launch-on-extra-shift (LOES) with pipelined scan-enable signals has the following 
requirements:

• All scan-enable signals must have the same pipelined scan-enable depth after DFT 
insertion. Valid depths are zero (not pipelined) and one (pipelined).

• Each clock domain and clock edge must have its own pipelined scan-enable signal, 
which all scan flip-flops clocked by that domain and edge must use.

• Clock-gating cells should also use the pipelined scan enable for its clock domain and 
edge.

It is possible to use LOES when clock-gating cells use the nonpipelined scan enable. 
However, you should use the pipelined scan enable because it maximizes the amount of 
data that can be launched in the extra shift, which should result in a smaller pattern set. 
It also allows the use of the legacy ATPG method Launch-On-Last-Shift, where the last 
scan shift doubles as the transition launch cycle (which might be important in the case of 
design reuse).

• The non-pipelined scan enable must be used for OCC controllers. This allows the OCC 
controller to generate the extra-shift launch clock followed by the capture clock as an 
at-speed clock pair.

• The non-pipelined scan enable must be used for clock chains used by OCC controllers. 
This holds the clock chain data steady during capture. If the pipelined scan enable is 
used, the clock chain bits are corrupted by the launch clock.

• When clock mixing is used, lock-up latches might be ineffective because the clock timing 
in the extra shift uses the launch waveform table rather than shift timing. As a result, 
TetraMAX DRC marks the first flip-flop following the clock domain crossing as disturbed, 
which can reduce coverage slightly (although an incremental LOC run can detect these 
faults).
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All on-chip scan-enable signals (nonpipelined, and pipelined for each clock edge) can be 
derived from a single scan-enable signal source.

Implementing Pipelined Scan-Enable Signals

To implement pipelined scan-enable signals, do the following:

1. Enable the pipelined scan-enable feature:

dc_shell> set_scan_configuration -pipeline_scan_enable true

2. Define the enable signal:

dc_shell> set_dft_signal -view spec -type LOSPipelineEnable \
            -port PSE_EN -active_state 1 -test_mode all

This enable signal selects launch-on-extra-shift (LOES) when asserted and 
Launch-on-Capture (LOC) operation when de-asserted.

If you do not define an enable signal, the tool creates a signal named global_pipe_se.

You can drive the enable signal from an on-chip configuration register by using the 
internal pins flow. For more information, see “Internal Pins Flow” on page 11-135.

3. (Optional) In Design Compiler Graphical, implement pipelined scan-enable clusters for 
large or timing-critical designs.

You can create multiple physically compact clusters of scan cells, each with their own 
local pipelined scan-enable (PSE) construct. This improves the critical path delay 
between the pipeline registers and their scan cells.

To do this, use the -pipeline_fanout_limit option of the set_scan_configuration 
command to specify the number of scan cells per PSE cluster. The tool creates as many 
clusters as needed, each with exactly the specified number of scan cells. (The 
last-created cluster in each clock domain might have fewer scan cells.) The pipeline 
registers have the size_only attribute set, which prevents duplicate register merging by 
the compile_ultra command.

See “Implementation Considerations for Pipelined Scan-Enable Signals” on page 11-60 
for details on clustering and timing. See SolvNet article 2543967, “The Pipelined 
Scan-Enable Fanout Limit, Duplicate Scan-Enable Signals, and the TEST-1073 Error,” 
for details on how the fanout limit is applied.

The default is to not implement clusters.

Important:   
Do not use this feature in wire load mode because scan cell clustering cannot use 
physical information, which might degrade results.
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If you are using a DFT-inserted OCC controller, the clock connection might be incorrect. See 
“Pipelined Scan Enable Limitations” on page 11-62 for details.

The test protocol created by the tool does not constrain the pipeline enable signal, so 
post-DFT DRC checks both the LOC and LOES modes. The protocol written out by the 
write_test_protocol command also does not constrain the enable signal. Use the 
add_pi_constraint command in TetraMAX ATPG to assert or de-assert the pipeline 
enable signal. See “Using Launch-On Extra-Shift Timing” in TetraMAX Online Help for more 
information.

Pipelined Scan-Enable Signals in Hierarchical Flows

In hierarchical flows, the rules for pipelined scan-enable signals are:

• You must enable pipelined scan enables at every hierarchical integration level above 
where pipelined scan enables have been implemented.

• The tool adds top-level pipeline logic to top-level logic and nonpipelined cores.

• Nonpipelined cores must be created with per-clock-domain scan-enable signals to allow 
pipelining at the top level.

Figure 11-33 shows the integration of a pipelined and nonpipelined core.

Figure 11-33 Pipelined Scan-Enable and Core Integration

Creating Cores With Pipelined Scan Enable

To create a core that contains pipelined scan enables, see “Implementing Pipelined 
Scan-Enable Signals” on page 11-57.
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Integrating Cores With Pipelined Scan Enable

At the top level, enable and configure the pipelined scan-enable feature, as described in 
“Implementing Pipelined Scan-Enable Signals” on page 11-57. You must do this at all 
hierarchical core integration levels above where the feature is used.

The tool recognizes when a core already contains pipelined scan-enable signals. It 
automatically makes the connections from the top-level signals to the corresponding core 
pins. It does not insert any additional pipelining logic for these connections, which ensures 
that all scan cells have exactly one level of scan-enable pipelining.

Implementing Nonpipelined Scan-Enable Cores That Can Be Pipelined

You can create nonpipelined scan-enable DFT-inserted cores whose scan-enable signals 
can be pipelined when the core is integrated. This might be useful in some design scenarios, 
such as to share top-level pipeline constructs across multiple integrated cores, or to create 
blocks for design reuse that might or might not require pipelined scan enables.

To do this, create the core as follows:

1. Enable domain-specific scan-enable signals:

dc_shell> set_scan_configuration -domain_based_scan_enable true

This causes the tool to create a nonpipelined scan-enable signal for each scan clock and 
edge.

2. (Optional) If you have existing ports for each domain-specific scan-enable signal, define 
them using the -associated_clock option of the set_dft_signal command:

dc_shell> set_dft_signal -view spec -type ScanEnable \
            -port SE_CLK1 -associated_clock CLK1

dc_shell> set_dft_signal -view spec -type ScanEnable \
            -port SE_CLK2 -associated_clock CLK2

dc_shell> set_dft_signal -view spec -type ScanEnable \
            -port SE_CLK3 -associated_clock CLK3

Important:   
When using the -associated_clock option, you must define scan-enable signals for 
all scan clock domains. Otherwise, the tool reuses existing scan signals for 
unspecified clocks (instead of creating new signals), which is incorrect.

Note:   
You cannot use the -associated_clock option to define a scan-enable signal for an 
OCC controller or clock chain. The tool always creates a new scan-enable signal for 
them.
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The scan-enable signals are timing-critical because they will eventually be driven by pipeline 
registers. Be sure the signals are constrained at-speed and meet timing. For timing details, 
see “Implementation Considerations for Pipelined Scan-Enable Signals” on page 11-60.

When you integrate the core at the top level (with pipelined scan-enable signals), the tool 
automatically drives each core-level scan enable with a top-level pipeline construct of the 
corresponding clock.

Implementation Considerations for Pipelined Scan-Enable Signals

Note the following considerations when implementing pipelined scan-enable signals.

Timing Considerations

For a regular scan-enable signal, the signal path is a single-cycle path at the shift clock 
frequency, which is likely to be fairly slow—and even that requirement can be relaxed by 
adding extra cycles in TetraMAX ATPG using the -use_delay_capture_start and 
-use_delay_capture_end options of the write_patterns command.

For a pipelined scan-enable signal, this relaxed timing applies only to the external signal 
source. The de-assertion event from the pipeline register must reach all downstream flip-flop 
scan-enable pins in a single cycle at the capture clock frequency, which is much faster than 
shift. This path cannot be relaxed because a multicycle path would result in bad patterns, 
and slowing down the clock makes the test less-than-at-speed.

Figure 11-34 shows the relaxed externally driven assertion path in green and the critical 
register-driven de-assertion path in red.

Figure 11-34 Pipelined Scan-Enable Pipeline Register Timing Path
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The pipeline register and its fanout scan cells are all typically driven by the same 
skew-balanced clock tree. As a result, the scan-enable buffer tree paths are standard 
register-to-register timing paths, with allowable delays between nearly zero and almost a full 
clock cycle. The buffer tree does not need to be skew-balanced.

In addition,

• For high-frequency clocks driving large clock domains, the buffer tree delay might be 
greater than the clock period. In this case, you can move the pipeline register’s clock 
connection earlier in the clock tree, as long as hold constraints are met in all operating 
conditions.

• If you use power-aware functional output gating, the critical path for transition delay 
testing becomes the path from the scan-enable pipeline register through the toggle 
suppression gate into the functional logic. This feature is described in “Reducing Shift 
Power Using Functional Output Pin Gating” on page 11-120.

Physical Synthesis Implementation Considerations

In Design Compiler topographical mode and in Design Compiler Graphical, the tool creates 
physically aware buffer trees on the pipelined scan-enable nets to avoid synthesis design 
rule violations. For details, see “Performing Automatic High-Fanout Synthesis” in the Design 
Compiler User Guide.

If you set a fanout limit to implement pipelined scan-enable clusters, the tool analyzes scan 
cell locations to create compact clusters. Then, it builds physically aware buffer trees to all 
cluster pipeline registers (green) and within each cluster from the pipeline register to the 
scan cells (red), as shown in Figure 11-35.

Figure 11-35 Pipelined Scan-Enable Signal With Fanout-Limited Scan Cell Clusters
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See SolvNet article 2552200, “Visualizing Pipelined Scan-Enable Clusters in the Layout 
View” to display the clustering in your own design.

Wire Load Mode Implementation Considerations

In wire load mode, the tool buffers high-fanout nets by default, but because there is no 
physical information, it is likely that these buffer trees will be removed and rebuilt during 
layout.

To defer scan-enable network buffering until layout, use the following commands after DFT 
insertion and before post-DFT optimization: 

# disable DRC fixing on scan nets
set_auto_disable_drc_nets -scan true  ;# includes PSE register net

# apply ideal network property to SE ports and PSE register outputs
set_ideal_network {test_se global_pipe_se}
set_ideal_network [get_pins -hierarchical *test_pipe_se*/* \
  -filter {pin_direction == out}]

In wire load mode, it is recommended not to set a fanout limit to create pipelined 
scan-enable clusters because there is no physical information to optimally choose which 
scan cells to include in each cluster.

Pipelined Scan Enable Limitations

Note the following requirements and limitations of pipelined scan-enable signals:

• Scan-enable signals defined with the -usage scan option of the set_dft_signal 
command are not supported. Scan-enable signals with no usage, and those defined with 
the -usage clock_gating option, are supported.

• When using DFT-inserted OCC controllers, the clock connection to the pipeline 
scan-enable registers might be wrong.

This usually means that the tool uses the clock coming from the uncontrolled PLL 
source. In this case, TetraMAX will generate patterns, but those patterns will fail Verilog 
simulation. The correct clock connection to the pipeline scan enable register is the output 
of the OCC controller, at the leaf level of the clock tree. If the register is in a module with 
scan flip-flops that it controls, the same clock signal that drives the scan flip-flops should 
also drive the pipeline scan-enable register. The register’s instance name is 
test_pipe_se_<m>_reg_<n>. There might be more than one for each clock, and they 
might be buried in the design hierarchy, depending on the settings.

• If you set the -internal_clocks option of the set_scan_configuration command to 
multi or single, pipelined scan-enable insertion and domain-based scan-enable 
insertion treat each internal clock region as a separate scan clock domain, which might 
not be the desired result.
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Multiple Test Modes

A design’s scan interface must accommodate a variety of structural tests. Scan test, burn-in, 
and other tests performed at various production steps might require different types of access 
to scan elements of a design. To accommodate these different test requirements, multiple 
scan architectures can be provided on the same scan design. This approach is also useful 
for complex test schemes such as scan compression and core wrapping, which target tests 
in different parts of a design at different times.

The following topics explain the process for setting up architectures to perform multiple 
test-mode scan insertion:

• Introduction to Multiple Test Modes

• Defining Test Modes

• Applying Test Specifications to a Test Mode

• Recommended Ordering of Global and Mode-Specific Commands

• Using Multiple Test Modes in Hierarchical Flows

• Supported Test Specification Commands for Test Modes

• Multiple Test-Mode Scan Insertion Script Examples

See Also

• “DFTMAX Scan Compression and Multiple Test Modes” on page 18-13 for more 
information about defining and configuring multiple DFTMAX compression modes

• “DFTMAX Ultra Compression and Multiple Test Modes” on page 25-14 for more 
information about defining and configuring multiple DFTMAX Ultra compression modes

Introduction to Multiple Test Modes

You can reconfigure the scan chains in your design to suit various tester requirements by 
defining different modes of operation, called test modes. For example, suppose you have a 
simple design with 12 scan cells that must operate in two different scan modes. In one 
mode, scan data is shifted through two chains (six cells each), and in the other mode, scan 
data is shifted through three chains (four cells each). Figure 11-36 shows how DFT Compiler 
inserts MUXs to support these two scan chain configurations. These MUXs are known as 
reconfiguration MUXs.

Note:   
Reconfiguration MUXs might appear at any level in your design. This is usually 
dependent on the location of the scan elements where the MUXing takes place.
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Figure 11-36 Configuring Scan Chains With Test-Mode Logic

Each test mode is activated by asserting one or more test-mode signals according to a 
particular test-mode encoding. Different test modes can have different scan-in and scan-out 
pin counts, and can even have independent sets of scan-in and scan-out pins altogether.

Defining Test Modes

To define a test mode, use the define_test_mode command:

define_test_mode test_mode_name

Each test mode must have a unique name that is used to refer to the test mode in 
subsequent DFT commands or reports. The name of the default standard scan test mode is 
Internal_scan. You can configure this default mode and define additional modes, or you 
can create an entirely new set of named modes without using the default test mode.

Example 11-5 defines three newly-named test modes.

Example 11-5 Defining Three New User-Defined Test Modes

define_test_mode LONG      ;# long scan chains
define_test_mode MEDIUM    ;# medium scan chains
define_test_mode SHORT     ;# short scan chains
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Defining the Usage of a Test Mode

By default, a test mode represents a standard scan test mode of operation. To specify how 
a test mode is to be used, use the -usage option of the define_test_mode command. The 
valid keywords for this option are:

• scan – This is the traditional standard scan mode operation, which is the default if the 
-usage option is not specified. The scan chains are driven directly by top-level scan-in 
ports, and they drive, in turn, top-level scan-out ports. This mode is used for testing all 
logic internal to the core.

• scan_compression – This is the compressed scan mode of operation provided by the 
DFTMAX tool. In this mode, the internal scan chains are driven by combinational scan 
data decompressors, and the scan chains drive the combinational scan data 
compressors. This mode is used for testing all logic internal to the core with reduced test 
data volume and test application time.

• streaming_compression – This is the compressed scan mode of operation provided by 
the DFTMAX Ultra tool. In this mode, the internal scan chains are driven by shift register 
scan data decompressors, and the scan chains drive the shift register scan data 
compressors. This mode is used for testing all logic internal to the core with significantly 
reduced test data volume and test application time.

• wrp_if – This is the inward facing, or INTEST, mode of wrapper operation. This mode is 
used for testing all logic internal to the core. In this mode, wrappers are enabled and 
configured to drive and capture data within the design, in conjunction with the internal 
scan chains.

• wrp_of – This is the outward facing, or EXTEST, mode of wrapper operation. This mode 
is used for testing all logic external to the design. Wrappers are enabled and configured 
to drive and capture data outside of the design. In this mode the internal chains are 
disabled.

• wrp_safe – This is the safe wrapper mode. In this mode, the internal chains are 
disabled, and the internal core is protected from any toggle activity. This mode is optional 
and provides isolation of the core while other cores are being tested. When active, safe 
mode enables driving steady states into or out of the design.

Example 11-6 defines three standard scan test modes plus a DFTMAX compressed scan 
mode.

Example 11-6 Providing Test-Mode Usage Information With the -usage Option

define_test_mode LONG      ;# long scan chains
define_test_mode MEDIUM    ;# medium scan chains
define_test_mode SHORT     ;# short scan chains
define_test_mode COMPRESSED -usage scan_compression
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After test modes have been defined, you can use the list_test_modes command to report 
the currently defined test-mode names. Example 11-7 shows the report for the three 
standard scan test modes defined in Example 11-5.

Example 11-7 Test Modes Reported by the list_test_modes Command

Test Modes
==========

        Name: LONG
        Type: InternalTest
        Focus:

        Name: MEDIUM
        Type: InternalTest
        Focus:

        Name: SHORT
        Type: InternalTest
        Focus:

        Name: Mission_mode
        Type: Normal

Defining the Encoding of a Test Mode

Each test mode is activated by asserting one or more test-mode signals according to a 
particular encoding associated with that test mode. To declare these test-mode signals, use 
the set_dft_signal -type TestMode command. If no test-mode signals are available, or 
not enough test-mode signals are available to satisfy the test-mode encodings, DFT 
Compiler creates new test-mode ports as needed.

By default, DFT Compiler assigns a binary encoding to the test modes. Binary encoding 
requires the fewest number of test-mode signals. With binary encoding, n test-mode signals 
can provide test-mode encodings for up to 2n-1 test modes, allowing for an encoding that 
deactivates all test modes and activates mission mode.

To report the test-mode signals and encodings associated with each test mode, use the 
preview_dft command. Example 11-8 shows the preview report for the three standard 
scan test modes defined in Example 11-5.

Example 11-8 Test-Mode Encodings Reported by the preview_dft Command

================================
Test Mode Controller Information
================================
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Test Mode Controller Ports
--------------------------
test_mode: test_mode2
test_mode: test_mode1

Test Mode Controller Index (MSB --> LSB)
----------------------------------------
test_mode2, test_mode1

Control signal value - Test Mode
--------------------------------
00 LONG - InternalTest

01 MEDIUM - InternalTest

10 SHORT - InternalTest

You can also specify one-hot test-mode encoding by using the following command:

set_dft_configuration -mode_decoding_style one_hot

This command causes one-hot test-mode encodings to be used, and simplified test-mode 
decoding logic to be built that takes advantage of the properties of one-hot encodings. 
One-hot encodings provide simplified decoding logic, at the expense of a greater number of 
required test-mode signals. With one-hot encoding, n test-mode signals can provide 
test-mode encodings for up to n test modes, with mission mode being activated by an 
encoding where none of the test-mode signals are asserted.

Note:   
One-hot test-mode encodings take the active state of each test-mode signal into 
account. If you define all test-mode signals using the -active_state 0 option of the 
set_dft_signal command, each one-hot encoding contains a single asserted 0 value.

You can also specify your own test-mode encodings with the -encoding option of the 
define_test_mode command. The syntax of the encoding argument consists of one or 
more test-mode signal names and binary value pairs. These pairs are separated by a space 
when multiple ports are specified.

Example 11-9 shows how to use a binary encoding where mission mode is activated by the 
00 encoding and the three test-mode encodings have at least one test-mode signal 
asserted.

Example 11-9 Specifying User-Defined Binary Test-Mode Encodings

set_dft_signal -view spec -port {TM1 TM0} -type TestMode

define_test_mode LONG   -encoding {TM1 0 TM0 1}
define_test_mode MEDIUM -encoding {TM1 1 TM0 0}
define_test_mode SHORT  -encoding {TM1 1 TM0 1}
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If you are providing your own one-hot encodings, configure the test-mode decoding to 
one_hot to build simplified one-hot decoding logic. Example 11-10 shows how to configure 
one-hot encodings for the three example test modes.

Example 11-10 Specifying User-Defined One-Hot Test-Mode Encodings

set_dft_signal -view spec -port {TM2 TM1 TM0} -type TestMode

set_dft_configuration -mode_decoding_style one_hot

define_test_mode LONG   -encoding {TM2 0 TM1 0 TM0 1}
define_test_mode MEDIUM -encoding {TM2 0 TM1 1 TM0 0}
define_test_mode SHORT  -encoding {TM2 1 TM1 0 TM0 0}

If your test-mode control signals come from internal design pins, such as the outputs of test 
control registers, use the -hookup_pin option from the internal pins flow to make the 
connections. Example 11-11 shows how to hook up two test-mode signals to corresponding 
control register output pins.

Example 11-11 Using Internal Design Pins for Test-Mode Signals

set_dft_signal -view spec -type TestMode \
    -port TM1 -hookup_pin TESTCTL_reg[1]/Q
set_dft_signal -view spec -type TestMode \
    -port TM0 -hookup_pin TESTCTL_reg[0]/Q

define_test_mode LONG   -encoding {TM1 0 TM0 1}
define_test_mode MEDIUM -encoding {TM1 1 TM0 0}
define_test_mode SHORT  -encoding {TM1 1 TM0 1}

If the internal pins do not directly correspond to top-level ports, you must use the internal 
pins flow. For more information, see “Internal Pins Flow” on page 11-135.

Applying Test Specifications to a Test Mode

After you have defined test modes, you can apply mode-specific test specifications to each 
test mode. Not all commands and options can be used to apply mode-specific test 
specifications. For more information about the available commands and options, see 
“Supported Test Specification Commands for Test Modes” on page 11-72.

When you apply test specifications before defining any test modes, they are applied to the 
default test mode. As new test modes are defined, they inherit the test specification settings 
from this default mode. You can use this behavior to predefine global test specifications 
shared by all modes.

After you define a test mode with the define_test_mode command, that test mode 
becomes the current test mode. Subsequent scan specification commands apply only to 
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that test mode. You can use this behavior to implicitly apply mode-specific test specifications 
after defining a test mode, as shown in Example 11-12.

Example 11-12 Applying Scan Specifications Using Implicitly Defined Current Test Mode

define_test_mode LONG      ;# long scan chains
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks

define_test_mode MEDIUM    ;# medium scan chains
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks

define_test_mode SHORT     ;# short scan chains
set_scan_configuration -chain_count 5

You can also use the current_test_mode command to change the current test mode at any 
time, as shown in Example 11-13.

Example 11-13 Applying Scan Specifications Using Explicitly Defined Current Test Mode

define_test_mode LONG
define_test_mode MEDIUM
define_test_mode SHORT

current_test_mode LONG     ;# long scan chains
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks

current_test_mode MEDIUM   ;# medium scan chains
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks

current_test_mode SHORT    ;# short scan chains
set_scan_configuration -chain_count 5

You can use the -test_mode option to directly apply a scan specification to a particular test 
mode at any time, regardless of the current test mode, as shown in Example 11-14.

Example 11-14 Applying Scan Specifications Using the -test_mode Option

set_scan_configuration -test_mode LONG \
    -chain_count 2 -clock_mixing mix_clocks
set_scan_configuration -test_mode MEDIUM \
    -chain_count 3 -clock_mixing mix_clocks
set_scan_configuration -test_mode SHORT \
    -chain_count 5

To apply a scan specification to all test modes after previously defining some test modes, 
use the -test_mode all option, as shown in Example 11-15.

Example 11-15 Applying Scan Specification to All Test Modes

set_dft_signal -view spec -test_mode all \
    -type ScanDataIn -port {SI1 SI2 SI3}

Note:   
The -test_mode option also accepts the all_dft keyword, which is equivalent to all.
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When multiple scan specification commands are applied to a test mode, they are applied 
cumulatively. A new scan specification command overwrites a previous scan specification 
according to the same precedence rules used in a single test-mode flow.

Example 11-16 shows how to apply clock mixing to all test modes except for the SHORT test 
mode:

Example 11-16 Overwriting a Previous Scan Specification Setting for a Test Mode

set_scan_configuration -test_mode all \
    -clock_mixing mix_clocks
set_scan_configuration -test_mode LONG \
    -chain_count 2
set_scan_configuration -test_mode MEDIUM \
    -chain_count 3
set_scan_configuration -test_mode SHORT \
    -chain_count 5 -clock_mixing no_mix  ;# overwrites mix_clocks

The default for the -clock_mixing option is no_mix. In this example, the first command 
applies the -clock_mixing no_clocks option to all test modes. The subsequent two 
commands configure the chain counts for the first two test modes. Since the -chain_count 
option does not overwrite the -clock_mixing option, the mix_clocks specification remains 
in place for the LONG and MEDIUM test modes. In the last command, the -clock_mixing 
option reapplies the default clock mixing behavior of no_mix to the SHORT test mode to 
overwrite the mix_clocks behavior previously applied to all test modes.

Recommended Ordering of Global and Mode-Specific Commands

When applying scan specifications in a multiple test-mode environment, perform these 
steps:

1. Define TestMode signals with the set_dft_signal -test_mode all command.

2. Define all test modes, their usage, and optional encodings with the define_test_mode 
command.

3. Define clock and asynchronous DFT signals and constants that are common to all test 
modes with the set_dft_signal -test_mode all command.

4. Define any mode-specific DFT signals with the set_dft_signal -test_mode 
test_mode_name command.

5. Specify any scan specifications to be used in all test modes using the -test_mode all 
option of the set_scan_configuration and set_scan_path commands.

6. Specify any scan specifications to be used in specific test modes using the -test_mode 
test_mode_name option of the set_scan_configuration and set_scan_path 
commands.
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Note:   
If you reference any test modes using the -test_mode option of any DFT configuration 
commands, you must define those test modes with the define_test_mode command 
before referencing them.

Using Multiple Test Modes in Hierarchical Flows

In hierarchical flows, different cores might have different test modes defined. In this case, 
DFT Compiler creates as many top-level test modes as needed to accommodate all of the 
core-level test modes.

By default, the relationship between core-level and top-level test modes is determined by 
test mode name according to the following rules:

• For each core-level test mode, a top-level test mode of the same name is created.

• If multiple cores share a test mode with the same name, those core-level test modes are 
included in a top-level test mode of the same name.

• If a core does not have a test mode that matches a top-level test mode name, it is 
excluded from that top-level test mode.

The preview_dft and insert_dft commands report the core-level test modes used in 
each of the top-level test modes.

Consider an example where coreA has two test modes named SHORT and MEDIUM, and 
coreB has two test modes named MEDIUM and LONG. At the top level, DFT Compiler 
creates all three test modes. The preview_dft and insert_dft commands report the 
core-level test modes as shown in Example 11-17.

Example 11-17 Top-Level Test Mode Report for Default Name-Based Relationships

Control signal value - Integration Test Mode
  Core Instance - Test Mode
--------------------------------------------
00 SHORT - InternalTest
  coreA - SHORT: InternalTest

01 MEDIUM - InternalTest
  coreA - MEDIUM: InternalTest
  coreB - MEDIUM: InternalTest

10 LONG - InternalTest
  coreB - LONG: InternalTest

Note that coreB does not participate in top-level test mode SHORT, and coreA does not 
participate in top-level test mode LONG.
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At the top level, you can override the default name-based association of core-level test 
modes by using the define_test_mode -target command. The -target option takes a 
list of core and test mode pairs that should be included in that top-level test mode.

The previous example can be modified to use the closest matches for the missing core-level 
test modes, as shown in Example 11-18.

Example 11-18 Specifying User-Defined Core-Level Test Mode Relationships

# top-level test mode definitions
define_test_mode SHORT \
  -target {coreA:SHORT    coreB:MEDIUM}
define_test_mode MEDIUM \
  -target {coreA:MEDIUM   coreB:MEDIUM}
define_test_mode LONG \
  -target {coreA:MEDIUM   coreB:LONG}

The preview_dft and insert_dft commands report the core-level test modes as shown 
in Example 11-19.

Example 11-19 Top-Level Test Mode Report for User-Defined Test Mode Relationships

Control signal value - Integration Test Mode
  Core Instance - Test Mode
--------------------------------------------
00 SHORT - InternalTest
  coreA - SHORT: InternalTest
  coreB - MEDIUM: InternalTest

01 MEDIUM - InternalTest
  coreA - MEDIUM: InternalTest
  coreB - MEDIUM: InternalTest

10 LONG - InternalTest
  coreA - MEDIUM: InternalTest
  coreB - LONG: InternalTest

Note:   
If you use the -target option of the define_test_mode command, you must completely 
define the core test mode relationships for all cores and test modes. When the -target 
option is used, name-based test mode association is no longer performed for any core or 
test mode.

Supported Test Specification Commands for Test Modes

This topic lists the commands and options you can use to configure DFT insertion for 
specific test modes. These commands and options honor the -test_mode option or the 
current test-mode focus. Other DFT configuration commands and options apply to all test 
modes.
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set_dft_signal

You can use the set_dft_signal -test_mode command to declare different DFT signals 
for different test modes. For example, each test mode can have different scan-in and 
scan-out ports.

Keep in mind that pre-DFT DRC only analyzes the global all test mode; it does not consider 
mode-specific signals applied to other modes. As a result,

• Mode-specific signals defined with the -view spec option, such as scan-in and scan-out 
signals, can be safely made, as these signals do not yet exist during pre-DFT DRC.

• Mode-specific signals defined with the -view existing option, such as constants and 
reset signals, must be made with care, as these signals are not considered during 
pre-DFT DRC. However, they are incorporated into the mode-specific test protocols 
used by post-DFT DRC.

Note that you can apply a baseline set of signals to the all test mode to be used by 
pre-DFT DRC, along with mode-specific signals to be used by post-DFT DRC.

All test modes must share the same scan-enable signals. You cannot specify different 
scan-enable signals for different test modes.

If the -test_mode option is not specified, this command applies to the current test mode.

set_scan_configuration

The following set_scan_configuration options can be applied to specific test modes:

• -chain_count

• -clock_mixing

• -exclude_elements

Note:   
Shared wrapper cells are not supported for per-test-mode exclusion.

• -max_length

If the -test_mode option is not specified, these options apply to the current test mode. Other 
options of the set_scan_configuration command apply to all test modes.

set_scan_path

The following set_scan_path options can be applied to specific test modes:

• -scan_master_clock

• -exact_length
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Use the set_scan_path -test_mode command to provide scan chain specifications for the 
test modes in your design.

The scan path specification can be given for any chains in any defined test mode. It can 
include pin access information provided with the -scan_data_in, -scan_data_out, 
-scan_enable, -scan_master_clock, and -scan_slave_clock options. The specification 
can also specify a list of design elements to be included. When specifying pins with the 
-scan_data_in or -scan_data_out options, the signals must be previously defined with 
the set_dft_signal command using the ScanDataIn or ScanDataOut signal types.

If the scan path specification applies to a test mode which has the usage specified as scan, 
both the port and hookup arguments of the set_dft_signal command can be specified for 
the ScanDataIn and ScanDataOut signals.

If the scan path specification applies to a test mode which has the usage specified as 
scan_compression, then only the -hookup option of the set_dft_signal command can 
be specified for the ScanDataIn and ScanDataOut signals. A port argument must not be 
used for compressed scan mode scan path definitions, as these codec-connected 
compressed chains have no direct access from the ports.

If the -test_mode option is not specified, the specification applies to the current test mode. 
To apply the specification to all test modes, you must use the -test_mode all option.

Multiple Test-Mode Scan Insertion Script Examples

This topic provides examples of basic scan, DFTMAX compressed scan, and core wrapping 
scripts in a multiple test-mode environment.

Example 11-20 shows a basic scan script that defines four scan test modes. The scan1 
mode has one chain, the scan2 mode has two chains, the scan3 mode has four chains, and 
the scan 4 mode has eight chains. Each set of chains uses separate scan-in and scan-out 
pins.

Example 11-20 Basic Scan Multiple Test-Mode Script

## Define the pins for use in any test mode with "-test_mode all"
    for {set i 1} {$i <= 15 } { incr i 1} {
     create_port -direction in test_si[$i]
     create_port -direction out test_so[$i]
     set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \
          -test_mode all
     set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \
          -test_mode all
    }

#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
     -port clk_st
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#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
     [list i_trdy_de i_trdy_dd i_cs]

#Define the test modes
define_test_mode scan1 -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode scan2 -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode scan3 -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan4 -usage scan \
     -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}

#Configure the basic scan modes
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
     -test_mode scan1
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks \
     -test_mode scan2
set_scan_configuration -chain_count 4 -clock_mixing mix_clocks \
     -test_mode scan3
set_scan_configuration -chain_count 8 -clock_mixing mix_clocks \
     -test_mode scan4

## Give a chain spec to be applied in each of the modes
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
     -scan_data_out test_so[1] -test_mode scan1

set_scan_path chain2 -view spec -scan_data_in test_si[2] \
     -scan_data_out test_so[2]  -test_mode scan2

set_scan_path chain3 -view spec -scan_data_in test_si[3] \
     -scan_data_out test_so[3]  -test_mode scan2

set_scan_path chain4 -view spec -scan_data_in test_si[4] \
     -scan_data_out test_so[4]  -test_mode scan3

set_scan_path chain5 -view spec -scan_data_in test_si[5] \
     -scan_data_out test_so[5]  -test_mode scan3

set_scan_path chain6 -view spec -scan_data_in test_si[6] \
     -scan_data_out test_so[6]  -test_mode scan3

set_scan_path chain7 -view spec -scan_data_in test_si[7] \
     -scan_data_out test_so[7]  -test_mode scan3

set_scan_path chain8 -view spec -scan_data_in test_si[8] \
     -scan_data_out test_so[8]  -test_mode scan4

set_scan_path chain9 -view spec -scan_data_in test_si[9] \
     -scan_data_out test_so[9]  -test_mode scan4
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set_scan_path chain10 -view spec -scan_data_in test_si[10] \
     -scan_data_out test_so[10] -test_mode scan4

set_scan_path chain11 -view spec -scan_data_in test_si[11] \
     -scan_data_out test_so[11] -test_mode scan4

set_scan_path chain12 -view spec -scan_data_in test_si[12] \
     -scan_data_out test_so[12] -test_mode scan4

set_scan_path chain13 -view spec -scan_data_in test_si[13] \
     -scan_data_out test_so[13] -test_mode scan4

set_scan_path chain14 -view spec -scan_data_in test_si[14] \
     -scan_data_out test_so[14] -test_mode scan4

set_scan_path chain15 -view spec -scan_data_in test_si[15] \
     -scan_data_out test_so[15] -test_mode scan4

set_dft_insertion_configuration -synthesis_optimization none

create_test_protocol
dft_drc
preview_dft -show all

insert_dft

current_test_mode scan1
dft_drc -verbose

current_test_mode scan2
dft_drc -verbose

current_test_mode scan3
dft_drc -verbose

current_test_mode scan4
dft_drc -verbose

list_test_modes

list_licenses
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output vg/top_scan.v
write_test_protocol -test_mode scan1 \
  -output stil/scan1.stil -names verilog
write_test_protocol -test_mode scan2 \
  -output stil/scan2.stil -names verilog
write_test_protocol -test_mode scan3 \
  -output stil/scan3.stil -names verilog
write_test_protocol -test_mode scan4 \
  -output stil/scan4.stil -names verilog

exit
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Example 11-21 shows a DFTMAX compression script. In this script, three test modes are 
created. One mode is used for compression testing, a second mode is used for basic scan 
test and has eight chains, and a third mode uses a single basic scan chain.

Example 11-21 Basic DFTMAX Compressed Scan Multiple Test-Mode Script

## Define the pins for compression/base_mode using "-test_mode all"
## These modes are my_comp and my_scan1
    for {set i 1} {$i <= 13 } { incr i 1} {
     create_port -direction in test_si[$i]
     create_port -direction out test_so[$i]
     set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \
          -test_mode all
     set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \
          -test_mode all
    }
#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
     -port clk_st

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
     [list i_trdy_de i_trdy_dd i_cs]

#Define the test modes and usage
define_test_mode my_base1 -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode my_base2 -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode burn_in  -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
     -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}
define_test_mode scan_compression2 -usage scan_compression \
     -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 1}

#Enable DFTMAX compression
set_dft_configuration -scan_compression enable

#Configure DFTMAX compression
set_scan_compression_configuration -base_mode my_base1 -chain_count 32 \
     -test_mode scan_compression1 -xtolerance high
set_scan_compression_configuration -base_mode my_base2 -chain_count 256 \
     -test_mode scan_compression2 -xtolerance high

#Configure the basic scan modes
set_scan_configuration -chain_count 4 -test_mode my_base1
set_scan_configuration -chain_count 8 -test_mode my_base2
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
     -test_mode burn_in

set_dft_insertion_configuration -synthesis_optimization none
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## Give a chain spec to be applied in my_base1
## This will also define the scan ports for scan_compression1
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
     -scan_data_out test_so[1] \
     -test_mode my_base1
set_scan_path chain2 -view spec -scan_data_in test_si[2] \
     -scan_data_out test_so[2] \
     -test_mode my_base1
set_scan_path chain3 -view spec -scan_data_in test_si[3] \
     -scan_data_out test_so[3] \
     -test_mode my_base1
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
     -scan_data_out test_so[4] \
     -test_mode my_base1

## Give a chain spec to be applied in my_base2
## This will also define the scan ports for scan_compression2
set_scan_path chain5 -view spec -scan_data_in test_si[5] \
     -scan_data_out test_so[5]  -test_mode my_base2
set_scan_path chain6 -view spec -scan_data_in test_si[6] \
     -scan_data_out test_so[6]  -test_mode my_base2
set_scan_path chain7 -view spec -scan_data_in test_si[7] \
     -scan_data_out test_so[7]  -test_mode my_base2
set_scan_path chain8 -view spec -scan_data_in test_si[8] \
     -scan_data_out test_so[8]  -test_mode my_base2
set_scan_path chain9 -view spec -scan_data_in test_si[9] \
     -scan_data_out test_so[9]  -test_mode my_base2
set_scan_path chain10 -view spec -scan_data_in test_si[10] \
     -scan_data_out test_so[10] -test_mode my_base2
set_scan_path chain11 -view spec -scan_data_in test_si[11] \
     -scan_data_out test_so[11] -test_mode my_base2
set_scan_path chain12 -view spec -scan_data_in test_si[12] \
     -scan_data_out test_so[12] -test_mode my_base2

## Give a chain spec to be applied in burn_in
set_scan_path chain4 -view spec -scan_data_in test_si[13] \
     -scan_data_out test_so[13] -test_mode burn_in

create_test_protocol
dft_drc
preview_dft -show all

insert_dft

list_test_modes

current_test_mode scan_compression1
report_dft_signal
dft_drc -verbose

current_test_mode scan_compression2
report_dft_signal
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dft_drc -verbose

current_test_mode my_base1
report_dft_signal
dft_drc -verbose

current_test_mode my_base2
report_dft_signal
dft_drc -verbose

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

change_names -rules verilog -hierarchy
write -format verilog -hierarchy \
     -output vg/10x_xtol_moxie_top_scan_mm.v
write_test_protocol -test_mode scan_compression1 \
     -output stil/scan_compression1.stil -names verilog
write_test_protocol -test_mode scan_compression2 \
     -output stil/scan_compression2.stil -names verilog
write_test_protocol -test_mode my_base1 \
     -output stil/my_base1.stil -names verilog
write_test_protocol -test_mode my_base2 \
     -output stil/my_base2.stil -names verilog
write_test_protocol -test_mode burn_in \
     -output stil/10x_xtol_moxie.burn_in.stil -names verilog

exit

Example 11-22 shows a core wrapper script. This script defines all the modes that are 
created in a wrapper insertion process, which supports at-speed test and shared wrapper 
cells.

Example 11-22 Basic Core Wrapper Multiple Test-Mode Script

#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
     -port clk_s

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
     [list i_trdy_de i_trdy_dd i_cs i_wr]

#Define the test modes and usage
define_test_mode burn_in -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 0 i_wr 1}
define_test_mode domain  -usage scan \
     -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1 i_wr 0}
define_test_mode my_wrp_if -usage wrp_if \
     -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1 i_wr 1}
define_test_mode my_wrp_if_delay -usage wrp_if \
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     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0 i_wr 0}
define_test_mode my_wrp_if_scl_delay -usage wrp_if \
     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0 i_wr 1}
define_test_mode my_wrp_of -usage wrp_of \
     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1 i_wr 0}
define_test_mode my_wrp_of_delay -usage wrp_of \
     -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1 i_wr 1}
define_test_mode my_wrp_of_scl_delay -usage wrp_of \
     -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0 i_wr 0}
define_test_mode my_wrp_safe -usage wrp_safe \
     -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0 i_wr 1}

#Set scan chain count as desired
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
     -test_mode burn_in
set_scan_configuration -chain_count 5 -test_mode domain
set_scan_configuration -chain_count 8 -test_mode wrp_if
set_scan_configuration -chain_count 8 -test_mode wrp_of

# Enable and configure wrapper client
set_dft_configuration -wrapper enable

#Configure for shared wrappers, using existing cells and \
               create glue logic around existing cells
set_wrapper_configuration -class core_wrapper \
     -style shared \
     -shared_cell_type WC_S1 \
     -use_dedicated_wrapper_clock true  \
     -safe_state 1 \
     -register_io_implementation in_place \
     -delay_test true

#Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

#Report the configuration of the wrapper utility, optional
report_wrapper_configuration

#Preview all test structures to be inserted
preview_dft -test_wrappers all
preview_dft -show all

report_dft_configuration

#Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none
insert_dft

list_test_modes

current_test_mode burn_in
report_scan_path -view existing_dft -cell all > \
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     reports/xg_wrap_dedicated_delay_path_burn_in.rpt

current_test_mode domain
report_scan_path -view existing_dft -cell all > \
     reports/xg_wrap_dedicated_delay_path_domain.rpt

current_test_mode my_wrp_of
report_scan_path -view existing_dft -cell all > \
     reports/xg_wrap_dedicated_delay_path_my_wrp_of.rpt

current_test_mode my_wrp_of_delay
report_scan_path -view existing_dft -cell all > \
     reports/xg_wrap_dedicated_delay_path_my_wrp_of_delay.rpt

current_test_mode my_wrp_of_scl_delay
report_scan_path -view existing_dft -cell all > \
     reports/xg_wrap_dedicated_delay_path_my_wrp_of_scl_delay.rpt

current_test_mode my_wrp_if
report_scan_path -view existing_dft -cell all > \
     reports/xg_wrap_dedicated_delay_path_my_wrp_if.rpt

current_test_mode my_wrp_if_delay
report_scan_path -view existing_dft -cell all > \
     reports/xg_wrap_dedicated_delay_path_my_wrp_if_delay.rpt

current_test_mode my_wrp_if_scl_delay
report_scan_path -view existing_dft -cell all > \
     reports xg_wrap_dedicated_delay_my_wrp_if_scl_delay.rpt

report_dft_signal -view existing_dft -port *
report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output db/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_model -output db/des_unit.scan.ctldb
write_test_protocol -test_mode burn_in -output stil/burn_in.spf
write_test_protocol -test_mode domain -output stil/domain.spf
write_test_protocol -test_mode my_wrp_if_delay \
     -output stil/my_wrp_if_delay.spf
write_test_protocol -test_mode my_wrp_if_scl_delay \
     -output stil/my_wrp_if_scl_delay.spf
write_test_protocol -test_mode my_wrp_if -output stil/my_wrp_if.spf
write_test_protocol -test_mode my_wrp_of -output stil/my_wrp_of.spf
write_test_protocol -test_mode my_wrp_of_delay \
     -output stil/my_wrp_of_delay.spf
write_test_protocol -test_mode my_wrp_of_scl_delay \
     -output stil/my_wrp_of_scl_delay.spf
write_test_protocol -test_mode wrp_if -output stil/extra_wrp_if.spf

exit
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Note that you can also run the report_scan_path -test_mode tms command, which 
displays a report containing test-related information about the current design, as shown in 
Example 11-23.

Example 11-23 report_scan_path Output Example

dc_shell> report_scan_path -test_mode tms
Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop

Clock domain: mix_clocks
Chn Scn Prts (si --> so) #Cell Inst/Chain Clck (prt, tm,edge)
--- ------------------- ----- ---------- -------------------
S 1 test_si1 --> test_so1 2 U2/1 (s) CK3, 45.0,rising)
S 2 test_si2 --> test_so2 2 U2/2 (s) (CK2, 45.0,rising)
W 3 test_si3 --> test_so3 8 U2/WrapperChain_0 (s) (WCLK,45.0, rising)

Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Normally, the test mode of a design is controlled by one or more test-mode ports. You can 
use the IEEE 1500 insertion feature to control the test mode of a design through standard 
IEEE 1500 or IEEE 1149.1 interfaces instead. This feature allows you to

• Insert IEEE 1500 test-mode control logic, which provides a standard interface for test 
mode control, at the core level and chip level

• Insert server control logic, which provides complete access to all on-chip IEEE 1500 
controllers through an IEEE Std 1149.1 (JTAG) interface, at the chip level

• Integrate cores that use either IEEE 1500 or test-mode ports for test mode control

• Create test protocols that set up a design’s test mode using the core-level or chip-level 
logic at that level

Note:   
A DFTMAX license is required to use the IEEE 1500 test-mode control feature.

Test-mode control through IEEE 1500 is described in the following topics:

• IEEE 1500 Test Mode Control Architecture

• Inserting IEEE 1500 at the Core Level

• Inserting IEEE 1500 and IEEE 1149.1 at the Chip Level

• Customizing the IEEE 1500 Architecture

• Writing Test Protocols
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• Script Examples

• Limitations

IEEE 1500 Test Mode Control Architecture

The architecture used for test-mode control through IEEE 1500 depends on whether you are 
inserting control logic at the core level or chip level, and whether you are integrating cores, 
as described in the following topics:

• Core-Level Test-Mode Control

• Core Integration With IEEE 1500 Test-Mode Control

• Chip-Level Test-Mode Control

For more information about IEEE 1500, see IEEE Std 1500-2005 - IEEE Standard Testability 
Method for Embedded Core-based Integrated Circuits, available at the following address:

http://standards.ieee.org/

Core-Level Test-Mode Control

An IEEE 1500 controller presents a standardized interface for accessing the test capabilities 
of a design. Figure 11-37 shows the basic implementation used by the DFTMAX tool.

Figure 11-37 IEEE 1500 Controller Logic
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The IEEE 1500 controller logic is accessed primarily through a mandatory serial interface, 
known as the wrapper serial control (WSC) interface. The WSC interface uses the following 
wrapper controller signals to provide access to the instruction and data registers:

• WSI - scan path input

• WRSTN - active-low reset

• WRCK - controller clock

• CaptureWR - data capture enable

• ShiftWR - shift enable

• UpdateWR - update enable

• SelectWIR - shift path selection between controller instruction or data registers

• WSO - scan path output

These signals provide access to the instruction and data registers. When SelectWIR is 
asserted, a new instruction can be shifted into the WIR. When SelectWIR is de-asserted, a 
new data value can be shifted into the data register selected by the WIR. A single-bit 
wrapper bypass register (WBY) is required for compliance.

The wrapper boundary register (WBR) represents the wrapper chain present in wrapped 
cores. It can be implemented as one or more register segments. Typically a minimum of two 
segments are used: one for inputs and one for outputs.

The IEEE 1500 specification also allows one or more core data registers (CDRs) to be 
implemented. These CDRs allow design-specific functionality to be accessed from the 
WSC.

When IEEE 1500 test-mode control is enabled, DFT insertion creates a CDR to control the 
test mode. This test-mode CDR (TMCDR) drives the test control module (TCM), as shown 
in Figure 11-38. The TMCDR in the IEEE 1500 controller takes the place of the test-mode 
input ports that typically drive the test-mode signals. By shifting different values into the 
TMCDR, the core can be placed into different test modes.

Figure 11-38 Core-Level IEEE 1500 Test-Mode Control
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In addition to driving the test-mode control signals of the TCM, the TMCDR also drives 
on-chip clocking (OCC) controller enable and PLL bypass signals.

Note:   
If you have test-mode signals that control other testability features, such as AutoFix or 
clock gating, you must define them as port-driven signals. They are not controlled by the 
TMCDR.

Note the following aspects of the DFTMAX implementation of the IEEE 1500 controller:

• The WBR is optional; you can enable IEEE 1500 test-mode control when creating 
unwrapped cores.

• The WSC interface provides the WBR shift, capture, and update control signals, but 
normal scan input and output signals provide the WBR shift data. This allows the WBR 
to be controlled using the normal WSC signals, while still allowing the WBR to use scan 
compression.

Core Integration With IEEE 1500 Test-Mode Control

When you use IEEE 1500 test-mode control, you can integrate cores with or without IEEE 
1500 test-mode control.

When you integrate a core with IEEE 1500 test-mode control, the IEEE 1500 controller 
inside that core is daisy-chained with the IEEE 1500 controller in the current design, as 
shown in Figure 11-39.

Figure 11-39 Integrating a Core That Uses IEEE 1500 Test-Mode Control
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might be added, depending on how the core-level test modes map to the test modes of the 
current design.

CORE

TMCDR
WBY

WIR

SUBCORE
TCM

TMCDR
WBY

WIR

TCM

IEEE 1500
controller

IEEE 1500
controller
Chapter 11: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces 11-85
Chapter 11: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces 11-85



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 11-40 Integrating a Core That Uses Test Mode Ports

You can integrate a mix of cores with and without IEEE 1500 test-mode control. All cores 
with IEEE 1500 test-mode control are daisy-chained off the IEEE 1500 controller of the 
current design, and all cores with test-mode ports are driven by the TCM of the current 
design.

When you use IEEE 1500 test-mode control for a core, you must also use IEEE 1500 
test-mode control for each higher level of DFT insertion up to and including the chip level.

Chip-Level Test-Mode Control

At the chip level, the tool inserts an IEEE 1500 controller and integrates all cores, just as at 
the core level. In addition, it inserts glue logic, called server logic, that connects the IEEE 
1500 controller logic to the chip-level IEEE Std 1149.1 interface, as shown in Figure 11-41.

Figure 11-41 Integrating a Core That Uses IEEE 1500 Test-Mode Control
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Figure 11-42 Summary of Control and Data Signals Used by the Server Logic

Inserting IEEE 1500 at the Core Level

To use a DFT-inserted IEEE 1500 controller for test-mode control at the core level,

1. Enable IEEE 1500 test-mode controller insertion with the following command:

dc_shell> set_dft_configuration -ieee_1500 enable

The tool automatically recognizes cores with IEEE 1500 test-mode control logic; you do 
not need to specify them.
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When the tool automatically creates these signals, it creates test-mode core data 
register (TMCDR) bits to drive them. These TMCDR bits take the place of traditional 
port-driven test mode signals.

Note:   
If you have test-mode signals that control other testability features, such as AutoFix 
or clock gating, define them in the usual way. They are not controlled by the TMCDR.

4. Continue with DFT insertion in the usual way.

After DFT insertion, the tool places information about the IEEE 1500 interface signals into 
the CTL model. This allows the interface to be recognized during chip-level integration.

Inserting IEEE 1500 and IEEE 1149.1 at the Chip Level

To use a DFT-inserted IEEE 1500 controller for test-mode control at the chip level where 
IEEE Std 1149.1 logic will also be inserted,

1. Enable IEEE 1500 test-mode controller insertion and IEEE Std 1149.1 insertion with the 
following command:

dc_shell> set_dft_configuration -ieee_1500 enable -bsd enable

The tool automatically recognizes cores that have IEEE 1500 test-mode control logic 
described in their CTL models; you do not need to specify these cores.

2. Define the ports or pad hookup pins for the IEEE Std 1149.1 interface signals with the 
set_dft_signal command:

dc_shell> set_dft_signal -view spec -type TDI -port port \
            -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TRSTN -port port \
            -hookup_pin pin -active_state 0
dc_shell> set_dft_signal -view spec -type TCK -port port \
            -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TMS -port port \
            -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TDO -port port \
            -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TDO_EN -port port \
            -hookup_pin pin

All signals except TRSTN are required. If these signals do not exist, the tool does not 
automatically create them.

3. When you define your DFT signals, do not define the following test-mode signals:

❍ Test-mode signals for multiple test-mode selection

❍ On-chip clocking (OCC) controller test-mode signals and PLL bypass signals
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When the tool automatically creates these signals, it creates test-mode core data 
register (TMCDR) bits to drive them. These TMCDR bits take the place of traditional 
port-driven test mode signals.

Note:   
If you have test-mode signals that control other testability features, such as AutoFix 
or clock gating, define them in the usual way. They are not controlled by the TMCDR.

4. Continue with DFT insertion and boundary-scan insertion in the usual way. 

For more information about the boundary-scan insertion capability provided by the 
DFTMAX tool, see the BSD Compiler User Guide.

Note:   
When IEEE 1500 test-mode control is enabled, the DFT-inserted TAP controller 
implements only the instructions needed for IEEE 1500 control. To implement mandatory 
IEEE Std 1149.1 instructions, boundary-scan logic, or user-defined instructions, use the 
2-pass method described in SolvNet article 039402, “How Can I Use Additional 
Boundary-Scan Features With IEEE 1500 Test-Mode Control?”

Customizing the IEEE 1500 Architecture

In the IEEE 1500 architecture, test-mode signals are generated from wrapper instruction 
register (WIR) and test-mode core data register (TMCDR) decoding logic. This topic 
describes the options used to configure this decoding logic.

The following topics describe how you can customize the IEEE 1500 architecture:

• Configuring the WIR

• Configuring the DFT-Inserted TMCDR

• Using an Existing TMCDR

• Using WIR Test-Mode Decoding With No TMCDR

• Controlling the Test-Mode Encoding Style

• Reporting the Test Mode Encodings

• Specifying WIR Opcodes for CDRs

Configuring the WIR

By default, the tool sizes the WIR automatically, based on the opcodes that select the core 
data registers. For the default case, which is a TMCDR with no user-defined CDRs, the tool 
uses a single-bit WIR. If you define additional CDRs or specify particular opcodes to be 
used, the tool creates a wider WIR as needed.
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To specify a particular WIR size, use the following command:

dc_shell> set_ieee_1500_configuration -wir_width width

Configuring the DFT-Inserted TMCDR

By default, the tool sizes the TMCDR to contain all test-mode encodings using the specified 
encoding mode. To specify a wider TMCDR size, use the -length option. For example,

dc_shell> set_scan_path TMCDR -class ieee_1500 \
            -view spec -test_mode all \
            -exact_length tmcdr_width

The -class 1500 option indicates that you are defining a CDR register (in this case, the 
TMCDR) that is selected by the WIR. The scan path name can be anything except the 
reserved values of WIR and WBY.

Using an Existing TMCDR

Instead of using a DFT-inserted TMCDR, you can use an existing TMCDR for test-mode 
control of your design.

Example 11-24 defines an existing TMCDR.

Example 11-24 Defining an Existing Test-Mode Core Data Register

# define the control and scan-in/scan-out signal pins of the TMCDR
set_dft_signal -view spec -type WSI -hookup_pin MY_TMCDR/wsi
set_dft_signal -view spec -type WRCK -hookup_pin MY_TMCDR/wrck
set_dft_signal -view spec -type WRSTN -hookup_pin MY_TMCDR/wrstn \
  -active_state 0
set_dft_signal -view spec -type ShiftWR -hookup_pin MY_TMCDR/shiftwr
set_dft_signal -view spec -type CaptureWR -hookup_pin MY_TMCDR/capturewr
set_dft_signal -view spec -type UpdateWR -hookup_pin MY_TMCDR/updatewr
set_dft_signal -view spec -type WSO -hookup_pin MY_TMCDR/wso

# define the TMCDR scan path design
set_scan_path MY_TMCDR_SCANPATH -class ieee_1500 \
  -view spec -test_mode all \
  -ordered_elements {MY_TMCDR/DOUT[3] \
                     MY_TMCDR/DOUT[2] \
                     MY_TMCDR/DOUT[1] \
                     MY_TMCDR/DOUT[0]} \
  -hookup {MY_TMCDR/wsi \
           MY_TMCDR/wrck \
           MY_TMCDR/wrstn \
           MY_TMCDR/shiftwr \
           MY_TMCDR/capturewr \
           MY_TMCDR/updatewr \
           MY_TMCDR/wso}
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# prevent scan insertion/stitching on the CDR block
set_scan_element false MY_TMCDR
set_scan_configuration -exclude_elements MY_TMCDR

Specify the leaf or hierarchical register output pins with the -ordered_elements option, 
ordered from WSI to WSO. Specify the remaining input and output control and scan data 
pins used to access the TMCDR with the -hookup option. All pins should be unconnected 
or tied to ground because the tool connects them during DFT insertion. (The signal and scan 
path specifications are defined with the -view spec option because the tool makes these 
connections during DFT insertion.)

The following signal types are required for an existing TMCDR specification: WSI, WRCK, 
ShiftWR, WSO. Other signal types are optional.

To use specific TMCDR register output bits for specific DFT signals, specify the register 
outputs as hookup pins with the set_dft_signal command. For example,

set_dft_signal -view spec -type pll_bypass \
  -hookup_pin MY_TMCDR/DOUT[3]
set_dft_signal -view spec -type pll_reset \
  -hookup_pin MY_TMCDR/DOUT[2]
set_dft_signal -view existing_dft -type Constant -active_state 0 \
  -hookup_pin MY_TMCDR/DOUT[0]

You can specify hookup pins for some or all of the DFT signals in the design. Unspecified 
DFT signals will use the remaining available TMCDR bits in the usual way.

If the existing TMCDR does not contain enough bits for all DFT signals in the design, the tool 
creates and uses a DFT-inserted TMCDR for the additional signals.

Using WIR Test-Mode Decoding With No TMCDR

By default, the tool uses a TMCDR, selected by the WIR, to generate the test-mode signals. 
The advantage of this method is that only a single WIR instruction is consumed by test 
functionality; all of the test-mode encodings are contained in the TMCDR data encoding 
space.

However, you can omit the TMCDR register and use the WIR directly for test-mode 
decoding. In this case, WIR instruction encodings are created for all test modes. To do this, 
define the TMCDR with a zero width specified:

dc_shell> set_scan_path TMCDR -class ieee_1500 \
            -view spec -test_mode all \
            -exact_length 0

When the TMCDR is omitted, DFTMAX sizes the WIR to contain all test-mode encodings 
using the specified encoding mode. To specify a wider WIR size, use the following 
command:

dc_shell> set_ieee_1500_configuration -wir_width width
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Controlling the Test-Mode Encoding Style

The tool automatically chooses encodings for each test mode that can be enabled by the 
TMCDR. By default, binary encodings are used, which provide the most compact encodings 
but require the use of decoding logic to generate the test-mode enable signals.

You can also specify one-hot test-mode encoding, which requires simplified decoding logic 
at the expense of more test-mode encoding bits, by using the following command:

dc_shell> set_dft_configuration -mode_decoding_style one_hot

Reporting the Test Mode Encodings

When the tool determines the WIR opcode that selects the TMCDR, the preview_dft and 
insert_dft commands report the chosen opcode as follows:

Info: CDR Opcode is set to '1'(WSO-->WSI)

 The preview_dft command also provides information about the test-mode encodings. The 
following report example is for a design using the default TMCDR test-mode decoding 
mode:

dc_shell> preview_dft
...
================================
Test Mode Controller Information
================================

Test Mode Controller Ports
--------------------------
test_mode: BLK_Test_Controller_1500_inst/CDR[1]
test_mode: BLK_Test_Controller_1500_inst/CDR[0]

Test Mode Controller Index (WSO --> WSI)
------------------------------------------
BLK_Test_Controller_1500_inst/CDR[1],
BLK_Test_Controller_1500_inst/CDR[0]

Control signal value - Test Mode
--------------------------------
00 Mission_mode - Normal
01 wrp_of - ExternalTest
10 wrp_if - InternalTest
11 ScanCompression_mode - InternalTest

The following report example is for a design using the optional WIR test-mode decoding 
mode:

dc_shell> preview_dft
...
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Test Mode Controller Ports
--------------------------
test_mode: BLK_Test_Controller_1500_inst/WIR[1]
test_mode: BLK_Test_Controller_1500_inst/WIR[0]

Test Mode Controller Index (WSO --> WSI)
------------------------------------------
BLK_Test_Controller_1500_inst/WIR[1],
BLK_Test_Controller_1500_inst/WIR[0]

Control signal value - Test Mode
--------------------------------
00 Mission_mode - Normal
01 wrp_of - ExternalTest
10 wrp_if - InternalTest
11 ScanCompression_mode - InternalTest

Specifying WIR Opcodes for CDRs

By default, the tool chooses WIR opcodes for all CDRs selectable by the WIR. This includes

• The WBY register

• TMCDR registers

• User-defined CDR registers

To specify the WIR opcode that selects a particular CDR, use the -opcode option of the 
set_scan_path command.

For the default DFT-inserted TMCDR that does not normally have a scan path specification, 
specify only the opcode with no other information. For example,

dc_shell> set_scan_path TMCDR -class ieee_1500 \
            -view spec -test_mode all \
            -opcode opcode_string

For a CDR that already has a scan path specification, include the -opcode option in the 
specification.

If you have not specified the WIR size, the tool sizes the WIR to accommodate your 
opcodes. If you have specified the WIR size, choose your opcode encodings accordingly.
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Writing Test Protocols

When you perform DFT insertion, the tool creates a test protocol for each newly created test 
mode. When you use IEEE 1500 test-mode control, each test protocol configures the test 
mode through the appropriate interface—IEEE 1500 at the core level and IEEE Std 1149.1 
at the chip level. You can use the write_test_protocol command to write out these test 
protocols in STIL format.

Example 11-25 shows the test_setup section of a core-level test protocol that initializes the 
test mode through the IEEE 1500 interface.

Example 11-25 Core-Level Test Protocol Using IEEE 1500 Test-Mode Control

    "test_setup" {
...
        Ann {* Reset 1500 Logic *} V {
            "WSI" = 0;
            "WRSTN" = 0;
            "SelectWIR" = 0;
        }
        Ann {* Unreset 1500 Logic *} V {
            "WRSTN" = 1;
        }
        Ann {* Prepare To Load WIR *} V {
            "WRCK" = P;
            "ShiftWR" = 1;
            "SelectWIR" = 1;
        }
        Ann {* Load 1500 WIR *} Macro "wir_load";
        Ann {* Update 1500 WIR *} V {
            "ShiftWR" = 0;
            "UpdateWR" = 1;
        }
        Ann {* Prepare To Load CDR *} V {
            "ShiftWR" = 1;
            "UpdateWR" = 0;
            "SelectWIR" = 0;
        }
        Ann {* Load 1500 CDR *} Macro "cdr_load";
        Ann {* Update 1500 CDR *} V {
            "ShiftWR" = 0;
            "UpdateWR" = 1;
        }
        Ann {* 1500 Wrapper Clock Off *} V {
            "WRCK" = 0;
            "UpdateWR" = 0;
        }
    }
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Example 11-26 shows the test_setup section of a chip-level test protocol that initializes the 
test mode through the IEEE Std 1149.1 interface. The test_setup sections of the test 
protocols use macros to simplify the initialization of the WIR and CDR.

Example 11-26 Chip-Level Test Protocol Using IEEE 1500 Test-Mode Control

    "test_setup" {
...
        Ann {* Test-Logic-Reset *} V {
            "tdi" = 0;
            "trstn" = 0;
        }
        Macro "reset_to_shift_ir";
        Macro "SELECT_WIR";
        Macro "exit1_ir_to_shift_dr";
        Macro "wir_load_CORE2_ScanCompression_mode";
        Macro "wir_load_CORE1_ScanCompression_mode";
        Macro "wir_load_top_CORES1AND2";
        Macro "exit1_dr_to_shift_ir";
        Macro "SELECT_CDR";
        Macro "exit1_ir_to_shift_dr";
        Macro "cdr_load_CORE2_ScanCompression_mode";
        Macro "cdr_load_CORE1_ScanCompression_mode";
        Macro "cdr_load_top_CORES1AND2";
        Ann {* Update-DR *} V {
            "tck" = P;
            "tms" = 1;
            "trstn" = 1;
        }
        Ann {* Run-Test-Idle *} V {
            "tms" = 0;
        }
        Ann {* JTAG TCK Off *} V {
            "tck" = 0;
        }
    }

If a test mode contains an untested core with an IEEE 1500 controller, the corresponding 
test protocol loads the WS_BYPASS instruction into the wrapper instruction register (WIR) 
of the untested core.

Script Examples

Example 11-27 shows a script that inserts compressed scan, core wrapping, and IEEE 1500 
test-mode control logic at the core level.

Example 11-27 Core-Level Insertion of IEEE 1500 Test-Mode Control

# initial compile
current_design core
link
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create_clock -period 10 CLK
compile -scan

# enable DFT clients
set_dft_configuration \
  -scan_compression enable -wrapper enable -ieee_1500 enable

# define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
  -timing {45 55} -port CLK
set_dft_signal -view spec -type ScanDataIn  -port [get_ports SI*]
set_dft_signal -view spec -type ScanDataOut -port [get_ports SO*]

set_dft_signal -view spec -type WSI       -port WSI
set_dft_signal -view spec -type WRSTN     -port WRSTN
set_dft_signal -view spec -type WRCK      -port WRCK
set_dft_signal -view spec -type CaptureWR -port CaptureWR
set_dft_signal -view spec -type ShiftWR   -port ShiftWR
set_dft_signal -view spec -type UpdateWR  -port UpdateWR
set_dft_signal -view spec -type SelectWIR -port SelectWIR
set_dft_signal -view spec -type WSO       -port WSO

# configure scan, scan compression, core wrapping
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 8
set_wrapper_configuration -class core_wrapper -maximize_reuse enable

# insert DFT and write out design
create_test_protocol
dft_drc
insert_dft
write -format ddc -output core.ddc

Example 11-28 shows a script that inserts IEEE 1500 test-mode control, along with the 
server and IEEE 1149.1 TAP controller logic, at the chip level.

Example 11-28 Chip-Level Insertion of IEEE 1500 Test-Mode Control

# initial compile
current_design chip
link
compile -scan -incremental

# enable DFT clients
set_dft_configuration \
  -bsd enable -scan enable -scan_compression enable -ieee_1500 enable

# define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
  -port TCK -timing {45 55}
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}
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for {set i 1} {$i <= 2} {incr i} {
  set_dft_signal -view spec -type ScanDataIn \
    -port SI${i} -hookup_pin U_SI${i}_PAD/Z
  set_dft_signal -view spec -type ScanDataIn \
    -port SI${i} -hookup_pin U_SI${i}_PAD/Z
}
set_dft_signal -view spec -type ScanEnable -port SE -hookup_pin U_SE/Z

set_dft_signal -view spec -type TDI    -port TDI    -hookup_pin U_TDI/Z
set_dft_signal -view spec -type TRST   -port TRST_N -hookup_pin U_TRSTN/Z
set_dft_signal -view spec -type TCK    -port TCK    -hookup_pin U_TCK/Z
set_dft_signal -view spec -type TMS    -port TMS    -hookup_pin U_TMS/Z
set_dft_signal -view spec -type TDO    -port TDO    -hookup_pin U_TDO/A
set_dft_signal -view spec -type TDO_EN -port TDO    -hookup_pin U_TDO/E

# configure wrapped compressed scan core integration
define_test_mode CORES_STD -usage scan \
  -target {CORE1:wrp_if               CORE2:wrp_if}
define_test_mode CORES_COMP -usage scan_compression \
  -target {CORE1:ScanCompression_mode CORE2:ScanCompression_mode}
define_test_mode ONLY_TOP -usage scan \
  -target {chip}

set_scan_configuration -test_mode CORES_STD \
  -chain_count 4 -clock_mixing mix_clocks
set_scan_configuration -test_mode ONLY_TOP \
  -chain_count 4 -clock_mixing mix_clocks
set_scan_compression_configuration \
  -test_mode CORES_COMP -base_mode CORES_STD \
  -integration_only true

# insert DFT and write out design
create_test_protocol
dft_drc
insert_dft
change_names -rules verilog -hierarchy
write -format ddc -output chip.ddc

Limitations

Note the following requirements and limitations:

• When IEEE 1500 test-mode control is enabled, the DFT-inserted TAP controller 
implements only the instructions needed for IEEE 1500 control. To implement mandatory 
IEEE Std 1149.1 instructions, boundary-scan logic, or user-defined instructions, use the 
2-pass method described in SolvNet article 039402, “How Can I Use Additional 
Boundary-Scan Features With IEEE 1500 Test-Mode Control?”

• The chip level must have multiple test modes to control.

• At least one core must have IEEE 1500 logic inserted.
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• You can only integrate cores containing IEEE 1500 logic up one level, into a chip level 
that uses IEEE 1500 and IEEE Std 1149.1 test-mode control. Nested integration of IEEE 
1500 cores is not supported.

• The test-mode control data register (TMCDR) drives only the test-mode selection signals 
and the OCC controller test-mode and pll_bypass signals. If you have test-mode signals 
that control other testability features, such as AutoFix or clock gating, you must define 
them as port-driven signals. They are not controlled by the TMCDR.

• All IEEE 1500 signal and scan specifications must be applied to the global test mode; 
specifications applied to specific user-defined test modes are ignored.

• The WBR boundary scan register does not support WSI-to-WSO scan shifting through 
the IEEE 1500 controller.

• You cannot specify user-defined test mode encodings when using DFT-inserted IEEE 
1500 test-mode control.

Multivoltage Support

The increasing presence of multiple voltages in designs has resulted in the need for DFT 
insertion to build working scan chains with minimal voltage crossings and minimal level 
shifters. This topic describes the methodology for running DFT insertion in designs 
containing multiple voltages.

The following topics describe multivoltage support:

• Configuring Scan Insertion for Multivoltage Designs

• Configuring Scan Insertion for Multiple Power Domains

• Mixture of Multivoltage and Multiple Power Domain Specifications

• Reusing Multivoltage Cells

• Scan Path Routing and Isolation Strategy Requirements

• Using Domain-Based Strategies for DFT Insertion

• DFT Considerations for Low-Power Design Flows

• Previewing a Multivoltage Scan Chain

• Scan Extraction Flows in the Presence of Isolation Cells

• Limitations
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Configuring Scan Insertion for Multivoltage Designs

The following command instructs the DFT insertion process to build scan chains that can 
cross different voltage regions:

dc_shell> set_scan_configuration -voltage_mixing true

When set to true, DFT insertion attempts to minimize voltage crossings to reduce the 
number of level shifters added. The default of this option is false.

If you use any commands, such as the set_scan_path command, that violate the voltage 
mixing specification, the preview_dft and insert_dft commands issue the following 
warning message and continue with scan insertion:

Warning: elements are supplied by different voltages. (TEST-1026)

Configuring Scan Insertion for Multiple Power Domains

The following command instructs the DFT insertion process to build scan chains that can 
cross different power domains:

dc_shell> set_scan_configuration \
             -power_domain_mixing true 

When set to true, DFT insertion attempts to minimize power domain crossings to reduce 
the number of isolation cells added. DFT insertion does not check or remove existing 
isolation cells. The default of this option is false.

If you use any commands, such as the set_scan_path command, that violate the power 
domain mixing specification, the preview_dft and insert_dft commands issue the 
following warning message and continue with scan insertion:

Warning: elements are supplied by different power domains. (TEST-1029)

Mixture of Multivoltage and Multiple Power Domain Specifications

The interaction between the -voltage_mixing and -power_domain_mixing options is as 
shown in Figure 11-43.
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Figure 11-43  Interaction Between Voltage Mixing and Power Domain Mixing

Here the scan cells are contained within three blocks as follows:

• Power domain PD1, Voltage V1

• Power domain PD2, Voltage V1

• Power domain PD3, Voltage V2

By default, DFT Compiler does not allow voltage mixing or power domain mixing within the 
same scan path. Table 11-15 shows the allowable scan paths with the various combinations 
of -voltage_mixing and -power_domain_mixing.

Note:   
The behavior of DFT insertion in an always-on synthesis environment is such that you 
must run an incremental compile after running the insert_dft command to insert any 
missing multivoltage cells that might be needed.

Table 11-15 Interactions Between the -voltage_mixing and -power_domain_mixing Options 

If -voltage_mixing is: And -power_domain_mixing is: Allowable scan paths

False False None

False True Scan path 1 only

True False None

True True Scan paths 1 and 2

PD1, V1 PD2, V1

Scan path 1

PD3, V2

Scan path 2
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Reusing Multivoltage Cells

By default, the insert_dft command reuses existing level shifters and isolation cells if they 
are on the scan path. It reuses only combinational multivoltage cells and does not reuse 
sequential multivoltage cells, such as latch-based isolation cells. If you do not want the 
insert_dft command to reuse existing multivoltage cells (level shifters and isolation cells), 
use the following command:

dc_shell> set_scan_configuration \
               -reuse_mv_cells false

This topic covers the following:

• Reusing Level Shifters in Scan Paths

• Reusing Isolation Cells in Scan Paths

Reusing Level Shifters in Scan Paths

If a scan path goes through a level shifter and you enable multivoltage cell reuse, scan 
insertion connects the scan chain at the output side of the level shifter, as shown in 
Figure 11-44.

Figure 11-44 Shared Level Shifter Along Scan Path

If the scan path goes through a level shifter and you disable multivoltage cell reuse, a new 
level shifter is added to connect to the scan path. See Figure 11-45.
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Figure 11-45 Separate Level Shifters Along Scan Path

If the level shifter is within a block and you enable multivoltage cell reuse, then scan 
insertion reuses the existing level shifter and hierarchical port, as shown in Figure 11-46.

Figure 11-46 Shared Level Shifter in a Block Along Scan Path

If you disable multivoltage cell reuse and the existing level shifter is within a block, then the 
new level shifter is added within the block and a new hierarchical port is added. See 
Figure 11-47. 
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Figure 11-47 Separate Level Shifters in a Block Along Scan Path

Reusing Isolation Cells in Scan Paths

In the following examples, the scan path and functional path for a given signal route to the 
same downstream power domain, which is different from the source power domain.

If a scan path goes through an isolation cell in a parent power domain, and you enable 
multivoltage cell reuse, then scan insertion connects the scan chain at the output side of the 
isolation cell, as shown in Figure 11-48.

Figure 11-48 Shared Isolation Cell Along Scan Path in Parent Domain

If you disable multivoltage cell reuse, then the scan path is connected to the net before the 
isolation cell and a new hierarchical port and isolation cell are added, as shown in 
Figure 11-49.
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Figure 11-49 Separate Isolation Cells Along Scan Path in Parent Domain

If the isolation cell is within the source power domain, and you enable multivoltage cell 
reuse, then scan insertion reuses the existing hierarchical port and isolation cell, as shown 
in Figure 11-50. 

Figure 11-50 Shared Isolation Cell Along Scan Path in Source Domain

If you disable multivoltage cell reuse, and the existing isolation cell is within the source 
power domain, then a new hierarchical port and isolation cell are added, as shown in 
Figure 11-51. 

DO

Isolation cells
PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1
ISO1

ISO2
test_si

DO
Isolation cell

PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

ISO1
Chapter 11: Advanced DFT Architecture Methodologies
Multivoltage Support 11-104



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 11-51 Separate Isolation Cells Along Scan Chain in Source Domain

If the isolation cell is within the fanout power domain, and you enable multivoltage cell reuse, 
then scan insertion reuses the existing hierarchical port and isolation cell, as shown in 
Figure 11-52. 

Figure 11-52 Shared Isolation Cell Along Scan Path in Fanout Domain

If you disable multivoltage cell reuse, and the existing isolation cell is within the fanout power 
domain, then a new hierarchical port and isolation cell are added, as shown in Figure 11-53.
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Figure 11-53 Separate Isolation Cells Along Scan Path in Fanout Domain

If the scan path routes to a different downstream power domain than the functional path, an 
existing isolation cell can be reused if the isolation strategy allows both the original power 
domain connection and the new scan path power domain connection to be driven by the 
isolation cell.

Consider the -diff_supply_only isolation strategy defined in the following example, which 
specifies that isolation cells should be added to the parent power domain of PD1 with the 
-location parent option:

set_isolation iso_PD1 \
  -domain PD1 \
  -diff_supply_only true \
  -applies_to outputs
set_isolation_control iso_PD1 \
  -domain PD1 \
  -location parent

The -diff_supply_only strategy allows an isolation cell in the source domain to isolate 
multiple fanout power domains, if they differ from the source domain. If you enable 
multivoltage cell reuse, then scan insertion reuses the existing isolation cell and hierarchical 
port, as shown in Figure 11-54.
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Figure 11-54 Shared Isolation Cell in Parent Domain With Multiple Sink Domains

If you disable multivoltage cell reuse, then a new isolation cell is added, as shown in 
Figure 11-55:

Figure 11-55 Separate Isolation Cells in Parent Domain With Multiple Sink Domains

Consider the -diff_supply_only isolation strategy defined in the following example, which 
specifies that isolation cells should be added within the power domain PD1 with the 
-location self option:

set_isolation iso_PD1 \
    -domain PD1 \
    -diff_supply_only true \
    -applies_to outputs
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set_isolation_control iso_PD1 \
    -domain PD1 \
    -location self

If you enable multivoltage cell reuse, then scan insertion reuses the existing isolation cell 
and hierarchical port, as shown in Figure 11-56:

Figure 11-56 Shared Block Isolation Cell With Multiple Sink Domains

If you disable multivoltage cell reuse, and the existing isolation cell is within a block, then a 
new isolation cell and hierarchical port are added, as shown in Figure 11-57:

Figure 11-57 Separate Parent Isolation Cells With Multiple Sink Domains
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Scan Path Routing and Isolation Strategy Requirements

The isolation strategy applied to a cross-domain net might restrict the power domain 
connections allowed for that net:

• A set_isolation -diff_supply_only isolation strategy allows multiple fanout power 
domains to be driven by the same isolated net, if they differ from the source domain.

• A set_isolation -source -sink isolation strategy requires that any specified source 
and sink power domains connected to an isolated net match the isolation strategy.

When the insert_dft command routes a scan chain along an existing hierarchical output 
port to a different downstream power domain, the isolation strategy requirements of the 
existing net might require new isolation cells and hierarchical ports to be added along the 
scan path.

Consider the -diff_supply_only isolation strategy defined in the following example, which 
specifies that isolation cells should be added to the parent power domain of PD1:

set_isolation iso_PD1 \
    -domain PD1 \
    -diff_supply_only true \
    -applies_to outputs
set_isolation_control iso_PD1 \
    -domain PD1 \
    -location parent

If the existing functional path is routed through the same power domain, but the scan path is 
routed to a different power domain, an isolation cell is added within the parent power domain 
as shown in Figure 11-58.

Figure 11-58 Isolation Cell in Parent Domain With Differing Isolation Requirements
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Consider the -diff_supply_only isolation strategy defined in the following example, which 
specifies that isolation cells should be added within the source power domain PD1:

set_isolation iso_PD1 \
    -domain PD1 \
    -diff_supply_only true \
    -applies_to outputs
set_isolation_control iso_PD1 \
    -domain PD1 \
    -location self

If the existing functional path is routed to a different power domain but the scan path is 
routed through the same power domain, a hierarchical port is added to bypass the isolation 
cell as shown in Figure 11-59.

Figure 11-59 Isolation Cell in Source Domain With Differing Isolation Requirements

You can configure the isolation cell strategy to place the isolation cells in the fanout domains 
to avoid the creation of additional hierarchical scan pins. Consider the following example, 
modified to use the -location fanout option:

set_isolation iso_PD1 \
    -domain PD1 \
    -diff_supply_only true \
    -applies_to outputs
set_isolation_control iso_PD1 \
    -domain PD1 \
    -location fanout

In this modified example, the isolation cells and resulting isolated nets are now located in the 
fanout power domain, as shown in Figure 11-60. No additional hierarchical scan pins are 
needed to meet the isolation strategy requirements.
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Figure 11-60 Isolation Cell in Fanout Domain With Differing Isolation Requirements

Consider the -source -sink isolation strategy defined in the following example, which 
specifies two isolation strategies: one that requires isolation cells for nets that fan out to sink 
power domain SS2, and one that requires isolation cells for nets that fan out to sink power 
domain SS3.

set_isolation iso1_PD1 \
    -domain PD1 \
    -source SS1 -sink SS2
set_isolation_control iso1_PD1 \
    -domain PD1 \
    -location parent

set_isolation iso2_PD1 \
    -domain PD1 \
    -source SS1 -sink SS3
set_isolation_control iso2_PD1 \
    -domain PD1 \
    -location parent

If you enable multivoltage cell reuse, the insert_dft command is unable to reuse the 
existing isolation cell ISO1 for the scan path connection, because the existing cross-domain 
isolated net cannot drive two different power domains. Instead, a new isolation cell and 
hierarchical port are added, as shown in Figure 11-61.
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Figure 11-61 Separate Isolation Cells in Parent Domain With Differing Isolation Requirements

Using Domain-Based Strategies for DFT Insertion

For the insert_dft command to properly insert level shifters and isolation cells, you must 
specify the level shifter and isolation cell strategies on a power-domain basis, even if you 
have specified similar strategies on the blocks and individual ports. If you only specify the 
strategies on the blocks and ports, the insert_dft command might not be able to 
automatically insert level shifters and isolation cells on any new ports that it creates.

For example, if your power intent specification is applied to all outputs with the -applies_to 
outputs option:

create_power_domain PD1 -elements U_block

set_isolation iso_PD1 \
     -domain PD1 \
     -isolation_power_net VDD -isolation_ground_net VSS \
     -clamp_value 1 \
     -applies_to outputs

and if the insert_dft command creates new output pins on the blk_a block that requires 
isolation, then isolation cells are automatically added where they are needed.

However, if your power intent specification is applied to selected existing design elements 
with the -elements option:

create_power_domain PD1 -elements U_block
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set_isolation PD1 \
     -domain BLOCK \
     -isolation_power_net VDD -isolation_ground_net VSS \
     -clamp_value 1 \
     -elements {Z}

The isolation strategy applies only to existing output pin Z. Any new output pins that are 
created by the insert_dft command are not isolated.

The same behavior applies to level shifter insertion strategies specified by the 
set_level_shifter command.

DFT Considerations for Low-Power Design Flows

Low-power designs often use the following special cells:

• Isolation cells

• Retention registers

• Power switches

You must configure these special cells such that the data shifts through the scan chains 
during test operations. After DFT insertion using the insert_dft command, the dft_drc 
command can identify design rule violations on isolation cells and retention registers, if any, 
that would prevent scan shifting through such cells. However, the command cannot identify 
design rule violations on isolation cells and retention registers before the insert_dft 
command is run.

The control signals for these special cells are typically driven by a power controller. If the 
power controller is located off-chip, you can constrain the control signals at the ports for 
correct shift operation. If the power controller is located on-chip and does not include 
testability logic, the tool can insert power controller override logic for you. For more 
information, see “Inserting Power Controller Override Logic” on page 11-117.

You must keep any DFT constraints on special cells in place up to the write_scan_def 
command when you generate a SCANDEF file for scan chain reordering.

Also note that the dft_drc command cannot detect design rule violations on power 
switches in pre- or post-DFT insertion.

A multivoltage-aware verification tool such as MVSIM or MVRC can detect such violations if 
there are any. For further information, see the MVSIM and MVRC documentation.
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Isolation Cells

For example, if a scan chain traverses an isolation cell, you must ensure that the isolation 
cell passes the scan data to the flip-flop driven by the isolation cell during the test operation, 
as shown in Figure 11-62.

Figure 11-62 Proper Configuration of a Scan Chain That Includes an Isolation Cell

Retention Registers

The design’s retention registers must be in normal or power-up mode during the test 
operation. You should check that any save or restore signals are at their correct states.

Registers That Drive Low-Power Control Signals

If the design contains registers that drive low-power control signals, such as the enable 
signal of the isolation cells or the save/restore signals of the retention registers, you must not 
put these registers onto the scan chains. Otherwise, this could cause these control signals 
to switch during test operations. Figure 11-63 shows the consequences of putting such 
registers on the scan chains.

These registers must also drive the low power control signals to a constant state so that the 
controls cannot be toggled during test operations. You can check for this during the dft_drc 
command by ensuring that these registers are included in the TEST-504 and TEST-505 
violations.
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Figure 11-63 Consequences of Putting Registers That Drive Low-Power Control Signals on the 
Scan Chains

Previewing a Multivoltage Scan Chain

The preview_dft -show all command reports the operating condition and the power 
domain of a scan cell whenever a scan path crosses a voltage or power domain. It also 
indicates whether a scan cell is driving a level shifter or an isolation cell. 

In Example 11-29, (v) indicates that the scan cell drives a level shifter and (i) indicates that 
the scan cell drives an isolation cell. 

Example 11-29 Preview Report With Voltage and Power Domains

****************************************
Preview_dft report
For    : 'Insert_dft' command
Design : seqmap_test
Version: Z-2007.03
Date   : Tue Jan 30 17:02:47 2007
****************************************
Number of chains: 1
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks
Voltage Mixing: True
Power Domain Mixing: True
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...00101011...

...00101011...

...00101011...
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  (i) shows cell scan-out drives an isolation cell
  (l) shows cell scan-out drives a lockup latch
  (s) shows cell is a scan segment
  (t) shows cell has a true scan attribute
  (v) shows cell scan-out drives a level shifter cell
  (w) shows cell scan-out drives a wire

Scan chain '1' (test_si --> test_so) contains 56 cells:

  
  u2/q_reg[3]   (voltage 1.08) (pwr domain 'pd_2') (clk, 55.0, falling)
  u2/q_reg[4]
  ...
  u2/q_reg[26]
  u2/q_reg[27]
  u1/q_reg[3] (v)(i)  (voltage 0.80) (pwr domain 'pd_1')
  u1/q_reg[4]
  ...
  u1/q_reg[26]
  u1/q_reg[27]
  u2/q_reg[0] (v)(i)  (voltage 1.08) (pwr domain 'pd_2') (clk, 45.0, 
rising)
  u2/q_reg[1]
  ...
  u2/q_reg[22]
  u2/q_reg[23]
  u1/q_reg[0] (v)(i)  (voltage 0.80) (pwr domain 'pd_1')
  u1/q_reg[1]
  ...

See Also

• “Previewing the DFT Logic” on page 15-2 for more information about previewing scan 
chain structures

Scan Extraction Flows in the Presence of Isolation Cells

If you need to run the scan extraction flow on a netlist for a design that is already 
scan-inserted and contains isolation cells, you must specify any constraints that are needed 
at the enable pin of isolation cells in addition to the constraints that might be required for 
DFT signals. If this is not done, you might fail to extract scan chains. DFT Compiler does not 
check the validity of isolation logic. 
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Limitations

The following limitations apply to multivoltage and multipower domains:

• Multivoltage and multipower domains are supported only in multiplexed flip-flop scan 
style.

• Multivoltage and multipower domains are supported only in the following flows:

❍ Basic scan, including AutoFix, observe point insertion, user-defined test point 
insertion, and HSS

❍ DFTMAX compressed scan

• Multivoltage and multipower domains are not supported in the following flows:

❍ BSD insertion

❍ Core integration

Controlling Power Modes During Test

Power-sensitive designs often contain multiple power domains. This allows power supplies 
for inactive logic to be switched off, reducing power consumption during operation. These 
designs typically have a power controller block, which supplies the necessary power supply 
control signals to power switches, isolation cells, and retention registers.

When the device is being tested, the power control signals must be controlled to ensure that 
the design is testable. This topic describes the features provided by DFT Compiler to 
automate the control of power modes during test.

Inserting Power Controller Override Logic

The power controller block generates control signals for the power supply control logic that 
exists throughout the design. The power control signals at the block outputs are defined 
using commands that are part of the IEEE 1801 specification, also known as the Unified 
Power Format (UPF) specification.

DFT Compiler does not create the power controller block, but it can insert testability logic at 
the block outputs to override the power control signals during test mode. This logic is known 
as the power controller override logic. This logic allows the signals to be controlled during 
test mode without manually-created power controller initialization vectors. It also provides 
observability of the power controller outputs for improved test coverage.
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To use this feature, enable the power controller override feature, and specify the power 
controller hierarchical cell instance with the following commands:

set_dft_configuration -power_control enable
set_dft_power_control power_controller_hier_cell 

The control signal outputs of the power controller block must be defined using the signal 
specification options of the applicable UPF commands:

• create_power_switch -control_port

• set_isolation_control -isolation_signal

• set_retention_control -save_signal

When a power controller block is configured, the insert_dft command inserts wrapper 
chain override logic at the control signal outputs inside the specified power controller block. 
Figure 11-64 shows the structure of the power controller override logic.

Figure 11-64 Power Controller Override Logic

The power controller override wrapper chain is composed of control-observe cells along the 
power controller outputs. The wrapper chain is a separate chain that cannot be combined 
with other scan chains. For designs with scan compression, the power controller override 
wrapper chain exists outside the compressor-decompressor logic.

The following signals provide control of the power controller override logic:

• pco_in and pco_out

These signals are the scan-in and scan-out signals for the wrapper chain cells.
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• pco_override

This signal is asserted in test mode to override the power controller’s control signals with 
the wrapper chain override values.

• pco_shift_clk

When clocked with ScanEnable de-asserted, this signal captures the current output 
values from the power controller to improve observability. When clocked with 
ScanEnable asserted, this signal shifts data through the shadow registers of the wrapper 
chain. When the override is asserted, the current override state is not affected when data 
is shifted through the wrapper chain shadow registers.

• pco_update_clk

This signal is clocked to transfer the control signal values from the wrapper cell shadow 
registers to the wrapper cell output registers.

By default, the tool creates these signals and ports. To use existing placeholder ports for 
these signals, define them as follows:

dc_shell> # PCO control signals
dc_shell> set_dft_signal -view spec -type pco_override -port port_name
dc_shell> set_dft_signal -view spec -type pco_shift_clk -port port_name
dc_shell> set_dft_signal -view spec -type pco_update_clk -port port_name

dc_shell> # PCO scan data signals
dc_shell> set_dft_signal –type ScanDataIn –port pco_in_port_name
dc_shell> set_dft_signal –type ScanDataOut –port pco_out_port_name
dc_shell> set_scan_path -view spec –class pco_wrapper MY_PCO_CHAIN \
            –scan_data_in pco_in_port_name \
            -scan_data_out pco_out_port_name

During power controller override logic insertion, the tool updates the test_setup procedure 
with test vectors that place the power control signals into a stable state. If multiple test 
modes have been defined, they are all updated.

This stable state has the following characteristics:

• All controllable power supply switches are enabled.

• All controllable isolation cells are set to a pass-through state.

• All controllable retention cells are placed into save mode.

If you have defined all power controller signals in the UPF specification, the resulting test 
protocol can be used directly in the TetraMAX tool with no editing. If any power controller 
signals have not been captured in the UPF specification, you must add the required signal 
values to the test_setup procedure.
Chapter 11: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test 11-119
Chapter 11: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test 11-119



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Limitations

Note the following limitations of the power controller override feature:

• Only one power controller instance can be specified.

• If the power controller logic is distributed across several blocks, you must first group it 
into a single block.

• It is not possible to use an existing scan segment as the power controller override 
wrapper chain.

• Power controller override signals cannot be internally driven in the internal pins flow.

Reducing Shift Power Using Functional Output Pin Gating

During scan testing, while scan data shifts through scan chains, the functional logic driven 
by the scan flip-flops also toggles. This can cause increased power dissipation during 
testing, which could damage the design under test.

You can use the set_scan_suppress_toggling command to enable functional output 
gating. When this command is used, the tool inserts gating logic to suppress toggling on the 
functional output of scan flip-flops that either you specify or the tool automatically selects. 
The tool uses AND-gating or OR-gating logic, depending on which constant value most 
reduces toggling from other ungated signals entering the fanout logic cone.

Note:   
This feature only works with designs that use the multiplexed flip-flop scan style.

Figure 11-65 shows the design after DFT insertion but without any gating logic inserted on 
the functional output.
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Figure 11-65 Design After DFT Insertion Without Gating Logic on the Functional Output

Figure 11-66 shows the design after the tool has inserted AND-gating logic on the output pin 
of the FF2 flip-flop.

Figure 11-66 Design After DFT Insertion With AND Clock Gating Inserted on the FF2 Functional 
Output 

In the Figure 11-66 example, the logic cone C2 does not toggle during scan shifting because 
the Q output of FF2 is gated by the extra AND gate, which is disabled by the scan-enable 
signal.

Si

D Q

Se
So

FF2

Si

D Q

Se
So

FF3

Si

D Q

Se
So

FF1

Din

ScanIn

ScanEnable

C1 C2

Si

D Q

Se
So

FF2

Si

D Q

Se
So

FF3

Si

D Q

Se
So

FF1

Din

ScanIn

ScanEnable

C1

C2
Chapter 11: Advanced DFT Architecture Methodologies
Reducing Shift Power Using Functional Output Pin Gating 11-121
Chapter 11: Advanced DFT Architecture Methodologies
Reducing Shift Power Using Functional Output Pin Gating 11-121



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
If your scan flip-flops have only a single output pin that is shared between functional and 
scan output, the logic path going from the flip-flop output pin to the functional logic is gated. 
Figure 11-67 and Figure 11-68 show this case for both AND-gating logic and OR-gating 
logic, respectively.

Figure 11-67 Design With AND-Gating Logic Inserted on the Functional Output of FF2, Where 
FF2 Has a Single Output Pin Shared Between Functional and Scan Output
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Figure 11-68 Design With OR-Gating Logic Inserted on the Functional Output of FF2, Where 
FF2 Has a Single Output Pin Shared Between Functional and Scan Output

To use this feature, run the set_scan_suppress_toggling command as part of your DFT 
specifications before you run the insert_dft command.

The set_scan_suppress_toggling command has the following syntax:

set_scan_suppress_toggling
     -selection_method [manual|auto|mixed]
     -include_elements collection_of_design_objects
     -exclude_elements collection_of_design_objects
     -ignore_timing_impact [true|false]
     -min_slack [0_to_1000]
     -total_percentage_gating [0.001_to_100]

Table 11-16 set_scan_suppress_toggling Command Syntax 

Argument Description

-selection_method
manual | auto | mixed

This option defaults to manual, which applies gating 
only for objects manually specified with the 
-include_elements option. The auto value enables 
automatic selection of flip-flops for gating using 
power-based heuristics. The mixed value enables a 
combined approach, allowing the manual 
specification to be supplemented with automatic 
selection by the tool.
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Functional gating logic can be inserted if the scan flip-flop is part of a scan chain. A flip-flop 
is excluded from gating consideration if it meets any of the following criteria: 

• The flip-flop is manually excluded with the -exclude_elements option.

• The flip-flop is part of a shift register segment identified by the compile_ultra 
command.

• In a bottom-up flow, the flip-flop is within a block where test models are used or you have 
specified a set_dont_touch attribute on the block.

• The Q or QN pin of the flip-flop connects only to the scan-in signal. (They can be gated 
if they are functionally connected.)

-include_elements 
collection_of_design_objects 

This option is used to manually specify a collection of 
design objects for gating. Flip-flop instance names, 
hierarchical cell names, and flip-flop and design 
references can be specified. A hierarchical cell 
specification includes all scan flip-flops in the cell.

-exclude_elements 
collection_of_design_objects

This option is used to manually specify a collection of 
design objects that should be excluded from gating. 
Flip-flop instance names, hierarchical cell names, 
and flip-flop and design references can be specified. 
A hierarchical cell specification includes all scan 
flip-flops in the cell.

-ignore_timing_impact
true | false

This option is false by default. When this option is 
set to true, the minimum slack requirement specified 
by the -min_slack option is ignored. When set to 
true, the -exclude_elements option might be useful 
for guiding automatic selection.

-min_slack num_0_to_1000 This option specifies the required minimum slack 
value after gating has been added. The default is 0, 
which means the slack should be nonnegative after 
gating.

-total_percentage_gating 
num_0.001_to_100

This option specifies the target percentage of scan 
flip-flops to be automatically selected for gating when 
the -selection_method option is set to auto or 
mixed. The default for this option is 5.

Table 11-16 set_scan_suppress_toggling Command Syntax (Continued)

Argument Description
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• The logic does not meet the minimum slack limit or would not meet the minimum slack 
limit if gating is inserted.

When the -selection_method option is set to auto or mixed, flip-flops are automatically 
selected for gating using propagated switching power analysis. A percentage value between 
5 and 30 percent is typically specified with the -total_percentage_gating option. 
Consider the trade-offs between test-mode power consumption, functional power 
consumption, and functional timing when choosing a gating percentage value. As the gating 
percentage value is increased, leakage power increases, and the potential for layout 
congestion and timing closure difficulty increases. While considering timing and power 
trade-offs, you should also consider that TetraMAX ATPG has several power-aware 
algorithms that seek to reduce shift and capture flip-flop toggle rates during the ATPG 
process.

When the -selection_method option is set to manual or mixed, all flip-flops specified with 
the -include_elements option are gated, except those meeting the exclusion criteria 
defined earlier.

When the -selection_method option is set to mixed, all flip-flops specified with the 
-include_elements option are gated, even if the -total_percentage_gating target is 
exceeded. If the -total_percentage_gating target is not met by the manually specified 
flip-flops, additional flip-flops are selected automatically to meet the goal.

Use the report_scan_suppress_toggling command to confirm the option settings you 
specified with the set_scan_suppress_toggling command. Use the 
remove_scan_suppress_toggling command to remove the previous toggling suppression 
settings applied.

As described in “Previewing Additional Scan Chain Information” on page 15-3, you can use 
the preview_dft -show {qgates} command before DFT insertion to see which scan cells 
will be gated. This command generates a preview report that annotates the gated scan cells 
with the (g) attribute. For example:

dc_shell> preview_dft -show {qgates}
...
  (g) shows cell scan-out drives a toggle suppressing gate

Scan chain '1' (SI1 --> SO1) contains 48 cells
  CORE/Dstrobe_reg              (CLK, 45.0, rising)
  CORE/R1_reg[0] (g)
  CORE/R1_reg[1] (g)
  ...

When the -selection_method option is set to auto or mixed, the preview_dft command 
reports the number of scan flip-flops automatically selected for gating, the number 
considered for gating, the number that you manually included, and the number rejected due 
to timing considerations.
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During DFT insertion, the combinational gating cell instances are named using the 
compile_instance_name_prefix variable, by default. To specify a different instance name 
prefix for the gating cells, set the test_suppress_toggling_instance_name_prefix 
variable to the desired prefix. When this variable is set, the scan cell leaf name and output 
pin name are also appended to the specified prefix. For example, if you set the variable to 
QGATE, a gating cell inserted at ENAB_reg/Q is named QGATE_ENAB_reg_Q.

After DFT insertion completes, you can use the test_scan_suppress_toggling cell 
attribute to find the gating cells. For example,

dc_shell> set cells [get_cells -hierarchical * \
            -filter {test_scan_suppress_toggling == true}]
{CORE/U181 CORE/U182 U224 U225 U226}

See Also

• “Previewing the DFT Logic” on page 15-2 for more information about previewing scan 
chain structures

Controlling Clock-Gating Cell Test Pin Connections

To insert clock-gating cells in a design, you can use the following methods:

• Automatic insertion of clock-gating cells by Power Compiler, using the -gate_clock 
option of the compile or compile_ultra commands

• Manual instantiation or insertion of clock-gating cells

A clock-gating cell propagates the clock signal to downstream logic only when the enable 
signal is asserted. During scan shift, if the enable signal is controlled by one or more scan 
flip-flops, the shifting test data values cause the clock-gating signal to toggle during scan 
shift. As a result, the clock signal does not reliably propagate through the clock-gating cell to 
downstream scan flip-flops during scan shift, resulting in scan shift violations.

Figure 11-69 shows an example where the enable signal of an integrated clock-gating cell is 
driven by a scan flip-flop. The scan chain path is highlighted in blue. During scan shift, the 
clock-gating enable signal driven by FFG toggles, interrupting the scan shift clocks needed 
for FF1 and FF2.
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Figure 11-69 Clock-Gating Cell Enabled by Scan Flip-Flop Output

To remedy this, most clock-gating cells have test pins that force the clock signal to pass 
through when the test pin is asserted. This ensures that downstream scan cells successfully 
receive the clock signal and shift values along the scan chain. Figure 11-70 shows a 
test-aware clock-gating cell with its test pin hooked up to the global scan-enable signal. 
During scan shift, FF1 and FF2 receive the clock signal and successfully shift data.

Figure 11-70 Clock-Gating Cell Enabled by Scan Flip-Flop Output

This topic describes the methods provided by DFT Compiler to control clock-gating cell test 
pin connections.

Connecting User-Instantiated Clock-Gating Cells

You can use the insert_dft command to connect user-instantiated clock-gating cells, that 
is, to connect to the clock-gating cells that have not been inserted by Power Compiler. You 
use the set_dft_clock_gating_pin command to specify the unconnected test pin of the 
clock-gating cells in your design. Then you run the insert_dft command to connect these 
pins to the test ports.

Connecting user-instantiated clock-gating cells with the set_dft_clock_gating_pin and 
insert_dft commands has the following advantages:

• Provides flexibility

• Does not require setting Power Compiler attributes
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• Has no dependency on the identify_clock_gating command and the 
power_cg_auto_identify variable

• Works with multiple ScanEnable and TestMode signal connectivity

Note:   
When clock-domain-based connections are specified, using the set_dft_signal 
-connect_to command, user-instantiated clock-gating pins are not connected by 
domain. For this feature, only clock-gating cells recognized and inserted by Power 
Compiler are supported.

The syntax for the set_dft_clock_gating_pin command is

set_dft_clock_gating_pin object_list -pin_name instance_pin_name
   [-control_signal ScanEnable | TestMode]
   [-active_state 1 | 0]

object_list

List of clock-gating cell instances for which test pins are specified. The argument is 
mandatory.

-pin_name

Name of the test pin on the specified instances. This pin name must be common to all 
specified instances. The argument is mandatory.

-control_signal

Specifies the type of control signal required by the test pin. The argument is optional. The 
default is ScanEnable.

-active_state

Specifies the active state of the test pin. The argument is optional. The default is 1.

The command is cumulative.

The specified cells and test pin are not checked. Verify that you have specified the actual 
clock-gating cells and test pin in the design and that they were not identified by Power 
Compiler. Specifying cells that are not clock-gating cells can cause undesired results when 
you run the dft_drc and insert_dft commands.

Using the set_dft_clock_gating_pin Commands: Examples

• To specify the test enable (TE) pin on instances U1 and U2 as the clock-gating pin, using 
the default signal type ScanEnable:

set_dft_clock_gating_pin [list U1 U2] -pin_name TE
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• To specify the test_mode pin as the clock-gating pin of control signal type TestMode on 
the hierarchical design des_a:

set_dft_clock_gating_pin \
  [get_cells * -hierarchical -filter "@ref_name == des_a"] \
  -control_signal TestMode -pin_name test_mode

• To specify pin A as a clock-gating pin of control signal type ScanEnable with active state 
1 for all instances of the unique library cell CGC1:

set_dft_clock_gating_pin \
   [get_cells * -hierarchical -filter "@reference == CGC1"] \
   -control_signal scan_enable -pin_name A 

Use the report_dft_clock_gating_pin command to report the specifications you made 
with the set_dft_clock_gating_pin command. To remove the DFT clock-gating pin 
specifications, use the remove_dft_clock_gating_pin command.

Interaction With Other Commands

Clock-gating cells identified with the set_dft_clock_gating_pin command can be used 
or specified in the following commands:

• In the hook-up-only flow, using the following command:

set_dft_configuration -scan disable -connect_clock_gating enable

• Using the set_dft_signal -connect_to command

The connection is not made when doing clock-domain-based connections.

• Using the set_dft_clock_gating_configuration -exclude_elements command.

Script Example

Example 11-30 and Example 11-31 show a hookup-clock-gating only flow and a complete 
DFT insertion flow, respectively.

Example 11-30 Hookup-Clock-Gating Only Flow

read verilog test.v
link
set_dft_signal -view existing_dft -type ScanClock -port clk \
  -timing {45 55}
set_dft_signal -type ScanEnable -port SE1 -view spec
set_dft_clock_gating_pin {clk_gate_out1_reg sub1/clk_gate_out1_reg} \
  -pin_name TE
set_dft_configuration -scan disable -connect_clock_gating enable
report_dft_clock_gating_pin
insert_dft
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Example 11-31 Complete DFT Insertion Flow

read verilog test.v
link
set_dft_signal -view existing_dft -type ScanClock -port clk \
  -timing {45 55}
set_dft_signal -type ScanEnable -port SE1 -view spec
set_dft_clock_gating_pin {clk_gate_out1_reg sub1/clk_gate_out1_reg} \
  -pin_name TE
set_dft_configuration -scan enable -connect_clock_gating enable
report_dft_clock_gating_pin
create_test_protocol
dft_drc -verbose
insert_dft

Limitations

Note the following limitations:

• If you use the set_dft_signal -connect_to command to make clock-domain-based 
connections to clock-gating cells, only Power Compiler clock-gating cells are considered; 
user-instantiated clock-gating cells are not considered.

For more information, see “Specifying Signals for Clock-Gating Cell Test Pin 
Connections” on page 10-81.

• The feature is not supported for pipelined scan-enable signals.

Excluding Clock-Gating Cells From Test-Pin Connection

You might have a portion of the design that is excluded from scan testing, and you do not 
want DFT Compiler to connect the test pins of those clock-gating cells to test-mode or 
scan-enable signals. To prevent the insert_dft command from connecting the test pins of 
some clock-gating cells, use the -exclude_elements option of the 
set_dft_clock_gating_configuration command:

set_dft_clock_gating_configuration -exclude_elements object_list

The object_list can include the following object types:

• Clock-gating cell leaf instances

• Clock-gating observation cell leaf instances
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• Hierarchical cell instances – All clock-gating cells within the instances are included in the 
specification.

• Clock-gating library cell – All instances of that cell are included in the specification.

• Clocks – All clock-gating cells in the clock domains are included in the specification.

Instead of connecting the test pins of excluded clock-gating cells to test-mode or 
scan-enable signals, DFT Compiler leaves the existing connections in place, which are 
typically constant drivers that de-assert the test-mode bypass. Figure 11-71 shows an 
example of an excluded clock-gating cell.

Figure 11-71 Directly Specified Excluded Clock-Gating Cell

The dft_drc command does not report any TEST-130 unconnected test-pin messages for 
excluded clock-gating cells. However, any downstream scan cells driven by the excluded 
clock-gating cells will result in D1 or D9 violations if their clock is uncontrolled.

If you do not know the clock-gating cell instances, but you do know the nonscan flip-flops 
whose upstream clock-gating cells should not be connected, you can use the 
-dont_connect_cgs_of option of the set_dft_clock_gating_configuration 
command:

set_dft_clock_gating_configuration -dont_connect_cgs_of object_list

The object_list can include the following object types:

• Flip-flop leaf instances

• Hierarchical cell instances – All flip-flops within the instances are included in the 
specification.

With the -dont_connect_cgs_of option, DFT Compiler identifies any upstream 
clock-gating cells from these registers, and prevents their test pin connections. Figure 11-72 
shows an example of an excluded clock-gating cell.
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set_dft_clock_gating_configuration \
    -exclude_elements {UICG}
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Figure 11-72 Upstream Excluded Clock-Gating Cell

The upstream clock-gating cell can only drive nonscan cells or scan-replaced cells that are 
excluded from scan stitching. If the clock-gating cell drives any valid scan cells that are 
incorporated into scan chains, the test pin is connected to ensure proper scan shift clocking.

Figure 11-73 shows an example where hierarchical block UBLK is specified with the 
-dont_connect_cgs_of option. The four flip-flops inside the block are included in the 
specification. However, one of the flip-flops is a valid scan flip-flop that will be included on a 
scan chain. As a result, the test pin of upstream clock-gating cell UICG1 is tied to a test 
signal. The test pin of clock-gating cell UICG2 is left tied to its de-asserted constant value.

Figure 11-73 Upstream Excluded Clock-Gating Cell Due to Downstream Scan Flip-Flops

If DFT Compiler cannot find the upstream clock-gating cells for flip-flops during the 
preview_dft or insert_dft commands, it issues TEST-154 information messages for 
those flip-flops.

For both exclusion methods, use the report_dft_clock_gating_configuration 
command to report the specifications that you previously set. Use the 
reset_dft_clock_gating_configuration command to remove the specifications.

Exclusion works by leaving the default de-asserted constant value connected to the test pins 
of excluded clock-gating cells. If an exclusion applies to a clock-gating cell with an existing 
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test pin connection other than the default de-asserted constant value, that existing test pin 
connection remains in place.

The clock-gating cell test pin connection control methods have the following precedence, in 
order of  to lowest priority:

• set_dft_signal -connect_to (highest priority)

• set_dft_clock_gating_configuration -exclude_elements

• set_dft_clock_gating_configuration -dont_connect_cgs_of (lowest priority)

When the -dont_connect_cgs_of option is used, upstream clock-gating cells of the 
specified registers are excluded from clock-gating cell test pin connection only if none of the 
downstream registers are valid scan cells. When the -exclude_elements option is used, 
the test pin connections of the specified clock-gating cells are suppressed even if there are 
downstream valid scan cells.

Note:   
These set_dft_clock_gating_configuration options work with, but are not intended 
to be used for, user-instantiated clock-gating cells. If the test pin of a user-instantiated 
clock-gating cell should not be hooked up, do not include it in a 
set_dft_clock_gating_pin specification. Registers driven by user-defined clock 
gating cells are traced through simple buffer and inverter logic only.

Connecting Clock-Gating Cell Test Pins Without Scan Stitching

You can use the insert_dft command to connect the test pins of clock-gating cells to 
scan-enable or test-mode signals without also performing scan insertion or scan stitching. 
Note, however, that only clock-gating cells with Power Compiler attributes are considered.

To use this feature, you must disable scan insertion and enable the clock-gating connection 
before running the insert_dft command. This is accomplished by issuing the following 
command:

set_dft_configuration -scan disable -connect_clock_gating enable

When using this flow, do not run the create_test_protocol or dft_drc commands. If you 
do, it will prevent the insert_dft command from making the clock-gating cell test pin 
connections.

Example 11-32 shows how to implement this feature.

Example 11-32 Using the insert_dft Command to Connect the Test Pins of Clock-Gating Cells

read ddc design.ddc
set_clock_gating_style -control_signal scan_enable
create_clock clk -name clk
compile_ultra -scan -gate_clock
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set_dft_signal -type ScanEnable -view spec -port ICG_SE

# Disable scan insertion, enable only clock-gating cell
# test pin connections
set_dft_configuration -scan disable -connect_clock_gating enable

# Run insert_dft to connect the clock-gating cell test pins only
insert_dft

The insert_dft command issues an information message indicating that clock-gating cell 
test pins are being connected to the specified test signal:

   Routing clock-gating cells
Information: Routing clock-gating cell test pins with no specified
driver to scan enable 'ICG_SE'
1

Note:   
This capability is not meant to be used as part of a scan-stitching flow. The feature is 
solely intended to allow you to connect the test pins of clock-gating cells, separate from 
any scan synthesis run. To connect clock-gating test pins to a different scan-enable 
signal during scan stitching, use the -usage option of the set_dft_signal command. 
For more information, see “Specifying Signals for Clock-Gating Cell Test Pin 
Connections” on page 10-81.

The following scenarios show how to use the insert_dft command to connect clock-gating 
cell test pins to various types of test signal ports and pins:

• To connect to the default test_se port:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
insert_dft

• To connect to an existing scan-enable port:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type ScanEnable -port SE
insert_dft

• To connect to an existing test-mode port:

set_clock_gating_style -control_point after -control_signal TestMode
compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type TestMode -port TM
insert_dft
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• To connecting to an input pad cell hookup pin:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type ScanEnable -port SE \
     -hookup_pin UPAD_SE/IO_Q
insert_dft

• To connect to an internal pin—for example, to a black-box output:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
# Enable internal pins flow
set_dft_drc_configuration -internal_pins enable
set_dft_signal -view spec -type ScanEnable -port SE \
     hookup_pin IP_CORE/SE_OUT
insert_dft

The following features apply to automatic connection of clock-gating cell test pins:

• Connections are made only to the test pins of valid clock-gating cells that have been 
correctly identified and have the required Power Compiler attributes.

• Only connections to clock-gating cells are made unless boundary scan insertion is 
enabled, in which case boundary scan insertion takes precedence.

• Connections specified with the set_dft_signal -connect_to command are honored.

• The internal pins flow is supported.

The following features or capabilities do not work or have limited capability:

• If test models need to be connected, you must specify the core-level ScanEnable pin to 
be connected to the top-level ScanEnable signal, using the set_dft_signal 
-connect_to command.

• Partially incomplete flows (in which you have performed the clock-gating cell 
connections to the blocks but not performed the rest of the DFT flow) should not be used 
for top-level DFT insertion.

Internal Pins Flow

Normally, DFT signals (such as clocks, resets, scan-ins, and scan-outs) are defined on ports 
of the current design. Even when defined with a hookup pin, these signals are ultimately 
connected to a port.
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However, advanced DFT architectures might require some DFT signals to connect to an 
internal pin, with no straightforward path to a port. The following figure shows programmable 
registers intended to drive TestMode signals:

Figure 11-74 Signals Connected to Internal Pins Instead of Ports

In these cases, you can use the internal pins flow to define such signals. It is called a flow 
because it requires consideration both before and after DFT insertion, as described below.

See Also

•  SolvNet article 040136, “Using the Internal Pins Flow With Internal Test Registers” for an 
example that drives DFT signals from design registers

Defining Signals on Internal Pins

To define signals on internal pins, do the following:

1. In your global DFT configuration, enable the internal pins flow:

set_dft_drc_configuration -internal_pins enable

2. When defining your DFT signals, define each internal-pins signal by using the 
-hookup_pin option without the -port option:

set_dft_signal -view spec -type TestMode \
  -hookup_pin U_TEST_CTRL/TM_OUT[1]
set_dft_signal -view spec -type TestMode \
  -hookup_pin U_TEST_CTRL/TM_OUT[0]

The -hookup_pin option accepts only a single pin object; use multiple commands for 
multiple pins.

You can define a mix of port-driven and internal-pins signals as needed.

CLK

TM_OUT[1:0]

U_TEST_CTRL

Programmable
test-mode signal
registers
Chapter 11: Advanced DFT Architecture Methodologies
Internal Pins Flow 11-136

https://solvnet.synopsys.com/retrieve/040136.html


DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
The following signal types can be defined as internal-pins signals.

Writing Out the Test Protocol

After DFT insertion, the CTL model for the design contains information about internal pins. 
This information is understood by DFT Compiler, but it cannot be used by TetraMAX ATPG.

Before writing out the STIL procedure file (SPF) for TetraMAX, disable the internal pins flow:

dc_shell> set_dft_drc_configuration -internal_pins disable
dc_shell> write_test_protocol -test_mode Internal_scan \
            -output Internal_scan_needs_modification.spf

This prevents the write_test_protocol command from including information about 
internal pins in the SPF. (This does not affect post-DFT DRC or writing the design in .ddc 
format.)

Before using the protocol in TetraMAX, you must make any modifications needed for the 
assumptions in the test protocol to be true.

Supported Internal-Pins Signal Types

ScanMasterClock

ScanMasterClock

MasterClock

ScanClock

Reset

Constant

TestMode

ScanEnable

ScanDataIn

ScanDataOut

pll_reset

pll_bypass

LOSPipelineEnable
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Limitations of the Internal Pins Flow

Note the following limitations of the internal pins flow:

• In most cases, the output protocol is not accurate and cannot be used in the TetraMAX 
tool unless modified.

• Core wrapper, boundary scan, and scan extraction flows do not support the internal pins 
flow.

• You cannot integrate cores created using the internal pins flow unless you set the 
test_allow_internal_pins_in_hierarchical_flow variable to true during both 
core creation and core integration. For details, see the man page.

Creating Scan Groups

DFT Compiler offers a methodology that enables you to define certain scan chain portions 
so that they can be efficiently grouped with other scan chains. This is done without the need 
to insert scan at the submodule levels.

This topic covers the following:

• Configuring Scan Grouping

• Scan Group Flows

• Known Limitations

Configuring Scan Grouping

DFT Compiler includes the following set of commands that enable you to configure scan 
grouping:

• set_scan_group – creates scan groups

• remove_scan_group – removes scan groups

• report_scan_group – reports scan groups

Creating Scan Groups

The set_scan_group command enables you to create a set of sequential cells, scan 
segments, or design instances that should be grouped together within a scan chain. If a 
design instance is specified, all sequential cells and segments within it are treated as a 
group and is logically ordered.
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The syntax for this command is as follows:

set_scan_group scan_group_name 
     -include_elements {list_of_cells_or_segments} 
     [-access {list_of_access_pins}]
     [-serial_routed true|false]

scan_group_name

Specifies a unique group name.

-include_elements {list_of_cells_or_segments}

Specifies a list of cell names or segment names that are included in the group.

-access {list_of_access_pins}

Specifies a list of all access pins. Note that these access pins represent only a serially 
routed scan group specification. If the -serial_routed option is set to false, all 
specified access pins are ignored.

-serial_routed [true | false]

Specifies whether the scan group is serially routed (true) or not (false). The default is 
false.

Note the following:

• There is no -view option to the set_scan_group command, because the options only 
works in the specification view.

• All scan group specifications are applied across all test modes. You cannot specify a 
scan group to be applied on a particular test mode.

• An element specified as part of a scan group cannot be specified as part of a scan path, 
and vice versa.

• Scan group specifications are not cumulative. If you specify the same group name, the 
last scan group specification before the insert_dft command is used.

• Grouping elements implies that they must be adjacent in a scan chain. 

Example
dc_shell> set_scan_group G1 -include_elements \ 
               [list ff1 ff3] -access \
               [list ScanDataIn ff1/TI ScanDataOut \
               ff3/QN] -serial_routed true

dc_shell> set_scan_group G2 -include_elements \ 
               [list ff2 a/ff1]
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dc_shell> set_scan_group G3 -include_elements \ 
               [list U1/1]

dc_shell> set_scan_group G4 -include_elements \ 
               [list U1/3]

Removing Scan Groups

The remove_scan_group command removes all specified scan groups. The syntax of this 
command is as follows:

remove_scan_group scan_group_name

scan_group_name

This option specifies the name of the scan group to be removed.

Example
dc_shell> remove_scan_group G1

Integrating an Existing Scan Chain Into a Scan Group

If you have existing serial routed segments at the current design level that you want to 
incorporate as part of a longer scan chain, you can use the set_scan_group 
-serial_routed true command to accomplish this. When you run the insert_dft 
command, it will then connect to this segment while keeping the segment intact.

You need to provide the following information to the set_scan_group -serial_routed 
true command: 

• Use the -include_elements option to specify the names of the elements within the 
segment.

• Use the -access option to specify how the insert_dft command should connect to this 
segment.

Consider the existing scan chain shown in Figure 11-75.

Figure 11-75 Integrating an Existing Scan Chain
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In this example, the scan chain connects the flip-flops U0 through U1 to U2. The 
insert_dft command treats U0 through U2 as a subchain or group and connects through 
the scan-in pin of U0, the output pin of U2, and the scan-enable pin of U0. You can then use 
the following command to specify the existing scan segment:

set_scan_group group1 -include_elements [list U0 U1 U2] \
     -access [list ScanDataIn U0/SI ScanDataOut U2/Q ScanEnable U0/SE]

If you do not know the names of the individual elements within the scan group, you can try 
extracting the element names by using the dft_drc command. Note, however, that this 
strategy works only if the scan segment starts and ends at the top level of the current design. 
After you have extracted the names of the elements of the scan chain, you can specify them 
using the -include_elements option. You might need to disconnect the net connecting the 
top-level scan-in port to the scan-in pin of the first flip-flop of the chain, as well as the net 
connecting the data-out or scan-out pin of the last flip-flop of the chain to the scan-out port. 

See Also

• “Performing Scan Extraction” on page 11-145 for more information about how to extract 
pre-existing scan chains in your design 

Reporting Scan Groups

The report_scan_group command reports the names of the sequential cells or scan 
segments associated with a particular scan group, as specified by the set_scan_group 
command). 

The syntax of this command is as follows:

report_scan_group [scan_group_name]

scan_group_name

This option specifies the name of the scan group used for reporting purposes. If a group 
name is not specified, all serially routed and unrouted groups are reported.

Scan Group Flows

You can specify scan groups in DFT Compiler in either the standard flat flow or the 
Hierarchical Scan Synthesis (HSS) flow. 

In the standard flat flow, you can specify valid scan cells as input to scan groups. In the logic 
domain, these cells get ordered logically and placed as a group in a scan chain.

In the HSS flow, you can specify core segment names as part of a scan group and then 
reuse them in a scan path specification. 
Chapter 11: Advanced DFT Architecture Methodologies
Creating Scan Groups 11-141
Chapter 11: Advanced DFT Architecture Methodologies
Creating Scan Groups 11-141



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Known Limitations

The following known limitations apply when you specify scan groups in DFT Compiler:

• A scan group can contain only a set of elements that belong to one clock domain. 

• You cannot specify a collection as a scan group element.

• You cannot specify a group as part of another group.

• You cannot specify a previously defined scan path in a scan group.

Shift Register Identification

The following topics describe shift register identification in DFT flows:

• Simple Shift Register Identification

• Synchronous-Logic Shift Register Identification

• Shift Register Identification in an ASCII Netlist Flow

See Also

• The “Sequential Mapping” chapter in the Design Compiler User Guide for more 
information about how DC Ultra identifies shift registers during a test-ready compile

Simple Shift Register Identification

By default, DC Ultra identifies simple shift registers, in which each flip-flop directly captures 
the output of the previous flip-flop. When you perform a test-ready compile with the 
compile_ultra -scan command, DC Ultra identifies simple shift registers and performs 
scan replacement only on the first register of each identified shift register.

Information about the identified shift registers is stored in the design database. DFT 
Compiler uses this information during scan stitching to efficiently incorporate the shift 
registers into the scan chain. This flow reduces the area overhead for scan replacement.

Shift register identification is not performed across hierarchical boundaries when only a 2-bit 
shift register would be created. This typically occurs with registered interfaces where a 
single register at the output of one design is connected to a single register at the input of 
another design. This behavior reduces port punching when DFT insertion connects scan 
chains to shift registers that cross hierarchical boundaries, which can help improve 
congestion and scan wire length results. Shift register identification is performed across 
hierarchical boundaries for 3-bit and longer shift registers.
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The insert_dft command uses the stored shift register information from DC Ultra to 
optimize the scan path stitching process. For each shift register, the first scan-replaced cell 
provides scan controllability for the entire shift register. Simple shift registers are used 
directly in the scan path. If needed, identified shift registers are broken up during DFT 
insertion to meet scan chain balancing or maximum scan chain length requirements.

Use the following methods to determine the shift registers that were identified by the 
compile_ultra -scan command:

• Use the preview_dft -show {segments} command to report the identified shift 
registers, which are treated as scan segments after being identified. For details on 
previewing scan segments, see “Previewing Additional Scan Chain Information” on 
page 15-3.

• Use the shift_register_head and shift_register_flop cell attributes to identify the 
leading shift register scan cells and subsequent nonscan cells, respectively:

dc_shell> get_cells -hierarchical * -filter \
            {shift_register_head==true || shift_register_flop==true}

For best results, write out the design in .ddc format to preserve the identified shift register 
attributes.

To disable shift-register identification, set the following variable:

dc_shell> set_app_var compile_seqmap_identify_shift_registers false

Synchronous-Logic Shift Register Identification

During a test-ready compile, DC Ultra can optionally identify synchronous-logic shift 
registers, in which each flip-flop captures a combinational logic function that includes the 
output of the previous flip-flop. DFT insertion updates the combinational logic function 
between the flip-flops so that the shift register logically degenerates to a simple shift register 
when the scan-enable signal is asserted.

To enable synchronous-logic shift register identification, set the following variable:

dc_shell> set_app_var \
   compile_seqmap_identify_shift_registers_with_synchronous_logic \
   true

The default is false, which preserves multibit registers better between the compile and 
insert_dft steps and can provide additional area savings. However, you can enable 
synchronous-logic shift register identification if it provides an area benefit for your particular 
design.
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Shift Register Identification in an ASCII Netlist Flow

When you read in a test-ready (scan-replaced) ASCII netlist (Verilog or VHDL), you use the 
set_scan_state command to indicate that the netlist is test-ready:

read_verilog block_test_ready.vg
current_design block
link_design
set_scan_state test_ready

If the netlist contains shift registers previously identified by the compile_ultra -scan 
command, the attributes for those shift registers are not stored in the netlist file. As a result, 
the set_scan_state command re-identifies them and reapplies their attributes to the 
design in memory.

Simple Shift Registers

The set_scan_state test_ready command always re-identifies any simple shift registers 
in the design. In other words, it recognizes any structures where a leading scan cell drives 
a series of one or more same-clocked nonscan cells.

This feature does not require any variables or additional licenses, and it is performed 
regardless of the value of the compile_seqmap_identify_shift_registers variable.

Synchronous-Logic Shift Registers

Synchronous-logic shift registers are not re-identified by default. To re-identify them, set the 
following variables before running the set_scan_state command:

# ...read in netlist...
set_app_var compile_seqmap_identify_shift_registers true  ;# default is 
true
set_app_var 
compile_seqmap_identify_shift_registers_with_synchronous_logic true
set_app_var 
compile_seqmap_identify_shift_registers_with_synchronous_logic_ascii true
set_scan_state test_ready

These variables enable the set_scan_state test_ready command to use the DC Ultra 
shift register identification code, as indicated by the following message:

dc_shell> set_scan_state test_ready
Information: Performing full identification of complex shift registers. 
(TEST-1190)

Note:   
Synchronous-logic shift register identification using the set_scan_state command 
requires a DC Ultra license.
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If this code re-identifies shift registers differently than test-ready synthesis did, the tool 
restructures the registers, scanning or unscanning registers as needed. This can improve 
the quality of results, especially when importing netlists from flows without shift register 
identification.

When synchronous-logic shift register re-identification is enabled, it re-identifies (and 
restructures) both simple and synchronous-logic shift registers.

To exclude registers from restructuring, apply the set_dont_touch or set_scan_element 
false command before running the set_scan_state command.

Performing Scan Extraction

The scan chain extraction process extracts scan chains from a design by tracing scan data 
bits through the multiple time frames of the protocol simulation. For a given design, 
specifying a different test protocol can result in different scan chains. As a corollary, scan 
chain-related problems can be caused by an incorrect protocol, by incorrect 
set_dft_signal command specifications, or even by incorrectly specified timing data.

When performing scan extraction, you always use the descriptive view (-view 
existing_dft), because you are defining test structures that already exist in your design.

To perform scan extraction,

1. Define the scan input and scan output for each scan chain. To define these relationships, 
first use the set_scan_configuration command to specify the scan style and then use 
the -view existing_dft option with the set_scan_path and set_dft_signal 
commands, as shown in the following examples:

dc_shell> set_scan_configuration \
               -style multiplexed_flip_flop

dc_shell> set_dft_signal -view existing_dft \
               -type ScanDataIn -port TEST_SI

dc_shell> set_dft_signal -view existing_dft \
               -type ScanDataOut -port TEST_SO

dc_shell> set_dft_signal -view existing_dft \
               -type ScanEnable -port TEST_SE

dc_shell> set_scan_path chain1 \
               -view existing_dft \
               -scan_data_in TEST_SI \
               -scan_data_out TEST_SO

2. Define the test clocks, reset, and test-mode signals by using the set_dft_signal 
command.
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dc_shell> set_dft_signal -view existing_dft \
               -type ScanClock -port CLK \
               -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
               -type Reset -port RESETN \
               -active_state 0

3. Create the test protocol by using the create_test_protocol command.

dc_shell> create_test_protocol

4. Extract the scan chains by using the dft_drc and report_scan_path commands.

dc_shell> dft_drc

dc_shell> report_scan_path -view existing_dft \
               -chain all

dc_shell> report_scan_path -view existing_dft \
               -cell all
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This chapter shows you how to add a test wrapper to a core design, which creates a 
wrapped core. A wrapped core provides both test access and test isolation during scan 
pattern application.

Core wrapping is described in the following topics:

• Core Wrapping Concepts

• Wrapping a Core

• Creating User-Defined Core Wrapping Test Modes

• Creating Compressed EXTEST Core Wrapping Test Modes

• Creating an IEEE 1500 Wrapped Core

• Wrapping Cores With OCC Controllers

• Wrapping Cores With DFT Partitions

• Wrapping Cores With Multibit Registers

• Wrapping Cores With Synchronizer Registers

• Wrapping Cores With Existing Scan Chains

• Creating an EXTEST-Only Core Netlist

• Integrating Wrapped Cores in Hierarchical Flows
12-1
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• SCANDEF Generation for Wrapper Chains

• Core Wrapping Scripts
Chapter 12: Wrapping Cores
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Core Wrapping Concepts

When you integrate a DFT-inserted core into a top-level design, the core-level scan 
structures are integrated into the top-level scan structures. However, to test the core-level 
logic separately from the top-level logic, the core must be a wrapped core.

DFT Compiler provides two core wrapping flows. The simple core wrapping flow provides 
basic core wrapping capabilities. The maximized reuse core wrapping flow minimizes the 
area and timing impact of core wrapping by reusing more existing functional registers.

Wrapped cores are described in the following topics:

• Wrapper Cells and Wrapper Chains

• Wrapper Test Modes

• The Simple Core Wrapping Flow

• The Maximized Reuse Core Wrapping Flow

• Wrapping Three-State and Bidirectional Ports

See Also

• SolvNet article 1918995, “How Do Wrapper Chains and Wrapper Cells Work in Detail?” 
for additional reference information about wrapper chains and wrapper cells

Wrapper Cells and Wrapper Chains

A wrapped core has a wrapper chain that allows the core to be isolated from the surrounding 
logic. A wrapper chain is composed of wrapper cells inserted between the I/O ports and the 
core logic of the design. Figure 12-1 shows an example of a wrapped core.

Figure 12-1 A Wrapped Core

A wrapper cell consists of a scan cell and MUX logic. It can transparently pass the I/O signal 
through, or it can capture values at its input and/or launch values at its output. Wrapper 
chains are shift chains (separate from regular scan chains) that allow known values to be 
scanned into the wrapper cells and captured values to be scanned out.
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Core wrapping is primarily intended to wrap core data ports. The following ports are 
excluded from wrapping:

• Functional and test clock ports

• Asynchronous set or reset signal ports

• Scan-input, scan-output, scan-enable, and other global test signal ports

• Wrapper signal ports

• Any port with a constant test signal value defined

The wrapper chain operates in one of four modes—inactive, inward-facing, outward-facing, 
or safe. These wrapper operation modes behave as follows:

• Inactive mode

The wrapper chain is inactive and I/O signals pass through it. This is the behavior used 
in mission mode and all non-wrapper test modes.

Figure 12-2 Inactive Mode of Wrapper Chain

• Inward-facing mode (INTEST)

This mode is used to test the core in isolation of the surrounding logic. It includes the 
wrapper chain and internal chains. The input wrapper cells provide controllability, and the 
output wrapper cells provide observability. If safe values are specified to protect the 
surrounding fanout logic from the core output response, they are driven from the output 
wrapper cells.
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Figure 12-3 Inward-Facing Mode of Wrapper Chain

• Outward-facing mode (EXTEST)

This mode tests the logic surrounding the core in isolation from the core itself. It includes 
only the wrapper chain. The input wrapper cells provide observability, and the output 
wrapper cells provide controllability. If safe values are specified to protect the core inputs 
from the surrounding fanin logic responses, they are driven from the input wrapper cells. 
Clock inputs to the core remain unaffected.

Figure 12-4 Outward-Facing Mode of Wrapper Chain

• Safe mode

This optional mode drives safe values from all wrapper cells that have a safe value 
specified. Safe values are driven into core inputs by any such input wrapper cells, and 
safe values are driven into the surrounding fanout logic by any such output wrapper cells. 
There are no scan chains (internal or wrapper). Clock inputs to the core remain 
unaffected.
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Figure 12-5 Safe Mode of Wrapper Chain

During core creation, DFT insertion does not mix wrapper chains and regular scan chains 
(although they can be compressed by the same codec).

During core integration at the top level, DFT insertion can mix core-level wrapper chains, 
core-level scan chains, and top-level scan chains for length-balancing purposes. Core-level 
scan chains are not included in top-level test modes that place the core in outward-facing 
mode.

Wrapper Test Modes

When core wrapping is enabled, the insert_dft command creates the following core 
wrapping test modes by default:

• wrp_if

This is an inward-facing uncompressed scan mode. The wrapper chain is placed in the 
INTEST mode of operation. Both wrapper chains and internal core chains are active.

• ScanCompression_mode

This is an inward-facing compressed scan mode. The wrapper chain is placed in the 
INTEST mode of operation. Both wrapper chains and internal core chains are active and 
compressed by the scan compression codec. This mode is created only if scan 
compression is also enabled.

• wrp_of

This is an outward-facing uncompressed scan mode. Only the wrapper chain is active; it 
is placed in the EXTEST mode of operation.

• wrp_safe

This mode drives safe values from both input and output wrapper cells according to their 
safe value specifications. This mode is created only if at least one port has a safe value 
defined.
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When core wrapping is enabled, DFT Compiler does not create the Internal_scan mode by 
default because it does not provide inward-facing or outward-facing hierarchical test 
capabilities.

You can also create user-defined core wrapping test modes. For more information, see 
“Creating User-Defined Core Wrapping Test Modes” on page 12-51.

The Simple Core Wrapping Flow

The simple core wrapping flow provides basic core wrapping functionality, as described in 
the following topics:

• Simple Core Wrapper Cells

• Simple Core Wrapper Chains

Simple Core Wrapper Cells

The simple core wrapping flow uses the following wrapper cell types:

• Dedicated Wrapper Cell

• Dedicated Safe-State Wrapper Cell

• Shared-Register Wrapper Cells

Dedicated Wrapper Cell

By default, the simple core wrapping flow uses the WC_D1 dedicated wrapper cell for core 
wrapping. A dedicated wrapper cell is a wrapper cell that uses its own internal dedicated 
flip-flop to provide controllability, observability, and shift capabilities. Figure 12-6 shows the 
internal logic of the WC_D1 dedicated wrapper cell.

Figure 12-6 WC_D1 Dedicated Wrapper Cell 
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The interface to the WC_D1 wrapper cell consists of the following signals:

cti – Core test input

This is the test input to the wrapper cell. It can come from either a primary input (if the 
cell is the first cell in the wrapper chain) or the cto signal of the previous wrapper cell in 
the chain.

cto – Core test output

This is the test output of the wrapper cell. It can drive either a primary output (if the cell 
is the last cell in the wrapper chain) or the cti signal of the next wrapper cell in the chain.

cfi – Core functional input

For input wrapper cells, this input is fed from the logic surrounding the core. For output 
wrapper cells, this input is fed from the core.

cfo – Core functional output

For input wrapper cells, this input drives the core. For output wrapper cells, this output 
drives the logic surrounding the core.

shift_clk – Wrapper clock

This is usually driven by the wrp_clock signal in the core. It clocks the flip-flop in the 
wrapper cell.

shift_en – Shift enable

This is like a scan-enable signal for wrapper cells. When the signal is high, the wrapper 
clock shifts data through the cti and cto scan data pins. When the signal is low, the 
wrapper clock captures the functional input value or holds the current state, depending 
on the value of the capture_en signal. The shift enable signal can be controlled differently 
for input and output wrapper cells.

capture_en – Capture enable

This signal controls what is captured when the wrapper cell is not shifting. When the 
signal is low, the wrapper clock captures the functional input value. When the signal is 
high, the wrapper clock holds the current wrapper cell state.

Dedicated Safe-State Wrapper Cell

A wrapper cell provides observability at its input, and controllability at its output. The same 
WC_D1 wrapper cell is used for both core inputs and core outputs. However, the controlled 
output of the wrapper cell can toggle as data is shifted through the wrapper chain. In some 
cases, if edge-triggered or level-sensitive logic exists in the fanout of the wrapper cell, 
unintended circuit operation can occur.
Chapter 12: Wrapping Cores
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To avoid this, you can specify a safe value for a wrapper cell. DFT Compiler uses the 
WC_D1_S wrapper cell to implement the safe value capability. It contains an additional 
multiplexer at its output to drive a static safe logic value, enabled by a safe value control 
signal. Figure 12-7 shows the internal logic of the WC_D1_S wrapper cell.

Figure 12-7 WC_D1_S Dedicated Wrapper Cell 

The interface to the WC_D1_S wrapper cell consists of the same signals as the WC_D1 
wrapper cell, plus the following additional signals:

safe_control – Control signal

This signal determines when the safe state value is driven at the output.

safe_value – Logic value

This signal specifies the safe state logic value.

Shared-Register Wrapper Cells

If your design has existing boundary I/O registers by the ports, you can share these 
functional registers with the wrapper cell logic to reduce the core wrapping area overhead. 
Shared wrapper cells replace the existing functional register, providing equivalent 
functionality in functional mode. Figure 12-8 shows the internal logic for the WC_S1 and 
WC_S1_S shared wrapper cells. The signals are identical to the signals used for dedicated 
wrapper cells.
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Figure 12-8 WC_S1 and WC_S1_S Shared Wrapper Cells

In order for the core wrapping feature to share the existing functional register in the simple 
core wrapping flow, the I/O register and the port must meet the following conditions:

• The register’s data input or output must be connected to a boundary port with a wire or 
logic path. The logic path must be sensitized to produce a buffering or inverting effect, 
and the sensitization must be controlled by a constant signal type (static value of 0 or 1) 
on a primary input or output.

• The shared registers must be clocked by a functional clock.

Note:   
If the functional clock for the I/O registers also clocks other functional registers 
internal to the core, it can disturb the internal core logic during wrapper chain 
operation. You should either provide a separate functional clock for shared wrapper 
cells, or you can use the -use_dedicated_wrapper_clock option. For more 
information, see “Configuring Simple Core Wrapping” on page 12-24.

If you enable the shared wrapper cell style, DFT Compiler inserts shared wrapper cells 
wherever possible. Figure 12-9 illustrates some cases where shared wrapper cells can be 
used. The shared wrapper cell is placed at the same hierarchical location as the existing 
design register.
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Figure 12-9 Examples of Supported Design Register Sharing

However, if a register does not meet the requirements, a dedicated wrapper cell is used 
instead. Figure 12-10 illustrates some cases where shared wrapper cells cannot be used.

Figure 12-10 Examples of Unsupported Design Register Sharing

If a register qualifies as both an input shared register and an output shared register, the 
register becomes an input shared register, and a dedicated wrapper cell is placed at the 
output port. See Figure 12-11.

Figure 12-11 Same Register Qualified as Input and Output Shared Register

If an output shared register has a safe state specified, a WC_S1_S wrapper cell is normally 
used. However, if the register’s output drives internal logic in addition to the output port, the 
safe state logic inside a WC_S1_S wrapper cell would prevent the register from reliably 
driving the internal logic. When DFT Compiler detects this situation, it uses a WC_S1 shared 
wrapper cell and moves the safe state logic to the output port. See Figure 12-12.
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Figure 12-12 Output Shared Register With Safe State and Internal Fanout Connections

Simple Core Wrapper Chains

In the simple core wrapping flow, input and output wrapper cells can be placed in the same 
wrapper chain. The design can have a single wrapper chain or multiple wrapper chains.

Figure 12-13 shows the shift and capture behaviors used for inward-facing operation. In 
scan capture, the wrapper cell state-holding loops (shown in blue) are used to block external 
values at core inputs.

Figure 12-13 Inward-Facing Wrapper Chain Behaviors in the Simple Core Wrapping Flow

Figure 12-14 shows the shift and capture behaviors used for outward-facing operation. In 
scan capture, the wrapper cell state-holding loops (shown in blue) are used to block 
core-driven values at core outputs.

Figure 12-14 Outward-Facing Wrapper Chain Behaviors in the Simple Core Wrapping Flow
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The Maximized Reuse Core Wrapping Flow

The simple core wrapping flow adds dedicated wrapper cells when functional I/O registers 
are not directly connected to I/O ports through simple buffering or inverting logic. To reduce 
the timing and area impact of core wrapping, the DFTMAX tool also provides a maximized 
reuse mode that can share I/O registers that are connected to I/O ports through 
combinational logic.

The maximized reuse flow is described in the following topics:

• Maximized Reuse Core Wrapper Cells

• Maximized Reuse Core Wrapper Chains

• Maximized Reuse Shift Signals

Note:   
A DFTMAX license is required to use the maximized reuse core wrapping feature.

Maximized Reuse Core Wrapper Cells

The maximized reuse core wrapping flow uses the following wrapper cell types:

• Shared-Register Wrapper Cells

• Dedicated Wrapper Cells

Shared-Register Wrapper Cells

By default, the maximized reuse flow uses shared wrapper cells for all ports that meet the 
sharing criteria. Figure 12-15 shows the internal logic for the maximized reuse WC_S1 (no 
safe state) and WC_S1_S (safe state) shared wrapper cells. Their logic structure differs 
from the same-named wrapper cells used in the simple core wrapper flow.

Figure 12-15 The WC_S1 and WC_S1_S Shared Wrapper Cells in Maximized Reuse Flow
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To minimize area overhead, the maximized reuse flow uses an optimized shared wrapper 
cell design that has no state-holding loop. The wrapper cell uses an in-place wrapper 
register implementation, which means it has no hierarchy around it. The resulting wrapper 
cell functionality is implemented by a typical functional scan-equivalent flip-flop.

The maximized reuse flow also allows functional I/O registers connected to I/O ports through 
combinational logic to be shared. Figure 12-16 shows functional I/O registers that are 
replaced by shared wrapper cells when maximized reuse is enabled.

Figure 12-16 Maximized Reuse Examples

Note:   
The diagrams in this section show WC_S1 shared wrapper cell instances for clarity. 
However, the in-place register implementation used by maximized reuse core wrapping 
ensures that the names and locations of the wrapped functional registers are not 
disturbed.

The maximized reuse flow provides count-based and logic-depth-based thresholds to limit 
how many functional registers can be wrapped for an I/O port.

Using existing functional registers as shared wrapper cells can reduce the area 
requirements for core wrapping. Any combinational logic between the shared wrapper cell 
and the ports is effectively placed outside the block as far as core wrapping logic is 
concerned. This logic must be tested using the EXTEST wrapper mode that exercises the 
surrounding logic.

Dedicated Wrapper Cells

In the maximized reuse flow, dedicated wrapper cells are used for I/O ports to be wrapped 
that exceed the sharing thresholds. Figure 12-17 shows the internal logic for the WC_D1 
and WC_D1_S dedicated wrapper cells. These are the same dedicated wrapper cell 
designs used in the simple core wrapper flow.
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Figure 12-17 WC_D1 and WC_D1_S Wrapper Cells

Maximized Reuse Core Wrapper Chains

In the maximized reuse core wrapping flow, input and output wrapper cells are placed in 
separate wrapper chains with separate input and output wrapper shift-enable signals. 
Because shared wrapper cells have no state-holding loop in this flow, wrapper chains are 
kept in scan shift mode as needed to block values from being captured by wrapper cells.

Figure 12-18 shows the shift and capture behaviors used for inward-facing operation. In 
scan capture, input wrapper chains are kept in scan shift (highlighted in blue) to block 
external values at core inputs.

Figure 12-18 Inward-Facing Wrapper Chain Behaviors in the Maximized Reuse Core Wrapping 
Flow

Figure 12-19 shows the shift and capture behaviors used for outward-facing operation. In 
scan capture, output wrapper chains are kept in scan shift (highlighted in blue) to block 
core-driven values at core outputs. Core wrapper chain scan-ins are driven with logic 0 to 
reduce power consumption.
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Figure 12-19 Outward-Facing Wrapper Chain Behaviors in the Maximized Reuse Core 
Wrapping Flow

These shift and capture behaviors apply to all wrapper cells, shared and dedicated, in the 
input and output wrapper chains. The state-holding loops of any dedicated wrapper cells are 
not used.

In transition-delay ATPG, the highlighted wrapper chains that are kept in scan shift generate 
transitions by shifting the opposite value into a wrapper cell from the preceding wrapper cell.

Maximized Reuse Shift Signals

In the maximized reuse flow, the scan-enable and wrapper shift signals are conditioned by 
the currently active test mode as follows:

• In inward-facing wrapper modes, the input wrapper shift signal is always asserted.

• In outward-facing wrapper modes, the output wrapper shift signal is always asserted.

• In outward-facing wrapper modes, the scan-enable signal for the internal core scan 
chains is always asserted (to load constant values into all scan chain elements).

Figure 12-20 shows an example of the conditioning logic.

Figure 12-20 Scan-Enable and Wrapper Shift Signals in the Maximized Reuse Flow
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The wrapper shift signals going to the input and output wrapper chains are conditioned 
separately as shown in the diagram, even when a single wrapper shift signal is used.

See Also

• “Defining Wrapper Shift Signals” on page 12-19 for details on defining wrapper shift 
signals

Wrapping Three-State and Bidirectional Ports

To prevent contention during core integration, three-state and bidirectional ports are 
wrapped differently from regular input and output ports. The wrapper cells are inserted 
inward from the driver, at the control and data signals.

For a three-state port, as shown in Figure 12-21, wrapper cells are added to the data-out 
and control paths of the three-state driver or pad cell connected to the port. When the control 
path wrapper cell enables the three-state driver, the data-out path wrapper cell controls the 
output port value; otherwise, the data-out path wrapper cell has no effect.

Figure 12-21 Three-State Port Wrapping

Three-state drivers always have a safe state that drives the output to a safe high-impedance 
state. Safe state specifications for three-state ports are ignored.

For a bidirectional port, as shown in Figure 12-22, wrapper cells are added to the data-out 
and control paths as well as the data-in path of the bidirectional pad connected to the port. 
When the control path wrapper cell asserts the bidirectional output driver, the data-out path 
controls the port; otherwise, the data-in path wrapper cell is controlled by the port.

Figure 12-22 Bidirectional Port Wrapping

Bidirectional drivers always have a safe state that places the driver cell in output mode, with 
a data value driven by the output data wrapper cell. Safe state specifications for bidirectional 
ports are ignored
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The three-state and bidirectional control and data paths use shared or dedicated wrapper 
cells as determined by the current wrapping configuration. In the maximized reuse flow, the 
tool always uses a threshold of 1 for the driver control signals.

For degenerate three-state and bidirectional ports, in which the driver cell functionality is 
simplified using constant values, only the nonconstant signals are wrapped.

AutoFixing of three-state and bidirectional drivers is independent of wrapper cell insertion. 
AutoFixed drivers are still conditioned by the AutoFix logic during any scan shift activity 
(wrapper or core logic). For more information, see “Uncontrollable Three-State Bus Enable 
Signals” on page 11-42.

Wrapping a Core

Core wrapping is performed during DFT insertion. Core wrapping configuration is described 
in the following topics:

• Enabling Core Wrapping

• Defining Wrapper Shift Signals

• Defining Dedicated Wrapper Clock Signals

• Configuring Global Wrapper Settings

• Configuring Port-Specific Wrapper Settings

• Controlling Wrapper Chain Count and Length

• Configuring Simple Core Wrapping

• Configuring Maximized Reuse Core Wrapping

• Determining Power Domains for Dedicated Wrapper Cells

• Using the set_scan_path Command With Wrapper Chains

• Previewing the Wrapper Cells

• Post-DFT DRC Rule Checks

Enabling Core Wrapping

To use core wrapping, you must include the DesignWare dw_foundation.sldb synthetic 
library in your link library list. This synthetic library contains the wrapper cell designs.

dc_shell> set link_library {* my_tech_lib.db dw_foundation.sldb}
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Then, to enable core wrapping after loading and linking the design, use the following 
command:

dc_shell> set_dft_configuration -wrapper enable

Defining Wrapper Shift Signals

The wrapper shift signal enables scan data to shift through wrapper chains, just as a 
scan-enable signal does for scan chains. You can use any of the following wrapper shift 
signal configurations:

• Using a DFT-Created Wrapper Shift Signal

• Defining a Single Dedicated Wrapper Shift Signal

• Reusing an Existing Scan-Enable Signal as the Wrapper Shift Signal

• Defining Separate Input and Output Wrapper Shift Signals

• Defining Clock-Domain-Based Wrapper Shift Signals

• Defining Input and Output Clock-Domain-Based Wrapper Shift Signals

Using a DFT-Created Wrapper Shift Signal

By default, DFT Compiler creates a single wrapper shift signal named wrp_shift.

Defining a Single Dedicated Wrapper Shift Signal

To define a single dedicated wrapper shift signal, define the signal source as a wrp_shift 
signal:

dc_shell> set_dft_signal -view spec -type wrp_shift \
            -port my_wrp_shift

Reusing an Existing Scan-Enable Signal as the Wrapper Shift Signal

To reuse an existing scan-enable signal as the wrapper shift signal, define the signal source 
as both a ScanEnable signal and wrp_shift signal:

dc_shell> set_dft_signal -view spec -type ScanEnable \
            -port my_test_se
dc_shell> set_dft_signal -view spec -type wrp_shift \
            -port my_test_se

Defining Separate Input and Output Wrapper Shift Signals

To use separate input and output wrapper shift signals for separate input and output wrapper 
chains, define two wrp_shift signals with the set_dft_signal command, then specify 
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them with the -input_shift_enable and -output_shift_enable options of the 
set_wrapper_configuration command:

dc_shell> set_dft_signal -view spec \
            -type wrp_shift -port {wrp_ishift wrp_oshift}

dc_shell> set_wrapper_configuration -class core_wrapper \
            -mix_cells false \
            -input_shift_enable wrp_ishift \
            -output_shift_enable wrp_oshift

The -input_shift_enable wrapper shift signal is used for the input wrapper cells, and the 
-output_shift_enable wrapper shift signal is used for the output wrapper cells. You can 
specify only a single signal for each option.

Defining Clock-Domain-Based Wrapper Shift Signals

To define a clock-domain-based wrapper shift signal, which is used only for wrapper cells 
clocked by a particular clock, specify the test clock source with the -connect_to option of 
the set_dft_signal command. For example,

dc_shell> # define test clocks
dc_shell> set_dft_signal -view existing_dft -type ScanClock \
            -timing {45 55} -port {CLK1A CLK1B CLK2}

dc_shell> # define per-clock-domain wrapper shift signals
dc_shell> set_dft_signal -view spec -type wrp_shift \
            -port WRP_SHIFT1 -connect_to {CLK1A CLK1B}
dc_shell> set_dft_signal -view spec -type wrp_shift \
            -port WRP_SHIFT2 -connect_to {CLK2}

This syntax is similar to that used for clock-domain-based scan-enable signals.

For any wrapper cell clocks not included in a clock-domain-based wrapper shift signal 
definition, the tool uses the first-defined wrapper shift signal.

See Also

• “Defining Dedicated Scan-Enable Signals for Scan Cells” on page 10-35 for related 
information about clock-domain-based scan-enable signals

Defining Input and Output Clock-Domain-Based Wrapper Shift Signals

In the simple wrapping flow, you cannot define input and output clock-domain-based 
wrapper shift signals.

In the maximized reuse flow, you can define such signals by using the input_wrp_shift 
and output_wrp_shift signal types. For details, see “Defining Input/Output 
Clock-Domain-Based Wrapper Shift Signals” on page 12-37.
Chapter 12: Wrapping Cores
Wrapping a Core 12-20



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Defining Dedicated Wrapper Clock Signals

If a dedicated wrapper clock signal is needed, by default, DFT Compiler creates a wrapper 
clock signal named wrp_clock. The clock defaults to a 10 percent duty cycle (with the rising 
edge and falling edge at 45 percent and 55 percent of the default clock period, respectively). 
You can change the default timing by setting the test_wrapper_new_wrp_clock_timing 
variable.

If you have an existing port to use for this wrapper clock signal, you can define it with the 
set_dft_signal command:

dc_shell> set_dft_signal -view spec -type wrp_clock \
            -port port_name

By default, this clock signal uses the default wrapper clock timing (10 percent duty cycle or 
as specified by the test_wrapper_new_wrp_clock_timing variable). You can also specify 
signal-specific timing by defining an existing_dft view of the wrapper clock signal:

dc_shell> set_dft_signal -view existing_dft -type wrp_clock \
            -timing {45 55} -port port_name

By default, DFT Compiler creates any test-mode ports needed to provide the test-mode 
encodings for the functional, scan, and wrapper modes. If you have existing ports to use for 
these test-mode signals, you can use the set_dft_signal to define them as TestMode 
signals.

Configuring Global Wrapper Settings

The set_wrapper_configuration command allows you to specify global configuration 
parameters that apply to the entire wrapper chain. You must use the -class core_wrapper 
option to configure core wrapping.

By default, DFT Compiler does not create safe state wrapper cells. To specify a safe state 
value for all wrapper cells in the wrapper chain, use the -safe_state option of the 
set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -safe_state 1

Configuring Port-Specific Wrapper Settings

The set_wrapper_configuration command applies to all ports in the design. To specify 
the wrapper cell characteristics of specific ports, you can use the set_boundary_cell 
command, which provides many of the same options as the set_wrapper_configuration 
command.
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For example, to specify safe state values for specific ports, use the -safe_state option of 
the set_boundary_cell command:

dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type WC_D1_S -safe_state 0 | 1

Note:   
When using the set_boundary_cell command, you must explicitly provide the wrapper 
cell type in the specification. The specified type should match the safe state and shared 
register characteristics for that port. In the preceding example, a dedicated wrapper cell 
is used.

To prevent the insertion of wrapper cells for a specific list of ports, use the following 
command:

dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type none

This might be needed in cases where an output port drives downstream clock pins or 
asynchronous set or reset signals. If the output port is wrapped, toggle activity in the 
wrapper cell might cause unintended activity in the downstream logic. Since excluding ports 
from the wrapper chain reduces test coverage, you should use this capability only when 
necessary.

To specify a dedicated wrapper cell for ports that would otherwise use a shared wrapper cell, 
specify a WC_D1 or WC_D1_S wrapper cell with the set_boundary_cell command:

dc_shell> # no safe state:
dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type WC_D1

dc_shell> # safe state:
dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type WC_D1_S -safe_state safe_value

Note:   
You cannot use the set_boundary_cell command to force a shared wrapper cell type 
to be used for a port if the I/O register does not meet the requirements for a shared 
wrapper cell or if sharing has not been enabled with the -style shared option.

To specify that a particular wrapper clock is to be used for the dedicated wrapper cells of 
specific ports, use the following command:

dc_shell> set_boundary_cell -class core_wrapper -type WC_D1 \
            -shift_clk clock_name -ports port_name
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Controlling Wrapper Chain Count and Length

You can use the following options of the set_wrapper_configuration command to control 
the count or maximum length of the wrapper chains:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -chain_count W ;# wrapper chain count

dc_shell> set_wrapper_configuration -class core_wrapper \
            -max_length X ;# wrapper chain maximum length

If you also specify a chain count with the set_scan_configuration command:

dc_shell> set_scan_configuration -chain_count N

then this value N is the total chain count for both wrapper chains and internal chains. The 
tool architects the wrapper chains first, then it architects the internal chains using the 
remainder of the total allocation N. Internal scan cells and wrapper cells cannot be mixed on 
the same chain.

If any of the following criteria are true:

• Input and output wrapper cell mixing is disabled (set_wrapper_configuration 
-mix_cells false)

• The maximized reuse flow is used, which disables input and output wrapper cell mixing

• User-specified wrapper scan path specifications exist (set_scan_path -class 
core_wrapper)

then the tool architects the wrapper chains first, then it architects the internal chains. In this 
case, wrapper chains and internal chains are not length-balanced by default. You should 
explicitly use both the set_wrapper_configuration and set_scan_configuration 
commands to configure an overall length-balanced configuration. In outward-facing modes, 
use only the set_wrapper_configuration command to configure the wrapper chains.

If none of these criteria are true, then the tool architects the wrapper chains and internal 
chains together. In this case, if you do not specify a count or maximum length specifically for 
the wrapper chains, the wrapper chains and internal chains are length-balanced together 
using the set_scan_configuration -chain_count or -max_length specification. 
However, you can still use the set_wrapper_configuration command to specify a 
particular wrapper chain count or maximum length.

If a chain count and chain length specification are both applied with the same command, the 
length requirement is used and the count requirement is ignored.
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Wrapper chains follow the same clock mixing requirements as normal scan chains. To allow 
differently clocked wrapper cells to be mixed in the same wrapper chain, enable clock mixing 
with the -clock_mixing option of the set_scan_configuration command. For example,

dc_shell> set_scan_configuration -clock_mixing mix_clocks

This can improve length balancing. Lock-up latches are inserted between wrapper cells that 
do not use the same clock. The default for the -clock_mixing option is no_mix, which 
creates separate wrapper chains for each wrapper clock domain.

Configuring Simple Core Wrapping

Configuration of the simple core wrapping functionality is described in the following topics:

• Configuring Dedicated Wrapper Cell Clocks

• Using Shared Wrapper Cells

• Configuring Shared Wrapper Cell Clocks

• Using In-Place Shared Wrapper Cells

• Creating Separate Input and Output Wrapper Chains

Configuring Dedicated Wrapper Cell Clocks

By default, simple core wrapping uses dedicated wrapper cells that use a dedicated wrapper 
clock. However, you can use system clocks for dedicated wrapper cells by setting the 
following option:

dc_shell> set_wrapper_configuration \
            -use_system_clock_for_dedicated_wrp_cells enable

In this case, the tool attempts to identify and use the dominant clock domain associated with 
each port using the following rules.

• A port’s dedicated wrapper cell uses the same clock as the flip-flops associated with that 
port.

• If the port is associated with flip-flops of multiple clock domains, the dominant clock is 
used.

• If a dominant clock is not found, any user-specified wrapper clock, defined using the 
set_dft_signal -view spec -type wrp_clock command, is used.

• If no user-specified wrapper clock has been defined, a dedicated wrapper clock is 
created and used.
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Using Shared Wrapper Cells

By default, the simple core wrapping flow inserts dedicated wrapper cells to wrap input and 
output ports. If you have existing functional I/O registers that you want to use for shared 
wrapper cells, specify the -style shared option of the set_wrapper_configuration 
command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -style shared

When the shared wrapper cell style is enabled, by default, the tool uses dedicated wrapper 
cells as a fallback for any ports that do not meet the sharing criteria. To prevent the fallback 
insertion of dedicated wrapper cells and leave these ports unwrapped instead, use the 
-dedicated_cell_type none option of the set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -style shared -dedicated_cell_type none

DFT Compiler automatically selects the type of wrapper cell (WC_D1, WC_D1_S, WC_S1, 
or WC_S1_S) based on the capabilities needed for each wrapper cell.

If the shared wrapper cells span multiple clock domains, the cells are placed in separate 
wrapper chains unless clock mixing is enabled.

Configuring Shared Wrapper Cell Clocks

For shared wrapper cells, core wrapping keeps the register’s existing functional clock signal. 
This can disturb the internal core logic during boundary cell operation. You should either 
provide a separate functional clock for shared wrapper cells, or use the 
-use_dedicated_wrapper_clock option of the set_wrapper_configuration or 
set_boundary_cell command:

dc_shell> # global:
dc_shell> set_wrapper_configuration -class core_wrapper \
            -style shared \
            -use_dedicated_wrapper_clock true

dc_shell> # per-port:
dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type WC_S1 \
            -use_dedicated_wrapper_clock true

When enabled, this option uses the dedicated wrapper clock signal when wrapper test 
modes are active, but retains the original functional clock signal for other modes. See 
Figure 12-23.
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Figure 12-23 MUXing Dedicated Wrapper Clocks for Shared Wrapper Cells

Using In-Place Shared Wrapper Cells

When a shared wrapper cell is used for a port, DFT Compiler replaces, or swaps, the entire 
I/O register for that port with a shared wrapper cell, as shown in Figure 12-9 on page 12-11. 
This process introduces a level of hierarchy around the register and renames the register 
cell itself.

To preserve the original hierarchical instance path of the register, use the 
-register_io_implementation in_place option of the set_wrapper_configuration or 
set_boundary_cell command:

dc_shell> # global:
dc_shell> set_wrapper_configuration -class core_wrapper \
            -style shared \
            -register_io_implementation in_place

dc_shell> # per-port:
dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type WC_S1 \
            -register_io_implementation in_place

This option implements the shared wrapper cell functionality by using discrete logic gates 
around the existing I/O register, as shown in Figure 12-24. The location of the original I/O 
register is not disturbed.

Figure 12-24 Shared Wrapper Cell Using In-Place Register Implementation
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Creating Separate Input and Output Wrapper Chains

By default, the simple wrapper mode inserts a wrapper chain with the following 
characteristics:

• Input and output wrapper cells can be mixed on the same scan chain.

• Input and output wrapper cells share the same wrapper shift signal.

To prevent input and output wrapper cells from being mixed on the same scan chains, use 
the -mix_cells false option of the set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -mix_cells false

If you use a single wrapper shift signal, it is used for both the input and output wrapper 
chains. You can also define separate input and output wrapper chain shift signals, as 
described in “Defining Separate Input and Output Wrapper Shift Signals” on page 12-19.

Configuring Maximized Reuse Core Wrapping

The maximized reuse feature considers how many registers exist in the fanout from an input 
port or the fanin to an output port. A single port might have many registers in its fanin or 
fanout, which would require many shared wrapper cells to fully wrap the port. If the number 
of fanin or fanout registers for a port exceeds a reuse threshold value, a single dedicated 
wrapper cell is used for that port.

Configuration of the maximized reuse core wrapping functionality is described in the 
following topics:

• Enabling Maximized Reuse Core Wrapping

• Applying a Register Reuse Threshold

• Applying a Combinational Depth Threshold

• Specifying Port-Specific Maximized Reuse Behaviors

• Special Cases for Register Reuse

• Using Dedicated Wrapper Cells

• Configuring Dedicated Wrapper Cell Clocks

• Defining Input/Output Clock-Domain-Based Wrapper Shift Signals

• Including Additional Scan Cells in Input and Output Wrapper Chains

• Using the Pipelined Scan-Enable Feature

• Low-Power Maximized Reuse Features
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• Hierarchical Core Wrapping

• Limitations of the Maximized Reuse Flow

Enabling Maximized Reuse Core Wrapping

To enable the maximized reuse feature, use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -maximize_reuse enable -reuse_threshold N

where the value of N defines the reuse threshold. The default of N is 1.

With the -maximize_reuse option enabled, when the number of registers encountered from 
an input or to an output exceeds the reuse threshold, a dedicated wrapper cell is added to 
the port. If the number of registers is less than this threshold, the tool can use these registers 
for wrapping the core. If a reuse threshold value of zero is specified, the tool converts all I/O 
registers to shared wrapper cells and no dedicated wrapper cells are used unless specified 
by the user. For more information about how the reuse threshold is computed, see “Applying 
a Register Reuse Threshold” on page 12-28.

When the  -maximize_reuse option is enabled, the tool sets the following options 
automatically:

• -style shared

• -register_io_implementation in_place

• -mix_cells false

• -use_system_clock_for_dedicated_wrp_cells enable

Also, you should not use the following options of the set_wrapper_configuration 
command with the -maximize_reuse option:

• -delay_test

• -core

• -shared_cell_type

• -shared_design_name

Applying a Register Reuse Threshold

When applying the reuse threshold value to a port, the tool determines the number of 
registers associated with that port. If the number of registers for a port does not exceed the 
reuse threshold, the registers are replaced with shared wrapper cells. If the number of 
registers exceeds the reuse threshold, a dedicated wrapper cell is placed at the port.
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Computing Reuse Thresholds for Input Ports

For an input port, the tool determines the number of registers in the fanout of the port. In 
addition, it includes any internal registers that feed data pins or synchronous set/reset pins 
of the fanout registers. Figure 12-25 shows an input port with an associated register count 
of three.

Figure 12-25 Input Port Register Count Computation Example

In this example, if the reuse threshold is set to a value of three or higher, the tool replaces 
the registers with shared wrapper cells, as shown in Figure 12-26.

Figure 12-26 Input Port Registers After Wrapper Cell Replacement

The tool places the shared wrapper cells for the fanout registers in the input wrapper chain. 
Because any internal registers feeding these fanout registers capture values from the core 
logic instead of input ports, the tool places the shared wrapper cells for these internal 
registers in the output wrapper chain.

In the maximized reuse flow, dedicated wrapper cells are added to input ports according to 
the following rules:

• If the sum of the input fanout registers and the internal registers feeding them exceeds 
the reuse threshold, then a dedicated wrapper cell is added to the input port.

• When the input register cells exceed the reuse threshold for a bidirectional port, 
dedicated wrapper cells are added to the data-out, enable, and data-in paths.

• If an input port is associated with a CTL-modeled cell, then a dedicated wrapper cell is 
added to the port. See “Wrapping Ports Associated With CTL-Modeled Cells” on 
page 12-33 for details.

A warning is issued if all registers associated with an input port do not use the same clock.
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Computing Reuse Thresholds for Output Ports

For an output port, the tool determines the number of registers in the fanin of the port. It does 
not include any additional surrounding registers. Figure 12-27 shows an output port with an 
associated register count of two.

Figure 12-27 Output Port Register Count Computation Example

In this example, if the reuse threshold is set to a value of two or higher, the tool replaces the 
registers with shared wrapper cells, as shown in Figure 12-28.

Figure 12-28 Output Port Registers After Wrapper Cell Replacement

The tool places the shared wrapper cells for the fanin registers in the output wrapper chain.

In the maximized reuse flow, dedicated wrapper cells are added to output ports according to 
the following rules:

• If the sum of the output fanin registers exceeds the reuse threshold, then a dedicated 
wrapper cell is added to the output port.

• When the number of the output register cells exceeds the reuse threshold value for a 
three-state output port, dedicated wrapper cells are added to both data-out and enable 
paths.

• If an output port is associated with a CTL-modeled cell, then a dedicated wrapper cell is 
added to the port. See “Wrapping Ports Associated With CTL-Modeled Cells” on 
page 12-33 for details.

• For three-state and bidirectional ports, only a functional register that directly controls the 
pad is considered as a shared wrapper cell for the enable path of the pad. There can be 
inverting or noninverting buffers between the register and the pad enable pin. If no such 
register is found, a dedicated wrapper cell is added at the driver cell enable pin to control 
the port.

A warning is issued if all registers associated with an output port do not use the same clock.
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Registers Associated With Multiple Ports

If the same register is associated with multiple ports, the register is replaced with a shared 
wrapper cell if any port meets the threshold. In Figure 12-29, register AB is in the fanout of 
ports A and B. Input port A has two associated registers, and input port B has three 
associated registers.

Figure 12-29 Register in Fanout of Multiple Ports

In this example, if the reuse threshold is set to a value of two, the tool replaces all registers 
for input port A with shared wrapper cells, and it inserts a dedicated wrapper cell at input port 
B, as shown in Figure 12-30. Register AB is replaced with a shared wrapper cell to 
completely wrap port A, even though it is also in the fanout of the dedicated wrapper cell for 
input port B.

Figure 12-30 Register in Fanout of Multiple Ports After Wrapper Cell Replacement

Registers that become shared wrapper cells for one port do not affect the associated 
register count for other ports. In Figure 12-30, the associated register count for input port B 
is three even though register AB is wrapped for input port A.

If a register is classified as both an input shared register and an output shared register, the 
register becomes an input shared register and is removed from the output shared register 
list. Unlike the simple core-wrapping flow, no dedicated wrapper cell is placed at the output 
port.
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Applying a Combinational Depth Threshold

For a core-wrapped design, any logic that exists between the wrapper chain and the I/O 
ports becomes logic that is external to the block for testing purposes. The 
-reuse_threshold option of the set_wrapper_configuration command applies a 
maximum fanout-breadth or fanin-breadth threshold limit for input and output shared 
wrapper cells, respectively. However, this reuse threshold only indirectly limits the logic 
depth that can exist outside the wrapper chain.

You can use the -depth_threshold option of the set_wrapper_configuration command 
to directly specify the maximum number of combinational cells, including buffers and 
inverters, that can exist between a port and its associated registers. For example,

dc_shell> set_wrapper_configuration -class core_wrapper \
            -depth_threshold 2

If this depth is exceeded, a dedicated wrapper cell is used for that port. This can be used to 
prevent too much logic from being placed on the external side of the wrapper chain.

Figure 12-31 shows the wrapper cell insertion behavior when the -depth_threshold value 
is set to 1.

Figure 12-31 Core Wrapping With a Combinational Depth Threshold Value of 1

Specifying Port-Specific Maximized Reuse Behaviors

The reuse threshold can be set on a port-by-port basis with the set_boundary_cell 
command:

dc_shell> set_boundary_cell -class core_wrapper \
            -reuse_threshold N -ports {port_list}

This command sets the reuse threshold value to N (where N >= 0) for all ports in the 
port_list specification.

To ignore the reuse threshold and force the use of a dedicated wrapper cell for one or more 
ports, use the following command:

dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type WC_D1

A A
WC_S1

B
B WC_D1
Chapter 12: Wrapping Cores
Wrapping a Core 12-32



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
If a port exceeds the reuse threshold and you want to manually specify some 
port-associated registers as shared wrapper cells, use the following command:

dc_shell> set_boundary_cell -class core_wrapper \
            -include {IO_register_cell_list} -ports {port_name}

This command causes the cells listed in IO_register_cell_list associated with the port 
port_name to be used as shared wrapper cells.

To manually specify some registers as shared wrapper cells for all associated ports that 
exceed the reuse threshold, omit the -ports option:

dc_shell> set_boundary_cell -class core_wrapper \
            -include {IO_register_cell_list}

When using the -include option with the -ports option, any specified ports exceeding the 
reuse threshold do not get a dedicated wrapper cell. When using the -include option 
without the -ports option, all ports associated with the specified registers exceeding the 
reuse threshold do not get a dedicated wrapper cell. You can exceed the reuse threshold 
when manually specifying shared wrapper cell registers with this option.

If a port meets the reuse threshold and you want to manually exclude some port-associated 
registers as shared wrapper cells, use the following command:

dc_shell> set_boundary_cell -class core_wrapper
            -exclude {IO_register_cell_names} -ports {port_name}

This command causes the registers listed in IO_register_cell_names to be excluded for the 
port port_name. If a register is excluded for the specified port but qualifies to be wrapped for 
another port, the register is still wrapped.

To manually exclude some registers as shared wrapper cells for all associated ports that 
meet the reuse threshold, omit the -ports option:

dc_shell> set_boundary_cell -class core_wrapper
            -exclude {IO_register_cell_names}

Note:   
The -include and -exclude options of the set_boundary_cell command can cause 
a port to become partially wrapped.

Special Cases for Register Reuse

In some cases, ports are associated with logic constructs that require special-case handling 
for register reuse.

Wrapping Ports Associated With CTL-Modeled Cells

If your design contains CTL-modeled synchronizer registers, they can be reused as shared 
wrapper cells. See “Wrapping Cores With Synchronizer Registers” on page 12-58.
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Other CTL-modeled cells, such as memories or DFT-inserted cores, cannot be used as 
shared wrapper cells. When a port is associated with a CTL-modeled cell, as shown in the 
examples in Figure 12-32 and Figure 12-33, a dedicated wrapper cell is added to the port.

Figure 12-32 Core Wrapping of Input Ports Associated With CTL-Modeled Cells

Figure 12-33 Core Wrapping of Output Ports Associated With CTL-Modeled Cells

In addition, a warning message is issued:

Warning: Port 'DACK' is connected to cell 'IP_CORE', which is represented
by a CTL model; a dedicated wrapper cell is added to the port.
(TEST-1184)

The scan clocks of the CTL-modeled cell are considered when determining the dominant 
system clock to use for the dedicated wrapper cell.

If the CTL-modeled cell has a netlist and there is no path from the port to a register inside 
the CTL-modeled cell, this behavior does not apply. In other words, connections to clock, 
reset, or DFT-related pins of a CTL-modeled cell do not force a dedicated wrapper cell.

Port Wrapping and Other Black-Box Cells

Black-box cells without CTL models do not affect core wrapping. Wrapper cells are not 
added unless needed by other design logic. See Figure 12-34.

Figure 12-34 Black-Box Cell With No CTL Model

Note:   
If LogicBIST self-test is enabled, dedicated wrapper cells are added as described in 
“Configuring Wrapper Chain Isolation Logic” on page 32-6.
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Wrapping Ports Associated With Clock-Gating Cells

A dedicated wrapper cell is added to an input port that drives the enable signal of a 
clock-gating cell. In Figure 12-35, an integrated clock-gating cell has both a functional 
enable pin and a test-mode pin. A dedicated wrapper cell is added for the functional enable 
signal driven by input port CLKEN. No wrapper cells are inserted for the clock signal or the 
global test-mode signal.

Figure 12-35 Integrated Clock Gating Cell Enable Signals

A warning message is issued if such a clock-gating enable signal is detected:

Warning: Port 'CLKEN' is connected to a clock gating cell 'UICG';
  a dedicated wrapper cell is added to the port. (TEST-1183)

Port Wrapping and Feedthrough Paths

Feedthrough paths do not affect core wrapping. Wrapper cells are not added unless needed 
by other design logic. See Figure 12-36.

Figure 12-36 Combinational Feedthrough Paths

An information message is issued if a feedthrough port is detected and no dedicated 
wrapper cell is manually specified for the port:

Information: No I/O registers are found for port 'B';
  not adding any dedicated wrapper cells to the port. (TEST-1180)
Information: No I/O registers are found for port 'Y';
  not adding any dedicated wrapper cells to the port. (TEST-1180)

Note:   
If LogicBIST self-test is enabled, dedicated wrapper cells are added as described in 
“Configuring Wrapper Chain Isolation Logic” on page 32-6.
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Using Dedicated Wrapper Cells

Dedicated wrapper cells are used for any ports that exceed the reuse or combinational 
depth thresholds. You can also manually force the use of a dedicated wrapper cell with the 
following command:

dc_shell> set_boundary_cell -class core_wrapper \
            -ports port_list -type WC_D1

In the simple core-wrapping flow, dedicated wrapper cells use the dedicated wrapper clock. 
However, in the maximized reuse flow, the tool attempts to identify the dominant clock 
domain associated with the port and uses that clock for the dedicated wrapper cell.

The following rules guide the automatic selection of a clock for dedicated wrapper cells in 
the maximized reuse flow:

• A port’s dedicated wrapper cell uses the same clock as the flip-flops associated with that 
port.

• If the port is associated with flip-flops of multiple clock domains, the dominant clock is 
used.

• If a dominant clock is not found, any user-specified wrapper clock, defined using the 
set_dft_signal -view spec -type wrp_clock command, is used.

• If no user-specified wrapper clock has been defined, a dedicated wrapper clock is 
created and used.

Configuring Dedicated Wrapper Cell Clocks

There are two ways to override automatic clock selection for dedicated wrapper cells:

• To specify a particular wrapper clock to be used for the dedicated wrapper cells of 
specific ports, use the following command:

dc_shell> set_boundary_cell -class core_wrapper -type WC_D1 \
            -shift_clk clock_name -ports port_name

• To specify that a dedicated wrapper clock is to be used for all dedicated wrapper cells, 
use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -use_system_clock_for_dedicated_wrp_cells disable

See Also

• “Defining Dedicated Wrapper Clock Signals” on page 12-21 for more information about 
defining dedicated wrapper clock signals
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Defining Input/Output Clock-Domain-Based Wrapper Shift Signals

Two signal types, input_wrp_shift and output_wrp_shift, allow you to define 
clock-domain-based input and output wrapper shift signals. For example,

# define per-clock-domain input wrapper shift signals
set_dft_signal -view spec -type input_wrp_shift \
  -port WRP_ISHIFT1 -connect_to CLK1
set_dft_signal -view spec -type input_wrp_shift \
  -port WRP_ISHIFT2 -connect_to CLK2

# define per-clock-domain output wrapper shift signals
set_dft_signal -view spec -type output_wrp_shift \
  -port WRP_OSHIFT1 -connect_to CLK1
set_dft_signal -view spec -type output_wrp_shift \
  -port WRP_OSHIFT2 -connect_to CLK2

Note:   
The input_wrp_shift and output_wrp_shift signal types can be used only with the 
-connect_to option as part of a clock-domain-based signal specification, and they can 
be used only in the maximized-reuse flow.

See Also

• SolvNet article 2138931, “Why Are There Two Ways to Specify Input and Output 
Wrapper Shift Signals?” for more information about input and output wrapper shift signals

Including Additional Scan Cells in Input and Output Wrapper 
Chains

When wrapping a core, you can include additional scan cells in the input and output wrapper 
chains by using the -input_wrapper_cells and -output_wrapper_cells options, 
respectively. For example,

dc_shell> set_wrapper_configuration \
            -maximize_reuse enable \
            -input_wrapper_cells \
              [get_object_name [get_cells IN_CFG*reg]] \
            -output_wrapper_cells \
              [get_object_name [get_cells OUT_CFG*reg]]

The specified cells are reclassified from internal scan cells to shared wrapper cells in all test 
modes. This feature requires that the maximized-reuse feature also be enabled.

Note the following limitations of these options:

• The input is accepted as a simple list. Wildcards and collections are not supported, 
although you can use the get_object_name command to convert a collection to a list.

• No checking is performed for invalid object specifications.
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Using the Pipelined Scan-Enable Feature

The pipelined scan-enable feature can be used in the maximized reuse flow. By default, two 
signals are used to enable shifts for designs using wrapper cells:

• test_se – Pipelined, used for internal flip-flops

• wrp_shift – Pipelined, used for wrapper flip-flops (shared or dedicated)

When the pipelined scan-enable feature is enabled, pipelined scan-enable structures are 
added to both of these signals. A pipelined scan-enable cell is used for each clock domain 
used by the input and output wrapper cells, with pipeline registers clocked by that clock. 
Pipelined scan-enable cells are not shared between input and output wrapper cells.

For example, if the design has two clock domains driving input wrapper cells and three clock 
domains driving output wrapper cells and if the number of wrapper cells within each of these 
domains meets the required pipeline fanout limit, a total of five pipelined scan-enable cells 
are created. Two of the pipelined scan-enable cells drive input wrapper cells; the remaining 
three pipelined scan-enable cells drive output wrapper cells. To create this pipelined 
structure, use the following commands:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
            -maximize_reuse enable

dc_shell> set_scan_configuration \
            -pipeline_scan_enable true -pipeline_fanout_limit P

To use the same scan-enable for all registers, define the signal as both a scan-enable signal 
and a wrapper shift signal using the set_dft_signal command:

dc_shell> set_dft_signal -view spec -type ScanEnable -port SE

dc_shell> set_dft_signal -view spec -type wrp_shift -port SE

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
            -maximize_reuse enable

dc_shell> set_scan_configuration \
            -pipeline_scan_enable true -pipeline_fanout_limit P

In this case, pipelined scan-enable cells are not shared between internal cells, input wrapper 
cells, or output wrapper cells.

To use separate scan-enables for input and output wrapper chains, use the following 
commands:

dc_shell> set_dft_signal -view spec -type ScanEnable -port SE
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dc_shell> set_dft_signal -view spec -type wrp_shift -port WSE_I

dc_shell> set_dft_signal -view spec -type wrp_shift -port WSE_O

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
            -maximize_reuse enable \
            -input_shift_enable WSE_I -output_shift_enable WSE_O

dc_shell> set_scan_configuration \
            -pipeline_scan_enable true -pipeline_fanout_limit P

Note:   
A single global_pipe_se signal is used for both internal and wrapper chains for all of 
these scenarios.

See Also

• “The Pipelined Scan-Enable Architecture” on page 11-54 for more information about the 
pipelined scan-enable feature

Low-Power Maximized Reuse Features

The following topics describe low-power features available in the maximized reuse flow.

Loading Constant Core Scan Data in EXTEST Mode

In the maximized reuse flow, to minimize power consumption in wrp_of (EXTEST) mode, all 
core scan chain cells are loaded with logic 0. This reduces toggle activity inside the block 
during outward-facing (EXTEST) modes. To accomplish this, the logic shown in 
Figure 12-37 drives the first scan cell inputs of the internal scan chains.

Figure 12-37 Scan Data Gating Logic for Low-Power EXTEST

This feature is part of the wrapped core scan architecture; there is no option that controls it.
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Gating Dedicated Wrapper Cell Clocks in Non-Wrapper Modes

The tool can insert clock-gating cells to disable the clock used for dedicated wrapper cells 
when a wrapper mode is not active. To do this, use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -gate_dedicated_wrapper_cell_clk enable

The tool adds a clock-gating cell to each dedicated wrapper cell clock source, including any 
scan clocks used for dedicated wrapper cells, as shown in Figure 12-38. Shared wrapper 
cells and scan cells are not affected, even if they use the same clock as a dedicated wrapper 
cell.

Figure 12-38 Clock Gating Logic for Low-Power Dedicated Clock Operation

By default, the clock-gating logic uses discrete latch cells. To use an integrated clock-gating 
cell instead, set the desired library cell reference (without the library name) by using the 
test_icg_p_ref_for_dft variable.

Gating Scan and Wrapper Cell Clocks in Wrapper Modes

The tool can use integrated clock-gating cells to disable the clock to unused scan and 
wrapper cells in the wrp_of (EXTEST) and wrp_safe (SAFE) wrapper modes, as shown in 
Table 12-1.

Table 12-1 Gated-Clock Behaviors in Wrapper and Non-Wrapper Test Modes 

Test mode Clock disabled for 
input wrapper cells?

Clock disabled for 
scan cells?

Clock disabled for 
output wrapper cells?

INTEST (wrp_if) No No No

EXTEST (wrp_of) No Yes No

SAFE (wrp_safe) Yes Yes Yes

All other test modes No No No

Mission mode No No No
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To modify only existing integrated clock-gating cells in the design, use the following 
command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -gate_cells existing_cg

Figure 12-39 highlights the logic added to existing clock-gating cells by DFT insertion. The 
functional enable and test enable signals are both deasserted to disable the clock. The 
existing_cg mode leaves the clock tree unchanged.

Figure 12-39 Clock-Disabling Logic for Existing Clock-Gating Cells

If an existing clock-gating cell gates multiple cell types, that gated clock signal is disabled 
only when all downstream clocked cells can be gated. (In other words, ICG cells that drive 
both wrapper and core cells will enable core cells in outward-facing modes.)

To apply clock-disabling logic to all wrapper and scan cells in the design for more aggressive 
power reduction, use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -gate_cells all

Existing integrated clock-gating cells are modified as previously described. In addition, new 
integrated clock-gating cells are added to ungated wrapper and scan cells. Figure 12-40 
highlights the clock-gating cells added by DFT insertion. The tool inserts a clock-gating cell 
for each group of same-edge cells clocked by a common hierarchical net. It does not trace 
backward through buffers and inverters to find logically identical nets.

CLK

EN

CLKO

TST ICG

wrp_of
wrp_safe

Input wrapper cells

Core scan cells

Output wrapper cells

CLK

EN

CLKO

TST ICG
TCM

wrp_safe

Functional enable signal

Test enable signal

Functional enable signal

Test enable signal

Existing ICG cells
Chapter 12: Wrapping Cores
Wrapping a Core 12-41
Chapter 12: Wrapping Cores
Wrapping a Core 12-41



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 12-40 Clock-Disabling Logic Added for Ungated Cells

You must specify the desired integrated clock-gating library cell references (without the 
library name) using the test_icg_p_ref_for_dft variable.

Note the following limitations of low-power wrapper and scan cell clock gating:

• Multiple levels of existing clock-gating cells are not supported.

• Falling-edge scan cells use the test_icg_p_ref_for_dft variable instead of the 
test_icg_n_ref_for_dft variable.

Hierarchical Core Wrapping

The hierarchical core wrapping feature can be used to build a core that contains only 
wrapper and core chains, but does not contain any test control module (TCM) or wrapper 
mode logic. This core can then be used at a higher level of integration with other wrapper 
chains or compression architectures. This hierarchical wrapping feature is only available in 
the maximized reuse flow.

Note:   
This feature should not be confused with simply integrating a wrapped core in a 
hierarchical DFT flow, which is covered in “Integrating Wrapped Cores in Hierarchical 
Flows” on page 12-64.

To enable hierarchical wrapping, use the following commands at the core level:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
            -maximize_reuse enable -hier_wrapping enable

By default, hierarchical wrapping is disabled.
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When hierarchical wrapping is enabled, a single mode, Internal_scan, is created. This mode 
creates both wrapper chains and core internal chains. In addition, the following core-level 
input ports and signals are created:

• Three separate shift signals are created to control input wrapper chains, output wrapper 
chains, and core internal chains.

• If safe states are specified, separate input and output safe control signals are created for 
input and output wrapper cells.

• In the maximized reuse flow, shared wrapper cells do not use a capture signal. However, 
if there are dedicated wrapper cells in the input and output wrapper chains, separate 
input and output capture-enable signals are created for input and output wrapper cells.

By default, the tool creates these signals using default port and signal names. To use 
existing placeholder ports for these signals instead, define them with the set_dft_signal 
command as follows:

dc_shell> set_dft_signal -view spec -type wrp_shift -port port_name
dc_shell> set_dft_signal -view spec -type wrp_ded_capture_in \
            -port port_name
dc_shell> set_dft_signal -view spec -type wrp_ded_capture_out \
            -port port_name
dc_shell> set_dft_signal -view spec -type wrp_safe_in -port port_name
dc_shell> set_dft_signal -view spec -type wrp_safe_out -port port_name

The test model generated after hierarchical wrapping includes attributes that identify input 
and output wrapper chains, input and output wrapper scan-enable signals, input- and 
output-dedicated safe control signals, and input- and output-dedicated wrapper 
capture-enable ports.

Note:   
Multiple test modes are not allowed at the core level when using hierarchical wrapping to 
create the core.

After the core is created, to enable integration of hierarchically wrapped cores at a higher 
level of the hierarchy, use the following commands:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
            -maximize_reuse enable

During integration, the tool detects any hierarchical wrapped cores using the previously 
stored test attributes. Wrapper cells are incrementally added as needed to augment 
core-level wrapper capabilities, as shown in Figure 12-41. The tool creates the normal set of 
wrapper test modes, selected by a test control module, according to user specifications. As 
with typical wrapping flows, multiple test modes, including scan compression, are allowed at 
this level.
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Figure 12-41 Integrating Wrapper-Only Cores at a Higher Level

Core-level input wrapper chains are mixed with integration-level input wrapper cells, and 
core-level output wrapper chains are mixed with integration-level output wrapper cells. 
Core-level wrapper shift, capture, and safe control signals are connected to appropriate 
integration-level wrapper logic.

Core-level wrapper chains can be integrated only one time. There is no support for recursive 
wrapping flows that propagate wrapper capabilities up through multiple hierarchy levels.

Limitations of the Maximized Reuse Flow

Note the following limitations related to the behavior of the scan-enable signal in capture 
mode:

• Preexisting scan-enable control of clock-gating cells

If the design has I/O registers controlled by clock-gating cells that are controlled by the 
scan-enable port, these I/O registers might not shift during the capture mode operation 
of the INTEST and EXTEST modes because scan-enable might not be active in capture 
mode.

• Preexisting scan-enable control of set and reset

If the set or reset pins of the I/O registers are controlled by the scan-enable port, the I/O 
registers might not shift during the capture mode of operation of the INTEST and 
EXTEST modes because scan-enable might not be active in capture mode.

Determining Power Domains for Dedicated Wrapper Cells

By default, dedicated wrapper cells are added to the top-level power domain. To have 
dedicated wrapper cells added to power domains other than the top-level power domain, 
use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
            -add_wrapper_cells_to_power_domains enable
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When this option is enabled, no new wrapper chain hierarchical block is created to enclose 
the dedicated wrapper cells. Wrapper cells are added according to the following rules:

• If the port is connected to an I/O register, the dedicated wrapper cell is added to the 
top-level power-domain hierarchy of the I/O register.

• If the port is connected to a CTL model, the top-level power-domain hierarchy of the 
instantiated CTL model is used as the location for the dedicated wrapper cell.

• If the port is connected to a gate, the top-level power-domain hierarchy of the gate is 
used as the location for the dedicated wrapper cell.

• If none of these conditions apply, the cell is added to the top-level hierarchy.

Using the set_scan_path Command With Wrapper Chains

You can use the set_scan_path command to control detailed aspects of wrapper chain 
construction. The following options are supported for wrapper chains:

set_scan_path
    -class wrapper scan_chain_name
    [-ordered_elements ordered_port_list]
    [-complete true | false]
    [-input_wrapper_cells_only enable | disable]
    [-output_wrapper_cells_only enable | disable]
    [-scan_enable se_port]
    [-test_mode test_mode_name]
    [-scan_data_in si_port]
    [-scan_data_out ordered_port_list]

You must always specify the -class wrapper option when using set_scan_path to 
configure wrapper chains.

You can use the -ordered_elements option to control the ordering of wrapper cells in the 
wrapper chain. Provide an ordered list of ports, and DFT Compiler uses it to order the 
corresponding wrapper cells according to the specification:

dc_shell> set_scan_path -class wrapper WC1 \
            -ordered_elements {C B A Z Y}

By default, DFT Compiler can add wrapper cells to the beginning of the specified chain. To 
prevent this, specify the -complete true option. You cannot use multiple ordered list 
specifications to add more wrapper cells to an already specified wrapper chain because the 
last specification for a chain overwrites any previous specification. Wrapper cells cannot 
belong to more than one chain, so if you specify a cell as belonging to more than one chain, 
the last specification takes precedence.

As described in “Wrapping Three-State and Bidirectional Ports” on page 12-17, multiple 
wrapper cells are inserted for three-state and bidirectional ports. You can reference these 
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wrapper cells in the ordered list of ports by appending /out, /en, or /in to the name of the 
bidirectional or three-state port. For example, the following command specifies an ordering 
for ports named a, b, c, and d, where a is an input port, b is a three-state port, and c and d 
are bidirectional ports.

dc_shell> set_scan_path Wchain0 -class wrapper \
            -ordered_elements [list A B/in B/out C/out \
            D/out B/en C/en D/en] -complete true \
            -test_mode test_mode_name

Note:   
All of the wrapper cells for an individual three-state or bidirectional port must be in the 
same wrapper chain. For example, you cannot specify that the enable wrapper cell and 
output wrapper cell belong to different chains for a given port.

You can use the -scan_data_in and -scan_data_out options to specify the wrapper 
scan-in or wrapper scan-out signals for a chain:

dc_shell> set_dft_signal -type ScanInData -port wsi
dc_shell> set_dft_signal -type ScanDataOut -port wso
dc_shell> set_scan_path -class wrapper WC2 \
            -ordered_elements [list A B C] \
            -scan_data_in wsi -scan_data_out wso

The following commands implement separate input and output wrapper chains with 
separate wrapper shift signals using the set_scan_path command:

dc_shell> set_dft_signal -view spec \
            -type wrp_shift -port {wrp_ishift wrp_oshift}

dc_shell> set_scan_path -class wrapper WC_inputs \
            -input_wrapper_cells_only enable \
            -scan_enable wrp_ishift

dc_shell> set_scan_path -class wrapper WC_outputs \
            -output_wrapper_cells_only enable \
            -scan_enable wrp_oshift

A set_scan_path specification applied with the -class wrapper option and without the 
-test_mode option applies to all wrapper modes. You can also explicitly specify the 
-test_mode all option. To apply a set_scan_path specification to a specific wrapper 
mode, you must predefine the wrapper mode before referencing it. For more information, 
see “Creating User-Defined Core Wrapping Test Modes” on page 12-51.

For more information about the set_scan_path command, see the man page.
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Previewing the Wrapper Cells

After you have configured your wrapper chain and wrapper cells, use the preview_dft 
command with the -test_wrappers all option to preview the scan chain and wrapper 
chain characteristics. Example 12-1 shows a wrapper chain preview report for a design.

Example 12-1 Preview Report of Shared I/O Registers

dc_shell> preview_dft -test_wrappers all
...
****************************************
Test wrapper plan report
Design : coreJF
Version: 2004.12
Date : Wed Feb 2 12:00:12 2005
****************************************

Number of designs to be wrapped : 1
MY_core

Number of Wrapper Interface ports : 5

port type   port name
---------   ---------
WRP_CLOCK   wrp_clock
WRP_CLOCK   ck1
WRP_CLOCK   ck2
WRP_SHIFT   wrp_shift

Note: Dedicated wrapper cells are grouped into a hierarchical instance
named:
"coreJF_Wrapper_inst" (Module name: "coreJF_Wrapper_inst_design")

Wrapper Length: 7

             Wrapper   Wrapper    Cntrl       Safe   Wrapper
Index  Port  Function  Cell Type  Cell  Impl  Value  Clock     Cell Name
-----  ----  --------  ---------  ----  ----  -----  -------   ---------
9      *     control   WC_S1_S     -    INP    0     ck1       BI1_2
8   bidi[1]  inout     WC_S1       -    INP    -     ck1       BI1_3
7   bidi[1]  tristate  WC_S1       9    INP    -     ck1       BI1_1
6      A1    input     WC_S1       -    SWP    -     ck1       I1_reg
5      A2    input     WC_D1       -    SWP    -     wrp_clk   A2_wrp0_8
4      A3    input     WC_D1       -    SWP    -     wrp_clk   A3_wrp0_7
3      A4    input     WC_D1       -    SWP    -     wrp_clk   A4_wrp0_6
2      Q1    output    WC_S1       -    SWP    -     ck1       Q1_reg
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1      Q2    output    WC_S1       -    SWP    -     ck2       iQ2_reg
0      Q3    output    WC_S1       -    SWP    -     ck2       iQ3_reg

Number of ports not wrapped     : 3
MAINT_PORT
ck1
ck2

Input and output wrapper chains as well as core scan chains are shown in the preview_dft 
report. To see this information, run the following command:

dc_shell> preview_dft -show all -test_wrappers all

For all ports that have wrapper cells, the following information is reported:

• Index number of wrapper cell (used to indicate duplicate input/output wrapper cells and 
to reference control cells)

• Port name

• Wrapper cell type: dedicated or shared

• Function of wrapper cell: input, output, three-state, or control

• Control cell index number associated with a bidirectional or three-state wrapper cell

• Wrapper cell implementation: swapped-in (SWP) or in-place (INP)

• Safe value

• Wrapper cell clock

• Wrapper cell instance name

After DFT is inserted with the insert_dft command, you can report both normal scan 
chains and wrapper chains with the report_scan_path command. To report wrapper 
chains, use the -test_mode option of the report_scan_path command to provide the 
wrapper test-mode name. To list the available test modes, use the list_test_modes 
command.

Previewing Maximized Reuse Wrapper Cells

In the maximized reuse flow, the preview_dft command shows additional information 
about how register reuse is applied.

The preview report uses annotations to indicate when a shared wrapper cell is associated 
with multiple ports. Figure 12-42 shows a design to be core-wrapped in the maximized reuse 
flow, and Example 12-2 shows the corresponding wrapper chain report from the 
preview_dft command.
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Figure 12-42 Design Example With Common Shared Wrapper Cells

Example 12-2 Wrapper Chain Preview Report with Common Shared Wrapper Cells

dc_shell> preview_dft -test_wrappers all
...
            Wrapper   Wrapper    Control    Safe   Wrapper
Index Port  Function  Cell Type  Cell Impl  Value  Clock    Cell Name
----- ----  --------  ---------  ---- ----  -----  -------  ---------
 4    A     input     WC_S1       -   INP    -     CLK      FF1_reg
 4    B     input     WC_S1           INP    -     CLK      FF1_reg(d)
 4    Y     output    WC_S1           INP    -     CLK      FF1_reg(*)
 3    B     input     WC_S1       -   INP    -     CLK      FF2_reg
 3    C     output    WC_S1           INP    -     CLK      FF2_reg(*)(i)
 2    C     input     WC_S1       -   INP    -     CLK      FF3_reg
 1    C     output    WC_S1       -   INP    -     CLK      int_reg
 0    Y     output    WC_S1       -   INP    -     CLK      FF4_reg
 0    Z     output    WC_S1           INP    -     CLK      FF4_reg(d)

Note the following reporting conventions:

• Shared registers that are common to multiple input ports and multiple output ports are 
shown with the letter d (d) for all subsequent entries after the first register entry; these 
marked entries do not count against the total wrapped register count. 

• Internal registers in the fanin to an input shared register are classified as output registers 
(because they drive values that are captured during outward-facing test).

• Shared registers that are common to both an input port and an output port but are used 
only as input wrapper cells are classified as input registers and shown with an asterisk 
(*) for the output port.

• Shared input registers that are in the fanin to another shared input register are classified 
as input registers and shown with the annotation (*)(i) for the fanin to the shared input 
register.

The preview report also indicates the reason why a dedicated wrapper cell is used at a port 
instead of a shared wrapper cell. Figure 12-43 shows a design to be core-wrapped in the 
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maximized reuse flow, and Example 12-3 shows the corresponding wrapper chain report 
from the preview_dft command.

Figure 12-43 Design Example With Dedicated Wrapper Cells

Example 12-3 Wrapper Chain Preview Report With Dedicated Wrapper Cells

dc_shell> preview_dft -test_wrappers all
...
Note: Dedicated wrapper cells are grouped into a hierarchical instance named:
"top_Wrapper_inst" (Module name: "top_Wrapper_inst_design")

Dedicated Wrapper
Cell Reason         Description
-----------------   -----------
TEST-1183           Port drives enable pin of clock-gating cell
TEST-1185           Number of I/O registers exceeds reuse threshold

Wrapper Length:       3

              Wrapper   Wrapper
Index   Port  Function  Cell Type  ...  Cell Name
-----   ----  --------  ---------       ---------
 2      A     input     WC_S1           FF1_reg
 1      EN    input     WC_D1           top_Wrapper_inst/top_EN_wrp0_1 (TEST-1183)
 0      Z     output    WC_D1           top_Wrapper_inst/top_Z_wrp0_0 (TEST-1185)

In the wrapper chain report, each port with a dedicated wrapper cell has a reason message 
code indicating why the dedicated wrapper cell is used. A short description for each reason 
is shown in a legend table before the report. For more information about a dedicated 
wrapper cell reason, see the man page. For a complete list of dedicated wrapper cell 
reasons, see SolvNet article 038531, “What Are the Reasons for Dedicated Wrapper Cells 
to Be Inserted?”

Post-DFT DRC Rule Checks

You can perform post-DFT DRC for the wrapper modes. To verify that the input wrapper 
chains shift in wrp_if (INTEST) mode, use the following commands:

dc_shell> current_test_mode wrp_if

dc_shell> dft_drc
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To verify that the output wrapper chains shift in wrp_of (EXTEST) mode, run the following 
commands:

dc_shell> current_test_mode wrp_of

dc_shell> dft_drc

Creating User-Defined Core Wrapping Test Modes

Normally, when core wrapping is enabled, DFT Compiler creates a default set of core 
wrapping test modes as described in “Wrapper Test Modes” on page 12-6. You can also 
create user-defined test modes for wrapped cores using the define_test_mode command.

Table 12-2 shows the test mode usage types you can specify with the -usage option of the 
define_test_mode command. You can define one or more test modes for each usage. 
When you define a test mode for a given usage, the default test mode is not created for that 
usage.

You can configure individual user-defined test modes using the -test_mode option of DFT 
configuration commands. The -test_mode option cannot reference a default test mode 
unless that mode name was explicitly defined with the define_test_mode command.

Note that only the following options of the set_wrapper_configuration command can be 
used with the -test_mode option:

• -max_length

• -chain_count

• -mix_cells

Table 12-2 Test Mode Usage Types for Wrapped Cores 

Test mode usage Test mode description Default test mode name

wrp_if Inward-facing uncompressed scan mode wrp_if

scan_compression Inward-facing compressed scan mode ScanCompression_mode

wrp_of Outward-facing uncompressed scan mode wrp_of

wrp_safe Safe mode wrp_safe

scan Unwrapped standard scan mode Internal_scana

a. This default unwrapped test mode is not created when core wrapping is enabled; it can only be created for 
a wrapped core by defining a user-defined test mode.
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• -input_shift_enable

• -output_shift_enable

• -shift_enable

• -no_dedicated_wrapper_cells

Example 12-4 defines a set of user-defined core wrapping test modes. The inward-facing 
compressed scan mode, defined with -usage scan_compression, specifies the base mode 
as the inward-facing uncompressed scan mode, defined with -usage wrp_if.

Example 12-4 User-Defined Core Wrapping Test Modes

# define test modes
define_test_mode MY_INTEST      -usage wrp_if
define_test_mode MY_INTEST_COMP -usage scan_compression
define_test_mode MY_EXTEST      -usage wrp_of

# configure scan modes
set_wrapper_configuration  -test_mode MY_INTEST \
  -class core_wrapper -chain_count 1 -mix_cells true
set_scan_configuration     -test_mode MY_INTEST \
  -chain_count 2 -clock_mixing mix_clocks \

set_wrapper_configuration  -test_mode MY_EXTEST \
  -class core_wrapper -chain_count 2 -mix_cells false
set_scan_configuration     -test_mode MY_EXTEST \
  -chain_count 2 -clock_mixing mix_clocks

set_scan_compression_configuration \
  -test_mode MY_INTEST_COMP -base_mode MY_INTEST \
  -chain_count 12

Creating Compressed EXTEST Core Wrapping Test Modes

You can create compressed EXTEST modes using DFTMAX Ultra streaming compression, 
in which a streaming codec compresses all outward-facing wrapper chains.

Figure 12-44 Uncompressed and Compressed Outward-Facing (EXTEST) Wrapper Modes
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To do this, define a streaming compression mode that references an uncompressed 
outward-facing mode as its base mode. For example,

# enable DFT clients
set_dft_configuration -wrapper enable -streaming_compression enable

# define test modes
define_test_mode wrp_if -usage wrp_if
define_test_mode wrp_if_comp -usage streaming_compression
define_test_mode wrp_of -usage wrp_of
define_test_mode wrp_of_comp -usage streaming_compression

# configure inward-facing standard and compressed modes
set_scan_configuration \
  -test_mode wrp_if \
  -chain_count 2
set_streaming_compression_configuration \
  -test_mode wrp_if_comp -base_mode wrp_if \
  -chain_count 4

# configure outward-facing standard and compressed modes
set_wrapper_configuration -class core_wrapper \
  -test_mode wrp_of \
  -chain_count 2
set_streaming_compression_configuration \
  -test_mode wrp_of_comp -base_mode wrp_of \
  -chain_count 4 -inputs 1 -outputs 1

Wrapper chain count and length is configured as follows:

• For the compressed EXTEST mode, wrapper chains are always length-balanced using 
the configuration specified by the set_streaming_compression_configuration 
command. The set_wrapper_configuration command should not be applied to this 
mode. 

• For the uncompressed EXTEST mode and all other wrapper modes, wrapper chains 
follow the rules described in “Controlling Wrapper Chain Count and Length” on 
page 12-23.

Keep in mind that unlike uncompressed EXTEST chains, compressed EXTEST chains 
cannot be concatenated with other chains for rebalancing at higher levels. Just as with other 
compression modes, compressed EXTEST modes require dedicated codec scan I/O 
connections during core integration.

Alternatively, you can create many uncompressed wrapper chains at the core level, then 
concatenate or compress them along with other chains at a higher level in standard or 
compressed scan modes, respectively.

Note:   
This feature requires DFTMAX Ultra streaming compression. Other compression 
technologies are not supported.
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Creating an IEEE 1500 Wrapped Core

To create an IEEE 1500 wrapped core, simply enable both of the following features:

• Core wrapping (described in this chapter)

• Core-level IEEE 1500 test-mode control

Figure 12-45 shows a core with these features enabled. In an IEEE 1500 core, the wrapper 
chain is also called the wrapper boundary register (WBR).

Figure 12-45 Wrapped Core With IEEE 1500 Controller

The WBR operation is controlled by the IEEE 1500 logic, but it uses regular scan-in and 
scan-out signals instead of the IEEE 1500 WSI and WSO scan signals. This enables the 
following features:

• The WBR can be implemented using separate input and output wrapper chains, which is 
required in the maximized reuse flow.

• The WBR can be compressed by scan compression codecs.

See Also

• “Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces” on page 11-82 for 
information on implementing IEEE 1500 test-mode control

Wrapping Cores With OCC Controllers

When you create a core with a DFT-inserted or user-defined OCC controller, the clock chain 
provides control of the OCC-controlled clock.
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When you also wrap such a core, the tool uses the following rules to determine how clock 
chains are incorporated into the core wrapping test modes that are created:

• Clock chains are always included in inward-facing (INTEST) modes. This allows the 
internal logic clocked by the OCC controller to be tested.

• Clock chains are included in outward-facing (EXTEST) modes only when the 
corresponding OCC-controlled clock clocks any shared or dedicated wrapper cell. This 
allows those wrapper cells to be controlled.

Note:   
If you define a clock chain with the set_scan_path -test_mode all command, the 
clock chain is forced to be included in all test modes. To avoid this, define the clock chain 
only with the set_scan_group command, or apply the set_scan_path specification to 
only the desired test modes.

Use the preview_dft -test_wrappers all command to report the clock associated with 
each wrapper cell.

See Also

• Chapter 13, “On-Chip Clocking Support” for more information on OCC controllers and 
clock chains.

Wrapping Cores With OCC Clock Outputs

In some cases, you might have a core in which an OCC-controlled clock drives a core output 
port, as shown in Figure 12-46.

Figure 12-46 OCC-Controlled Clock Driving a Core Output Port

In this case, do the following tasks during core creation:

• Enable advanced clock feedthrough analysis to help DRC include the clock output 
information into the core’s CTL model:

dc_shell> set_app_var test_fast_feedthrough_analysis true

PLLREFCLK
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ATECLK
CLKOUT
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• Ensure that the clock chains are included in outward-facing (EXTEST) mode so that the 
top-level logic clocked by the OCC clock can be tested.

The presence of the OCC clock output is not a sufficient condition to do this. You must 
either clock at least one wrapper cell with the OCC clock, or you must manually define 
the clock chain with the set_scan_path -test_mode all command.

You do not need to disable wrapping on the clock output port. The tool recognizes the output 
port as a feedthrough port, as shown by the following message:

Information: No I/O registers are found for port 'CLKOUT'; not adding any
dedicated wrapper cells to the port. (TEST-1180)

See Also

• “Using Advanced Clock Feedthrough Analysis” on page 6-31 for more information on 
advanced clock feedthrough analysis.

Wrapping Cores With DFT Partitions

If you are using DFT partitions, the tool creates wrapper chains within each partition and 
assigns wrapper cells to partitions as follows:

• Shared wrapper cells are functional scan cells. They inherently belong to a DFT partition, 
as specified by the DFT partition configuration.

• Dedicated wrapper cells are associated with a port. The tool finds the first test cell 
(flip-flop or clock-gating cell) in the fanout of the port, then assigns the dedicated wrapper 
cell to the DFT partition for that test cell.

The following example shows per-partition wrapper chain configuration:

# enable core wrapping
set_dft_configuration -wrapper enable
set_wrapper_configuration -class core_wrapper -maximize_reuse enable

# define DFT partitions
define_dft_partition P1 -include ...
define_dft_partition P2 -include ...

# configure DFT partition P1
current_dft_partition P1
set_scan_configuration -chain_count 4
set_wrapper_configuration -class core_wrapper -chain_count 2

# configure DFT partition P2
current_dft_partition P2
set_scan_configuration -chain_count 4
set_wrapper_configuration -class core_wrapper -chain_count 2
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Note the following limitation:

• When you use DFT partitions, separate wrapper chains are created within each partition. 
Wrapper chains cannot span across partitions.

Wrapping Cores With Multibit Registers

You can core-wrap designs that use multibit registers.

Multibit registers have multiple state elements (bits) that are individually addressable but 
share clock and scan signals. This reduces power consumption and routing congestion.

Both the RTL bus inference flow and placement-based register banking flows are supported. 
(However, if you use the -input_map_file or -register_group_file option of the 
identify_register_banks command in the placement-based flow, then the algorithms in 
this section are disabled.)

The Maximized Reuse Core Wrapper Flow

In the maximized reuse flow, multibit registers associated with ports can be shared wrapper 
cells. For best results, enable and configure maximized reuse core wrapping before 
performing multibit banking with

• The initial compile_ultra command (RTL bus inference flow)

• The identify_register_banks command (placement-based banking flow)

This informs the multibit banking algorithms that you will perform maximized reuse core 
wrapping during DFT insertion. The tool builds each multibit register from single-bit registers 
of the same type—input registers, output registers, or core registers—so they can be 
stitched into the corresponding wrapper or core scan chains.

To confirm this, the tool issues the following message during multibit banking:

Information: DFT core wrapping client enabled; banking anticipates core
wrapping. (TEST-1291)

Table 12-3 lists the wrapper configuration commands used by multibit banking.

Table 12-3 Wrapper Configuration Commands Used by Multibit Banking 

Wrapper configuration command Required?

set_dft_configuration -wrapper enable Required

set_wrapper_configuration -class core_wrapper \
  -maximize_reuse enable

Required
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Specifying the threshold values allows multibit banking to determine any ports that get 
dedicated wrapper cells by exceeding the thresholds. This removes the multibit banking 
register-type restrictions for registers associated with those ports.

Other core wrapper settings, such as port-specific wrapper cell specifications, are not 
considered by multibit banking. You do not need to define DFT signals, create a test 
protocol, or perform pre-DFT DRC.

If you forget to enable and configure core wrapping before performing multibit banking, the 
tool issues the following message during multibit banking:

Information: DFT core wrapping client disabled; banking anticipates no
core wrapping. (TEST-1290)

To prevent multibit registers from being used as shared wrapper cells, which forces 
dedicated wrapper cells on any ports associated with them (as indicated by TEST-1067 
warnings), set the following variable:

dc_shell> set_app_var test_soc_core_wrap_allow_multibit_ioregs false

The Simple Core Wrapper Flow

In the simple core wrapper flow, multibit registers cannot be wrapper cells. Ports associated 
with multibit registers always get a dedicated wrapper cell.

See Also

• The “Multibit Register Synthesis and Physical Implementation Application Note” for 
detailed information on multibit cells and flows across multiple tools

Wrapping Cores With Synchronizer Registers

You can core-wrap designs that use synchronizer registers.

set_wrapper_configuration -class core_wrapper \
  -reuse_threshold value

Optional

set_wrapper_configuration -class core_wrapper \
  -depth_threshold value

Optional

Table 12-3 Wrapper Configuration Commands Used by Multibit Banking (Continued)

Wrapper configuration command Required?
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Synchronizer registers synchronize data communicated between asynchronous clock 
domains. A synchronizer register consists of two or more serially connected registers within 
the synchronizer cell.

The Simple Core Wrapper Flow

In the simple core wrapper flow, synchronizer registers cannot be shared wrapper cells. 
Ports associated with synchronizer registers always get a dedicated wrapper cell.

The Maximized Reuse Core Wrapper Flow

In the maximized reuse flow, you can reuse CTL-modeled synchronizer registers as shared 
wrapper cells by setting the following synchronizer length limit variable:

dc_shell> set_app_var test_core_wrap_sync_ctl_segment_length 2

Ports associated with synchronizer registers longer than this value get a dedicated wrapper 
cell. The default is 0, which does not allow synchronizer registers to be reused as shared 
wrapper cells. For more information, see the man page.

For this feature, the synchronizer register must be a library cell that has a CTL model with a 
single test mode of type “InternalTestMode” with a single scan chain from scan data input to 
scan data output. Synchronizer registers modeled using Liberty library constructs are not 
supported.

Wrapping Cores With Existing Scan Chains

To wrap a core that is already scan-stitched, you should use the scan-stitched core flow. 
Figure 12-47 illustrates this flow.
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Figure 12-47 Scan-Stitched Core Flow Diagram
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Start the flow with a CTL test model of the core. If you use a test model, DFT Compiler 
cannot touch the scan logic in the model during wrapping.

1. Create an enclosing top-level hierarchy that instantiates the core.

Figure 12-48 shows the hierarchy you should create. You must create an empty top-level 
design with the same input and output pins as the core design, instantiate the test model 
within the top-level design, and connect all of the input and output pins. You can also 
include unconnected placeholder ports for wrapper signals in the top-level design.

You can use a text editor or an automated script to create a netlist file that accomplishes 
this step.

Figure 12-48 Creating Core Hierarchy

2. Configure the core wrapper.

Use the set_dft_configuration -wrapper enable command to enable core 
wrapping. If you do not issue this command, the other core wrapping commands will not 
have any effect. To set the configuration for wrapping, use the 
set_wrapper_configuration command. You can override the wrapper configuration 
on any ports by using the set_boundary_cell command.

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration \
            -class core_wrapper -maximize_reuse true

3. Define the wrapper signals and configure the wrapper chains.

By default, control signals are added to the design to control the wrapper configuration. 
To specify existing placeholder ports for these signals, use the set_dft_signal 
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command to specify the names and connections of these signals. These wrapper signals 
must exist in the top-level design you previously created.

dc_shell> set_dft_signal -view spec \
            -type wrp_clock -port MY_wrp_clock

4. Configure the wrapper chain characteristics.

You can use the set_wrapper_configuration and set_boundary_cell commands to 
specify any wrapper chain characteristics. You can use the set_scan_path command to 
specify the order of the wrapper cells.

dc_shell> set_wrapper_configuration -class core_wrapper \
            -chain_count 2

dc_shell> set_boundary_cell -class core_wrapper \
            -ports {CLKOUT} -type none

dc_shell> set_scan_path \
            -class wrapper WC0 \
            -ordered_elements [list ordered_port_list]

5. Check test design rules.

Use the dft_drc command to check test design rules.

dc_shell> create_test_protocol
dc_shell> dft_drc

6. Preview the wrapper and scan cells before inserting them.

Use the preview_dft command to report on the wrapper and scan cells before you 
actually insert them.

dc_shell> preview_dft -test_wrappers all

7. Insert the wrapper cells.

Use the insert_dft command to insert the wrapper cells into the design and stitch the 
wrapper chain. 

dc_shell> insert_dft

8. (Optional) Select the test mode.

You should check the design rules for each test mode created. Use the 
current_test_mode command to set the test mode to each of the modes of operation:

dc_shell> current_test_mode wrp_if

9. Check that the design is ready for ATPG by using the dft_drc command.

dc_shell> dft_drc
Chapter 12: Wrapping Cores
Wrapping Cores With Existing Scan Chains 12-62



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
This verifies that the scan chains and wrapper cells operate correctly for the current test 
mode. You can repeat this step for additional test modes. 

Creating an EXTEST-Only Core Netlist

During core creation, you can create and write out an additional version of the core netlist 
that contains only the logic needed for operation in outward-facing (EXTEST) test modes. 
This EXTEST-only core netlist significantly reduces the memory requirements for pattern 
generation of top-level test modes in TetraMAX ATPG and for pattern simulation.

After inserting DFT and writing the full netlist files, protocol files, and other design files, 
execute the following command:

dc_shell> create_dft_netlist –type extest

This command removes all logic in the design except for the following:

• Wrapper chains

• Interface logic between wrapper chains and I/O ports

• Wrapper chain control logic

• Test-mode decode logic

• IEEE 1500 controller logic

• Any other logic required for EXTEST mode operation

Note:   
A DFTMAX license is required to create an EXTEST-only core netlist.

After removing the unnecessary logic with the create_dft_netlist command, write out an 
EXTEST-only Verilog netlist file using the write -format verilog command. Because the 
create_dft_netlist command removes logic from the design in memory, these should be 
the last steps in your core creation script.

You can use this EXTEST-only core netlist in any TetraMAX pattern generation run where 
the core operates in its outward-facing test mode. All of the necessary logic is retained so 
that the core operates properly when exercised by the test protocols.

Note the following limitations:

• The create_dft_netlist command can only be run after DFT is inserted, or after a 
DFT-inserted design is read from a .ddc file. Existing-scan inference flows are not 
supported.
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• The create_dft_netlist command uses attributes set by the insert_dft command. 
Any structural design modifications made after DFT insertion are not considered during 
netlist processing.

• Cores with multiple EXTEST test modes are not supported.

See Also

• SolvNet article 2686021, “How To Preserve Special Logic When Creating an EXTEST 
Netlist” for details on using the dont_touch attribute to preserve special logic

Integrating Wrapped Cores in Hierarchical Flows

The following topics describe how wrapped cores can be integrated:

• Scheduling Wrapped Cores

• Integrating Wrapped Cores in a Compressed Scan Flow

• Nested Integration of Wrapped Cores

• Mixing Wrapped and Unwrapped Cores

• Top-Down Flat Testing With Transparent Wrapped Cores

Scheduling Wrapped Cores

In hierarchical flows, wrapped cores have inward-facing and outward-facing test modes that 
must be incorporated into top-level test modes during core integration. To specify this 
test-mode mapping for wrapped cores, use the -target option of the define_test_mode 
command at the top level.

The -target option specifies a list of core and test-mode pairs to use for the top-level test 
mode being defined; each pair consists of a core instance name and a core test-mode name 
separated by a colon (:). In compressed scan flows, the list can also contain the name of the 
current design to specify that the top-level logic should be active and tested.

When you use the -target option in a flow that integrates wrapped cores, the following 
rules apply:

• All test modes must be defined with the define_test_mode command; no test modes 
are automatically created.

• All test mode definitions must use the -target option.

• Targeted cores (included in the target list) are placed in their targeted mode.
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• If a core is targeted in some core-testing modes but not others, it is not tested in the test 
modes where it is not targeted. This is known as sparse targeting. (To completely 
exclude a core from all top-level test modes, use the -exclude_elements option of the 
set_scan_configuration command.)

❍ Untested wrapped cores are placed in SAFE mode, if available. Otherwise, they are 
placed in mission mode.

• Untargeted cores (not included in any target list) are tested in top-level modes where the 
top-level logic is tested:

❍ In top-level standard scan modes, they are placed in standard scan mode.

❍ In top-level compressed scan modes, they are placed in compressed scan mode (for 
compressed scan cores) or standard scan mode (for standard scan cores).

❍ They are placed in the first available such mode defined inside the core’s test model.

• The top-level logic, which is all scannable logic outside DFT cores, is only active and 
tested when targeted.

• Untested wrapped cores with a default-named wrp_of test mode do not need to be 
explicitly scheduled; they are automatically placed in that mode when the top-level logic 
is scheduled. Outward-facing test modes with nondefault names must be explicitly 
scheduled.

Note:   
The -target option has some limitations when used in compressed scan core 
integration modes. See “HASS and Hybrid Flow Limitations” on page 19-22.

Figure 12-49 shows an example with three DFT cores instantiated in a top-level design. The 
example includes two wrapped cores with inward-facing and outward-facing test modes and 
a scannable memory with a single Internal_scan test mode.

Figure 12-49 Three Cores With Different Test Modes Instantiated in a Top-Level Design

The combination of the core-wrapping feature and the -target option provide a great deal 
of flexibility in testing the design—one core at a time, all cores together, in groups, top-level 
logic only with no cores active, and so on. Example 12-5 shows commands that define a 
schedule for the wrapped core example.

WCORE2WCORE1 MEM
TOP

Available core-level
test modes:

wrp_if

ScanCompres
sion_mode

wrp_of

Internal_scanwrp_if

ScanCompres
sion_mode

wrp_of
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Example 12-5 Specifying User-Defined Test Mode Scheduling

# test cores one at a time in standard scan mode
define_test_mode STD_ONLY1 -usage scan -target {Wcore1:wrp_if}
define_test_mode STD_ONLY2 -usage scan -target {Wcore2:wrp_if}

# test both cores together in compressed scan mode
define_test_mode COMP_1AND2 -usage scan_compression \
  -target {Wcore1:ScanCompression_mode Wcore2:ScanCompression_mode}

# test top-level logic in standard and compressed scan modes
define_test_mode STD_ONLYTOP -usage scan -target {top}
define_test_mode COMP_ONLYTOP -usage scan_compression -target {top}

For the previous example, Figure 12-50 shows the top-level test modes created by the tool 
during core integration. Each column represents a core, each row represents a top-level test 
mode, and the intersections of the columns and rows show the core-level test mode used for 
that top-level test mode. Blue columns indicate logic scheduled by the -target option.

Figure 12-50 Top-Level Test Modes With User-Defined Test-Mode Scheduling

Wrapped cores are not usually scheduled in inward-facing modes in test modes that test 
top-level logic because the active wrapper chains prevent the cores from capturing values 
from the top-level logic. If this configuration is detected, the tool issues a warning:

Warning: Inward-facing cores are tested along with logic outside those
cores in test mode 'COMP_1AND2_WITH_TOP'. (TEST-2077)

Available core-level
test modes:

wrp_if
ScanCompres

sion_mode
wrp_of

WCORE1 WCORE2
Internal_scan

MEM

Internal_scan

top
wrp_if

ScanCompres
sion_mode

wrp_of

define_test_mode STD_ONLY2 -usage scan 
  -target {WCORE2:wrp_if}

define_test_mode COMP_1AND2
  -usage scan_compression 
  -target {WCORE1:ScanCompression_mode
           WCORE2:ScanCompression_mode}

define_test_mode STD_ONLY1 -usage scan 
  -target {WCORE1:wrp_if}

define_test_mode STD_ONLYTOP
  -usage scan -target {top}

Internal_scandefine_test_mode COMP_ONLYTOP
  -usage scan_compression -target {top}

wrp_if

wrp_if

ScanCompres
sion_mode

ScanCompres
sion_mode

wrp_of wrp_of

wrp_of wrp_of

Top-level
test mode definitions:

(Top-level 
logic tested)

(Top-level 
logic tested)
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However, to test wrapped cores along with top-level logic, they can be placed in transparent 
modes, as described in “Top-Down Flat Testing With Transparent Wrapped Cores” on 
page 12-69.

You do not need to set the -wrapper option of the set_dft_configuration command to 
enable when integrating wrapped cores; this option is only needed when creating wrapped 
cores.

Integrating Wrapped Cores in a Compressed Scan Flow

In test modes that test wrapped cores, wrapped cores are placed in the inward-facing 
(INTEST) modes specified by the test mode schedule definition. For wrapped cores with 
scan compression, the codecs inside the core are used, as shown in Figure 12-51. In this 
case, compressed scan cores act as cores to be integrated.

Figure 12-51 Testing Two Wrapped Inward-Facing Compressed Scan Cores 

In test modes that test the top-level logic, wrapped cores are placed in their outward-facing 
(EXTEST) modes, which allows the tests to control and observe signals at the core 
boundaries. In this case, the outward-facing wrapper chains become scan segments at the 
top level, which can be concatenated and compressed as with any other scan segment. You 
can use the Hybrid integration flow to compress these wrapper chains with a top-level 
codec, as shown in Figure 12-52.

Figure 12-52 Testing the Top-Level Logic With Outward-Facing Wrapped Cores 
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Because the outward-facing chains of wrapped cores are incorporated into the top-level 
scheduled modes, you should ensure that the number and lengths of the wrapper chains 
allow them to be effectively length-balanced in the top-level scan chains.

In flows with DFT partitions, you can reassign the outward-facing wrapper chains of cores to 
another partition by specifying those cores with the -extest_cells option of the 
define_dft_partition command. This allows you to compress core wrapper chains with 
specific top-level codecs. For example,

# reassign the outward-facing wrapper chains of the wrapped core WCORE
# to partition P_UDL1
define_dft_partition P_UDL1 -include {UDL1} -extest_cells {WCORE}
define_dft_partition P_UDL2 -include {UDL2}

Figure 12-53 shows the scan compression logic created by these commands.

Figure 12-53 Reassigning Outward-Facing Chains to a Different DFT Partition

The -extest_cells option affects all test modes that use the specified cores in 
outward-facing modes, including uncompressed scan modes. You can reassign multiple 
cores to a single partition or you can distribute the cores across the partitions. Test modes 
that use the cores in inward-facing modes are unaffected.

Nested Integration of Wrapped Cores

You can perform multiple levels of integration for wrapped cores, as shown in Figure 12-54.

Figure 12-54 Nested Integration of Wrapped Cores
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Core wrapping information is passed upward through each subsequent level of integration, 
so that each higher integration level effectively also becomes a wrapped core. Additional 
scan logic, such as unwrapped cores or glue logic, can exist at any level.

Nested integration of wrapped cores is supported. However, nested core wrapping, which is 
enabling core wrapping when a wrapped core already exists in the design hierarchy, is not 
supported.

Mixing Wrapped and Unwrapped Cores

If you mix wrapped and unwrapped cores, the unwrapped cores are tested along with the 
top-level logic. Unwrapped cores are integrated according to the usual rules:

• For unwrapped compressed scan cores, the core-level connections are promoted to 
top-level connections.

• For unwrapped standard scan cores, the core-level scan segments are incorporated into 
top-level scan chains. In the Hybrid mode, they are compressed by the top-level codec.

Figure 12-55 shows an unwrapped, compressed scan core that is tested along with the 
top-level logic in a compressed scan flow.

Figure 12-55 Testing an Unwrapped Compressed Scan Core Along With the Top-Level Logic

Only DFT-inserted cores, which have CTL model information, can be included in top-level 
test-mode schedule definitions. If you have hierarchical blocks at the top level that are not 
DFT-inserted, do not include them in the top-level test-mode schedule definition; they have 
no core-level test modes to schedule.

Top-Down Flat Testing With Transparent Wrapped Cores

In some cases (such as for IDDQ testing), you might want to make core wrapper chains 
transparent to perform top-down flat testing of the full chip. This can be done by 
implementing and using a transparent mode in your wrapped cores.
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Transparent modes are described in the following topics:

• Introduction to Transparent Test Modes

• Defining Core-Level Transparent Test Modes

• Defining Top-Level Flat Test Modes

• Limitations

Introduction to Transparent Test Modes

Wrapped cores allow a design to be tested hierarchically. Inward-facing test modes test the 
logic inside a core, and outward-facing test modes test the logic surrounding a core. In both 
types of modes, the wrapper chain is actively used to logically separate the core logic from 
the surrounding logic.

To perform top-down flat testing of a design with wrapped cores, wrapped cores must 
provide an additional test mode where the wrapper chain is logically transparent. This 
core-level test mode is called a transparent test mode. At the top level, wrapped cores can 
be placed into their transparent modes to perform top-down flat testing of the entire design. 
This top-level test mode is called a flat test mode.

At the core level, a transparent test mode is defined as an extension of an inward-facing 
standard scan or compressed scan test mode. A transparent mode is identical to its 
referenced inward-facing mode, except that

• Wrapper chains are treated as regular scan chains.

• Dedicated wrapper cells are logically transparent, although their flip-flops remain in the 
wrapper chains and act as observe test points on I/O paths.

• Any scan compression codecs from the referenced inward-facing mode are reused.

• Feedthrough chains drive the outward-facing wrapper scan I/Os in transparent mode.

Figure 12-56 shows how the transparent mode of a wrapped core relates to the 
inward-facing and outward-facing test modes. Standard scan modes are not shown.

Figure 12-56 The Three Test Mode Types of a Wrapped Core
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Transparent modes require that dedicated wrapper scan I/Os be used in the core’s 
outward-facing modes. The tool creates and stitches placeholder chains, called feedthrough 
chains, between these outward-facing I/Os in the transparent modes. Each feedthrough 
chain consists of two scan cells that are clocked by the same head and tail clock and edge 
as the outward-facing wrapper chains they represent.

At the top level, a flat test mode is defined as an extension of a top-level-only mode, which 
tests only top-level logic with wrapped cores in outward-facing mode. A flat mode is identical 
to its underlying top-level-only mode, except that:

• You schedule wrapped cores in transparent mode instead of outward-facing mode.

• Any top-level scan compression codecs from the underlying top-level-only mode are 
reused.

Figure 12-57 shows how wrapped cores, placed in their transparent modes, are tested 
along with the top-level logic in a top-level flat test mode.

Figure 12-57 Performing Top-Down Flat Testing Using Wrapped Cores in Transparent Mode

The feedthrough chains allow the codec from the top-level-only mode to be reused in the flat 
test mode. Feedthrough chains are used only in flat test modes where they are compressed 
by a top-level codec reused from the underlying top-level-only mode.

Feedthrough chains are unused in

• Top-level flat standard scan modes

• Top-level flat compressed scan modes without top-level codecs that compress the core 
wrapper connections, such as the DFTMAX HASS integration flow

• Flat modes where the top-level codec participates in codec I/O sharing

See “Limitations” on page 12-73.

Defining Core-Level Transparent Test Modes

To define a transparent test mode at the core level, use the -transparent_mode_of option 
of the define_test_mode command to specify a previously defined inward-facing standard 
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scan or compressed scan test mode as the parent mode. The transparent mode is derived 
from this parent mode. For example,

# define inward-facing modes
define_test_mode INWARD_STD –usage wrp_if
define_test_mode INWARD_COMP –usage scan_compression

# define outward-facing mode
define_test_mode OUTWARD_STD –usage wrp_of

# define transparent modes
define_test_mode TRANS_STD –usage wrp_if \
  -transparent_mode_of INWARD_STD
define_test_mode TRANS_COMP –usage scan_compression \
  -transparent_mode_of INWARD_COMP

Specify the usage of a transparent mode to be the same as its parent mode: wrp_if for a 
standard scan mode and scan_compression for a compressed scan mode.

To define dedicated wrapper scan I/Os for the core’s outward-facing modes, use the 
-test_mode option of the set_dft_signal command. For example,

# define dedicated scan I/Os for outward-facing mode
set_dft_signal -view spec -type ScanDataIn -port SI[*] \
  -test_mode {INWARD_STD TRANS_STD INWARD_COMP TRANS_COMP}
set_dft_signal -view spec -type ScanDataOut -port SO[*] \
  -test_mode {INWARD_STD TRANS_STD INWARD_COMP TRANS_COMP}

set_dft_signal -view spec -type ScanDataIn -port WSI[*] \
  -test_mode {OUTWARD_STD}
set_dft_signal -view spec -type ScanDataOut -port WSO[*] \
  -test_mode {OUTWARD_STD}

A transparent mode inherits all DFT configuration information from its parent mode. Do not 
apply any other DFT configuration commands specifically to the transparent test modes; 
they are ignored. Do not specify a base mode for transparent compressed scan modes. As 
a reminder, the define_test_mode -transparent_mode_of, preview_dft, and 
insert_dft commands print the following message:

Information: Transparent modes inherit their DFT configuration from their
parent modes; any other DFT specifications applied to transparent modes
are ignored. (TEST-2082)

For more information, see the man page for this message.
Chapter 12: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows 12-72



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Defining Top-Level Flat Test Modes

To define a flat test mode at the top level, define a test mode that schedules the cores in their 
transparent mode along with the top-level logic of the current design. For example,

# define modes that test only cores
define_test_mode CORES_INWARD_STD -usage scan \
  -target {core1:INWARD_STD  core2:INWARD_STD}
define_test_mode CORES_INWARD_COMP -usage scan_compression \
  -target {core1:INWARD_COMP core2:INWARD_COMP}

# define modes that test only top-level logic
define_test_mode TOPONLY_STD -usage scan \
  -target {top}
define_test_mode TOPONLY_COMP -usage scan_compression \
  -target {top}

# define flat test modes that test the entire design
define_test_mode TOPFLAT_STD -usage scan \
  -target {core1:TRANS_STD  core2:TRANS_STD  top}
define_test_mode TOPFLAT_COMP -usage scan_compression \
  -target {core1:TRANS_COMP core2:TRANS_COMP top}

The tool automatically identifies the standard scan or compressed scan top-level-only mode 
associated with each flat mode.

Do not apply any DFT configuration commands specifically to the flat test modes; they are 
ignored.

Limitations

Note the following limitations of top-down flat testing using transparent core-level test 
modes:

• You must define core-level transparent and top-level flat test modes with the 
define_test_mode command; they are not created by default.

• At the core level, to create transparent modes, you must use dedicated wrapper scan 
I/Os in the outward-facing modes.

• At the top level, you cannot mix transparent and nontransparent core test modes in the 
same test mode.

• At the top level, you cannot define multiple flat top-level scan compression modes.

• At the top level, codecs with shared I/O connections cannot be reused by a top-level flat 
mode. In this case, the tool inserts a new codec for the flat mode. This new codec does 
not compress any feedthrough chains.
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SCANDEF Generation for Wrapper Chains

SCANDEF generation is supported for wrapper chains. The SCANDEF information is 
generated as follows:

• Wrapper cells can be reordered within wrapper chains.

• Wrapper chain cells cannot be repartitioned with regular scan chain cells.

• Input wrapper cells can be repartitioned between input wrapper chains, and output 
wrapper cells can be repartitioned between output wrapper chains.

• If input and output wrapper cell mixing is enabled, input wrapper chain cells can be 
repartitioned with output wrapper chain cells.

Input and output wrapper chain mixing is enabled by default in the simple wrapper flow 
and disabled by default in the maximized reuse flow. You can change this setting with the 
-mix_cells option of the set_wrapper_configuration command.

• Each wrapper cell is represented as an ORDERED construct that ensures all logic gates 
for that wrapper cell are kept together. However, a shared wrapper cell in the maximized 
reuse flow is simply a scan cell, so it is represented as an individual scan cell instead of 
an ORDERED construct.

See Also

• “Using The SCANDEF-Based Reordering Flow” on page 16-8 for more information about 
generating SCANDEF information

Core Wrapping Scripts

The following script examples illustrate core wrapping.

Core Wrapping With Dedicated Wrapper Cells

Example 12-6 uses the simple wrapping flow to wrap a core with dedicated wrapper cells at 
all ports.

Example 12-6 Script Example for Dedicated Wrapper

read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
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    -port clk_st

# Enable and configure wrapper client
set_dft_configuration -wrapper enable
set_wrapper_configuration -class core_wrapper \
    -style dedicated \
    -use_dedicated_wrapper_clock true \
    -safe_state 1 

# Set scan chain count as desired
set_scan_configuration -chain_count 10

# Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

# Report the configuration of the wrapper utility, optional
report_wrapper_configuration

# Preview all test structures to be inserted
preview_dft -show all -test_wrappers all
report_dft_configuration 

# Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none

insert_dft

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all \
    > reports/wrap_dedicated_wrp_of.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all \
    > reports/wrap_dedicated_wrp_if.rpt

report_dft_signal -view existing_dft -port *

report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_protocol -test_mode wrp_if -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_of -output stil/wrp_of.spf

Core Wrapping With Maximized Reuse

Example 12-7 wraps a core with maximized reuse enabled. 
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Example 12-7 Script Example for Maximized Reuse Wrapping

read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
    -port clk_st

# Enable and configure wrapper client
set_dft_configuration -wrapper enable

# Configure for maximized reuse wrappers, using existing cells
set_wrapper_configuration -class core_wrapper \
    -maximize_reuse enable \
    -reuse_threshold 4 \
    -style shared \
    -register_io_implementation in_place \
    -mix_cells false \
    -use_system_clock_for_dedicated_wrp_cells enable \
    -safe_state 1

# Set scan chain count as desired
set_scan_configuration -chain_count 10

# Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

# Report the configuration of the wrapper utility, optional
report_wrapper_configuration

# Preview all test structures to be inserted
preview_dft -show all -test_wrappers all
report_dft_configuration 

# Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none

insert_dft

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all \
    > reports/wrap_dedicated_wrp_of.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all \
    > reports/wrap_dedicated_wrp_if.rpt

report_dft_signal -view existing_dft -port *

report_area
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change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_protocol -test_mode wrp_if -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_of -output stil/wrp_of.spf
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13
On-Chip Clocking Support 13

On-Chip Clocking (OCC) support is common to all scan ATPG (Basic-Scan and 
Fast-Sequential) and compressed scan environments. This implementation is intended for 
designs that require ATPG in the presence of phase-locked loop (PLL) and clock controller 
circuitry.

OCC support includes phase-locked loops, clock shapers, clock dividers and multipliers and 
so on. In the scan-ATPG environment, scan chain load_unload is controlled through an 
automatic test equipment (ATE) clock. However, internal clock signals that reach state 
elements during capture are PLL-related.

OCC flows can use either the user-defined clock controller and clock chains or the 
DFT-inserted OCC clock controller. If you use an existing user-defined clock controller, you 
would need a set of user-defined commands to identify the existing clock controller outputs 
with their corresponding clock chain control bits.

This chapter includes the following topics: 

• Background

• Supported DFT Flows

• Clock Type Definitions

• Capabilities

• OCC Controller Structure and Operation

• Enabling On-Chip Clocking Support
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• Specifying OCC Controllers

• Reporting Clock Controller Information

• DRC Support

• DFT-Inserted OCC Controller Configurations

• Waveform and Capture Cycle Example

• Limitations

Note:   
This chapter covers flows that are intended for a DFT-to-TetraMAX implementation. For 
information on using OCC controllers in a non-DFT-to-TetraMAX implementation, see 
TetraMAX Online Help.
Chapter 13: On-Chip Clocking Support
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Background

At-speed testing for deep-submicron defects requires not only more complex fault models 
for ATPG and fault simulation, such as transition faults and path delay faults, but also 
requires the accurate application of two high-speed clock pulses to apply the tests for these 
fault models. The time delay between these two clock pulses, referred to as the launch clock 
and the capture clock, is the effective cycle time at which the circuit will be tested.

A key benefit of scan-based at-speed testing is that only the launch clock and the capture 
clock need to operate at the full frequency of the device under test. Scan shift clocks and 
shift data can operate at a much slower speed, thus reducing the performance requirements 
of the test equipment. However, complex designs often have many different high-frequency 
clock domains, and the requirement to deliver a precise launch and capture clock for each 
of these from the tester can add significant or prohibitive costs to the test equipment. 
Furthermore, special tuning is often required for properly controlling the clock skew to the 
device under test.

One common alternative for at-speed testing is to leverage existing on-chip clock generation 
circuitry. This approach uses the active controller, rather than off-chip clocks from the tester, 
to generate the high-speed launch and capture clock pulses. This type of approach 
generally reduces tester requirements and cost and can also provide high-speed clock 
pulses from the same source as the device in its normal operating mode without additional 
skews from the test equipment or test fixtures.

When using this approach, additional on-chip controller circuitry is inserted to control the 
on-chip clocks in test mode. The on-chip clock control is then verified, and at-speed test 
patterns are generated that apply clocks through proper control sequences to the on-chip 
clock circuitry and test-mode controls. The DFT Compiler and TetraMAX tools support a 
comprehensive set of features to ensure that

• The test-mode control logic for the OCC controller operates correctly and has been 
connected properly

• Test-mode clocks from the OCC circuitry can be efficiently used by TetraMAX ATPG for 
at-speed test generation

• OCC circuitry can operate asynchronously to other shift clocks from the tester

• TetraMAX patterns do not require additional modifications to use the OCC and to run 
properly on the tester
Chapter 13: On-Chip Clocking Support
Background 13-3
Chapter 13: On-Chip Clocking Support
Background 13-3



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Supported DFT Flows

On-chip clocking (OCC) is supported in the following DFT flows:

• Basic scan flow

• Top-down, nonhierarchical compressed scan insertion flow

• Bottom-up basic scan flow with OCC controller stitching at the top level

• Bottom-up hierarchical adaptive scan synthesis flow, which represents subblocks with 
test models that are OCC controller stitched at the top level

• Hierarchical adaptive scan synthesis (HASS) and Hybrid flows, which stitch the cores at 
the top level with integration at the top level

Clock Type Definitions

Note the following clock definitions as they apply to OCC controller clocks in this chapter. 
Figure 13-1 shows an example of each clock type.

• Reference clock – The frequency reference to the phase-locked loop (PLL). It must be 
maintained as a constantly pulsing and free-running oscillator, or the circuitry will lose 
synchronization.

• PLL clock – The output of the PLL. It is also a free-running source that runs at a constant 
frequency that might or might not be the same as the reference clock.

• ATE clock – Shifts the scan chain, typically more slowly than a reference clock. This 
signal must preexist, or you must manually add this signal (that is, port) when inserting 
the OCC. The period for this clock is determined by the test_default_period variable. 
Usually the ATE clock is not used as a reference clock, but it must be treated as a 
free-running oscillator so that it does not capture predictable data while the OCC 
controller generates at-speed clock pulses. The ATE clock is called a dual clock signal 
when the same port drives both the ATE clock and the reference clock.

• Internal clock – The OCC controller is responsible for gating and selecting between the 
PLL and ATE clocks, thus creating the internal clock signal to satisfy ATPG 
requirements.

• External clock – A primary clock input of a design that directly clocks flip-flops through 
the combinational logic, without the use of a PLL clock. The period for this clock is 
determined by the test_default_period variable.
Chapter 13: On-Chip Clocking Support
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Figure 13-1 Clock Types Used in the OCC Controller Flow

Capabilities

The following OCC features are available:

• Synthesis of individual or multiple clock controllers and clock chains, using the 
DFT-inserted OCC controller

• Support of pre-DFT DRC, scan chain stitching, and post-DFT DRC in documented OCC 
support flows

• Support of a PLL-bypass configuration when an external (ATE) clock is used for capture, 
thus bypassing the PLL clock(s)

• Generation of STIL procedure files with internal clock control details for use with the 
TetraMAX tool

• Support of post-DFT DRC, scan chain shifting, and scan compression

• Support of user-defined clock controller logic and clock chains that are already 
instantiated in the design
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OCC Controller Structure and Operation

OCC controller types and operation is covered in the following topics:

• DFT-Inserted and User-Defined OCC Controllers

• Synchronous and Asynchronous OCC Controllers

• OCC Controller Signal Operation

• Clock Chain Operation

• Logic Representation of an OCC Controller and Clock Chain

• Scan-Enable Signal Requirements for OCC Controller Operation

DFT-Inserted and User-Defined OCC Controllers

You can use DFT-inserted or user-defined OCC controllers, as described in the following 
flows:

• Specifying DFT-Inserted OCC Controllers

The insert_dft command performs insertion and synthesis of a DFT-inserted OCC 
controller and clock chain, making control signal connections and modifying the clock 
signal connections as needed. The OCC controller design is validated and incorporated 
into the resulting test protocol. This flow is shown in Figure 13-2.
Chapter 13: On-Chip Clocking Support
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Figure 13-2 OCC and Clock Chain Synthesis Insertion Flow

• Specifying Existing User-Defined OCC Controllers

The RTL contains the OCC controller and clock chain logic, all control signal and clock 
signal connections, and the connections from the clock chain to the OCC controller. 
Before DFT insertion, this existing user-defined OCC controller and clock chain logic is 
described to the tool using the set_dft_signal and set_scan_group commands. The 
OCC controller design is validated and incorporated into the resulting DFT logic and test 
protocol. This flow is shown in Figure 13-3.
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Figure 13-3 User-Defined Clock Controller and Clock Chain Flow

Note that in this flow, the tool does not make any signal connections to the OCC 
controller or clock chain logic, except for scan data connections to the clock chain 
segments. You must ensure that all clock and control signal connections exist prior to 
DFT insertion.

Synchronous and Asynchronous OCC Controllers

You can use synchronous or asynchronous OCC controllers, as described in this section:

• Synchronous OCC controller

The clocks controlled by the OCC controller are synchronous. The initial rising edges of 
the controlled clocks are synchronized to the lowest-frequency output clock, as shown in 
Figure 13-4.
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Figure 13-4 Synchronous OCC Controller Generating Two Clock Pulses

Synchronous OCC controllers have the following requirements:

❍ The rising edge of each clock being controlled must be at time zero of its waveform 
definition.

❍ The clocks being controlled must have a synchronous 1x, 2x, or 4x frequency 
multiplier relationship with respect to the lowest-frequency controlled clock.

❍ Capture paths between the controlled clock domains must capture data without hold 
violations.

TetraMAX ATPG understands that the controlled clock domains are synchronous; faults 
between them can be tested. For more information, see “Using Synchronized 
Multi-Frequency Internal Clocks” in TetraMAX Online Help.

Synchronous clock information is described in the ClockTiming block of a STIL 
procedure file (SPF). For more information, see “Specifying Synchronized 
Multi-Frequency Internal Clocks for an OCC Controller” in TetraMAX Online Help.

• Asynchronous OCC controller

Each controlled clock uses dedicated clock control logic that generates clock pulses with 
no regard to alignment with other controlled clocks, as shown in Figure 13-5. The input 
clocks being controlled can be synchronous or asynchronous with each other.

Figure 13-5 Asynchronous OCC Controller Generating Two Clock Pulses

ATPG treats the controlled clock domains as asynchronous; faults between them are not 
tested.
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A synchronous OCC controller preserves the synchronous relationship of its input clocks, if 
they meet the requirements. You cannot use a synchronous OCC controller to control 
asynchronous clocks; it will not make them synchronous.

An asynchronous OCC controller uses separate, independent pulse generation logic for 
each controlled clock. You can use an asynchronous OCC controller to control synchronous 
clocks, but their synchronous relationships are lost; there is no guarantee that their pulse 
sequences will initiate on the same rising edge.

When a single OCC controller controls a mix of synchronous and asynchronous clocks, you 
must use an asynchronous controller. If needed, you can use a mix of synchronous and 
asynchronous OCC controllers.

OCC Controller Signal Operation

For Figure 13-2 on page 13-7 and Figure 13-3 on page 13-8, note the following:

• The reference clock (refclk) is always free-running. It is used as a test default frequency 
input to the PLL.

• The PLL clocks (pllclk1, pllclk2, and pllclk3) are free-running clock outputs from the 
on-chip clock generator; they can be divided, shaped, or multiplied. They are used for the 
launch and capture of internal scanable elements that become internal clocks.

• The ATE clock (ate_clk) shifts the scan chain per tester specifications. Each PLL might 
have its own ATE clock.

See “Waveform and Capture Cycle Example” on page 13-44 for a waveform diagram 
that demonstrates the relationship between the various clocks.

• The OCC controller serves as an interface between the on-chip clock generator and 
internal scan chains. This logic typically contains clock multiplexing logic that allows 
internal clocks to switch from a slow ATE clock during shift to a fast PLL clock during 
capture.

• Internal clocks (intclk1, intclk2, and intclk3) are outputs of the PLL control logic driving 
the scan cells. Each internal clock is controlled or enabled by the clock chain and is 
connected to the sequential elements within the design.

• The OCC bypass signal (pll_bypass) allows the ATE clock signal to connect directly to 
the internal clock signals, thus bypassing the PLL clocks.

• The ScanEnable signal (test_se) enables switching between the ATE shift clock and 
output PLL clock signals. ScanEnable must be inactive during every capture procedure, 
as described in “Scan-Enable Signal Requirements for OCC Controller Operation” on 
page 13-13. You can use individual ScanEnable signals for each PLL clock signal.
Chapter 13: On-Chip Clocking Support
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• The TestMode signal (test_mode) must be active in order for the circuit to work.

• The OCC reset signal (pll_reset) is asserted during test setup to reset the OCC controller 
flip-flops to their initial states.

Clock Chain Operation

The clock chain provides a per-pattern clock selection mechanism for ATPG. It is 
implemented as a scan chain segment of one or more scan cells. Clock selection values are 
loaded into the clock chain as part of the regular scan load process.

A clock chain operates as follows:

• During scan shift, the clock chain shifts in new values when clocked by a scan clock.

The clock chain can be clocked by either the rising or falling clock edge, depending on 
what best fits into the overall DFT architecture.

• During scan capture, the clock chain holds its value.

The value scanned into the clock chain must be scanned out, undisturbed, after capture. 
The clock controller inserted by DFT Compiler meets this requirement. If you provide 
your own clock controller, ensure that it meets this requirement.

Note the following scan architecture aspects of clock chains:

• For standard scan designs, the clock chain can be a dedicated scan chain or a segment 
within a scan chain.

• For DFTMAX compressed scan designs, the clock chain can be an uncompressed 
(external) scan chain or a special segment within a compressed scan chain. For more 
information, see “Scan Compression and OCC Controllers” on page 18-25.

• For DFTMAX Ultra compressed scan designs, the clock chain must be an 
uncompressed (external) scan chain. For more information, see “Using OCC Controllers 
With DFTMAX Ultra Compression” on page 25-18.

• Clock chains of the same type (compressed or external) can be concatenated together.

Compressed clock chains are concatenated into a single chain and placed inside the 
compressor where a regular single chain would be placed.

In the DFT-inserted OCC controller flow, the tool inserts a clock chain block that is separate 
from the OCC controller block.

In the user-defined OCC controller flow, the clock chain can be a part of the OCC controller 
design or it can be a separate design.
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Logic Representation of an OCC Controller and Clock Chain

Figure 13-6 shows the logic structure of an OCC controller and clock chain.

Figure 13-6 Logic Representation of an OCC Controller

An OCC controller is designed to deliver up to a user-specified number N of at-speed clock 
pulse cycles during capture. A PLL cycle counter generates N successive one-hot enable 
signals, each of which is gated by the output of a clock chain scan cell. This logic structure 
provides ATPG with the flexibility to control which cycles deliver an at-speed clock pulse. For 
an OCC controller that handles multiple OCC generators, the clock chain contains a set of 
N scan cells for each clock.

Note that the figure shows the conceptual operation of a single-clock OCC controller. 
Implementation details, such as cleanly switching between the PLL clock and ATE clock and 
providing synchronous or asynchronous control of multiple clocks, are not shown.

See Also

• SolvNet article 034274, “DFT-inserted OCC Controller Data Sheet” for more information 
about the logic structure and operation of the DFT-inserted OCC controller
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Scan-Enable Signal Requirements for OCC Controller Operation

The scan-enable signal switches the OCC controller between the ATE shift clock and output 
PLL clock signals. Therefore, for proper operation, the scan-enable signal must be held in 
the inactive state in all capture procedures.

If you use the STIL procedure file created by the tool, the protocol already meets this 
requirement. The tool constrains all scan-enable signals to the inactive state in the capture 
procedures, excluding any scan-enable signals defined with the -usage {clock_gating} 
option of the set_dft_signal command. (Signals with multiple usages that include 
clock_gating are still constrained.)

If you use a custom STIL procedure file, make sure that all scan-enable signals used by 
OCC controllers are constrained to the inactive state in all capture procedures.

Enabling On-Chip Clocking Support

To enable OCC support for a design that contains or will contain OCC controllers, use the 
-clock_controller option of the set_dft_configuration command:

dc_shell> set_dft_configuration -clock_controller enable

In hierarchical flows, you also must enable OCC support at all hierarchical levels above 
those that contain OCC controllers. For more information, see “Using OCC Controllers in 
Hierarchical DFT Flows” on page 13-33.

Specifying OCC Controllers

This topic covers the different methods of specifying OCC controllers in DFT Compiler:

• Specifying DFT-Inserted OCC Controllers

• Specifying Existing User-Defined OCC Controllers

• Specifying OCC Controllers for External Clock Sources

• Using OCC Controllers in Hierarchical DFT Flows

Specifying DFT-Inserted OCC Controllers

If you have a design that contains an OCC generator, such as a PLL, but not an OCC 
controller and clock chain, DFT Compiler can insert both the OCC controller and clock chain. 
Note that this clock controller design supports only one ATE clock per OCC controller. This 
topic describes the flow associated with this type of implementation.
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The PLL clock is expected to already be connected in the design being run through this flow. 
DFT Compiler will disconnect this PLL clock at the hookup location and insert the newly 
synthesized clock controller at this location.

This topic covers the following:

• Defining Clocks

• Defining Global Signals

• Configuring the OCC Controller

• Configuring the Clock Selection Logic

• Configuring the Clock-Chain Clock Connection

• Specifying Scan Configuration

• Performing Timing Analysis

• Script Example

Defining Clocks

You need to define the reference, PLL, and ATE clocks by using the set_dft_signal 
command. Note that this command does not require you to specify the primary inputs.

This topic covers the following:

• Reference Clocks

• PLL-Generated Clocks

• ATE Clocks

Reference Clocks

Reference clock signals are always defined in the existing DFT view. The insert_dft 
command does not connect them because they are considered to be functional signals 
rather than test signals. The only effect of defining them is that they are defined in the test 
protocol for use by TetraMAX DRC. For some special cases, a reference clock signal might 
not be needed.

The following example shows how to define a PLL reference clock that has the same period 
as the test_default_period variable (assumed to be 100 ns).

dc_shell> set_dft_signal -view existing_dft \
               -type MasterClock -port refclk1 \ 
               -timing [list 45 55]
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dc_shell> set_dft_signal -view existing_dft \
               -type refclock -port refclk1 \
               -period 100 -timing [list 45 55]

Note that you only need to define the reference clock with signal type MasterClock when 
the reference clock has the same period as the test_default_period variable. Otherwise, 
this signal definition is not needed and not accepted.

To define a reference clock that has a period other than the test_default_period, use the 
following command:

dc_shell> set_dft_signal -view existing_dft \
               -type refclock -port refclk1 \
               -period 10 -timing [list 3 8]

Note:   
When the reference clock period differs from the test_default_period, do not define 
the signal as any signal type other than refclock.

Also note the following caveats associated with the test_default_period when defining a 
reference clock:

• If the reference clock period is an integer divisor of the test_default_period, then 
patterns can be written in a variety of formats, including STIL, STIL99, and WGL.

• If the reference clock is not an integer divisor to the test_default_period, the only 
format that can be written in a completely correct way is STIL. Other formats, including 
STIL99, cannot include the reference clock pulses, and a warning is printed, indicating 
that these pulses must be added back to the patterns manually.

• Do not define a reference clock period or timings with resolution finer than 1 picosecond. 
The TetraMAX tool cannot work with finer timing resolutions.

PLL-Generated Clocks

For DFT Compiler to correctly insert the OCC, you must define the PLL-generated clocks as 
well as the point at which they are generated. The following examples show how to define a 
set of launch and capture clocks for internal scannable elements controlled by the OCC 
controller:

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \
            -hookup_pin PLL/pllclk1

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \ 
            -hookup_pin PLL/pllclk2

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \ 
            -hookup_pin PLL/pllclk3
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For a synchronous OCC controller, you can optionally specify the clock period of the 
slowest-frequency clock with the test_sync_occ_1x_period variable. This variable affects 
the clock period values in the ClockTiming block of the STIL procedure file. Although the 
value does not affect pattern generation in TetraMAX ATPG, you can specify it for 
informational purposes. For more information, see the man page.

ATE Clocks

The following examples show how to define the signal behavior of the ATE-provided clock 
required for shifting scan elements:

dc_shell> set_dft_signal -view existing_dft \
            -type ScanClock \
            -port ATEclk \
            -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \
            -port ATEclk

The ATE clock must be defined as both -type ScanClock and -type Oscillator. The 
ScanClock signal definition uses the -view existing_dft option because the -timing 
option can be specified only in that view. The Oscillator signal definition uses the -view 
existing_dft option so that the ATE clock is modeled as a free-running clock in the test 
protocol.

By default, DFT Compiler makes the ATE clock connection at the source port specified in the 
-view existing_dft signal definition. To specify a hookup pin to be used for the clock 
connection, use the -hookup_pin option in a subsequent -view spec scan clock signal 
definition. For example,

dc_shell> set_dft_signal -view spec \
            -type ScanClock \
            -port ATEclk \
            -hookup_pin PAD_ateclk/Z

Define this additional specification only for the ScanClock signal definition; do not define it 
for the Oscillator signal definition.

Note:   
You can use the same clock port as both the ATE clock and PLL reference clock. 
However, caveats apply. For more information, see SolvNet article 037838, “How Can I 
Use the Same Clock Port for the ATE and PLL Reference Clocks?”

See Also

• “Specifying a Hookup Pin for DFT-Inserted Clock Connections” on page 10-51 for more 
information about clock hookup pins
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Defining Global Signals

You must identify the top-level interface signals that control the OCC controller. This 
includes the OCC bypass, OCC reset, and ScanEnable signals. You must also define a 
dedicated TestMode signal that activates the OCC controller logic. In the OCC controller 
insertion flow, these signals are defined with the -view spec option because they will be 
implemented and connected by the insert_dft command.

The following examples show how to define a set of OCC controller interface signals for the 
design example:

dc_shell> set_dft_signal -view spec \
            -type pll_reset \
            -port OCC_reset

dc_shell> set_dft_signal -view spec \
            -type pll_bypass \
            -port PLL_bypass

dc_shell> set_dft_signal -view spec \
            -type ScanEnable \
            -port SE

dc_shell> set_dft_signal -view spec \
            -type TestMode \
            -port TM_OCC

The TestMode signal must be a dedicated signal for the OCC controller. It must be active in 
all test modes and inactive in mission mode. It cannot be shared with TestMode signals used 
for other purposes, such as AutoFix or multiple test-mode selection.

Note:   
In the internal pins flow, you can specify internal hookup pins for these OCC control 
signals by using the -hookup_pin option of the set_dft_signal command. However, 
you cannot specify internal hookup pins for ATE clocks or reference clocks.

Configuring the OCC Controller

To specify where to insert a DFT-inserted OCC controller, use the 
set_dft_clock_controller command. Note the following syntax and descriptions:

set_dft_clock_controller
  [-cell_name cell_name]
  [-design_name design_name]
  [-pllclocks ordered_list]
  [-1x_clocks ordered_list]
  [-2x_clocks ordered_list]
  [-4x_clocks ordered_list]
  [-ateclocks clock_name] 
  [-chain_count integer]
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  [-cycles_per_clock integer]
  [-test_mode_port port_name]

Table 13-1 set_dft_clock_controller Command Syntax 

Option Description

-cell_name cell_name Specifies the hierarchical name of the clock controller 
cell.

-design_name design_name Specifies the OCC controller design name. You must 
specify snps_clk_mux. 

-pllclocks ordered_list For asynchronous OCC controllers, specifies the 
ordered list of PLL output clock pins to control.

-1x_clocks ordered_list For synchronous OCC controllers, specifies the 
ordered list of PLL output clock pins to control that run 
at the slowest frequency.

-2x_clocks ordered_list For synchronous OCC controllers, specifies the 
ordered list of PLL output clock pins to control that run 
at two times the slowest frequency.

-4x_clocks ordered_list For synchronous OCC controllers, specifies the 
ordered list of PLL output clock pins to control that run 
at four times the slowest frequency.

-ateclocks clock_name Specifies the ATE clock (port) you want to connect to 
the OCC controller. Note: You cannot specify multiple 
clocks per controller.

-chain_count integer Specifies the number of clock chains. The default 
number of clock chains is one.

-cycles_per_clock integer Specifies the maximum number of capture cycles per 
clock. You should specify a value of two or greater.

Capture cycles are cycles during capture when 
capture clocks are pulsed. Typically, for at-speed 
transition testing, there are two capture cycles: one is 
used for launching a transition and the other for 
capturing the effect of that transition.
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For asynchronous OCC controllers, use the -pllclocks option to specify the list of 
hierarchical clock source pins to be controlled.

For synchronous OCC controllers, use the -1x_clocks, -2x_clocks, and -4x_clocks 
options to specify the list of synchronous hierarchical clock source pins to be controlled. The 
-1x_clocks option is required; the first clock in the list is used as the master 
synchronization clock. The -2x_clocks and -4x_clocks options are optional.

The following example inserts an asynchronous OCC controller that controls three clocks:

dc_shell> set_dft_clock_controller \ 
            -cell_name occ_snps \
            -design_name snps_clk_mux \
            -pllclocks { pll/pllclk1 pll/pllclk2 pll/pllclk3 } \
            -ateclocks { ATEclk } \
            -cycles_per_clock 2 -chain_count 1

To insert multiple OCC controllers, use multiple set_dft_clock_controller commands. 
You can insert a mix of synchronous and asynchronous OCC controllers.

Configuring the Clock Selection Logic

By default, the OCC controller uses purely combinational clock-gating logic for glitch-free 
selection between the fast and slow clocks. However, this is a legacy clock selection logic 
structure that can introduce a number of logic gates along the fast and slow clock paths, and 
its implementation is not configurable.

To avoid these issues, you can use latch-based clock-gating logic. For the fast and slow 
clocks, the combinational gating-enable signals are combined and latched for each clock; 
the latched enable signal is then used to gate the clock.

When latch-based clock-gating logic is used, the gate structure used to combine the clocks 
is also configurable. The clock selection logic configuration is global and applies to all OCC 
controllers inserted by DFT insertion in the current design. Cores that contain previously 
inserted OCC controllers can use a different clock selection logic configuration.

-test_mode_port port_name Specifies the test-mode port used to enable the clock 
controller. Use this option if you have multiple 
test-mode ports and you want to use a specific port to 
enable the clock controller. The specified port must 
be defined as a TestMode signal using the 
set_dft_signal command.

Table 13-1 set_dft_clock_controller Command Syntax (Continued)

Option Description
Chapter 13: On-Chip Clocking Support
Specifying OCC Controllers 13-19
Chapter 13: On-Chip Clocking Support
Specifying OCC Controllers 13-19



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Note:   
DFT insertion applies the dont_touch attribute to any library cells referenced by the 
design attributes (but not variables) in this section. This implicitly applies the dont_touch 
attribute to any other instances of these library cells in your design, which excludes them 
from optimization after DFT insertion. To prevent this, set the dont_touch attribute on 
the OCC controller designs and remove it from the attribute-referenced library cells after 
DFT insertion.

See Also

• SolvNet article 034274, “DFT-inserted OCC Controller Data Sheet” for more information 
about the combinational and latch-based clock selection logic structures

Using Latch-Based Clock-Gating Logic

To use latch-based clock-gating logic, set the following variable to true:

dc_shell> set_app_var test_occ_insert_clock_gating_cells true

The default latch-based clock-gating logic structure is shown in Figure 13-7. Clock paths are 
shown in bold, and rectangles indicate hierarchy created inside the OCC controller block by 
DFT insertion.

Figure 13-7 Default Latch-Based Clock-Gating and Clock Selection Logic Structure

The tool always uses latch-based clock gating for synchronous OCC controllers. If you have 
not set the test_occ_insert_clock_gating_cells variable to true, the tool issues a 
warning indicating that latch-based clock gating will be used for them.

When you use latch-based clock gating in a serialized compressed scan flow, the 
test_elpc_unique_fsm variable must be set to its default of true. For details on this 
variable, see “Serializer in Conjunction With On-Chip Clocking Controllers” on page 22-63.

Specifying Library Cells for the Clock-Gating Logic

You can configure the library cells used for the clock-gating logic. This allows you to use 
higher-drive cells or specially designed clock-driver cells along the clock path.
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By default, the latch-based clock-gating logic uses discrete latch cells. To use an integrated 
clock-gating cell instead, as shown in Figure 13-8, set the desired library cell reference 
(without the library name) using the test_icg_p_ref_for_dft variable. For example,

dc_shell> set_app_var test_icg_p_ref_for_dft ICGPTX8

Figure 13-8 Specifying an Integrated Clock-Gating Cell for the Clock-Gating Logic

For more information about this variable, see the man page. For information on clock gating 
styles, see the Power Compiler User Guide.

Specifying Library Cells for the Clock-ORing Logic

You can configure the library cells used for the clock-ORing logic. This allows you to use 
higher-drive cells or specially designed clock-driver cells along the clock path.

By default, gate-level synthesis maps the default clock-ORing logic structure to any suitable 
gate configuration. You can specify the library cells used for the clock-ORing logic by setting 
design attributes on the current design to the desired library cell references (without the 
library name). Table 13-2 shows the allowed attribute combinations. Buffer specifications 
are optional.

Table 13-2 Specifying Library Cells for the Clock-ORing Logic 

Logic structure Structure type and design attributes

NOR2 clock ORing1

occ_lib_cell_nor2

occ_lib_cell_clkinv

ANDOR21 clock ORing

occ_lib_cell_andor21

occ_lib_cell_clkbuf (optional)

pll_clk pll_clock_gated

EN

CLKOUTCLKIN

ICG

ate_clk ate_clock_gated

EN

CLKOUTCLKIN

ICGtest_se
test_mode
pll_bypass

pll_clock_gated

ate_clock_gated

pll_clock_gated

ate_clock_gated

pll_bypass
test_mode
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For example,

dc_shell> set_attribute [current_design] occ_lib_cell_andor21 CKAO21X8

Note:   
The NOR2 logic structure requires that the design provide an active PLL clock during 
OCC bypass mode because this structure does not include a logic term that blocks 
unknown initial values from an unclocked PLL-clocked gating latch. Post-DFT DRC is not 
supported for PLL bypass mode. In TetraMAX ATPG, run the following commands before 
running DRC for PLL bypass mode:

DRC-T> add_clocks 0 pll_pin_pathname -pllclock
DRC-T> set_drc -pll_simulate_test_setup

Configuring the Clock-Chain Clock Connection

By default, the clock-chain clock connection shares the first functional clock output of the 
OCC controller. This places the clock chain in both the PLL and ATE clock paths.

To use a dedicated clock-chain clock connection from the OCC controller design, set the 
test_dedicated_clock_chain_clock variable to true. This creates a dedicated OCC 
controller clock output for the clock chain that places it in only the ATE clock path, which 
prevents it from affecting the high-speed PLL clock path.

Figure 13-9 shows both types of clock-chain clock connections.

ANDOR22 clock ORing

occ_lib_cell_andor22

occ_lib_cell_clkbuf (optional)

1. Requires manual intervention to pass post-DFT DRC in PLL bypass mode - see note.

Table 13-2 Specifying Library Cells for the Clock-ORing Logic (Continued)

Logic structure Structure type and design attributes

pll_clock_gated

ate_clock_gated

pll_bypass
test_mode
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Figure 13-9 Shared and Dedicated Clock Chain Clock Connections

In both cases, you should consider how the clock-chain clock connection interacts with clock 
tree synthesis (CTS). For more information, see man page. Also, note that this variable can 
be set to true only when the test_occ_insert_clock_gating_cells variable is also set 
to true.

Specifying Scan Configuration

Use the set_scan_configuration command to define scan ports, scan chains, and the 
global scan configuration.

To specify scan constraints in your design, use the following command:

set_scan_configuration -chain_count <#chains>...

If the current design is to be used as a test model later in a hierarchical flow, it is important 
to avoid clock mixing. Such mixing can cause the clock chain of the OCC controller to mix 
with flip-flops of opposite polarity on a single scan chain. As a result, this scan chain cannot 
be combined with scan chains of other test models and the minimum scan chain count at the 
top level is increased. This problem is worsened when multiple OCC controllers are added 
to the design or when multiple subdesigns of the top-level design will have OCC controllers.

Performing Timing Analysis

After DFT insertion completes, you must ensure that the OCC controller logic is properly 
constrained for timing analysis.

If you are using the combinational clock-gating method and synthesis maps the clock 
selection logic to a MUX cell, you must use the set_clock_gating_check command to 
manually specify a clock-gating check at the MUX inputs. This check is needed to check the 
timing between the fast-clock-enable registers and the “FastClock” gates (multiplexers 
between the fast clocks and the slow clocks). Combinational clock gating is used when the 
test_occ_insert_clock_gating_cells variable is set to its default of false.
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See Also

• SolvNet article 022490, “Static Timing Analysis Constraints for On-Chip Clocking 
Support” for more information about performing timing analysis in a DFT-inserted OCC 
controller flow

• The two sections titled “Special Considerations” in SolvNet article 034274, “DFT-Inserted 
OCC Controller Data Sheet” for information about synthesizing a DFT-inserted OCC 
controller

Script Example

Example 13-1 shows DFT Compiler performing pre-DFT DRC, scan chain stitching, and 
post-DFT DRC. The STIL procedure file generated at the end of the DFT insertion process 
contains PLL clock details suitable for the TetraMAX tool.

Example 13-1 Flow Example for DFT-Inserted OCC Controller and Clock Chain

read_verilog mydesign.v
current_design mydesign
link

# Define the PLL reference clock
# top level free running clock
set_dft_signal -view existing_dft -type refclock \
   -port refclk1  -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
   -port refclk1 -timing [list 45 55]

# Define the ATE clock
# the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
   -port  ATEclk -timing [list 45 55]

set_dft_signal -view existing_dft -type Oscillator \
   -port  ATEclk

# Define the PLL generated clocks --
# these are the launch/capture clocks for internal scannable
# elements and are controlled by occ controller
set_dft_signal -view existing_dft -type Oscillator \
  -hookup_pin pll/pllclk1

set_dft_signal -view existing_dft -type Oscillator \
  -hookup_pin pll/pllclk2

set_dft_signal -view existing_dft -type Oscillator \
  -hookup_pin pll/pllclk3

# Enable PLL capability
set_dft_configuration -clock_controller enable
Chapter 13: On-Chip Clocking Support
Specifying OCC Controllers 13-24

http://solvnet.synopsys.com/retrieve/022490.html
http://solvnet.synopsys.com/retrieve/022490.html
https://solvnet.synopsys.com/retrieve/034274.html
https://solvnet.synopsys.com/retrieve/034274.html


DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
# The following command specifies the OCC controller
# design to be instantiated. The DFT Compiler synthesized
# clock controller is named snps_clk_mux
set_dft_clock_controller -cell_name snps_pll_controller \
   -design_name snps_clk_mux -pllclocks { pll/pllclk1 \
   pll/pllclk2 pll/pllclk3 } -ateclocks  { ATEclk }  \
   -cycles_per_clock 2 -chain_count 1

set_scan_configuration -chain_count 30 -clock_mixing no_mix
create_test_protocol
dft_drc
report_dft_clock_controller -view spec
preview_dft -show all
insert_dft
dft_drc

# Run DRC with external clocks enabled during capture
# (PLL bypassed)
set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output top.scan.v

# Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output scan_pll.stil

Specifying Existing User-Defined OCC Controllers

If you have a design that contains an OCC generator and it already instantiates an existing 
user-defined OCC controller and clock chain, DFT Compiler can analyze the OCC controller, 
validate the functionality, and incorporate it into the test protocol.

This topic covers the following:

• Defining Clocks

• Defining Global Signals

• Specifying Clock Chains

• Scan Configuration for User-Defined OCC Controllers

• Script Example
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Defining Clocks

Use the set_dft_signal command to define the following clock signals for Figure 13-3:

• Reference Clocks

• PLL-Generated Clocks

• ATE Clocks

• Clock Chain Configuration and Control-Per-Pattern Information

Reference Clocks

A reference clock definition is used primarily as an informational device. The only effect of 
defining them is that they are defined in the test protocol for use by TetraMAX DRC. For 
some special cases, a reference clock signal might not be needed.

The following example shows how to define a PLL reference clock that has the same period 
as the test_default_period variable (assumed to be 100 ns).

dc_shell> set_dft_signal -view existing_dft \
            -type MasterClock -port refclk1 \
            -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
            -type refclock -port refclk1 \
            -period 100 -timing [list 45 55]

Note that you only need to define the reference clock with signal type MasterClock when 
the reference clock has the same period as the test_default_period variable. Otherwise, 
this signal definition is not needed and not accepted.

To define a reference clock that has a period other than the test_default_period, use the 
following command:

dc_shell> set_dft_signal -view existing_dft \
            -type refclock -port refclk1 \
            -period 10 -timing [list 3 8]

Note:   
When the reference clock period differs from the test_default_period, do not define 
the signal as any signal type other than refclock.

Also note the following caveats associated with the test_default_period when defining a 
reference clock:

• If the reference clock period is an integer divisor of the test_default_period, then patterns 
can be written in a variety of formats, including STIL, STIL99, and WGL.

• If the reference clock is not an integer divisor of the test_default_period, the only 
format that can be written in a completely correct way is STIL. Other formats (including 
Chapter 13: On-Chip Clocking Support
Specifying OCC Controllers 13-26



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
STIL99) cannot include the reference clock pulses. A warning is printed, indicating that 
these pulses must be added back to the patterns manually.

• Do not define a reference clock period or timings with resolution finer than 1 picosecond. 
The TetraMAX tool cannot work with finer timing resolutions.

PLL-Generated Clocks

PLL clocks are the output of the PLL. This output is a free-running source that also runs at 
a constant frequency, which might not be the same as the reference clock’s. This information 
is forwarded to the TetraMAX tool through the protocol file to allow the verification of the 
clock controller logic. 

The following commands show how to define the PLL clocks for the design example:

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \
            -hookup_pin PLL/pllclk1

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \
            -hookup_pin PLL/pllclk2

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \
            -hookup_pin PLL/pllclk3

For synchronous OCC controllers, you must also update the STIL procedure file with an 
appropriate ClockTiming block before using it in TetraMAX ATPG. See the “Specifying 
Synchronized Multi-Frequency Internal Clocks for an OCC Controller” section in TetraMAX 
Online Help.

ATE Clocks

An ATE clock signal can be pulsed several times before and after scan shift (scan-enable 
signal inactive) to synchronize the clock controller logic in the capture phase and back into 
the shift phase.

The following commands show how to define ATE clocks for the design example:

dc_shell> set_dft_signal -view existing_dft \
            -type ScanClock \
            -port ATEclk \
            -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \
            -port ATEclk

ATEclk must be defined as -type ScanClock and -type Oscillator.
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Note:   
You can use the same clock port as both the ATE clock and PLL reference clock. 
However, caveats apply. For more information, see SolvNet article 037838, “How Can I 
Use the Same Clock Port for the ATE and PLL Reference Clocks?”

A user-defined OCC controller can use ATE clock synchronization logic which differs from 
the DFT-inserted OCC controller. In these cases, you might need to set the 
test_ate_sync_cycles variable to a nondefault value. For more information, see SolvNet 
article 035708, “What Does the test_ate_sync_cycles Variable Do?”

Clock Chain Configuration and Control-Per-Pattern Information

You must specify the correlation between the internal clock signals driven from the clock 
controller outputs, the signals driven from the clock generator (PLL) outputs, and the signals 
provided by the user-defined clock chain. This information indicates how the clock signal is 
enabled by the clock chain control bits in each clock cycle. The correspondence between 
the controlled internal clock signals and clock chain control bits is identified in the protocol 
file for TetraMAX ATPG to generate patterns.

You must specify

• All user-defined clock controller outputs referencing the internal clocks

• A corresponding set of clock chain control bits, ATE clock, and clock generator output 
(PLL) for each clock controller output

The following example specifies a user-defined OCC controller with a three-bit clock chain:

dc_shell> set_dft_signal -view existing_dft \
            -type Oscillator \
            -hookup_pin occ_ctrl/clkout \
            -ate_clock ATEclk \
            -pll_clock PLL/pllclk1 \
            -ctrl_bits [list 0 occ_chn/FF_cyc1/Q 1 \
                             1 occ_chn/FF_cyc2/Q 1 \
                             2 occ_chn/FF_cyc3/Q 1]

Note:   
The -ctrl_bits option is used to provide a list of triplets that specify the sequence of 
bits needed to enable the propagation of the clock generator outputs. The first element 
of each triplet is the cycle number (integer) indicating the cycle where the clock signal will 
be propagated. The second element is the pin name (a valid design hierarchical pin 
name) of the clock chain control bit. The third element is the active state (0 or 1) of the 
control bit signal. For more information about this option, see the set_dft_signal man 
page.

Note:   
The -view existing_dft option is used because connections already exist between 
the referenced port and the clock controller.
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Defining Global Signals

You must identify the top-level interface signals that control the OCC controller. This 
includes the OCC bypass, OCC reset, and ScanEnable signals. You must also define a 
dedicated TestMode signal that activates the OCC controller logic. In the user-defined OCC 
controller flow, these signals are defined with the -view existing_dft option because they 
already exist and must be described to DFT Compiler.

The following examples show how to define a set of OCC controller interface signals for the 
design example:

dc_shell> set_dft_signal -view existing_dft \
            -type pll_reset \
            -port OCC_reset

dc_shell> set_dft_signal -view existing_dft \
            -type pll_bypass \
            -port PLL_bypass

dc_shell> set_dft_signal -view existing_dft \
            -type ScanEnable \
            -port SE

dc_shell> set_dft_signal -view existing_dft \
            -type TestMode \
            -port TM_OCC

The TestMode signal must be a dedicated signal for the OCC controller. It must be active in 
all test modes and inactive in mission mode. It cannot be shared with TestMode signals used 
for other purposes, such as AutoFix or multiple test-mode selection.

Note:   
You can specify an internal hookup pin for any of these OCC controller interface signals 
by using the -hookup_pin option of the set_dft_signal command. You cannot specify 
internal hookup pins for ATE clocks or reference clocks.

Specifying Clock Chains

Specify clock chains by using the set_scan_group command. This ensures that the 
sequential cells are treated as a group and are logically ordered.

dc_shell> set_scan_group clk_chain \
            -class OCC \
            -include_elements \
            [list occ_chn/FF_1 occ_chn/FF_2] \
            -access [list ScanDataIn occ_chn/si \
                          ScanDataOut occ_chn/so \
                          ScanEnable occ_chn/se] \
            -serial_routed true
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In this flow, you should insert the clock chain to be clocked by the falling edge of the internal 
clock in such a way that it can be placed at the head of a scan chain. When defining the 
clock chain, use the set_scan_group -class OCC command to specify the special 
treatment of the clock chain, and avoid using the set_scan_path command so that the scan 
architect has maximum flexibility in putting the clock chain in the best location on the scan 
chains. The -class OCC option allows the clock chain to be recognized if the module is 
incorporated as a test model in the integration flow.

In case a separate scan path is required for the clock chain, the set_scan_path -class 
OCC command is also available. If you are using scan compression, the clock chain does not 
need to be a separate scan path, but if you want to define it as such, two set_scan_path 
commands are required, one with the -test_mode Internal_scan option and one with the 
-test_mode ScanCompression_mode option. The process of combining scan compression 
with clock controllers results in a multiple test-mode architecture; therefore, both modes 
must be specified.

If the current design is to be used later as a test model in a hierarchical flow and your scan 
configuration allows clock mixing, you should make sure that the clock chains are kept 
separate from other scan chains. Otherwise, the top-level scan architecture might require 
too many scan chains because the submodule scan chains are incompatible with each 
other. To force the clock chains to be separate, use the set_scan_path command with the 
-class occ and -complete true options. For more information, see SolvNet article 
018046, “How Can I Control Scan Stitching of OCC Controller Clock Chains?”

Scan Configuration for User-Defined OCC Controllers

For proper clock control during test, your user-defined OCC controller and clock chain must 
be excluded from scan replacement. To do this, use the set_scan_element command:

dc_shell> set_scan_element false {occ_ctrl occ_chn}

For convenience, you can apply this directive using RTL pragmas in your user-defined OCC 
RTL. For details, see SolvNet article 2898128, “Excluding User-Defined OCC Controllers 
from DFT Insertion.”

If the current design is to be used later as a test model in a hierarchical flow, it is important 
to avoid clock mixing. If you must mix clocks, use the method described in “Specifying Clock 
Chains” on page 13-29 to avoid problems integrating the clock chains at the next higher 
level of hierarchy.

If your OCC controller uses integrated clock-gating cells, verify that pre-DFT DRC does not 
issue any TEST-130 identification messages for them, or incorrect test-pin connections will 
result. For details, see SolvNet article 2819507, “Simulation Fails Due to Bad ICG Test-Pin 
Connection in User-Defined OCC Controller.” 
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Script Example

When you run a design that contains a user-defined OCC controller and clock chains, a STIL 
procedure file is generated, as shown in Example 13-2.

Example 13-2 Flow Example for Existing OCC Controller and Clock Chain

read_verilog mydesign.v
current_design mydesign
link

# Define the PLL reference clock
# (top-level free running clock)
set_dft_signal -view existing_dft -type refclock \
   -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
   -port refclk1 -timing [list 45 55]

# Define the ATE clock
# (the ATE-provided clock for shift of scan elements)
set_dft_signal -view existing_dft -type ScanClock \
   -port ATEclk -timing [list 45 55]

set_dft_signal -view existing_dft -type Oscillator \
   -port ATEclk

# Define the PLL generated clocks
set_dft_signal -view existing_dft -type Oscillator \
    -hookup_pin pll/pllclk1

set_dft_signal -view existing_dft -type Oscillator \
    -hookup_pin pll/pllclk2

set_dft_signal -view existing_dft -type Oscillator \
    -hookup_pin pll/pllclk3

# Enable PLL capability
set_dft_configuration -clock_controller enable

#  Specify clock controller output and control-per-pattern information
set_dft_signal -type Oscillator -hookup_pin occ_ctrl/clkout \
  -ate_clock ATEclk -pll_clock PLL/pllclk1 \
  -ctrl_bits [list 0 occ_chn/FF_1/Q 1 \
                   1 occ_chn/FF_2/Q 1] \
  -view existing_dft

#  Define the existing clock chain segments
set_scan_group clk_chain -class occ\
    -include_elements [list occ_chn/FF_1  \
                            occ_chn/FF_2]  \
    -access [ list ScanDataIn occ_chn/si  \
                   ScanDataOut occ_chn/so
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                   ScanEnable occ_chn/se] \
    -serial_routed true

#  Specify global controller signals
set_dft_signal -type pll_reset -port OCC_reset  -view existing_dft
set_dft_signal -type pll_bypass -port PLL_bypass -view existing_dft
set_dft_signal -type ScanEnable -port SE -view existing_dft

# Define the TestMode signals
set_dft_signal -type TestMode -port TM_OCC -view existing_dft

# Registers inside the OCC controller and clock chain should not
# be scan-replaced. (The OCC controller requires nonscan cells, and the
# clock chain is already a stitched scan segment.)
set_scan_element false {occ_ctrl occ_chn}

# If you are using automatic clock-gating cell identification (the
# identify_clock_gating command or the power_cg_auto_identify variable),
# prevent identification inside the OCC controller.
set_dft_clock_gating_configuration -exclude_elements {occ_ctrl}

set_scan_configuration -chain_count 30 -clock_mixing no_mix
create_test_protocol
dft_drc
report_dft_clock_controller -view existing_dft
preview_dft -show all
insert_dft
dft_drc

# Run DRC with external clocks enabled during capture
# (PLL bypassed)

set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output top.scan.v

# Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output scan_pll.stil

Specifying OCC Controllers for External Clock Sources

In some cases, the on-chip clocking source might be external to the current design, as 
shown in Figure 13-10, so that the PLL clocks enter the design through input ports.
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Figure 13-10 On-Chip Clock Source External to Current Design

Define such external clock sources as follows:

• Define the port-driven PLL-generated clocks at the ports, and define them as ScanClock 
instead of Oscillator:

dc_shell> set_dft_signal -view existing_dft \
            -type ScanClock \
            -port {PLLclk1 PLLclk2 PLLclk3} \
            -timing {45 55}

Specify typical scan clock timing, even though the clock is a PLL-generated clock instead 
of a tester-driven clock. This timing discrepancy does not affect OCC architecture or 
operation.

• If the reference clock does not enter the design, you do not need to define it.

• Include the PLL-generated input ports in the PLL clock sources list specified with the 
-pllclocks option:

dc_shell> set_dft_clock_controller \ 
            -cell_name occ_snps \
            -design_name snps_clk_mux \
            -pllclocks {PLLclk1 PLLclk2 PLLclk3} \
            -ateclocks {ATEclk} \
            -cycles_per_clock 2 -chain_count 1

The resulting SPF does not pulse the clock ports during capture, which is incorrect. As a 
workaround, define the clock as a reference clock in the TetraMAX tool. For example,

DRC-T> add_clock 0 {PLLclk1 PLLclk2 PLLclk3} -refclock

External clock sources are not supported for existing user-defined OCC controllers.

Using OCC Controllers in Hierarchical DFT Flows

You can integrate DFT-inserted cores that contain OCC controllers, as described in the 
following topics:

• Integrating Cores That Contain OCC Controllers

ref_clk
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CLKO2
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DFT-inserted
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• Defining Signals for Cores Without Preconnected OCC Signals

• Defining Signals for Cores With Preconnected OCC Signals

• Handling Cores With OCC Clock Output Pins

Integrating Cores That Contain OCC Controllers

You can integrate DFT-inserted cores that contain OCC controllers. It does not matter 
whether a core was created with the DFT-inserted or user-defined OCC controller flow; once 
created, it is simply a core that contains OCC controller information in its CTL model, and 
the hierarchical OCC integration flow treats the core the same in either case.

Enable the OCC controller feature at all hierarchical levels above those that contain OCC 
controllers:

dc_shell> set_dft_configuration -clock_controller enable

Top-level connections for the pll_reset, pll_bypass, ATE clock, and OCC TestMode 
signals of all core-level OCC controllers should be either all preconnected or all left 
unconnected so that the insert_dft command can make the connections. The DFT 
architect cannot recognize partially connected conditions reliably and might make mistakes 
if some, but not all, of these signals are already connected.

If you define a top-level DFT-inserted OCC controller, and the current design contains cores 
that have their own OCC controllers, all core-level OCC signals must be unconnected so 
that the insert_dft command can make the top-level connections. Preconnected 
core-level OCC signals are not supported when a top-level DFT-inserted OCC controller is 
used.

Defining Signals for Cores Without Preconnected OCC Signals

Top-level integration uses signal types to determine the correct connections to make. Most 
DFT signals used by OCC controllers, including the pll_reset and pll_bypass types, can 
be connected by the insert_dft command.

However, the ATE clock signal has no special signal type in the core test model, so user 
guidance is required. To give this guidance, use the -connect_to option of the 
set_dft_signal command.

Example 13-3 defines the OCC signals in an integration flow where the insert_dft 
command must make the OCC signal connections to two cores containing OCC controllers.

Example 13-3 OCC Signal Definitions for Cores Without Preconnected OCC Signals

# Define the PLL reference clock (top-level free-running clock)
#
# this is a functional signal that must always be preconnected
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set_dft_signal -view existing_dft -type refclock \
   -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
   -port refclk1 -timing [list 45 55]

# Define the ATE clock
#
# this is the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
   -port ATEclk -timing [list 45 55] \
   -connect_to [list CORE1/ATEclk CORE2/ATEclk]

set_dft_signal -view spec -type ScanClock \
   -port ATEclk \
   -connect_to [list CORE1/ATEclk CORE2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
   -port ATEclk

# Specify global OCC controller signals, all in spec view
set_dft_signal -view spec -type pll_reset -port OCC_reset
set_dft_signal -view spec -type pll_bypass -port PLL_bypass
set_dft_signal -view spec -type ScanEnable -port SE

# Define the PLL TestMode signals
set_dft_signal -view spec -type TestMode -port TM_OCC

This example uses both the -view existing_dft and -view spec options for the ATE 
clock. The -view spec option specifies that a change to the design is needed during DFT 
insertion, but clock timing can only be attached to a clock specification in the existing view.

For most signal types, the -connect_to option is used only with -view spec signal 
definitions to define connections to be made by DFT insertion. However, for ATE clocks, the 
-connect_to option is also used for the -view existing_dft signal definition so that the 
information is passed to pre-DFT DRC.

Defining Signals for Cores With Preconnected OCC Signals

When the DFT signals used by OCC controllers are preconnected to the cores, define them 
at the top level with only the -view existing_dft option of the set_dft_signal 
command.

Example 13-4 defines the OCC signals in an integration flow where the OCC connections to 
two cores already exist.

Example 13-4 OCC Signal Definitions for Cores With Preconnected OCC Signals

# Define the PLL reference clock (top-level free-running clock)
#
# this is a functional signal that must always be preconnected
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set_dft_signal -view existing_dft -type refclock \
   -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
   -port refclk1 -timing [list 45 55]

# Define the ATE clock
#
# this is the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
   -port ATEclk -timing [list 45 55] \
   -connect_to [list CORE1/ATEclk CORE2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
   -port ATEclk

# Specify global OCC controller signals, all in existing_dft view
set_dft_signal -view existing_dft -type pll_reset -port OCC_reset
set_dft_signal -view existing_dft -type pll_bypass -port PLL_bypass
set_dft_signal -view existing_dft -type ScanEnable -port SE

# Also define ScanEnable in spec view for top-level DFT insertion
set_dft_signal -view spec -type ScanEnable -port SE

# Define the PLL TestMode signals
set_dft_signal -view existing_dft -type TestMode -port TM_OCC

For most signal types, the -connect_to option is used only with -view spec signal 
definitions to define connections to be made by DFT insertion. However, for ATE clocks, the 
-connect_to option is also used for the -view existing_dft signal definition so that the 
information is passed to pre-DFT DRC.

Handling Cores With OCC Clock Output Pins

When a core has a clock output driven by an OCC clock generated inside the core, the core 
CTL model models the clock output as a clock feedthrough connection from the 
corresponding ATE clock. For example,

    Internal {
        "ATECLK" {
                DataType ScanMasterClock MasterClock;
            }
            "PLL_CLK_OUT" {
                IsConnected Out {
                    Signal "ATECLK";
                }
            }

At the integration level, if you have multiple such cores that use the same ATE clock, by 
default DFT insertion does not insert lockup latches for scan chain crossings between the 
core output clock domains because they are not seen as separate clock domains. To treat 
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these clock domains as separate, specify the core clock output pins with the 
-associated_internal_clocks option for the ATE clock signal definition. For example,

set_dft_signal -view existing_dft -type ScanClock \
  -port ATEclk -timing [list 45 55] \
  -associated_internal_clocks {CORE1/PLL_CLK_OUT  CORE2/PLL_CLK_OUT}

This causes DFT insertion to treat the core output clock domains as separate domains for 
scan architecting purposes. No special treatment is needed for any top-level OCC 
controllers that also share the same ATE clock signal, because the tool already treats their 
output clock domains as separate domains.

Reporting Clock Controller Information 

Use the report_dft_clock_controller command to generate reports.

DFT-Inserted OCC Controller Flow

For DFT-inserted OCC controllers and clock chains, use the 
report_dft_clock_controller -view spec command to output a report. This report 
displays the options that you set for the set_dft_clock_controller command.

Example 13-5 shows a clock controller report for the DFT-inserted OCC controller flow.

Example 13-5 Report Example from the report_dft_clock_controller -view spec Command

****************************************
Report : Clock controller
Design : des_chip
Version: G-2012.06
Date   : Fri Sep  7 05:42:06 2012
****************************************

========================================
TEST MODE: all_dft
VIEW     : Specification
========================================
Cell name:            pll_controller_0
Design:               snps_clk_mux
Chain count:          1
Cycle count:          2
PLL clock:            u_pll/clkgenx2 u_pll/clkgenx3 
ATE clock:            ateclk
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Existing User-Defined OCC Controller Flow

For existing user-defined OCC controllers and clock chains, after you define the internal 
clock signals and the corresponding control-per-pattern information, use the 
report_dft_clock_controller -view existing_dft command to report what you have 
specified. In Example 13-6, the report shows information about the clock generator signal, 
the ATE clock, the OCC controller output, and the clock chain control bits.

Example 13-6 Report Example from the report_dft_clock_controller Command

****************************************
Report : Clock controller 
Design : des_chip
Version: G-2012.06
Date   : Fri Sep  7 05:18:55 2012
****************************************

Clock controller: ctrl_0
================================================================
  Number of bits per clock: 4
  Controlled clock output pin: duto/clk
  ==============================================================
  Clock generator signal: dutp/PLLCLK
  ATE clock signal: i_ateclk
  Control pins:
               cycle 0  duto/snps_clk_chain_0/FF_0/Q  1
               cycle 1  duto/snps_clk_chain_0/FF_1/Q  1
               cycle 2  duto/snps_clk_chain_0/FF_2/Q  1
               cycle 3  duto/snps_clk_chain_0/FF_3/Q  1
  ==============================================================
================================================================

DRC Support

D-rules (Category D – DRC Rules) support PLL-related design rule checks. The checked 
rule and message text correspond by number to TetraMAX PLL-related C-rules (Category C 
– Clock Rules). The rules are as follows:

• D28 – Invalid PLL source for internal clock

• D29 – Undefined PLL source for internal clock

• D30 – Scan PLL conditioning affected by nonscan cells

• D31 – Scan PLL conditioning not stable during capture

• D34 – Unsensitized path between PLL source and internal clock

• D35 – Multiple sensitizations between PLL source and internal clock
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• D36 – Mistimed sensitizations between PLL source and internal clock

• D37 – Cannot satisfy all internal clocks off for all cycles

• D38 – Bad off conditioning between PLL source and internal clock

Enabling the OCC Controller Bypass Configuration

Use the set_dft_drc_configuration and  write_test_protocol commands to enable 
the OCC controller bypass configuration for design rule checking. The -pll_bypass option 
of the set_dft_drc_configuration command enables post-scan insertion DRC with 
constraints that put the OCC clock controller in bypass configuration.

The syntax is as follows:

set_dft_drc_configuration -pll_bypass enable | disable

The default setting is disable.

To perform DRC of both bypass configurations, PLL active and PLL bypassed, use the 
following commands:

insert_dft

set_dft_drc_configuration -pll_bypass disable ;# already the default
dft_drc

set_dft_drc_configuration -pll_bypass enable
dft_drc

write_test_protocol my_design.spf

The test protocol written by the write_test_protocol command contains information for 
PLL bypass as well as for PLL enabled. In the TetraMAX tool, use the run_drc 
-patternexec command to select the operating mode to use.

DFT-Inserted OCC Controller Configurations

This topic shows DFT-inserted OCC controller configurations and the associated 
configuration commands, as described in the following topics:

• Single OCC Controller Configurations

• Multiple DFT-Inserted OCC Controller Configurations
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Single OCC Controller Configurations

This topic shows the results of using various configurations of the 
set_dft_clock_controller command on the design example shown in Figure 13-11.

Figure 13-11 Design Example for Single OCC Controller Insertion

The following configuration examples are applied to this design:

• Example 1 – Controller inserted at the output of UPLL, within the CLKGEN block.

• Example 2 – Controller inserted at the output of the CLKGEN block.

• Example 3 – Controller inserted at the output of the buffer.

Example 1

The first example, shown in Figure 13-12, uses the following configuration:

dc_shell> set_dft_clock_controller \
                -pllclocks {CLKGEN/UPLL/clkout}

In this case, the following occurs:

• The controller is inserted at the output of PLL, within the clkgen1 block.

• The clocks of all flip-flops are controllable.

Figure 13-12 Controller Inserted at Output of PLL Within CLKGEN Block
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Example 2

The second example, shown in Figure 13-13, uses the following configuration:

dc_shell> set_dft_clock_controller \
               -pllclocks {CLKGEN/clkout}

In this case, the following occurs:

• The controller is inserted at the output of the CLKGEN block.

• The FF1 clock remains uncontrollable.

Figure 13-13 Controller Inserted at Output of CLKGEN Block

Example 3

The third example, shown in Figure 13-14, uses the following configuration:

dc_shell> set_dft_clock_controller \
               -pllclocks {SUB1/U1/Z}

In this case, the following occurs:

• The controller is inserted at the output of buffer U1.

• The FF1 and FF2 clocks remain uncontrollable.

Figure 13-14 Controller Inserted at Output of the Buffer
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Multiple DFT-Inserted OCC Controller Configurations

This topic shows the results of configuring multiple DFT-inserted OCC controllers for the 
design example shown in Figure 13-15.

Figure 13-15 Design Example for Multiple OCC Controller Insertion

When multiple PLLs exist in a design, the reference clock input to each PLL cell must be a 
free-running clock in test mode. Care must be taken to insure that an OCC controller is not 
inserted at a location that would block a free-running clock to a downstream PLL cell.

In this design example, the primary PLL named UPLL1 receives the incoming reference 
clock and generates a PLL output clock. This PLL output clock then feeds either a second 
PLL or clock divider cell, creating a second cascaded PLL output clock.

The following configuration examples are applied to this design:

• Example 1 – Controller incorrectly inserted, at the output of UPLL1.

• Example 2 – Controller correctly inserted, at the output of a buffer driven by UPLL1.

Example 1

The first example, shown in Figure 13-16, uses the following configuration:

dc_shell> set_dft_clock_controller \
                -pllclocks {UPLL1/clkout}
dc_shell> set_dft_clock_controller \
                -pllclocks {UPLL2/clkout}

In this case, the following occurs:

• The controller is inserted at the output of UPLL1.

• As a result, the free-running clock to UPLL2 is blocked by the first OCC controller, 
causing incorrect operation of UPLL2.
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The incorrect operation of UPLL2 might only be detectable during Verilog simulation of the 
resulting netlist.

Figure 13-16 Free-Running Clock Blocked to UPLL2

Example 2

The second example, shown in Figure 13-17, uses the following configuration:

dc_shell> set_dft_clock_controller \
                -pllclocks {U1/Z}
dc_shell> set_dft_clock_controller \
                -pllclocks {UPLL2/clkout}

This example uses a buffer to isolate the downstream fanout that the first OCC controller 
should drive. In this case, the following occurs:

• The controller is inserted at the output of buffer U1 driven by UPLL1.

• As a result, the free-running clock from UPLL1 propagates to UPLL2, allowing correct 
operation of UPLL2.

Figure 13-17 Free-Running Clock Propagates to UPLL2
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You must ensure that the isolation buffer is not optimized away by applying a 
set_dont_touch command, applying a set_size_only command, or using hierarchy. After 
the clock controller is inserted, the resulting test protocol references the specified pin as a 
PLL pin.

Waveform and Capture Cycle Example

Figure 13-18 shows an example of the relationship between various clocks when the design 
contains an OCC generator and an OCC controller.

Figure 13-18 Desired Clock Launch Waveform Example

For information about pll clock, ATEclk, and intclk, see “Clock Type Definitions” on 
page 13-4. 

Limitations

Note the following limitations:

• Inferencing internal PLL or any reference clocks is not supported. For pre-DFT DRC, you 
must explicitly define your reference clock, ATE clock, and PLL clocks.

• You can use differing -cycles_per_clock values across OCC controllers, but only if at 
least one OCC controller is synchronous. For this case, the tool generates the correct 
netlist and SPF, but post-DFT DRC might fail.
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• You cannot mix the DFT-inserted and user-defined OCC controller types in the same 
DFT insertion run. However, this restriction does not apply to cores that already contain 
OCC controllers. In integration flows, you can mix OCC controller types across cores and 
between cores and the top level.

• If you run the insert_dft command multiple times to perform DFT operations 
incrementally, you must perform all OCC operations together with scan insertion in the 
last insert_dft run.

• If you are using synchronous OCC controllers,

❍ You cannot use serialized scan compression.

❍ Multifrequency capture must be enabled in TetraMAX ATPG. To do this, run the 
set_drc -fast_multifrequency_capture on command prior to running DRC.

• The only supported scan style is multiplexed flip-flop.

• Fast-sequential patterns with OCC support cannot measure the primary outputs between 
system pulses. The measure primary output is placed before the first system pulse and 
measures only Xs. You have to use pre-clock-measure, with the strobe being placed 
before the clock.

• External clocks, which have a direct connection to scan flip-flops, cannot serve as ATE 
clocks for the OCC controller. 

• The set_dft_clock_controller -ateclocks command accepts only one port. The 
user can have multiple OCC controllers, but only one port can be specified with the 
-ateclocks option per controller.

• End-of-cycle measures cannot be used when an OCC controller is used to control the 
clock.

• If you are using the combinational clock-gating method and synthesis maps the clock 
selection logic to a MUX cell, you must use the set_clock_gating_check command to 
manually specify a clock-gating check at the MUX gate. For more information, see 
“Performing Timing Analysis” on page 13-23.

For DFT-inserted asynchronous OCC controllers, combinational clock gating is used 
when the test_occ_insert_clock_gating_cells variable is set to its default of 
false. For more information, see SolvNet article 022490, “Static Timing Analysis 
Constraints for On-Chip Clocking Support.”

For DFT-inserted synchronous OCC controllers, latch-based clock gating is always 
used, regardless of the value of the test_occ_insert_clock_gating_cells variable.

• If you are using pipelined scan-enable signals and OCC controllers together,

❍ The pipelined scan-enable registers must be clocked by the OCC-controlled clock for 
that clock domain.
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However, when you implement a DFT-inserted OCC controller along with a pipelined 
scan-enable signal in the same run, the tool incorrectly drives the pipeline registers 
with the uncontrolled PLL clock instead. This must be manually corrected.

Existing (user-defined) OCC controllers are connected properly.

❍ The OCC controller must use the unpipelined scan-enable signal, not the pipelined 
version.

If you are inserting or defining an OCC controller in the current design and plan to 
implement pipelined scan-enable signals at a higher level, you must create the core 
in anticipation of the pipelined scan-enable requirements at the higher level.

To do this, ensure that the OCC controller uses a different scan-enable signal than 
the scan cells. The domain-based scan-enable feature (set_scan_configuration 
-domain_based_scan_enable true) alone does not ensure this, and the -usage 
scan option of the set_dft_signal command does not make this distinction.

Then, pass each OCC-controlled clock to an output of the core, then use them for the 
clock connections of each pipelined scan-enable register that drives the core.

There are no tool options to automate this signal configuration; you must manually 
ensure these connections.

• When a pipelined scan-enable signal is used with OCC flows, the insert_dft command 
fails to make some connections properly. To use these features together, you must check 
and correct the connections so that the following requirements are met:

❍ The scan-enable connections to the OCC controller and clock chain must use the 
unpipelined scan-enable signal. That is, use the input to the scan-enable pipeline 
register instead of its output.

❍ The clock connection to the scan-enable pipeline register in OCC controller clock 
domains must be connected to the internal clock output of the OCC controller block.

❍ In hierarchical OCC controller flows, the OCC controller can be inserted or defined at 
the core level, then scan-enable pipeline registers can be inserted during the 
top-level integration phase. In this case, the OCC controller is correctly connected at 
the core level, but the connections are incorrectly made during top-level integration.

To ensure correct operation, you must design the core to provide multiple 
scan-enable signals. Connect the OCC controller to the unpipelined scan-enable 
signal, and use the pipelined scan-enable signal for the remaining connections.

To satisfy the requirement that the scan-enable pipeline register must be clocked by 
the OCC controller's clock output, you must also pass the OCC internal clock to an 
output of the core, then use it for the clock connection of the top-level scan-enable 
pipeline register.
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• In hierarchical OCC controller flows, if you insert a DFT-inserted OCC controller during 
integration, the OCC signals of cores containing OCC controllers must be left dangling to 
be completed by DFT insertion; they cannot be preconnected.

• External (port-driven) clock sources are not supported for existing user-defined OCC 
controllers.
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Pre-DFT Test Design Rule Checking 14

This chapter describes the process for preparing for and running test design rule checking 
(DRC), and checking violations before DFT insertion.

This chapter includes the following topics:

• Test DRC Basics

• Classifying Sequential Cells

• Checking for Modeling Violations

• Setting Test Timing Variables

• Creating Test Protocols

• Masking Capture DRC Violations
14-1
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Test DRC Basics

This topic discusses the test DRC flow, the types of messages generated as a result of 
running the process, and the effects of violations on scan replacement.

Test DRC Flow

You use the dft_drc command to activate test design rule checking. However, before 
running this process, you must first create a test protocol that includes timing information 
(see “Creating the Test Protocol” on page 14-5 for information on creating test protocols).

After running the dft_drc command, violation messages are reported in three categories:

• Information messages – no action is required.

• Warning messages – you should analyze the violations; however, you can still run certain 
DFT commands.

• Error messages – these indicate serious errors that you need to correct before you can 
use the DFT commands.

Figure 14-1 illustrates a general test design rule checking flow. 
Chapter 14: Pre-DFT Test Design Rule Checking
Test DRC Basics 14-2



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 14-1 Test DRC Flow
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The following steps outline the test DRC process:

1. Read and link the design into DFT Compiler.

For details, see the “Preparing Your Design” on page 14-4.

2. Determine if you have an existing test protocol for the design.

If so, read the test protocol into DFT Compiler.

If not, do the following:

❍ Set the appropriate test attributes on the design.

❍ Create the test protocol.

3. Run design rule checking.

❍ If test DRC reports no violations, you can insert DFT structures into your design.

❍ If test DRC reports violations, you can graphically analyze the violations by using 
Design Vision. See Chapter 8, “Running the Test DRC Debugger.”

To fix the violations, either change your design, change your test protocol, or do both.

Preparing Your Design

To prepare your design-for-test DRC, follow these steps:

1. Set the search_path variable to point to directory paths that contain your design and 
library files.

2. Set the link_library variable to point to the logic library files referred to by your design.

3. Set the target_library variable to point to logic library files you want mapped to your 
design.

4. Use the read_file command to read your design into DFT Compiler.

5. Run the link command to link your design with your logic library.

See Also

• “Reading Designs” in the Design Compiler User Guide for more information about 
reading in your design
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Creating the Test Protocol

If you have an existing test protocol, read the test protocol into DFT Compiler by using the 
read_test_protocol command. If you do not have an existing test protocol, create it by 
following these steps:

1. Identify the test-related ports in your design. Such signals include

❍ Clocks

❍ Asynchronous sets and resets

❍ Scan inputs

❍ Scan outputs

❍ Scan enables

2. Define DFT signals on these ports by using the set_dft_signal command.

3. Run the create_test_protocol command to create the test protocol for your design. 

Assigning a Known Logic State

You can use the set_test_assume command to assign a known logic state to output pins 
of black-box sequential cells. The command syntax is

set_test_assume value pin_list

The value argument specifies the assumed value, 1 or 0, on this output pin or pins.

The pin_list argument specifies the names of output pins of unknown black-box cells, 
including nonscan sequential cells in full-scan designs. The hierarchical path to the pin 
should be specified for pins in subblocks of the current design.

The dft_drc command takes into account the conditions you define with the 
set_test_assume command.

Performing Test Design Rule Checking

After you create or read in a test protocol, perform test design rule checking by running the 
dft_drc command.

If you run the insert_dft command without first running the dft_drc command, the tool 
implicitly runs the dft_drc command before proceeding with DFT insertion.

In either case, the following message indicates that test DRC checking is performed:

Information: Starting test design rule checking. (TEST-222)
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In the AutoFix flow, the first DRC analysis determines what test points are needed. The 
insert_dft command inserts the test point logic into the design database, then implicitly 
runs the dft_drc command again to determine the final DRC results. In this case, you will 
see an additional TEST-222 message issued during DFT insertion.

Reporting All Violating Instances

By default, the dft_drc command generates a message only for the first violating instance 
of a given violation type. To see all violations, use the dft_drc -verbose command.

You cannot perform verbose violation reporting when the dft_drc command is implicitly run 
by the preview_dft or insert_dft command.

Analyzing and Debugging Violations

You can graphically analyze the cause of a violation by using Design Vision, as described in 
Chapter 8, “Running the Test DRC Debugger.” 

After you have located the cause of the violation, you can either change the design, change 
the test protocol, or do both. Then rerun the previously described steps to see if the 
violations have been fixed.

You can also use AutoFix to fix uncontrollable clocks and asynchronous sets and resets.

See Also

• “Using AutoFix” on page 11-40 for more information about using AutoFix to fix design 
testability issues

Summary of Violations

At the completion of design rule checking, the dft_drc command displays a violation 
summary. Example 14-1 shows the format of the violation summary. 

Example 14-1 Violation Summary 

----------------------------------------------------------
  DRC Report
  Total violations: 6
----------------------------------------------------------
6 PRE-DFT VIOLATIONS
 3 Uncontrollable clock input of flip-flop violations (D1)
 3 DFF set/reset line not controlled violations (D3)

Warning: Violations occurred during test design rule 
checking. (TEST-124)
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----------------------------------------------------------
  Sequential Cell Report
  3 out of 5 sequential cells have violations
----------------------------------------------------------
SEQUENTIAL CELLS WITH VIOLATIONS
      *   3 cells have test design rule violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
      *   2 cells are valid scan cells

The total number of violations for the circuit appears in the header. If there are no violations 
in the circuit, the dft_drc command displays only the violation summary header. Within the 
summary, violations are organized by category. A violation category appears in the 
summary only if there are violations in that category. For each category, the dft_drc 
command displays the number (n) of violations, along with a short description of each 
violation and the corresponding error message number. Using the error message number, 
you can find the violation in the dft_drc run. 

Unknown cell violations have message numbers in the TEST-451 to TEST-456 range. 
Unsupported cell violations have message numbers in the TEST-464 to TEST-469 range. 
The following is an excerpt from a violation summary for unknown cells:

----------------------------------------------------------
  DRC Report
  Total violations: 4
----------------------------------------------------------

3 MODELING VIOLATIONS
     1 Cell has unknown model violation (TEST-451)

Enhanced Reporting Capability

You can enable enhanced DRC reporting by setting the 
test_disable_enhanced_dft_drc_reporting variable to false. When enhanced 
reporting is enabled, the reporting and formatting of rule violations are changed to provide a 
better understanding of the respective rules.

Example 14-2 provides a typical enhanced DRC report:

Example 14-2 Enhanced DRC Report Example

In mode: all_dft...
  Pre-DFT DRC enabled
Information: Starting test design rule checking. (TEST-222)
  Loading test protocol
  ...basic checks...
  ...basic sequential cell checks...
      ...checking for scan equivalents...
  ...checking vector rules...
  ...checking pre-dft rules...
Simulation library files used for DRC
-----------------------------------------------------------------
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./core_slow_lvds_pads.v

./core_slow_special_cells.v
Cores and modes used for DRC in mode: all_dft
-----------------------------------------------------------------
SUB_1: U1, U3, U4 mode: Internal_scan
SUB_2: U5, U6 mode: Internal_scan
Modeling and user constraints that will prevent scan insertion
-----------------------------------------------------------------
Warning: Cell U34 will not be scanned due to set_scan_element command. 
(TEST-202)
DRC violations which will prevent scan insertion
-----------------------------------------------------------------
Warning: Cell U1 has constant 1 value. (TEST-505)
Warning: Reset input RN of DFF U53 was not controlled. (D3-1)
Information: There are 10 other cells with the same violation. (TEST-171)
DRC Violations which can affect ATPG coverage
-----------------------------------------------------------------
Warning: Clock CCLK can capture new data on LS input of DFF U25. (D13-1)
         Source of violation: input CLK of DLAT U13/clk_gate_flop/latch.
Warning: CCLK clock path affected by new capture on LS input of DFF U17 
(D15-1)
         Source of violation: input CLK of DLAT U18/clk_gate_flop/latch.
-----------------------------------------------------------------
DRC Report
Total violations: 14
-----------------------------------------------------------------
1 MODELING AND USER VIOLATIONS AFFECTING SCAN INSERTION
  1 cell with set_scan_element constraint (TEST-202)
11 DRC VIOLATIONS AFFECTING SCAN INSERTION
  1 Constant cell (TEST-505)
11 DFF reset line not controlled violations (D3)
2 DRC VIOLATIONS AFFECTING ATPG coverage
  1 Data path affected by clock captured by clock in level sensitive
      clock_port violations 
(D13)
  1 Clock path affected by clock captured by clock in level sensitive
      clock_port violations 
(D15)
-----------------------------------------------------------------
Sequential Cell Report
                              Cells   Core    core_cells
-----------------------------------------------------------------
Sequential elements detected:   50      5      50
Clock gating cells:             0
Synchronizing cells:            0
Non scan elements:              1       0      0
Excluded scan elements:         0       0      0
Violated scan elements:         11      1      10
Scan elements:                  39      4      40
-----------------------------------------------------------------
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Test Design Rule Checking Messages

When you invoke the dft_drc command, it generates messages to assist you in 
determining problems with your scan design. These messages fall into three categories:

• Information

Information messages give you the status of the design rule checker or more detail about 
a particular rule violation. 

• Warning

A warning message indicates a testability problem that lowers the fault coverage of the 
design. Most of the violations reported by the dft_drc command are warning messages. 
The warnings allow you to evaluate the effect of violations and determine acceptable 
violations, based on your test requirements.

Many warnings reported by dft_drc reduce fault coverage. Try to correct all violations, 
because a cell that violates a design rule, as well as the cells in its neighborhood, is not 
testable. A cell’s neighborhood can be as large as its transitive fanin and its transitive 
fanout.

• Error

An error message indicates a serious problem that prevents further processing of the 
design in DFT Compiler until you resolve the problem. 

Understanding Test Design Rule Checking Messages

You can access online help for most warning messages generated by dft_drc. Online help 
provides information about the violation and information about how to proceed. Use the help 
command to access online help:

dc_shell> man message_id

Replace the message_id argument with the string shown in the parentheses that follow the 
warning text.

To keep a record of the information, warning, and error messages for your design, direct the 
output from the dft_drc command to a file with a command such as

dc_shell> dft_drc > my_drc.out

In this example, my_drc.out is the name of the output file.
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Effects of Violations on Scan Replacement

When violations occur, the dft_drc command issues the following message:

Warning: Violations occurred during test design rule checking. (TEST-124)

For designs that are synthesized with the compile -scan command, the default behavior is 
that violations on scan-replaced cells cause the insert_dft command to unscan those 
cells. Sequential cells with violations are not included in a scan chain because they would 
probably prevent the scan chain from working as intended. 

For designs that are not synthesized with the compile -scan command, violations on 
sequential cells cause the insert_dft command not to perform scan replacement for those 
cells.

For certain violation types, you can configure DFT insertion to include violating sequential 
cells in scan chains. See “Masking Capture DRC Violations” on page 14-37.

Viewing the Sequential Cell Summary

When the dft_drc command completes DRC, it provides a summary of the test status of 
the sequential cells in your design. Example 14-3 shows an example of the summary.

Example 14-3 Sequential Cell Summary

----------------------------------------------------------
  Sequential Cell Report
  
  2 out of 133721 sequential cells have violations
----------------------------------------------------------

SEQUENTIAL CELLS WITH VIOLATIONS
      *   2 cells have capture violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
      *133719 cells are valid scan cells

To get a complete listing of all the cells in each category, run the dft_drc -verbose 
command.

For information about classifying sequential cells, see the next section.

Classifying Sequential Cells

After the violation summary, the dft_drc command displays a summary of sequential cell 
information.

Example 14-4 shows the syntax of the sequential cell summary. 
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Example 14-4 Sequential Cell Summary

----------------------------------------------------------
  Sequential Cell Report
  
  2 out of 133721 sequential cells have violations
----------------------------------------------------------

SEQUENTIAL CELLS WITH VIOLATIONS
      *   2 cells have capture violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
      *133719 cells are valid scan cells

The number of sequential cells with violations appears in the header. This number is the 
sum of the cells with scan shift violations, capture violations, and constant values, along with 
the cells that are black boxes. If a design has no sequential cells, only a header with the 
following message appears:

There are no sequential cells in this design

Within the summary, the sequential cells are divided into two groups: those with violations 
and those without. Only the categories of sequential cells that are found in the design are 
listed in the summary. In verbose mode, cell names are listed within each category. More 
information about the sequential cell categories is provided in the following topics.

Sequential Cells With Violations

This topic of the sequential cell summary points to problematic sequential cells. The cells in 
this group have corresponding violations that can be found in the DRC output of the 
dft_drc command.

Cells With Scan Shift Violations

This category includes cells with scan-in and scan connectivity violations. Within this 
category, cells are listed by the type of scan shift violation. 

• Not scan-controllable

The dft_drc command cannot transport data from a scan-in port into the cell.

• Not scan-observable

The dft_drc command cannot transport data from the cell to a scan-out port.

Note:   
Cells in multibit components are homogeneous. If a cell in a multibit component has 
violations, all of the cells in that multibit component have violations. 
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After dft_drc has run, you can invoke the report_scan_path -view existing_dft 
-chain all command to observe the scan chains as extracted by the dft_drc command.

Black-Box Cells

Included in the black-box cells category are sequential cells that cannot be used for scan 
shift. Unknown cells and unsupported cells are classified as black boxes. These cells are not 
scan-replaced when you run the insert_dft command.

Constant Value Cells

The constant value category includes sequential cells that are constant during scan testing. 
These cells are assumed to hold constant values; they are not scan-replaced by 
insert_dft. For every constant value sequential cell, there is a corresponding TEST-504 
or TEST-505 violation.

Sequential Cells Without Violations

The valid scan cells category displays the number of sequential cells that have no test 
design rule violations. ATPG tools can use these cells for scan shift and for measuring circuit 
response data. Valid scan cells can be scan-replaced by insert_dft.

Note:   
Valid scan cells can have capture violations. Valid cells with capture violations only are 
scan-replaced.

The number of synchronization latches is listed in the last category.

Checking for Modeling Violations

If you instantiate a cell that DFT Compiler doesn’t understand, you can get modeling 
violations. The dft_drc command performs modeling checks locally, one cell at a time.

Modeling violations are covered in the following topics:

• Black-Box Cells

• Unsupported Cells

• Generic Cells

• Scan Cell Equivalents

• Latches
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Black-Box Cells

A cell whose output is considered unknown is classified as a black-box cell. These cells 
might lack a functional description in the logic library. Such cells are marked as black-box by 
the report_lib command. Also, the dft_drc command identifies black-box sequential 
cells.

The dft_drc command requires that you have a functional model in your library for each 
leaf cell in your design. If you use cells that do not have functional models, the dft_drc 
command displays the following warning:

Warning: Cell %s (%s) is unknown (black box) because functionality for
output pin %s is bad or incomplete. (TEST-451)

You do not need to correct black-box violations for memory macro cells; they are always 
modeled as black-box cells by the dft_drc command. In TetraMAX, you can use memory 
models so that sequential ATPG can obtain fault coverage around the memories.

See Also

• The Library Compiler documentation for more information about modeling the behavior 
of cells

Correcting Black-Box Cells

DFT Compiler models a cell as a black box in these cases:

• The link command cannot resolve the cell reference by using the logic libraries or 
designs in the search_path (unresolved reference).

• The logic library model for the cell reference does not contain a functional description 
(black-box library cell).

In the following cases, a black-box cell can have a severe impact on fault coverage:

• The black-box cells are pad cells.

The dft_drc command completely fails and prevents insert_dft from working. This 
occurs during scan stitching at the top level.

• A black-box cell controls the enable signal of an internal three-state driver or a 
bidirectional signal.

The insert_dft command inserts three-state and bidirectional control logic if the 
existing control logic is a black box, even if doing so is unnecessary.

DFT Compiler generates this warning message when it models a cell as a black box:

Warning: Cell %s (%s) is unknown (black box) because functionality for
output pin %s is bad or incomplete. (TEST-451)
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The method for correcting the violation depends on the source of the violation and the 
complexity of the cell.

Note:   
Use the link command to correct unresolved references.

Black-Box Library Cell

If no functional description of the cell exists in the logic library, you need to obtain either a 
functional model or a structural model of the cell.

If the cell can be functionally modeled by the Library Compiler tool, obtain an updated logic 
library that includes a functional model of the cell.

If you have a simulation model for the black box, declare it by using the following variable:

dc_shell> set_app_var test_simulation_library simulation_library_path

Note the following license-related requirements:

• If you have a Library Compiler license and the library source code, add the functional 
description to the library cell model.

See the Library Compiler documentation for information about cell modeling.

• If you do not have a Library Compiler license or library source code, ask your 
semiconductor vendor for a library that contains a functional model of the cell.

If the Liberty syntax does not support functional modeling of the cell, create a structural 
model for the cell and link the design to this structural model instead of the library cell model.

Note:   
You should only use the test_simulation_library variable to replace leaf cells that 
do not have functional models. Do not use the variable to replace any arbitrary module 
in the design. If you want to replace the entire design module that consists of leaf cells, 
you should use the remove_design command to remove the module and then read the 
Verilog netlist description of that module into memory.

Unsupported Cells

Cells can have a functional description and still not be supported by the dft_drc command. 
Using state table models, library developers can describe cells that violate the current 
assumptions for test rule checking. The dft_drc command detects those cells and flags 
them as black boxes.
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DFT Compiler supports single-bit cells or multibit cells that have identical functionality on 
each pin; these cells have the following characteristics:

• The functional view, which Design Compiler synthesis understands and manipulates, is 
either a flip-flop, a latch, or a master-slave cell with clocked_on and clocked_on_also 
attributes.

• The test view, used for scan shifting, is either a flip-flop or a master-slave cell.

• The functional view and the test view each have a single clock per internal state.

The multibit library cell interfaces must be either fully parallel or fully global. For cells that do 
not meet these criteria, DFT Compiler uses single-bit cells. 

For example, if you want to infer a 4-bit banked flip-flop with an asynchronous clear signal, 
the clear signal must be either different for each bit or shared among all 4 bits. If the first and 
second bits share one asynchronous reset but the third and fourth bits share another reset, 
DFT Compiler does not infer a multibit flip-flop. Instead, DFT Compiler uses 4 single-bit 
flip-flops. For more information about multibit cells and multibit components, see the Design 
Compiler User Guide.

DFT Compiler does not support registers or duplicate sequential logic within a cell. The 
nonscan equivalent of a scan cell must have only one state. A scan cell can have multiple 
states in shift mode.

If the dft_drc command detects such a cell, it issues the following warning: 

Cell %s (%s) is not supported because it has too many
states (%d states). This cell is being black-boxed. (TEST-462)

When the dft_drc command recognizes part of a cell as a master-slave latch pair but finds 
extra states, it issues one of the following warnings, depending on the situation: 

Master-slave cell %s (%s) is not supported because the state
pin %s is neither a master nor a slave. This cell is being
black-boxed. (TEST-463)

Master-slave cell %s (%s) is not supported because there
are two or more master states. This cell is being
black-boxed. (TEST-464)

Master-slave cell %s (%s) is not supported because there
are two or more slave states. This cell is being
black-boxed. (TEST-465)

If the dft_drc command detects a state with no clocks or with multiple clocks, it issues one 
of the following warnings:

Cell %s (%s) is not supported because the state pin %s has no
clocks. This cell is being black-boxed. (TEST-466)
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Cell %s (%s) is not supported because the state pin %s is
multi-port. This cell is being black-boxed. (TEST-467)

In addition, the dft_drc command detects and rejects sequential cells with three-state 
outputs and issues the following warning:

Cell %s (%s) is not supported because it is a sequential
cell with three-state outputs. This cell is being
black-boxed. (TEST-468)

Black-box cells have an adverse effect on fault coverage. To avoid this effect, you must 
replace unsupported cells with cells that DFT Compiler can support.

Note:   
Unsupported cells can originate only from explicit instantiation. They are not used by the 
Design Compiler or DFT Compiler tools. For more information about modeling sequential 
cells, see the Library Compiler documentation.

Generic Cells

Your design should be a mapped netlist. In the RTL stage, the dft_drc command will map 
your design into an internal representation.

Some generic cells, such as unimplemented DesignWare parts and operators, have implicit 
functional descriptions. The dft_drc command treats them as black-box cells and displays 
the following warning message:

Warning: Cell %s (%s) is unknown (black box) because 
functionality for output pin %s is bad or incomplete. (TEST-451)

If you instantiate generic cells after running compile -scan, you must recompile your 
design.

Scan Cell Equivalents

When checking test design rules in a design without scan chains, the dft_drc command 
verifies that each sequential element has not been explicitly marked by using the 
set_scan_element false command. If a scan cell equivalent does not exist or it has the 
dont_use attribute applied, the dft_drc command issues the following warning message:

Warning: No scan equivalent exists for cell %s (%s). (TEST-120)

Note:   
Use the set_scan_element false command to prevent scan replacement.

The cells in violation are marked as nonscan. In the full-scan methodology, these cells are 
black boxes. If these cells are not valid nonscan, they are in violation and are black boxes. 
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You can suppress the TEST-120 warning with the set_scan_element command. For 
example, to ensure that a nonscan latch cell is not made scannable, enter the command

dc_shell> set_scan_element false latch_name

If you use the set_scan_element command, the dft_drc command issues the following 
information message:

Information: Cell %s (%s) will not be scanned due to a 
set_scan_element command. (TEST-202)

If the dft_drc command cannot find scan cell equivalents in the target library, the probable 
reason is that the target library does not contain test cells. In such cases, the dft_drc 
command issues the following warning:

Warning: Target library for design contains no scan-cell models.
(TEST-224)

Scan Cell Equivalents and the dont_touch Attribute

If you set the dont_touch attribute on a nonscan cell before scan cell replacement, that cell 
is not modified or scan-replaced when you optimize the design. In this case, the dft_drc 
command produces the following warning:

Warning: Cell %s (%s) can’t be made scannable because it is
dont_touched. (TEST-121)

If you apply the dont_touch attribute to scan-replaced cell, the cell can still be added to a 
scan chain.

Note:   
Use the dont_touch attribute carefully, because it can increase the number of nonscan 
cells, and nonscan cells lower fault coverage.

Use the set_scan_element false command if you do not want to make a sequential cell 
scannable but you do want to be able to modify the cell during optimization.

Latches

DFT Compiler replaces latches with scannable latches whenever possible. If the dft_drc 
command cannot find scan cell equivalents for the latches, it marks the latches as nonscan 
and issues the TEST-120 warning as previously explained.
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Nonscan Latches

DFT Compiler models nonscan latches in two ways:

• As black boxes

• As synchronization elements

If you do not scan replace your latches, you can ignore “no-scan equivalent” messages for 
latches.

A nonscan latch is treated by default as a black box. However, if the latch satisfies the 
requirements for a synchronization element, the dft_drc command treats the latch as a 
synchronization element.

Note:   
The dft_drc command allows synchronous elements to be on the scan chain.

Setting Test Timing Variables

This topic discusses the process for setting test timing variables for your design. The timing 
variables are used by the test protocol for design rule checking and for DFT preview and 
insertion.

This topic covers the following:

• Protocols for Common Design Timing Requirements

• Setting Timing Variables

Protocols for Common Design Timing Requirements

Before creating a test protocol and checking test design rules, you need to identify the timing 
information for your design. You do this by setting a number of timing variables and, if 
necessary, by defining test clock requirements. Timing variables are discussed in detail in 
“Setting Timing Variables” on page 14-19. 

Defining test clock requirements is discussed in detail in Chapter 10, “Architecting Your Test 
Design.”

If your design’s timing variable values are the same as the variables’ defaults, you do not 
need to make any changes.
Chapter 14: Pre-DFT Test Design Rule Checking
Setting Test Timing Variables 14-18



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Preclock Measure Protocol

To use a preclock measure protocol, use the default test timing variable values, which are 
as follows:

test_default_period :       100 ;
test_default_delay :          0 ;
test_default_bidir_delay :    0 ;
test_default_strobe :        40 ;
test_default_strobe_width :   0 ;

This configuration places the measure strobe before the default clock pulse. If you use a 
nondefault clock waveform, adjust the strobe value accordingly. Check with your 
semiconductor vendor for specific timing information.

End-of-Cycle Measure Protocol

To use an end-of-cycle measure protocol, set the test timing variables as follows:

test_default_period :      100 ;
test_default_delay :         0 ;
test_default_bidir_delay :   0 ;
test_default_strobe :       95 ;
test_default_strobe_width :  0 ;

This configuration places the measure strobe after the default clock pulse. Although the 
end-of-cycle measure protocol works with TetraMAX ATPG, the default preclock measure 
protocol is more efficient.

The end-of-cycle measure protocol cannot be used with

• Clocks controlled by OCC controllers

• DFTMAX high X-tolerance scan compression (with or without serializer)

• DFTMAX Ultra scan compression

Setting Timing Variables

Before you run the create_test_protocol command, you need to define timing variables. 
The command uses the following test variables to determine the values in the test protocol 
timing variables:

test_default_period
test_default_delay
test_default_bidir_delay
test_default_strobe
test_default_strobe_width
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The requirements from your semiconductor vendor, together with the basic scan test 
requirements, drive the specification of test timing parameters. If you intend to use postclock 
strobing, you need to change the default variable values. You can do this every time you 
create a new design, or you can add these variable values to your local .synopsys_dc.setup 
file.

test_default_period Variable

The test_default_period variable defines the default, in ns, for the period in the test 
protocol. The period value must be a positive real number.

By default, DFT Compiler uses a 100 ns test period. If your semiconductor vendor uses a 
different test period, specify the required test period by using the test_default_period 
variable.

The syntax for setting the variable is

set_app_var test_default_period period

For example,

dc_shell> set_app_var test_default_period 100

In the .synopsys_dc.setup file, the test_default_period variable is set to 100 ns.

test_default_delay Variable

The test_default_delay variable defines the default, in ns, for the input delay in the 
inferred test protocol. The delay value must be a nonnegative real number less than the 
strobe value. See the default timing in Figure 14-2 on page 14-24. 

By default, DFT Compiler applies data to all nonclock input ports 0 ns after the start of the 
cycle. If your semiconductor vendor requires different input timing, specify the required input 
delay by using the test_default_delay variable.

The syntax for setting the variable is

set_app_var test_default_delay delay

For example,

dc_shell> set_app_var test_default_delay 5

In the .synopsys_dc.setup file, test_default_delay is 0 ns.
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test_default_bidir_delay Variable

The test_default_bidir_delay variable defines the default, in ns, for the bidirectional 
delay in the inferred test protocol. The bidir_delay must be a positive real number less than 
the strobe value and can be less than, greater than, or equal to the delay value. See the 
default timing in Figure 14-2 on page 14-24.

By default, DFT Compiler applies data to all bidirectional ports in input mode 0 ns after the 
start of the parallel measure cycle. In any cycle where a bidirectional port changes from 
input mode to output mode, DFT Compiler releases data from the bidirectional port 0 ns after 
the start of the cycle. If your semiconductor vendor requires different bidirectional timing, 
specify the required bidirectional delay by using the test_default_bidir_delay variable.

The risks associated with incorrect specification of the bidirectional delay time include

• Test design rule violations

• Bus contention

• Simulation mismatches

Minimize these risks by carefully specifying the bidirectional delay time.

DFT Compiler uses the bidirectional delay time as

• The data application time for bidirectional ports in input mode during the parallel measure 
cycle and during scan-in for bidirectional ports used as scan inputs or scan-enable 
signals

• The data release time for bidirectional ports in input mode during cycles in which the 
bidirectional port changes from input mode to output mode

DFT Compiler performs relative timing checks during test design rule checking. The 
following requirements must be met:

• The bidirectional delay time must be less than the strobe time.

If you change the strobe time from the default, confirm that the bidirectional delay value 
meets this requirement.

• If the bidirectional port drives sequential logic, the bidirectional delay time must be equal 
to or greater than the active edge of the clock.

The syntax for setting the variable is

set_app_var test_default_bidir_delay bidir_delay

For example,

dc_shell> set_app_var test_default_bidir_delay 40

In the .synopsys_dc.setup file, test_default_bidir_delay is 0 ns.
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test_default_strobe Variable

The test_default_strobe variable defines the default, in ns, for the strobe in the inferred 
test protocol. The strobe value must be a positive real number less than the period value and 
greater than the test_default_delay value (see the default timing in Figure 14-2 on 
page 14-24).

By default, DFT Compiler compares data at all output ports 40 ns after the start of the cycle. 
If your semiconductor vendor requires different strobe timing, specify the strobe time by 
using the test_default_strobe variable.

The syntax for setting the variable is

set_app_var test_default_strobe strobe

For example:

dc_shell> set_app_var test_default_strobe 100

In the .synopsys_dc.setup file, test_default_strobe is 40 ns.

test_default_strobe_width Variable

The test_default_strobe_width variable defines the default, in ns, for the strobe width in 
the inferred test protocol. The strobe width value must be a positive real number. The strobe 
value plus the strobe width value must be less than or equal to the period value. See the 
default timing in Figure 14-2 on page 14-24.

Clocking requirements specified by semiconductor vendors include

• Clock waveform timing

• Maximum number of unique clock waveforms

• Minimum delay between different clock waveforms, which allows for clock skew on the 
tester

DFT Compiler provides the capability to specify clock waveform timing but does not place 
any restrictions on the number of unique waveforms that can be defined or the minimum 
time between clock waveforms. By determining what restrictions the semiconductor vendor 
places on these timing parameters, you can define clock waveforms that meet the 
restrictions.
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When DFT Compiler infers clock ports during dft_drc, the clock type determines the 
default timing for each clock edge. Table 14-1 provides the default clock timing for each 
clock type.

DFT Compiler determines the polarity of the first edge (rise or fall) so that the first clock edge 
triggers the majority of cells on a clock. The timing arcs in the logic library specify each cell’s 
trigger polarity. The polarity of the second edge is opposite the polarity of the first edge, that 
is, if the first edge is rising (falling), the second edge is falling (rising).

Use the set_dft_signal command to specify clock waveforms if your semiconductor 
vendor’s requirements differ from the default timing.

The set_dft_signal command has a time period associated with it. That period has to be 
identical to the test_default_period value. If you change the value of one, you must 
check the value of the other.

The syntax for setting the variable is

set_app_var test_default_strobe_width strobe_width

If you need a window strobe in your STIL procedure file (SPF) or STIL patterns, set the 
default of test_default_strobe_width to 1 ns, as shown in the following command:

dc_shell> set_app_var test_default_strobe_width 1

In the .synopsys_dc.setup file, test_default_strobe_width is 0 ns.

Note:   
When test_default_strobe_width is 0 ns, the strobe width is equal to one of two 
values: the difference between the strobe time and the end of the period, or the 
difference between the strobe time and the first input event after the strobe occurs, 
whichever occurs first.

Table 14-1 Default Clock Timing for Each Clock Type 

Clock type First edge Second edge

Edge-triggered or
D-latch enable

45 55

Master clock 30 40

Slave clock 60 70

Edge-triggered 45 60

Master clock1 50 60

Slave clock 40 70
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The Effect of Timing Variables on Vector Formatting

Figure 14-2 shows a timing diagram for a strobe-before-clock scheme.

Figure 14-2 Effect of Timing Variables on Vector Formatting 

Creating Test Protocols

Test protocols are an intrinsic part of your design-for-test process and must be created 
before you run the dft_drc command. This topic covers the following topics related to 
creating test protocols:

• Design Characteristics for Test Protocols

• STIL Test Protocol File Syntax

• Defining an Initialization Protocol

• Scan Shift and Parallel Measure Cycles

• Examining a Test Protocol File
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Design Characteristics for Test Protocols

A test protocol is based on certain characteristics of a design. The following topics discuss 
how a protocol is affected by these design characteristics:

• Scan Style

• New DFT Signals

• Existing Clock Ports

• Existing Asynchronous Control Ports

• Bidirectional Ports

Scan Style

Each scan style has a unique method of performing scan shift, which must be reflected in 
the test protocol.

See Also

• “Scan Shift and Parallel Measure Cycles” on page 14-32 for more information about how 
scan style influences the scan shift process

New DFT Signals

The DFT signal attributes are set automatically for each new test port created by the 
insert_dft command. The DFT signal attributes are preserved if you save the design in 
Synopsys .ddc format. If you have an existing scan design that is not saved in Synopsys 
.ddc format, you must reidentify each test port with the appropriate set_dft_signal 
command.

Existing Clock Ports

You specify existing clock ports (and their timing attributes) by using the set_dft_signal 
command.

Tracing back from the clock pins on all sequential elements to the ports driving these pins 
interesting Clock ports can also be inferred by. The default timing for the clock signals is 
determined by the set_scan_configuration -style command. 
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Existing Asynchronous Control Ports

You specify existing asynchronous control ports by using the following command:

dc_shell> set_dft_signal -view existing_dft \
               -type Reset -port RSTN -active_state 0

Asynchronous control ports can also be inferred by tracing back from the asynchronous pins 
on all sequential elements to the ports controlling these pins. Asynchronous control ports 
must be identified because all asynchronous inputs must be disabled during scan shift to 
allow predictable loading and unloading of the scan data. 

Bidirectional Ports

In all cycles except parallel measure and capture, all nondegenerated bidirectional ports are 
assumed to be in output (driving) mode and are appropriately masked. During parallel 
measure and capture cycles, ATPG data controls the bidirectional ports as normal input or 
output ports but the test_default_bidir_delay variable controls the timing.

STIL Test Protocol File Syntax

DFT Compiler reads test protocols written in the Standard Test Interface Language (STIL). 
The STIL format is also used by TetraMAX ATPG.

Although the STIL procedure file syntax is the same as that used by TetraMAX ATPG, DFT 
Compiler cannot read some of the STIL elements that are available in TetraMAX ATPG.

The following STIL elements are not available in DFT Compiler:

• Post load_unload vectors

• Multiple scan groups in the load_unload procedure

• Multiple waveforms in the timing section

For general information on STIL standards (IEEE Std. 1450.0-1999), see the STIL home 
page at

http://grouper.ieee.org/groups/1450/index.html

Note that both the DFT Compiler and TetraMAX tools use the IEEE P1450.1 extensions to 
STIL. For details, see Appendix E, “STIL IEEE P1450.1 Extensions,” in TetraMAX Online 
Help.
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Defining the test_setup Macro

The test_setup macro is optional. It defines any initialization sequences that the design 
might need for test mode or to ensure that the device is in a known state. A test_setup 
macro example is shown in Example 14-5.

Example 14-5 Defining the test_setup Macro in the SPF

STIL;
     ScanStructures {
          ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
          ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
          ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
          ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
     }
Procedures {
     "load_unload" {
          V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
          Shift {
               V { _si=####; _so=####; CLOCK=P;}
          }
     }
}
MacroDefs {
     test_setup {
          V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1; }
          V {PLL_RESET = 0; }
          V {PLL_RESET = 1; }
     }
}

If you need to initialize a port to X in the test_setup macro, the STIL assignment character 
for this is N. An X indicates that outputs are measured and the result is masked.

Defining Basic Signal Timing

If you do not define the signal timing explicitly, DFT Compiler uses its own defaults.

Example 14-6 contains many additions to define signal timing. Line numbers have been 
added for reference. Note:

• Lines 6–9. Defines some additional signal groups so that timing for all inputs or outputs 
can be defined in just a few lines, instead of explicitly naming each port and its timing.

• Lines 12–28. Defines a waveform table with a period of 1,000 ns that defines the timing 
to be used during nonshift cycles.

• Line 37. Adds the W statement to ensure that BROADSIDE_TIMING is used for V cycles 
during the load_unload procedure.

• Line 48. Causes the test_setup macro to use BROADSIDE_TIMING.
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Example 14-6 Defining Timing in the SPF

1. STIL;
2. UserKeywords PinConstraints;
3. PinConstraints { "TEST_MODE" 1; "PLL_TEST_MODE" 1; }
4. SignalGroups {
5.   bidi_ports = '"D[0]" + "D[1]" + "D[2]" + "D[3]" + "D[4]"
       + "D[5]" + "D[6]" + "D[7]" + "D[8]" + "D[9]" + "D[10]" +
       "D[11]" + "D[12]" + "D[13]" + "D[14]" + "D[15]" ‘;
6.   input_grp1 = 'SCAN_ENABLE + BIDI_DISABLE + TEST_MODE + 
       PLL_TEST_MODE' ;
7.   input_grp2 = 'SDI1 + SDI2 + DIN + "IRQ[4]"' ;
8.   in_ports = 'input_grp1 + input_grp2';
9.   out_ports = 'SDO2 + D1 + YABX + XYZ';
10. }
11. Timing {
12.   WaveformTable "BROADSIDE_TIMING" {
13.   Period '1000ns';
14.   Waveforms {
15.     CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } } 
         //  clock
16.     CLOCK { 01Z { '0ns' D/U/Z; } }
17.     RESETB { P { '0ns' U; '400ns' D; '800ns' U; } } 
         // async reset
18.     RESETB { 01Z { '0ns' D/U/Z; } }
19.     input_grp1 { 01Z { '0ns' D/U/Z; } }
20.     input_grp2 { 01Z { '10ns' D/U/Z; } }
    // outputs are to be measured at t=350
21.     out_ports { HLTX { '0ns' X; '350ns' H/L/T/X; } }
    // bidirectional ports as inputs are forced at t=20
22.     bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
23.     // bidirectional ports as outputs are measured at
         t=350
24.     bidi_ports { X { '0ns' X; } }
25.     bidi_ports { HLT { '0ns' X; '350ns' H/L/T; } }
26.     }
27.   } // end BROADSIDE_TIMING
28. }
29. ScanStructures {
30.   ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
31.   ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
32.   ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
33.   ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
34. } // end scan structures
35. Procedures {
36. "load_unload" {
37.   W "BROADSIDE_TIMING" ;
38.  V {CLOCK=0; RESETB=1; SCAN_ENABLE=1; BIDI_DISABLE=1;
    bidi_ports = \r16 Z;}
39.   V {}
40.   V { bidi_ports = \r4 1010 ; }
41.   Shift {
42.   V { _si=####; _so=####; CLOCK=P;}
Chapter 14: Pre-DFT Test Design Rule Checking
Creating Test Protocols 14-28



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
43.   }
44. } // end load_unload
45. } //end procedures
46. MacroDef {
47.   "test_setup" {
48.     W "BROADSIDE_TIMING" ;
49.     V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
50.     BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
51.     V {PLL_RESET = 0; }
52.     V {PLL_RESET = 1; }
53.   } // end test_setup
54. } //end procedures

Defining the load_unload Procedure

The load_unload procedure contains information about placing the scan chains into a 
shiftable state and shifting 1 bit through them. DFT Compiler creates this procedure if you 
define the scan-enable information before you write out the STIL file. Example 14-7 shows 
the syntax used to define scan chains.

Example 14-7 Defining Scan Chain Loading and Unloading in the SPF

STIL;
ScanStructures {
  ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
  ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
  ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
  ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
  "load_unload" {
    V { CLOCK=0; RESETB=1; SCAN_ENABLE=1; }
  }
}

Defining the Shift Procedure

The shift procedure specifies how to shift the scan chains within the definition of the 
load_unload procedure. The bold text shown in Example 14-8 defines the shift procedure.

Example 14-8 Defining the Scan Chain Shift Procedure in the SPF

STIL;
ScanStructures {
  ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
  ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
  ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
  ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
  "load_unload" {
    V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
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    Shift {
    V { _si=####; _so=####; CLOCK=P;}
    }
  }
}

Defining an Initialization Protocol

If your design requires an initialization sequence to configure it for scan testing, you can 
provide the initialization vectors through an initialization protocol. With an initialization 
protocol, you provide specific vectors to initialize the design while letting the 
create_test_protocol command complete the scan shifting steps of the protocol. 

Use the following process to generate an initialization protocol:

1. Analyze the design to determine its test configuration requirements.

❍ Determine the initial state required and the initialization sequence necessary to 
achieve this state.

❍ Determine the test configuration required to maintain this initial condition throughout 
scan testing.

2. Generate a default test protocol file.

❍ Specify timing parameters if you require values other than the default.

❍ Specify test configuration requirements determined in the analysis step by using the 
set_dft_signal command.

❍ Run create_test_protocol to generate the default protocol.

❍ Use the write_test_protocol command to write the ASCII protocol file.

3. Create the initialization protocol file.

Modify the initialization sequence in the test_setup section of the test protocol file.

4. Read in the initialization protocol.

First remove the existing protocol by using the remove_test_protocol command, then 
read the initialization protocol using the following command.

read_test_protocol -section test_setup

5. Rerun create_test_protocol to complete the test protocol.

Run test DRC.

See the design in Figure 14-3 for an illustration of the use of an initialization protocol.
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Figure 14-3 Design That Needs an Initialization Protocol

In this design, the clock signal, clk, is active low. For the clock signal to reach FF2, you need 
to initialize it by pulsing clk one time so that the enable signal FF1_out is asserted. Because 
the create_test_protocol command has no knowledge of this requirement, you need to 
modify the generated protocol to include this special initialization sequence. 

The initialization sequence generated by the create_test_protocol command looks like 
the following:

"test_setup" {
   W "_default_WFT_";
   V {  "CLK"=1; }
   V {  "CLK"=1; "test_mode"=1; }
 }

If this initialization sequence has not been modified, test DRC gives the following violations:

4 PRE-DFT VIOLATIONS
     3 Uncontrollable clock input of flip-flop violations (D1)
     1 Clock not able to capture violation (D8)

The initialization sequence that is necessary to initialize the circuit is as follows:

"test_setup" {
   W "_default_WFT_";
   V {  "CLK"=1; }
   V {  "CLK"=1; "test_mode"=1; }
   V {  "CLK"=P; "test_mode"=1; }
   V {  "CLK"=1; "test_mode"=1; }

Test DRC requires that all clock signals are in their inactive state at the end of the 
initialization sequence. When this initialization sequence is applied, test DRC indicates that 
there are no test design rule violations.

test_mode

enable

clk

FF1

FF2
FF1_out
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However, after the insert_dft command completes, this initialization sequence is lost. You 
must reapply the same initialization sequence to ensure that post-DFT test DRC reports no 
violations.

Table 14-2 shows the flows you should use with various types of test protocols.

Scan Shift and Parallel Measure Cycles

The standard strobe-before-clock protocol shifts all scan chains simultaneously. This 
protocol allows scan shift output for the current pattern and scan shift input for the next 
pattern to overlap. If scan groups are used, not all scan chains are required to shift 
simultaneously. For more information about scan groups, see “Creating Scan Groups” on 
page 11-138.

The process DFT Compiler uses to perform scan shift is determined by the scan style you 
selected with the set_scan_configuration -style command. 

For all scan styles, the parallel measure cycle is performed by application of data to 
nonclock input ports, holding clocks inactive, and comparing data at output ports. The 
capture cycle involves pulsing a clock. Nonclock input ports remain unchanged from the 
parallel measure cycle; output ports and bidirectional ports are masked.

Multiplexed Flip-Flop Scan Style

For the multiplexed flip-flop scan style, scan shift is performed by execution of the following 
steps n times, where n is the number of bits in the longest scan chain:

1. Assert the scan-enable signals.

2. Apply scan data at the scan input ports. 

Table 14-2 Initialization Protocol Flows 

If you have Use this flow

No test protocol set_dft_signal...
create_test_protocol
dft_drc

Only the test_setup section in 
the protocol

set_dft_signal...
read_test_protocol -section test_setup
create_test_protocol
dft_drc

Full protocol read_test_protocol (no -section test_setup)
set_dft_signal (for clocks and asynchronous signals)
dft_drc
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3. Compare scan data at the scan output ports.

4. Pulse the system clocks.

System clock ports are identified with the set_dft_signal command as ScanClock 
signals.

During the parallel measure and capture cycles, test design rule checking treats the 
scan-enable signal like any other parallel input; in some capture cycles, the captured data 
can be from the scan path rather than the functional path. Because fault detection occurs 
only during the parallel measure cycle and during comparison of captured data at the scan 
output ports, treating the scan-enable signal as a parallel input allows inclusion of scan logic 
and clock logic in the fault list and detection of faults on these nodes.

Clocked-Scan Scan Style

For the clocked-scan scan style, scan shift is performed by execution of the following steps 
n times, where n is the number of bits in the longest scan chain:

1. Apply scan data at the scan input ports.

2. Compare scan data at the scan output ports.

3. Pulse the scan clock ports.

Scan clock ports are identified with the set_dft_signal command as 
ScanMasterClock signals.

LSSD Scan Style

For the LSSD scan style, scan shift is performed by execution of the following steps n times, 
where n is the number of bits in the longest scan chain:

1. Apply scan data at the scan input ports.

2. Compare scan data at the scan output ports.

3. Pulse the test master clock, then pulse the slave clock.

Test master and slave clock ports are identified with the set_dft_signal command as 
ScanMasterClock and ScanSlaveClock signals, respectively. 

Scan-Enabled LSSD Scan Style

For the scan-enabled LSSD scan style, scan shift is performed by execution of the following 
steps n times, where n is the number of bits in the longest scan chain:

1. Assert the scan-enable signals.

2. Apply scan data at the scan input ports.
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3. Compare scan data at the scan output ports.

4. Pulse the test master clock, then pulse the slave clock.

Test master clock ports are identified with the set_dft_signal command as 
ScanMasterClock signals. System clock ports, which are repurposed as slave test clock 
ports in test mode, are also identified as ScanMasterClock signals but must have slave 
test clock timing waveforms defined. 

Examining a Test Protocol File

You can convert a test protocol file into an ASCII file that you can view and edit. To print this 
test protocol file to a file, use the write_test_protocol command. The command syntax 
is as follows:

write_test_protocol [-output test_protocol_file_name]
     [-test_mode mode_name]
     [-names verilog | verilog_single_bit]

Table 14-3 write_test_protocol Command Syntax 

Option Description

-output
 test_protocol_file_name

Specifies the name of the ASCII output file. The 
default file name is design_name.spf, where 
design_name is the current design, and the .spf 
extension identifies the file type as a STIL format test 
protocol file.

-test_mode mode_name Specifies the CTL model test mode from which the 
protocol is generated.

-names verilog |
 verilog_single_bit

Specifies the form of the names used in the STIL 
procedure file. Names can be unchanged from 
internal representation (the default). They can also 
be modified as Verilog names or as Verilog names 
compatible with the usage of the 
verilogout_single_bit environment variable. In 
all cases, the internal representation is not changed. 
This option takes effect only in conjunction with 
-test_mode options, when HSS is used. In all other 
cases, the form of the names is determined by the 
setting of the test_stil_netlist_format variable.
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Note:   
Do not use the write_test_protocol command before you run 
create_test_protocol. If you do, you will get an error message to the effect that no 
test protocol exists.

Example 14-9 shows the test protocol file for a multiplexed flip-flop design. This file was 
generated by use of the write_test_protocol command after execution of test design 
rule checking on the design.

Example 14-9 Test Protocol for Multiplexed Flip-Flop Design Example

STIL 1.0 {
   Design P2000.9;
}
Header {
   Title DFT Compiler 2003.06 STIL output;
   Date  Thu Apr 10 14:30:34 2003 ;
   History {
   }
}
Signals {
    CDN  In;  CLK  In;  DATA  In;  IN1  In;  TEST_SE  In;   
TEST_SI  In;
    OUT1  Out;  OUT2  Out;
} 
SignalGroups {
    all_inputs  =  ‘ CDN  +  CLK  +  DATA  +  IN1  +  TEST_SE  + 
    TEST_SI ’; // #signals=6
    all_outputs  =  ‘ OUT1  +  OUT2 ’; // #signals=2
    all_ports   =  ‘ all_inputs  +  all_outputs ’; // #signals=8
    _pi  =  ‘ all_inputs ’; // #signals=6
    _po  =  ‘ all_outputs ’; // #signals=2
} 
Timing {
   WaveformTable  _default_WFT_  {
      Period ‘100ns’;
      Waveforms {
          all_inputs  { 0 { ‘5ns’ D; } }
          all_inputs  { 1 { ‘5ns’ U; } }
          all_inputs  { Z { ‘5ns’ Z; } }
          all_inputs  { N { ‘5ns’ N; } }
          all_outputs  { X { ‘0ns’ X; } }
          all_outputs  { H { ‘0ns’ X; ‘95ns’ H; } }
          all_outputs { T { ‘0ns’ X; ‘95ns’ T; } }
          all_outputs  { L { ‘0ns’ X; ‘95ns’ L; } }
          CLK  { P { ‘0ns’ D; ‘45ns’ U; ‘55ns’ D; } }
          CDN  { P { ‘0ns’ U; ‘45ns’ D; ‘55ns’ U; } }
      }
   }
} 
PatternBurst  __burst__  {
   PatList {
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       __pattern__  {
      }
   }
} 
PatternExec {
   PatternBurst  __burst__ ;
} 
Procedures {
    capture  {
      W  _default_WFT_ ;
      V {  _pi =\r6 #;  _po =\r2 #; }
   }
    capture_CLK  {
      W  _default_WFT_ ;
       forcePI : V {  _pi =\r6 #; }
       measurePO : V {  _po =\r2 #; }
       pulse : V {  CLK =P; }
   }
    capture_CDN {
      W  _default_WFT_ ;
       forcePI : V {  _pi =\r6 #; }
       measurePO : V {  _po =\r2 #; }
       pulse : V {  CDN =P; }
   }
} 
MacroDefs {
    test_setup  {
      W  _default_WFT_ ;
      V {   CLK =0; } 
      V {   CDN =1;  CLK =0; } 
   }
}

Updating a Protocol in a Scan Chain Inference Flow

If you import an existing-scan netlist without any test attributes, test DRC can infer the scan 
structures if you perform the following steps:

1. Specify test clocks and other test attributes in the design.

2. Create a test protocol.

3. Run the dft_drc command to infer scan structures. 

If scan chain inference is successful, the protocol is updated to contain procedures to shift 
the scan chain.
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Masking Capture DRC Violations

By default, DFT Compiler excludes sequential cells with DRC violations from scan chains. 
In some cases, such as spare cells that have constant data inputs, you can include violating 
cells in scan chains.

DFT Compiler allows you to mask cells with certain capture DRC violation types, as 
described in the following topics:

• Configuring Capture DRC Violation Masking

• Reporting Capture DRC Violation Masking

• Resetting Capture DRC Violation Masking

Configuring Capture DRC Violation Masking

You can mask the following capture DRC violation types during pre-DFT DRC:

• TEST-504 – Cell always captures constant zero value

• TEST-505 – Cell always captures constant one value

• D17 – Cell has a clock, set, or reset input pin that cannot capture data

When a violation type is masked, violating cells are included in scan chains. To mask a 
violation type, use the set_dft_drc_rules command. The syntax is

set_dft_drc_rules
  [-allow drc_list]
  [-ignore drc_list]
  [-cell cell_list]

The -allow and -ignore options both allow you to specify one or more violation types to 
mask. The difference is as follows:

• -allow – DFT allows violating cells to be included in scan chains, but the violations are 
still reported

• -ignore – DFT completely ignores the violating cells; the violating cells are included in 
scan chains and the violations are not reported

For example, the following command includes constant-capturing sequential cells in scan 
chains (with warnings issued during pre-DFT DRC):

dc_shell> set_dft_drc_rules -allow {TEST-504 TEST-505}
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By default, the specification applies globally to the entire design. To limit the specification to 
certain cells, use the -cell option. For example, the following command includes specific 
noncapturing sequential cells in scan chains (with no warnings):

dc_shell> set_dft_drc_rules -ignore {D17} \
           -cell [get_object_name [get_cells {CONFIG_reg[*]}]]

You can issue multiple set_dft_drc_rules commands. The tool applies all command 
specifications cumulatively. Cell-specific specifications take precedence over global 
specifications.

Reporting Capture DRC Violation Masking

You can use the report_dft_drc_rules command to report masking specifications 
previously applied with the set_dft_drc_rules command. The syntax is

report_dft_drc_rules
  [-violation drc_list]
  [-cell cell_list]

By default, all previously applied command specifications are reported. For example,

dc_shell> report_dft_drc_rules

  Violation       Default         Specified       Range/
    Name          Action          Action          Cell list
  ---------------------------------------------------------
  TEST-504        omit            allow           all cells
  TEST-505        omit            allow           BLK1
                  omit            allow           BLK2
                  omit            ignore          USPAREGATES

You can use the -violation option to restrict the report to certain violation types. For 
example,

dc_shell> report_dft_drc_rules -violation {TEST-504}

  Violation       Default         Specified       Range/
    Name          Action          Action          Cell list
  ---------------------------------------------------------
  TEST-504        omit            allow           all cells

You can use the -cell option to restrict the report to certain cell-specific command 
specifications. For example,

dc_shell> report_dft_drc_rules -cell {BLK1 BLK2}
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  Violation       Default         Specified       Range/
    Name          Action          Action          Cell list
  ---------------------------------------------------------
  TEST-505        omit            allow           BLK1
                  omit            allow           BLK2

Resetting Capture DRC Violation Masking

You can use the reset_dft_drc_rules command to remove masking specifications 
previously applied with the set_dft_drc_rules command. The syntax is

reset_dft_drc_rules
  [-violation drc_list]
  [-cell cell_list]

By default, all previously applied command specifications are removed. For example,

dc_shell> reset_dft_drc_rules

You can use the -violation option to remove only specifications for certain violation types. 
For example,

dc_shell> reset_dft_drc_rules -violation {TEST-504 TEST-505}

You can use the -cell option to remove only certain cell-specific command specifications. 
For example,

dc_shell> reset_dft_drc_rules -cell {BLK1 BLK2}
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Previewing, Inserting, and Checking DFT 
Logic 15

This chapter describes how to preview your DFT design, insert the DFT logic, and check the 
inserted DFT logic for correct operation.

This chapter includes the following topics:

• Previewing the DFT Logic

• Inserting the DFT Logic

• Post-DFT Insertion Test Design Rule Checking
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Previewing the DFT Logic

Use the preview_dft command to preview your scan design. The preview_dft command 
runs the same scan architecture algorithms as the insert_dft command, except that it 
reports the scan architecture to be implemented instead of actually implementing it. This 
allows you to preview your scan chains and DFT logic without synthesizing them and to 
change your specifications to explore the design space as necessary.

You should always use the preview_dft command to generate a DFT preview report for 
your design. Although you can also use the report_scan_path -view existing_dft 
command after DFT insertion to report the implemented scan chains, the preview_dft 
report includes additional DFT architecture information such as test points, test signals, 
DFT-inserted cores, and scan compression.

The following topics describe usage of the preview_dft command:

• Running the preview_dft Command

• Previewing Additional Scan Chain Information

• Previewing Test Mode Information

• Previewing Test Points

• Previewing the DFT Design Using Script Commands

See Also

• “Previewing the Wrapper Cells” on page 12-47 and “Previewing Maximized Reuse 
Wrapper Cells” on page 12-48 for more information about using the -test_wrappers 
option to preview core wrapper chains

Running the preview_dft Command

Before running the preview_dft command, a valid test protocol must exist in memory. You 
can create a test protocol with the create_test_protocol command, or you can read an 
existing test protocol in with the read_test_protocol command. For details, see “Creating 
the Test Protocol” on page 14-5.

The preview_dft command also requires that pre-DFT DRC be run. If you run the 
preview_dft command without first running the dft_drc command, the tool implicitly runs 
the dft_drc command before proceeding with DFT preview.

When these requirements have been met, you can generate the DFT preview report:

dc_shell> preview_dft

Example 15-1 shows a simple DFT preview report example.
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Example 15-1 Preview Report Generated by the preview_dft Command

****************************************
Preview_dft report
For    : 'Insert_dft' command
Design : top
Version: I-2013.12-SP3
Date   : Mon May 12 09:16:49 2014
****************************************

Number of chains: 2
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (MY_SI1 --> MY_SO1) contains 6 cells

Scan chain '2' (MY_SI2 --> MY_SO2) contains 6 cells

Previewing Additional Scan Chain Information

To show additional information about the scan chains, use the -show option of the 
preview_dft command:

dc_shell> preview_dft -show {...}

This option accepts a list of keywords that cause additional types of information to be 
included in the preview report. Valid keywords (with corresponding report examples) are:

• cells – Shows all scan cells and scan segments in each scan chain:

Scan chain '1' (test_si1 --> test_so1) contains 6 cells:

  Z1F_reg[0]
  Z1F_reg[1]
  Z1F_reg[2] (l)
  Z2F_reg[0]
  Z2F_reg[1]
  Z2F_reg[2]

• scan_clocks – Shows scan clock domains along the scan chains:

Scan chain '1' (test_si1 --> test_so1) contains 6 cells:

  Z1F_reg[0]                    (CLK1, 55.0, falling)
     ...
  Z2F_reg[0]                    (CLK2, 55.0, falling)
     ...
  Z2F_reg[2]
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• scan_signals – Shows information about DFT signals and hookup pins associated with 
each scan chain:

Scan chain '1' (MY_SI1 --> MY_SO1) contains 6 cells

  Scan signals:
    test_scan_in: MY_SI1 (no hookup pin)
    test_scan_out: MY_SO1 (no hookup pin)

• segments – Shows information about scan segments included in the scan chains:

Core scan segment 'core/1' (core/test_si --> core/test_so) contains 3
cells:
  core/Z2R_reg[0]
  core/Z2R_reg[1]
  core/Z2R_reg[2]

  Other access pins:
    core/test_se (test_scan_enable)
    core/CLK2 (test_scan_clock)

Also include the cells keyword to see the scan cells contained in each segment.

Scan segments result from

❍ Scan chains within CTL-modeled cores

❍ Identified shift registers

❍ DFT-inserted and user-defined clock chains

❍ set_scan_group -serial_routed true specifications

❍ Multibit components, when the -preserve_multibit_segment option of the 
set_scan_configuration command is set to true

• qgates – Shows toggle suppression gates implemented along the scan chains due to 
the set_scan_suppress_toggling command:

  (g) shows cell scan-out drives a toggle suppressing gate

Scan chain '1' (test_si1 --> test_so1) contains 3 cells:

  Z1F_reg[0]
  Z1F_reg[1]
  Z1F_reg[2] (g)

The qgates keyword implicitly includes the scan keyword.
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• voltages – Shows scan cell operating voltage information along the scan chains

(i) shows cell scan-out drives an isolation cell
(v) shows cell scan-out drives a level shifter cell

Scan chain '1' (test_si1 --> test_so1) contains 4 cells:

  Z1F_reg[0] (voltage 1.08)
  Z1F_reg[1]
  Z2F_reg[0] (voltage 0.80)
  Z2F_reg[1]

• power_domains – Shows power domains along the scan chains

(i) shows cell scan-out drives an isolation cell
(v) shows cell scan-out drives a level shifter cell

Scan chain '1' (test_si1 --> test_so1) contains 4 cells:

  Z1F_reg[0] (pwr domain 'pd_2')
  Z1F_reg[1]
  Z2F_reg[0] (pwr domain 'pd_1')
  Z2F_reg[1]

• bidirectionals – Shows information about bidirectional conditioning logic used to 
enable scan paths:

---------------------------------------------------------
  Bidirectional Port       Specified       Resolved
                           Conditioning    Conditioning
---------------------------------------------------------
  BIDI[0]                  Input           Input
  BIDI[1]                  Input           Output
  BIDI[2]                  Input           Input

• tristates – Shows information about all tristate conditioning logic used to prevent 
tristate contention during scan shift

---------------------------------------------------------
  Tristate net             Specified       Resolved
                           Disabling       Disabling
---------------------------------------------------------
  Z[0]                     disable_all     disable_all
  Z[1]                     disable_all     disable_all
  Z[2]                     disable_all     disable_all

• scan – Shows scan cells that explicitly have the scan_element attribute set to true:

  (t) shows cell has a true scan attribute

Scan chain '1' (MY_SI1 --> MY_SO1) contains 12 cells

  core/Z2R_reg[1] (t)
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This attribute is typically applied with the set_scan_element true command. If the 
cells keyword is not also specified, only scan cells with the scan_element attribute set 
to true are shown.

• scan_summary – Shows a short summary of the scan chains and their scan clocks:

Chain  Scan Ports         # Cells  Inst/Chain  Clock (port,time,edge)
-----  -----------------  -------  ----------  ----------------------
S 1    MY_SI1 --> MY_SO1        6  Z1F_reg[0]  (CLK1, 55.0, falling)
                                   Z2F_reg[0]  (CLK2, 55.0, falling)
S 2    MY_SI2 --> MY_SO2        6  Z1R_reg[0]  (CLK1, 45.0, rising)
                                   Z2R_reg[0]  (CLK2, 45.0, rising)

Use this keyword by itself.

• all – Show all information about scan chains (equivalent to specifying all keywords 
except scan_summary)

The preview report format adapts to the keywords you specify. For example, with the -show 
{scan_clocks} option, the report shows only the scan cells at scan clock transitions along 
the chain, with other cells represented by an ellipsis (“...”). With the -show {scan_clocks 
cells} option, all scan cells are shown along with the scan clock transitions.

The preview report uses attributes to show where certain scan structures exist along the 
scan chains. For example,

dc_shell> preview_dft -show {cells segments}
...
  (l) shows cell scan-out drives a lockup latch
  (s) shows cell is a scan segment
  (m) shows cell scan-out drives a multi-mode multiplexer
  (L) shows test retiming flop
  (t) shows cell has a true scan attribute
  (w) shows cell scan-out drives a wire

Scan chain 'MY_CHAIN' (SI --> SO) contains 4 cells
  Active in modes: Internal_scan :

  core1/CLK_CHAIN (s) (m)             (CLK, 55.0, falling)
  (l) (L) core2/CLK_CHAIN (s) (m)     (CLK, 55.0, falling)

Some less common attributes, such as retiming flip-flops, are shown in the legend only 
when used in the report.

See Also

• The preview_dft man page for more detailed information about the keywords used with 
the -show option
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Previewing Test Mode Information

If you have multiple test modes in your design, the DFT logic uses test-mode signals to 
select the test mode. In this case, the preview_dft command does the following:

• It reports the scan chain structures for each test mode.

• It reports the test-mode signals and encodings to be used for test mode selection.

Example 15-2 shows a preview report for a design with two test modes.

Example 15-2 Preview Report Section Describing Multiple Test Modes

****************************************
Current mode: SHORT
****************************************

Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 4 cells
  Active in modes: SHORT

Scan chain '2' (test_si2 --> test_so2) contains 4 cells
  Active in modes: SHORT

Scan chain '3' (test_si3 --> test_so3) contains 4 cells
  Active in modes: SHORT

****************************************
Current mode: LONG
****************************************
Number of chains: 1
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 12 cells
  Active in modes: LONG

================================
Test Mode Controller Information
================================

Test Mode Controller Ports
--------------------------
test_mode: test_mode2
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test_mode: test_mode1

Test Mode Controller Index (MSB --> LSB)
----------------------------------------
test_mode2, test_mode1

Control signal value - Test Mode
--------------------------------
01 SHORT - InternalTest
10 LONG - InternalTest

You can create multiple test modes with the define_test_mode command. Compressed 
scan designs always have multiple test modes (at least one standard scan mode and one 
compressed scan mode).

See Also

• “Multiple Test Modes” on page 11-63 for more information about defining test modes

Previewing Test Points

You can insert test points in the design by using the automatic test point insertion, 
user-defined test point insertion, and the AutoFix features. The preview_dft command 
always reports a summary of test points to be inserted:

************ Test Point Plan Report ************
Total number of test points  : 5
Number of Autofix test points: 3
Number of Wrapper test points: 0
Number of test modes         : 2
Number of test point enables : 0
Number of data sources       : 2
Number of data sinks         : 0
**************************************************

To see more details, use following command:

dc_shell> preview_dft -test_points all

This option includes a detailed test point report after the summary. Example 15-3 shows a 
preview report for a design with two test modes.

Example 15-3 Preview Report Section Describing Test Point Details

                             TEST POINTS
------------------------------------------------------------------------
CLIENT  NAME    TYPE    LOCATIONS      TEST      TEST      DATA
                                       MODES     POINT     SOURCE/
                                                 ENABLE    SINK
------------------------------------------------------------------------
Testability
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        control_tp
                C-0     mult_9/FS_1/U110/Y
                                       handler   control_observe_register
                                                           control_0_src
------------------------------------------------------------------------
Testability
        control_tp_1
                C-0     mult_21/FS_1/U109/Y
                                       handler   control_observe_register
                                                           control_0_src
------------------------------------------------------------------------
Testability
        observe_tp
                O       mult_21/S2_25_4/S
                                       none      none      control_observe_register_3
------------------------------------------------------------------------
Testability
        observe_tp_2
                O       mult_21/S2_25_7/S
                                       none      none      control_observe_register_3
------------------------------------------------------------------------

                                   TEST MODES
--------------------------------------------------------------------------
TAG       NEW/         TYPE              NAME              CLOCK
          EXISTING
--------------------------------------------------------------------------
handler   New          Port              test_mode         none
--------------------------------------------------------------------------

                            TEST POINT ENABLES
--------------------------------------------------------------------------
TAG       NEW/         TYPE              NAME              CLOCK
          EXISTING
--------------------------------------------------------------------------
control_observe_register
          New          Sequential        unknown           CLKX
--------------------------------------------------------------------------

                               DATA SOURCES
--------------------------------------------------------------------------
TAG       NEW/         TYPE              NAME              CLOCK
          EXISTING
--------------------------------------------------------------------------
control_0_src
          New          Logic 0           unknown           none
--------------------------------------------------------------------------

                                DATA SINKS
--------------------------------------------------------------------------
TAG       NEW/         TYPE              NAME              CLOCK
          EXISTING
--------------------------------------------------------------------------
control_observe_register_3
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          New          Sequential        unknown           CLKX
--------------------------------------------------------------------------

The first section of the detailed report lists the test points to be inserted. These test point 
descriptions reference the test-mode, enable, source, and sink signals described in the 
subsequent sections.

See Also

• “Inserting Test Points” on page 11-3 for more information about test point signals, and on 
automatic and user-defined test point insertion

• “Using AutoFix” on page 11-40 for more information about inserting test points using 
AutoFix

Previewing the DFT Design Using Script Commands

To gain more understanding of the test structures to be built, you can use following 
command to preview the DFT design using DFT configuration commands:

dc_shell> preview_dft -script

The result is a set of DFT commands (such as define_test_mode, set_scan_path, and 
set_test_point_element) that describe the DFT structures to be built.

Note the following:

• The command output is intended to help understand the DFT design; it is not intended to 
be sourced directly as a configuration script in a subsequent run.

• You can modify and apply the set_scan_path commands to implement your own scan 
cell order. However, keep in mind that the -ordered_elements option prevents the 
specified scan cells from being reordered or repartitioned using SCANDEF information.

Inserting the DFT Logic

After configuring and previewing your design, assemble the scan chains by using the 
insert_dft command:

dc_shell> insert_dft

This following topics describe how the preview_dft and insert_dft commands generate 
a scanned design:

• Scan Replacement

• Scan Element Allocation and Ordering
Chapter 15: Previewing, Inserting, and Checking DFT Logic
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• Test Signals

• Pad Cells

Scan Replacement

Scan replacement is the process of remapping nonscan sequential cells to library cells have 
appropriate test pins for the chosen scan style.

DFT Compiler performs the following scan replacement tasks during the insert_dft 
command:

• Scan-replaces sequential elements if a scan replacement on the sequential elements 
was not performed previously, and the cell does not violate test DRC.

The set_scan_configuration -replace false setting disables this behavior. For 
more information, see “Scan Stitching Only Scan-Replaced Cells” on page 10-24.

• Converts the scan elements that resulted from a test-ready compile or a previous scan 
insertion back to nonscan elements if test DRC violations prevent their inclusion in a 
scan chain, and the set_dft_insertion_configuration -unscan true command 
has been issued.

Scan Element Allocation and Ordering

DFT Compiler allocates and orders scan elements to scan chains in the following manner:

• Allocates scan elements to produce the minimum number of scan chains consistent with 
clock domain requirements. By default, the insert_dft command generates a scan 
design with the number of scan chains being equal to the number of clock domains. The 
resulting design contains one scan chain for each set of sequential elements clocked by 
the same edge of the same test clock.

• Automatically infers existing scan chains both in the current design and in subdesigns. 
This is true only if the design has the proper attributes.

• Does not reroute existing scan chains previously built by the insert_dft command or 
subdesign scan chains built by the insert_dft command, even if their routing does not 
conform to default behavior.

• In Design Compiler wire load mode, allocates and orders scan elements into scan chains 
alphanumerically, using the full hierarchical path specification of the scan element name. 
Chapter 15: Previewing, Inserting, and Checking DFT Logic
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• In Design Compiler topographical mode, allocates and orders scan elements into scan 
chains using virtual layout information, which reduces scan routing overhead. In this 
case, the preview_dft and  insert_dft commands issue the following message to 
indicate that topographical information is used:

Running DFT insertion in topographical mode.

Test Signals

DFT Compiler inserts and routes test signals in the following manner:

• Automatically inserts and routes global test signals to support the specified scan style. 
These test signals include clocks and enable signals.

• Allocates ports to carry test signals. Where possible, the insert_dft command uses 
“mission” ports (that is, normal function ports) to carry scan-out ports and inserts 
multiplexing logic, if required. The insert_dft command performs limited checking for 
existing multiplexing logic to prevent redundant insertion.

• Inserts three-state and bidirectional disabling logic during default scan synthesis. The 
insert_dft command checks for existing disabling logic to prevent redundant insertion.

Pad Cells

By default, AutoFix is enabled for bidirectional and three-state pad cells. If the current design 
includes such pad cells with functional models in the logic library, the insert_dft command 
inserts DFT testability logic for them by

• Ensuring correct core-side hookup to all pad cells and three-state drivers

• Inserting required logic to force bidirectional pads carrying scan-out signals into output 
mode during scan shift

• Inserting required logic to force bidirectional pads carrying scan-in, control, and clock 
signals into input mode during scan shift

• Determining requirements and, if necessary, inserting required logic to force all other 
nondegenerated bidirectional ports into input mode during scan shift

• Inserting required logic to enable three-state output pads associated with scan-out ports 
during scan shift

• Inserting required logic to disable three-state outputs that are not associated with 
scan-out ports during scan shift
Chapter 15: Previewing, Inserting, and Checking DFT Logic
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See Also

• “Configuring Three-State Bus AutoFixing” on page 11-49 for information on AutoFixing 
three-state output drivers

• “Configuring Bidirectional AutoFixing” on page 11-50 for information on AutoFixing 
bidirectional pad cells

Post-DFT Insertion Test Design Rule Checking

After you perform scan insertion, you can run the dft_drc command to perform design rule 
checking of the DFT-inserted to ensure that no violations have been introduced into your 
design by the scan insertion process. This is called post-DFT DRC.

This topic covers the following topics related to post-DFT DRC:

• Running Post-DFT DRC After DFT Insertion

• Checking for Topological Violations

• Checking for Scan Connectivity Violations

• Causes of Common Violations

• Ability to Load Data Into Scan Cells

• Ability to Capture Data Into Scan Cells

• Post-DFT DRC Limitations

Running Post-DFT DRC After DFT Insertion 

You can perform post-DFT DRC after the insert_dft command completes successfully. 
Use the current_test_mode command to change the focus to each test mode of interest, 
then run the dft_drc command. For example,

dc_shell> insert_dft
...
dc_shell> current_test_mode wrp_if
dc_shell> dft_drc
...
dc_shell> current_test_mode wrp_of
dc_shell> dft_drc
...
dc_shell> current_test_mode ScanCompression_mode
dc_shell> dft_drc
...
Chapter 15: Previewing, Inserting, and Checking DFT Logic
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At the beginning of its output, the dft_drc command issues a message confirming that 
post-DFT DRC is being run:

dc_shell> dft_drc
In mode: Internal_scan...
  Design has scan chains in this mode
  Design is scan routed
  Post-DFT DRC enabled
...

If your design contains only the default Internal_scan test mode, you do not need to set the 
current test mode; the Internal_scan mode is the default.

Note:   
Some features and flows do not support post-DFT DRC, as noted in “Post-DFT DRC 
Limitations” on page 15-27. In such cases, use TetraMAX DRC to validate the 
DFT-inserted design.

Checking for Topological Violations

Topological checks are global connectivity checks that the dft_drc command performs in a 
structural manner.

If the dft_drc command cannot determine the logic function associated with a wired net, it 
issues the following warning message:

Warning: Type of wired net %s is unknown. (TEST-114)

The presence of a non-three-state driver on a three-state net (see Figure 15-1) results in 
contention on that net. 

Figure 15-1 A Non-Three-State Driver

If the dft_drc command detects such a condition, it flags the violation with:

Warning: Three-state net %s is not properly driven. (TEST-115).

OUTAIN3

E2

IN2

E1

IN1
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If the dft_drc command detects the presence of a pull-up driver or a pull-down driver on a 
non-three-state net, it flags the problem with

Error: Pullup/pulldown net %s has illegal driver(s).
(TEST-331)

Any violation on a net forces the net to the value X for the entire protocol simulation.

Checking for Scan Connectivity Violations

After the dft_drc command completes test protocol simulation, it analyzes the simulation 
results to determine the following:

• The architecture of the scan chains

• Whether the capture state and the state of the cell that is scanned are the same

The report_scan_path command reports the scan chain architecture determined by the 
dft_drc command.

Running an incremental compile or other command that affects the database can cause the 
information gathered by dft_drc to be invalidated. If you run a report_scan_path and get 
an error message saying that no scan path is defined, try running dft_drc again, 
immediately followed by a report_scan_path command. 

Scan Chain Extraction

A scan chain is a group of sequential elements through which a uniquely identifiable bit of 
scan data travels. The dft_drc command extracts scan chains from a design by tracing 
scan data bits through the multiple time frames of the protocol simulation. Scan chains are 
protocol dependent: For a given design, specifying a different test protocol can result in 
different scan chains. As a corollary, scan-chain-related problems can be caused by an 
incorrect protocol, by incorrect set_dft_signal specifications, or even by incorrectly 
specified timing data. 

Causes of Common Violations

During test design rule checking on scan designs, DFT Compiler simulates the test protocol 
to verify that the scan operation functions correctly. Protocol simulation verifies that scan 
cells predictably perform the following tasks:

• Receive data during scan input

• Capture data during parallel capture

• Shift data during scan output
Chapter 15: Previewing, Inserting, and Checking DFT Logic
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The following topics describe the scan operation checks for each of these tasks and provide 
guidance in correcting the problems.

Ability to Load Data Into Scan Cells

To ensure that the scan shift process can successfully load data into the scan cells, DFT 
Compiler verifies that

• Data arrives at the scan input pin of each scan cell

• The test clock pulse arrives at the test clock pin of each scan cell

• Scan data is not corrupted during scan shift

If a scan cell does not meet these conditions, DFT Compiler cannot control the scan cell. 
Typical causes for uncontrollable scan cells include

• Incorrect or incomplete test configuration

• Invalid clock logic

• Incorrect timing relationships between clocks for two-phase clocking

• Nonscan sequential cells clocked by the test clock

• Invalid scan path 

DFT Compiler generates this error message when it detects that it cannot shift through a 
scan chain:

Begin Scan chain violations...

Error: Chain c1 blocked at DFF gate FF_A after tracing 2 cells. (S1-1)

Scan chain violations completed...

The following topics provide examples of the typical causes of uncontrollable scan cells.

Incomplete Test Configuration

Figure 15-2 shows a simple scan design with a scan chain.
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Figure 15-2 Simple Scan Design

When reading a design from an ASCII netlist that contains existing scan chains, you must 
specify the test ports. If you do not identify the scan input port, DFT Compiler does not flag 
any violations during DRC, but it will not be able to extract scan chains.

If the scan input port information is not specified, the dft_drc command generates a 
pre-DFT DRC report even though the netlist contains scan chains:

dc_shell> dft_drc
In mode: all_dft...
  Pre-DFT DRC enabled

Information: Starting test design rule checking. (TEST-222)
...

Also, the report_scan_path -chain all command does not report any scan chains:

dc_shell> report_scan_path -chain all
...
========================================
TEST MODE: Internal_scan
VIEW     : Existing DFT
========================================

========================================
AS SPECIFIED BY USER
========================================

========================================
AS BUILT BY insert_dft
========================================

No scan path defined in this mode.

OUT2

CLK

IN2

OUT1

IN1

test_si
test_se

CDN
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To resolve this, identify the scan input ports, scan output ports, test clocks, and 
asynchronous sets and resets, then rerun dft_drc. For example,

set_scan_state scan_existing

set_dft_signal -view existing -type ScanEnable -port test_se
set_dft_signal -view existing -type ScanDataIn -port test_si
set_dft_signal -view existing -type ScanDataOut -port OUT2

set_scan_path C1 -view existing \
   -scan_data_in test_si -scan_data_out OUT2

After the test ports are defined, the dft_drc command generates a post-DFT DRC report, 
and the scan chains are properly inferred.

Invalid Clock Logic

Figure 15-3 shows a design with a combinationally gated clock. 

Figure 15-3 Combinationally Gated Clock

If you do not hold port IN3 at logic 1 during scan shift, pulses applied at clock port CLK might 
not reach the clock pin of cell FF_B; therefore, the clock input of cell FF_B violates the test 
clock requirements. DFT Compiler generates error messages such as these:

----------------------------------------------------------
Begin Scan chain violations...

Error: Chain c1 blocked at DFF gate U1 after tracing 0 cells. (S1-1)

Scan chain violations completed...
----------------------------------------------------------

Invoke the Design Vision Graphical Schematic Debugger, as shown in Figure 15-4.

OUT2CLK
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Figure 15-4 The Design Vision Graphical Schematic Debugger

The debugger shows that the clock input of the cell FF_B contains an X. This indicates that 
the clock was is completely controllable. 

In Figure 15-5, if SEL = 1, the path from CLK1 is active, although the path from CLK2 is not. 
In general, you use the set_dft_signal command to specify constant logic values on 
ports, as explained later in this chapter.
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Figure 15-5 A Clock Selector Network

In this example, if you specify set_dft_signal-view existing_dft -type Constant 
-active_state 1 on the SEL port, you will see this violation:

----
Begin Pre-DFT violations...
  
Warning: Clock CLK2 cannot capture data with other clocks 
off. (D8-1)
  
Pre-DFT violations completed...
---

A D8 violation indicates that a clock cannot capture data while others are off. Each clock 
must be capable of capturing data. This does not prevent scan insertion, but you might want 
to investigate the cause of the violation.

You can correct invalid clock-gating violations by inserting logic.

If a clock pin is driven by constant logic, the dft_drc command issues a warning:

Warning: Clock input CP of DFF FF_A couldn’t capture data. 
(D17-1)

The waveforms of the inferred clocks are taken either from a previous invocation of the 
set_dft_signal command or from the scan style-dependent default timing values.

Incorrect Clock Timing Relationship

A structurally valid scan chain becomes invalid due to the clock timing definitions in the 
following cases:

• The cell ordering of the scan chain in a scan design with multiple clock domains has later 
cells triggered by later clocks (data flow-through).

• The active levels of the master clock and the slave clock overlap in designs with 
two-phase clocking.
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Chapter 15: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking 15-20



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 15-6 shows a scan design with multiple clocks. Structurally this design meets the 
scan design rules. However, the ability to shift data through the scan chain depends on the 
relationship between the multiple clocks.

Figure 15-6 Existing Scan Design With Multiple Clocks

Unless CLK1 and CLK2 have identical timing, this design always results in an invalid scan 
path due to the clock timing relationship. CLK2 triggers cell FF_B, and CLK1 triggers both 
the cell driving it (FF_A) and the cell driven by it (FF_C).

If the clock timings are identical, design rule checker will report warning messages such as

Warning: Multiple clocks (CLK1 CLK2) were used to shift scan chain c1.
(S22-1)

If the clock timings are different, design rule checker will report warning messages such as

Warning: Dependent slave FF_B may not hold same value as master FF_A.
(S29-1)

Figure 15-7 shows an LSSD design. Structurally, this design meets the scan design rules. 
However, the ability to shift data through the scan chain depends on the relationship 
between the master clock (TMCLK) and the slave clock (SLCLK).
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Figure 15-7 Simple LSSD Design

DFT Compiler uses zero-delay timing, so you cannot depend on delays in the clock nets to 
prevent overlapping master and slave clocks. Because DFT Compiler considers both the 
master and slave clocks active at 55 ns after the start of the vector, this command sequence 
defines an invalid timing relationship for the design in Figure 15-7:

dc_shell> set_dft_signal -view existing_dft \
               -type ScanClock -timing [list 45 55] \
              -port TMCLK

dc_shell> set_dft_signal -view existing_dft \
               -type ScanClock -timing [list 55 65] \
              -port SLCLK

Nonscan Sequential Cells

Figure 15-8 shows a scan design with a nonscan sequential cell.
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Figure 15-8 Scan Design With Nonscan Sequential Cell

DFT Compiler supports this configuration but generates uncontrollable-scan-cell messages 
to indicate exclusion of the nonscan cell from the scan chain.

If the nonscan cell has a scan_element false attribute, DFT Compiler generates warning 
messages such as this:

Warning: Nonscan DFF U1 disturbed during time 45 of shift 
procedure. (S19-1)

Ability to Capture Data Into Scan Cells

To ensure that the parallel capture cycle results in data that is successfully captured into the 
scan cells, DFT Compiler verifies that

• The capture data is valid.

Valid capture data depends only on the scanned-in state and primary input values. 
Modification of capture data by other capture data or the capture clock invalidates the 
capture data.

• The system clock pulse arrives at the system clock pin of each scan cell.

If a scan cell does not meet these conditions, DFT Compiler cannot capture data into the 
scan cell. Typical causes of failed data capture include the following:

• A clock signal drives the data input to a scan cell.

• A functional path in the design has sequential endpoints clocked by different clock 
domains (untestable functional path).
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• A bidirectional port drives the data input to a scan cell, and the data is released before 
the capture clock.

• A master-slave cell with an inferred behavior for the B clock pulse causes the cell capture 
state to be different from the cell scan-out state.

• A sequential element drives an asynchronous input to a scan cell.

• The test protocol does not include a capture clock.

DFT Compiler generates diagnostic messages indicating the source of the violation.

The following topics provide examples of the typical causes of failed data capture.

Clock Driving Data

In the design shown in Figure 15-9, the clock signal CLK drives the data input to cell FF_B. 
Pulsing the clock signal during capture can cause the data input to cell FF_B to change.

Figure 15-9 Design With Clock Driving Data

DFT Compiler generates this warning message:

Warning: Clock CLK connects to LE clock/data inputs CP/D of DFF FF_B.
(C12-1)

Although the dft_drc output and the scan path report indicate that the affected cell is 
scannable, the cell is actually scan controllable only.

This violation usually has a minor impact on fault coverage, so make it one of the last 
violations you correct, if at all. Correcting this violation requires the addition of test-mode 
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logic, which also has a minor fault coverage impact. Fixing the violation means trading one 
set of untested faults for another, possibly smaller, set of untested faults.

Use the Design Vision Graphical Schematic Debugger to locate and analyze the 
clock-driving data problem.

Untestable Functional Path

Figure 15-10 shows a design with an untestable functional path. A functional path exists 
between cells q1_reg and q2_reg. Using the default clock waveform of rising edge at 45 ns 
and falling edge at 55 ns, q2_reg receives the data captured in cell q1_reg. 

Figure 15-10 Untestable Functional Path

Because the capture data in cell q2_reg depends on data other than the scanned-in state 
and the primary input values, DFT Compiler generates warning messages such as these:

Warning: Clock clk can capture new data on TE input CP of DFF q2_reg.
(D14-1)
         Source of violation: input CP of DFF q1_reg.

Use the Design Vision Graphical Schematic Debugger to locate and analyze the untestable 
functional path problem. Contact Synopsys support personnel for access to a script that 
loads the debugger.

In most cases, you must change the design to correct the problem. 

Uncontrollable Asynchronous Pins

The asynchronous pins shown in Figure 15-11 are uncontrollable, because they are driven 
by sequential logic. If you hold the TM signal at logic 1 only during scan shift, the 
asynchronous resets on cells FF_A and FF_B can change as a result of the capture clock.
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Figure 15-11 Uncontrollable Asynchronous Pins

DFT Compiler will report the following:

Warning: Clock CDN cannot capture data with other clocks off. (D8-1)

Uncontrollable pins usually occur when the asynchronous signal is generated from the state 
of other sequential devices, as shown in Figure 15-12. You can correct this violation by 
inserting test-mode logic.

Figure 15-12 Circuit With Uncontrollable Asynchronous Clear
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Post-DFT DRC Limitations

Post-DFT DRC is not supported when the following features are used:

• Integrating compressed scan cores

• Using implicit scan chains

• Performing reordering in the ASCII netlist flow

• Placing OCC controllers into bypass mode when you use the occ_lib_cell_nor2 
design attribute to use NOR2 clock ORing logic
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16
Exporting Data to Other Tools 16

This chapter describes how to export output data from DFT Compiler to other tools, such as 
TetraMAX ATPG.

This chapter includes the following topics:

• Exporting a Design to TetraMAX ATPG

• Using The SCANDEF-Based Reordering Flow

• Verifying DFT Inserted Designs for Functionality
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Exporting a Design to TetraMAX ATPG

After you perform DFT insertion in DFT Compiler, you can write out the design netlist and 
the STIL procedure files for the test modes of interest. TetraMAX ATPG reads these files, 
performs its own DRC check, and generates test patterns and provides fault coverage 
statistics for the generated pattern set.

TetraMAX ATPG also provides graphical debugging capabilities for DRC violations.

To learn more about exporting your design to TetraMAX ATPG, see the following topics:

• Introduction to STIL Procedure Files

• Exporting Your Design to TetraMAX ATPG

• Adjusting WaveformTable Timing for Delay Test

• Reading Designs With Black-Box Test Models Into TetraMAX

• STIL Procedure File Procedure and WaveformTable Examples

• Limitations

See Also

• TetraMAX Online Help for more information about TetraMAX ATPG

Introduction to STIL Procedure Files

The write_test_protocol command writes out a STIL procedure file (SPF) for a specified 
test mode. For example,

dc_shell> write_test_protocol \
            -test_mode Internal_scan \
            -output Internal_scan.spf

A STIL procedure file contains the test protocol information needed by TetraMAX ATPG to 
understand a test mode, such as

• Scan clocks (including clock waveform and strobe timing information)

• Scan chains

• Scan compression structures

• A test setup macro that initializes the design for test

• Various other test procedures that describe how to perform load/unload, launch, and 
capture operations
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In SPF, macros and procedures describe how to drive the design’s primary inputs and 
observe its primary outputs over one or more clock cycles to perform a particular task. Each 
macro or procedure references a named WaveformTable construct that defines what signal 
timing to use. Table 16-1 describes the macros and procedures that DFT Compiler creates 
in the SPF.

Note:   
The three “allclock” procedures are used for delay test, a term that includes the path 
delay, transition delay, and dynamic bridging fault models. Their WaveformTable timing 
must be manually modified before use; see “Adjusting WaveformTable Timing for Delay 
Test” on page 16-5.

See “STIL Procedure File Procedure and WaveformTable Examples” on page 16-7 for an 
example of how a procedure references a WaveformTable.

Procedures use the event ordering used by TetraMAX ATPG: force PI, measure PO, pulse 
clock. For a preclock measure protocol, all three events happen within a single test clock 
cycle. For an end-of-cycle measure protocol, each of the three events happens in its own 
test clock cycle. For most designs, a preclock measure protocol should be used.

Table 16-1 SPF Macros and Procedures Created by DFT Compiler 

Macro or 
Procedure Name

Referenced 
WaveformTable

Description

test_setup
(macro)

_default_WFT_ Initializes the design for the specified test mode

load_unload
(procedure)

_default_WFT_ Scans new data into the scan chains while 
simultaneously scanning the current captured 
data out of the scan chains

multiclock_capture
(procedure)

_multiclock_capture_WFT_ Used for test operations that do not require a 
high-speed external clock, such as stuck-at 
capture and delay test launch and capture 
using an OCC clock

allclock_launch
(procedure)

_allclock_launch_WFT_ Performs launch for delay test when using 
external clocks

allclock_capture
(procedure)

_allclock_capture_WFT_ Performs capture for delay test when using 
external clocks

allclock_launch_
capture
(procedure)

_allclock_launch_
capture_WFT_

For delay test in full-sequential ATPG only, 
performs launch and capture in the same test 
clock period when using external clocks
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For launch and capture operations, the procedures do not explicitly force the clocks to pulse; 
instead, the clocks are left unconstrained so that TetraMAX ATPG can choose which clocks 
to pulse in each test pattern.

The SPF reflects any constant signals defined on primary inputs using the set_dft_signal 
-type Constant command. However, it does not reflect assumed signal values applied 
with the set_test_assume command. These assumptions exist only within DFT Compiler in 
cases where the final test_setup initialization procedure is not yet available; you must 
provide a test protocol to TetraMAX DRC with an updated test_setup procedure that 
matches these assumptions.

See Also

• “Setting Test Timing Variables” on page 14-18 for more information about configuring 
preclock measure and end-of-cycle measure test protocols in DFT Compiler

• The “STIL Procedure Files” topic in TetraMAX Online Help for more information about 
STIL procedure files

Exporting Your Design to TetraMAX ATPG

To export your design to TetraMAX ATPG, do the following:

1. Before starting any work with DFT Compiler, including scan insertion, set the test timing 
variables to the values specified by your ASIC vendor. If your ASIC vendor does not have 
specific requirements, the following defaults achieve the best results from TetraMAX 
ATPG:

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100

These are the default settings; you do not need to add them to your script.

2. Guide netlist formatting by setting the environment variables that affect how designs are 
written out.

Note:   
Set the environment variables before you write out the netlist or STIL procedure file.

For example, if you want vectored ports in your Verilog design to be bit-blasted, set the 
verilogout_single_bit variable to true. For more information about environment 
variables that affect how designs are written out, see the HDL Compiler for Verilog User 
Guide or the HDL Compiler for VHDL User Guide.

3. Prior to DFT insertion, check for design rule violations by running pre-DFT DRC:

dc_shell> dft_drc
Chapter 16: Exporting Data to Other Tools
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Any nonscan sequential cell or capture violation has the potential to lower fault coverage. 
Fix any design rule violations, then repeat the dft_drc command until no design rule 
violations are found.

For more information, see Chapter 14, “Pre-DFT Test Design Rule Checking.”

4. Perform DFT preview and insertion:

dc_shell> preview_dft
dc_shell> insert_dft

5. After DFT insertion, check for design rule violations by running post-DFT DRC:

dc_shell> dft_drc

Verify that all scan chains are free from violations. TetraMAX cannot use scan chains 
with violations.

For more information, see “Post-DFT Insertion Test Design Rule Checking” on 
page 15-13.”

Note:   
Some features and flows do not support post-DFT DRC, as noted in “Post-DFT DRC 
Limitations” on page 15-27. In such cases, use TetraMAX DRC to validate the 
DFT-inserted design.

6. Write out the design netlist in Verilog format. For example,

dc_shell> change_names -hierarchy -rules verilog
dc_shell> write -format verilog -hierarchy -output my_design.v

7. Write out a test protocol file for each test mode of interest. For example,

dc_shell> write_test_protocol \
            -test_mode Internal_scan \
            -output Internal_scan.spf
dc_shell> write_test_protocol \
            -test_mode ScanCompression_mode \
            -output ScanCompression_mode.spf

All of the information that TetraMAX ATPG requires to create ATPG test patterns, such 
as scan pins and constrained signals, is included in the STIL procedure file. 

Adjusting WaveformTable Timing for Delay Test

Delay test is a type of ATPG test that targets timing-sensitive faults. It includes the path 
delay, transition delay, and dynamic bridging fault models.

The SPF created by the write_test_protocol command contains three “allclock” 
procedures, which are used for delay test. The WaveformTables for these procedures 
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contain a copy of the _default_WFT_ WaveformTable timing by default. To create delay test 
patterns, you must manually modify the external clocks to constrain the timing as follows:

• _allclock_launch_WFT_ (referenced by allclock_launch procedure)

This WaveformTable describes the delay test launch clock timing for external clocks.

To constrain the timing, modify the WaveformTable timing to move the external clock 
edges toward the end of the test period (toward the allclock_capture cycle).

• _allclock_capture_WFT_ (referenced by allclock_capture procedure)

This WaveformTable describes the delay test capture clock timing for external clocks.

To constrain the timing, modify the WaveformTable timing to move the external clock 
edges toward the beginning of the test period (toward the allclock_launch cycle), keeping 
the strobe before the first clock edge.

• _allclock_launch_capture_WFT_ (referenced by allclock_launch_capture procedure)

For delay test in full-sequential ATPG only, this WaveformTable describes the delay test 
timing for external clocks that perform launch and capture in the same test clock period.

To constrain the timing, modify the WaveformTable timing to tighten the pulse width.

Each two-clock transition fault test consists of a launch cycle using _allclock_launch_WFT_ 
timing, followed by a capture cycle using _allclock_capture_WFT_ timing. The active clock 
edges of these two cycles should be close to each other. Make sure that the clock 
leading-edge comes after the all_outputs strobe time, and adjust the time for all values (L, 
H, T and X) in _allclock_capture_WFT_ if necessary.

Do not modify any PLL reference clocks, or the PLLs might lose phase lock.

For more information about delay test fault models and how to modify the WaveformTable 
timing when using them, see TetraMAX Online Help.

Reading Designs With Black-Box Test Models Into TetraMAX

If you export a design that contains black-box cores with test models, the output netlist 
includes empty submodules for the cores. However, to test the logic inside these cores, they 
must have an actual netlist representation in automatic test pattern generation (ATPG).

By default, if you read in two modules with the same name into the TetraMAX tool, the last 
one takes precedence. If you have a top-level netlist with empty submodules, read it into the 
TetraMAX tool first, and then read in the netlists for the submodules. For example,

BUILD> read_netlist top.v
BUILD> read_netlist module_1.v module_2.v ... module_n.v
BUILD> run_build_model top
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STIL Procedure File Procedure and WaveformTable Examples

Example 16-1 shows a multiclock_capture procedure example. The W construct references 
a WaveformTable for timing.

Example 16-1 multiclock_capture Procedure Example

Procedures {
    "multiclock_capture" {
        W "_multiclock_capture_WFT_";
        C {
            "all_inputs" = 00 \r91 N 111 \r14 0 \r33 N 1 \r32 N;
            "all_outputs" = \r165 X;
            "all_bidirectionals" = ZZZ;
        }
        F {
            "i_scan_block_sel[0]" = 1;
            "i_scan_block_sel[1]" = 1;
            "i_scan_compress_mode" = 0;
            "i_scan_testmode" = 1;
        }
        V {
            "_po" = \r168 #;
            "_pi" = \r179 #;
        }
    }
}

Example 16-2 shows a _multiclock_capture_WFT_ WaveformTable example that provides 
the timing for the previous multiclock_capture procedure. The formatting has been adjusted 
for clarity.

Example 16-2 _multiclock_capture_WFT_ WaveformTable Example

WaveformTable "_multiclock_capture_WFT_" {
    Period '100ns';
    Waveforms {
        "all_inputs" {
            0 { '0ns'  D; } }
        "all_inputs" {
            1 { '0ns'  U; } }
        "all_inputs" {
            Z { '0ns'  Z; } }
        "all_inputs" {
            N { '0ns'  N; } }

        "all_outputs" {
            X { '0ns'  X;
                '40ns' X; } }
        "all_outputs" {
            H { '0ns'  X;
                '40ns' H; } }
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        "all_outputs" {
            T { '0ns'  X;
                '40ns' T; } }
        "all_outputs" {
            L { '0ns'  X;
                '40ns' L; } }

        "CLK1" {
            P { '0ns'  D;
                '45ns' U;
                '55ns' D; } }

        "CLK2" {
            P { '0ns'  D;
                '45ns' U;
                '55ns' D; } }
    }
}

Limitations

Note the following limitation:

• TetraMAX ATPG does not accept designs in which the original source was VHDL and 
two-dimensional arrays are used in top-level buses in the final netlist.

Using The SCANDEF-Based Reordering Flow

DFT Compiler can generate SCANDEF information that describes how scan cells in the 
design can be reordered and repartitioned. You can use this SCANDEF information in the 
IC Compiler tool to optimize scan chains and to fix timing violations using physical 
information. You can also use this information in other place-and-route tools.

This topic covers the following:

• Introduction to SCANDEF

• SCANDEF Constructs

• Generating SCANDEF Information

• Generating SCANDEF Information in Hierarchical DFT Flows

• SCANDEF Examples

• Support for Other DFT Features

• Limitations of SCANDEF Generation
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Introduction to SCANDEF

Scan-inserted designs require additional routing compared to nonscan designs. To meet die 
size and timing requirements, you should reduce the routing overhead as much as possible. 
One way to do this is to optimize scan chains based on physical information.

There are two types of scan optimization operations:

• Scan reordering changes the scan chain position of two (or more) scan cells within the 
same scan chain. Figure 16-1 shows a scan reordering example.

Figure 16-1 Scan Reordering of Two Scan Cells

• Scan repartitioning swaps two (or more) scan cells between different scan chains, such 
that the original chain lengths are preserved. Figure 16-2 shows a scan repartitioning 
example.

Figure 16-2 Scan Repartitioning of Two Scan Cells

During scan reordering and repartitioning, the layout tool must honor DFT constraints such 
as clock mixing, DFT partitions, multivoltage regions, and multiple test modes. However, 
communicating this information directly to the layout tool would be complex and error-prone.

Instead, SCANDEF communicates what reordering and repartitioning operations are 
possible given the DFT constraints. As a result, the layout tool does not need to understand 
DFT constraints; it simply optimizes as allowed by the SCANDEF.
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SCANDEF Constructs

A SCANDEF file is a DEF file that uses a set of scan-specific constructs to describe scan 
chain information. A stub chain definition describes a portion of a scan chain that can be 
reordered within itself. A stub chain consists of a START point, a STOP point, and one or 
more scan elements between them. Example 16-3 shows the first three stub chain 
definitions in a SCANDEF file.

Example 16-3 SCANDEF Example

VERSION 5.5 ;
NAMESCASESENSITIVE ON ;
DIVIDERCHAR "/" ;
BUSBITCHARS "[]" ;
DESIGN top ;

SCANCHAINS 8 ;

- 1
+ START U131 Y
+ FLOATING ZN_reg[0] ( IN SI ) ( OUT Q )
           ZN_reg[1] ( IN SI ) ( OUT Q )
           ZN_reg[2] ( IN SI ) ( OUT Q )
           ZN_reg[3] ( IN SI ) ( OUT Q )
           ZN_reg[4] ( IN SI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP ZN_reg[4] SI ;

- 2
+ START U132 Y
+ FLOATING ZN_reg[5] ( IN SI ) ( OUT Q )
+ ORDERED SR_reg[3] ( IN SI ) ( OUT Q )
          SR_reg[2] ( IN D ) ( OUT Q )
          SR_reg[1] ( IN D ) ( OUT Q )
          SR_reg[0] ( IN D ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP ZN_reg[4] SI ;

- 3
+ START test_si2
+ FLOATING IP_inst ( IN test_si1 ) ( OUT test_so1 ) (BITS 5)
           IPglue_logic_cell1 ( IN TI ) ( OUT SO )
           IPglue_logic_cell2 ( IN TI ) ( OUT SO )
+ PARTITION IPCLK_45_45
+ STOP test_so2 ;

...
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Note the following constructs:

• The START and STOP points specify the stub chain boundaries. They can be a variety 
of scan chain constructs such as scan I/O ports, codec logic gates, lockup latches, 
reconfiguration MUXs, or buffer/inverter pins. Therefore, stub chains are not usually 
identical to scan chains, and the number of stub chains defined in the SCANDEF 
information does not necessarily match the number of scan chains in the design.

• A FLOATING section is an unordered list of cells that can be freely reordered by the 
layout tool. Because the cells are described as an unordered list, the scan cell order in 
the SCANDEF file has no requirement to match the order in the design.

• An ORDERED section describes a group of scan cells that cannot be reordered within 
that group, but can be reordered as a group within a stub chain. Common causes of 
ORDERED sections are shift registers identified by the compile_ultra command, scan 
segments defined with the set_scan_path -ordered_elements command, and buffers 
or inverters between scan cells.

• The BITS attribute indicates a scan element that represent multiple scan bits. This allows 
complex scan cells, such as DFT-inserted cores, to be represented in abstract form. By 
default, each individual scan element represents a single scan bit. 

• A PARTITION name indicates that the stub chain elements can be repartitioned with 
those of another stub chain with the same partition name. The tool constructs partition 
names so that identical names indicate stub chains that are compatible for repartitioning. 
Partition names are made unique or omitted for stub chains whose elements cannot be 
repartitioned.

A stub chain can include zero or more ORDERED sections. However, it can only contain 
zero or one FLOATING section, as having multiple FLOATING sections within the same stub 
chain is meaningless.

A SCANDEF file does not necessarily contain all scan cells in the design. It contains 
information only about scan cells in the design that can be reordered or repartitioned. Scan 
cells or scan segments that cannot be optimized are omitted from the file.

The layout tool can reorder and/or repartition many scan cells at a time. For example, 
several compatible scan chains in a geographic region can be completely reconstructed, if 
the SCANDEF information is honored and the original scan chain lengths are preserved.

Generating SCANDEF Information

Generation of SCANDEF information is covered in the following topics:

• Writing Out the SCANDEF Information

• Script Example
Chapter 16: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow 16-11
Chapter 16: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow 16-11



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Writing Out the SCANDEF Information

To generate SCANDEF information, perform the following steps after reading in your design 
and applying the DFT configuration:

1. Execute the insert_dft command.

If you are using Design Compiler topographical mode, perform a post-DFT incremental 
compile with the compile_ultra -incremental -scan command.

2. Execute the change_names command with the necessary name rules.

3. Generate the SCANDEF information with the write_scan_def command:

dc_shell> write_scan_def -output filename.scandef

This command writes out the SCANDEF information to the specified file name. It also 
annotates the current design in memory with the SCANDEF information.

4. Write out the design database files, depending on your layout tool:

❍ For the IC Compiler tool, use the write -format ddc command. This .ddc file 
contains the SCANDEF information. The IC Compiler tool does not need the 
SCANDEF file from the previous step, but you can use the file for reference.

❍ For other layout tools, use the write -format verilog command. The layout tool 
also needs the SCANDEF file from the previous step.

Note:   
You must execute the write_scan_def command to annotate the scan ordering 
information onto the current design, even when using the .ddc flow.

You can use the resulting SCANDEF information in your place-and-route tool to optimize 
scan chain routing order. When you read SCANDEF information into the IC Compiler tool, it 
checks the integrity of the information against the design netlist before using it.

Script Example

Example 16-4 shows how to generate the SCANDEF information for a typical design. The 
script generates a .ddc file with SCANDEF information, and also writes an ASCII SCANDEF 
file.

Example 16-4 Example SCANDEF Generation Script

read_file -format ddc top.ddc
current_design top
set_scan_configuration -style multiplexed_flip_flop
set_dft_signal -view existing_dft -type ScanClock \
  -port clock -timing [list 45 55]
create_test_protocol 
dft_drc
preview_dft
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insert_dft
change_names ...
write_scan_def -output my_def.scandef 
write_test_protocol -output test_mode.spf
write -format verilog -hierarchy -output top.v
write -format ddc -hierarchy -output top.ddc

Generating SCANDEF Information in Hierarchical DFT Flows

In hierarchical DFT flows, you perform DFT insertion in one or more cores, then you 
integrate those cores at the top level. When you write out SCANDEF information at the top 
level, you can control whether scan optimization is allowed within each core, as described 
in the following topics:

• Preventing Scan Optimization in a Core

• Allowing Scan Optimization in a Core

• Using SCANDEF Information in a Manual Core Integration Flow

Preventing Scan Optimization in a Core

By default, when you generate SCANDEF information for a design with cores, the tool 
represents scan chains inside the core with a BITS construct that does not include any 
individual core-level scan elements. Therefore, scan optimization cannot optimize any 
individual scan elements within the core, although it can reorder and repartition the core’s 
completed scan chains as scan segments.

Example 16-5 shows the SCANDEF information for a top-level design that integrates a core 
containing two scan chains.

Example 16-5 SCANDEF Information for Scan Optimization Prevented in a Core

- 1
+ START PIN test_si1
+ FLOATING Z_reg[0] ( IN TI ) ( OUT Q )
           Z_reg[1] ( IN TI ) ( OUT Q )
           CORE ( IN test_si1 ) ( OUT test_so1 ) ( BITS 3 )
+ PARTITION CLK1_45_45
+ STOP PIN test_so1 ;

- 2
+ START PIN test_si2
+ FLOATING Z_reg[2] ( IN TI ) ( OUT Q )
           Z_reg[3] ( IN TI ) ( OUT Q )
           CORE ( IN test_si2 ) ( OUT test_so2 ) ( BITS 3 )
+ PARTITION CLK1_45_45
+ STOP PIN test_so2 ;
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Figure 16-3 shows a graphical representation of the SCANDEF information from the 
previous example.

Figure 16-3 Schematic Example for Scan Optimization Prevented in a Core

Use this default behavior for cores that are

• IC Compiler block abstractions

Such cores are physically completed cores in layout; no further scan optimization can be 
performed on them in layout.

Allowing Scan Optimization in a Core

In some cases, you might want to allow scan optimization for a DFT-inserted core. For 
example, the core might be included as a logical (but not physical) level of hierarchy in the 
top-level design so that the core-level gates can be freely optimized along with the top-level 
gates.

To allow scan optimization for one or more core instances, specify them with the 
-expand_elements option when generating the SCANDEF information for the top-level 
design. For example,

dc_shell> write_scan_def -expand_elements {CORE} -output top.scandef

The tool incorporates the core-level SCANDEF information into the generated top-level 
SCANDEF information. Correspondingly, the cores themselves must contain SCANDEF 
information, which is accomplished in the core-level run by using the write_scan_def 
command before writing out the core design in .ddc or .ctlddc format.

Example 16-6 shows the SCANDEF information for a top-level design integrating a core 
with two scan chains represented in expanded form. Note that the individual scan elements 
inside the core can be reordered and repartitioned with elements outside the core.

Example 16-6 SCANDEF Information for Scan Optimization Allowed in a Core

- 1
+ START PIN test_si1
+ FLOATING Z_reg[0] ( IN TI ) ( OUT Q )

test_si1 test_so1

CORE

test_si2 test_so2

(BITS 3)

(BITS 3)

TOP
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           Z_reg[1] ( IN TI ) ( OUT Q )
           CORE/Z_reg[0] ( IN TI ) ( OUT Q )
           CORE/Z_reg[1] ( IN TI ) ( OUT Q )
           CORE/Z_reg[2] ( IN TI ) ( OUT Q )
+ PARTITION CLK1_45_45
+ STOP PIN test_so1 ;

- 2
+ START PIN test_si2
+ FLOATING Z_reg[2] ( IN TI ) ( OUT Q )
           Z_reg[3] ( IN TI ) ( OUT Q )
           CORE/Z_reg[3] ( IN TI ) ( OUT Q )
           CORE/Z_reg[4] ( IN TI ) ( OUT Q )
           CORE/Z_reg[5] ( IN TI ) ( OUT Q )
+ PARTITION CLK1_45_45
+ STOP PIN test_so2 ;

Figure 16-4 shows a graphical representation of the SCANDEF information from the 
previous example.

Figure 16-4 Schematic Example for Scan Optimization Allowed in a Core

If a core does not contain SCANDEF information, the write_scan_def command issues a 
warning:

Warning: SCANDEF information for design instance %s is not available.
NETLIST information is available. SCANDEF for design instance %s will be
expanded using netlist information.

In this case, DFT Compiler expands the indicated core’s scan chains by exploring the core 
netlist structure. Basic reordering requirements such as clock mixing are inferred from the 
top level, but any user-applied core-level scan constraints (such as scan group or scan path 
definitions) are lost.

Use the -expand_elements option for cores that are

• Design Compiler block abstractions

• Design Compiler full-netlist designs

test_si1 test_so1

CORE

test_si2 test_so2

TOP
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Such cores are not yet physically completed cores in layout, and further scan optimization 
can be performed on them in layout.

See Also

• “Writing Out the SCANDEF Information” on page 16-12 for more information about 
writing out a core design that contains SCANDEF information

Using SCANDEF Information in a Manual Core Integration Flow

In a manual core integration flow, the scan pins of DFT-inserted cores are preconnected in 
the top-level design and no DFT insertion is performed by DFT Compiler. As a result, the tool 
does not create any SCANDEF information for the top-level design.

However, you can run scripts that postprocess and merge core-level SCANDEF files so that 
they can be applied to the top-level design in the layout tool:

• SolvNet article 033225, “How Can I Convert and Merge Block-Level SCANDEF Files to 
the Top Level?” provides a Tcl procedure that you run directly in the Design Compiler run 
for the integration level.

• SolvNet article 017172, “Converting Block-Level SCANDEF to Upper-Level SCANDEF” 
provides a Perl script that you run in a Linux shell.

SCANDEF Examples

This topic shows how various DFT scenarios are represented in SCANDEF. The examples 
use a design with six scan cells (FF1 through FF6) and scan-in and scan-out ports for two 
scan chains (SI1, SI2, SO1, and SO2).

Note:   
Depending on your DFT configuration, the tool might use head or tail scan-cell pins 
instead of scan ports as START and STOP pins, which prevents those scan cells from 
being optimized. For more information, see SolvNet article 022408, “Determining START 
and STOP Points in a SCANDEF File.”

Default (Two Scan Chains)
set_scan_configuration -chain_count 2

The SCANDEF information is as follows:

- 1
+ START PIN SI1
+ FLOATING FF1 ( IN TI ) ( OUT QN )
           FF2 ( IN TI ) ( OUT QN )
           FF3 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
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+ STOP PIN SO1 ;

- 2
+ START PIN SI2
+ FLOATING FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
           FF6 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

Both stub chains represent complete scan chains (from scan-in to scan-out). The partition 
names are identical, which allows scan cells to be swapped (repartitioned) between stub 
chains.

Mixed Clock Edges

In this specific example, FF1, FF2, and FF3 are clocked by the trailing clock edge.

set_scan_configuration -chain_count 1 -clock_mixing mix_clocks

The SCANDEF information is as follows:

- 1_SG1
+ START PIN SI1
+ FLOATING FF1 ( IN TI ) ( OUT QN )
           FF2 ( IN TI ) ( OUT QN )
+ PARTITION CLK_55_55
+ STOP FF3 TI ;

- 1_SG2
+ START FF3 QN
+ FLOATING FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
           FF6 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

A single chain is created because clock mixing is enabled. However, two stub chains are 
required because scan cells of different clock edges cannot be swapped with each other. 
The partition name includes the clock edge to implement this restriction. FF3 is fixed as the 
output of the first stub chain; it cannot be reordered or repartitioned.

set_scan_path With No Elements
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -exact_length 2

The SCANDEF information is as follows:

- 2
+ START PIN SI2
+ FLOATING FF3 ( IN TI ) ( OUT QN )
           FF4 ( IN TI ) ( OUT QN )
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           FF5 ( IN TI ) ( OUT QN )
           FF6 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

- MYCHAIN1
+ START PIN SI1
+ FLOATING FF1 ( IN TI ) ( OUT QN )
           FF2 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

The stub chain name reflects the scan chain name and the chain lengths reflect the exact 
length requirement. Otherwise, there are no restrictions; the cells can be reordered and 
repartitioned.

set_scan_path With Unordered Elements
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -include_elements {FF2 FF1}

The SCANDEF information is as follows:

- 2
+ START PIN SI2
+ FLOATING FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
           FF6 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

- MYCHAIN1
+ START PIN SI1
+ FLOATING FF1 ( IN TI ) ( OUT QN )
           FF2 ( IN TI ) ( OUT QN )
           FF3 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45_SNPS_UNIQUE_PARTITION_NAME_00001
+ STOP PIN SO1 ;

FF1 and FF2 can be reordered within their stub chain, so they are included in a FLOATING 
section. However, the set_scan_path specification requires that they remain in their scan 
chain, so a unique partition name is assigned. (This restriction also applies to FF3, which 
was added for scan chain balancing.)

set_scan_path With Ordered Elements
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -ordered_elements {FF2 FF1}

The SCANDEF information is as follows:

- 2
+ START PIN SI2
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+ FLOATING FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
           FF6 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

- MYCHAIN1
+ START PIN SI1
+ FLOATING FF3 ( IN TI ) ( OUT QN )
+ ORDERED FF2 ( IN TI ) ( OUT QN )
          FF1 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45_SNPS_UNIQUE_PARTITION_NAME_00001
+ STOP PIN SO1 ;

The ORDERED section requires that FF2 and FF1 can only move within their stub chain as 
a unit, and the unique partition name ensures that they remain in their scan chain.

Scan Elements That Cannot Be Reordered or Repartitioned
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -ordered_elements {FF2 FF1} -complete true

The SCANDEF information is as follows:

- 2
+ START PIN SI2
+ FLOATING FF3 ( IN TI ) ( OUT QN )
           FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
           FF6 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

FF2 and FF1—and their scan chain—do not appear in the SCANDEF information at all. The 
tool detects that they cannot be reordered within their stub chain or repartitioned with other 
chains, so it omits them to create more efficient SCANDEF information.

Unrouted Scan Groups
set_scan_configuration -chain_count 1
set_scan_group MYGROUP1 -include_elements {FF2 FF1} -serial_routed false

The SCANDEF information is as follows:

- 1_SG1
+ START PIN SI1
+ FLOATING FF3 ( IN TI ) ( OUT QN )
           FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
+ PARTITION CLK_45_45
+ STOP FF6 TI ;

- 1_SG2
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+ START FF6 Q
+ FLOATING FF1 ( IN TI ) ( OUT QN )
           FF2 ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45_MYGROUP1
+ STOP PIN SO1 ;

FF2 and FF1 are an unordered (unrouted) group, so they can be reordered within their 
group. However, the unique partition name ensures they cannot be repartitioned out of their 
stub chain.

Serial-Routed Scan Groups
set_scan_configuration -chain_count 1
set_scan_group MYGROUP1 -include_elements {FF2 FF1} -serial_routed true

The SCANDEF information is as follows:

- 1_SG1
+ START PIN SI1
+ FLOATING FF3 ( IN TI ) ( OUT QN )
           FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
+ PARTITION CLK_45_45
+ STOP FF6 TI ;

FF2 and FF1 do not appear in the SCANDEF information at all. The tool detects that they 
cannot be reordered within their group or repartitioned with other chains, so it omits them to 
create more efficient SCANDEF information.

CTL-Modeled Core

In this specific example, a CTL-modeled core with a single scan chain is included.

set_scan_configuration -chain_count 1

The SCANDEF information is as follows:

- SUB_GP1
+ START PIN SI1
+ FLOATING FF1 ( IN TI ) ( OUT QN )
           FF2 ( IN TI ) ( OUT QN )
           FF3 ( IN TI ) ( OUT QN )
           FF4 ( IN TI ) ( OUT QN )
           FF5 ( IN TI ) ( OUT QN )
           FF6 ( IN TI ) ( OUT QN )
           block1 (IN test_si1) (OUT test_so1 ) ( BITS 20 )
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

By default, the CTL model contents are abstracted by the BITS parameter, which indicates 
the length of that scan segment. However, the contents can be expanded if needed—see 
“Generating SCANDEF Information in Hierarchical DFT Flows” on page 16-13.
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Inferred Shift Register

In this specific example, FF5 and FF6 are inferred as a shift register.

set_scan_configuration -chain_count 2

The SCANDEF information is as follows:

- 1
+ START PIN SI1
+ FLOATING FF1_reg ( IN TI ) ( OUT QN )
+ ORDERED FF5_reg ( IN TI ) ( OUT Q )
          FF6_reg ( IN D ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

- 2
+ START PIN SI2
+ FLOATING FF2_reg ( IN TI ) ( OUT QN )
           FF3_reg ( IN TI ) ( OUT QN )
           FF4_reg ( IN TI ) ( OUT Q )
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

The shift register elements are captured in an ORDERED section. It is contained in a 
partition with a nonunique name, which allows it to be repartitioned into other compatible 
stub chains.

PARTITION Name Conventions

In a SCANDEF file, a PARTITION name indicates that the stub chain elements can be 
repartitioned with those of another stub chain with the same partition name. The tool 
constructs partition names so that identical names indicate stub chains that are compatible 
for repartitioning. Partition names are made unique or omitted for stub chains whose 
elements cannot be repartitioned.

The partition naming convention for the different scenarios is as follows:

• MUX-D style without multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>

• MUX-D style with multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
<voltage_domain>_<power_domain>
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• LSSD style when test_lssd_no_mix is FALSE

SNPS_LSSD_<clock_name>_<master_clock_name>_<slave_clock_name>_
<voltage_domain>_<power_domain>

• LSSD style when test_lssd_no_mix is TRUE

SNPS_LSSD_<clock_name>_<chain_system_clock_name>_<master_clock_name>_
<slave_clock_name>_<voltage_domain>_<power_domain>

• LSSD style with X-chains

LSSD_X_<clock_name>_<master_clock_name>_<slave_clock_name>_
<voltage_domain>_<power_domain>

• Scan-enabled LSSD style without multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>

• Scan-enabled LSSD style with multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
<voltage_domain>_<power_domain>

• Multiple test-mode SCANDEF generation (when mode-specific DFT specifications exist)

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
M1[_M2_...additional_modes]

For wrapper chains, WRPSI_, WRPSO_ and WRPS_ are the corresponding keywords used 
to represent the different wrapper chains.

Support for Other DFT Features

The following DFT features are supported: 

• Standard scan and compressed scan

• User-defined test modes

• Internal pins flow

• Memories with test models

• Multivoltage designs

• Hierarchical flows (with test models)

• On-chip clocking controller (OCC) flows
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• Core wrapping

• Shift registers

Limitations of SCANDEF Generation

Note the following limitations of SCANDEF generation:

• Manual post-DFT modifications to the scan structure or scan element naming are not 
supported.

Only incremental compiles and the change_names command update the stored 
SCANDEF information. Manual post-DFT design modifications that affect the scan 
architecture or scan element naming are not supported. Examples include:

❍ Hierarchy uniquification or ungrouping

❍ ECO modification to scan chains or logic that affects DFT operation

❍ Modifying IEEE 1801 Standard (UPF) power intent to insert isolation and/or 
level-shifter cells after DFT insertion

• For stub chains that terminate at a reconfiguration MUX, the STOP pin is the scan-in pin 
of the last scan cell instead of the input pin of the reconfiguration MUX. This prevents the 
last scan cell in the stub chain from being reordered or repartitioned.

• set_scan_path specifications with the -include_elements or -ordered_elements 
options use a unique partition name to keep those elements in the chain. Any additional 
scan elements added to that chain for balancing cannot be repartitioned, but they can be 
reordered.

• Boundary-scan chains are not supported.

• Scan extraction flows that have combinational logic between two adjacent scan flip-flops 
are not supported.

• set_scan_group specifications might not be represented properly.

• Some set_scan_path specifications, when applied to a specific test mode other than 
the first-defined test mode, are not represented properly.

For details, see SolvNet article 2314593, “SCANDEF Generation Limitations for Multiple 
Test Modes.”
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Verifying DFT Inserted Designs for Functionality

After DFT insertion, the resulting scan-inserted design is verified for functional equivalence 
with respect to the nonscan design. This is done to ensure that DFT insertion did not 
introduce any logic errors. Verification is accomplished by using the Synopsys Formality 
tool.

The following topics describe the verification process:

• Verification Setup File Generation

• Test Information Passed to the Verification Setup File

• Script Example

• Formality Tool Limitations

Verification Setup File Generation

By default, Design Compiler synthesis automatically creates a verification setup file in your 
working directory. The automated setup file has the extension .svf and is named default.svf. 
This file tracks any design changes that are required for the verification process and assists 
the Formality tool in compare-point matching and verification.

The automated setup file is stored in binary format. 

Use the set_svf command to generate a Formality setup information file for efficient 
compare-point matching in the Formality tool.

The syntax is as follows:

set_svf
     file_name
     [-append]
     [-off]

Argument Definitions

file_name

Specifies the file into which Formality setup information is recorded. You must specify a 
file name unless the -off option is specified.

-append

Appends to the specified file. If another Formality setup verification file is already open, 
then it will be closed before opening the specified file. If -append is not used, then 
set_svf overwrites the named file, if it exists.
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-off

Stops recording Formality setup information to the currently open file. To resume 
recording into the same file, you must reissue the set_svf command with the -append 
option.

Test Information Passed to the Verification Setup File

When you run the insert_dft command, the following DFT specific information is recorded 
in the verification setup file:

• Scan-enable signals are disabled.

• Test modes are disabled wherever they are used (for example, AutoFix or scan 
compression). 

• Constants are passed to the file.

• Core wrapper shift(wrp_shift) is disabled.

• The TCK, TMS, and TRST ports of boundary-scan designs are held at 0 and the TDO 
port is not verified.

The setup information is reported in the assumptions summary report.

See Also

• The Formality User Guide for more information about verifying design logic with 
Formality

Script Example

Example 16-7 shows you how to use a verification setup file for functionality checking in the 
Formality tool.

Example 16-7 Formality Script Example For Equivalence Checking 

# enable automatic setup to disable scan/test logic
set synopsys_auto_setup true

# set the verification setup file location
set_svf ./my_svf_file

# read libraries
foreach file $link_library {read_db $lib}

# read reference design
create_container pre_dft
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read_ddc ./outputs/des_unit.pre_dft.ddc
set_top des_unitset_reference_design pre_dft:/WORK/des_unit

# read implementation design
create_container post_dft
read_ddc ./outputs/des_unit.post_dft.ddc
set_top des_unit
set_implementation_design post_dft:/WORK/des_unit

# match compare points and verify
match
verify

Formality Tool Limitations

The following feature is not supported:

• Internal pins flow
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Introduction to DFTMAX 17

DFTMAX compression provides synthesis-based scan data compression technology to 
lower the cost of testing complex designs, particularly when fabricated with advanced 
process technologies. These deep-submicron (DSM) designs can have subtle 
manufacturing defects that are only detected by applying DSM tests, such as at-speed and 
bridging tests, in addition to stuck-at tests. The extra patterns needed to achieve high test 
quality for these designs can increase both the test time and the test data, resulting in higher 
test costs. DFTMAX compression reduces these costs by delivering a significant test data 
and test time reduction with very low silicon area overhead. The DFTMAX tool uniquely 
enables scan compression in Design Compiler synthesis and scan pattern generation in 
TetraMAX ATPG. 

The following topics introduce you to the DFTMAX tool:

• Introduction to the DFTMAX Tool

• The DFTMAX Compression Architecture

• DFTMAX Compression Requirements

• Multicore Processing

• Limitations
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Introduction to the DFTMAX Tool

The DFTMAX tool provides the following features:

• All DFT Compiler features

The DFTMAX tool includes all scan insertion capabilities provided by the DFT Compiler 
tool. For more information, see the DFT Compiler User Guide.

• DFTMAX scan compression

This feature provides a significant reduction in test time and test data compared to 
standard scan. For more information, see this user guide.

• IEEE Std 1149.1 and 1149.6 boundary-scan insertion

The DFTMAX tool includes boundary-scan insertion and verification capabilities. For 
more information, see the DFTMAX Boundary Scan User Guide and the DFTMAX 
Boundary Scan Reference Manual.

• Automatic test point insertion

This feature automatically inserts test points at difficult-to-test points to improve design 
testability. For more information, see “Automatically Inserted Test Points” on page 11-14.

• Core wrapping with maximized register reuse

This feature minimizes the area and timing impact of core wrapping by reusing more 
existing functional registers. For more information, see “Configuring Maximized Reuse 
Core Wrapping” on page 12-27.

The DFTMAX Compression Architecture

The DFTMAX compression architecture is described in the following topics:

• The DFTMAX Codec

• Decompressor Operation

• Compressor Operation

• The Congestion-Aware DFTMAX Codec

The DFTMAX Codec

DFTMAX compressed scan appears similar to standard scan at the chip-level interface, but 
it contains combinational compression logic and uses many more scan chains of shorter 
lengths within the chip core. As scan input values are shifted in, the decompressor 
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distributes them across numerous scan chains. The distribution method is accomplished 
with a patented hardware scheme and a process that allows chip-level scan input values to 
be placed into various scan chains. To maximize test coverage and minimize pattern count, 
the decompressor adapts to the needs of automatic pattern generation to supply the 
required values in the scan chain cells.

DFTMAX compression provides the following key benefits and features:

• A significant test time and test data reduction compared to standard scan

• Similar ease-of-use as standard scan

• Concurrent optimization of area, power, timing, physical constraints, and test constraints 
through a synthesis-based implementation

• Pin-limited test optimizations

• Unknown logic value (X) handling

• Flexible scan channel configurations to support multisite testing and wafer-level burn-in

Figure 17-1 shows the DFTMAX compression architecture.

Figure 17-1 DFTMAX Compression Architecture

DFTMAX compression divides standard scan chains into a larger number of shorter chains, 
called compressed scan chains, which reduces tester time. The decompressor controls the 
flow of scan data into the scan chains. The compressor reduces the captured data from the 
larger number of compressed scan chains so that it can be observed through the scan-out 
ports. The combination of the decompressor and compressor wrapped around the scan 
chains is called the codec, which is short for compressor-decompressor.

The codec significantly reduces the amount of test data needed to comprehensively test the 
chip. In turn, this lowers automatic test equipment (ATE) memory requirements and allows 
additional deep submicron (DSM) test patterns.

Compressor

Decompressor

Codec
(has very small 
area overhead)

Compressed scan chains
(shorter length

reduces test time)

Compressed scan data in

Compressed scan data out
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Decompressor Operation

Figure 17-2 shows a decompressor logic structure example. The decompressor outputs are 
driven by different combinations of scan-in data pins, either directly or through MUXs. One 
or more scan-in data pins, called load-mode pins, are dedicated to the MUX select signals.

Figure 17-2 Decompressor Logic Structure Example for 4-to-8 Decompressor

This logic structure takes advantage of the fact that not every scan cell must be uniquely 
controllable in every pattern. Typically, only a sparse set of scan cells are required to be 
controlled in a pattern. In each shift clock cycle, ATPG can choose load-mode and scan data 
values that steer these required values into the compressed scan chains.

Some designs might have complex logic that requires more scan cells to be controlled in 
each pattern. As the decompressor input width increases, the number of load-mode and 
scan-in data pins increases to provide additional controllability at the decompressor outputs.

The decompressor output width is equal to the number of compressed scan chains. As the 
compressed chain count increases, more data steering logic configurations are needed. If 
the compressed chain count is increased too high, the data steering configurations must 
repeat, which can reduce the ability of ATPG to steer data into the compressed chains.

Compressor Operation

Figure 17-3 shows a compressor logic structure example. The compressor outputs are 
driven by different combinations of compressed scan chains, combined using XOR logic. An 
incorrect data value (fault) from a compressed scan chain results in a specific signature of 
incorrect values at the compressor outputs.

sel[0] din[2] din[1] din[0]

dout[7] dout[6] dout[5] dout[4] dout[3] dout[2] dout[1] dout[0]

Load-mode pins Regular scan-in data pins

Scan-in pins
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Figure 17-3 Compressor Logic Structure Example for 8-to-4 Compressor

The compressor input width is equal to the number of compressed scan chains. As the 
compressed chain count increases, more XOR configurations are needed. If the chain count 
is increased too high, the XOR configurations (and therefore the compressed chain 
signatures) must repeat, which can impact the diagnosability of the design.

As the compressor output width increases, the number of fault signatures observed at each 
output port decreases. This can improve the diagnosability of the design, especially when 
multiple faults must be simultaneously diagnosed.

The Congestion-Aware DFTMAX Codec

If you are using Design Compiler Graphical (which is enabled by specifying the -spg option 
of the compile_ultra command), the DFTMAX tool

• Builds congestion-aware decompressor and compressor structures to reduce 
congestion

• Performs scan chain reordering and repartitioning in the incremental compile to reduce 
scan chain wire length

See Also

• “Performing Congestion Optimization on Compressed Scan Designs” on page 18-44 for 
more information about using DFTMAX compression in a Design Compiler Graphical 
flow

DFTMAX Compression Requirements

You need to consider both design and pin requirements when using DFTMAX compression. 
The following two topics describe these requirements.

dout[2] dout[1] dout[0]dout[3]

din[5] din[4] din[3]din[6] din[1] din[0]din[7] din[2]
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Design Requirements

Designs that use DFTMAX compression are generally scan-replaced, that is, test-ready. 
The supported DFTMAX flows include top-down and bottom-up methodologies. When 
starting with an RTL design, run the compile or compile_ultra command with the -scan 
option to bring your design into a test-ready state.

Pin Requirements

DFTMAX compression reuses the scan ports and scan-enable signals that were used in 
regular scan mode in DFT Compiler. Only one additional test-mode port is required to 
differentiate between scan compression mode and internal scan mode.

If you already have a test-mode port in your design, you can define it and specify the hookup 
point by using the following command:

set_dft_signal -type TestMode -hookup_pin

If you do not have a test-mode port, the insert_dft command automatically creates one 
for you. Note that you cannot use the same test-mode port for the on-chip clocking (OCC), 
AutoFix, or scan compression mode. If you want to associate a particular test-mode port 
with the OCC or AutoFix test-mode port, you can do so by using the -control_signal 
option of the set_autofix_configuration command to control the order of the specified 
TestMode pins.

Using DFTMAX compression with the default X-masking capabilities allows a single scan-in 
pin and scan-out pin to be used for accessing the compressed scan chains in compressed 
scan mode. You can define the minimal number of access pins for compressed scan mode 
with the following command:

set_scan_compression_configuration -xtolerance default \
    -inputs 1 -outputs 1

When using DFTMAX compression with the high X-tolerance capability, a minimum of two 
scan-in pins and one scan-out pin are supported. You can define the minimal number of 
access pins in compressed scan mode with high X-tolerance enabled by using the following 
command:

set_scan_compression_configuration -xtolerance high \
    -inputs 2 -outputs 1

See Also

• “High X-Tolerance Scan Compression” on page 20-2 for more information about the high 
X-tolerance scan compression architecture
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Multicore Processing

DFT Compiler supports multicore processing. To enable this feature, run the following 
command:

set_host_options -max_cores maximum_number_of_cores

The maximum_number_of_cores value, which specifies the number of cores for threading, 
should be a positive integer that is 2 or greater.

You must specify the number of cores the tool can use before running the insert_dft 
command.

The maximum_number_of_cores setting is persistent throughout a given Design Compiler 
shell session. Therefore, if you specified this setting during an initial compile stage and did 
not quit the session, the same setting remains in effect during the DFT insertion stage.

The setting is not saved into a .ddc file. If you quit the session before DFT insertion and then 
start a new shell, DFT insertion will use the tool’s default settings.

If you request more cores than are available, the insert_dft command proceeds, using 
the number of cores that actually are available.

Use the remove_host_options command to revert to the tool defaults.

License Usage

For multicore processing, one DFT Compiler/DFTMAX license supports up to eight cores, 
that is, one license is required for every eight cores.

The tool checks out licenses per the specifications defined in the set_host_options 
command.

If you do not have access to a sufficient number of licenses, the insert_dft command 
issues a (SEC-50) error similar to the following:

Error: All ‘Test-Compression-Synthesis’ licenses are in use (SEC-50)
The current users of this feature are:
designer at runhost, started on Thursday 5/7 at 15:52

The following examples show commands that are common in a DFT flow, along with the 
number of required licenses for the multicore operation of each command:

• compile_ultra -scan -spg command with power constraints, using 16 cores

❍ 2 DC Expert

❍ 2 DC Ultra

❍ 2 DFT Compiler
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❍ 2 Power Compiler

❍ 2 DesignWare

❍ 2 DC-Extension

• insert_dft command with compression and no congestion, using 16 cores

❍ 2 DFT Compiler

❍ 2 DFTMAX

• insert_dft command with compression and congestion, using 16 cores

❍ 2 DFT Compiler

❍ 2 DFTMAX

❍ 2 DC Expert

❍ 2 DC Ultra

❍ 2 DC-Extension

• insert_dft command with streaming compression and congestion, using 16 cores

❍ 2 DFT Compiler

❍ 2 DFTMAX

❍ 2 DFTMAX Ultra

❍ 2 DC Expert

❍ 2 DC Ultra

❍ 2 DC-Extension

Consistent with the compile_ultra command, licenses are not automatically released until 
the end of the Design Compiler shell session or until you explicitly issue the 
remove_license command.

If you request more licenses than are available per licensing scheme, the insert_dft 
command stops and issues an error message similar to the following:

Error: All 'Test-Compression-Synthesis' licenses are in use. (SEC-50)
The current users of this feature are: designer at runhost, started on
Thursday 5/7 at 15:52
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Limitations

This topic covers current limitations and known issues associated with DFTMAX 
compression.

Current Limitations

The following features are currently not supported:

• You cannot use the existing scan flow to insert compression logic into a design that 
already has standard scan chains at the top level.

• You cannot use the set_scan_path command, unless it is used with a multiple 
test-mode specification.

DFTMAX Compression Limitations

Note the following limitations of DFTMAX compression:

• There is no graphical design rule checking (DRC) debugging support in the Synopsys 
Design Vision™ GUI for compressor design rule violations.

• There is no plan to support the ability to read back Verilog patterns.

• Write patterns nshifts is not supported with DFTMAX compression.

• You cannot write out a parallel Verilog testbench when you read in the image saved after 
running DRC in regular scan mode.

• Each pattern in scan compression mode pattern is dependent on the next pattern. 
Because of this, you cannot reorder any ATPG patterns, including basic scan patterns.
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18
Using DFTMAX Compression 18

If you are currently implementing standard scan logic, you can insert DFTMAX compression 
into your design by using a single additional command. Typically, no other changes to your 
design are required.

This chapter describes the processes associated with using DFTMAX compression. It 
includes the following topics:

• Top-Down Flat Compressed Scan Flow

• Top-Down Flat Compressed Scan Flow With DFT Partitions

• DFTMAX Scan Compression and Multiple Test Modes

• Excluding Scan Chains From Scan Compression

• Scan Compression and OCC Controllers

• Specifying a Different Scan Pin Count for Compressed Scan Mode

• Adding Compressed Chain Lock-Up Latches

• Reducing Power Consumption in DFTMAX Designs

• Forcing a Compressor With Full Diagnostic Capabilities

• Performing Congestion Optimization on Compressed Scan Designs

• Using AutoFix With Scan Compression
18-1
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Top-Down Flat Compressed Scan Flow

This topic describes the top-down flat flow with DFTMAX compression.

Example 18-1 shows a basic top-down flat compressed scan insertion script for a test-ready 
design previously compiled with the compile -scan command. The three commands in 
bold indicate the commands added to the scan script to enable scan compression.

Example 18-1 Script for Enabling Compressed Scan in the Top-Down Flat Insertion Flow

read_netlist test_ready.ddc

set_dft_configuration -scan_compression enable

set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing [list 45 55] ;# default strobe is at 40

set_scan_configuration -chain_count 3 -clock_mixing mix_clocks
set_scan_compression_configuration -chain_count 8

create_test_protocol 
dft_drc
preview_dft
insert_dft

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output design.v

write_test_protocol -output scan.spf \
  -test_mode Internal_scan
write_test_protocol -output scancompress.spf \
  -test_mode ScanCompression_mode

To insert compressed scan logic in your design, use the -scan_compression option of the 
set_dft_configuration command. This is the only required command to enable 
compressed scan insertion.

dc_shell> set_dft_configuration -scan_compression enable

When scan compression is enabled, the insert_dft command inserts compressed scan 
logic into the design and defines the following two test modes:

• Compressed scan mode

This mode configures the scan elements as short chains driven by decompressors. The 
default name for this test mode is ScanCompression_mode.
Chapter 18: Using DFTMAX Compression
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• Standard scan mode

This mode joins the short compressed scan chains to reconfigure them into longer 
standard scan chains. This is also known as standard scan mode. The default name for 
this test mode is Internal_scan.

These test modes are created automatically during compressed scan insertion. You do not 
need to create them or reference them. Figure 18-1 shows the scan structures for the two 
test modes created by Example 18-1.

Figure 18-1 Standard Scan and Compressed Scan Modes

At least one test-mode signal is required to select between standard scan mode and 
compressed scan mode. If a TestMode signal is defined with the set_dft_signal 
command, it is used for mode selection. If no test-mode signals are defined, a test-mode 
port is created and used. Test-mode encodings are created that map the test-mode signal 
values to each scan mode.

Note:   
For more information about working with multiple test modes in DFT Compiler, including 
information on specifying test-mode encodings, see “Multiple Test Modes” on 
page 11-63.

A compressed scan mode is always associated with a corresponding standard scan mode. 
The standard scan mode associated with a compressed scan mode is known as its base 
mode. The base mode controls aspects of scan configuration that are common to both 
modes, such as scan port definitions, scan signal hookup pin definitions, and top-level test 
access structures.

The set_scan_configuration command configures aspects of the standard scan mode, 
while the set_scan_compression_configuration command configures aspects of the 
compressed scan mode. In Example 18-1 on page 18-2, three standard scan chains and 
eight compressed scan chains are created.

Scan-ins

Scan-outs

Scan-ins

Scan-outs

3-to-8

8-to-3
test_mode

0
test_mode

1

Standard scan mode Compressed scan mode
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You can use the following options of the set_scan_compression_configuration 
command to control the compressed scan mode chain counts, in order of highest 
precedence first:

• -max_length chain_length

The -max_length option specifies the maximum compressed scan chain length. The 
tool attempts to build the number of compressed scan chains needed to meet this 
requirement.

• -chain_count chain_count

The -chain_count option specifies the number of compressed scan chains. The tool 
attempts to build compressed scan chains with the necessary lengths to meet this 
requirement.

• -minimum_compression ratio

The -minimum_compression option specifies the minimum amount of compression. 
This is a relative method of specifying the compressed scan chain count. The standard 
scan chains are subdivided into compressed scan chains according to this ratio, along 
with a 20 percent pattern inflation factor to account for compression overhead:

num_compressed_chains = num_standard_chains * ratio * 1.2

You can use any of these options to directly or indirectly specify the scan compression ratio 
for your design. If none of these options are specified, a minimum compression value of 10 
is used. The maximum compressed chain count is 32000.

If you use the high X-tolerance codec architecture, the X-masking architecture places an 
additional upper limit, as a function of the scan-in and scan-out pin count, on the maximum 
number of compressed scan chains to ensure 100 percent X-tolerance. For more 
information, see “High X-Tolerance Scan Compression” on page 20-2.

After the standard scan and compressed scan modes have been configured, you can use 
the preview_dft command to see the scan architecture and test-mode signal details before 
scan insertion is performed, as shown in Example 18-2.

Example 18-2 Output From the preview_dft Command for a Compressed Scan Configuration

****************************************
Current mode: Internal_scan
****************************************

Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 22 cells
  Active in modes: Internal_scan
Chapter 18: Using DFTMAX Compression
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Scan chain '2' (test_si2 --> test_so2) contains 21 cells
  Active in modes: Internal_scan

Scan chain '3' (test_si3 --> test_so3) contains 21 cells
  Active in modes: Internal_scan

****************************************
Current mode: ScanCompression_mode
****************************************

Number of chains: 8
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

Scan chain '1' contains 8 cells
  Active in modes: ScanCompression_mode

(...omitted...)

Scan chain '8' contains 8 cells
  Active in modes: ScanCompression_mode

================================
Test Mode Controller Information
================================

Test Mode Controller Ports
--------------------------
test_mode: test_mode

Test Mode Controller Index (MSB --> LSB)
----------------------------------------
test_mode

Control signal value - Test Mode
--------------------------------
0 Internal_scan - InternalTest
1 ScanCompression_mode - InternalTest

During scan insertion, the insert_dft command creates and instantiates two scan 
compression designs: one for the compressor and one for the decompressor. By default, the 
insert_dft command instantiates these blocks at the top level of the current design. 
However, for a top-down flat run, you might want to insert the codec logic into a core-level 
hierarchical block. For information on inserting the codec logic within a hierarchical instance, 
see “Specifying a Location for DFT Logic Insertion” on page 10-84.

After compressed scan is inserted, you can use the report_scan_path command to see 
details of the scan chains in the standard scan and compressed scan modes:

dc_shell> report_scan_path -test_mode all
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Write out test protocols for both test modes using the write_test_protocol -test_mode 
command:

dc_shell> write_test_protocol -output scan.spf \
            -test_mode Internal_scan
dc_shell> write_test_protocol -output scancompress.spf \
            -test_mode ScanCompression_mode

After you have the netlist and protocol files, you can generate patterns in the TetraMAX tool.

Compressed scan insertion has the following requirements:

• Compressed scan requires a preclock strobe. You should ensure that the 
test_default_strobe variable is set so that the strobe occurs before the active edges 
of the test clock waveforms. The default DFT Compiler test timing values meet this 
requirement.

• Compressed scan insertion requires an HDL-Compiler license.

Top-Down Flat Compressed Scan Flow With DFT Partitions

The following topics describe how you can use DFT partitions in a compressed scan flow:

• When to Use DFT Partitions in a Scan Compression Flow

• Configuring Partition Codecs

• Choosing a Partitioned Codec Insertion Method

• Per-Partition Scan Compression Configuration Commands

• Limitations of DFT Partitions in Scan Compression Flow

• DFT Partition Script Example

See Also

• “Partitioning a Scan Design With DFT Partitions” on page 10-89 for general information 
about DFT partitions

When to Use DFT Partitions in a Scan Compression Flow

For larger designs, inserting a single top-level codec that spans multiple blocks might lead 
to routing congestion or timing issues due to long routes. For these designs, you can use 
DFT partitions to insert multiple codecs that provide localized scan compression for different 
blocks.
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This can be accomplished in the following ways:

• Using a top-down flat flow, where multiple codecs are inserted at the same time during 
top-level DFT insertion

• Using a bottom-up hierarchical flow, where a codec is inserted during DFT insertion for 
each block, then the block-level codec signals are connected and integrated during 
top-level DFT insertion

If the entire design does not fit into memory, a bottom-up hierarchical flow must be used. 
These flows require you to perform bottom-up DFT insertion, which in turn requires 
block-level DFT constraints, DRC checks, and well-defined hierarchical boundaries. For 
more information about these bottom-up hierarchical flows, see Chapter 19, “Hierarchical 
Adaptive Scan Synthesis.”

However, some designs cannot use a bottom-up hierarchical flow. Constraints might not be 
available at block-level boundaries, or the available design hierarchy boundaries might not 
provide the desired mapping of codec blocks to design logic. For these designs, you can use 
the top-down flat partition flow.

You can specify separate codec configurations for each partition, and all codecs are inserted 
at the same time during top-level DFT insertion. This top-down flat partition flow provides the 
same multiple codec flexibility as the bottom-up flows, but without the need for multiple runs.

Configuring Partition Codecs

You can specify the standard and compressed scan mode characteristics for each partition. 
Not all configuration commands support per-partition specification. See “Per-Partition Scan 
Compression Configuration Commands” on page 18-10 for details.

Example 18-3 shows an example of global and partition-specific configuration commands.

Example 18-3 Configuring Two Codecs in a Partition Flow

# apply global DFT configuration settings
set_dft_configuration -scan_compression enable -pipeline_scan_data enable
set_dft_signal -view existing_dft \
    -type ScanClock -timing [list 45 55] -port CLK
set_dft_signal -view spec -type TestMode -port TM
set_pipeline_scan_data_configuration \
  -head_pipeline_stages 2 -tail_pipeline_stages 2

# define DFT partitions
define_dft_partition P1 -include {BLK1}
define_dft_partition P2 -include {BLK2}

# configure DFT partition P1
current_dft_partition P1
set_dft_signal -view spec -type ScanEnable -port SE
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set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 4
set_dft_location -include {CODEC} BLK1

# configure DFT partition P2
current_dft_partition P2
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type ScanDataIn -port {SI3 SI4 SI5}
set_dft_signal -view spec -type ScanDataOut -port {SO3 SO4 SO5}
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 6
set_dft_location -include {CODEC} BLK2

In a partition flow, codecs are still inserted at the top level of the current design by default. 
You can use the set_dft_location command to specify the hierarchical block where the 
codec is to be inserted. For more information, see “Specifying a Location for DFT Logic 
Insertion” on page 10-84.

See Also

• “Configuring DFT Partitions” on page 10-91 for information about the correct order of 
global and per-partition configuration commands

• “Per-Partition Scan Configuration Commands” on page 10-93 for the list of DFT 
configuration commands that support per-partition specification

• “Per-Partition Scan Compression Configuration Commands” on page 18-10 for the list of 
scan compression configuration commands that support per-partition specification

Choosing a Partitioned Codec Insertion Method

Two different codec insertion methods are available in the DFT partition flow.

By default, the tool creates a separate codec for each partition. The scan-in and scan-out 
signals associated with each partition are used for that partition’s codec connections. 
Figure 18-2 shows the dedicated codec architecture for Example 18-3 on page 18-7.
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Figure 18-2 Partition Scan Chains With Dedicated Codec Architectures

For improved testability, the tool can split a single shared codec architecture across the 
partitions. This partitioned codec architecture is enabled by setting the following variable:

dc_shell> set_app_var test_enable_codec_sharing true

Note:   
This variable enables the partitioned codec architecture, which is different than the 
shared codec I/O feature described in “Sharing Codec Scan I/O Pins” on page 21-20.

The partitioned codec architecture uses the full set of scan-in and scan-out pins across all 
partitions. This codec architecture is then replicated for each partition, where only a 
dedicated subset of decompressor outputs and compressor inputs is connected to the 
compressed scan chains in each partition. The compressor outputs are combined using an 
XOR observability tree.

Figure 18-3 shows the partitioned codec architecture for Example 18-3 on page 18-7. The 
five scan-in and scan-out pins from the standard scan mode are used to drive the 
decompressor inputs and capture the compressor outputs. Each decompressor has ten 
output pins, resulting from the sum of the compressed scan chain counts across all 
partitions. The same codec architecture is used in each partition, but a different range of 
compressor outputs and decompressor inputs is connected for each partition. In partition 
P1, the first four decompressor outputs and compressor inputs are used. In partition P2, the 
next six decompressor outputs and compressor inputs are used.

3-to-6

6-to-3

2-to-4

4-to-2

P1 P2

P1 scan-ins

P1 scan-outs

P2 scan-ins

P2 scan-outs
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Figure 18-3 Partition Scan Chains With Partitioned Codec Architectures

Note:   
To optimize the logic around the unconnected decompressor outputs and compressor 
inputs, perform an incremental compile after DFT insertion using either the 
compile_ultra -scan -incremental command or the compile -scan 
-incremental -boundary_optimization command.

The partitioned codec architecture has testability efficiency similar to inserting a single 
codec in an unpartitioned flow. Because all available scan-in and scan-out pins connect to 
each codec, this method provides better controllability, observability, and X-tolerance to the 
partitions. However, this insertion method does have some limitations:

• All scan-in and scan-out pins must be shared across all codecs.

• Multiple compressed scan modes are not supported.

• Codecs that compress OCC clock chains are not supported.

Per-Partition Scan Compression Configuration Commands

This topic lists the commands you can use to configure DFTMAX scan compression on a 
per-partition basis. Commands not listed in this section should be applied as part of the 
global DFT configuration settings.

See Also

• “Per-Partition Scan Compression Configuration Commands” on page 18-10 for the 
per-partition commands that are not specific to the scan compression flow
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set_scan_compression_configuration

The following set_scan_compression_configuration options can be specified on a 
per-partition basis:

• -minimum_compression

• -chain_count

• -max_length

• -location

• -inputs

• -outputs

• -shared_inputs

• -shared_outputs

• -shared_codec_controls

• -identical_cores

• -scramble_identical_outputs

• -shared_block_select

• -shift_power_chain_length

• -shift_power_chain_ratio

• -shift_power_clock

• -shift_power_disable

set_dft_location

The following set_dft_location compression logic types can be specified on a 
per-partition basis with the -include and -exclude options:

• CODEC

• SERIAL_REG

set_dft_signal

The following set_dft_signal options can be specified on a per-partition basis:

• -type codec_enable [-codec]
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Limitations of DFT Partitions in Scan Compression Flow

The following limitation applies to DFT partitions in DFTMAX compression flows:

• Partition-specific scan-enable signals are not supported by low-power compressor 
gating, which is enabled with the set_scan_compression_configuration 
-min_power true command.

DFT Partition Script Example

The following script demonstrates the use of compressed scan with multiple DFT partitions, 
including per-partition scan-in, scan-out, and codec location specifications.

Example 18-4 Compressed Scan Insertion With Multiple Partitions

read_ddc ./design_test_ready.ddc
current_design block
link

# global DFT configuration
set_dft_configuration -scan_compression enable
set_dft_signal -view existing_dft -type ScanClock \
  -timing {45 55} -port clk

# define DFT partitions
define_dft_partition partition1 -include {inst1 inst2}
define_dft_partition partition2 -include {inst3 inst4}

# configure each DFT partition
current_dft_partition partition1
set_dft_signal -view spec -type ScanDataIn -port P1_SI*
set_dft_signal -view spec -type ScanDataOut -port P1_SO*
set_scan_configuration -chain_count 5
set_scan_compression_configuration -chain_count 60
set_dft_location -include {CODEC} inst1

current_dft_partition partition2
set_dft_signal -view spec -type ScanDataIn -port P2_SI*
set_dft_signal -view spec -type ScanDataOut -port P2_SO*
set_scan_configuration -chain_count 8
set_scan_compression_configuration -chain_count 60
set_dft_location -include {CODEC} inst4

current_dft_partition default_partition
set_dft_signal -view spec -type ScanDataIn -port PD_SI*
set_dft_signal -view spec -type ScanDataOut -port PD_SO*
set_scan_configuration -chain_count 6
set_scan_compression_configuration -chain_count 60
set_dft_location -include {CODEC} inst5
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# insert DFT
create_test_protocol
report_dft_partition
preview_dft -show all
insert_dft
dft_drc

# write output files
write_scan_def -output ./design.scandef
write -format ddc -hierarchy -output ./scan_inserted_design.ddc
write_test_protocol -output scan.spf -test_mode internal_scan
write_test_protocol -output ascan.spf -test_mode ScanCompression_mode

DFTMAX Scan Compression and Multiple Test Modes

When you insert compressed scan into your design, the tool creates two test modes by 
default:

• A compressed scan mode

The default name for this test mode is ScanCompression_mode.

• A standard scan mode

The default name for this test mode is Internal_scan.

Just as you can create multiple standard scan modes with the DFT Compiler tool, you can 
also create multiple compressed scan modes with the DFTMAX tool. This capability uses 
the same multiple test-mode creation, configuration, and reporting commands as used with 
multiple standard scan modes. For more information, see “Multiple Test Modes” on 
page 11-63.

Usage of multiple compressed scan modes is covered in the following topics:

• Defining Multiple Compressed Scan Modes

• Per-Test-Mode Scan Compression Configuration Commands

• Multiple Test-Mode Script Examples
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Defining Multiple Compressed Scan Modes

Use the -usage option of the define_test_mode command to specify the type of scan to be 
inserted in each mode. In Example 18-5, two standard scan modes and two compressed 
scan modes are defined.

Example 18-5 Defining Multiple Standard Scan and Compressed Scan Modes

define_test_mode STDSCAN1 -usage scan
define_test_mode STDSCAN2 -usage scan
define_test_mode COMPSCAN1 -usage scan_compression
define_test_mode COMPSCAN2 -usage scan_compression

You can optionally define the test-mode signals and test signal encodings that activate each 
of these modes. For more information, see “Defining the Encoding of a Test Mode” on 
page 11-66.

When you use the default compressed scan mode for scan insertion, the accompanying 
standard scan mode is always considered to be the base mode. There is no need to 
explicitly specify this base mode relationship when a single compressed scan mode is 
inserted. When you define multiple compressed scan modes, each compressed scan mode 
must have an associated standard scan base mode.

After defining the compressed scan and standard scan test modes, you must also specify 
the accompanying base mode relationships for each compressed scan mode. You define 
these relationships with the -base_mode option of the 
set_scan_compression_configuration command. In Example 18-6, two compressed 
scan modes are paired with their standard scan base modes.

Example 18-6 Providing Base Mode Relationships for Compressed Scan Modes

set_scan_configuration -test_mode STDSCAN1 -chain_count 2
set_scan_configuration -test_mode STDSCAN2 -chain_count 3
set_scan_compression_configuration -test_mode COMPSCAN1 \
    -base_mode STDSCAN1 -chain_count 4
set_scan_compression_configuration -test_mode COMPSCAN2 \
    -base_mode STDSCAN2 -chain_count 5

Although each compressed scan mode must have a corresponding base mode, there is no 
complementary requirement. You can create as many additional standard scan modes as 
needed.
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Multiple compressed scan modes can share a common base mode. Define the common 
base mode with the set_scan_configuration command, then reference this base mode 
using the -base_mode option of each set_scan_compression_configuration command:

Example 18-7 Sharing a Base Mode Relationships Across Multiple Compressed Scan Modes

set_scan_configuration -test_mode STDSCAN -chain_count 2
set_scan_compression_configuration -test_mode COMPSCAN1 \
    -base_mode STDSCAN -chain_count 4
set_scan_compression_configuration -test_mode COMPSCAN2 \
    -base_mode STDSCAN -chain_count 5

For multiple compressed scan modes, the same relationship exists between each 
compressed scan mode and its corresponding base mode as with a single compressed 
scan mode and standard scan mode. By default, each compressed scan mode uses all 
available scan-in and scan-out pins from its base mode. In Example 18-6, compressed 
mode COMPSCAN1 creates a decompressor with two inputs, and compressed mode 
COMPSCAN2 creates a decompressor with three inputs.

If you want to use a different number of scan-in or scan-out pins in a compressed scan mode 
from what is used in its base mode, you can use the -inputs and -outputs options of the 
set_scan_compression_configuration command. For more information, see “Specifying 
a Different Scan Pin Count for Compressed Scan Mode” on page 18-29.

The insert_dft command inserts a separate codec for each compressed scan mode. This 
is true even if the codec architectures between two compressed scan modes are identical. 
Scan chain reconfiguration MUXs are added to provide the necessary scan chain paths for 
all standard scan and compressed scan modes. Additional MUX logic is added to enable 
one codec at a time based on the test-mode signal decoding logic. Figure 18-4 shows how 
the scan compression codecs in Example 18-6 are connected.
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Figure 18-4 Multiple Codecs for Multiple Compressed Scan Modes

Per-Test-Mode Scan Compression Configuration Commands

This topic lists the commands and options you can use to configure compressed scan 
insertion for specific test modes. Additional commands are available to configure other 
aspects of DFT insertion for multiple test modes.

For information about other DFT commands that can be applied to specific test modes, see 
“Supported Test Specification Commands for Test Modes” on page 11-72.

For information on how to order global and mode-specific configuration commands in your 
scripts, see “Recommended Ordering of Global and Mode-Specific Commands” on 
page 11-70.

set_scan_compression_configuration

The following set_scan_compression_configuration options can be applied to specific 
test modes:

• -base_mode

• -max_length

• -chain_count

• -minimum_compression

• -inputs

Scan-ins
Test mode COMPSCAN1

3-to-52-to-4

4-to-2 5-to-3

Scan-outs

Scan-ins
Test mode COMPSCAN2

3-to-52-to-4

4-to-2 5-to-3

Scan-outs
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• -outputs

• -shared_inputs

• -shared_outputs

• -identical_cores

• -scramble_identical_outputs

• -shift_power_chain_length

• -shift_power_chain_ratio

• -shift_power_clock

• -shift_power_disable

• -synchronize_chains

Note:   
Although the set_scan_compression_configuration command applies to the current 
test mode by default, the -test_mode option is typically used together with the 
-base_mode option so that the relationship between the test mode and base mode is 
explicitly highlighted.

set_scan_path

Use the set_scan_path -test_mode test_mode_name command to provide scan chain 
specifications for each test mode in your design. The scan path specification can be given 
for any chains in any defined test mode and can include scan data in and scan data out pin 
specifications, with both port and hookup arguments. If the scan path specification applies 
to a test mode which has the usage specified as scan_compression, then the scan path 
statements can use the -hookup option to specify compressed chains, but they cannot use 
a port argument.

Multiple Test-Mode Script Examples

The following topics provide examples of multiple test-mode scripts:

• Multiple Standard Scan Modes and One Compressed Scan Mode

• Multiple Standard Scan and Compressed Scan Modes

• Standard Scan Flow Using Multiple Test Modes and Partitions

• Scan Compression Flow Using Multiple Test Modes and Partitions
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Multiple Standard Scan Modes and One Compressed Scan Mode

The following script example demonstrates multiple standard scan modes and a single 
compressed scan mode.

Example 18-8 Multiple Standard Scan Modes and One Compressed Scan Mode

## Define the scan in and scan out pins, which will be used in
## all test modes.
## These modes are my_base1,scan_compression1, and burn_in.
for {set i 1} {$i <= 13 } { incr i 1} {
  create_port -direction in test_si[$i]
  create_port -direction out test_so[$i]
  set_dft_signal -type ScanDataIn -view spec \
    -port test_si[$i] -test_mode all
  set_dft_signal -type ScanDataOut -view spec \
    -port test_so[$i] -test_mode all
}

# Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
    -port clk_st

# Define TestMode signals to be used
set_dft_signal -view spec -type TestMode \
  -port [list i_trdy_de i_trdy_dd i_cs]

# Define the test modes, usage and encoding
define_test_mode my_base1 -usage scan \
  -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode burn_in  -usage scan \
  -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
  -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}

# Enable DFTMAX compression
set_dft_configuration -scan_compression enable

# Configure DFTMAX compression
set_scan_compression_configuration -base_mode my_base1 -chain_count 32 \
  -test_mode scan_compression1 -xtolerance high

# Configure the basic scan modes
set_scan_configuration -chain_count 4 -test_mode my_base1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
  -test_mode burn_in

# Enable rapid scan stitching feature
set_dft_insertion_configuration -synthesis_optimization none

## Give a chain spec to be applied in my_base1
## This will also define the scan ports for scan_compression1
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set_scan_path chain1 -view spec -scan_data_in test_si[1] \
  -scan_data_out test_so[1] -test_mode my_base1
set_scan_path chain2 -view spec -scan_data_in test_si[2] \
  -scan_data_out test_so[2] -test_mode my_base1
set_scan_path chain3 -view spec -scan_data_in test_si[3] \
  -scan_data_out test_so[3] -test_mode my_base1
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
  -scan_data_out test_so[4] -test_mode my_base1

## Give a chain spec to be applied in burn_in
set_scan_path chain4 -view spec -scan_data_in test_si[13] \
  -scan_data_out test_so[13] -test_mode burn_in

## Create the test protocol
create_test_protocol

# Run pre-DFT DRC
dft_drc

## Preview test structures to be inserted
preview_dft -show all

## Run test insertion
insert_dft

# run post-DFT DRC in scan_compression1 test mode
current_test_mode scan_compression1
report_dft_signal
dft_drc -verbose

# run post-DFT DRC in my_base1 test mode
current_test_mode my_base1
report_dft_signal
dft_drc -verbose

# run post-DFT DRC in burn_in test mode
current_test_mode burn_in
report_dft_signal
dft_drc -verbose

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output vg/top_scan_mm.v
write_test_protocol -test_mode scan_compression1 \
  -output stil/scan_compression1.stil \
  -names verilog stil/scan_compression2.stil -names verilog
write_test_protocol -test_mode my_base1 -output stil/my_base1.stil \
  -names verilog
write_test_protocol -test_mode burn_in -output stil/burn_in.stil \
  -names verilog
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Multiple Standard Scan and Compressed Scan Modes

The following script example demonstrates multiple standard scan modes and multiple 
compressed scan modes.

Example 18-9 Multiple Standard Scan Modes and Multiple Compressed Scan Modes

## Define the scan in and scan out pins, which will be used in
## all test modes.
## These modes are my_base1, my_base2, scan_compression1,
## scan_compression2, and burn_in.
for {set i 1} {$i <= 13 } { incr i 1} {
  create_port -direction in test_si[$i]
  create_port -direction out test_so[$i]
  set_dft_signal -type ScanDataIn -view spec \
    -port test_si[$i] -test_mode all
  set_dft_signal -type ScanDataOut -view spec \
    -port test_so[$i] -test_mode all
}

# Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
  -port clk_st

# Define TestMode signals to be used
set_dft_signal -view spec -type TestMode \
  -port [list i_trdy_de i_trdy_dd i_cs]

# Define the test modes and usage
define_test_mode my_base1 -usage scan \
  -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode my_base2 -usage scan \
  -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode burn_in  -usage scan \
  -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
  -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}
define_test_mode scan_compression2 -usage scan_compression \
  -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 1}

# Enable DFTMAX compression
set_dft_configuration -scan_compression enable

# Configure DFTMAX compression
set_scan_compression_configuration -base_mode my_base1 -chain_count 32  \
  -test_mode scan_compression1 -xtolerance high
set_scan_compression_configuration -base_mode my_base2 -chain_count 256 \
  -test_mode scan_compression2 -xtolerance high

# Configure the basic scan modes
set_scan_configuration -chain_count 4 -test_mode my_base1
set_scan_configuration -chain_count 8 -test_mode my_base2
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set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
  -test_mode burn_in

set_dft_insertion_configuration -synthesis_optimization none

## Give a chain spec to be applied in my_base1
## This will also define the scan ports for scan_compression1
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
  -scan_data_out test_so[1] -test_mode my_base1
set_scan_path chain2 -view spec -scan_data_in test_si[2] \
  -scan_data_out test_so[2] -test_mode my_base1
set_scan_path chain3 -view spec -scan_data_in test_si[3] \
  -scan_data_out test_so[3] -test_mode my_base1
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
  -scan_data_out test_so[4] -test_mode my_base1

## Give a chain spec to be applied in my_base2
## This will also define the scan ports for scan_compression2
set_scan_path chain5 -view spec -scan_data_in test_si[5] \
  -scan_data_out test_so[5] -test_mode my_base2
set_scan_path chain6 -view spec -scan_data_in test_si[6] \
  -scan_data_out test_so[6] -test_mode my_base2
set_scan_path chain7 -view spec -scan_data_in test_si[7] \
  -scan_data_out test_so[7] -test_mode my_base2
set_scan_path chain8 -view spec -scan_data_in test_si[8] \
  -scan_data_out test_so[8] -test_mode my_base2
set_scan_path chain9 -view spec -scan_data_in test_si[9] \
  -scan_data_out test_so[9] -test_mode my_base2
set_scan_path chain10 -view spec -scan_data_in test_si[10] \
  -scan_data_out test_so[10] -test_mode my_base2
set_scan_path chain11 -view spec -scan_data_in test_si[11] \
  -scan_data_out test_so[11] -test_mode my_base2
set_scan_path chain12 -view spec -scan_data_in test_si[12] \
  -scan_data_out test_so[12] -test_mode my_base2

## Give a chain spec to be applied in burn_in
set_scan_path chain4 -view spec -scan_data_in test_si[13] \
  -scan_data_out test_so[13] -test_mode burn_in

## Create test protocol
create_test_protocol

## Run pre-DFT DRC
dft_drc

## Preview test structures to be inserted
preview_dft -show all

## Run test insertion
insert_dft

current_test_mode scan_compression1
report_dft_signal
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dft_drc -verbose

current_test_mode scan_compression2
report_dft_signal
dft_drc -verbose

current_test_mode my_base1
report_dft_signal
dft_drc -verbose

current_test_mode my_base2
report_dft_signal
dft_drc -verbose

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output vg/top_scan_mm.v
write_test_protocol -test_mode scan_compression1 \
  -output stil/scan_compression1.stil -names verilog
write_test_protocol -test_mode scan_compression2 \
  -output stil/scan_compression2.stil -names verilog
write_test_protocol -test_mode my_base1 -output stil/my_base1.stil \
  -names verilog
write_test_protocol -test_mode my_base2 -output stil/my_base2.stil \
  -names verilog
write_test_protocol -test_mode burn_in -output stil/burn_in.stil \
  -names verilog

Standard Scan Flow Using Multiple Test Modes and Partitions

The following script example demonstrates multiple standard scan modes and partitions. 
This example does not insert compressed scan.

Example 18-10 Multiple Standard Scan Modes With Partitions

read_ddc ./design_test_ready.ddc

current_design block
set_dft_signal -view existing_dft -type ScanClock \
  -timing [list 45 55] -port clk

define_test_mode test_mode1 -usage scan
define_test_mode test_mode2 -usage scan

define_dft_partition partition1 -include [list inst1 inst2]
define_dft_partition partition2 -include [list inst3 inst4]

current_dft_partition part1
set_scan_configuration -exact_length 40 -test_mode test_mode1
set_scan_configuration -exact_length 80 -test_mode test_mode2
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current_dft_partition part2
set_scan_configuration -exact_length 40 -test_mode test_mode1
set_scan_configuration -exact_length 80 -test_mode test_mode2

current_dft_partition default_partition
set_scan_configuration -exact_length 40 -test_mode test_mode1
set_scan_configuration -exact_length 80 -test_mode test_mode2

create_test_protocol
report_dft_partition
preview_dft -show all
insert_dft
dft_drc

write_scan_def -output ./design.scandef
write -format ddc -hierarchy -output ./scan_inserted_design.ddc
write_test_protocol -output test_mode1.spf -test_mode test_mode1
write_test_protocol -output test_mode2.spf -test_mode test_mode2

Scan Compression Flow Using Multiple Test Modes and Partitions

The following script example demonstrates a single compressed scan mode, multiple 
standard scan modes, and partitions:

Example 18-11 Standard Scan and Compressed Scan Modes With Partitions

read_ddc ./design_test_ready.ddc

current_design block
set_dft_configuration -scan_compression enable

define_test_mode my_scan_comp -usage scan_compression
define_test_mode test_mode1 -usage scan
define_test_mode test_mode2 -usage scan

define_dft_partition partition1 -include [list inst1 inst2]
define_dft_partition partition2 -include [list inst3 inst4]

current_dft_partition part1
set_scan_configuration -chain_count 4 -test_mode test_mode1
set_scan_configuration -chain_count 8 -test_mode test_mode2
set_scan_compression_configuration -location inst1 \
  -test_mode my_scan_comp -base_mode test_mode1

current_dft_partition part2
set_scan_configuration -chain_count 8 -test_mode test_mode1
set_scan_configuration -chain_count 10 -test_mode test_mode2
set_scan_compression_configuration -location inst3 \
  -test_mode my_scan_comp -base_mode test_mode1

current_dft_partition default_partition
set_scan_configuration -chain_count 2 -test_mode test_mode1
Chapter 18: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes 18-23
Chapter 18: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes 18-23



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
set_scan_configuration -chain_count 4 -test_mode test_mode2
set_scan_compression_configuration -location inst5 \
  -test_mode my_scan_comp -base_mode test_mode1

create_test_protocol
report_dft_partition
preview_dft -show all
insert_dft
dft_drc
write_scan_def -output ./design.scandef
write -f ddc -hierarchy -output ./scan_inserted_design.ddc
write_test_protocol -output scan.spf -test_mode test_mode1
write_test_protocol -output ascan.spf -test_mode my_scan_comp

Excluding Scan Chains From Scan Compression

In some cases, you might need to exclude specific scan cells from scan compression by 
keeping them on a separate uncompressed scan chain. Such a scan chain is called an 
external chain. Figure 18-5 shows two external chains in a compressed scan design.

Figure 18-5 External Chains in a Compressed Scan Design

To define an external chain, use the set_scan_path command as follows:

set_scan_path scan_chain_name
  -view spec -test_mode all
  -complete true -dedicated_scan_out true
  -ordered_elements ordered_list
  -scan_data_in port_name -scan_data_out port_name

The external chains consume connections in the scan I/O connection budget. In 
compressed scan mode, the tool automatically uses the remaining scan connections for the 
codec; you do not need to specify the -inputs and -outputs options of the 
set_scan_compression_configuration command. The commands in Example 18-12 
configure the scan structure shown in Figure 18-5.

Example 18-12 Configuring External Chains in a Compressed Scan Design

# define two external chains
set_scan_path EC1 ...  ;# external chain 1
set_scan_path EC2 ...  ;# external chain 2

External 
chains
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# set standard scan chain count to 5;
# this also sets the scan I/O budget for both scan modes to 5
set_scan_configuration -chain_count 5

# codec uses remaining 3 scan I/O connections;
# you do not need to specify "-inputs 3 -outputs 3"
set_scan_compression_configuration -chain_count 8

Note the following aspects of external chain definitions:

• The -ordered_elements option specifies the order of the scan cells in the chain. To 
provide an unordered list and allow the tool to manage ordering requirements such as 
clock mixing, use the -include_elements option instead.

• The -test_mode all option applies the external chain definition to both the standard 
scan and compressed scan modes. To limit the definition to a specific compressed scan 
mode, specify it with the -test_mode option. The specified test mode must be previously 
defined with the define_test_mode command.

• The scan input and output ports must be previously defined with the set_dft_signal 
command. You cannot define external scan chains that use automatically created scan 
data ports.

• If you are using the pipelined scan data feature, external chains are treated the same as 
other scan chains. This means,

❍ In the automatically inserted pipelined scan data flow, the tool inserts pipeline 
registers around the external scan chains the same way it does with other scan 
chains.

❍ In the user-defined pipelined scan data flow, you must create and define pipeline 
registers with head and tail depths that match other scan chains.

See Also

• “HASS and Hybrid Flow Limitations” on page 19-22 for limitations of integrating cores 
that contain external chains

Scan Compression and OCC Controllers

On-chip clocking (OCC) controllers allow on-chip clock sources to be used for at-speed 
capture during device testing. In an OCC controller flow, the clock chain is a special scan 
segment that provides control over the at-speed capture pulse sequence generated by the 
OCC controller.
Chapter 18: Using DFTMAX Compression
Scan Compression and OCC Controllers 18-25
Chapter 18: Using DFTMAX Compression
Scan Compression and OCC Controllers 18-25



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
In a scan compression flow, the clock chain can be compressed or external 
(uncompressed), as described in the following topics:

• Using Compressed Clock Chains

• Defining External Clock Chains

See Also

• Chapter 13, “On-Chip Clocking Support” for more information about OCC controllers

Using Compressed Clock Chains

In a DFTMAX flow, when you insert scan compression in a DFT-inserted or user-defined 
OCC controller flow, the clock chain is placed between the decompressor and compressor 
by default. The decompressor drives the clock chain along with the other compressed scan 
chains, but it dedicates a decompressor scan input to the clock chain as shown in 
Figure 18-6.

Figure 18-6 Compressed Clock Chain in a Compressed Scan Design

The decompressor scan input path passes through the decompressor to the clock chain 
input. This allows the clock chain values to be controlled without imposing constraints on 
other scan cells. Such a clock chain is called a compressed clock chain because it exists 
between the decompressor and compressor, even though it is driven by a dedicated scan-in 
signal as if it was uncompressed.

Note:   
For codecs with few scan inputs and high compression ratios, DFTMAX compression 
might be forced to share the decompressor scan input with other compressed chains. 
This happens if the codec would otherwise not be implementable.

The dedicated scan-in signal reduces the number of scan-in signals available for data 
decompression into the remaining compressed chains. You should consider this when 
determining compression architecture parameters such as scan input count and 
compressed chain count.

Compressed
clock chain

OCC 
controller

Dedicated decompressor scan input
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The clock chain, which is clocked on the trailing edge, is always placed at the beginning of 
its compressed scan chain. Additional scan cells can follow the clock chain for 
length-balancing purposes, as allowed by the clock-mixing settings applied to the current 
design. The compressed scan chain then proceeds into the compressor in the normal way.

If you are using the high X-tolerance feature, the compressed clock chain reduces the 
maximum compressed scan chain limit that can be created for a given number of scan-in 
signals. For more information, see “Scan-In and Scan-Out Requirements” on page 20-4.

You can use the preview_dft -show {cells scan_clocks} command to see which 
compressed scan chain contains the clock chain. The clock chain is marked with a clock 
chain segment attribute (o) and a scan segment attribute (s):

****************************************
Current mode: ScanCompression_mode
****************************************
Number of chains: 16
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

  (l) shows cell scan-out drives a lockup latch
  (s) shows cell is a scan segment
  (m) shows cell scan-out drives a multi-mode multiplexer
  (o) shows cell is a clock chain segment
  (w) shows cell scan-out drives a wire

Scan chain '1' contains 7 cells
  Active in modes: ScanCompression_mode :

  snps_clk_chain_0/clock_chain (s) (o) (UPLL/CLKO, 55.0, falling)
  Z1_reg[0]                     (UPLL/CLKO, 45.0, rising)
  Z1_reg[1]
  Z1_reg[2] (m)

For details on previewing scan segments, see “Previewing Additional Scan Chain 
Information” on page 15-3.

Defining External Clock Chains

External clock chains are uncompressed and exist outside the codec as shown in 
Figure 18-7.
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Figure 18-7 External Clock Chain in a Compressed Scan Design

External clock chains are normally used only with the following features:

• Shared codec I/O

Compressed clock chain inputs cannot be shared. To avoid multiple unshareable inputs 
across shared-I/O cores, use external clock chains, which can be concatenated into a 
single top-level clock chain across the cores. See “Codec I/O Sharing With OCC 
Controllers” on page 21-34.

• DFTMAX Ultra

External clock chains are required by DFTMAX Ultra. Note that they are implemented by 
default and do not require explicit specification as described in this section. See “Using 
OCC Controllers With DFTMAX Ultra Compression” on page 25-18.

To manually define the complete external clock chain, use the set_scan_path command. 
This method allows you to use specific scan-in and scan-out signals for the clock chain.

For example,

set_dft_signal -view spec -type ScanDataIn -port OCC_SI
set_dft_signal -view spec -type ScanDataOut -port OCC_SO
set_scan_path \
  MY_clock_chain -class occ \
  -include_elements {\
   snps_clk_chain_2/clock_chain \
   CORE1/clock_chain_name \
   CORE2/clock_chain_name} \
  -complete true \
  -scan_data_in OCC_SI -scan_data_out OCC_SO \
  -test_mode all

The -class occ option indicates that the scan path specification defines a clock chain. Use 
the -include_elements option to allow the tool to change the element order, or use the 

External
clock chain

OCC 
controller

Dedicated clock 
chain scan input

Dedicated clock 
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-ordered_elements option to use only your specified order. The -test_mode all option 
must be specified.

Include all top-level and core-level clock chains that comprise the complete clock chain, as 
follows:

• Top-level DFT-inserted OCC controllers

Specify the name of the clock chain that DFT insertion will build. For more information, 
see SolvNet article 018046, “How Can I Control Scan Stitching of OCC Controller Clock 
Chains?”

• Top-level user-defined OCC controllers

Specify the name of the clock-chain scan group, which must be previously defined with 
the set_scan_group command.

• Core-level clock chain segments

Specify the core-level clock-chain segment names. You can use the preview_dft 
-show {cells segments} command to help determine their names.

You can define multiple external clock chains, if needed.

If you are using DFT partitions, all clock chains to be concatenated must belong to the same 
partition. See .SolvNet article 2675107, “Concatenating OCC Clock Chains From Multiple 
DFT Partitions.“

If you have DFTMAX-only cores with compressed clock chains, do not include these 
compressed clock chains in the external clock-chain definition. These compressed clock 
chains operate normally when the core is active in its DFTMAX mode.

See Also

• “Excluding Scan Chains From Scan Compression” on page 18-24 for general 
information on defining external chains

Specifying a Different Scan Pin Count for Compressed Scan Mode

In a compressed scan mode, the decompressor inputs are driven by scan-in pins and the 
compressor outputs drive scan-out pins. By default, DFTMAX compression uses the full set 
of scan-in and scan-out pins from the associated base mode for the scan compression 
codec construction as shown in Figure 18-1 on page 18-3. If you want to use a different 
number of scan-in and scan-out pins for the codec construction, you can use the -inputs 
and -outputs options of the set_scan_compression_configuration command.

Figure 18-8 shows the codec architecture created by the -inputs and -outputs options in 
Example 18-13.
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Example 18-13 Specifying a Different Compressed Scan Pin Configuration

set_scan_configuration -chain_count 6 -clock_mixing mix_clocks
set_scan_compression_configuration -chain_count 8 -inputs 3 -outputs 3

Figure 18-8 Different Compressed Scan Pin Codec Architecture

You can use any number or scan-in and scan-out pin connections for a compressed scan 
mode relative to the chain count of its base mode. The only requirement is that the scan-in 
pin and scan-out pin counts are less than the compressed scan chain count.

You can also use the -inputs and -outputs options to specify asymmetrical scan I/O 
configurations for scan compression, where the number of scan-in pins differs from the 
number of scan-out pins, as shown in Example 18-14.

Example 18-14 Specifying an Asymmetrical Scan Pin Configuration

set_scan_configuration -chain_count 6 -clock_mixing mix_clocks
set_scan_compression_configuration -chain_count 8 -inputs 5 -outputs 3

The minimum number of scan-in and scan-out pins for a compressed scan mode is

• One scan-in and one scan-out pin when default X-tolerance is used

set_scan_compression_configuration \
    -xtolerance default  -inputs 1 -outputs 1

• Two scan-in pins and one scan-out pin when high X-tolerance is used

set_scan_compression_configuration \
    -xtolerance high     -inputs 2 -outputs 1

Scan-ins

Scan-outs

Scan-ins

Scan-outs

3-to-8

8-to-3
test_mode

0
test_mode

1

Standard scan mode Compressed scan mode
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Adding Compressed Chain Lock-Up Latches

Shift speeds are limited by the ability to propagate data between an I/O pad cell and the 
compressed scan chains. The MUX and XOR gates that are introduced in compressed scan 
can add further delay to the scan paths at the scan-in and scan-out paths, respectively. 
Because of the one-to-many relationship of compressed scan chains to scan I/Os, it is 
possible for leading-edge and trailing-edge scan cells to share the same scan input or output 
port, as shown in Figure 18-9. In these cases, the resulting mix of launch and capture clock 
edges reduces the usable clock period.

Figure 18-9 Compressed Scan Chains With Multiple Edge Polarities

This mixed-edge penalty against shift frequency in compressed scan mode can be avoided 
by using lock-up latches at the start or end of the leading-edge or trailing-edge compressed 
chains, respectively. By selectively inserting lock-up latches at the end or start of the 
compressed chains, the output and input flip-flops are synchronized to the same clock edge. 
The inputs of the scan chains are always synchronized to the trailing edge, and the outputs 
of the scan chains to the leading edge.

To synchronize the scan chains, use the following command:

set_scan_compression_configuration
    -synchronize_chains head | tail | all | none

You can specify the following values for the -synchronize_chains option:

• head synchronizes the first shift state of all compressed scan chains to the trailing clock 
edge.

• tail synchronizes the last shift state of all compressed scan chains to the leading clock 
edge.

• all synchronizes the first and last shift states of all compressed scan chains.

• none does not add lock-up latches to the ends of compressed scan chains for 
synchronization. This is the default.

Figure 18-10 shows how the previous scan compression logic is created when the 
-synchronize_chains all option is used.
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Figure 18-10 Compressed Scan Chains With Multiple Edge Polarities and Synchronization

Note the following restrictions and behaviors:

• Only scan chains coming from the compressor-decompressor are synchronized. All 
other chains, such as user-defined logic chains and phase-locked loop (PLL) chains, are 
ignored during synchronization.

• Because the inserted lock-up latches are bypassed in standard scan mode, a C3 
violation is reported for these latches during standard scan mode DRC.

C3 Clock PI's off state failed to allow transparency of nonscan DLAT S

• The synchronization specification is ignored if you use any of the following features:

❍ set_scan_configuration -add_test_retiming_flops

❍ set_scan_configuration -insert_terminal_lockup true

❍ Pipelined scan data

Reducing Power Consumption in DFTMAX Designs

You can reduce the power consumption of designs with scan compression by using the 
following features:

• Reducing Compressor Power When Codec Is Inactive

• Reducing Scan Shift Power Using Shift Power Groups

Reducing Compressor Power When Codec Is Inactive

In a compressed scan architecture, an XOR compression tree combines the shift outputs 
from all compressed chains into a reduced set of scan out data signals. This XOR 
compression tree is needed only during scan shifting in that codec’s compressed scan 
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mode. At other times, the compression logic is not needed, but it will still toggle when the tail 
scan flip-flops of the compressed chains toggle. This is a particular concern during mission 
mode, when the flip-flops are clocked at their full operating frequency.

To address this, the tool can insert gating at the inputs to the XOR compression tree to 
eliminate this toggling activity and reduce power consumption in other modes of operation.

To enable XOR compressor gating, specify the following option:

dc_shell> set_scan_compression_configuration -min_power true

When you enable XOR compressor gating, the tool inserts gating at the inputs to the XOR 
compression tree as shown in Figure 18-11. Every compressor input is AND-gated with an 
active-low pwr_save_n signal before going to the XOR tree.

Figure 18-11 Example of a Default X-Tolerant Compressor With Gated Inputs

The pwr_save_n gating signal is generated by combining the scan-enable signal and the 
test control module (TCM) signal for the codec’s compression mode, as shown in 
Figure 18-12. By generating this gating signal from the existing test-mode and scan-enable 
signals, no additional dedicated control signal is required at the block boundary. In a CTL 
test model flow, this also means that no update to a block’s test model is needed when XOR 
compressor gating is added to a block.

Figure 18-12 Example of Top-Level Compressor Power Gating Control
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Preserving Compressor Gating Cells During Optimization

When combinational gating exists at the inputs to a DFTMAX XOR compression tree, it is 
possible for the gate remapping algorithms to push gating cells further into the compression 
tree when common terms exist in at the inputs of XOR compression gates. When the gating 
cells are pushed further into the tree, toggling can occur at the upstream XOR cells, and the 
power reduction effectiveness is reduced. To preserve the full power reduction benefits, 
logic synthesis optimization must not move the gating cells into the compression tree.

In the .ddc flow, this is automatically handled. the tool applies the size_only attribute to the 
gating cells as soon as they are created, so that optimization cannot remap the gating cell 
functionality into a different gate-level structure. Because this attribute persists in a .ddc 
flow, the gating cell placement and the power reduction benefits are preserved.

However, in the Verilog flow, this attribute does not persist. To get the same power-saving 
benefits, run the write_script command before you write out the Verilog netlist. Extract 
the commands that apply the size_only attribute to the compressor gating cells. When the 
netlist is read back in, use these commands to reapply the size_only attribute to the power 
gating logic.

Reducing Scan Shift Power Using Shift Power Groups

You can use shift power groups to reduce power consumption during scan shift. This feature 
is described in the following topics:

• The Shift Power Groups Architecture

• Scan-Enable Signal Requirements for Shift Power Groups

• Configuring Shift Power Groups

• Integrating Cores With Shift Power Groups in Hierarchical Flows

• Configuring Shift Power Groups in TetraMAX

• Using Shift Power Groups With Other DFT Features

• Limitations of Shift Power Groups

The Shift Power Groups Architecture

During scan shift, there is significant toggle activity in the scan chains. At high scan shift 
frequencies, this can result in higher-than-desired shift power consumption.

The shift power groups feature helps reduce power consumption during scan shift in 
DFTMAX compressed scan modes. This feature inserts AND gates at the decompressor 
outputs before each compressed scan chain. The chains are gated in groups that are 
controlled by a shift power control (SPC) chain, as shown in Figure 18-13.
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Figure 18-13 Shift Power Groups Decompressor Architecture

The SPC chain is an external (uncompressed) chain outside the DFTMAX codec. When 
scan-in completes, the SPC registers contain the group mask values for the next pattern. 
The de-asserted scan-enable signal, test_se, latches these bits into shadow latches that 
retain the mask values for scan-in of the next pattern.

TetraMAX ATPG configures the group masking in each pattern, depending on the power 
constraints and the number of care bits in each chain group. The larger number of short 
chains inherent to scan compression provide finer granularity for this control. Masked 
groups load constant values into their chains, which reduces overall toggle activity.

SPC chains must be external chains because a compressed SPC chain would gate itself, 
preventing it from reliably loading in each pattern.

The shift power logic also includes a hardware disable signal that, when asserted, disables 
the shift power logic by enabling all compressed chains, as shown in Figure 18-14. This 
signal must be de-asserted or asserted prior to DRC, depending on whether the shift power 
groups feature is enabled in TetraMAX ATPG or not, respectively.

Figure 18-14 Shift Power Disabling Logic
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Scan-Enable Signal Requirements for Shift Power Groups

When the DFTMAX shift-power codec scan-enable signal is de-asserted, the shift power 
logic latches the values from the control chain. Therefore, for proper operation, this 
scan-enable signal must be held in the inactive state in all capture procedures.

The STIL procedure file created by the tool does not apply this constraint. As a result, you 
must manually constrain any scan-enable signals used by DFTMAX shift-power codecs, as 
described in “Configuring Shift Power Groups in TetraMAX” on page 18-39.

Alternatively, if you use a custom STIL procedure file, you can update it to constrain the 
scan-enable signals in all capture procedures.

Configuring Shift Power Groups

To configure the shift power groups feature, do the following:

1. Enable the shift power groups feature.

dc_shell> set_scan_compression_configuration \
            -shift_power_groups true

2. Specify the configuration of the compressed chain groups.

❍ To directly specify the number of compressed chain groups, and therefore the length 
of the SPC chain, use the -shift_power_chain_length option:

dc_shell> set_scan_compression_configuration \
            -shift_power_chain_length 16

❍ To specify the number of compressed chains in each group, which makes the SPC 
chain length a function of the compressed chain count, use the 
-shift_power_chain_ratio option:

dc_shell> set_scan_compression_configuration \
            -shift_power_chain_ratio 12

These options are mutually exclusive.

3. Define the shift power groups disable signal.

dc_shell> set_dft_signal -view spec -type TestControl \
            -port SPC_DISABLE

dc_shell> set_scan_compression_configuration \
            -shift_power_disable SPC_DISABLE

You can define the disable signal using the -port and/or -hookup_pin options of the 
set_dft_signal command. For an “internal pins” hookup pin, you must use a 
test_setup protocol that de-asserts the disable signal.
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4. Configure the shift power control chain.

❍ If no OCC controllers (DFT-inserted or user-defined) are configured in the current 
design, you must configure an external SPC chain.

Specify the clock, scan-in, and scan-out signals to use for the SPC chain:

dc_shell> set_scan_compression_configuration \
            -shift_power_clock CLK

dc_shell> set_scan_path SPC -class spc \
            -scan_data_in SPC_IN \
            -scan_data_out SPC_OUT \
            -test_mode all

You do not need to specify SPC scan path elements; the SPC chain is automatically 
included in the specification.

❍ If OCC controllers (DFT-inserted or user-defined) are configured in the current 
design, configure an external clock chain:

dc_shell> set_scan_path OCC -class occ \
            -scan_data_in OCC_IN \
            -scan_data_out OCC_OUT \
            -test_mode all  ;# includes the SPC chain too

An external clock chain is required because a compressed clock chain would be 
gated, preventing it from reliably loading in each pattern.

By default, the tool automatically appends the SPC chain to the clock chain. It is 
clocked by the ATE clock unless specified otherwise with the -shift_power_clock 
option of the set_scan_compression_configuration command.

Alternately, you can explicitly define a separate external SPC chain as previously 
described, which provides independent access to the OCC and SPC chains when the 
core is integrated.

Integrating Cores With Shift Power Groups in Hierarchical Flows

This topic describes how to integrate cores with shift power groups.

Configuring the Control Chain for Shift Power Groups Cores

When you integrate cores that use shift power groups, you must define a top-level external 
control chain that includes all core-level and top-level clock chains and/or SPC chains, as 
shown in Figure 18-15.
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Figure 18-15 External Control Chain in a Shift Power Groups Design

Use the set_scan_path command to define the top-level external control chain as follows:

• If any core-level or top-level clock chains exist or will be inserted, then define the external 
chain using the -class occ option.

• If only core-level or top-level SPC chains exist or will be inserted, then define the external 
chain using the -class spc option.

• All core-level clock chains and SPC chains must be explicitly included in the specification 
using the -include_elements option. They are not automatically included.

• All top-level clock chains must be explicitly included in the specification using the 
-include_elements option. They are not automatically included.

• Top-level SPC chains are automatically included in the external chain.

The following example includes core-level clock chains and SPC chains along with top-level 
clock chains and SPC chains:

set_scan_path clock_chain -class occ \
  -include_elements { \
   core1/SPC \
   core2/SPC \
   coreOCC1/OCC \
   coreOCC2/OCC \
   snps_clk_chain_2/clock_chain} \
  -complete true \
  -scan_data_in OCC_SI \
  -scan_data_out OCC_SO \
  -test_mode all
# (the top-level SPC chain is automatically included)

If you concatenate external control chains from pipelined cores, those cores must be 
created with beginning and ending retiming registers to avoid edge-related concatenation 
issues at the top level. See the retiming register information in “Using Shift Power Groups 
With Other DFT Features” on page 18-40.
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Connecting Core-Level Shift Power Disable Signals

When integrating cores that contain shift power groups, you must manually hook up 
core-level shift power disable signals to a top-level disable signal.

You can use one of the following methods:

• Include preexisting connections to the cores in your top-level RTL.

• Use ECO commands, such as disconnect_net and connect_pin, to make the 
connections to the cores.

You can share a single disable signal or use multiple disable signals.

All shift power disable signals must be de-asserted (set to logic 0) to enable the shift power 
logic. The DFT-created disable signal for a top-level codec is already de-asserted in the 
SPF. Additional disable signals must be manually de-asserted by defining constant signals 
on them. For example,

dc_shell> set_dft_signal -view existing_dft -type Constant \
            -port SPC_CORE_DISABLE* -active_state 0

Configuring Shift Power Groups for a Top-Level Codec

If you are implementing a top-level codec, you must configure shift power groups for that 
codec using the pertinent options of the set_scan_compression_configuration 
command. For more information, see “Configuring Shift Power Groups” on page 18-36.

Configuring Shift Power Groups in TetraMAX

Use the following commands in TetraMAX to configure ATPG use of the shift power groups 
hardware:

DRC_T> set_drc -spc_chain SPC_chain_name
DRC_T> set_atpg -shift_controller_peak probability_value

SPC_chain_name is the name of the scan path that contains the SPC chain. 
probability_value is the maximum percentage of scan cells that can switch in a shift cycle. 
TetraMAX ATPG rejects patterns that exceed this switching percentage.

As described in “Scan-Enable Signal Requirements for Shift Power Groups” on page 18-36, 
you must also constrain the scan-enable signal used by the shift-power logic to be 
de-asserted during capture. For example,

DRC_T> add_pi_constraints 0 SE_port  ;# signal is active-high

The STIL procedure file (SPF) created by the DFTMAX tool enables shift power groups by 
default. When enabled, you must configure the feature with the preceding commands, 
otherwise the compressed scan chains will fail DRC due to chain blockages.
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Alternatively, you can assert the shift power disable signal, in which case the DFTMAX 
codec degenerates to a non-shift-power codec and no shift power configuration commands 
are needed.

Using Shift Power Groups With Other DFT Features

The shift power groups feature interacts with other DFT features as follows: 

• Multiple test modes

You can use shift power groups with multiple test modes, including multiple DFTMAX 
compression modes. Configure the SPC chain in each DFTMAX compression mode. 
See “Per-Test-Mode Scan Compression Configuration Commands” on page 18-16 for 
supported options.

The control chain must be external only in DFTMAX compression modes. If desired, you 
can use the -test_mode option of the set_scan_path specification to limit the external 
chain specification to those modes (instead of all); the control chains are incorporated 
into regular scan chains in other modes.

If shift power groups are used, they must be used in all DFTMAX test modes. You cannot 
mix codecs with and without shift power groups across test modes.

• DFT partitions

You can use shift power groups with DFT partitions. Configure the SPC chain in each 
partition that contains a DFTMAX codec. See “Per-Partition Scan Compression 
Configuration Commands” on page 18-10 for supported options.

Note that although SPC chains can be created for multiple partitions, they are all stitched 
into the single external control chain specified by the set_scan_path command.

If shift power groups are used, they must be used in all partitions that contain a DFTMAX 
codec. You cannot mix codecs with and without shift power groups across partitions.

• Retiming registers

When you enable beginning and/or ending retiming registers, SPC chains (and clock 
chains) are clocked on the leading clock edge instead of the trailing clock edge. This 
facilitates control chain concatenation at the top level.

Limitations of Shift Power Groups

Note the following limitations of shift power groups:

• This feature applies only to scan chains compressed by DFTMAX codecs. Standard 
scan modes cannot use this feature.
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• When shift power groups are used, they must be used

❍ In all DFTMAX test modes

❍ In all codecs in the design (across both cores and DFT partitions)

You cannot mix DFTMAX codecs with and without shift power groups within the same 
design.

• The shift power control (SPC) chain must be an external (uncompressed) chain, which 
you explicitly define using the set_scan_path command.

• When using OCC controllers, you must use external (uncompressed) clock chains.

• When integrating cores that contains shift power groups, you must manually hook up the 
core-level shift power disable signal to a top-level shift power disable signal.

• The report_scan_path command does not report SPC chain information.

In TetraMAX ATPG, the following requirements apply:

• You must use the add_pi_constraints command to constrain the scan-enable signal 
to be de-asserted during scan capture.

• Diagnosis capability is limited. High-resolution diagnostics are not supported when shift 
power groups are used. Assert the shift power disable signal to generate patterns for 
high-resolution diagnostics.

In TetraMAX ATPG, the following tasks are not supported when using shift power groups:

• Analyzing X effects or X sources performed during a TetraMAX simulation

• Comparing simulation results from either a VCD simulation file, the internal patterns from 
the fast-sequential simulator, or the internal patterns from the full-sequential simulator

• Reporting total (cumulative) power data with the report_power command after 
performing multiple (incremental) ATPG runs

• Saving patterns and fault lists to files at a specified checkpoint interval during ATPG 
pattern generation

• Saving a GZIP-compressed parallel pattern set that can be simulated during the ATPG 
process

• Assigning ATPG constraints during an IDDQ measure strobe when the IDDQ fault model 
is selected
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Forcing a Compressor With Full Diagnostic Capabilities

R10 DRC violations indicate that two or more compressed scan chains share the same XOR 
compression signature at the scan outputs. As a result, a single fault detected at a scan 
output cannot be uniquely mapped back through the compression logic to a specific scan 
chain during diagnosis. This is also called aliasing.

To force DFT insertion to implement only compressors with full diagnostic capabilities, that 
is, compressors that do not have any R10 DRC violations, set the following option:

dc_shell> set_scan_compression_configuration -force_diagnosis true

Note that this option does not change how the compressor logic is built; it simply causes 
DFT insertion to stop instead of complete if the compressor would have R10 DRC violations.

Table 18-1 shows the maximum number of compressed scan chains that can be built for a 
given set of scan-out pins without an R10 DRC violation. Note that these limits are lower 
than the maximum upper limits shown in Table 20-1 on page 20-4.

Table 18-1 Compressed Scan Chain Limits for Avoiding R10 DRC Violations 

Number of scan-out 
pins

Maximum number of 
chains

2 3

3 7

4 15

5 31

6 63

7 127

8 255

9 510

10 1012

11 1980

12 3796

13 7098
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For P scanout pins, the maximum number of chains N is computed as follows:

where the number of k-combinations C is computed by

If you exceed these limits when the -force_diagnosis option is set to true, DFT insertion 
stops with a TEST-1603 message:

Warning: The compressor generated might have lower diagnostics precision.
(TEST-1603)
Information: Scan routing is not complete. Signals 'serial or
scan_enables' need to be routed. (TEST-899)
Information: DFT insertion was not successful. There were unrecoverable
processing errors. (TEST-211)
0

R10 violations can be issued by post-DFT DRC analysis or by TetraMAX DRC analysis.

See Also

• SolvNet article 036993, “What Do R10 and R11 DRC Violations Mean?” for more 
information about R10 violations

14 12910

15 22818

16 32000

Table 18-1 Compressed Scan Chain Limits for Avoiding R10 DRC Violations (Continued)

Number of scan-out 
pins

Maximum number of 
chains

N P  Ck
P

k 1=

min P 8 

=

Ck
P P!

k! P k– !
------------------------=
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Performing Congestion Optimization on Compressed Scan 
Designs

As the target scan chain compression ratio increases, the number of connections between 
the codec logic and compressed scan chains increases, and the number of reconfiguration 
MUX connections increases. This also increases the possibility of routing congestion. The 
DFTMAX tool provides congestion reduction algorithms that use Design Compiler Graphical 
technology to reduce the congestion introduced by scan compression logic.

To use this feature, you must perform the initial compile with congestion optimization using 
the compile_ultra -scan -spg command. See Example 18-15.

Example 18-15 Inserting DFTMAX Scan Compression in a Design Compiler Graphical Flow

compile_ultra -scan -spg

set_dft_configuration -scan_compression enable
# ...other DFT configuration settings...

preview_dft
insert_dft

In this case, the preview_dft and insert_dft commands issue the following message:

Running Scan Compression with congestion optimization enabled.

Note:   
The compressed scan congestion optimization feature does not work in multiple 
test-mode flows.

See Also

• “Physical DFT Features in Design Compiler” on page 6-36 for more information about 
reordering and repartitioning optimizations performed for all scan designs

Using AutoFix With Scan Compression

When you insert compressed scan into a design, a test-mode signal is used to enable 
standard scan or compressed scan. The AutoFix feature requires a separate test-mode 
signal to enable the testability fixing logic added by DFT Compiler. These test-mode signals 
cannot be shared, because the AutoFix testability fixes must be activated for both values of 
the compressed scan test-mode pin, that is, in both the standard scan and compressed scan 
modes.

When you configure the AutoFix control signal with the -control_signal option of the 
set_autofix_configuration command, specify a test-mode signal that is dedicated to 
enabling the AutoFix logic. If you have not specified any test-mode encodings with the 
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define_test_mode -encoding command, the tool will avoid using the AutoFix control 
signal when it chooses test-mode signals for the test-mode encodings. If you are specifying 
your own test-mode encodings, you should avoid using the AutoFix control signal in your 
encodings.

See Also

• “Using AutoFix” on page 11-40 for more information about using AutoFix to fix design 
testability issues

One-Pass DFTMAX Example With AutoFix

The following example performs compressed scan DFT insertion with AutoFix enabled.

Example 18-16 One-Pass DFTMAX Flow With AutoFix

# Define the clocks and asynchronous signals
set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
  -port clk_st
set_dft_signal -view existing_dft -type ScanMasterClock -timing {55 45} \
  -port clk_st_inv
set_dft_signal -view existing_dft -type Reset -active_state 0 \
  -port rst_st

# Enable DFTMAX compression, AutoFix for clocks, resets, sets, and buses
set_dft_configuration -scan_compression enable \
  -fix_clock enable \
  -fix_reset enable \
  -fix_set enable \
  -fix_bus enable \
  -fix_bidirectional enable \
  -control_points enable \
  -observe_points enable
# Configure DFTMAX compression
set_scan_compression_configuration -minimum_compression 10 \
  -xtolerance high -max_length 20
set_scan_configuration -chain_count 8

# Set the global AutoFix settings to use data clock_autofix_clock_s
#  and control TEST_MODE
set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
  -port clock_autofix_clock_s
set_dft_signal -view spec -type TestMode -port TEST_MODE
set_dft_signal -view spec -type TestData -port clock_autofix_clock_s
set_autofix_configuration -type clock \
  -include_elements [get_object_name [get_cells -hierarchical *]] \
  -control_signal TEST_MODE \
  -test_data clock_autofix_clock_s

# Define the cells to fix and ports to use for clock AutoFix
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set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
  -port clock_autofix_clock_sc
set_dft_signal -view spec -type TestData -port clock_autofix_clock_sc
set_autofix_element [get_object_name [get_cells dd_c/*]] -type clock \
  -control_signal TEST_MODE \
  -test_data clock_autofix_clock_sc

# Define the cells to fix and ports to use for reset AutoFix
set_dft_signal -view existing_dft -type Reset -active_state 0 \
  -port reset_autofix_reset
set_autofix_element [get_object_name [get_cells -hierarchical *]] \
  -type reset -control_signal TEST_MODE \
  -test_data reset_autofix_reset

# Set up testpoint insertion using TEST_MODE as the mode port
# and clk_st as the testpoint clock
set_test_point_element -type force_01 -clock_signal clk_s\
  -control_signal TEST_MODE \
  -test_points_per_source_or_sink 1 {dd_c/\o_data_reg[3]/D}
set_test_point_element -type observe -clock_signal clk_st \
  -control_signal TEST_MODE \
  -test_points_per_source_or_sink 1 {dd_c/\o_data_reg[3]/Q}

# Set up port to use for DFTMAX test mode control
set_dft_signal -view spec -type TestMode -port TEST_COMPRESS

# Set up scan enable to use i_rd pin
set_dft_signal -view spec -type ScanEnable -port i_rd

set_dft_insertion_configuration -synthesis_optimization none

## Create the test protocol
create_test_protocol

## Run pre-DFT DRC
dft_drc -verbose

## Preview test structures to be inserted
preview_dft -show all

## Run test insertion
insert_dft

One-Pass DFTMAX Example With AutoFix and Multiple Test Modes

The following script example performs compressed scan DFT insertion of multiple test 
modes with AutoFix enabled.
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Example 18-17 One-Pass DFTMAX Flow With AutoFix, Using Multiple Test Modes

read_verilog db/my_design.v
current_design top
uniquify
link

# Create ports to use as test-mode selection for test modes defined
# with define_test_mode
create_port -direction in TM1
create_port -direction in TM2
create_port -direction in TM3

# Test-mode ports must be defined with set_dft_signal -view spec TestMode
# before use in define_test_mode encoding
set_dft_signal -view spec -type TestMode \
  -port {TM1 TM2 TM3} -test_mode all

# Define the test modes for this design
define_test_mode my_base1 -usage scan \
  -encoding {TM1 0 TM2 0 TM3 1}
define_test_mode scan_compression1 -usage scan_compression \
  -encoding {TM1 1 TM2 0 TM3 0}
define_test_mode burn_in -usage scan \
  -encoding {TM1 0 TM2 1 TM3 1}

# Define the clocks and asynchronous signals
set_dft_signal -view existing_dft -type ScanMasterClock \
  -timing {45 55} -port sys_clk -test_mode all
set_dft_signal -view existing_dft -type ScanMasterClock \
  -timing {55 45} -port sys_clk_inv -test_mode all
set_dft_signal -view existing_dft -type Reset -active_state 0 \
  -port sys_reset -test_mode all

# Enable DFTMAX compression, AutoFix for clocks, resets, sets, and buses
set_dft_configuration -scan_compression enable \
  -fix_clock enable \
  -fix_reset enable \
  -fix_set enable \
  -fix_bus enable \
  -fix_bidirectional enable \
  -control_points enable \
  -observe_points enable

# Configure the test modes
set_scan_compression_configuration -minimum_compression 10 \
  -xtolerance high -base_mode my_base1 \
  -test_mode scan_compression1
set_scan_configuration -chain_count 8 -test_mode my_base1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
  -test_mode burn_in

# Define the cells to fix and ports to use for clock AutoFix
Chapter 18: Using DFTMAX Compression
Using AutoFix With Scan Compression 18-47
Chapter 18: Using DFTMAX Compression
Using AutoFix With Scan Compression 18-47



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
  -port clock_autofix_clock_s -test_mode all
set_dft_signal -view spec -type TestData -port clock_autofix_clock_s \
  -test_mode all
set_dft_signal -view spec -type TestMode -port TEST_MODE \
  -test_mode all
set_autofix_element [get_object_name [get_cells -hierarchical *]] \
  -type clock -control_signal TEST_MODE \
  -test_data clock_autofix_clock_s

# Define the cells to fix and ports to use for reset AutoFix
set_dft_signal -view existing_dft -type Reset -active_state 0 \
  -port reset_autofix_reset -test_mode all
set_autofix_element [get_object_name [get_cells -hierarchical *]] \
  -type reset -control_signal TEST_MODE \
  -test_data reset_autofix_reset

# Set up testpoint insertion using TEST_MODE as the mode port
# and sys_clk as the testpoint clock
set_test_point_element -type force_01 -clock_signal sys_clk \
  -control_signal TEST_MODE \
  -test_points_per_source_or_sink 1 {dd_c/o_data_reg[3]/D}
set_test_point_element -type observe -clock_signal sys_clk \
  -control_signal TEST_MODE \
  -test_points_per_source_or_sink 1 {dd_c/o_data_reg[3]/Q}

# Set up scan enable to use i_rd pin
set_dft_signal -view spec -type ScanEnable -port i_rd -test_mode all

# Enable rapid scan stitching
set_dft_insertion_configuration -synthesis_optimization none

# Create the test protocol
create_test_protocol

# Run pre-DFT DRC
dft_drc -verbose

# Preview test structures to be inserted
preview_dft -show all

# Generate a report specific to AutoFix
report_autofix_configuration -type all

# Run insert_dft to insert into design
insert_dft

# List the modes inserted and report the test mode1
list_test_modes
report_test_mode1

# Run post-DFT DRC
current_test_mode scan_compression1
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report_dft_signal
dft_drc -verbose

current_test_mode my_base1
report_dft_signal
dft_drc -verbose

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

# Write test protocol for use in TetraMAX
write_test_protocol -test_mode scan_compression1 \
  -output stil/10x_xtol_moxie_autofix.stil -names verilog
write_test_protocol -test_mode my_base1 \
  -output stil/10x_xtol_moxie.scan_autofix.stil -names verilog

# Write out the scan inserted design
change_names -rules verilog -hierarchy
write -format verilog -hierarchy \
  -output vg/10x_xtol_moxie_top_scan_autofix.v
write -format ddc -hierarchy \
  -output db/10x_xtol_moxie_top_scan_autofix.ddc
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Hierarchical Adaptive Scan Synthesis 19

This chapter explains how to run hierarchical adaptive scan synthesis flows. It also 
describes how to integrate compressed scan cores, standard scan cores, and test-ready, 
top-level, sequential user-defined logic.

In the hierarchical adaptive scan synthesis (HASS) flow, scan compression logic is placed 
at the block level, and all cores with scan compression logic are integrated at the chip level. 
This approach helps reduce the routing congestion prevalent in multimillion-gate designs.

The Hybrid flow is an extension of the HASS flow that provides additional support for 
compressed scan insertion for user-defined logic. A normal HASS flow supports insertion of 
standard scan chains for user-defined logic, and the Hybrid flow supports insertion of 
compressed scan for user-defined logic.

This chapter includes the following topics:

• The HSS Flow

• The HASS Flow

• The Hybrid Flow

• Using Multiple Test Modes in Hierarchical Flows

• Top-Level Integration Script Examples

• HASS and Hybrid Flow Limitations
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The HSS Flow

You can use the hierarchical scan synthesis (HSS) flow to insert scan when one or more 
standard scan cores are present. The compressed scan HSS flow is similar to the standard 
scan HSS flow described in “Hierarchical Scan Synthesis” on page 6-23, except that scan 
compression is added around standard scan cores at the top level.

When the DFTMAX tool inserts scan compression in the HSS flow, it applies compression 
to standard scan cores as well as top-level logic. Scan chains inside standard scan cores 
are treated as scan segments.

Figure 19-1 shows an example of a compressed scan HSS flow.

Figure 19-1 The Compressed Scan HSS Flow

The following logic types are supported in the compressed scan HSS flow:

• Standard scan cores

These cores can be represented by the full netlist or a CTL test model. The DFTMAX tool 
incorporates the core-level scan chains into scan compression as scan chain segments. 
These scan chain segments can be concatenated and rebalanced inside the codec as 
needed, but they cannot be subdivided into smaller scan chains.

• Test-ready cores that are scan-replaced, but do not yet have scan chains

The tool incorporates the test-ready logic into scan compression, creating compressed 
scan chains as needed to meet the scan chain requirements.

• Cores that have not yet been scan-replaced

The tool performs scan replacement before applying scan compression.

• Top-level glue logic that might or might not be test-ready

The tool performs scan replacement if needed, then it applies scan compression.

S_CORE GLUES_CORE
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The compressed scan HSS flow is automatically applied whenever one or more standard 
scan cores are present and scan compression is enabled with the 
set_dft_configuration command:

dc_shell> set_dft_configuration -scan_compression enable

You do not need to specify any additional integration options with the 
set_scan_compression_configuration command to enable the compressed scan HSS 
flow.

The HASS Flow

Sometimes a design is too large for scan compression to be inserted using a top-down flat 
or HSS flow. Or, a design might include some reused compressed scan cores. In these 
cases, a bottom-up hierarchical flow is needed to assemble compressed scan cores at the 
top level and perform core integration.

You can use the hierarchical adaptive scan synthesis (HASS) flow to perform top-level core 
integration with one or more compressed scan cores. The HASS flow is similar to the 
hierarchical scan synthesis (HSS) flow described in “Hierarchical Scan Synthesis” on 
page 6-23, except that the HASS flow adds support for compressed scan cores.

Figure 19-2 shows an example of the HASS integration flow.

Figure 19-2 HASS Integration of a Compressed Scan Core

In the HASS flow, no scan compression logic is added at the top level. The DFTMAX tool 
promotes the scan connections of the compressed scan cores to top-level scan 
connections.

A compressed scan core contains scan chain logic that can operate in both standard scan 
and compressed scan modes. A standard scan core contains scan chains that only operate 
in standard scan mode. When a mix of compressed scan and standard scan cores are 
integrated at the top level in the HASS flow, the test modes operate as follows:

• In standard scan mode, all cores operate in their standard scan modes.

• In compressed scan mode, compressed scan cores operate in their compressed scan 
mode, while the standard scan cores continue to operate in standard scan mode.

C_CORE C_CORE
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Preparing Cores in the HASS Flow

In the HASS flow, at least one top-level compressed scan core is required for top-level 
integration. Additional cores, containing compressed scan or standard scan logic, can also 
be provided.

Example 19-1 shows a typical compressed scan insertion script used in the HASS flow.

Example 19-1  Typical Core-Level Compressed Scan Insertion Script

read_ddc core1_test_ready.ddc
current_design core1
set_scan_configuration -chain_count 10
set_dft_configuration -scan_compression enable
set_dft_signal -view existing_dft -port CLK -type \
  ScanClock -timing {45 55}

create_test_protocol
dft_drc
preview_dft
insert_dft

current_test_mode Internal_scan
dft_drc
current_test_mode ScanCompression_mode
dft_drc

write -format ddc -hierarchy -output core1.ddc
write_test_model -format ddc -output core1.ctlddc
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output core1.v

Each core must have CTL test model information so that the tool can perform top-level 
integration. If the block fits in memory during top-level integration, you can use the write 
command to write a design .ddc file that contains the full design netlist as well as the CTL 
test model information:

dc_shell> write -format ddc -hierarchy -output design_name.ddc

If the block is large, you can use the write_test_model command to write out a 
test-model-only .ddc file that contains the CTL test model along with an interface-only 
representation of the core that allows the test model to be linked at the top level:

dc_shell> write_test_model -format ddc -output design_name.ctlddc

You can use either format for standard scan and compressed scan cores in the HASS flow.
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HASS Integration of Compressed Scan Cores

To enable the HASS flow at the top level, use the following commands:

dc_shell> set_dft_configuration -scan_compression enable
dc_shell> set_scan_compression_configuration -integration_only true

The first command enables scan compression, and the second command enables the 
HASS flow.

The HASS flow does not concatenate or rebalance the scan chain connections of 
compressed scan cores at the top level. Each core-level scan chain is promoted to a 
top-level scan chain with dedicated scan pin connections in both the standard scan and 
compressed scan modes. The top-level scan count, and therefore the scan pin budget, is 
determined by the number of scan chains in the compressed scan cores.

Figure 19-3 shows the results from the HASS flow when three compressed scan cores are 
present. All nine codec connections are promoted to nine top-level scan-in and scan-out 
connections. No other scan chain count is possible.

Figure 19-3 HASS Integration of Three Compressed Scan Cores

If you issue a set_scan_configuration -chain_count command requesting fewer scan 
chains, the preview_dft and insert_dft commands issue the following warning:

Warning: Cells with 8 new incompatible clock domains have not been 
assigned to scan chains. Cannot honor -chain_count specification of 7.
Try using set_scan_configuration -clock_mixing mix_edges or -clock_mixing 
mix_clocks. (TEST-355)

If you issue a set_scan_configuration -chain_count command requesting more scan 
chains, the preview_dft and insert_dft commands issue the following warning:

Warning: Only 8 scan chain elements are free. Cannot honor -chain_count 
specification of 9. (TEST-348)

When only compressed scan cores exist, you do not need to specify a chain count with the 
set_scan_configuration -chain_count command. However, you can specify the 
expected chain count so that the tool verifies the actual number of scan chains against the 
expected number.

C_CORE1 C_CORE2 C_CORE3
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HASS Integration of Additional Uncompressed Scan Logic

The HASS flow also supports the presence of uncompressed scan logic in addition to the 
compressed scan blocks by creating standard scan chains. The following uncompressed 
logic types are supported during top-level integration:

• Standard scan cores

These cores are represented by the full netlist or a CTL test model. The DFTMAX tool 
incorporates the core-level scan chains into top-level scan chains as scan chain 
segments. These scan chain segments can be concatenated and rebalanced at the top 
level as needed, but they cannot be subdivided into smaller scan chains.

• Test-ready cores that are scan-replaced, but do not yet have scan chains

The tool architects standard scan chains that are active in both the standard scan and 
compressed scan modes.

• Cores that are not scan-replaced

The tool performs scan replacement, then architect standard scan chains that are active 
in both the standard scan and compressed scan modes.

• Top-level glue logic that might or might not be test-ready

The tool performs scan replacement if needed, then architect standard scan chains that 
are active in both the standard scan and compressed scan modes.

The scan chain connections for compressed cores are always promoted to top-level scan 
chain connections. The scan architecture behavior for the additional uncompressed logic 
depends on whether a target chain count is specified with the set_scan_configuration 
-chain_count command.

Figure 19-4 shows a top-level design example with a compressed scan core, a standard 
scan core, and some top-level glue logic. The compressed scan core C_CORE contains 24 
flip-flops divided into 6 compressed scan chains of 4 flip-flops each, with 3 scan-in and 
scan-out pins. The standard scan core S_CORE contains 12 flip-flops, split into 4 scan 
chains. The top-level glue logic GLUE contains 2 scan-replaced flip-flops with no scan 
chains.
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Figure 19-4 Design Example Before HASS Integration

When no target chain count is specified, the following goals are used for scan architecture 
of the additional logic:

• For the compressed scan mode of operation, the tool attempts to architect scan chains 
that do not exceed the longest compressed scan chain inside a compressed scan core. 
This preserves the test compression characteristics of the compressed scan cores.

• For the standard scan mode of operation, the tool follows the default rules of scan chain 
architecture where the minimum number of scan chains is built that meet any applied 
scan architecture requirements.

Figure 19-5 shows the resulting HASS top-level integration results operating in compressed 
scan mode. The codec scan chain connections from C_CORE are promoted directly to 
top-level connections. For the remaining uncompressed logic, standard scan chains are 
architected so that the chain length of the compressed core is not exceeded.

Figure 19-5 Compressed Scan Mode After HASS Integration With No Chain Count Specified

Figure 19-6 shows the resulting HASS top-level integration results operating in standard 
scan mode. The standard scan chain connections from C_CORE are promoted directly to 
top-level connections. For the remaining uncompressed logic, a single standard scan chain 
is created that includes joined scan segments from S_CORE and the scan flip-flops from the 
GLUE logic.

C_CORE S_CORE4 4
3 3 3 3

1

1
GLUE

Additional uncompressed logicCompressed scan core

C_CORE4 4 S_CORE
3 3 3 3

1 GLUE
1
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Figure 19-6 Standard Scan Mode After HASS Integration With No Chain Count Specified

Note that when a chain count is not specified, the scan chain counts might be different 
between the standard scan and compressed scan modes.

When a scan chain count is specified with the set_scan_configuration -chain_count 
command, the tool attempts to honor the specified chain count for both the standard scan 
and compressed scan modes. Figure 19-7 shows the HASS top-level integration results for 
the compressed scan mode when the set_scan_configuration -chain_count 6 
command is specified. Because the specified scan chain count applies to both the standard 
scan and compressed scan modes, the scan architecture of the uncompressed logic is the 
same in both modes.

Figure 19-7 Compressed Scan Mode After HASS Integration With -chain_count 6 Specified

If you issue a set_scan_configuration -chain_count command requesting fewer scan 
chains than is possible, the preview_dft and insert_dft commands issue the following 
warning:

Warning: Cells with 4 new incompatible clock domains have not been 
assigned to scan chains. Cannot honor -chain_count specification of 3. 
Try using set_scan_configuration -clock_mixing mix_edges or -clock_mixing 
mix_clocks. (TEST-355)

If you issue a set_scan_configuration -chain_count command requesting more scan 
chains than is possible, the preview_dft and insert_dft commands issue two warnings, 
one for the total set of scan chains and one for the uncompressed logic chains:

Warning: Only 9 scan chain elements are free. Cannot honor -chain_count 
specification of 10. (TEST-348)
Warning: Only 6 scan chain elements are free. Cannot honor -chain_count 
specification of 7. (TEST-348)

1S_CORE
3 3 3 3

GLUE
18 8 8

C_CORE

C_CORE4 4 S_CORE
3 3 3 3

1 GLUE
1
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Since compressed scan mode chains are usually short, you should take care to manage the 
relative lengths of standard scan and compressed scan chains at the top level. This might 
require management of the scan chain lengths of any standard scan cores, as well as 
providing an adequate scan pin budget at the top level to avoid excessive standard scan 
chain concatenation. If further reduction in chain length is needed, you can use the Hybrid 
flow. For more information, see “The Hybrid Flow” on page 19-9.

After top-level integration, you can perform DRC of the standard scan mode using the 
dft_drc command. However, the tool does not support DRC of the top-level compressed 
scan mode. DRC checking for the compressed scan mode is performed in the TetraMAX 
tool.

In the HASS flow, a single test-mode pin that is shared across all scan cores is required for 
selecting standard scan or compressed scan mode. Complex test-mode encodings are not 
supported.

The Hybrid Flow

In the HASS flow, existing compressed scan core chains are promoted to top-level chains 
and standard scan is used to access all other logic, including top-level user-defined logic. If 
there is a large amount of top-level logic, an imbalance between the compressed scan chain 
lengths and standard scan chain lengths might result. This can reduce the effective amount 
of test compression.

You can use the Hybrid flow to reduce this chain length imbalance. The Hybrid flow is a 
combination of the compressed scan HSS flow and the HASS flow. The Hybrid flow 
operates as follows:

• For compressed scan cores, the tool promotes core-level scan connections to top-level 
connections, as in the compressed scan HSS flow.

• For uncompressed logic, the tool applies top-level scan compression, as in the HASS 
flow.

The Hybrid flow supports the same uncompressed logic types as the HASS flow. For a list 
of these logic types, see “HASS Integration of Additional Uncompressed Scan Logic” on 
page 19-6.

Figure 19-8 shows an example of the Hybrid integration flow.
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Figure 19-8 Hybrid Integration of a Compressed Scan Core

Performing Top-Level Hybrid Integration

To enable the Hybrid flow at the top level, use the following commands:

dc_shell> set_dft_configuration -scan_compression enable
dc_shell> set_scan_compression_configuration -hybrid true

The first command enables scan compression, and the second command enables the 
Hybrid flow.

To configure Hybrid integration, you must supply the following information:

• Specify the total top-level scan chain count with the set_scan_configuration 
-chain_count command.

• Specify the number of compressed scan chains for the new top-level codec with the 
set_scan_compression_configuration -chain_count command, or the maximum 
compressed scan chain length with the set_scan_compression_configuration 
-max_length command.

Note:   
This value does not include the compressed chains in any existing compressed scan 
cores.

Just as with the HASS flow, the scan chain connections of compressed scan cores are 
promoted to top-level scan chain connections. When you specify the total top-level chain 
count with the set_scan_configuration -chain_count command, this value includes 
these promoted compressed scan core connections. However, the compressed chain count 
specified with the set_scan_compression_configuration -chain_count command 
applies only to the logic included in top-level compressed scan insertion.

Figure 19-9 shows a top-level design that contains a compressed scan core named 
C_CORE, a standard scan core named S_CORE, and some top-level logic named GLUE.

C_CORE C_CORE
Chapter 19: Hierarchical Adaptive Scan Synthesis
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Figure 19-9 Top Level Before Applying Hybrid Integration

Figure 19-10 shows the resulting Hybrid top-level design operating in compressed scan 
mode. Note the following features:

• The tool determines the number of inputs and outputs on the new top-level codec by 
taking the top-level chain count and subtracting the codec connections of the existing 
compressed scan cores. In Figure 19-10, C_CORE uses three of the five total top-level 
scan chain connections. The remaining two chain connections determine the width of the 
new top-level codec.

• The tool architects four compressed scan chains in the uncompressed logic, then 
compresses these chains with the new top-level codec.

Figure 19-10 Compressed Scan Mode Operation After Hybrid Integration

Figure 19-11 shows the HASS top-level integration results operating in standard scan mode. 
The DFTMAX tool architects two standard scan chains in the uncompressed logic, and 
connects them to the two available top-level scan pins.

C_CORE

Additional uncompressed logicCompressed scan core

S_CORE GLUE

C_CORE4 4 S_CORE
3 3 3 3

GLUE
1

1

set_scan_configuration -chain_count 5

set_scan_compression_configuration -chain_count 4
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Figure 19-11 Standard Scan Mode Operation After Hybrid Integration

Performing Top-Level Hybrid Integration with Partitions

By default, Hybrid integration creates a single codec for all scan logic except the existing 
compressed scan cores. You can use the DFT partition feature to create multiple codecs at 
the top level. This can help reduce routing congestion. For more information about defining 
DFT partitions to create multiple codecs, see Chapter 18, “Using DFTMAX Compression.”

You can use the define_dft_partition command to define an additional partition and 
specify the cells and designs to be placed in that partition. All cores and logic not explicitly 
assigned to a user-defined partition remain in the default partition, named 
default_partition.

You can use the partition feature to perform compressed scan insertion on cores which have 
not yet been scan-inserted. This allows you to defer compressed scan insertion of a core to 
the top level integration run, where the scan compression configuration can be adjusted and 
rerun as needed.

Consider the following scenario:

• Compressed scan core C_CORE already has compressed scan inserted, and only 
requires integration at the top level.

• Blocks IP_BLK1 and IP_BLK2 have been synthesized with a test-ready compile, but they 
do not yet have scan chains. Each of these blocks should have its own codec inserted 
within its hierarchy.

• Some top-level glue logic exists, contained in the GLUE block. This glue logic should 
have its own codec inserted at the top level.

The required partitions can be defined as shown in Figure 19-12.

S_CORE
3 3 3 3

GLUE
1

1

set_scan_configuration -chain_count 5

8 8 8
C_CORE
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Figure 19-12 Hybrid Partition Definitions Before Top-Level Integration

Example 19-2 shows the commands used for partition creation and scan configuration. The 
set_dft_location command is used to place the codecs inside IP_BLK1 and IP_BLK2.

Example 19-2 Defining Partitions in a Hybrid Flow

set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

define_dft_partition PARTITION1 -include {IP_BLK1}
define_dft_partition PARTITION2 -include {IP_BLK2}

current_dft_partition PARTITION1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 4
set_dft_location -include CODEC IP_BLK1

current_dft_partition PARTITION2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 4
set_dft_location -include CODEC IP_BLK2

current_dft_partition default_partition
set_scan_configuration -chain_count 5
set_scan_compression_configuration -chain_count 3

Figure 19-13 shows the resulting codec configurations after the insert_dft command is 
used.
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Figure 19-13 Hybrid Partition Definitions After Top-Level Integration

The normal Hybrid scan architecture rules apply inside each partition. For example:

• A top-level chain count of five is specified for the default partition. Since C_CORE 
already has three scan chain connections, two scan chain connections are allocated to 
the codec inserted in the GLUE block.

• A compressed chain count of three is specified for the default partition. Three 
compressed chains are created inside the GLUE block during compressed scan 
insertion.

• Top-level chain counts and compressed chain counts applied to other partitions only 
apply to the codec insertion for logic within those partitions.

See Also

• “Top-Down Flat Compressed Scan Flow With DFT Partitions” on page 18-6 for more 
information about defining DFT partitions

Using Multiple Test Modes in Hierarchical Flows

In hierarchical scan compression flows with multiple test modes, DFT cores have test 
modes that must be incorporated into top-level test modes during core integration. This 
process is explained in the following topics:

• Default Core-Level Test Mode Assignment

• User-Defined Core-Level Test Mode Scheduling

See Also

• “Multiple Test Modes” on page 11-63 for more information about user-defined test modes
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Default Core-Level Test Mode Assignment

By default, the DFTMAX tool creates as many top-level test modes as needed to 
accommodate all of the core-level test modes present during core integration.

The relationship between core-level and top-level test modes is determined by test mode 
name. In scan compression flows, the following additional rule applies:

• A compressed scan core with default test mode names (Internal_scan and 
ScanCompression_mode) is always active. It is assigned to

❍ Internal_scan mode in top-level test modes defined with the scan usage

❍ ScanCompression_mode mode in top-level test modes defined with the 
scan_compression usage

Figure 19-14 shows an example with three compressed cores instantiated in a top-level 
design. The example includes a compressed scan core with multiple user-defined test 
modes, a compressed scan core with the default standard and compressed scan modes, 
and a scannable memory with a single Internal_scan test mode.

Figure 19-14 Three Cores With Different Test Modes Instantiated in a Top-Level Design

For this example, Figure 19-15 shows the top-level test modes created by the tool during 
core integration. Each column represents a core, each row represents a top-level test mode, 
and the intersections of the columns and rows show the core-level test mode used for that 
top-level test mode.

TOP

Available core-level
test modes:

Internal_scan

MEM
STD

COMP1
COMP2

MMccore
Internal_scan

ScanCompres
sion_mode

ccore
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Figure 19-15 Top-Level Test Modes With Default Test-Mode Assignments

After DFT insertion, the list_test_modes command reports the core-level test modes used 
in each of the top-level test modes. For the previous example, the list_test_modes 
command reports the core-level test modes as shown in Example 19-3.

Example 19-3 Top-Level Test Mode Report for Default Core-Level Test-Mode Assignment

Control signal value - Integration Test Mode
  Core Instance - Test Mode
--------------------------------------------
        Name: STD
        Type: InternalTest
        Focus:
        Core ccore in Internal_scan mode
        Core MMccore in STD mode
        Core mem in Internal_scan mode

        Name: COMP1
        Type: InternalTest
        Focus:
        Core ccore in ScanCompression_mode mode
        Core MMccore in COMP1 mode
        Core mem in Internal_scan mode

        Name: COMP2
        Type: InternalTest
        Focus:
        Core ccore in ScanCompression_mode mode
        Core MMccore in COMP2 mode
        Core mem in Internal_scan mode

        Name: Mission_mode
        Type: Normal

COMP1

STD

Available core-level
test modes:

Internal_scan

MEM

Internal_scan

STD
COMP1
COMP2

MMccore

STD

ccore

Internal_scan

COMP1 ScanCompres
ion_mode

COMP2 COMP2 ScanCompres
ion_mode

Internal_scan

Internal_scan

Top-level test modes
(created by tool):

Internal_scan

ScanCompres
sion_mode
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User-Defined Core-Level Test Mode Scheduling

At the top level, you can override the default name-based association of core-level test 
modes. This is known as test mode scheduling. To do this, use the -target option of the 
define_test_mode command:

define_test_mode test_mode_name
  -target {core1:mode1 [core2:mode2 ...] [current_design_name]}

The -target option specifies a list of core and test-mode pairs to use for the top-level test 
mode being defined; each pair consists of a core instance name and a core test-mode name 
separated by a colon (:). In compressed scan flows, the list can also contain the name of the 
current design to specify that the top-level logic should be active and tested.

When you use the -target option in a compressed scan flow, the following rules apply:

• All test modes must be defined with the define_test_mode command; no test modes 
are automatically created.

• All test mode definitions must use the -target option.

• Targeted cores (included in the target list) are placed in their targeted mode.

• If a core is targeted in some test modes but not others, it is inactive in the test modes 
where it is not targeted. This is known as sparse targeting. (To completely exclude a core 
from all top-level test modes, use the -exclude_elements option of the 
set_scan_configuration command.)

• Untargeted cores (not included in any target list) are tested in top-level modes where the 
top-level logic is tested:

❍ In top-level standard scan modes, they are placed in standard scan mode.

❍ In top-level compressed scan modes, they are placed in compressed scan mode (for 
compressed scan cores) or standard scan mode (for standard scan cores).

❍ They are placed in the first available such mode defined inside the core’s test model.

• The top-level logic, which is all scannable logic outside DFT cores, is only active and 
tested when targeted.

Note:   
The -target option has some limitations when used in compressed scan core 
integration modes. See “HASS and Hybrid Flow Limitations” on page 19-22.

Figure 19-16 shows an example with three compressed cores instantiated in a top-level 
design. The example includes a compressed scan core with the default test modes and two 
compressed scan cores with multiple user-defined test modes.
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Figure 19-16 Three Cores With Different Test Modes Instantiated in a Top-Level Design

The -target option allows the core-level modes to be scheduled to resolve the difference 
in user-defined test mode names, as shown in Example 19-4.

Example 19-4 Specifying User-Defined Test Mode Assignments

# top-level test mode definitions
define_test_mode STD -usage scan \
  -target {MMcore1:STD top}
define_test_mode COMP1 -usage scan_compression \
  -target {MMcore1:CMP top}
define_test_mode COMP2 -usage scan_compression \
  -target {MMcore1:CMP top}

For this example, Figure 19-17 shows the top-level test modes created by the tool during 
core integration. Each column represents a core, each row represents a top-level test mode, 
and the intersections of the columns and rows show the core-level test mode used for that 
top-level test mode. In addition, the “top” column shows when the top-level logic is active 
and tested. Blue columns indicate logic scheduled by the -target option.

Figure 19-17 Top-Level Test Modes With User-Defined Test-Mode Scheduling

After DFT insertion, the list_test_modes command reports the core-level test modes as 
shown in Example 19-5.
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Example 19-5 Top-Level Test Mode Report for User-Defined Test-Mode Scheduling

Control signal value - Integration Test Mode
  Core Instance - Test Mode
--------------------------------------------
        Name: STD
        Type: InternalTest
        Focus:
        Core ccore in Internal_scan mode
        Core MMcore1 in STD mode
        Core MMcore2 in STD mode

        Name: COMP1
        Type: InternalTest
        Focus:
        Core ccore in ScanCompression_mode mode
        Core MMcore1 in CMP mode
        Core MMcore2 in COMP1 mode

        Name: COMP2
        Type: InternalTest
        Focus:
        Core ccore in ScanCompression_mode mode
        Core MMcore1 in CMP mode
        Core MMcore2 in COMP1 mode

        Name: Mission_mode
        Type: Normal

You can use sparse targeting to target a core and/or the top-level logic in some modes but 
not others. Sparse targeting is typically used in core wrapping flows where cores can be 
placed into inward-facing or outward-facing test modes. For more information, see 
“Scheduling Wrapped Cores” on page 12-64. Sparse targeting should be used carefully with 
unwrapped cores because inactive logic can drive X values into active logic, and the outputs 
of active logic cannot be captured by inactive logic.

Top-Level Integration Script Examples

This topic provides the following script examples for the HASS and Hybrid flows:

• Typical HASS Flow Script

• Typical Hybrid Flow Script

• Hybrid Flow Script With Multiple Test Modes
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Typical HASS Flow Script

HASS integration takes place at the top level. Example 19-6 shows a typical top-level script.

Example 19-6 Top-Level Script for HASS Flow

read_verilog TOP.v
read_test_model sub1.ctlddc
read_test_model sub2.ctlddc
current_design TOP
link

set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true
dft_drc
preview_dft
insert_dft
write_test_protocol -test_mode ScanCompression_mode -output comp.spf
write_test_protocol -test_mode Internal_scan -output scan.spf

Note:   
Post-DFT DRC in scan compression mode is not supported at the top level.

Typical Hybrid Flow Script

Example 19-7 shows a typical script for top-level integration for the Hybrid flow.

Example 19-7 Script for Top-Level Integration in the Hybrid Flow

read_verilog my_top_test_ready.v
read_test_model ddc/core1.ctlddc
read_test_model ddc/core2.ctlddc

current_design my_top
link

set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

set_dft_signal -view existing_dft -type ScanClock \
  -timing {45 55} -port CLK
set_dft_signal -view existing_dft -type constant \
  -active_state 1 -port my_test_mode_port
set_dft_insertion_configuration \
  -synthesis_optimization none -preserve_design_name true

create_test_protocol
dft_drc
preview_dft -show all
insert_dft
current_test_mode Internal_scan
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dft_drc -verbose

remove_design core1
remove_design core2

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output vg/top_scan.v
write -format ddc -hierarchy -output ddc/top_scan.ddc
write_test_protocol -test_mode ScanCompression_mode \
  -output stil/top_moxie.stil -names verilog
write_test_protocol -test_mode Internal_scan \
  -output stil/scan.stil -names verilog

Hybrid Flow Script With Multiple Test Modes

Example 19-8 shows a typical script for the top-level integration with multiple test modes 
using the Hybrid flow.

Example 19-8 Top-Level Integration With Multiple Test Modes in the Hybrid Flow

read_verilog my_top_test_ready.v
read_test_model ddc/core1.ctlddc
read_test_model ddc/core2.ctlddc
current_design my_top
link

## Define the pins for compression/base_mode using "test_mode all".
## These modes are my_comp and my_scan1
for {set i 1} {$i <= 16 } { incr i 1} {
  create_port -direction in test_si[$i]
  create_port -direction out test_so[$i]
  set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \ 
    -test_mode all
  set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \ 
    -test_mode all
}

# Define TestMode signals to be used
set_dft_signal -view spec -type TestMode \  
  -port [list i_trdy_de i_trdy_ddi_cs]

# Define the test modes and usage
define_test_mode my_base1 -usage scan \
  -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode burn_in -usage scan \
  -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
  -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}

# Configure DFTMAX compression
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set_dft_configuration -scan_compression enable
set_scan_compression_configuration -base_mode my_base1 \
  -minimum_compression 10 \
  -test_mode scan_compression1 \
  -xtolerance high -hybrid true

# Configure the basic scan modes
# 8 chains for core1 xtol, 8 chains for core2, and 16 for top level
set_scan_configuration -chain_count 16 -test_mode my_base1
# 1 chain for burn_in mode
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
  -test_mode burn_in
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
  -port CLK
set_dft_insertion_configuration -synthesis_optimization none

# Create the test protocol
create_test_protocol

# Preview DFT insertion
preview_dft -show all

# Run the pre-DFT DRC
dft_drc

# Insert DFT logic
insert_dft
current_test_mode my_base1
dft_drc -verbose
change_names -rules verilog -hierarchy
remove_design core1
remove_design core2
write -format verilog -hierarchy -output vg/top_scan.v
write -format ddc -hierarchy -output ddc/top_scan.ddc
write_test_protocol -test_mode scan_compression1 \
  -output stil/ scan_compression1.stil -names verilog
write_test_protocol -test_mode my_base1 \
  -output stil/ my_base1.stil -names verilog
write_test_protocol -test_mode burn_in \
  -output stil/ burn_in.stil -names verilog

HASS and Hybrid Flow Limitations

Note the following limitations of the HASS and Hybrid flows:

• Post-DFT DRC of test modes that contain active compressed scan cores is not 
supported.

• Block-level patterns cannot be ported at the top level.
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• When you use the set_scan_configuration -chain_count command at the top level 
with a chain count insufficient to satisfy all core scan pin connections, you see the 
following warning issued by the preview_dft command:

Warning: Cells with 33 new incompatible clock domains 
have not been assigned to scan chains. Cannot honor 
-chain_count specification of 2.  (TEST-355)

• When you use the -target option of the define_test_mode command,

❍ In the HASS core integration flow, you must enable HASS integration with the 
-integration enable option of the set_dft_configuration command, not the 
-integration_only true option of the set_scan_compression_configuration 
command.

❍ In the Hybrid core integration flow, a top-level codec is inserted in a test mode only 
when you target the top-level logic by including the name of the current design in the 
target list. You cannot insert a codec for targeted cores without also compressing the 
top-level logic, which includes any untargeted standard scan cores and any wrapped 
cores in outward-facing mode.

• When you use DFT partitions,

❍ In the Hybrid flow, only one partition can contain both cores and top-level logic. The 
remaining partitions can contain cores or top-level logic, but not both.

• When you integrate cores that contain external chains,

❍ In the HASS flow, the external chains are not concatenated with other scan logic; 
instead, they use dedicated top-level scan I/O connections. You can use the 
set_scan_path command to manually concatenate them with other scan logic.

❍ In the Hybrid flow, you must use the set_scan_path command to define how the 
external chains are incorporated into scan chains. Otherwise, incorrect codec logic 
can result.
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20
Managing X Values in Scan Compression 20

A significant number of X sources in any compression architecture can degrade fault 
coverage, especially with high scan compression ratios. Today's complex designs often 
contain many such X sources: logic constrained by certain timing exceptions, memories and 
IP cores without test modes or models, combinational feedback loops, and nonscan 
flip-flops. This chapter describes features provided by the DFTMAX tool to analyze and 
efficiently mask X values in the design.

This chapter includes the following topics:

• High X-Tolerance Scan Compression

• Static-X Analysis

• Architecting X Chains
20-1



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
High X-Tolerance Scan Compression

DFTMAX compression has a default tolerance for some Xs, but it also provides an option to 
implement a full tolerance of Xs. This topic describes high X-tolerance scan compression, a 
technology that provides low-impact, 100 percent X-tolerance for designs that use scan 
compression in the presence of many X sources.

This topic covers the following:

• The High X-Tolerance Architecture

• Enabling High X-Tolerance

• Scan-In and Scan-Out Requirements

• Limitations

The High X-Tolerance Architecture

DFTMAX compression provides scan compression using only combinational circuitry. This 
approach achieves moderate to high compression while minimizing the additional cost for 
DFT implementation. Furthermore, scan compression can be applied to a wide variety of 
designs, including designs with a large number of X values. The source of these Xs are 
either static (logic-induced) or dynamic (constraint-induced).

The high X-tolerance scan compression solution provided by the DFTMAX tool meets the 
challenge of coverage loss by implementing new logic that selectively masks circuit 
response on a per-shift basis — a technique that provides 100 percent X-tolerance without 
introducing sequential circuitry. Note that this solution does not require any additional pins 
to perform X-masking. This architecture is shown in Figure 20-1.
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Figure 20-1 High X-Tolerance DFTMAX Compression Architecture

The high X-tolerance architecture provides the following observe modes:

• A full (unmasked) observe mode, which is equivalent to the default X-tolerance mode

• Additional X-tolerance (masked) observe modes, which can mask X values from 
selected chains before they reach the XOR compressor

An existing ScanDataIn port provides the mask enable signal. A mask enable value of zero 
selects the full observe mode. A mask enable value of one plus combinations of the mask 
mode signals selects additional X-tolerance observe modes for unload. Information about 
the X-tolerance observe modes is contained in the SPF in the CompressorStructures 
section in the Compressor my_design_U_compressor_ScanCompression_mode 
ModeControl definitions.

The high X-tolerance architecture introduces a combinational path between the scan input 
and scan output ports. The path travels from the scan input ports, through the 
decompression MUX mask signal generation logic, through the X-blocking and XOR 
compactor circuits, then through the scan output ports. This path can potentially contain long 
routes as well as combinational logic. To help meet timing requirements, you can use the 
pipelined scan data feature. For more information, see “Pipelined Scan Data” on page 21-3.

Enabling High X-Tolerance

By default, the scan compression logic inserted by the DFTMAX tool provides some 
tolerance of Xs. No option is needed to obtain this default X-tolerance capability.

For designs with large numbers of X values, you can enable the high X-tolerance feature 
with the following command:

dc_shell> set_scan_compression_configuration -xtolerance high

test_si

test_so

XOR compressor

Decompression MUX

X-blocking circuit

Mask mode 
signals

Mask enable
signal
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The preview_dft and insert_dft commands report information about the scan 
compression codecs in the design. The output from these commands includes an 
information message to confirm that the high X-tolerance feature is enabled:

Architecting Load Decompressor (version 5.8)
  Number of inputs/chains/internal modes = 8/20/4
Architecting Unload compressor (version 5.8)
  Number of outputs/chains = 5/20
  Information: Compressor will have 100% x-tolerance

Scan-In and Scan-Out Requirements

The high X-tolerance feature imposes a limit on the number of compressed scan chains you 
can build with a given number of scan-in and scan-out pins. Table 20-1 shows the maximum 
number of compressed scan chains that can be built for a given set of scan-in and scan-out 
pins.

Table 20-1 High X-Tolerance Compressed Scan Chain Limits 

Number of scan-in 
and scan-out pins

Maximum number of 
chains without OCC 
controller

Maximum number of chains

with OCC controllera

2 4

3 12 6

4 32 16

5 80 40

6 192 96

7 448 224

8 1024 512

9 2304 1152

10 5120 2560

11 11264 5632

12 24576 12288
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If the on-chip clocking (OCC) feature is used with compressed clock chains, the dedicated 
decompressor scan input lowers the limit. For more information about compressed clock 
chains, see “Scan Compression and OCC Controllers” on page 18-25.

Table 20-2 shows the maximum compressed scan chain count when high X-tolerance is 
used with some asymmetrical low-pin-count configurations:

If the specified compressed scan chain count cannot be satisfied, the tool issues an error 
message that contains information about how many compressed scan chains were 
requested and how many compressed scan chains can be built for the current scan pin 
configuration. Example 20-1 shows the error message issued when 20 compressed scan 
chains are requested, but only 12 scan chains can be built.

Example 20-1 High X-Tolerance Error Message for Insufficient Scan-In Pins

Error: Architecting of Load/Unload compressor failed with the given set
of parameters. (TEST-1722)
       Number of internal chains architected:    20

13 32000 26624

14 and higher 32000 32000

a. This column assumes that a single decompressor input is dedicated to OCC clock chains. Additional 
dedicated clock chain decompressor inputs will further reduce the limit.

Table 20-2  High X-Tolerance Compressed Scan Chain Limits for Asymmetrical Scan Pins 

Asymmetrical scan-in, 
scan-out pin configuration

Maximum number of chains 
without OCC controller

Maximum number of chains 
with OCC controller

2 scan-ins, 1 scan-out 2

3 scan-ins, 1 scan-out 4

3 scan-ins, 2 scan-outs 8 4

4 scan-ins, 3 scan-outs 24 12

5 scan-ins, 4 scan-outs 64 32

6 scan-ins, 5 scan-outs 160 80

Table 20-1 High X-Tolerance Compressed Scan Chain Limits (Continued)

Number of scan-in 
and scan-out pins

Maximum number of 
chains without OCC 
controller

Maximum number of chains

with OCC controllera
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       Number of available compression channels: 12
       Number of load compressor inputs:         3
       Number of unload compressor outputs:      3

You can also use the TetraMAX analyze_compressors command to determine if a codec 
can be built for a given set of parameters. For more information, see TetraMAX Online Help.

Limitations

Note the following limitations of the high X-tolerance feature:

• All codecs must have the same X-tolerance type when the following features are used:

❍ Shared codec I/O connections

❍ Serialized compressed scan

• You cannot use end-of-cycle measures with high X-tolerance codecs.

Static-X Analysis

Some flip-flops capture X values more often than others because they are located in the 
fanout of logic constructs that generate unknown values. A flip-flop that frequently captures 
an X value during capture is called a static-X cell.

The DFTMAX tool provides a static-X analysis feature that analyzes a design and reports 
static-X cells. This analysis feature can be used in both standard scan and compressed 
scan flows. When enabled, it reports static-X cell information during pre-DFT DRC. By itself, 
static-X analysis does not affect subsequent scan chain architecture.

Static-X analysis is enabled by using the following command:

dc_shell> set_dft_drc_configuration -static_x_analysis enable

When enabled, static-X analysis directs pre-DFT DRC to carry out an X-probability analysis 
of the sequential cells by invoking combinational simulation within the tool and then defining 
those sequential cells with high X-capture probability as static-X cells. The analysis is 
performed using the following procedure:

1. Normal test DRC analysis is performed to determine the set of scannable cells.

2. Constrained primary inputs are set to their constrained values, clocks are set to their 
inactive values, and scan-enable signals are set to their inactive (capture) values.

3. Constant-value state elements are set to their constant values.

4. Other primary inputs and nonconstant scannable cells are set to random binary values. 
All other state elements, such as nonscan cells, are set to X.
Chapter 20: Managing X Values in Scan Compression
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5. 1024 random patterns are simulated to determine the frequency that the data input of a 
scannable cell is at X.

6. A scannable cell whose data input is X with a frequency exceeding a predetermined 
threshold is recorded along with its frequency of capturing an X value. The 
predetermined threshold is 25 percent and cannot be changed.

After identifying the static-X cells, the dft_drc command reports them as D39 violations in 
the following format:

Warning: Probability of capture X (X probability <%>) exceeds threshold 
         for scancell DFF %s. (D39-x) 

The dft_drc command also sets the test_dft_xcell_violation attribute on all identified 
static-X cells. You can use this attribute to obtain the cells for further script-based analysis:

dc_shell> set static_x_cells \
  [get_cells -hierarchical * -filter {test_dft_xcell_violation == true}]

When debugging static-X cells, remember that a static-X cell captures the frequent X values, 
but the source of these frequent X values will likely exist in the fanin logic to the cell. The 
following design constructs can introduce X values into the design logic:

• Black boxes

• CTL models

• Combinational feedback loops

• Uncontrolled internal buses

• Uncontrolled bidirectional ports

• Nonscan cells

Note:   
Timing exceptions are not considered as a source of X values during static-X analysis in 
the DFTMAX tool. Instead, they are considered as dynamic path-specific sources of X 
values during TetraMAX ATPG.

Architecting X Chains

The DFTMAX tool provides a static-X chain feature that identifies scan cells that frequently 
capture X values, and then groups them exclusively into special scan chains, called X 
chains. By grouping X-capturing cells into dedicated scan chains, incidental X masking of 
any chain is reduced or eliminated.

The static-X chain feature deals with the pattern inflation that is caused by the occurrence of 
static-X cells in compression mode. This method of handling the X cells achieves better test 
Chapter 20: Managing X Values in Scan Compression
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data volume reduction (TDVR), and improves ATPG quality of results. X-chain information is 
communicated seamlessly in the DFTMAX to TetraMAX flow through the STIL procedure file 
(SPF). The SCANDEF file generated by the DFTMAX tool groups the X cells into separate 
SCANDEF partitions so that a place-and-route tool can preserve those groups.

This topic covers the following:

• The X-Chain Architecture

• Enabling X Chains

• Manually Specifying X-Chain Cells

• Using the set_scan_path Command With X Chains

• Using AutoFix With X Chains

• Using X Chains in Hierarchical Flows

• Using the test_simulation_library Variable

• Representing X Chains in SCANDEF Files

• Passing X-Chain Information to TetraMAX

• Error and Warning Summaries

• X-Chain Usage Guidance

The X-Chain Architecture

The static-X analysis feature identifies and reports scan cells that frequently capture X 
values, called static-X cells. However, by itself, the static-X analysis feature does not affect 
scan chain architecture; it is only an analysis feature.

The X-chain feature builds on the static-X analysis feature. It groups these identified static-X 
cells exclusively into special scan chains, called X chains. This allows pattern generation to 
efficiently mask static-X cells for most test patterns, leaving the other chains unmasked, as 
shown in Figure 20-2.
Chapter 20: Managing X Values in Scan Compression
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Figure 20-2 X Values in Static-X Chains

As a result, fewer chains are masked by the high X-tolerance masking logic, resulting in 
better fault coverage and a lower volume of test data.

Enabling X Chains

To isolate the identified static-X cells and architect X chains that contain only these cells, use 
the following commands:

dc_shell> set_dft_drc_configuration -static_x_analysis enable

dc_shell> set_scan_compression_configuration \
            -xtolerance high \
            -static_x_chain_isolation true

The X-chains feature has the following requirements:

• Static-X analysis must be enabled, as the static-X cell attributes are used to determine 
which cells are placed in the X chains. For more information, see “Static-X Analysis” on 
page 20-6.

• The X-chain feature only operates in compressed scan modes, and it requires that high 
X-tolerance is enabled. For more information, see “High X-Tolerance Scan 
Compression” on page 20-2.
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The preview_dft command reports X chains with an additional “(X chain)” label, as 
shown in the following example:

****************************************
Current mode: ScanCompression_mode
****************************************
Number of chains: 320
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' contains 65 cells
     Active in modes: ScanCompression_mode

Scan chain '2' contains 50 cells (X chain)
     Active in modes: ScanCompression_mode
 
Scan chain '3' contains 65 cells
     Active in modes: ScanCompression_mode

Note:   
Use the preview_dft command to identify X chains. The report_scan_path command 
does not identify X chains.

The tool performs scan chain balancing with the additional constraint that static-X cells 
cannot be mixed with non-static-X cells in the same scan chain. If the number of static-X 
cells exceeds 20 percent of the total number of scan cells, the tool issues the following error 
message:

Error: Too many static-X cells in design. Cannot isolate cells as
         separate X-chains. (TEST-1090)

Note that assigning the static-X cells to X chains applies an additional constraint to the 
physical implementation tool. The static-X cells could be distributed across the chip, so 
connecting them together into one or more scan chains can result in long wires that 
contribute to routing congestion.

Manually Specifying X-Chain Cells

The X-chain feature uses the test_dft_xcell_violation cell attribute, set by static-X 
analysis, to determine the scan cells placed in dedicated X chains. After pre-DFT DRC 
completes, you can manually set or remove this attribute on scan cells to modify the set of 
static-X cells. The insert_dft command then uses the modified set of static-X cells to 
construct the X chains.

To specify cells as static-X cells, use the following command:

dc_shell> set_attribute -type boolean [get_cells cell_list] \
            test_dft_xcell_violation true
Chapter 20: Managing X Values in Scan Compression
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To remove the static-X attribute from cells, use the following command:

dc_shell> remove_attribute [get_cells cell_list] \
            test_dft_xcell_violation

Note:   
The set_attribute and remove_attribute commands must be used after pre-DFT 
DRC is run with the dft_drc command, but before scan is inserted with the insert_dft 
command.

Use this capability to include additional scan cells in the X chains. For example, certain scan 
cells might frequently capture dynamic X values during pattern generation in TetraMAX 
ATPG. If you know the timing exceptions and are able to translate them to capturing scan 
cell names, you can mark these scan cells as static-X cells with the set_attribute 
command.

The test_dft_xcell_violation attribute is only honored for leaf scan cells. It is ignored 
for hierarchical cells (including CTL-modeled cells).

Using the set_scan_path Command With X Chains

If both static-X cells (identified during pre-DFT DRC) and non-static-X cells are defined in a 
common set_scan_path command applied to a scan compression mode, the resulting 
scan path is not an X chain even though it contains static-X cells. When this happens, the 
tool issues the following warning message:

Warning: Chain %s has both X and non-X cells. (TEST-1079)

However, if the defined scan path consists entirely of static-X cells, the scan path becomes 
an X-chain.

This behavior applies only to set_scan_path commands applied to a scan compression 
mode. If a set_scan_path specification is applied to a standard scan mode, it does not 
affect X-chain scan architecture.

Using AutoFix With X Chains

If static-X analysis reports a large number of static-X cells, you can use AutoFix to fix 
X-capture problems.

When using AutoFix with the X-chains feature, pre-DFT DRC performs static-X analysis 
before applying AutoFix. If the features are used together, they can potentially interact in a 
way that affects the static-X analysis and the resulting X chains.

Consider the circuit shown in Figure 20-3. Flip-flop FF1 always captures an X value. During 
static-X analysis, FF1 is treated as a nonscan cell due to its uncontrollable reset and is 
Chapter 20: Managing X Values in Scan Compression
Architecting X Chains 20-11
Chapter 20: Managing X Values in Scan Compression
Architecting X Chains 20-11



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
therefore not marked as a scannable static-X cell. During AutoFix processing, the 
uncontrollable reset becomes controllable, and FF1 becomes scannable. It is placed into a 
regular scan chain despite always capturing an X value.

Figure 20-3 Using AutoFix With X Chains

Sequential cells with D1, D2, and D3 violations (uncontrollable clock, set, and reset signals) 
are susceptible to this interaction if they frequently capture X values and are subsequently 
made scannable by AutoFix.

To avoid this interaction, use the following two-pass flow:

1. Apply AutoFix with scan insertion disabled, so that only the AutoFix logic is inserted:

set_dft_configuration \
  -scan disable \
  -fix_clock enable -fix_set enable -fix_reset enable
set_autofix_configuration ...
preview_dft
insert_dft

2. Disable AutoFix, reenable scan insertion, and continue with normal scan insertion:

set_dft_configuration \
  -fix_clock disable -fix_set disable -fix_reset disable \
  -scan enable -scan_compression enable
set_scan_configuration ...
set_scan_compression_configuration ...

An alternative solution is to use the single-pass flow and manually mark the affected 
X-capturing sequential cells with the test_dft_xcell_violation attribute. However, this 
solution requires knowledge of the cells that are affected by the interaction.

See Also

• “Using AutoFix” on page 11-40 for more information about using AutoFix to fix design 
testability issues

FF1
BBOX X

Uncontrolled 
reset

FF2
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Using X Chains in Hierarchical Flows

This topic provides information on using X chains in hierarchical flows. The behaviors 
described in this section result from using core test language (CTL) models to represent 
core blocks during hierarchical flows.

Note:   
When a DFT run includes a previously scan-inserted core read from a full-netlist .ddc file, 
the tool still uses a CTL model representation during DFT operations.

This topic covers the following:

• Static-X Cells in the HASS Flow

• Hierarchical Blocks and X Sources

Static-X Cells in the HASS Flow

This topic pertains to the HASS flow, in which standard scan is inserted at the core level, and 
then compressed scan is inserted at the top level using these core-level standard scan chain 
segments. Figure 20-4 shows an example of this flow.

Figure 20-4 Applying the HASS Flow to a Standard Scan Core

Static-X analysis can be performed in both standard scan and compressed scan flows. 
However, X chains can only be created in compressed scan flows. When creating a 
standard scan core that will subsequently be scan-compressed in a HASS flow, X analysis 
can be used to determine if there are any static-X cells in the core. However, X chains 
cannot be used to consolidate the static-X cells into X chains at the core level.

When using this flow, you should use static-X analysis to ensure that the standard scan core 
does not contain any static-X cells. If it does, consider using AutoFix to resolve the X 
sources. For more information, see “Using AutoFix” on page 11-40. Note that AutoFix might 
not be able to resolve all X sources.

At the top level, the core is modeled using CTL model information during hierarchical 
compressed scan insertion. Any static-X cells that exist in the core-level scan chain 

S_CORE GLUES_CORE
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segments are not visible to top-level DRC analysis, and they are incorporated into regular 
codec scan chains.

The dft_drc -verbose command reports the core-level standard scan chain segments as 
possible D39 violations, with one violation reported for each segment:

-----------------------------------------------------------------
Begin Pre-DFT violations...

 Warning: Probability of capture X (100) exceeds threshold for scancell
   CORE Usub. (D39-1)
 Warning: Probability of capture X (100) exceeds threshold for scancell
   CORE Usub. (D39-2)
 Warning: Probability of capture X (100) exceeds threshold for scancell
   CORE Usub. (D39-3)
 Warning: Probability of capture X (100) exceeds threshold for scancell
   CORE Usub. (D39-4)

Pre-DFT violations completed...
-----------------------------------------------------------------

-----------------------------------------------------------------
  DRC Report

  Total violations: 4
-----------------------------------------------------------------

4 PRE-DFT VIOLATIONS
     4 Static X scan cell violations (D39)

Warning: Violations occurred during test design rule checking. (TEST-124)

-----------------------------------------------------------------
  Sequential Cell Report
  0 out of 1333 sequential cells have violations
-----------------------------------------------------------------

SEQUENTIAL CELLS WITHOUT VIOLATIONS
      *  1329 cells are valid scan cells
         Z_reg[30]
         Z_reg[29]
         Z_reg[28]
         ...

CORE SEGMENTS WITHOUT VIOLATIONS
   *   4 core segments are valid scan segments
         Usub/1
         Usub/2
         Usub/3
         Usub/4
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The CTL model scan chain segments are reported as D39 violations to report that the 
segments could potentially contain static-X cells. Although the scan chain segments are 
reported as possible static-X sources, they are not incorporated into the top-level X chains.

Pre-DFT DRC also issues the following warning message:

Warning: Static X-cell analysis may be inaccurate on design containing
         cells with CTL models. (TEST-610)

For compressed scan cores used in a hierarchical adaptive scan synthesis (HASS) flow, 
there is no problem with static-X cells, if they are present, because the static-X cells were 
already isolated into X chains when the models were created.

Hierarchical Blocks and X Sources

When a compressed scan insertion run includes a previously scan-inserted core, the core is 
represented using CTL model information. This is true even when the core is represented as 
a full netlist read from a .ddc file. This CTL model contains information about the DFT logic 
in the core, but does not include functional information about the core outputs.

In some cases, it might be possible for X sources to drive core outputs. Consider the 
example shown in Figure 20-5, where a memory cell drives a core output.

Figure 20-5 Modeling Cores With X Sources Using CTL Models

During core-level DRC, no scannable cells capture an X value from the memory, and 
therefore no static-X cells are reported by static-X analysis. During top-level DRC, a 
scannable cell now captures the memory output. However, the core is modeled using CTL 
model information, which does not model the functional core outputs. As a result, static-X 
analysis does not detect that flip-flop FF1 frequently captures an X value, and it is placed 
into a regular codec scan chain.

If you know the list of affected top-level flip-flops, apply the test_dft_xcell_violation 
attribute to place them into X chains. For more information, see “Manually Specifying 
X-Chain Cells” on page 20-10.
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Using the test_simulation_library Variable

In some cases, the synthesis libraries used by the tool might model a cell as a black box, 
while the simulation libraries used by the TetraMAX tool might provide functional information 
for the same cell. The test_simulation_library variable enables DFTMAX DRC to use 
the TetraMAX simulation libraries.

When using the X-chains flow, it is desirable to replace most types of black-box cells with 
their simulation models. This provides a more accurate assessment of X behaviors during 
static-X analysis. You can verify the resulting X chains in the TetraMAX tool by looking for 
the M469, M470, and M471 messages in conjunction with the analyze_compressors 
-xchain_analysis command. These messages report on the consistency of X-capture 
frequency between regular scan chains and X chains.

However, you should not configure memory cell models with the 
test_simulation_library variable when using the X-chains flow. Figure 20-6 shows an 
example where flip-flops capture the values from memory outputs.

Figure 20-6 Memory Outputs Driving Scan Cells

If the simulation model is configured for the memory, pre-DFT DRC reports the information 
shown in Example 20-2.

Example 20-2 Pre-DFT DRC Report for Memory Models

In mode: all_dft...
   Pre-DFT DRC enabled

Information: Starting test design rule checking. (TEST-222)
   Loading test protocol
   ...basic checks...
   ...basic sequential cell checks...
   ...checking for scan equivalents...
   ...Loading simulation libraries...
   ...checking vector rules...
   ...checking pre-dft rules...

Scan

Memory
DO0

DO1

DO2

DO3

Scan

Scan

Scan
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-----------------------------------------------------------------
Begin Modeling violations...
Warning: Cell U_RAM (MEM) is unknown (black box) because functionality
for output pin Q[0] is bad or incomplete. (TEST-451)
Information: Cells with this violation : U_RAM. (TEST-283)

Modeling violations completed...
-----------------------------------------------------------------

-----------------------------------------------------------------
Begin Pre-DFT violations...

Warning: Clock input clk of DFF U_RAM cannot capture data. (D17-1)
Warning: Probability of capture X (100) exceeds threshold for scancell
         DFF U_RAM. (D39-1)

Pre-DFT violations completed...
-----------------------------------------------------------------

The D39 violation is issued for the memory model itself. However, no D39 violations are 
issued for the sequential cells that capture the memory outputs. The simulation model used 
by DFTMAX DRC is treated like a Verilog netlist with instantiated sequential cells. These 
sequential cells are considered as valid scannable cells within the dft_drc command, 
which results in hiding the X-generation effect of the memory outputs. As a result, the 
sequential cells connected directly or indirectly to the memory outputs are not treated as 
static-X cells and are therefore not placed into X chains.

Subsequently, during TetraMAX ATPG, memories are X-generators during much of the 
ATPG process, and those sequential cells capture Xs, although the actual capture details 
might depend on the particulars of the ATPG engine and target faults. Therefore, it is better 
to put those cells into X chains. To do this, the memory models should not be configured with 
the test_simulation_library variable. Instead, the normal black-box synthesis memory 
models should be used during DFTMAX pre-DFT DRC. 

Representing X Chains in SCANDEF Files

The DFTMAX tool puts X-chain information in the SCANDEF file to instruct the physical 
implementation tool to preserve the X chains during optimization. Static-X cells are written 
into a SCANDEF partition whose label name starts with X_. This allows the place-and-route 
tool to preserve those groups, as shown in the following SCANDEF fragment:

- 1424
+ START M12/U4497 Y
+ FLOATING Q12/PCB_8192x64c16s0_bit_reg_17_ ( IN SI ) ( OUT Q )
Q12/PCB_8192x64c16s0_bit_reg_49_ ( IN SI ) ( OUT Q )
Q12/PCB_8192x64c16s0_bit_reg_50_ ( IN SI ) ( OUT Q )
Q12/PCB_8192x64c16s0_bit_reg_25_ ( IN SI ) ( OUT Q )
Q12/PCB_8192x64c16s0_bit_reg_28_ ( IN SI ) ( OUT Q )
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Q12/PCB_8192x64c16s0_bit_reg_56_ ( IN SI ) ( OUT Q )
+ PARTITION X_clk_core_45_45
+ STOP Q12/PCB_8192x64c16s0_bit_reg_21_ SI ;

Passing X-Chain Information to TetraMAX

To generate the test patterns and masking controls, the ATPG tool needs to have access to 
information about the structure of the X chains. The DFTMAX tool puts this information into 
the SPF for use by the ATPG tool.

The following is an SPF example with X chains: 

Compressor "top_U_compressor_ScanCompression_mode" {
   ModeGroup mode_group;
   UnloadGroup unload_group;
   UnloadModeGroup unload_mode_group0 unload_mode_group1
                   unload_mode_group2;
CoreGroup core_group;
UnloadModeEnable enable_group;
Modes 193;
Mode 0 {
   ModeControls {
      "test_si17" = 0;
   }
   Connection "3" 0 1 2 3;
   Connection "4" 4;
   Connection "5" 5;
   Connection "6" 6;

Compressed chains that are part of the CoreGroup but are not connected in Mode 0 are 
implicitly defined as X chains. In the following example, compressed chains “1” and “2” are 
X chains that consist of static-X cells exclusively. Mode 0 is called the full observe XOR 
mode. The two X chains are observed by a direct-observability mode, in which each X-chain 
can be observed at a different, single output with no other compressed chains XORed. 

   Mode 58 {
      ModeControls {
         "test_si17" = 1;
         "test_si15" = 0;
         "test_si16" = 0;
         "test_si1" = 1;
         "test_si2" = 1;
         "test_si3" = 1;
         "test_si4" = 0;
         "test_si5" = 0;
         "test_si6" = 1;
   }
   Connection "1" 3;
   Connection "2" 11;
   Connection "28" 6;
   Connection "53" 14;
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   Connection "78" 15;
   Connection "103" 10;
   Connection "127" 0;
   Connection "177" 2;
   Connection "226" 16;
   Connection "1012" 12;
   Connection "1013" 9;
   Connection "1014" 1;
   Connection "1015" 8;
   Connection "1016" 5;
   Connection "1018" 13;
   Connection "1019" 4;
   Connection "1020" 7;

Error and Warning Summaries

The following error and warning messages exist for this feature:

• TEST-1090 (Error) Too many X cells in design. Cannot isolate static X cells as separate 
X chains.

Description:

You receive this message if you have specified X-chain isolation in a Scan Compression 
mode and more than 20 percent of valid scan cells have static-X (D39) violations.

• TEST-1088 (Warning) Static X chain isolation is ignored in %s as high xtolerance is not 
enabled.

Description:

You receive this message if you have specified X-chain isolation without high X-tolerance 
in a Scan Compression mode, using the set_scan_compression_configuration 
command. Static-X chain isolation will be ignored for this mode.

• TEST-610 (Warning) Static X cell analysis may be inaccurate on design containing cells 
with CTL models.

Description:

This message indicates that the current design has cells with CTL models, which means 
the static-X cell analysis might be inaccurate.

• TEST-1079 (Warning) Chain %s has both X and non-X cells.

Description:

You receive this message if you have specified a set_scan_path command that mixes 
X and non-X cells within the same scan chain in a scan compression mode. The resulting 
mixed chain will not be considered as an X-chain.
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X-Chain Usage Guidance

The X-chains feature is intended for designs that have static-X values. This feature might 
not improve results for designs with dynamic X values when compared to high X-tolerance 
without X chains. There is no automated way to determine which type of X value is 
propagated within a design. Additional test data volume reduction can be achieved with the 
X-chain feature if the following conditions are met:

• A considerable number of memories or hard macros are used in TetraMAX ATPG.

• A large number of R14 violations are issued in TetraMAX DRC.

• Many scan cells are analyzed as X-scan cells due to capturing X values from tiex cells, 
as noted when executing the TetraMAX set_simulation -analyze_x_sources and 
run_simulation commands.
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Advanced DFTMAX Compression 21

This chapter describes advanced features that can be used while inserting compressed 
scan circuitry into your design. These features are used to customize DFT insertion, to 
improve the frequency of the scan testing logic, and to reduce the pattern count for 
pin-limited designs.

This chapter includes the following topics:

• Specifying a Location for Codec Logic Insertion

• Pipelined Scan Data

• Sharing Codec Scan I/O Pins

• Implicit Scan Chains
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Specifying a Location for Codec Logic Insertion

By default, the tool inserts the scan compression codec at the top level of the current design. 
However, you can use the set_dft_location command to specify an alternate insertion 
location:

dc_shell> set_dft_location -include {CODEC} instance_name

The specified instance name must be a hierarchical cell. It cannot be a library cell, black box, 
or black-box CTL model.

If the specified hierarchical cell does not exist, the insert_dft command creates it during 
DFT insertion. For more information, see “Creating New DFT Logic Blocks” on page 10-88.

Note:   
Compressed scan reconfiguration MUXs and test-mode decode logic are not placed in 
the specified location.

When a top-down multiple partition flow is used, this feature can be used to place each 
partition’s codec logic at a specified location. For example,

Example 21-1 Specifying Codec Logic Insertion Locations for Multiple Partitions

set_dft_location core  ;# place all non-codec logic in core

define_dft_partition P1 -include BLK1
define_dft_partition P2 -include BLK2

current_dft_partition P1
set_scan_configuration -chain_count 4
set_scan_compression_configuration -chain_count 10
set_dft_location -include {CODEC} core/BLK1

current_dft_partition P2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 8
set_dft_location -include {CODEC} core/BLK2

For compatibility, the tool also supports an older, deprecated method for specifying the 
codec insertion location:

dc_shell> set_scan_compression_configuration -location instance_name

The specified instance name must already exist. This method takes precedence over the 
set_dft_location command.

See Also

• “Specifying a Location for DFT Logic Insertion” on page 10-84 for more information about 
specifying the insertion location for other types of DFT logic
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• “Per-Partition Scan Compression Configuration Commands” on page 18-10 for more 
information about DFT specifications that can be specified per-partition

Pipelined Scan Data

Pipelined scan data is a feature provided by the DFTMAX tool to resolve delay problems 
associated with long routes in compressed scan chain logic.

This topic covers the following:

• Introduction to Pipelined Scan Data

• Using Pipelined Scan Data

• Using Pipelined Scan Data With Scan Compression

• Pipelined Scan Data Specifications

• Pipelined Scan Data Test Protocol Format

• Pipelined Scan Data Limitations

• Hierarchical Flows With Pipelined Scan Data

Introduction to Pipelined Scan Data

In typical scan flows, long wires between the scan chain input and the first flip-flop and 
between the last flip-flop and the scan chain output can cause delay problems. In 
compressed scan, the compression technology further amplifies the problem. These delays 
are reduced by placing pipeline registers at the beginning and end of the scan chains. They 
divide the long routes between the scan chain terminals into smaller wires between the 
registers and therefore help reduce the path delay. 

Figure 21-1 shows an example of a compressed scan design with pipeline registers. The 
head pipeline registers are placed between the scan inputs and the decompressor, and the 
tail pipeline registers are placed between the compressor and the scan outputs.
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Figure 21-1 Pipeline Registers in a Compressed Scan Design

The tool can automate the insertion of the head and tail pipeline registers around the codec, 
or you can provide user-defined pipeline registers at the scan inputs and outputs that the 
tool connects to the codec. Test DRC verifies the correct operation of the pipeline registers 
and updates the test protocol that TetraMAX ATPG uses for pattern generation.

Using Pipelined Scan Data

The pipelined scan data feature provides two methods of specifying pipeline register 
insertion:

• Pipeline registers can be automatically inserted and connected by the tool during the 
insert_dft command.

• User-defined pipeline registers can be provided in the design logic. The tool makes the 
needed scan path connections to these existing pipeline registers during the 
insert_dft command.

These pipeline register insertion methods are explained in the following topics: 

• Enabling Pipelined Scan Data

• Automatically Inserting Head and Tail Pipeline Registers

• Specifying User-Defined Head and Tail Pipeline Registers

Enabling Pipelined Scan Data

For both the automatically inserted and user-defined pipeline register flows, use the 
set_dft_configuration command to enable the pipelined scan data feature in the 
compressed scan flow: 

set_dft_configuration -pipeline_scan_data enable

C_CORE
Head pipeline registers

Tail pipeline registers
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By default, pipeline registers are not inserted.

The type of insertion method is determined by the commands you use to configure the 
pipeline registers. You must choose either automatic or user-defined pipeline register 
insertion, as these methods are mutually exclusive.

Automatically Inserting Head and Tail Pipeline Registers

The set_pipeline_scan_data_configuration command is used to configure the 
automatic pipeline register insertion. Specify the number of head and tail pipeline stages 
using the -head_pipeline_stages and -tail_pipeline_stages options:

set_pipeline_scan_data_configuration \
    -head_pipeline_stages integer \ 
    -tail_pipeline_stages integer \
    -head_scan_flop true

The -head_scan_flop option causes the tool to create scan-replaced head pipeline 
registers that hold their state during scan capture. For more information, see “Avoiding X 
Capture in Head Pipeline Registers” on page 21-11.

DFT insertion uses a D flip-flop from the target library for the automatically inserted pipeline 
registers. To minimize the need for lock-up latches at the compressed scan chains, the head 
pipeline registers are clocked on the trailing clock edge, and the tail pipeline registers are 
clocked on the leading clock edge. Rising-edge-triggered or falling-edge-triggered flip-flops 
are used depending on whether the scan clock uses a return-to-zero or return-to-one 
waveform. Figure 21-2 shows the flip-flops used for both types of clock waveforms.

Figure 21-2 Pipeline Registers in a Compressed Scan Design

Note:   
If you enable retiming registers on the scan input side by using the 
set_scan_configuration -add_test_retiming_flops command with the 
begin_only or begin_and_end option values, the head pipeline registers are clocked on 
the leading clock edge instead.

The newly inserted pipeline registers have names of the form

     SNPS_PipeHead_SI_pin_name_stage
     SNPS_PipeTail_SO_pin_name_stage 

Return-to-zero scan clock Return-to-one scan clock

SI SISO SO
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where SI_pin_name is the scan in port, SO_pin_name is the scan out port, and stage is the 
stage depth.

By default, a new test clock port named SNPS_PipeClk is created for the pipeline registers. 
If you want to use an existing design clock instead, use the -head_pipeline_clock and 
-tail_pipeline_clock options to specify the clock:

set_pipeline_scan_data_configuration \
    -head_pipeline_clock clock_name \
    -tail_pipeline_clock clock_name \
    -head_pipeline_stages integer \ 
    -tail_pipeline_stages integer \
    -head_scan_flop true

Use the report_pipeline_scan_data_configuration command to report the current 
automatic insertion configuration, and the reset_pipeline_scan_data_configuration 
command to reset the automatic insertion configuration.

The automatically inserted pipeline register flow is only available for compressed scan 
designs created with the tool.

Specifying User-Defined Head and Tail Pipeline Registers

DFT Compiler can connect user-provided pipeline registers to the compressed scan logic. 
You can use this feature to pre-place pipeline registers at strategic locations in tight 
floorplans. DFT Compiler automatically makes the needed scan path connections during the 
insert_dft command.

You can use the set_scan_path command to specify the scan data path connections to 
these pipeline registers:

set_scan_path chain_name \
    -scan_data_in port_name \
    -scan_data_out port_name \
    -pipeline_head_registers instance_list \
    -pipeline_tail_registers instance_list \
    -view spec

Note:   
Do not specify a test mode for the set_scan_path command when defining pipeline 
connections. The tool automatically propagates the specification to all test modes during 
scan architecture.

Each set_scan_path command associates a set of existing head and/or tail pipeline 
registers with a scan-in and scan-out port. A full scan path chain definition with scan 
elements is not needed. You can provide a list of multiple pipeline registers to implement 
multiple pipeline stages. The head and tail pipeline depths can be different.

For user-defined pipeline registers, you are responsible for the connections to the scan data 
ports and between the pipeline stages, and for proper conditioning for the scan ports and 
Chapter 21: Advanced DFTMAX Compression
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clocks to the pipeline registers. Figure 21-3 demonstrates the required connections for two 
head pipeline registers and two tail pipeline registers per scan chain.

Figure 21-3 User-Defined Pipeline Registers and Connections

During DFT insertion, DFT Compiler makes connections from the pipeline registers to the 
scan decompression MUX and XOR compressor logic, but does not check the validity of the 
paths between the scan inputs and head registers and between the tail registers and the 
scan outputs. After DFT insertion, the dft_drc command determines whether the scan 
chains are shifting properly.

You can apply the set_size_only command to user-defined pipeline registers before the 
first compile -scan command so that the registers are not removed by logic optimization. 
Although the size_only property allows the compile -scan command to scan-replace the 
pipeline registers with their scan equivalents, the insert_dft command will unscan the 
pipeline registers before making the pipeline connections.

When user-defined pipeline registers are specified with the set_scan_path command, DFT 
Compiler ignores any options relating to automatically inserted pipeline registers specified 
with the set_pipeline_scan_data_configuration command.

Observe these additional requirements when implementing user-defined pipeline registers:

• Design the pipeline structures before DFT insertion so that the registers can be 
referenced in the set_scan_path command.

• Ensure that the specified chain count and the number of scan chains are the same.

• Specify the head and tail pipeline registers with a full hierarchical name.

• Specify the corresponding scan input and output ports for each external chain.

• Specify the pipeline registers in scan order, from input pin to scan chain, and from scan 
chain to output pin.

C_COREUser-defined pipeline registers
Pipeline connections
made during
DFT insertion
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• All head pipeline registers must be triggered by the same clock. All tail pipeline registers 
must be triggered by the same clock. The clock can be dedicated or shared with other 
scan flip-flops.

• DFT Compiler accepts any clocking scheme that ensures correct scan shift. However, a 
good rule to follow is to have all the head pipeline registers triggered by the latest edge 
of the shift clocks and to have the tail registers triggered by the earliest edge of the shift 
clocks.

• All head pipelines must have the same depth, and all tail pipelines must have the same 
depth.

• Design your head pipeline registers to retain their values or propagate a constant value 
during the capture cycles for optimal ATPG results. This prevents unknown values from 
propagating to the unload data. Master-slave pipeline registers require particular care. 
For more information, see “Avoiding X Capture in Head Pipeline Registers” on 
page 21-11.

• The tail registers are assumed to have unknown values at the beginning of unload and 
do not need to maintain the state.

The user-defined pipeline register flow is available in both the DFT Compiler and DFTMAX 
tools.

Using Pipelined Scan Data With Scan Compression

The following topics describe considerations that apply to pipelined scan data in 
compressed scan flows:

• Configuring Pipelined Scan Data in a Compressed Scan Flow

• Avoiding X Capture in Head Pipeline Registers

• Adding Pipeline Stages at the Compressor Inputs

Configuring Pipelined Scan Data in a Compressed Scan Flow

The compressed scan flow with pipelining is similar to the regular scan flow. It follows the 
typical methodology of specify, preview, and insert. The tool wires the scan chain elements, 
and if necessary, inserts synchronization logic and generates appropriate test protocol files 
to be used in automatic test pattern generation (ATPG).

The following steps demonstrate a compressed scan flow with pipelining. This command 
sequence example applies to an unmapped design.

1. Read the design.

dc_shell> read_file -format verilog rtl.v
Chapter 21: Advanced DFTMAX Compression
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dc_shell> current_design top

dc_shell> link

2. Choose a scan style for your design.

dc_shell> set_scan_configuration \ 
               -style multiplexed_flip_flop

3. Perform a test-ready compile.

dc_shell> compile -scan

4. Specify scan clocks and other DFT signals.

dc_shell> for {set i 0} {$i < 3i} {incr i} {
               set_dft_signal -view spec \
                -type ScanDataIn -port SI_$i \
                -test_mode all

               set_dft_signal -view spec \
                -type ScanDataOut -port SO_$i \
                -test_mode all
          }

dc_shell> set_dft_signal -view spec \
                -type Reset -port resetn -active_state 0

dc_shell> set_dft_signal -view spec \
               -type ScanEnable -port test_se \
               -active_state 1 

5. Enable compressed scan and pipelined scan data.

dc_shell> set_dft_configuration \
               -pipeline_scan_data enable \
               -scan_compression enable

dc_shell> set_scan_compression_configuration \
               -xtolerance default

6. Specify the scan architecture.

dc_shell> set_scan_configuration \
               -chain_count 32 -clock_mixing mix_clocks

7. Enable automatic pipeline register insertion, or specify user-defined pipeline register 
scan path connections.

a. For automatically inserted pipeline registers:

dc_shell> set_pipeline_scan_data_configuration \
          -head_pipeline_clock CLK \
Chapter 21: Advanced DFTMAX Compression
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          -tail_pipeline_clock CLK \
          -head_pipeline_stages 1 \
          -tail_pipeline_stages 2 \
          -head_scan_flop true

dc_shell> set_scan_path chain0 -view spec \
          -scan_data_in SI_0 \
          -scan_data_out SO_0

          . . .

dc_shell> set_scan_path chain31 -view spec \
          -scan_data_in SI_31 \
          -scan_data_out SO_31

The -head_scan_flop option is used to prevent the head pipeline registers from 
capturing during scan capture.

b. For user-defined pipeline register connections:

dc_shell> set_scan_path chain0 -view spec \
          -pipeline_head_registers \
              {head_pipe_0_reg} \
          -pipeline_tail_registers \
              {tail_stage1_pipe_0_reg tail_stage2_pipe_0_reg} \
          -scan_data_in test_SI_0 \
          -scan_data_out test_SO_0

          . . .

dc_shell> set_scan_path chain31 -view spec \
          -pipeline_head_registers \
              {head_pipe_31_reg} \
          -pipeline_tail_registers \
              {tail_stage1_pipe_31_reg tail_stage2_pipe_31_reg} \
          -scan_data_in test_SI_31 \
          -scan_data_out test_SO_31

8. Generate a test protocol and check for design violations by running the test design rule 
checking at the gate level.

dc_shell> create_test_protocol
dc_shell> dft_drc

9. Preview the scan structures.

dc_shell> preview_dft

10. Build the scan structures into your design.

dc_shell> set_dft_insertion_configuration \
               -synthesis_optimization none \
               -preserve_design_name true
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dc_shell> insert_dft

11.  Write out the pipeline-inserted netlist and the test protocol files.

dc_shell> report_scan_path -view spec \
               -chain all 

dc_shell> report_scan_configuration

dc_shell> change_names -rules verilog -hierarchy

dc_shell> write -format ddc -hierarchy -output design.ddc

dc_shell> write -format verilog -hierarchy -output design.v

dc_shell> write_test_protocol \ 
               -output ScanCompression.spf \ 
               -test_mode ScanCompression_mode

dc_shell> write_test_protocol -output Scan.spf \
               -test_mode Internal_scan

Avoiding X Capture in Head Pipeline Registers

When pipelined scan data is used in a compressed scan flow, the head pipeline registers 
should hold their state or capture a constant value during the capture cycle. This prevents 
unknown X values from being captured in the head pipeline registers, which would then get 
propagated through the decompression MUX and into the compressed scan chains.

The following methods can be used to capture known values in the head pipeline registers 
during scan capture:

• Capture the current register output state during scan capture, as shown in Figure 21-4.

Figure 21-4 Head Pipeline Register With State-Holding Scan Flip-Flop

If you are using the automatic pipeline insertion flow, specify the -head_scan_flop 
true option of the set_pipeline_scan_data_configuration command. The tool will 
use scan head pipeline registers, and tie each register’s output to its functional data input 
so that the state is held during scan capture.

SOD
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• Use a dedicated head pipeline register clock, as shown in Figure 21-5.

Figure 21-5 Head Pipeline Register With Dedicated Clock

If you are using the automatic pipeline insertion flow, you can specify a dedicated head 
pipeline register clock using the -head_pipeline_clock option of the 
set_pipeline_scan_data_configuration command.

If the clock is independently controllable from the top level, you should add a constraint 
in the TetraMAX tool to suppress the dedicated head pipeline register clock during scan 
capture.

• Use a gated head pipeline register clock, as shown in Figure 21-6.

Figure 21-6 Head Pipeline Register With Gated Clock

There is no option to implement a gated clock in the automatic pipeline register insertion 
flow.

• Capture a constant value during scan capture, as shown in Figure 21-7.

Figure 21-7 Head Pipeline Registers With Constant Value Capture

There is no option to implement a constant value capture in the automatic pipeline 
register insertion flow.
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Post-DFT DRC verifies whether the head pipeline registers hold their values during capture 
and issues an R-18 violation message if the check is unsuccessful.

Master-Slave Pipeline Registers

When master-slave pipeline registers are used, take care to ensure that the slave register is 
a valid dependent slave of the master. To do this, ensure that the slave always captures new 
data from the master, so that the master flip-flop holds its state but the slave flip-flop does 
not.

For example, when the pipeline clock has a return-to-zero waveform, the master flip-flop is 
the rising edge triggered flip-flop, and the slave flip-flop is a falling edge triggered flip-flop 
immediately following it. At the end of every shift cycle, the master and slave flip-flops have 
exactly the same data.

Adding Pipeline Stages at the Compressor Inputs

When tail scan data pipelining is used in a compressed scan flow, the compressor logic 
drives the tail pipeline registers. The tail pipeline registers are clocked on the leading 
pipeline clock edge.

If the last scan element of a compressed scan chain is clocked on the trailing clock edge, 
only a partial clock cycle is available for the compressor XOR logic. This occurs when

• The last scan element is clocked by the trailing edge of any clock.

• The last scan element is clocked by the leading edge of a clock other than the pipeline 
clock, requiring a lock-up latch to hold the data until the trailing edge.

In addition, any long routing from the last scan element to the compressor also subtracts 
from the usable clock period. These scenarios are shown in Figure 21-8.

Figure 21-8 Partial-Cycle Paths Through the Compressor Logic

To remedy this, you can add a stage of pipeline registers that are clocked by the same clock 
and edge as the tail pipeline registers to all compressor inputs, as shown in Figure 21-9.
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Figure 21-9 Full-Cycle Paths Through the Compressor Logic

The compressor input pipeline registers push any partial-cycle paths and long routes to the 
input side of these pipeline registers so that a full clock cycle is available for the compressor 
XOR logic. The pipeline registers are added inside the compressor design so that long 
routes remain on the input side when the compressor block is placed far away in layout. 
Pipeline registers are added at all compressor inputs to handle long routes when the last 
scan element is driven by the same clock as the tail pipeline registers.

To enable this feature, use the following option:

dc_shell> set_scan_compression_configuration -compressor_pipeline true

You can confirm that the pipeline registers are added by looking at the codec information in 
the preview_dft or insert_dft report. For example,

Architecting Load Decompressor (version 5.8)
  Number of inputs/chains/internal modes = 6/30/3
Architecting Pipelined Unload compressor (version 5.8)
  Number of outputs/chains = 6/30

This feature requires that tail scan data pipelining registers also be used. The compressor 
pipeline registers do not count against the tail scan data pipeline register depth.

Note the following limitations:

• Streaming compressed scan is not supported.

• Serialized compressed scan is not supported.

• End-of-chain retiming flip-flops can be used with pipelined compressor inputs, but the 
combination of these features adds extra retiming flip-flops and lockup latches that 
increase complexity without adding timing margin.

• Post-DFT DRC reports these pipeline register cells as nonscan cells. However, 
TetraMAX DRC reports and uses them as scan cells.
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• In some cases, post-DFT DRC reports an S19 violation on one of the compressor 
pipeline registers. This warning can be safely ignored.

Pipelined Scan Data Specifications

This topic covers the following:

• Scan Architecture

• Scan Register Synchronization

Scan Architecture

While implementing pipelined scan data logic, DFT Compiler takes the following aspects into 
consideration:

• Pipeline registers are automatically excluded from scan replacement. This exclusion 
takes precedence over any other scan membership specifications, such as the 
set_scan_path command and the -include and -exclude options of the 
set_scan_configuration command.

• In compressed scan modes, lock-up latches are inserted (as needed) at the beginning 
and/or end of the compressed chains. There is no optimization to minimize them by 
consolidating them outside the compression logic.

• Inversions in the pipelined scan data path are supported.

• DFT Compiler ignores pipeline registers during synthesis of compressed scan chains.

Scan Register Synchronization

DFT Compiler has the following requirements for scan synchronization:

• DFT Compiler checks whether synchronization between head pipeline registers and 
scan chains can be done. It also checks for synchronization between scan chains and 
tail pipeline registers. If there is a discrepancy, an error message is displayed and scan 
architecting or insertion is prevented.

• The clock signal triggering the lock-up element at the beginning of the chain is the 
inversion of the clock signal triggering the first flip-flop of the same chain. Similarly, the 
clock signal triggering the lock-up element at the end of the chain is the inversion of the 
clock signal triggering the last flip-flop of the chain. 
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Pipelined Scan Data Test Protocol Format

The test protocol file generated for the internal scan mode is the same as in a normal scan 
flow. The test protocol file generated for the scan compression mode contains information 
about the pipeline registers. The test protocol file has the following additional information:

• The number of head pipeline stages is indicated by the LoadPipelineStages keyword.

• The number of tail pipeline stages is indicated by the UnloadPipelineStages keyword.

For example,

CompressorStructures {
  LoadPipelineStages 3;
  UnloadPipelineStages 2;
  Compressor des2_U_decompressor {
        ModeGroup mode_group;
        LoadGroup load_group;
        CoreGroup core_group;
        Modes 3;
        ...}
  Compressor des2_U_compressor {
        UnloadGroup unload_group;
        CoreGroup core_group;
        Mode {{....}}
}

Pipelined Scan Data Limitations

These are the requirements and limitations for implementing pipeline registers in a 
compressed scan flow:

• For maximum observability, the head pipeline flip-flops must hold state during the 
capture cycle to avoid capturing unknown X values.

• Compressed scan does not support unbalanced pipelining across chains. The number of 
head pipeline stages does not need to match the number of tail pipeline stages, but all 
decompressor inputs and all compressor outputs—including any associated with 
compressed clock chains—must have the same pipeline depth.

• If you are using external (uncompressed) chains, such as external clock chains or other 
user-defined external chains, their pipeline depths must match other scan chains. For 
more information, see “Excluding Scan Chains From Scan Compression” on 
page 18-24.

• Scan-enable pipelining is independent of compressor scan data pipelining. Scan-enable 
signals can have any number of pipeline stages; however, the logic must be such that the 
load_unload and capture operations can be independently verified by DRC. For 
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example, test_setup and/or load_unload preamble must set the design in shift mode, so 
that when the scan-enable signal is at the nonshift value, the flip-flops are able to capture 
the system data.

• Any combinational logic between the scan ports and the pipeline registers must be 
sensitized to a known state.

• In designs with OCC controllers, an ATE clock cannot be used to directly clock head or 
tail pipelined scan data registers:

❍ For DFT-inserted OCC controllers, when you specify the ATE clock as the pipeline 
register clock, the tool uses an OCC-controlled clock associated with the ATE clock. 
For details, see SolvNet article 2685005, “How Are OCC Clocks Chosen for Pipelined 
Scan Data Registers?”

❍ For user-defined OCC controllers, if the ATE clock is manually connected to the 
pipeline registers, no DRC violations are reported, but incorrect ATPG patterns might 
be generated.

• Multiple test-mode operation with user-defined pipeline registers is not supported. 
However, multiple test-mode operation with automatically inserted pipeline registers is 
supported.

• User-defined pipeline registers and automatically inserted pipeline registers are mutually 
exclusive.

Hierarchical Flows With Pipelined Scan Data

In hierarchical flows, you can enable pipelined scan data at the chip level. When 
compressed scan cores already contain pipeline stages, the DFTMAX tool incrementally 
adds top-level pipeline stages as needed to meet the top-level pipeline depth target. This is 
known as incremental pipelining.

Consider a core created with a pipeline depth of one:

set_dft_configuration -pipeline_scan_data enable

set_pipeline_scan_data_configuration \
  -head_pipeline_stages 1 \
  -tail_pipeline_stages 1 \
  -head_pipeline_clock clk \
  -tail_pipeline_clock clk

When this core is integrated at the chip level, the chip-level pipeline depth is set to two:

set_dft_configuration -pipeline_scan_data enable
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set_pipeline_scan_data_configuration \
  -head_pipeline_stages 2 \
  -tail_pipeline_stages 2 \
  -head_pipeline_clock clk \
  -tail_pipeline_clock clk

Figure 21-10 shows how the tool adds an additional pipeline stage to meet the chip-level 
target. The bolded flip-flops are added at the chip level during integration.

Figure 21-10 Hierarchical Pipelined Scan Data Example

At the core level, the pipeline registers can be driven by a shared functional clock or a 
dedicated pipeline clock. At the chip level, you typically connect this core-level clock pin to 
the desired chip-level clock signal. However, in the automatically inserted pipeline register 
flow, if you have a dedicated core-level pipeline clock pin that is unconnected at the chip 
level, the tool automatically connects it to the chip-level pipeline clock.

General Rules

The following general rules apply to all integration flows where cores are integrated at the 
chip level with pipelined scan data enabled:

• Pipelined scan data must be enabled when integrating pipelined cores, even if no 
additional pipeline stages are added at the top level.

• During chip-level integration, the tool adds pipeline stages as needed to meet the 
top-level pipeline depth specification.

• The only requirement for pipeline clock configuration is that the resulting pipeline scan 
path must meet scan-shift timing requirements (which the tool verifies before DFT 
insertion). Given this,

❍ The head and tail pipeline clocks inside a core can differ.

❍ The pipeline clock configuration can differ across cores.

❍ Each higher integration level can use a different incremental pipeline clock.

Lockup latches are automatically inserted as needed.

• Unconnected core-level pipeline clock pins (whether DFT-created or user-defined) are 
automatically connected to the chip-level pipeline clock signal (whether DFT-created or 
user-defined).

L L
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Pipelined Scan Data in the Standard Scan HSS Flow

In the standard scan HSS flow, note the following:

• DFT Compiler supports only unpipelined standard scan cores in hierarchical flows. 
Pipelined standard scan cores are not supported.

• The scan chains in standard scan cores can be used as scan segments that are mixed 
with other scan cells or scan segments.

Figure 21-11 shows these properties.

Figure 21-11 Integration Properties for the Pipelined Standard Scan HSS Flow

Pipelined Scan Data in the HASS and Hybrid Flows

Figure 21-12 shows incremental pipelining in the HASS and Hybrid core integration flows. In 
the Hybrid flow, the tool also adds pipeline stages around the top-level codec to meet the 
top-level pipeline depth.

Figure 21-12 Incremental Pipelining in the HASS and Hybrid Flows

HASS integration flow Hybrid integration flow
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See Also

• “The HASS Flow” on page 19-3 for more information about the HASS flow

• “The Hybrid Flow” on page 19-9 for more information about the Hybrid flow

Sharing Codec Scan I/O Pins

DFTMAX compression provides design testability with reduced scan pin count 
requirements. However, the tool normally requires each codec to have dedicated scan-in 
and scan-out pin connections. For large designs with many blocks and many separate 
codecs, the scan pin requirements can still be challenging for pin-limited designs.

The tool allows multiple codecs to share the same scan-in and scan-out pins or ports in the 
HASS and Hybrid flows, as shown in Figure 21-13. This is known as codec I/O sharing.

Figure 21-13 Dedicated Codec I/O Connections and Shared Codec I/O Connections 

Codec I/O sharing provides the following features:

• I/Os can be shared across nonidentical cores and codecs of different widths.

• When codec inputs have dissimilar widths or when an increased number of scan inputs 
is provided, the codec input connections are allocated evenly across the scan inputs.

• Identical cores can use optimized shared I/O connections for improved testability.

• You can combine shared codec inputs with dedicated codec outputs.

• You can create multiple shared codec I/O groups.

For a list of the limitations of the shared codec I/O feature, see “Shared Codec I/O 
Limitations” on page 21-62.

C_CORE2C_CORE1 C_CORE2C_CORE1

Sharing compressor

Dedicated codec I/O connections
Shared codec I/O connections
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This topic covers the following:

• Specifying the I/O Sharing Configuration

• Determining the Fully Shared I/O Configuration

• Codec I/O Sharing in the HASS Flow

• Codec I/O Sharing in the Hybrid Flow

• Codec I/O Sharing in the Top-Down Flat Flow

• Codec I/O Sharing With OCC Controllers

• Codec I/O Sharing With Identical Cores

• Codec I/O Sharing With Shared Codec Controls

• Codec I/O Sharing Groups

• Codec I/O Sharing and Standard Scan Chains

• Codec I/O Sharing and Pipelined Scan Data

• Integrating Cores That Contain Shared Codec I/O Connections

• Shared Codec I/O Limitations

Specifying the I/O Sharing Configuration

To share codec scan I/O pins, use the -shared_inputs and -shared_outputs options of 
the set_scan_compression_configuration command:

set_scan_compression_configuration
   -shared_inputs M
   -shared_outputs N

The value M specifies the size of the set of shared scan-in pins used for all codec input 
connections. The value N specifies the size of the set of shared scan-out pins used for all 
codec output connections. These values pertain only to the scan I/O signals needed for 
codec connections; scan I/O signals for external chains in compressed scan mode and for 
scan chains in standard scan mode should not be included in these values.

Figure 21-14 shows two compressed scan cores with connections that are fully shared 
using the set_scan_compression_configuration -shared_inputs 4 
-shared_outputs 4 command. The first codec has four I/O pins and the second codec has 
three I/O pins. A minimum shared set of four top-level scan I/O pins is required to satisfy the 
connections of the wider codec. All shared scan inputs are tied together, and the scan 
outputs are combined with an output sharing compressor block.
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Figure 21-14 Compressed Scan Mode Operation for Two Codecs With Fully Shared I/O

You can use the -shared_inputs option to set the number of shared scan inputs to any 
value from fully shared to unshared, inclusive. Similarly, you can use the -shared_outputs 
option to set the number of shared scan outputs to any value from fully shared to unshared, 
inclusive. Values between the fully shared and unshared values are called partially shared 
values. For more information about computing the fully shared configuration, see 
“Determining the Fully Shared I/O Configuration” on page 21-23.

Note:   
If you specify the fully unshared (dedicated) outputs value, you must use the flow 
described in “Specifying Shared Codec Inputs With Dedicated Codec Outputs” on 
page 21-38.

To enable the codec I/O sharing feature, you must specify shared inputs with the 
-shared_inputs option. The -shared_outputs option by itself cannot enable codec I/O 
sharing, and you cannot share outputs without also sharing inputs. If you specify the 
-shared_inputs option without the -shared_outputs option, the codec outputs are 
automatically fully shared.

As you increase the number of shared scan inputs, the controllability of the compressed 
scan chains increases. As you increase the number of shared outputs, the observability of 
the compressed scan chains increases. Figure 21-15 shows the same two codecs with 
partially shared inputs and outputs.

C_CORE1 C_CORE2

Sharing compressor

-shared_inputs 4

-shared_outputs 4
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Figure 21-15 Two Codecs With Partially Shared Inputs and Outputs

If you provide too few scan inputs with the -shared_inputs option, the tool issues the 
following warning message and proceeds with the fully shared input value:

Warning: Your request for 3 shared codec scan inputs in partition
default_partition cannot be met; 4 shared scan inputs will be used
instead. (TEST-1420)

If you provide too few scan outputs with the -shared_outputs option, a similar warning 
message and adjustment occur:

Warning: Your request for 3 shared codec scan outputs in partition
default_partition cannot be met; 4 shared scan outputs will be used
instead. (TEST-1421)

DFT insertion places the output sharing compressor at the top level by default. To insert the 
sharing compressor inside a specific hierarchical block, specify the location using the 
set_dft_location -include XOR_SELECT command. For more information, see 
“Specifying a Location for DFT Logic Insertion” on page 10-84.

Determining the Fully Shared I/O Configuration

The configuration with the minimum number of shared inputs and outputs for a design is 
called the fully shared configuration. It is described in more detail in the following topics:

• Determining Shared Input Pin Types

• Adding High X-Tolerance Block-Select Pins

• Automatically Computing the Fully Shared Configuration

• Manually Computing the Fully Shared Configuration

C_CORE1 C_CORE2

-shared_inputs 5

-shared_outputs 5

Sharing compressor
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Note:   
For simplicity, shared codec I/O figures outside this section do not separate input pins 
into different categories.

Determining Shared Input Pin Types

When you share the scan input connections of compressed scan codecs, their scan-in pins 
are categorized for sharing, as described in the following topics:

• Scan-In Pins That Drive Compressed OCC Clock Chains

• Load Mode Scan-In Pins

• High X-Tolerance Enable Scan-In Pins

• Regular Scan-In Data Pins

Scan-In Pins That Drive Compressed OCC Clock Chains

By default, when you insert scan compression in an OCC controller flow, the clock chain is 
compressed. the DFTMAX tool dedicates a decompressor scan input path to the clock chain 
as shown in Figure 18-6 on page 18-26. This allows the clock chain values to be controlled 
without imposing constraints on other scan cells.

When you use codec I/O sharing, codec inputs that drive compressed clock chains cannot 
be shared. However, you must still include these inputs in the value provided to the 
-shared_inputs option. Figure 21-16 shows two compressed scan cores, where one core, 
C_CORE1, has a compressed clock chain driven by a dedicated codec scan input. The fully 
shared input value in this example is five.

Figure 21-16 Dedicated Scan Inputs for Compressed Clock Chains 

C_CORE1 C_CORE2OCC 
controller

Sharing compressor

Dedicated compressed 
clock chain scan-in pin

Shared load-mode pins
Shared regular scan-in data pins
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If you are using the Hybrid flow with a top-level OCC controller and the top-level codec 
compresses the clock chain of the top-level OCC controller, you must include a scan input 
for the top-level codec.

If you are using external clock chains, do not include them in the value provided to the 
-shared_inputs option; they are excluded from scan compression.

See Also

• “Codec I/O Sharing With OCC Controllers” on page 21-34 for more information about 
using compressed clock chains and external clock chains with shared-I/O connections

Load Mode Scan-In Pins

In a DFTMAX codec, some of the scan-in data pins are designated as load-mode pins. 
When you use codec I/O sharing, load-mode pins can be shared, but only with other 
load-mode pins. Figure 21-17 shows the fully shared configuration for two cores with 
different load-mode pin counts.

Figure 21-17 Two Codecs With Different Load-Mode Pin Counts

See Also

• “Decompressor Operation” on page 17-4 for more information about load-mode pins

High X-Tolerance Enable Scan-In Pins

High X-tolerance enable scan-in pins enable high X-tolerance masking. Each high 
X-tolerance core or codec has only one of these pins. An output sharing compressor used 
with high X-tolerance cores or codecs also has one of these pins.

When you use codec I/O sharing, these high X-tolerance enable scan-in pins can be shared, 
but only with other high X-tolerance enable scan-in pins. Figure 21-18 shows the fully 
shared configuration for two high X-tolerance cores.

Shared load-mode pins Shared regular scan-in data pins

C_CORE1 C_CORE2
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Figure 21-18 Two Codecs With Shared High X-Tolerance Pins

Because codec I/O sharing requires that all codecs have the same X-tolerance type, these 
enable pins do not impose any complexity on the fully shared input computation. If high 
X-tolerance is used, all codecs have a single high X-tolerance enable pin, which is shared 
as other scan-in data pins are shared.

Note:   
In this section, only the high X-tolerance enable connection to the output sharing 
compressor is shown for clarity. In other areas of the shared codec I/O documentation, it 
is omitted as the focus is on the block-select connections to the sharing compressor.

See Also

• “The High X-Tolerance Architecture” on page 20-2 for more information about high 
X-tolerance enable pins

Regular Scan-In Data Pins

Regular scan-in data pins are all remaining pins that do not fall into the other three 
categories. When you use codec I/O sharing, regular scan-in data pins can be shared, but 
only with other regular scan-in data pins.

Adding High X-Tolerance Block-Select Pins

When you share the scan-out pins of high X-tolerance codecs, you must allow for additional 
scan-in pins to provide block-select X-masking signals for the output sharing compressor. 
Figure 21-19 shows the additional block-select signal connections.

Shared load-mode pins
Shared regular scan-in data pins

Shared
high X-tolerance

enable pin

C_CORE1 C_CORE2

(High X-tol) (High X-tol)

Sharing compressor
Chapter 21: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins 21-26



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 21-19 Adding Shared Inputs for High X-Tolerance Block-Select Signals 

The number of additional block-select scan-in pins N is equal to log2 of the number of 
shared codecs, rounded up to the next integer value. This number must be included in the 
value provided to the -shared_inputs option. Table 21-1 shows the number of additional 
scan-in pins required as a function of the number of shared codecs.

The preview_dft command at the integration level reports the block-select signal 
connections that will be created. Example 21-2 shows the preview report for two shared-I/O 
codecs.

Example 21-2 Shared Codec I/O Block Select Signals in preview_dft Report

ScanDataIn Ports:

 (si) shows Regular ScanDataIn signal
 (lm) shows Load Mode signal
 (sel)  shows Block Select signal
 (xtol) shows Xtol Enable signal

Table 21-1 Number of Additional Scan Data Inputs Required for Codec Sharing 

Number of shared codecs Required number of additional scan data inputs

2 1

3 to 4 2

5 to 8 3

9 to 16 4

17 to 32 5

33 to 64 6

C_CORE1

(High X-tolerance)

C_CORE2

(High X-tolerance)

N

Sharing compressor

-shared_inputs  
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test_si1 (drives C_CORE1/test_si1) (si)
test_si2 (drives C_CORE1/test_si2) (lm)
test_si3 (drives C_CORE1/test_si3) (lm)
test_si4 (drives C_CORE1/test_si4) (xtol)

test_si1 (drives C_CORE2/test_si1) (si)
test_si2 (drives C_CORE2/test_si2) (lm)
test_si4 (drives C_CORE4/test_si3) (xtol)

test_si5 (drives U_sharing_compressor/bsel[0]) (sel)
test_si4 (drives U_sharing_compressor/xtol_enable) (xtol)

If you are using dedicated (unshared) outputs by setting the -shared_outputs option to the 
fully unshared value, no shared codec I/O block-select signals are needed because there is 
no output sharing compressor.

Automatically Computing the Fully Shared Configuration

To automatically compute the fully shared configuration, use the preview_dft command. 
Specify a value of 1 for the -shared_inputs and -shared_outputs options, run the 
preview_dft command, and obtain the values reported in the TEST-1420 and TEST-1421 
warning messages.

For example,

dc_shell> set_scan_compression_configuration \
            -shared_inputs 1 -shared_outputs 1
dc_shell> preview_dft
...
Warning: Your request for 1 shared codec scan inputs in partition
default_partition cannot be met; 4 shared scan inputs will be used
instead. (TEST-1420)
Warning: Your request for 1 shared codec scan outputs in partition
default_partition cannot be met; 4 shared scan outputs will be used
instead. (TEST-1421)

This approach is useful when codec information is not readily available for cores or codecs, 
such as when you do not have the CTL models available in an integration flow or you are 
using the top-down flat insertion flow and the codecs do not yet exist.

Manually Computing the Fully Shared Configuration

This topic describes how to manually compute the fully shared configuration. You can use 
this approach if the preview report takes too long to generate or if you are designing 
core-level scan architectures to meet a particular top-level sharing goal.

Note:   
If you are using the Hybrid integration mode, include the top-level codec in these 
computations.
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To manually compute the fully shared input configuration value, which is the minimum value 
that can be specified with the -shared_inputs option, do the following:

1. If all codecs have the same load-mode pin count, compute the maximum scan-in width 
of all codecs to be shared, then go to step 3.

If you do not know this information, use the automatic computation method described in 
“Automatically Computing the Fully Shared Configuration” on page 21-28.

2. If some codecs have different load-mode pin counts, do the following:

a. For each codec to be shared, separate the scan-in pins into load-mode pins and 
non-load-mode pins.

The non-load-mode pins are the remaining scan-in pins that are compressed clock 
chain scan-in pins, high X-tolerance enable pins, or regular scan-in data pins.

b. Compute the maximum load-mode pin count value across all codecs.

c. Compute the maximum non-load-mode pin count value across all codecs.

d. Add together the maximum values from steps 2b and 2c, then go to step 3.

3. If compressed clock chains are used, add the number of compressed clock chain scan-in 
pins because these pins cannot be shared.

4. If high X-tolerance is used, add N additional scan inputs for block-select signals, where 
N is equal to log2 of the number of shared codecs, rounded up to the next integer value. 
For more information, see “Adding High X-Tolerance Block-Select Pins” on page 21-26.

To manually compute the fully shared output configuration value, which is the minimum 
value that can be specified with the -shared_outputs option, compute the maximum 
scan-out width of all codecs to be shared.

Codec I/O Sharing in the HASS Flow

In the HASS flow, one or more compressed scan cores are integrated at the top level. 
Figure 21-20 shows two cores with fully shared codec I/O connections. The first codec has 
four I/O pins and the second codec has three I/O pins; the values for the -shared_inputs 
and -shared_outputs options of the set_scan_compression_configuration command 
are determined by the wider codec.
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Figure 21-20 HASS Flow With Full Codec I/O Sharing

Codec I/O Sharing in the Hybrid Flow

In the Hybrid flow, a new codec is inserted at the top level along with existing block-level 
codecs. When the codec I/O sharing feature is not used, only the remaining scan data pins 
not used by the existing block-level codecs are used for the new top-level codec. 
Figure 21-21 shows a top-level design where the new top-level codec uses the remaining 
three available scan data I/O connections.

Figure 21-21 Hybrid Flow With Codec I/O Sharing Disabled

When codec I/O sharing is performed, the new top-level codec can use some or all of the 
scan input pins used by the existing block-level codecs. Figure 21-22 shows an example of 
partial scan-in sharing and Figure 21-23 shows an example of full scan-in sharing.

C_CORE1 C_CORE2

Sharing compressor

-shared_inputs 4

-shared_outputs 4

C_CORE

set_scan_configuration -chain_count 6

set_scan_compression_configuration -inputs 3 -outputs 3
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Figure 21-22 Hybrid Flow With Some Codec Input Sharing

Figure 21-23 Hybrid Flow With Full Codec Input Sharing

The I/O sharing feature provides a degree of freedom in the construction of the new top-level 
codec. Because the top-level codec characteristics can no longer be derived from other 
scan configuration information in the Hybrid flow, you must explicitly configure the top-level 
codec characteristics using the -inputs and -outputs options of the 
set_scan_compression_configuration command.

C_CORE

set_scan_configuration -chain_count 6

set_scan_compression_configuration -inputs 4 -outputs 6
-shared_inputs 6 -shared_outputs 6

Sharing compressor

C_CORE

set_scan_configuration -chain_count 6

set_scan_compression_configuration -inputs 6 -outputs 6
-shared_inputs 6 -shared_outputs 6

Sharing compressor
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Codec I/O Sharing in the Top-Down Flat Flow

In a normal top-down flat flow, multiple codecs are created by defining multiple DFT 
partitions. Each partition specifies the scan logic to be scan-compressed with a codec. 
However, each DFT partition is an independent scan context with its own scan configuration. 
This prevents the codec I/O sharing feature from being applied as follows:

• Scan I/O ports can only belong to one partition at a time; they cannot be shared across 
partitions.

• There is no single partition to attach the codec I/O sharing specification.

To remedy this, the top-down flat flow uses subpartitions to enable codec I/O sharing. A 
subpartition is defined with the define_dft_partition command, and specifies the scan 
logic to be scan-compressed with a codec. These subpartitions are then grouped together 
into top-level partitions, which can receive codec I/O sharing and scan port specifications.

This flow is configured as follows:

1. Define the subpartitions containing the logic to be scan-compressed with a codec.

2. Define a top-level partition containing the subpartitions that should share their codec I/O 
connections.

3. Configure codec characteristics within each subpartition.

4. Configure the shared codec I/O characteristics within each top-level partition.

The following example defines two codecs with shared I/O connections in a top-down flat 
flow:

# globally enable scan compression
set_dft_configuration -scan_compression enable

# define subpartitions that define codecs
define_dft_partition SUB_P1 -include {BLK1}
define_dft_partition SUB_P2 -include {BLK2}

# define top-level partition that groups subpartition codecs together
define_dft_partition PARTITION -include {SUB_P1 SUB_P2} ;# subpartitions

# apply subpartition codec characteristics
current_dft_partition SUB_P1
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 5 -inputs 3 -outputs 3

current_dft_partition SUB_P2
set_scan_configuration -chain_count 1
set_scan_compression_configuration -chain_count 4 -inputs 2 -outputs 2
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# apply top-level codec I/O sharing characteristics
current_dft_partition PARTITION
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 21-24 shows the top-down flat DFT insertion results for these commands.

Figure 21-24 Top-Down Flat Flow Codec I/O Sharing

When you use the shared codec I/O feature in a top-down flat flow, all scan logic to be 
compressed must be placed into subpartitions. If scan cells in a partition exist outside a 
subpartition, the tool places them into an external chain that is not compressed inside that 
partition. See Figure 21-25.

Figure 21-25 Partition-Level External Chains in Top-Down Flat Flow

Note:   
Subpartition definitions are only supported in a shared codec I/O flow.

An enclosing top-level partition is required because this is the single-group case of the 
functionality described in “Defining Sharing Groups in the Top-Down Flat Flow” on 
page 21-49.
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See Also

• “Top-Down Flat Compressed Scan Flow With DFT Partitions” on page 18-6 for more 
information about defining DFT partitions

Codec I/O Sharing With OCC Controllers

In a DFTMAX flow, when you insert scan compression in a design with OCC controllers, the 
clock chain is placed between the decompressor and compressor by default, as described 
in “Using Compressed Clock Chains” on page 18-26.

However, compressed clock chain inputs cannot be shared. This results in a dedicated 
scan-in connection for each dedicated clock chain codec input in the design, as shown in 
Figure 21-26.

Figure 21-26 Shared Codec I/O With Compressed Clock Chains

To avoid these unsharable clock chain inputs across shared-I/O cores, you can use external 
clock chains, which can be concatenated into a single top-level clock chain across the cores 
as shown in Figure 21-27.
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Figure 21-27 Shared Codec I/O With External Clock Chains

Although external clock chains require dedicated scan I/Os in each core, they can be 
concatenated into a single top-level clock chain, reducing the total scan I/O requirements at 
the top level.

Note:   
If you are using DFT partitions, all clock chains to be concatenated must belong to the 
same partition. See .SolvNet article 2675107, “Concatenating OCC Clock Chains From 
Multiple DFT Partitions.“

For details on defining external clock chains, see “Defining External Clock Chains” on 
page 18-27.

Codec I/O Sharing With Identical Cores

Codec I/O sharing does not require that cores be identical. However, if you are integrating 
multiple identical instances of a core, DFTMAX compression can take advantage of their 
identicality to optimize their scan-in and scan-out connections for improved testability.

Codec I/O sharing with identical cores is described in the following topics:

• Identical Core Connections

• Specifying Identical Cores

• Using Scrambled Output Connections

• Specifying Shared Codec Inputs With Dedicated Codec Outputs
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Identical Core Connections

Identical cores have the same functional and scan logic structures. Because of this, 
DFTMAX compression optimizes shared codec I/O connections of identical cores as 
follows:

• Identical scan input connections are used so that each pattern sensitizes the same faults 
across all cores.

• Identical scan output connections are used to reduce the impact of X values on pattern 
count.

You can have multiple groups of identical cores, and you can mix identical cores with 
nonidentical (unique) cores. Figure 21-28 shows the codec scan data connections for two 
instances of COREA, two instances of COREB, and a single instance of COREC.

Figure 21-28 Codec Scan Data Connections for Groups of Identical Cores

The tool uses as many shared inputs and outputs as possible. For each identical core group,

• The core inputs use all available shared scan inputs in sequence.

• The core outputs start at the first scan output, using the largest number of shared outputs 
that is a multiple of the core output width.

Figure 21-29 shows the previous example modified to use a larger number of shared inputs 
and outputs.
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Figure 21-29 Codec Scan Data Connections With More Shared Inputs and Outputs

Specifying Identical Cores

The tool does not identify identical core instances by default; you must specify them with the 
-identical_cores option of the set_scan_compression_configuration command. 
Wildcards are supported. For example,

dc_shell> set_scan_compression_configuration \
            -shared_inputs 4 -shared_outputs 4 \
            -identical_cores {COREA_* COREB_*}

If there are multiple groups of identical cores, the tool analyzes them to determine the 
identicality grouping. Cores are considered identical when the following codec parameters 
match:

• Decompressor input width

• Compressor output width

• X-tolerance configuration

• Compressed scan chain count

The preview_dft and insert_dft commands print information messages that show the 
identical core groups:

Information: Detected group of identical cores: COREA_1 COREA_2
(TEST-1450)
Information: Detected group of identical cores: COREB_1 COREB_2
(TEST-1450)

You can use these messages to confirm that identical cores are identified as expected.
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When you run TetraMAX ATPG, use the -shared_io_analysis option of the set_atpg 
command. This option performs an analysis to identify all identical circuit networks in the 
identical cores, which results in improved pattern generation. This option is available 
beginning with the TetraMAX H-2013.03-SP1 release.

Using Scrambled Output Connections

If your design generates few X values, you can use nonidentical (scrambled) scan output 
connections for the identical cores to potentially improve the diagnosability of the design. To 
do this, set the -scramble_identical_outputs option to true:

dc_shell> set_scan_compression_configuration \
            -shared_inputs 4 -shared_outputs 4 \
            -identical_cores {COREA_* COREB_*} \
            -scramble_identical_outputs true

Scrambled output connections, shown in Figure 21-30, provide more uniqueness in the 
output signatures of each identical core.

Figure 21-30 Using Scrambled Output Connections for Identical Cores

For each identical core group, the core outputs start at the first scan output, using all 
available shared scan outputs in sequence. When the shared output width is a multiple of a 
an identical core’s output width, the sequence advances as needed to avoid identical 
connections as much as possible.

Specifying Shared Codec Inputs With Dedicated Codec Outputs

You might want to use identical shared codec input connections for identical cores while still 
using dedicated codec output connections. This configuration reduces the scan-in pin 
requirements while providing full output observability with no sharing compressor required.

Figure 21-31 shows an example of this sharing configuration.
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Figure 21-31 Example of Shared Codec Inputs With Dedicated Codec Outputs

To use dedicated codec outputs, the following requirements must be met:

• All cores are identical in a single group (according to the criteria described in “Codec I/O 
Sharing With Identical Cores” on page 21-35).

• The value specified for the -shared_inputs option is the fully shared value (equal to the 
shared codec input width).

• The value specified for the -shared_outputs option is the fully unshared value (equal to 
the sum of all shared codec output widths).

When the tool detects that these requirements are met, it issues the following information 
message:

Information: You have asked for shared codec inputs and dedicated codec
outputs in partition partition_name. (TEST-1446)

Note:   
In this flow, the -identical_cores option is optional because all cores must be 
identical.

Because there is no sharing of codec outputs, no sharing compressor is required. This also 
means that no additional shared codec I/O block-select signals must be included in the 
-shared_inputs value when using high X-tolerance. For more information about 
block-select signals, see “Adding High X-Tolerance Block-Select Pins” on page 21-26.

Codec I/O Sharing With Shared Codec Controls

In some cases, you might want to exclude one or more blocks from testing. For example,

• Test blocks individually to perform “core harvesting,” in which redundant blocks take the 
place of bad blocks to improve device yield

C_COREA_1

(High X-tolerance)

C_COREA_2
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• Exclude a single block from testing that has known issues or defects

You can implement shared codec control logic to selectively enable observation of 
shared-I/O codecs. The tool adds AND-gating logic at the codec inputs of output sharing 
compressors, as shown in Figure 21-32. After DFT insertion, you can write a test protocol 
that selectively disables any set of codecs, provided at least one codec is active in the 
design across all DFT partitions.

Figure 21-32 Output Sharing Compressor With Codec Control Logic

Note the following:

• Disabled codecs are omitted from the SPF. During TetraMAX ATPG, scan elements 
associated with disabled codecs can drive X values.

• To block external X values, test wrapped cores in their inward-facing (INTEST) mode.

• The codec controls logic blocks observation at disabled compressors. However, disabled 
blocks can still receive the clock, scan-in, and scan-enable signals and operate as 
constructed during gate-level simulation and manufacturing test.

Configuring Shared Codec Controls

To implement codec control logic, enable the following option:

dc_shell> set_scan_compression_configuration -shared_codec_controls true

When using DFT partitions, you can enable this option globally or on a per-partition basis.

The preview_dft command reports the codec enable pins to be implemented for each 
output sharing compressor:

dc_shell> preview_dft
...

******************** Shared Codec Controls Report ********************
U_sharing_compressor/codec_enable_0 controls
   sub1:sub_1_U_decompressor_ScanCompression_mode

codec_enable_0
codec_enable_1
codec_enable_2

Sharing compressor XOR logic
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U_sharing_compressor/codec_enable_1 controls
   sub2:sub_2_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_2 controls
   top:top_default_partition_U_decompressor_ScanCompression_mode
**********************************************************************

The insert_dft command makes the codec enable pin connections as follows:

•  If you are using IEEE 1500 test-mode control, the tool automatically implements 
TMCDR register bits that drive the codec enable pins.

• If you are not using IEEE 1500 test-mode control, you can define internal hookup pins for 
the codec enable signals, as described in “Specifying User-Defined Codec Enable 
Signals” on page 21-42.

If you do not define any codec enable signals, the tool connects the codec enable pins 
to logic 1, and you must modify the netlist to control the codec enable pins.

After DFT insertion, use the write_test_protocol command to write an SPF that disables 
one or more codecs by specifying a codec list with the -disable_codecs option. Reference 
each codec’s decompressor using the cell_name:decompressor_name syntax. For 
example,

# write a protocol that tests all codecs
write_test_protocol \
  -test_mode ScanCompression_mode \
  -output COMP_enable_all_codecs.spf

# write a protocol that tests only the top-level codec
# by disabling all others
write_test_protocol \
  -test_mode ScanCompression_mode \
  -output COMP_disable_core_codecs.spf \
  -disable_codecs {sub1:sub_1_U_decompressor_ScanCompression_mode \
                   sub2:sub_2_U_decompressor_ScanCompression_mode}

If you are using IEEE 1500 test-mode control, the write_test_protocol command writes 
a test protocol that automatically configures the TMCDR codec selection bits as needed.

If you are not using IEEE 1500 test-mode control, the tool assumes that you are modifying 
the test protocol and/or netlist to disable the specified codecs. The write_test_protocol 
command issues a reminder as follows:

Information: The codec control pins of the specified disabled codecs must
be driven by logic 0. (TEST-1473)

The codec control information is stored in the .ddc file written for the current design. You can 
read the .ddc file back in to generate additional test protocols at a later time.
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See Also

• “Shared Codec I/O Limitations” on page 21-62 for limitations of shared codec controls

• “Integrating Shared I/O Cores That Contain Shared Codec Controls” on page 21-60 for 
more information about integrating cores that have shared codec controls

Specifying User-Defined Codec Enable Signals

If you are using the shared codec controls feature, you can connect the codec enable 
signals to your own internal hookup pins by defining DFT signals with a type of 
codec_enable. For example,

dc_shell> set_dft_signal -view spec -type codec_enable \
            -hookup_pin MY_EN_reg[1]/Q
dc_shell> set_dft_signal -view spec -type codec_enable \
            -hookup_pin MY_EN_reg[0]/Q

The codec enable signals must be defined using the -hookup_pin option; they cannot be 
defined using the -port option. If you are using DFT partitions, the signals must be specified 
on a per-partition basis; you cannot define global signals across to be allocated all partitions. 

If there are fewer signals than codecs being controlled in the group, the tool ignores the 
signals, issues a TEST-1482 warning, and connects the codec enable pins to logic 1.

By default, the tool chooses a codec for each codec enable signal. To specify which codec 
is controlled by each signal, use the -codec option to reference each codec’s decompressor 
using the cell_name:decompressor_name syntax:

dc_shell> set_dft_signal -view spec -type codec_enable \
            -hookup_pin MY_EN_reg[1]/Q \
            -codec sub2:sub_2_U_decompressor_ScanCompression_mode
dc_shell> set_dft_signal -view spec -type codec_enable \
            -hookup_pin MY_EN_reg[0]/Q \
            -codec sub1:sub_1_U_decompressor_ScanCompression_mode

The -codec option can only be used together with the -type codec_enable option.

Codec I/O Sharing Groups

You can use DFT partitions to share I/O connections within multiple codec groups. You can 
use this flow to reduce routing congestion by only sharing the connections of codecs that are 
in close proximity to each other or to optimize the sharing arrangement for identical cores.

DFT insertion places each partition’s sharing compressor at the top level by default. To 
insert a partition’s sharing compressor inside a specific hierarchical block, specify the 
location using the set_dft_location -include XOR_SELECT command applied within that 
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partition’s configuration. For more information, see “Specifying a Location for DFT Logic 
Insertion” on page 10-84.

This topic covers the following:

• Defining Sharing Groups in the HASS Flow

• Defining Sharing Groups in the Hybrid Flow

• Defining Sharing Groups for Codecs in Partitioned Cores

• Defining Sharing Groups in the Top-Down Flat Flow

Defining Sharing Groups in the HASS Flow

In the HASS flow, create and configure sharing groups as follows:

1. Define DFT partitions containing the compressed scan cores that are to share their 
codec I/O connections.

2. Configure the shared codec I/O characteristics within each partition.

The following example defines two DFT partitions, where each contains two compressed 
scan cores:

# globally enable scan compression and HASS integration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true

# define partitions that group cores
define_dft_partition PARTITION1 -include [list C_CORE1 C_CORE2]
define_dft_partition PARTITION2 -include [list C_CORE3 C_CORE4]

# apply codec I/O sharing characteristics
current_dft_partition PARTITION1
set_scan_configuration -chain_count 4
set_scan_compression_configuration -shared_inputs 4 -shared_outputs 4

current_dft_partition PARTITION2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 21-33 shows the HASS integration results for these commands.
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Figure 21-33 HASS Flow Codec I/O Sharing With Partitions

Defining Sharing Groups in the Hybrid Flow

In the Hybrid flow, there are one or more compressed scan cores along with additional 
top-level logic to be compressed. You can create one or more top-level codecs to compress 
this logic, and you can choose whether or not to share the connections of each top-level 
codec, as described in the following topics:

• Using Shared Codecs for Top-Level Logic

• Using Dedicated Codecs for Top-Level Logic

You can define multiple partitions to create multiple top-level codecs, including a mix of 
shared and dedicated top-level codecs.

Note:   
A top-level codec is a codec that compresses top-level logic, which is logic that exists 
outside a compressed scan core. A top-level codec can be defined in a subpartition (for 
a shared top-level codec) or in a top-level partition (for a dedicated top-level codec).

Using Shared Codecs for Top-Level Logic

You can define subpartitions to specify the top-level scan logic to be scan-compressed with 
a shared codec. For more information about subpartitions, see “Codec I/O Sharing in the 
Top-Down Flat Flow” on page 21-32.

In this flow, create and configure sharing groups as follows:

1. Define any subpartitions containing the logic to be scan-compressed with a top-level 
shared codec.

2. Define top-level partitions containing the compressed scan cores and/or subpartitions 
that are to share their codec I/O connections.

3. Configure the top-level logic codec characteristics within each subpartition.
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4. Configure the shared codec I/O characteristics within each top-level partition.

The following example defines two top-level DFT partitions, each of which contains two 
shared-I/O codecs:

# globally enable scan compression and Hybrid integration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

# define subpartitions that define the new top-level codecs
define_dft_partition SUB_GLUE -include [list GLUE_cell_list]

# define top-level partitions that group subpartition codecs or cores
define_dft_partition PARTITION1 -include [list C_CORE1 SUB_GLUE]
define_dft_partition PARTITION2 -include [list C_CORE2 C_CORE3]

# apply top-level codec characteristics to subpartitions
current_dft_partition SUB_GLUE
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 3 -inputs 2 -outputs 2

# apply codec I/O sharing characteristics
current_dft_partition PARTITION1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

current_dft_partition PARTITION2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 21-34 shows the Hybrid integration results for these commands.

Figure 21-34 Hybrid Flow With Sharing Groups and a Shared Top-Level Codec

You can define one or more shared codec subpartitions within any top-level partition, with or 
without compressed scan cores. If some scan cells exist in a top-level partition but outside 
a subpartition, the tool places them into an external chain that is not compressed inside that 
partition. See Figure 21-35.
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Figure 21-35 Partition-Level External Chains in Hybrid Flow

Additional requirements apply to the scan configuration when codec I/O sharing is used in 
the Hybrid flow with shared top-level codecs. For more information, see “Shared Codec I/O 
Limitations” on page 21-62.

Using Dedicated Codecs for Top-Level Logic

You can define top-level partitions to specify the top-level scan logic to be scan-compressed 
with a dedicated codec.

In this flow, create and configure sharing groups as follows:

1. Define a top-level partition containing the logic to be scan-compressed with a dedicated 
top-level codec. You can also omit a partition definition and use the default partition.

2. Define additional top-level partitions containing the compressed scan cores and/or 
subpartitions that are to share their codec I/O connections.

3. Configure the top-level logic codec characteristics within its top-level partition.

4. Configure the shared codec I/O characteristics within each top-level partition where 
sharing occurs.

The following example defines two top-level DFT partitions, one of which contains two 
shared-I/O cores, and one of which contains a dedicated top-level codec:

# globally enable scan compression and Hybrid integration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

# define top-level partitions that group cores or dedicated codecs
define_dft_partition PARTITION1 -include [list C_CORE1 C_CORE2]
define_dft_partition PARTITION2 -include [list GLUE_cell_list]
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# apply codec I/O sharing characteristics for cores
current_dft_partition PARTITION1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

# apply top-level dedicated codec characteristics
current_dft_partition PARTITION2
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 3 -inputs 2 -outputs 2

Figure 21-36 shows the Hybrid integration results for these commands.

Figure 21-36 Hybrid Flow With Sharing Groups and a Dedicated Top-Level Codec

Defining Sharing Groups for Codecs in Partitioned Cores

In the HASS and Hybrid flows, you can define sharing groups that reference individual 
codecs inside partitioned cores. To do this, reference the codec’s decompressor using the 
cell_name:decompressor_name syntax in sharing group partition definitions. For example,

# define subpartitions that define the new top-level codecs
define_dft_partition SUB_GLUE -include [list GLUE_cell_list]

# define top-level partitions that group cores or dedicated codecs
define_dft_partition PARTITION1 -include [list \
  C_CORE1 \
  C_CORE2:core2_P1_U_decompressor_ScanCompression_mode]
define_dft_partition PARTITION2 -include [list \
  C_CORE2:core2_P2_U_decompressor_ScanCompression_mode \
  SUB_GLUE]

Figure 21-37 shows the Hybrid integration results for these commands.
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Figure 21-37 Hybrid Flow With Individual Codec References in Sharing Groups

When you include a core-level decompressor reference in a DFT partition definition, if core 
scan segments in other top-level test modes share the same core scan-in pins as the 
decompressor, they are also included in that DFT partition for those modes. Figure 21-38 
shows the standard scan results for the previous example, assuming that the standard scan 
and compressed scan modes of the cores share the same scan-in and scan-out pins.

Figure 21-38 Standard Scan Mode for Individual Codec References in Sharing Groups

If core scan segments in other modes do not share any referenced decompressor scan-in 
pins, they are included in the default partition.

You can obtain the decompressor names using one of the following methods:

• Use the list_test_models -compressors command at the top level before DFT 
insertion.

• Look in the CompressorStructures section of a core-level ASCII CTL model file.

• Look in the CompressorStructures section of a core-level STIL procedure file that is 
generated for the scan compression mode.
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Note the following requirements and behaviors for referencing core codecs in DFT partition 
definitions:

• Codecs are referenced by decompressor name only.

• You can mix decompressor references with other object types in the same partition 
definition, subject to the usual restriction that the same underlying scan logic cannot exist 
in multiple partitions.

• Any unreferenced codecs are placed in the default partition.

• Decompressor references are supported only in shared codec I/O flows.

Defining Sharing Groups in the Top-Down Flat Flow

This flow is a simple extension of the normal top-down flat codec I/O sharing flow, except 
multiple top-level partitions are defined.

Create and configure sharing groups as follows:

1. Define any subpartitions containing the logic to be scan-compressed with a codec.

2. Define top-level partitions containing the subpartitions that are to share their codec I/O 
connections.

3. Configure the codec characteristics within each subpartition.

4. Configure the shared codec I/O characteristics within each top-level partition.

The following example defines two codec groups, each with its own shared I/O connections, 
in a top-down flat flow:

# globally enable scan compression
set_dft_configuration -scan_compression enable

# define subpartitions that define codecs
define_dft_partition SUB_P1 -include {BLK1}
define_dft_partition SUB_P2 -include {BLK2}
define_dft_partition SUB_P3 -include {BLK3}
define_dft_partition SUB_P4 -include {BLK4}

# define top-level partition that groups subpartition codecs
define_dft_partition PARTITION1 -include {SUB_P1 SUB_P2} ;# subpartitions
define_dft_partition PARTITION2 -include {SUB_P3 SUB_P4} ;# subpartitions

# apply subpartition codec characteristics
current_dft_partition SUB_P1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 5 -inputs 3 -outputs 3
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current_dft_partition SUB_P2
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 4 -inputs 2 -outputs 2

current_dft_partition SUB_P3
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 5 -inputs 3 -outputs 3

current_dft_partition SUB_P4
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 4 -inputs 2 -outputs 2

# apply top-level codec I/O sharing characteristics
current_dft_partition PARTITION1
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

current_dft_partition PARTITION2
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 21-39 shows the top-down flat DFT insertion results for these commands.

Figure 21-39 Top-Down Flat Flow Codec I/O Sharing With Multiple Top-Level Partitions

Codec I/O Sharing and Standard Scan Chains

When the top-level codec I/O connections are shared in compressed scan mode, the 
standard scan mode is also affected.

In the HASS integration flow, due to the reduced number of available scan I/O pins, the 
standard scan chains inside the compressed cores can no longer be promoted to dedicated 
top-level connections. To remedy this, standard scan chains in compressed scan cores 
become scan segments that can be concatenated, if needed, by top-level integration. 
Figure 21-40 shows the compressed scan and standard scan chains for a design in the 
HASS integration flow.
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Figure 21-40 Standard Scan Chains in the HASS Flow With Codec I/O Sharing

In the Hybrid flow with codec I/O sharing, core-level scan segments can be mixed with 
top-level scan cells to achieve optimal balancing. Figure 21-41 shows the compressed scan 
and standard scan chains for a design in the Hybrid integration flow.

Figure 21-41 Standard Scan Chains in the Hybrid Flow With Codec I/O Sharing

In top-down flat flows, the subpartition standard scan chains are promoted to top-level scan 
chains with no concatenation or rebalancing within the enclosing top-level partitions. You 
must apply the set_scan_configuration -chain_count command to the subpartitions to 
manage the standard scan chain counts. Figure 21-42 shows the compressed scan and 
standard scan chains for a design in the top-down flat flow, where SUB_P1 has a specified 
chain count of 2 and SUB_P2 has a specified chain count of 1.
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Figure 21-42 Standard Scan Chains in the Top-Down Flat Flow With Codec I/O Sharing

In the HASS flow with sharing groups, partition boundaries prevent core-level scan segment 
concatenation across partitions, but scan segments can still be concatenated and balanced 
within each partition. Apply the set_scan_configuration -chain_count command to 
each partition to specify the number of standard scan chains for that partition. Figure 21-43 
shows the standard scan chains for a design in the HASS integration flow with sharing 
groups.

Figure 21-43 Standard Scan Chains in the HASS Flow With Codec I/O Sharing Groups

In the Hybrid flow with sharing groups, core-level scan segments are concatenated and 
balanced within top-level partitions (as in the HASS flow with sharing groups), but 
subpartition scan chains are promoted to top-level scan chains (as in the top-down-flat 
flows). For subpartitions, apply the set_scan_configuration -chain_count command to 
specify the number of standard scan chains to create. For top-level partitions, apply the 
set_scan_configuration -chain_count command to specify the total scan chain count 
for all cores in the partition, excluding any subpartitions. Figure 21-44 shows the standard 
scan chains for a design in the Hybrid integration flow with sharing groups.
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Figure 21-44 Standard Scan Chains in the Hybrid Flow With Codec I/O Sharing Groups

For pipelined cores, if a leading-edge tail pipeline register in one core is concatenated to a 
trailing-edge head pipeline register in another core, the scan architect inserts a lockup latch 
and retiming flip-flop between the cores for correct scan shift operation (independent of the 
-add_test_retiming_flops option setting of the set_scan_configuration command). 
For details, see SolvNet article 1656177, “Why Does insert_dft Add Extra Retiming 
Registers in a Shared Codec I/O Flow?“

See Also

• Chapter 19, “Hierarchical Adaptive Scan Synthesis” for more information about 
specifying standard scan chain counts in the HASS and Hybrid flows

• “Top-Down Flat Compressed Scan Flow” on page 18-2 for more information about 
applying chain count and scan I/O signal specifications to DFT partitions in scan 
compression flows

Codec I/O Sharing and Pipelined Scan Data

When codec I/O sharing is used with the pipelined scan data feature, the tool adds pipeline 
stages as needed to meet the total top-level pipeline depth, as shown in Figure 21-45. 
Pipeline registers added along the shared scan data path are called shared pipeline 
registers, and pipeline registers added along the scan data path to a single shared codec 
are called dedicated pipeline registers.
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Figure 21-45 Pipelined Scan Data in the Shared Codec I/O Flow

By default, the tool uses as many shared pipeline registers as possible to minimize cell 
count, and it uses dedicated pipeline registers only to balance cores of differing depths. In 
some cases, such as to adjust layout characteristics, you might want to change the 
allocation of shared and dedicated pipeline registers. To do this, you can use the 
-head_shared_pipeline_stages and -tail_shared_pipeline_stages options of the 
set_pipeline_scan_data_configuration command:

set_pipeline_scan_data_configuration
  -head_pipeline_stages total_depth
  -tail_pipeline_stages total_depth
  -head_shared_pipeline_stages shared_depth
  -tail_shared_pipeline_stages shared_depth
  ...

The tool uses the specified number of shared pipeline registers along the shared scan path, 
then it uses dedicated pipeline registers as needed for the remaining stages to meet the total 
pipeline depth target. Figure 21-46 shows the previous example with a single shared head 
and tail pipeline stage.

Figure 21-46 Using a Reduced Number of Shared Pipeline Register Stages

Figure 21-47 shows the relationship between the total and shared pipeline depth 
specification options of the set_pipeline_scan_data_configuration command.

Shared pipeline registers

Dedicated pipeline registers

set_pipeline_scan_data_configuration \
  -head_pipeline_stages 3 \
  -tail_pipeline_stages 3

set_pipeline_scan_data_configuration \
  -head_pipeline_stages 3 \
  -tail_pipeline_stages 3 \
  -head_shared_pipeline_stages 1 \
  -tail_shared_pipeline_stages 1
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Figure 21-47 Relationship Between the Total and Shared Pipeline Depth Specification Options

If your design contains dedicated pipeline registers, note the following:

• If you perform a post-DFT incremental compile with the compile_ultra command, 
redundant register removal might collapse parallel dedicated pipeline registers together. 
To disable redundant register removal on pipeline register cells, issue the following 
command before performing the post-DFT incremental compile:

dc_shell> set_size_only [get_cells -hier {SNPS_Pipe*}] true
dc_shell> compile_ultra -scan -incremental

• Dedicated pipeline registers are inserted on a per-test-mode basis, which might result in 
parallel pipeline registers along the same scan path with duplicate functionality.

TetraMAX versions G-2012.06-SP1 and later automatically recognize pipeline registers in 
shared codec I/O scan paths. TetraMAX versions G-2012.06 and earlier require the 
following additional DRC settings:

set_drc -pipeline_in_compressor -forked_pipes

If you are using high X-tolerance with codec I/O sharing and pipelined scan data, the tool 
inserts pipeline stages on the block-select signals to match the total head and tail pipeline 
latency. Figure 21-48 shows pipeline stages added to the block-select signals in a Hybrid 
flow.
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Figure 21-48 I/O Sharing With High X-Tolerance Codecs and Pipelined Scan Data 

See Also

• “Pipelined Scan Data” on page 21-3 for more information about the pipelined scan data 
feature

• “Hierarchical Flows With Pipelined Scan Data” on page 21-17 for more information about 
the requirements of the pipelined scan data feature in the HASS and Hybrid flows

Integrating Cores That Contain Shared Codec I/O Connections

When you integrate cores, you can include cores that contain shared codec I/O connections 
along with compressed scan cores or standard scan cores.

The following topics describe how cores are integrated with shared codec I/O connections:

• Integrating Shared I/O Cores

• Integrating Identical High X-Tolerance Shared I/O Cores

• Integrating Shared I/O Cores Using Shared Codec Controls

• Integrating Shared I/O Cores That Contain Shared Codec Controls

Integrating Shared I/O Cores

If you do not enable codec I/O sharing at the integration level, the tool promotes the scan I/O 
connections of each core to top-level scan connections during integration. See 
Figure 21-49.
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Figure 21-49 HASS Integration of Shared Codec I/O Cores

If you enable codec I/O sharing at the integration level with the -shared_inputs option, the 
tool performs nested codec I/O sharing. The scan I/O connections of each core are shared 
at the integration level. See Figure 21-50.

Figure 21-50 Shared-I/O HASS Integration of Shared Codec I/O Cores

The values provided to the -shared_inputs and -shared_outputs options must meet 
requirements that are similar to other shared codec I/O flows. The value specified for the 
-shared_inputs option must be at least as wide as the widest core scan input. The value 
specified for the -shared_outputs option must be equal to the widest core scan output.

If some cores have high X-tolerance capability, you must account for additional block-select 
pins when specifying a value for the -shared_inputs option. The value must be at least as 
large as the sum of the following values:

• The width of the widest core-level scan data input across all cores

• The sum of the block-select signals used across all shared codec I/O cores

• The number of top-level block-select signals needed, which is log2 of the number of high 
X-tolerance shared codec I/O cores, rounded up to the next integer value
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Figure 21-51 shows the scan data inputs needed for two shared codec I/O cores. 
SHARED_CORE1 has a wider set of scan data inputs. Because there are two shared codec 
I/O cores, an additional top-level block-select signal is also required. In this example, a 
minimum value of 7 must be specified with the -shared_inputs option.

Figure 21-51 Shared-I/O HASS Integration of High X-Tolerance Cores

See Also

• “Adding High X-Tolerance Block-Select Pins” on page 21-26 for more information about 
shared codec I/O block-select signals

Integrating Identical High X-Tolerance Shared I/O Cores

If you integrate identical high X-tolerance shared I/O cores using dedicated (unshared) 
outputs, you can use identical block-select signal connections for the cores, as shown in 
Figure 21-52.
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Figure 21-52 Integrating Identical Shared-I/O High X-Tolerance Cores

To enable this feature, use the following command:

dc_shell> set_scan_compression_configuration -shared_block_select true

This option can be enabled only when the following conditions are met:

• Shared codec I/O is enabled with the -shared_inputs option.

• The cores contain shared-I/O codecs with high X-tolerance, such that the core has one 
or more block-select signals.

• All cores in the current design or partition are identical instances of this core, specified 
with the -identical_cores option.

• Dedicated (unshared) outputs are used for the cores by specifying the fully unshared 
value with the -shared_outputs option. (Using shared block-select signals with shared 
core outputs would degrade the high X-tolerance functionality.)

The default is to use separate block-select signals for each identical core.

See Also

• “Adding High X-Tolerance Block-Select Pins” on page 21-26 for more information on 
core-level block-select signals

Integrating Shared I/O Cores Using Shared Codec Controls

When you integrate cores with shared codec controls enabled, the tool adds AND-gating 
logic at the codec inputs of output sharing compressors, as described in “Codec I/O Sharing 
With Shared Codec Controls” on page 21-39.
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If a core is a shared I/O core (that is, it contains shared I/O codecs), the gating logic enables 
or disables all shared codecs that drive the gating logic. See Figure 21-53.

Figure 21-53 Integrating Shared I/O Cores Using Shared Codec Controls

When the preview_dft command reports the codec enable pins, it uses the name of the 
shared (merged) codec stored in the core CTL model. For this example, the report is as 
follows:

dc_shell> preview_dft
...

******************** Compressors Control Report ********************
U_sharing_compressor/codec_enable_0 controls
  C_CORE:C_CORE_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_1 controls
  SHARED_CORE1:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_2 controls
  SHARED_CORE2:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
********************************************************************

See Also

• “Codec I/O Sharing With Shared Codec Controls” on page 21-39 for more information 
about using shared codec controls to disable codecs

Integrating Shared I/O Cores That Contain Shared Codec Controls

When you integrate shared I/O cores that contain shared codec controls,

• If the core uses IEEE 1500 test-mode control, the core-level codec controls become 
available through IEEE 1500 test-mode control at the top level.
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• If the core does not use IEEE 1500 test-mode control, the tool has no visibility of the 
core-level codec controls, and you cannot disable individual core-level codecs from the 
top level.

Figure 21-54 shows an example where two cores with IEEE 1500 test-mode control and 
codec controls are integrated in a top level with codec controls enabled.

Figure 21-54 Integrating Shared I/O Cores That Contain Shared Codec Controls

When cores use IEEE 1500 test-mode control, the preview_dft command reports 
core-level shared codec controls as “can be controlled.” For this example, the report is as 
follows:

dc_shell> preview_dft
...

******************** Compressors Control Report ********************
U_sharing_compressor/codec_enable_0 controls
  C_CORE:C_CORE_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_1 controls
  SHARED_CORE1:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_2 controls
  SHARED_CORE2:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
SHARED_CORE2:SHARED_CORE2_SHARED_CORE_SHARED_CORE_P2_U_decompressor_Sc
  anCompression_mode can be controlled.
SHARED_CORE2:SHARED_CORE2_SHARED_CORE_SHARED_CORE_P1_U_decompressor_Sc
  anCompression_mode can be controlled.
SHARED_CORE1:SHARED_CORE1_SHARED_CORE_SHARED_CORE_P2_U_decompressor_Sc
  anCompression_mode can be controlled.
SHARED_CORE1:SHARED_CORE1_SHARED_CORE_SHARED_CORE_P1_U_decompressor_Sc
  anCompression_mode can be controlled.
********************************************************************
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You do not need to enable shared codec controls at the top level to integrate cores that 
contain shared codec controls.

See Also

• “Codec I/O Sharing With Shared Codec Controls” on page 21-39 for more information 
about using shared codec controls to disable codecs

• “Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces” on page 11-82 for 
more information about test-mode control through an IEEE 1500 interface

Shared Codec I/O Limitations

Note following requirements and limitations of the shared codec I/O feature:

• All codecs must have the same X-tolerance type.

• You can only share outputs when inputs are also shared. If you specify dedicated inputs, 
all sharing is disabled.

• To use dedicated (fully unshared) outputs, all inputs must be fully shared and all cores 
must be identical in a single group. See “Specifying Shared Codec Inputs With Dedicated 
Codec Outputs” on page 21-38.

• In Hybrid mode, the compressed scan chain characteristics of a shared top-level codec 
must be specified with the -chain_count or -max_length options of the 
set_scan_compression_configuration command. They cannot be automatically 
derived using the normal chain count heuristics.

• When you use partitions,

❍ Codec I/O can be shared within each top-level partition, but not across top-level 
partition boundaries.

❍ Standard scan chains are balanced within each top-level partition, but not across 
top-level partition boundaries.

❍ In the -include list of the define_dft_design command, you can reference cores 
to be shared only by cell instance; you cannot reference them by design name.

• Subpartition definitions (top-level partition definitions that reference other DFT partitions 
by name) are only supported when using codec I/O sharing, as a way to define sharing 
groups. They are not supported for other flows.

• In flows that use subpartitions, which are the top-down flat flow and the Hybrid flow with 
shared top-level codecs, the default partition cannot contain subpartitions because there 
is no explicit define_dft_partition command that allows you to reference a 
subpartition. You can only include subpartitions in user-defined top-level partitions.
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• If you define multiple compression modes and you have DFTMAX cores to be integrated 
with shared codec I/O, you must schedule the cores using the -target option of the 
define_test_mode command.

• When implementing shared codec controls,

❍ At least one codec must remain active for each output sharing compressor.

❍ In the Hybrid integration mode, if the top-level decompressor name differs between 
the preview_dft and list_test_models -compressors commands, you must use 
the decompressor name from the preview_dft command.

• When integrating cores that contain shared codec controls, you must use IEEE 1500 
test-mode control to make core-level codec controls available at the top level.

Implicit Scan Chains

Implicit scan chains provide a mechanism to specify one or more “implicit” scan segments 
that exist outside the current design but should be included in compressed scan insertion. 
This is useful when an IP block to be scan-compressed exists at the chip level but 
compressed scan is inserted at the core level, as shown in Figure 21-55.

Figure 21-55 Implicit Scan Chains Defined in a Core-Level Run

Each implicit scan chain segment is defined in the core level run, characterized by the 
following information:

• Chain name

• Chain length

• Scan clock

• Core-level scan data access ports

When implicit scan chain segments are defined, the DFTMAX tool incorporates them into 
compressed scan insertion by connecting to the core-level scan data access ports. It uses 
the clock and length information to construct scan chains that are optimally balanced while 
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respecting the chain count and clock-mixing configuration settings applied to the current 
design.

Just as with any other user-defined scan segment, implicit scan chains are incorporated into 
both the standard scan and compressed scan modes. Reconfiguration MUXs are added as 
needed.

When implicit scan chains are used, the tool produces a partial test protocol. This protocol 
is not complete and contains only a partial ScanChain definition for the implicit scan chains. 
The protocol cannot be used in the TetraMAX tool directly.

Defining Implicit Scan Chains

To define implicit scan chain segments, use the following two commands:

• set_scan_group

• set_scan_path

Use the set_scan_group command to define a scan group for each implicit scan chain:

set_scan_group group_name
     -serial_routed true -segment_length length
     -access {ScanDataIn core_output_port ScanDataOut core_input_port}
     -clock clock_name
     [-edge rising | falling]

where

• The group_name argument is a unique user-defined scan group name.

• The chain_length argument is the chain length of the implicit scan chain.

• The clock_name argument is the scan clock which clocks the implicit scan chain. It must 
be defined as a scan clock in the core-level run using the set_dft_signal command.

• The core_output_port argument is the core-level output port that externally connects 
to the scan input of the implicit chain.

• The core_input_port argument is the core-level input port that externally connects to 
the scan output of the implicit chain.

By default, an implicit scan chain is defined as a rising-edge scan segment. To define it as a 
falling-edge scan segment, add the -edge falling option to the set_scan_group 
command. You cannot define an implicit scan chain that represents a mix of rising-edge and 
falling-edge cells.
Chapter 21: Advanced DFTMAX Compression
Implicit Scan Chains 21-64



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Use the set_scan_path command to specify how each scan group is to be incorporated 
into scan stitching:

set_scan_path chain_name -test_mode all
    -ordered_elements {group_name ...}
     | -include_elements {group_name ...}
    [-complete true]

where

• The group_name argument is a scan group name, previous defined with the 
set_scan_group command.

• The chain_name argument is a unique user-defined scan chain name.

By default, implicit scan chains can be mixed with core-level scan cells if DFT requirements 
such as scan clock mixing and chain lengths are met. To force implicit scan chains to be 
standalone compressed scan chains, add the -complete true option to the 
set_scan_path command. This can be useful when you have an implicit scan chain with a 
mix of rising-edge and falling-edge cells that cannot be described by the set_scan_group 
-edge command.

After you have defined the implicit scan chains, use the preview_dft command to report 
how they will be integrated into the core-level scan structures. Implicit scan chains are 
represented as scan segments. The following partial preview report shows a core-level scan 
chain that contains an implicit scan chain and two core-level scan cells:

dc_shell> preview_dft -show {segments cells}
...
Scan chain 'c1' contains 5 cells
  Active in modes: ScanCompression_mode :

  sub1/Z_reg[0]
  sub1/Z_reg[1] (m)
  IMPLICIT1 (s) (m)
...

For details on previewing scan segments, see “Previewing Additional Scan Chain 
Information” on page 15-3.

At the chip level, the implicit scan chain segments must be connected to the core-level scan 
access ports. These connections, highlighted in Figure 21-56, can exist in the chip-level 
RTL or they can be created using netlist editing commands. the tool does not make these 
connections.
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Figure 21-56 Implicit Scan Chain Connections to Core in a Chip-Level Run

Implicit Scan Chain Script Example

The following example shows the use of implicit scan chains in a core-level scan 
compression insertion run.

current_design CORE

# create scan port that connects to the implicit scan chain’s scan input
# (which is an output from CORE)
create_port -direction out dout

# create scan port that connects to the implicit scan chain’s scan output
# (which is an input from CORE)
create_port -direction in din

# define all test signals; test clocks must be defined before being
# referenced by set_scan_group -clock
set_dft_signal -view existing_dft -type ScanMasterClock \
  -timing {45 55} -port clk_st

# define the implicit scan chain and access pins
# in the core design; dout drives the scan input of the external scan
# chain and din is driven by the scan output of the external scan chain
set_scan_group IMPLICIT1 -segment_length 67 -serial_routed true \
  -access [list ScanDataIn dout ScanDataOut din] -clock clk_st

# define each implicit chain as a scan path
set_scan_path c1 -ordered_elements IMPLICIT1 -test_mode all \
  -complete true

# enable DFTMAX compression insertion
set_dft_configuration -scan_compression enable

# configure DFTMAX compression
set_scan_compression_configuration -minimum_compression 25 \
  -xtolerance high
set_scan_configuration -chain_count 8 -test_mode all

# create the test protocol

IPImplicit scan chain connections must 
exist or be created in the chip-level run  
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create_test_protocol

# run pre-DFT DRC
dft_drc -verbose

# preview DFT insertion
preview_dft -show all

# perform DFT insertion
insert_dft

# post-DFT DRC is not supported
change_names -rules verilog -hierarchy

# write out the compression mode protocol for TetraMAX
write_test_protocol -test_mode ScanCompression_mode \
  -output stil/scan_compression.stil -names verilog

# write out the pure scan protocol for TetraMAX
write_test_protocol -test_mode Internal_scan \
  -output stil/internal_scan.stil -names verilog

# write out the inserted design in Verilog and Synopsys ddc format 
write -format verilog -hierarchy -output vg/design_with_implicit.v
write -format ddc -hierarchy -output db/design_with_implicit.ddc

Protocol Example

The following example is taken from the ScanStructures section of the test protocol written 
out by DFT Compiler. The implicit scan segment is characterized by name, scan length, 
scan data out, and the scan clock in the test protocol.

ScanStructures {
  ScanChain "c1" {
  ScanLength 67;
  ScanOut "din";
  ScanMasterClock "clk_st";
}

In the same protocol, an example of a normal (nonimplicit) scan chain definition:

ScanChain "2" {
  ScanLength 10;
  ScanEnable "test_se";
  ScanMasterClock "clk_st";
}
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Limitations

Note the following limitations when using implicit scan chains:

• The report_scan_path command does not show the presence of implicit scan chain 
segments in the core-level scan chains; use the preview_dft command before DFT 
insertion instead.

• At the chip level, the implicit scan chain segments must be connected to the core-level 
scan access ports; the tool does not make these connections.

• Implicit scan chains do not reliably mix with scan cells of opposite edge polarity when 
edge-mixing is enabled with the set_scan_configuration -clock_mixing command.

• When implicit scan chains are used, the DFTMAX tool produces a partial test protocol. 
This protocol is not complete and contains only a partial ScanChain definition for the 
implicit scan chains. The protocol cannot be used in the TetraMAX tool directly.

• Post-DFT DRC is not supported when implicit scan chains are used. Use the TetraMAX 
tool to perform DRC checking.
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DFTMAX Compression With Serializer 22

DFTMAX compression with serializer can be used to improve the ATPG quality of results 
(QoR) for designs or blocks with a limited number of top-level ports. This QoR improvement 
is accomplished by employing a serial connection between the codec and the top-level 
ports.

This chapter includes the following topics:

• Overview

• Architecture

• Serializer Operation

• Higher Shift Speed and Update Stage

• Scan-Enable Signal Requirements for Serializer Operation

• Timing Paths

• Scan Clocks

• User Interface

• Configuring Serialized Compressed Scan

• Deserializer/Serializer Register Size

• Serializer Implementation Flow

• Serialized Compressed Scan Core Creation
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• Top-Down Flat Flow

• Top-Down Partition Flow

• HASS Flow

• Hybrid Flow

• Serializer IP Insertion

• Wide Duty Cycle Support for Serializer

• Serializer in Conjunction With On-Chip Clocking Controllers

• Using Integrated Clock-Gating Cells in the Serializer Clock Controller

• User-Defined Pipelined Scan Data

• Running TetraMAX ATPG on Serializer Designs

• DFTMAX Compression With Serializer Limitations

• Out-of-Scope Serializer Functionality

• DFTMAX Compression Error Messages
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Overview

The scan architecture that the DFTMAX tool creates is called compressed scan. By default, 
the connection from the input and output of the compressor/decompressor (codec) to the 
top-level ports or pins created by DFTMAX scan compression is combinational. To improve 
the ATPG quality of results (QoR) for designs or blocks with a limited number of top-level 
ports, the DFTMAX tool also supports an optional serial connection between the codec and 
the top-level ports.

This chapter uses the term combinational compressed scan, or more generally, compressed 
scan, to refer to compressed scan with the default combinational codec-to-top-level-ports 
connection. The term serialized compressed scan refers to compressed scan that uses 
serializing logic to provide a serial connection to the codec. The term serializer refers to the 
logic that provides the serial connection.

For a given number of top-level scan inputs and outputs, DFTMAX compression can create 
up to a maximum number of chains with full X-tolerance, using combinational compressed 
scan, as shown in Table 22-1.

Table 22-1 shows that the maximum number of chains with full X-tolerance is limited for low 
pin-count designs and is not available for one-scan-in-one-scan-out designs. The serializer 
overcomes this limitation and achieves full X-tolerance for any number of scan inputs and 
outputs, including as few as 1 scan-in pin and 1 scan-out pin.

Note:   
The maximum number of chains shown in Table 22-1 will be different if an on-chip 
clocking (OCC) chain is present in the design.

Table 22-1 Number of Available Compressed Scan Chains 

Number of 
inputs

Number of 
outputs

Max number of full Xtol chains
= (number of outputs) x 
(2(#inputs-1))

1 1 Unavailable

2 2 4

3 3 12

4 4 32
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Architecture

Figure 22-1 shows the basic serializer architecture.

Figure 22-1 Basic Serializer Architecture

The serializer architecture consists of the following additional logic:

• Serializer clock controller

• Deserializer registers

• Serializer registers
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Serializer Clock Controller

The serializer clock controller contains an FSM counter and clock-gating cells.

• FSM Counter: finite state machine counter creates the clock-enable signal (routed to 
clock-gating cells) and the strobe signal (routed to the serializer registers). The counter 
is driven by an external clock.

• CGCs: clock-gating cells are inserted at the specified scan-shift clocks. They are 
enabled by the FSM counter value and produce internally generated clocks during scan 
chain shifting.

Deserializer Registers

Deserializing registers are placed in the decompressor IP at the input side. These registers 
load the scan input data serially and supply the data to the compressed chains.

Serializer Registers

Serializing registers are placed in compressor IP at the output side. These registers capture 
data from the compressor outputs and stream the data to the scan output.

Serializer Operation

Figure 22-2 shows the serializer operation and timing diagram involving 4-bit deserializer 
and serializer registers.
Chapter 22: DFTMAX Compression With Serializer
Serializer Operation 22-5
Chapter 22: DFTMAX Compression With Serializer
Serializer Operation 22-5



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 22-2 Serializer Operation

The sequence of events shown in Figure 22-2 is as follows:

1. FSM counter starts counting.

2. Deserializer registers start shifting data for the first internal shift.

3. Deserializer registers complete the shift for the first internal shift.

4. First shift data is loaded into the first flip-flops of the compressed chains through the 
decompressor. At the same time, the serializer registers capture the compressor 
outputs.

5. Tester starts strobing the compressor outputs for the first shift.

6. Tester completes strobing the compressor outputs for the first shift.

7. Deserializer registers complete the shift for the last internal shift.

8. Last shift data is loaded into the compressed chains through the decompressor.
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Higher Shift Speed and Update Stage

Because the serializer clock controller behaves like a clock divider, the internal scan clocks 
are generated by the external clocks being divided by S, where S is the depth of the 
serializer register segment. For example, when S is 8 and the external clock speed is 
10 MHz, the internal clock speed reduces to 1.25 MHz. Thus, the speed of the external clock 
can be increased up to S-times faster without affecting the compressed chain shift timing. 
(An 80 MHz external clock would result in a 10 MHz internal shift clock.)

However, in a fully X-tolerant implementation of the compression logic, the longest path 
traverses from the deserializer flip-flop output pin through the decompressor gates and then 
through the compressor selector gates to the serializer flip-flop input pin. This path is shown 
in red in Figure 22-3.

Figure 22-3 Serializer Architecture Without Update Stage

As the period of the serializer clock decreases, this path becomes critical because it cannot 
exceed the clock period.
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Figure 22-4 Timing Diagram With Update Stage

One way to decouple this critical path from the serializer clock timing is to insert an update 
stage between the deserializer register output pins and the decompressor combinational 
logic inputs, as shown in Figure 22-5. This update stage is synchronized by a clock that runs 
as fast as the internal shift clock.
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Figure 22-5 Serializer Architecture With Update Stage

The update stage has the following effects:

• Provides an extra timing margin, as indicated in Figure 22-4 on page 22-8.

• Results in one internal clock cycle longer than a serializer architecture without an update 
stage. So, for example, if there were 100 test cycles per pattern without the update stage, 
then with the update stage, the whole test cycle per pattern would be 100 cycles plus 1 
internal clock cycle.

• Decreases the test time by using a faster external clock.

Figure 22-6 shows the scan shift operation with the update stage implemented.
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Figure 22-6 Serializer Operation With Update Stage

Scan-Enable Signal Requirements for Serializer Operation

As previously discussed, the clocks for compressed scan chains are internally generated by 
the serializer clock controller. The serializer FSM counter in the controller counts when the 
scan-enable signal is active and feeds the clocks to the compressed scan chains at the 
proper time. When the scan-enable signal becomes inactive during capture, the FSM 
counter is reset and the external clocks directly clock the compressed scan chain. 
Therefore, for proper operation, the scan-enable signal must be held in the inactive state in 
all capture procedures.

If you use the STIL procedure file created by the DFTMAX tool, the protocol already meets 
this requirement. The tool constrains all scan-enable signals to the inactive state in the 
capture procedures, excluding any scan-enable signals defined with the -usage 
clock_gating option of the set_dft_signal command.
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If you use a custom STIL procedure file, keep the following in mind:

• Make sure that all scan-enable signals used by serializer clock controllers are 
constrained to the inactive state in all capture procedures.

• If clock pulses are needed to initialize the internal registers whose clock pins are gated 
by the serializer clock controller, make sure that the scan-enable signal is inactive 
throughout the test_setup procedure. By keeping the scan-enable signal inactive, the 
clock pulses needed for initialization can reach the initialization registers. Otherwise, the 
initialization might not be performed properly, and you could see unexpected R-rule 
violations in DRC.

Timing Paths

The following figures show the datapaths specific to the serialized compressed scan 
architecture. Figure 22-7 shows the datapaths without the update stage. Figure 22-8 shows 
the datapaths with the update stage. The figures demonstrate the use of the DFT-inserted 
OCC controller and external clocks.

Figure 22-7 Datapath Diagrams Without Update Stage
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Figure 22-8 Datapath Diagrams With Update Stage

In Figure 22-7 and Figure 22-8, the red, purple, green, and blue arrows in the waveforms 
and the colored arrows in the block diagrams at the right side of the figures correspond to 
each other. The arrows are focused on the paths from the decompressor block to the core 
and then from the core to the compressor block. These diagrams are also useful in 
understanding the role of the update stage, which relaxes the timing path from 
decompressor to core to compressor.

Scan Clocks

The following topics discuss scan shift clocks when using a serializer:

• Deserializer/Serializer Update Stage Register Clocks

• Specifying a Clock for Deserializer/Serializer Registers

• Staggered Scan Clocks

• Specifying Scan Clock Ports
Chapter 22: DFTMAX Compression With Serializer
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Deserializer/Serializer Update Stage Register Clocks

You use one of the scan shift clocks, defined with the command set_dft_signal -type 
ScanClock command, as the clock for the deserializer/serializer registers. If you do not 
specify a particular clock, the clock for these registers is selected as follows:

• When OCC is used and an automated pipeline scan data register clock is defined as one 
of the ATE clocks, then the pipeline scan data clock is used for the deserializer/serializer 
registers.

• In other cases, any clock that reduces the number of lock-up latches is used for the 
deserializer/serializer registers.

You can determine which clock is selected for the deserializer/serializer registers by using 
the preview_dft command, as shown by the following:

  Load/Unload Serializer Clock = CLK1

Load stands for the input-side deserializer registers, and Unload stand for the output-side 
serializer registers.

The update stage is implemented by specifying the command 
set_serialize_configuration -update_stage true. The clock for the update stage 
always has the same clock source as the deserializer/serializer register clock. The 
update-stage clock is a gated version of the deserializer/serializer register clock. 

Specifying a Clock for Deserializer/Serializer Registers

You can specify a clock for the deserializer/serializer registers in a chip-level flow. If you 
have multiple scan clocks and have a particular clock that you need to use for the 
deserializer/serializer registers, you can follow Example 22-1.

Example 22-1 Script Example for Specifying a Clock for the Deserializer/Serializer Registers

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
  -port EXT_CLK1 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
  -port EXT_CLK2 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
  -port EXT_CLK3 -test_mode all
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -serializer_clock EXT_CLK2 \
  -update_stage true
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You can specify a clock for the deserializer/serializer registers with the command 
set_serialize_configuration -serializer_clock. The clock specified with the 
-serializer_clock option has to be predefined with the command set_dft_signal 
-type ScanClock.

Staggered Scan Clocks

If you want to use staggered scan-shift clocks to reduce power during shift, the clock 
waveforms should be carefully considered. Since the input side of the deserializer registers 
and the update stage are triggered by the trailing edge, the timing of internal scan cells that 
obtain the data from the deserializer registers-update stage must not occur later than the 
trailing edge. Similarly, since the output side of the serializer registers is triggered by the 
leading edge, the timing of the internal scan cells that launch the data through the 
compressor to the serializer registers must not occur earlier than the leading edge. A 
possible way to employ staggered clocks is to use the timing waveforms shown in 
Figure 22-9 for the shift mode.

Figure 22-9 Staggered Clock Waveform

Suppose, for example, your design has five external clocks, each with different timing, as 
shown the following group of set_dft_signal command:

set_dft_signal -type ScanClock -view existing_dft -timing {47 88} \
  -port EXT_CLK1 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {50 68} 
  -port EXT_CLK2 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {55 73} \
  -port EXT_CLK3 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {60 78} \
  -port EXT_CLK4 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {65 83} \
  -port EXT_CLK5 -test_mode all
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With these specifications, the tool automatically selects EXT_CLK1 as the deserializer/
serializer register clock. It is the only clock that can make the serializer scheme work.

Note:   
For this example, even if you choose a clock other than EXT_CLK1 by using the 
set_serialize_configuration -serializer_clock clock_name command, the 
tool ignores your specification. 

Specifying Scan Clock Ports

When you use the serializer technology, you should instruct the tool where to insert the 
serializer clock controller. It should be a pin on a clock line that drives all the scan cells. The 
following command example shows how to make this specification when you have pads for 
the scan clock ports:

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
  -port EXT_CLK1 -test_mode all

set_dft_signal -view spec -type ScanClock -port EXT_CLK1 \
  -hookup_pin F1/Y -test_mode all

The value of the -hookup_pin option tells the tool where to insert the serializer clock 
controller. Without this option specification, the clock controller would be inserted close to 
the port, which might be outside the clock pad and therefore might adversely affect circuit 
behavior.

User Interface

The set_scan_compression_configuration -serialize command allows you to 
specify the location of the serializer logic. When you want to implement the serializer, specify 
the either chip_level or core_level for the -serialize option. The default is none, 
which indicates that no serialization is requested and combinational compressed scan is 
implemented.

set_scan_compression_configuration ... 
             -serialize chip_level | core_level | none

The set_serialize_configuration command is used specifically to define the serializer 
options. Additional options are available to configure the serializer insertion:

set_serialize_configuration ...
          -test_mode name
          -parallel_mode name
          -inputs number
          -outputs number
          -update_stage true | false
          -exclude_clocks name
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          -serializer_clock name
          -update_clock name
          -strobe name
          -ip_inputs number
          -ip_outputs number
          -wide_duty_cycle true | false

Note the following conditions:

• The default for the -update_stage option is false.

• The -exclude_clocks option can be used for certain clocks that are not to be gated by 
the serializer clock controller. 

• The specified number of -inputs and -outputs has to be the same. 

• The -ip_inputs and -ip_outputs options are used for serializer IP insertion flow. For 
information on this flow, see “Serializer IP Insertion” on page 22-39.

• For the usage of -serializer_clock, -update_clock and -strobe, see “Scan Clocks” 
on page 22-12 and “Serialized Compressed Scan Core Creation” on page 22-18.

• The default for the -wide_duty_cycle option is false. For the wide duty cycle support, 
see “Wide Duty Cycle Support for Serializer” on page 22-54.

To see how these options are used, refer to the script examples in the following top-down 
flat flow, top-down partition flow, HASS flow, and Hybrid flow sections.

Configuring Serialized Compressed Scan

Figure 22-10 and the accompanying script to the right of the figure show you how to use the 
following two commands together:

• set_scan_compression_configuration defines the codec specification.

• set_serialize_configuration defines the serializer specification.

Using these commands results in the architecture shown in Figure 22-10.
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Figure 22-10 Association of set_serialize_configuration With Existing 
set_scan_compression_configuration Command

Deserializer/Serializer Register Size

Deserializer/serializer register size is determined by the command:

set_scan_compression_configuration -inputs number -outputs number

The deserializer/serializer register size is equal to the number of codec inputs and outputs. 
For example, if this number is 8, then 8-bit deserializer/serializer registers are implemented.

The deserializer/serializer register is divided into some number of segments, depending on 
the number specified in this command:

set_serialize_configuration -inputs number -outputs number

For example, if the number is 2, then two 4-bit deserializer/serializer segments are created.

set_scan_compression_configuration \
 # codec inputs
   -inputs 8 \
 # codec outputs
   -outputs 8 \
 # Compressed chains
   -chain_count 200 \
 # Enabling serializer specification
   -serialize chip_level
set_serialize_configuration \
 # serial input
   -inputs 1 \
 serial output
   -outputs 1 \
 # update stage
   -update_stage true
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Serializer Implementation Flow

When you insert a serializer, two implementation flows are available:

• Core-level flow

• Chip-level flow

The core-level flow is used for serialized compressed scan core creation. The serialized 
compressed scan cores are integrated at the chip level in either a HASS or Hybrid flow. The 
core-level flow is enabled by the command set_scan_compression_configuration 
-serialize core_level. See “Serialized Compressed Scan Core Creation” on 
page 22-18.

The chip-level flow is used for top-down flat flow, top-down partition flow, HASS flow, Hybrid 
flow, and serializer IP insertion flow. The chip-level flow is enabled by the command 
set_scan_compression_configuration -serialize chip_level. See

• “Top-Down Flat Flow” on page 22-21

• “Top-Down Partition Flow” on page 22-24

• “HASS Flow” on page 22-29

• “Hybrid Flow” on page 22-36

• “Serializer IP Insertion” on page 22-39

Serialized Compressed Scan Core Creation

You can create serialized compressed scan cores and integrate them at the chip level in a 
HASS flow or a Hybrid flow. For a serialized compressed scan core-level flow, use the 
command set_scan_compression_configuration -serialize core_level. 
Figure 22-11 shows a diagram for the serialized compressed scan core.
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Figure 22-11 Serialized Compressed Scan Core

Note the following in Figure 22-11:

• No serializer clock controller is inserted.

❍ The ports for ser_clk, update_clk, and strobe are automatically created. 
Therefore the serializer clock controller that is inserted at the top level during HASS 
or Hybrid flows feeds signals to these ports.

• Each deserializer/serializer register segment has an interface that connects to and from 
the different cores. Even if you specify set_serialize_configuration -inputs 1 
-outputs 1, two scan-in and scan-out ports are created, as shown in Figure 22-11.

Serializer Core-Level Flow

Example 22-2 shows a typical serialized compressed scan core-level flow:

Example 22-2 Script Example for a Serialized Compressed Scan Core-Level Flow

set_scan_configuration -chain_count 1
set_dft_configuration -scan_compression enable
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set_scan_compression_configuration \
  -xtolerance high \
  -chain_count 200 \
  -inputs 8 \
  -outputs 8 \
  -serialize core_level
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -update_stage true
create_test_protocol
dft_drc
insert_dft

Note:   
With regard to command requirements for serialized compressed scan core creation, 
you must specify the same value in the set_scan_configuration -chain_count 
number and set_serialize_configuration -inputs number -outputs number 
commands for each core-level configuration. Otherwise, you will see unexpected errors 
in the HASS or Hybrid flows at the chip level.

User-Defined Ports for the Serializer Core-Level Flow

You might need to specify the port usage for each core before core creation. For example, 
suppose you want to specify the particular ports ser_clk, update_clk, and strobe, as the 
serializer control ports. You could use a script such as the one shown in Example 22-3.

Example 22-3 Script Example for Defining Core-Level Serializer Ports

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
  -port MY_SERI_CLK -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
  -port MY_UPD_CLK  -test_mode all
set_dft_signal -view spec         -type TestData  \
  -port MY_STROBE   -test_mode all
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -update_stage true \
  -serializer_clock MY_SERI_CLK \
  -update_clock MY_UPD_CLK \
  -strobe MY_STROBE

The ports specified with the -serializer_clock and -update_clock options must be 
predefined as test clocks with the set_dft_signal -type ScanClock command, and the 
port specified with the -strobe option must be predefined as test data with the 
set_dft_signal -type TestData command. All of these ports must be dedicated existing 
test ports. The tool connects the signals to the specified ports, instead of creating them.
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Nondefault Scan Clock Timing for Core-Level Flows

If you use clock timing that is not the default clock timing (period of 100, rise of 45, and fall 
of 55) for a flow that is specified with the set_scan_compression_configuration 
-serialize core_level command, you might encounter the following error message 
when you run the preview_dft command on the core-level flow: 

Error: Cannot synchronize scan chain cells 'U_core1/stat_reg_1_' and
'Serializer_clk_seg'. Both edges of clock 'clkA' occur before clock 
'ser_clk' triggers. (TEST-344)

This error can occur because by default the tool automatically creates a serializer clock 
named ser_clk and assumes it has the default timing. If you need to use nondefault clock 
timing in a core-level implementation flow, you should define a clock port with nondefault 
timing specified, as shown in Example 22-4.

Example 22-4 Serializer Core-Level Flow Using a Nondefault Clock

set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
  -port EXT_CLK1 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
  -port EXT_CLK2 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
  -port MY_SER_CLK -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
  -port MY_UPD_CLK -test_mode all
set_dft_signal -view spec -type TestData -port MY_STROBE -test_mode all
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -serializer_clock MY_SERI_CLK \
  -update_clock MY_UPD_CLK \
  -strobe MY_STROBE \
  -update_stage true

As in this example, when you specify a clock port with -update_clock, you should set the 
same clock timing as the clock port specified with -serializer_clock, because the clock 
timing becomes the same after a serializer clock controller is inserted at the top level during 
a HASS or Hybrid flow.

Top-Down Flat Flow

The following two topics describe typical command flows when a serializer codec is inserted 
at a top level that does not yet contain a codec:

• Serial Mode and Standard Scan Mode

• Serial Mode, Parallel Mode, and Standard Scan Mode
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Serial Mode and Standard Scan Mode

By default, without a user-defined test mode, DFTMAX compression architects the 
Internal_scan and ScanCompression_mode modes. When the -serialize chip_level 
option is specified, the ScanCompression_mode becomes the serializer mode, which in this 
discussion is called serial mode as a matter of convenience. The script in Example 22-5 
shows you how to create the serial mode.

Example 22-5 Script Example for a Top-Down Flat Flow: Two Modes

set_scan_configuration -chain_count 2
set_scan_compression_configuration \
  -inputs 8 \
  -outputs 8 \
  -chain_count 200 \ 
  -serialize chip_level
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -update_stage true
create_test_protocol
dft_drc
insert_dft
...

# Serial mode 
write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode

# Standard scan mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

In this script example, one scan-in port and one scan-out port are created in the serial mode 
and two scan-in ports and two scan-out ports are created in the standard scan mode.

Serial Mode, Parallel Mode, and Standard Scan Mode

In addition to the serial mode provided with the serializer, you can also create a “parallel 
mode.” This mode is logically equivalent to combinational compressed scan as shown in 
Figure 22-12. The parallel mode is created with the -parallel_mode option, as shown in 
the script of Example 22-6.

Example 22-6 Script Example for a Top-Down Flat Flow: Three Modes

define_test_mode my_regular  -encoding {TM1 0 TM2 0} \
  -usage scan
define_test_mode my_parallel -encoding {TM1 0 TM2 1} \
  -usage scan_compression
define_test_mode my_serial   -encoding {TM1 1 TM2 0} \
  -usage scan_compression
for {set i 0} {$i < 8} {incr i} {
Chapter 22: DFTMAX Compression With Serializer
Top-Down Flat Flow 22-22



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
  set_dft_signal -view spec -type ScanDataIn -port SI_${i} \
    -test_mode all
  set_dft_signal -view spec -type ScanDataOut -port SO_${i} \
    -test_mode all
}
set_scan_configuration -chain_count 2 -test_mode my_regular
set_scan_compression_configuration \
  -base_mode my_regular \
  -test_mode my_serial \
  -xtolerance high -chain_count 200 -inputs 8 -outputs 8 \
  -static_x_chain_isolation true \
  -serialize chip_level
set_serialize_configuration \ 
  -test_mode my_serial \
  -parallel_mode my_parallel \
  -inputs 1 -outputs 1 \ 
  -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode my_serial
write_test_protocol -output PARALLEL.spf -test_mode my_parallel
write_test_protocol -output SCAN.spf -test_mode my_regular

Be aware that my_parallel as a parallel mode is specified with the -parallel_mode option 
of the set_serialize_configuration command and my_serial as a serial mode is 
specified with the -test_mode option of the set_scan_compression_configuration 
command.

In this example, one scan-in port and one scan-out port are created in the serial mode, eight 
scan-in and scan-out ports are created in the parallel mode, and two scan-in and scan-out 
ports are created in the standard scan mode.

When the parallel mode is implemented along with the serial mode, only one codec for the 
serial mode is implemented and shared with the parallel mode. Figure 22-12 shows how it 
is shared.
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Figure 22-12 Top-Down Flat Flow Diagram

Top-Down Partition Flow

For a top-down partition flow, you can specify serializer insertion in each partition. If you 
specify the -update_stage true option with the set_serialize_configuration 
command in one partition, the option setting is applied to all other partitions.

There are two top-down partition flows: one that uses dedicated serializer chains for each 
partition, and one that concatenates the serializer chains across partitions.

You can create a parallel mode, such as a top-down flat flow, by employing user-defined test 
modes, but this capability is available only on the dedicated serializer chain flow.

For the concatenated serializer chain flow, the generated test modes are

• ScanCompression_mode: serial mode

• Internal_scan: standard scan mode 

Note:   
The top-down partition flow with core-level serializer insertion is not supported. 
Core-level serializer insertion is discussed in the“Serialized Compressed Scan Core 
Creation” on page 22-18.
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Serializer Chains Dedicated to Each Partition

You can divide the design into multiple partitions and insert serializer codecs into each 
partition. Figure 22-13 shows a top-down partition flow for which serializer chains are 
dedicated to each partition. Example 22-7 shows the script for this case for two modes.

Figure 22-13 Top-Down Partition Flow With Serializer Chains Dedicated to Each Partition

Example 22-7 Script Example for a Top-Down Partition Flow With Serializer Chains Dedicated 
to Each Partition: Two Modes

define_dft_partition partition1 -include [list U0 U1 U2 U3 U4]
current_dft_partition partition1
set_scan_configuration -chain_count 8 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -location U0 -xtolerance high -chain_count 200 \
  -inputs 8 -outputs 8 \
  -serialize chip_level
set_serialize_configuration \
  -inputs 1 -outputs 1 \
  -update_stage true

current_dft_partition default_partition
set_scan_configuration -chain_count 10 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
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set_scan_compression_configuration \
     -location U5 -xtolerance high -chain_count 300 \
     -inputs 10 -outputs 10 \
     -serialize chip_level
set_serialize_configuration \
     -inputs 1 -outputs 1 \
     -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

In the script shown in Example 22-7, two scan-in and scan-out ports are created in the serial 
mode and 18 scan-in and scan-out ports are created in the standard scan mode, at the top 
level.

Example 22-8 shows this case for three modes.

Example 22-8 Script Example for a Top-Down Partition Flow With Serializer Chains Dedicated 
to Each Partition: Three Modes

define_test_mode my_regular  -encoding {TM1 0 TM2 0} \
     -usage scan
define_test_mode my_parallel -encoding {TM1 0 TM2 1} \
     -usage scan_compression
define_test_mode my_serial   -encoding {TM1 1 TM2 0} \
     -usage scan_compression
 
define_dft_partition partition1 -include [list U0 U1 U2 U3 U4]
current_dft_partition partition1
set_scan_configuration -chain_count 8 -test_mode my_regular 
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
     -base_mode my_regular \
     -test_mode my_serial \
     -location U0 -xtolerance high -chain_count 200 \
     -inputs 8 -outputs 8 \
     -serialize chip_level
set_serialize_configuration \
     -test_mode my_serial \
     -parallel_mode my_parallel \
     -inputs 1 -outputs 1 \
     -update_stage true

current_dft_partition default_partition
set_scan_configuration -chain_count 10 -test_mode my_regular
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
     -base_mode my_regular \
     -test_mode my_serial \
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     -location U5 -xtolerance high -chain_count 300 \
     -inputs 10 -outputs 10 \
     -serialize chip_level
set_serialize_configuration \
     -test_mode my_serial \
     -parallel_mode my_parallel \
     -inputs 1 -outputs 1 \
     -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode my_serial
write_test_protocol -output PARALLEL.spf -test_mode my_parallel
write_test_protocol -output SCAN.spf -test_mode my_regular

In the script shown in Example 22-8, two scan-in and scan-out ports are created in the serial 
mode, and 18 scan-in and scan-out ports are created in the parallel mode, and 18 scan-in 
and scan-out ports are created in the standard scan mode, at the top level.

Serializer Chains Concatenated Across Partitions

Scan ports can access across the multiple partitions. Figure 22-14 shows the case for a 
design with two partitions. Example 22-9 shows the script for this case.
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Figure 22-14 Top-Down Partition Flow With Serializer Chains Concatenated Across Partitions

For this architecture, the following three command requirements should be observed:

• You should use the -partition all option when defining top-level scan ports with the 
set_dft_signal command.

• You should not specify the -inputs and -outputs options with the 
set_serialize_configuration command in any partition.

• The number of scan-in and scan-out port pairs defined by the set_dft_signal 
-partition all commands should be exactly the same number as the 
set_scan_configuration -chain_count number command specified in each 
partition.

Example 22-9 Script Example for a Top-Down Partition Flow With Serializer Chains 
Concatenated Across Partitions

set_dft_signal -view spec -type ScanDataIn  -port SI_TOP -partition all
set_dft_signal -view spec -type ScanDataOut -port SO_TOP -partition all
define_dft_partition partition1 -include [list U0 U1 U2 U3 U4]
current_dft_partition partition1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -location U0 -xtolerance high -chain_count 200 \
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  -inputs 8 -outputs 8 \
  -serialize chip_level
set_serialize_configuration \
  -update_stage true

current_dft_partition default_partition
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -location U5 -xtolerance high -chain_count 300 \
  -inputs 10 -outputs 10 \
  -serialize chip_level
set_serialize_configuration \
  -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

In the script shown in Example 22-9, the commands have one pair of scan-in and scan-out 
settings with the -partition all option, and a chain count value of 1 is specified with the 
set_scan_configuration -chain_count command. Additionally, the -inputs number 
and -outputs number options are not specified in the set_serialize_configuration 
command.

This example creates one scan-in port and one scan-out port in the serial mode and the 
standard scan mode at the top level.

The tool relies only on the set_dft_signal -partition all command to determine 
whether you are using the concatenated serializer chain flow. Be careful to define the 
set_dft_signal -partition all command for the scan-in and scan-out ports correctly; 
otherwise, you might encounter unexpected errors.

Note:   
Implementing a different number of scan ports between the serial mode and the standard 
scan mode is not supported.

HASS Flow

You can insert serializer codecs into the core modules and then integrate the multiple cores 
at the top level.

For core-level serializer insertion, use the set_scan_compression_configuration 
-serialize core_level command on each core. See “Serialized Compressed Scan Core 
Creation” on page 22-18. At the top level, use the 
Chapter 22: DFTMAX Compression With Serializer
HASS Flow 22-29
Chapter 22: DFTMAX Compression With Serializer
HASS Flow 22-29



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
set_scan_compression_configuration -serialize chip_level -integration_only 
true command. This command enables the tool to insert a serializer clock controller at the 
top level and to integrate the cores.

Similar to the top-down partition flow, there are two HASS flows:

• One that uses dedicated serializer chains for each core.

• One that concatenates the serializer chains across the cores.

You can create a parallel mode by employing user-defined test modes, but this capability is 
limited to the dedicated serializer chain flow.

For the concatenated serializer chain flow, the generated test modes are

• ScanCompression_mode: serial mode

• Internal_scan: standard scan mode

Some limitations apply to core integration in the serializer flow. See “DFTMAX Compression 
With Serializer Limitations” on page 22-89.

Serializer Chains Dedicated to Each Core

Serializer chains are created and dedicated to each core. If you have two cores, you would 
need to have at least two scan-in and scan-out ports at the top level. Figure 22-15 shows an 
example for a design with two cores. Example 22-10 shows the script for this case.
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Figure 22-15 HASS Flow With Serializer Chains Dedicated to Each Core

Example 22-10 Script Example for a HASS Flow With Serializer Chains Dedicated to Each Core

### core1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -xtolerance high \
  -chain_count 150 \
  -inputs 8 \
  -outputs 8 \
  -serialize core_level
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan
dft_drc
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### core2
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -xtolerance high \
  -chain_count 250 \
  -inputs 8 \
  -outputs 8 \
  -serialize core_level
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan
dft_drc
###For core-level serializer insertion,
###you have to specify the same <number> in the
###set_scan_configuration -chain_count <number> and
###set_serialize_configuration -inputs <number> -outputs <number>
###commands for each core level configuration; otherwise,
###you will see unexpected errors.

### top level
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true \
  -serialize chip_level
create_test_protocol
dft_drc
preview_dft
insert_dft
write -hierarchy -output TOP.v -format verilog
write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

Example 22-11 shows the script for the HASS parallel mode flow. In this script example, 2 
scan-in and 2 scan-out ports are created for the serial mode and the standard scan mode.

Example 22-11 Script Example for a HASS Parallel Mode Flow With Serializer Chains Dedicated 
to Each Core

### core1
define_test_mode my_regular -usage scan
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define_test_mode my_serial -usage scan_compression
define_test_mode my_parallel -usage scan_compression
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
  -test_mode my_regular
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -base_mode my_regular \
  -test_mode my_serial \
  -xtolerance high \
  -chain_count 150 \
  -inputs 8 \
  -outputs 8 \
  -serialize core_level
set_serialize_configuration \
  -test_mode my_serial \
  -parallel_mode my_parallel \
  -inputs 1 \
  -outputs 1 \
  -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode my_regular
dft_drc
current_test_mode my_serial
dft_drc
current_test_mode my_parallel
dft_drc

### core2
define_test_mode my_regular -usage scan
define_test_mode my_serial -usage scan_compression
define_test_mode my_parallel -usage scan_compression
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
  -test_mode my_regular
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -base_mode my_regular \
  -test_mode my_serial \
  -xtolerance high \
  -chain_count 250 \
  -inputs 8 \
  -outputs 8 \
  -serialize core_level
set_serialize_configuration \
  -test_mode my_serial \
  -parallel_mode my_parallel \
  -inputs 1 \
Chapter 22: DFTMAX Compression With Serializer
HASS Flow 22-33
Chapter 22: DFTMAX Compression With Serializer
HASS Flow 22-33



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
  -outputs 1 \
  -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode my_regular
dft_drc
current_test_mode my_serial
dft_drc
current_test_mode my_parallel
dft_drc
### For core-level serializer insertion,
### you have to specify the same <number> in the
### set_scan_configuration -chain_count <number> and
### set_serialize_configuration -inputs <number> -outputs <number>
### commands for each core level configuration; otherwise,
### you will see unexpected errors.

### top level
define_test_mode my_regular  -encoding {TM1 0 TM2 0} \
  -usage scan
define_test_mode my_serial   -encoding {TM1 0 TM2 1} \
  -usage scan_compression
define_test_mode my_parallel -encoding {TM1 1 TM2 0} \
  -usage scan_compression
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks \
  -test_mode all
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true \
  -serialize chip_level
create_test_protocol
dft_drc
preview_dft
insert_dft
write -hierarchy -output TOP.v -format verilog
write_test_protocol -output SCAN.spf -test_mode my_regular
write_test_protocol -output SERIAL.spf -test_mode my_serial
write_test_protocol -output PARALLEL.spf -test_mode my_parallel

In this script example, 2 scan-in and 2 scan-out ports are created for the serial mode and the 
standard scan mode. For the parallel mode, 16 scan-in and 16 scan-out ports are created.

Serializer Chains Concatenated Across Cores

You can specify the number of scan ports at the top level so that the serializer chains can be 
concatenated across multiple cores, as shown in Figure 22-16. This is controlled at the top 
level by specifying the set_scan_configuration -chain_count command. When you 
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specify a number equivalent to the sum of the numbers specified by 
set_serialize_configuration -inputs number -outputs number at each core level, 
the core-level scan ports are brought up to the top-level scan ports. They are not 
concatenated across the cores. On the other hand, if you specify a number less than the 
sum of the numbers specified by set_serialize_configuration -inputs number 
-outputs number at each core level, only the specified number of scan ports are created at 
the top level, which is accomplished by concatenating each core-level deserializer/serializer 
register segment accordingly.

For the design example shown in Figure 22-16, if you specify the chain count at the top level 
by using the set_scan_configuration -chain_count 1 command, only one scan-in and 
one scan-out port is created for the serial mode and the standard scan mode.

Figure 22-16 HASS Flow With Serializer Chains Concatenated Across Multiple Cores

You should not specify a number larger than the sum of the numbers specified with the 
set_serialize_configuration -inputs number -outputs number command for each 
core.

Note:   
In the concatenated serializer chain flow, DFTMAX compression might not be able to 
build an optimal length serializer chain segment. 

Suppose, for example, that you have 2 scan-ins and scan-outs for a 6-bit serializer on 
core1, 2 scan-ins and scan-outs for a 6-bit serializer on core2, 2 scan-ins and scan-outs 
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for a 4-bit serializer on core3, and that you want to create 2 scan-ins and scan-outs at the 
top level.

You might expect two 8-bit serializer segments (6/2 + 6/2 + 4/2) to be created at the top 
level, by concatenating core-level serializer segments. But this might not happen.

The workaround in this case is to create 6 scan-ins and scan-outs for core1 and core2, 
and 4 scan-ins and scan-outs for core3 at the serializer core-level creation. This would 
mean that each serializer segment is 1-bit. The tool would then have more flexibility to 
create 8-bit serializer segments, which is the optimal length at the top level. 

Hybrid Flow

If you have performed multiple core-level implementations but still have some user-defined 
logic at the top level, you can apply the Hybrid flow. The Hybrid flow provides core 
integration and serializer insertion for the user-defined logic at the same time at the top level.

To create a core implemented with a serializer codec, use the 
set_scan_compression_configuration -serialize core_level command at each 
core level. At the top level, specify the set_scan_compression_configuration 
-serialize chip_level -hybrid true command. This enables the tool to insert a 
serializer clock controller and a serializer codec for the top-level user-defined logic and then 
integrate all the serializer cores.

The Hybrid flow does not support a user-defined test mode. You cannot have both a parallel 
mode and a serial mode. Only a serial mode and a standard scan mode are supported 
together. The generated test modes are

• ScanCompression_mode: serial mode

• Internal_scan: standard scan mode

Figure 22-17 shows the Hybrid flow diagram. Example 22-12 shows the script for this case.
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Figure 22-17 Hybrid Flow Diagram

Example 22-12 Script Example for a Hybrid Flow

### core1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -xtolerance high \
  -chain_count 150 \
  -inputs 8 \
  -outputs 8 \
  -serialize core_level
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan
dft_drc
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### core2
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -xtolerance high \
  -chain_count 600 \
  -inputs 12 \
  -outputs 12 \
  -serialize core_level
set_serialize_configuration \
  -inputs 2 \
  -outputs 2 \
  -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
preview_dft
dft_drc
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan
dft_drc
### For core-level serializer insertion,
###you have to specify the same <number> in the
###set_scan_configuration -chain_count <number> and
###set_serialize_configuration -input <number> -output <number>
###commands for each core level configuration; otherwise,
###you will see unexpected errors.

### top level
set_scan_configuration -chain_count 4 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -xtolerance high  \
  -chain_count 50 \
  -inputs 6 \
  -outputs 6 \
  -hybrid true \
  -serialize chip_level
set_serialize_configuration \
  -inputs 1 \
  -outputs 1 \
  -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
write -hierarchy -output TOP.v  -format verilog
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write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

For the Hybrid flow, you set the numbers by using the set_scan_configuration 
-chain_count number and the set_serialize_configuration -inputs number 
-outputs number commands at the top level as follows:

The set_serialize_configuration -inputs number -outputs number command 
specifies the number of scan-in and scan-out ports of the serializer codec used to take care 
of the top-level user-defined logic. The set_scan_configuration -chain_count number 
command specifies the total number of the top-level scan ports. The number specified with 
the set_scan_configuration -chain_count number command at the top level has to be 
exactly the same number as the sum of the numbers specified with the 
set_serialize_configuration -inputs number -outputs number command for each 
serializer codec. 

In Example 22-12, you have one scan-in and one scan-out port for core1 and two scan-in 
and two scan-out ports for core2. Then, because you have one scan-in and one scan-out 
port for the serializer that takes care of the top-level user-defined logic, you have to specify 
four scan-in and scan-out ports with the set_scan_configuration -chain_count number 
command at the top level. This configuration ends up with four scan-in and four scan-out 
ports created for both serial and standard scan mode.

Serializer Chains Concatenated Across Cores

Serializer scan chain concatenation is not supported in the Hybrid flow.

Serializer IP Insertion

When serialized compressed scan is inserted, the tool places the deserializer register inside 
the decompression MUX block, and it places the serializer register inside the XOR 
compression tree block. This architecture, shown in Figure 22-18, keeps the scan 
compression logic together and minimizes the top-level routing requirements.
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Figure 22-18 Default Serialized Compressed Scan Architecture

However, depending on layout characteristics, the long routes from the top-level scan I/O 
connections to the serialization logic can reduce the maximum operating frequency for these 
serial scan paths.

The DFTMAX tool provides a feature called serializer IP insertion that separates the 
deserializer and serializer registers, collectively known as the serializer IP, from the 
combinational codec logic. This architecture, shown in Figure 22-19, places the serializer IP 
logic separately so that the layout characteristics of the high-frequency serial scan paths can 
be improved.

Figure 22-19 Serializer IP Insertion Architecture

Serializer IP insertion can also be applied during HASS and Hybrid integration of cores that 
already have combinational compressed scan inserted, as shown in Figure 22-20. The tool 
inserts and connects the deserializer registers to the existing core-level decompressors, and 
inserts and connects the serializer registers to the existing core-level compressors. In 
addition to improving layout characteristics, this flow can be used to reduce the scan pin 
requirements for existing compressed scan cores.
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Figure 22-20 Inserting Serializer IP Around Combinational Compressed Scan Core

The following topics provide more information about serializer IP insertion:

• Configuring Serializer IP Insertion

• Serializer IP Insertion in the Top-Down Flat Flow

• Serializer IP Insertion in the Top-Down Flat Flow With Partitions

• Serializer IP Insertion in the HASS Flow

• Serializer IP Insertion in the Hybrid Flow

• Serializer IP Insertion and Standard Scan Chains

• Limitations

Configuring Serializer IP Insertion

To insert serializer IP into a design or partition or around a compressed scan core, use the 
-ip_inputs and -ip_outputs options of the set_serialize_configuration command:

set_serialize_configuration \
  -ip_inputs  {object_name n  object_name n  ...} \
  -ip_outputs {object_name n  object_name n  ...}

These options specify the number of top-level scan ports allocated to the serializer IP for 
each object. They replace the -inputs and -outputs options used for normal serializer 
insertion. The object_name argument can be a design name, partition name, or 
compressed scan core instance name. The input and output port counts must be equal for 
each object. If multiple objects exist in the design, multiple object name and port count pairs 
can be specified.

If an update stage register is enabled with the -update_stage true option of the 
set_serialize_configuration command, the tool includes the update stage register in 
the serializer IP block.
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Example 22-13 shows the commands used to identify the core shown in Figure 22-20 on 
page 22-41.

Example 22-13 Specifying Serializer IP Insertion for Compressed Scan Cores

set_serialize_configuration \
    -ip_inputs  {U_core_1 1} \
    -ip_outputs {U_core_1 1}

You can use the set_dft_location command to specify the insertion locations for the 
serializer IP logic and the codec logic:

set_dft_location -include {SERIAL_REG} ser_IP_instance_name
set_dft_location -include {DFTMAX} codec_instance_name

If the specified hierarchy level does not exist, the tool creates it during DFT insertion. For 
more information, see “Specifying a Location for DFT Logic Insertion” on page 10-84.

When serializer IP insertion is enabled, the preview_dft and insert_dft commands issue 
messages about each serializer IP block:

Inserting Load Deserializer IP
    top_U_core_1_U_deserializer_ScanCompression_mode
    for mode ScanCompression_mode
  Number of inputs = 1
  Maximum size per input = 3
Inserting Unload Serializer IP
    top_U_core_1_U_serializer_ScanCompression_mode
    for mode ScanCompression_mode
  Number of outputs = 1
  Maximum size per output = 3

Serializer IP Insertion in the Top-Down Flat Flow

In the top-down flat flow, the tool inserts the combinational codec and the serializer IP at the 
same time. The script must define both the codec characteristics and the serializer 
characteristics.

Since the serializer IP is inserted in the top-level design, the design name is specified using 
the -ip_inputs and -ip_outputs options. In Example 22-14, serializer IP insertion is 
performed for a top-level design named top_design.

Example 22-14 Inserting Serializer IP in a Top-Down Flat Flow

current_design top_design

set_scan_configuration \
  -chain_count 1 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
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set_scan_compression_configuration \
     -chain_count 6 \
     -inputs 3 -outputs 3 \
     -serialize chip_level
set_serialize_configuration \
     -ip_inputs  {top_design 1} \
     -ip_outputs {top_design 1}

Figure 22-21 shows the resulting logic from Example 22-14.

Figure 22-21 Serializer IP Insertion in the Top-Down Flat Flow

In this example, one scan-in port and one scan-out port are created for the serial mode. The 
chain count value of one results in the same scan port count in both the standard scan mode 
and the serial mode.

Serializer IP Insertion in the Top-Down Flat Flow With Partitions

In the top-down flat flow with partitions, the combinational codec and the serializer IP are 
inserted at the same time. The script must define both the codec characteristics and the 
serializer characteristics on a per-partition basis.

Since the serializer IP is inserted inside partitions, the partition names are specified using 
the -ip_inputs and -ip_outputs options. In Example 22-15, serializer IP insertion is 
performed for two partitions, a user-defined partition and the default partition.

Example 22-15 Inserting Serializer IP in a Top-Down Flat Flow With Partitions

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -serialize chip_level

# partition1
define_dft_partition partition1 -include {TOP_UDL_1 TOP_UDL_2}
current_dft_partition partition1
set_scan_configuration \
  -chain_count 1 -clock_mixing mix_clocks
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set_scan_compression_configuration \
  -chain_count 6 \
  -inputs 2 -outputs 2
set_serialize_configuration \
  -ip_inputs {partition1 1}  -ip_outputs {partition1 1}

# default_partition
current_dft_partition default_partition
set_scan_configuration \
  -chain_count 1 -clock_mixing mix_clocks
set_scan_compression_configuration \
  -chain_count 6 \
  -inputs 3 -outputs 3
set_serialize_configuration \
  -ip_inputs  {default_partition 1}
  -ip_outputs {default_partition 1}

Figure 22-22 shows the resulting logic from Example 22-15.

Figure 22-22 Serializer IP Insertion in the Top-Down Flat Flow With Partitions

In this example, the tool creates one scan-in port and one scan-out port for each partition, 
for a total of two scan ports used in the serialized scan and standard scan modes.

Serializer IP Insertion in the HASS Flow

In the HASS integration flow, you can add serializer IPs around one or more compressed 
scan cores and perform top-level core integration. The prerequisites for inserting serializer 
IP around existing compressed scan cores are as follows:

• The core must have the same number of scan ports in standard scan mode and 
compressed scan mode.
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• The core must have symmetrical codec scan I/O ports, where the values provided to the 
-inputs and -outputs options of the set_scan_compression_configuration 
command are equal.

• All scan chains in the core are compressed by a codec.

• No other test modes are defined except Internal_scan and ScanCompression_mode.

• No pipelined scan data is implemented inside the core.

• The core must be provided as a .ddc file or a test model file, so that test model 
information is available for the scan compression logic.

In Example 22-16, serializer IP insertion is performed for core instances U_core_1 and 
U_core_2.

Example 22-16 Inserting Serializer IP Around Cores in a HASS Flow

set_dft_configuration -scan_compression enable
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks
set_scan_compression_configuration \
     -integration_only true \
     -serialize chip_level
set_serialize_configuration \
     -ip_inputs  {U_core_1 1  U_core_2 2} \
     -ip_outputs {U_core_1 1  U_core_2 2}

Figure 22-23 shows the resulting logic from Example 22-16.

Figure 22-23 Serializer IP Insertion in the HASS Flow

In this example, the tool creates three scan-in ports and three scan-out ports for the serial 
scan mode, one pair for U_core_1 and two pairs for U_core_2. The number specified with 
the set_scan_configuration -chain_count command at the top level for the standard 
scan mode should be large enough to satisfy the total number of serial mode scan ports 
across all cores.
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Referencing Multiple Codecs in Compressed Scan Cores

When a compressed scan core contains multiple codecs, you must specify the serializer IP 
characteristics for each codec. When you specify serializer IP characteristics with the 
-ip_inputs and -ip_outputs options, follow the compressed scan core cell name with the 
name of a decompressor or compressor, respectively, inside the core. You must provide a 
separate entry for each codec inside the core.

Example 22-17 specifies serializer IP characteristics for a single codec in a compressed 
scan core named CORE1 and two codecs in a compressed scan core named CORE2.

Example 22-17 Serializer IP Insertion for Multiple Codecs in a Compressed Scan Core

set_serialize_configuration \
  -ip_inputs {CORE1 1 \
              CORE2 core2_P1_U_decompressor_ScanCompression_mode 1 \
              CORE2 core2_P2_U_decompressor_ScanCompression_mode 2} \
  -ip_outputs {CORE1 1 \
               CORE2 core2_P1_U_compressor_ScanCompression_mode 1 \
               CORE2 core2_P2_U_compressor_ScanCompression_mode 2}

Figure 22-24 shows the resulting logic from Example 22-17.

Figure 22-24 Serializer IP Insertion for Multiple Codecs in a Compressed Scan Core

You can obtain the decompressor and compressor names using one of the following 
methods:

• Use the list_test_models -compressors command at the top level before DFT 
insertion.

• Look in the CompressorStructures section of a core-level ASCII CTL model file.

• Look in the CompressorStructures section of a core-level STIL procedure file that is 
generated for the scan compression mode.

Example 22-18 shows a report example from the list_test_models -compressors 
command, run at the top level before DFT insertion.
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Example 22-18 Report Example From the list_test_models -compressors Command

dc_shell> list_test_models -compressors
  core1                      /home/user/core1.db
    Codecs:
      core1_U_decompressor_ScanCompression_mode
      core1_U_decompressor_ScanCompression_mode

  core2                      /home/user/core2.db
    Codecs:
      core2_P1_U_decompressor_ScanCompression_mode
      core2_P2_U_decompressor_ScanCompression_mode
      core2_P1_U_compressor_ScanCompression_mode
      core2_P2_U_compressor_ScanCompression_mode

  top                        /home/user/top.db
    Codecs:

The report from the list_test_models -compressors command shows the list of designs 
with CTL model information, along with the codec names defined in each CTL model. 
However, the -ip_inputs and -ip_outputs options require core instance names, not 
design names. To convert a design name to a list of instances, use the get_references 
command. For example,

dc_shell> get_references core2
{CORE2}

Example 22-19 shows how the decompressor and compressor names are provided in an 
example CompressorStructures block, contained in an ASCII CTL model file or STIL 
procedure file.

Example 22-19 Decompressor and Compressor Names in a CompressorStructures Block

CompressorStructures {
    Compressor "core2_P1_U_decompressor_ScanCompression_mode" {
        ...
    }
    Compressor "core2_P2_U_decompressor_ScanCompression_mode" {
        ...
    }
    Compressor "core2_P1_U_compressor_ScanCompression_mode" {
        ...
    }
    Compressor "core2_P2_U_compressor_ScanCompression_mode" {
        ...
    }
}
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Serializer IP Insertion in the Hybrid Flow

The Hybrid flow is an extension of the HASS flow that applies scan compression to any 
uncompressed top-level logic. The requirements and features of serializer IP insertion in the 
HASS flow also apply to the Hybrid flow. See “Serializer IP Insertion in the HASS Flow” on 
page 22-44.

Example 22-20 shows a typical Hybrid flow that inserts serializer IPs around existing 
compressed scan cores, inserts an additional serializer and codec into the top-level 
user-defined logic, and then integrates all the structures.

Example 22-20 Inserting Serializer IP Around Cores in the Hybrid Flow

current_design top_design

set_dft_configuration -scan_compression enable
set_scan_configuration \
  -chain_count 4 -clock_mixing mix_clocks
set_scan_compression_configuration \
  -chain_count 6 \
  -inputs 3 -outputs 3 \
  -hybrid true \
  -serialize chip_level
set_serialize_configuration \
  -ip_inputs  {top_design 1  U_core_1 1  U_core_2 2} \
  -ip_outputs {top_design 1  U_core_1 1  U_core_2 2}

Figure 22-25 shows the resulting logic from Example 22-20.

Figure 22-25 Serializer IP Insertion in the Hybrid Flow

In this example, the script assigns a single scan-in and scan-out port to the top-level 
serializer IP and codec by referencing the top-level design name with the -ip_inputs and 
-ip_outputs options. The tool creates one scan-in and scan-out port for the serialized IP 
inserted around U_core_1, and it creates two scan-in and scan-out ports for the serialized 
IP inserted around U_core_2. There are a total of four scan connections in the serialized 
scan mode.
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The number specified with the set_scan_configuration -chain_count command at the 
top level for the standard scan mode should be large enough to satisfy the total number of 
serial mode scan ports across all cores. In this example, the chain count value of four results 
in four scan-in and scan-out ports in both the standard scan mode and the serial mode.

Serializer IP Insertion in the Hybrid Flow With Top-Level Partitions

If you need to integrate combinational compressed scan cores but also have a great deal of 
user-defined logic at the top level, you might want to use the Hybrid flow with top-level 
partitions. This flow allows you to divide the user-defined logic into multiple partitions, each 
of which has a serializer codec.

Consider the scenario shown in Figure 22-26.

• You have two compressed scan cores, U_core_1 and U_core_2.

• You want to distribute the top-level user-defined logic among two partitions, partition1 
and the default partition.

• You want to insert serializer IP around each of the two compressed scan cores, with one 
top-level serial scan-in and scan-out port for each core.

• You want to insert serialized compressed scan for each of the two top-level partitions, 
with one top-level serial scan-in and scan-out port for each partition.

• You want to use four existing scan-in and four scan-out ports at the top level in both 
standard scan mode and serial mode.

Figure 22-26 Serializer IP Insertion in the Hybrid Flow With Top-Level Partitions

Example 22-21 shows a Hybrid flow with top-level partitions script for this scenario.

Example 22-21 Script for a Serializer Hybrid Flow With Top-Level Partitions

# global settings
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
  -hybrid true \
  -serialize chip_level
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# partition1
define_dft_partition partition1 -include {TOP_UDL_1 TOP_UDL_2}
current_dft_partition partition1
set_scan_configuration \
  -chain_count 1 -clock_mixing mix_clocks
set_scan_compression_configuration \
  -chain_count 6 \
  -inputs 5 -outputs 5
set_serialize_configuration \
  -ip_inputs {partition1 1}  -ip_outputs {partition1 1}

set_dft_signal -view spec -type ScanDataIn -test_mode all \
  -port {SI_PART1_0}
set_dft_signal -view spec -type ScanDataOut -test_mode all \
  -port {SO_PART1_0}

# default partition
current_dft_partition default_partition
set_scan_configuration \
  -chain_count 3 -clock_mixing mix_clocks
set_scan_compression_configuration \
  -chain_count 6 \
  -inputs 5 -outputs 5
set_serialize_configuration \
  -ip_inputs  {default_partition 1  U_core_1 1  U_core_2 1} \
  -ip_outputs {default_partition 1  U_core_1 1  U_core_2 1}

set_dft_signal -view spec -type ScanDataIn -test_mode all \
  -port {SI_PARTD_0 SI_PARTD_1 SI_PARTD_2}
set_dft_signal -view spec -type ScanDataOut -test_mode all \
  -port {SO_PARTD_0 SO_PARTD_1 SO_PARTD_2}

create_test_protocol
dft_drc
insert_dft

In this flow, the compressed scan cores must exist in the default partition. As a result, they 
are configured by the set_serialize_configuration command applied to the default 
partition. The chain count applied to the default partition with the set_scan_configuration 
-chain_count command includes both the compressed scan cores and the new top-level 
codec.

Incorporating External Chains Into the Hybrid Serializer IP Flows

You might have compressed scan cores that contain one or more uncompressed external 
scan chains, as shown in Figure 22-27.
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Figure 22-27 External Uncompressed Chains in a Compressed Scan Core

These uncompressed external scan chains are specified at the core level with the 
set_scan_path command, as shown in Example 22-22.

Example 22-22 Defining External Uncompressed Chains at the Core Level

set_scan_path UC1 \
    -view spec -test_mode all_dft \
    -complete true -dedicated_scan_out true \
    -scan_data_in SI_0 -scan_data_out SO_0 \
    -ordered_elements {...}
set_scan_path UC2 \
    -view spec -test_mode all_dft \
    -complete true -dedicated_scan_out true \
    -scan_data_in SI_1 -scan_data_out SO_1 \
    -ordered_elements {...}
set_scan_configuration \
    -chain_count 5 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
    -chain_count 8 \
    -inputs 4 -outputs 4
create_test_protocol
dft_drc
preview_dft -show scan
insert_dft

In Example 22-23, the Hybrid flow is used to insert serializer IP around a compressed scan 
core, and to insert a full serialized codec around the top-level user-defined logic. The tool 
includes the external chains in U_core as part of the user-defined logic.

Example 22-23 Incorporating External Chains Into Serializer IP Hybrid Integration

set_scan_configuration \
  -chain_count 3 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
      -hybrid true \
      -serialize chip_level \
      -chain_count 9 \
      -inputs 3 -outputs 3
set_serialize_configuration \
      -ip_inputs  [U_core 2 top_design_name 1] \
      -ip_outputs [U_core 2 top_design_name 1]

U_core

U
C

2
U

C
1
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Figure 22-28 shows the resulting logic from Example 22-23.

Figure 22-28 Serializer IP Insertion in the Hybrid Flow With External Chains

If you are inserting serializer IP using the Hybrid flow with partitions, all external chains are 
placed in the default partition by default. If you want to incorporate an external chain into a 
different partition, you can include scan chain names in the partition definitions:

define_dft_partition P1 -include {top_UDL1  U_core/UC1}
define_dft_partition P2 -include {top_UDL2  U_core/UC2}

Figure 22-29 shows how these commands allocate the external chains between the two 
partitions.

Figure 22-29 Allocating External Chains to Partitions in the Hybrid Serializer IP Flow

Note:   
Scan chain names are only supported in partition definitions when this flow is being 
used.

See Also

• “Excluding Scan Chains From Scan Compression” on page 18-24 for more information 
about external chains
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Serializer IP Insertion and Standard Scan Chains

When compressed scan cores are wrapped with serializer IP logic in HASS and Hybrid 
integration flows, the standard scan mode is also affected.

Due to the reduced number of available top-level scan I/O pins, the standard scan chains 
inside the compressed cores can no longer be promoted to dedicated top-level connections. 
To remedy this, standard scan chains in compressed scan cores become scan segments 
that can be concatenated, if needed, by top-level integration. Figure 22-30 shows the 
compressed scan and standard scan chains for a design in the HASS serializer IP insertion 
flow. 

Figure 22-30 Standard Scan Chains in the HASS Serializer IP Insertion Flow

In the Hybrid flow with serializer IP insertion, core-level scan segments can be mixed with 
top-level scan cells to achieve optimal balancing. Figure 22-31 shows the compressed scan 
and standard scan chains for a design in the Hybrid serializer IP insertion flow.

Figure 22-31 Standard Scan Chains in the Hybrid Serializer IP Insertion Flow

Standard scan chain concatenation is not needed for cores that are already serialized 
because such a core’s standard scan mode is architected to use the same scan I/O 
resources as its serialized compressed scan mode.

Compressed scan mode Standard scan mode

C_CORE1 C_CORE2

Deserializer Deserializer

Serializer Serializer

C_CORE1 C_CORE2

Compressed scan mode Standard scan mode

Deserializer

Serializer
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Deserializer

Serializer

C_CORE
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Limitations

The serializer IP insertion feature has the following limitations:

• For each combinational compressed scan core, the number of scan inputs and scan 
outputs must be the same for the standard scan mode and the compressed scan mode.

• All cores must have the same X-tolerance type. A mix of default X-tolerance and high 
X-tolerance is not supported.

• Multiple user-defined compressed scan test modes are not supported at the core level or 
the top level.

• Pipeline scan data registers are not supported at the core level.

• A mix of combinational compressed scan cores and serialized compressed scan cores 
is not supported.

• Serializer chains cannot be concatenated across cores at the top level.

• There is no support for core-specific serializer IP insertion.

• The number of serializer scan ports specified with the -ip_inputs and -ip_outputs 
options must be less than the number of combinational codec inputs and outputs, 
respectively.

• Lock-up latch insertion is not supported between the serializer IP and core scan cells.

❍ If scan clocks exist inside the compressed scan core that differ from the serializer 
register clock, you should insert lock-up latches inside the compressed scan core. 
Insert them between the decompressor outputs and first scan elements and between 
the last scan elements and the compressor inputs. This must be done manually. The 
tool cannot modify DFT-inserted cores during serializer IP insertion.

Wide Duty Cycle Support for Serializer

By default, the internally generated scan shift clocks and the update stage clock are created 
by gating external clocks with enable signals generated by the serializer FSM counter. The 
enable signals go active every S cycles, where S is the length of the serializer register 
segment. Therefore, the internally generated scan shift clocks and the update stage clock 
are inactive for (S-1) external clock cycles and pulse only at cycle S.

When you have an 8-bit serializer with one scan-in port and one scan-out port, the length of 
the serializer segment is 8. When the external clock has a 10 percent duty cycle (for 
example, rise = 45ns, fall = 55ns, period = 100ns), the clock duty cycle of the internally 
generated clock is 1.25 percent. Figure 22-32 illustrates this scenario.
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Figure 22-32 Timing Diagram With Default Duty Cycle

With a narrow pulse width, two issues exist:

• The clock skew for internal clocks might be more than the pulse width, thereby leading 
to problems in shift.

• Because of rise and fall slew, the clock might not reach its logic level completely, and the 
clock waveform might be clipped.

Wide duty cycle support makes the clock duty cycle close to 50 percent, resolving these 
problems.

To enable the wide duty cycle support feature, use the following option setting:

set_serialize_configuration -wide_duty_cycle true

After the option is accepted, the preview_dft command shows the following information 
message:

Information: Implementing Wide Duty Cycle Serializer Clock Controller.

Block Diagram

Figure 22-33 shows the block diagram when you implement the wide duty cycle.
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Figure 22-33 Block Diagram With Wide Duty Cycle Support

When the -wide_duty_cycle true option is specified, the tool uses the following 
behaviors:

• The update stage is always inserted in the decompressor IP, and the following 
information message appears:

Information: the update stage will be enabled in presence of wide duty
cycle.

• Lock-up latches are always inserted in the decompressor IP between the deserializer 
registers and the update stage registers. Note that lock-up latch insertion is also 
available when the update stage is inserted without the wide duty cycle support enabled 
by using the following variable:

set_app_var test_elpc_lul_in_deserializer true

• A synchronizing stage is inserted in the compressor IP. The synchronizing stage 
registers help hold the scan-out data until serializer registers capture it. The clock of the 
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synchronizing stage registers is the same as the clock of the update stage registers 
inserted in the decompressor IP.

• No clock-gating logic is used in the serializer clock controller.

Timing Diagram

Figure 22-34 shows the timing diagram for a 4-bit serializer, indicating how it behaves.
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Figure 22-34 Timing Diagram With Wide Duty Cycle Support

Internally Generated Clocks

The following examples show how the internally generated scan shift clocks are created 
when wide duty cycle support is enabled.
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When you have a 7-bit serializer with one scan-in port and one scan-out port, the length of 
the serializer segment is 7. With the wide duty cycle enabled, the clock is on for 3 external 
clock cycles and off for 4 external clock cycles, as illustrated in the Figure 22-35.

Figure 22-35 Timing Diagram of Default Duty Cycle and Wide Duty Cycle Clock

Table 22-2 provides a table that shows the clock width based on the length of the serializer 
segment.

Table 22-2 Wide Duty Cycle Clock Width Based on Serializer Segment Length 

Serializer segment length # of external clock cycles for clock ON (OFF)

2 1 (1)

3 1 (2)

4 2 (2)

5 2 (3)

6 3 (3)

7 3 (4)

8 4 (4)

9 4 (5)

10 5 (5)
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Wide Duty Cycle in a Core-Level Flow

When you use the wide duty cycle feature, you must set the -wide_duty_cycle option to 
true at each core creation. This setting allows the tool to insert the update stage and the 
synchronization stage into the decompressor and the compressor, respectively.

Use the following command example for the core-level flow:

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
     -xtolerance high \
     -chain_count 400 \
     -inputs 8 \
     -outputs 8 \
     -serialize core_level
set_serialize_configuration \
     -inputs 1 \
     -outputs 1 \
     -wide_duty_cycle true

Wide Duty Cycle in the HASS Flow

In the HASS flow, use the following command example:

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
     -integration_only true \
     -serialize chip_level
set_serialize_configuration \
     -wide_duty_cycle true

Note the following when you use the wide duty cycle feature in the HASS flow:

• All serializer cores must be implemented with the -wide_duty_cycle true option.

• The option -wide_duty_cycle true must also to be set at the top level.

Wide Duty Cycle in the Hybrid Flow

In the Hybrid flow, use the following command example:

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
     -xtolerance high  \
     -chain_count 400 \
     -inputs 1 \
     -outputs 1 \ 
     -hybrid true \
     -serialize chip_level
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set_serialize_configuration \
     -inputs 1 \
     -outputs 1 \
     -wide_duty_cycle true

Note the following when you use the wide duty cycle feature in the Hybrid flow:

• All serializer cores and the top-level serializer must be implemented with the option 
setting -wide_duty_cycle true.

Dual STIL Flow Parallel Patterns

When you use Wide Duty Cycle support and write out parallel patterns with the Dual STIL 
flow in TetraMAX ATPG, the waveform table contains multiple clock pulses as shown in 
Example 22-24.

Example 22-24 Waveform Table _default_WFT_parallel

WaveformTable "_default_WFT_parallel_" {
  Period '30ns';
  Waveforms {
    "EXT_CLK1" { P { '0ns' D; '4ns' U; '7ns' D; '14ns' U; '17ns' D;
      '24ns' U; '27ns' D; } }
    "EXT_CLK2" { P { '0ns' D; '4ns' U; '7ns' D; '14ns' U; '17ns' D;
      '24ns' U; '27ns' D; } }
    "all_bidirectionals" { 0 { '0ns' D; } }
    "all_bidirectionals" { 1 { '0ns' U; } }
    "all_bidirectionals" { T { '0ns' Z; '3ns' T; } }
    "all_bidirectionals" { X { '0ns' Z; '3ns' X; } 
    "all_bidirectionals" { H { '0ns' Z; '3ns' H; } }
    "all_bidirectionals" { Z { '0ns' Z; } }
    "all_bidirectionals" { L { '0ns' Z; '3ns' L; } }
    "all_bidirectionals" { N { '0ns' N; } }

This waveform table holds forced values at the state elements for multiple external clock 
cycles so that scan cells driven by both the leading and trailing edges of the generated wide 
duty cycle clocks can capture the values. Figure 22-36 shows how the waveform is used.
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Figure 22-36 Application of the _default_WFT_parallel Waveform

This waveform example uses a 4-bit serializer. The clock-on for the internally generated 
wide duty cycle clock is equal to two external clock cycles. The forced value is held across 
three external clock cycles. Regardless of whether the scan cells are driven by the leading 
or trailing edge of the generated wide duty cycle clock, the scan cells can capture the forced 
value.

However, if you make both the external clocks wide and the trailing edge close to the end of 
the cycle, the trailing edge of the generated wide duty cycle clock might cross into the 
capture window due to internal delay on the clock line. This potential timing issue is shown 
in Figure 22-37.
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Figure 22-37 Potential Timing Issues for the _default_WFT_parallel Waveform

If this timing problem occurs, the shift operation cannot perform properly on scan cells 
triggered by the trailing edge of the generated wide duty cycle clock. The problem is 
independent of pattern format. Therefore, you should plan carefully to avoid this problem.

Limitations

Note the following limitation with the wide duty cycle feature:

• Staggered clock is not supported.

Serializer in Conjunction With On-Chip Clocking Controllers

The relationship between serializer clock controllers and on-chip clocking (OCC) controllers 
is discussed in the following topics.

Using Serializer With User-Defined OCC Controllers

By default, the serializer clock controller generated by the DFTMAX tool considers the clock 
pulse of the preamble vector outside the shift procedure to ensure correct operation for the 
DFT-inserted OCC controller. Existing user-defined OCC controllers that require the 
preamble clock pulse to enter shift mode are compatible with the default serializer clock 
controller. However, some user-defined OCC controllers do not require the preamble clock 
pulse. In this case, specify the following variable before the test protocol generation:

dc_shell> set_app_var test_ate_sync_cycles 0
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See Also

• SolvNet article 035708, “What Does the test_ate_sync_cycles Variable Do?” for more 
information about the test_ate_sync_cycles variable

Using a Serializer Clock Controller With Multiple OCC Controllers

When multiple DFT-inserted OCC controllers are specified with a serializer, a single 
serializer clock controller is inserted. This single serializer clock controller internally 
generates a slow clock that connects to the slow_clock pin of each OCC controller. This 
clock and controller structure is shown in Figure 22-38.

Figure 22-38 Serializer Clock Controller With Multiple OCC Controllers, Default Architecture

An alternate architecture is also available by setting the test_elpc_unique_fsm variable to 
false. In this alternate architecture, a separate serializer clock controller is inserted into 
each OCC controller, so that the resulting locally-generated slow serializer clock can feed 
the glitch-free clock selection MUX inside the OCC controller. See Figure 22-39.
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Figure 22-39 Serializer Clock Controller With Multiple OCC Controllers, Alternate Architecture

This alternate architecture is supported in both the top-down flat flow and the top-down 
partition flow. This architecture might lead to long wires connecting the external clock port to 
the slow_clk pin of each OCC controller, which can produce congestion and timing issues 
when the external clock frequency is high.

See Also

• Chapter 13, “On-Chip Clocking Support” for more information about OCC controllers

Waveforms for a Serializer With OCC Controllers

If you use a DFT-inserted OCC controller without a serializer, the tool connects the 
slow_clk pin of the OCC controller to an ATE-provided clock, which is one of the clocks 
specified with the set_dft_signal -type ScanClock command. Even in a serializer flow, 
the OCC controller must be connected to a clock corresponding to a scan shift clock that is 
actually an internally-generated scan shift clock created by the serializer clock controller. 

The two waveform examples shown in Figure 22-40 and Figure 22-41 illustrate parallel 
mode and serial mode behavior. For the serial mode example, a single serializer clock 
controller is used, as discussed in “Using a Serializer Clock Controller With Multiple OCC 
Controllers” on page 22-64.

You can compare the waveforms directly at the OCC controller pins.
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Figure 22-40 OCC With Parallel Mode

Figure 22-41 OCC With Serial Mode

As seen in these two figures, the serial mode behavior is the same as the parallel mode 
behavior during capture, while the scan-enable signal (scan_en) is low. For the shift mode, 
the internally generated clocks need to drive the scan cells. Since this flow uses an inserted 
OCC controller, the internally generated scan clock drives the OCC controller slow_clk 
input pin. Then, one clock pulse after capture is consumed inside the OCC controller, the 
output of the OCC controller drives the scan cells.
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Using Integrated Clock-Gating Cells in the Serializer Clock 
Controller

By default, the tool uses discrete cells for clock-gating logic in a serializer clock controller. 
Using the following variables, you can specify an integrated clock-gating cell library cell 
reference (without the library name) for the serializer clock gating logic:

set_app_var test_icg_p_ref_for_dft library_cell_ref
set_app_var test_icg_n_ref_for_dft library_cell_ref

The test_icg_p_ref_for_dft variable specifies a library cell to be used to gate 
return-to-zero clocks. The test_icg_n_ref_for_dft variable specifies a library cell to be 
used to gate return-to-one clocks. The tool automatically inserts the specified integrated 
clock-gating cells depending on the clock polarity.

User-Defined Pipelined Scan Data

If you implement user-defined pipelined scan data registers by hand, be careful of the 
driving edge and the timing. The input-side pipelined scan data registers are connected from 
the scan-in ports to the deserializer registers directly. The deserializer registers are triggered 
by the trailing edge. Ideally, the pipelined scan data registers should be triggered by the 
same edge and operate with the same timing to be safe. In the same manner, the 
output-side serializer registers should be triggered by the leading edge, so as not to produce 
a shift error. The same edge and the same timing are recommended. 

Running TetraMAX ATPG on Serializer Designs

You can perform two types of ATPG with the TetraMAX ATPG tool:

• Chip-level ATPG where the serializer clock controller is inserted and the compressed 
scan chain clock is provided by the serializer clock controller

• Core-level ATPG where both a serializer clock and internal scan shift clocks are provided 
directly from the primary ports

Chip-level ATPG is performed on designs completed with the top-down flat flow, top-down 
partition flow, HASS flow, or Hybrid flow. Core-level ATPG is performed on a core 
implemented with the set_scan_compression_configuration -serialize core_level 
command, which is normally integrated later with other cores by using a HASS or Hybrid 
flow.
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Chip-level and core-level test protocols are somewhat different, but the TetraMAX tool 
identifies them and performs ATPG accordingly without requiring any special commands or 
guidance.

The following topics are covered in this section:

• Simulation and Patterns

• STIL Procedure File

• Debugging TetraMAX Serializer DRC Errors

• Pattern Translation

• Known Issues

Simulation and Patterns

Serializer designs use MAX Testbench for pattern validation. For details, see “Using MAX 
Testbench” in TetraMAX Online Help.

In the TetraMAX tool, patterns can be read and written in the WGL, serial STIL, and binary 
pattern formats, and also written out in the TDL91, TSTL2, and FTDL formats.

The ATPG limitations for DFTMAX designs also apply to serializer designs. See “DFTMAX 
Compression Limitations” on page 17-9.

STIL Procedure File

STIL procedure file examples are presented for the following cases:

• load_unload procedures with and without an update stage

• Chip level with and without an update stage

• Core level

Also, the following compressor structure files are considered:

• Decompressor SPF

• Compressor SPF
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load_unload Procedure

For the chip-level STIL procedure file, the usage of the load_unload procedure, including 
shift and test_setup, is identical to the parallel mode as well as combinational scan 
compression mode. Some other UserKeywords sections used by the TetraMAX tool are 
provided. An additional sequence provided in the load_unload and shift procedures is only 
for the core-level STIL procedure file.

Example 22-25 shows a STIL procedure file example that does not include an update stage.

Example 22-25 STIL Procedure File Example Without an Update Stage

"_clk" = '"ext_clk1" + "ext_clk2" + "ser_clk"';
...
    "load_unload" {
        W "_default_WFT_";
        ActiveScanChains core_group;
        C {
            "dat1[0]" = N;
            ...
        }
        "ScanCompression_mode_pre_shift" : V {  -- (1)
            "_clk" = 00P;
            "_si" = #;
            "_so" = #;
            "strobe" = 0;
            "test_se" = 1;
        }
        Shift {
            V {                                 -- (2)
                "_clk" = 00P;
                "_si" = #;
                "_so" = #;
                "strobe" = 0;
            }
            V {                                 -- (3)
                "_clk" = 00P;
                "_si" = #;
                "_so" = #;
            }
            V {                                 -- (4)
                "_clk" = 00P;
                "_si" = #;
                "_so" = #;
            }
            V {                                 -- (5)
                "_clk" = PPP;
                "_si" = #;
                "_so" = #;
                "strobe" = 1;
            }
        }
    }
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This STIL procedure file example defines a configuration with one scan-in and one scan-out, 
and a 4-bit deserializer/serializer registers without an update stage. The vector (1) named 
“ScanCompression_mode_pre_shift,” which is outside the shift procedure, uses the first 
serializer clock (“ser_clk”) to load the first internal shift data into the deserializer registers. 
The vector (4), which is the third vector of the shift procedure, completes loading the first 
internal shift data into the deserializer registers. At vector (5), internal scan clocks 
(“ext_clk1” and “ext_clk2”) are pulsed, and the first internal shift data that has been placed 
on the deserializer registers is transferred to the compressed chains; also, the second 
internal shift data starts loading into the deserializer registers. The 
“ScanCompression_mode_pre_shift” vector is applied only to the first vector, and then the 
shift procedure is repeatedly applied as many times as the number of compressed chain 
shifts per pattern. The scan-out measure also takes place with each vector.

If the number of compressed chain shifts is 5, the actual vector sequence in a single pattern 
is

(1)  (2)(3)(4)(5)  (2)(3)(4)(5)  (2)(3)(4)(5)  (2)(3)(4)(5)  (2)(3)(4)(5)

and the capture takes place.

Example 22-26 shows a STIL procedure file example that includes an update stage.

Example 22-26 STIL Procedure File Example With an Update Stage

"_clk" = '"ext_clk1" + "ext_clk2" + "ser_clk" + "update_clk"';
...
    "load_unload" {
        W "_default_WFT_";
        ActiveScanChains core_group;
        C {
            "dat1[0]" = N;
            ...
        "ScanCompression_mode_pre_shift" : V {  -- (1)
            "_clk" = 00P0;
            "_si" = #;
            "_so" = #;
            "strobe" = 0;
            "test_se" = 1;
        }
        V {                                     -- (2)
            "_clk" = 00P0;
            "_si" = #;
            "_so" = #;
        }
        V {                                     -- (3)
            "_clk" = 00P0;
            "_si" = #;
            "_so" = #;
        }
        V {                                     -- (4)
            "_clk" = 00P0;
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            "_si" = #;
            "_so" = #;
        }
        V {                                     -- (5)
            "_clk" = 00PP;
            "_si" = #;
            "_so" = #;
        }
        Shift {
            V {                                 -- (6)
                "_clk" = 00P0;
                "_si" = #;
                "_so" = #;
                "strobe" = 0;
            }
            V {                                 -- (7)
                "_clk" = 00P0;
                "_si" = #;
                "_so" = #;
            }
            V {                                 -- (8)
                "_clk" = 00P0;
                "_si" = #;
                "_so" = #;
            }
            V {                                 -- (9)
                "_clk" = PPPP;
                "_si" = #;
                "_so" = #;
                "strobe" = 1;
            }
        }
    }

If you implement the update stage, you see additional vectors only at the beginning of each 
pattern. The first serializer clock (“ser_clk”) is pulsed at the vector (1). The vector (4) 
completes loading the first internal shift data into deserializer registers. At the vector (5), the 
first internal shift data that was placed on the deserializer registers is transferred to the 
update stage. At the same time, the second shift data starts loading into the deserializer 
registers. Then, vector (8) completes loading the second internal shift data into the 
deserializer register. At vector (9), taking place at the same time, the first internal shift data 
that has been on the update stage is transferred to the compressed chains, the second 
internal shift data that has been on the deserializer registers is passed on to the update 
stage, and the third internal shift data starts loading into the deserializer registers. If the 
number of compressed chain shifts is 5, the actual vector sequence in a single pattern is

(1)  (2)(3)(4)(5)  (6)(7)(8)(9)  (6)(7)(8)(9)  (6)(7)(8)(9)  (6)(7)(8)(9)  (6)(7)(8)(9)

and the capture takes place.
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UserKeywords SerializerStructures

For the serial mode, “UserKeywords SerializerStructures” is introduced. Some of its 
parameters are used during DRC.

Chip-Level STIL Procedure File

The Length <number> is the number of deserializer/serializer registers bits. The 
InternalShiftStart <number>, UnloadDataStart <number>, and 
ExternalCyclePerShift <number> are determined by architecture. Example 22-27 
shows a chip-level STIL procedure file example without an update stage, and Figure 22-42 
shows how the Length, InternalShiftStart, UnloadDataStart, and 
ExternalCyclePerShift numbers are determined for this STIL procedure file example.

Example 22-27 Chip-Level STIL Procedure File Example Without an Update Stage

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStart 5;
    UnloadDataStart 6;
    ExternalCyclesPerShift 4;
    LoadSerializer "U0/U_deserializer_my_serial" {
        Length 4;
        ActiveScanChains load_group;    }
    UnloadSerializer "U0/U_serializer_my_serial" {
        Length 4;
        ActiveScanChains unload_group;
    }
}
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Figure 22-42 Timing Diagram for SerializerStructures for Chip-Level STIL Procedure File 
Example Without an Update Stage

If the update stage is used, the “UserKeywords SerializerStructures” changes as follows: 
InternalShiftStart is delayed by 4 cycles, from 5 cycles to 9, and UnloadDataStart is 
delayed by 4 cycles, from 6 cycles to 10. Example 22-28 shows this chip-level STIL 
procedure file example with an update stage. 

Example 22-28 Chip-Level STIL Procedure File Example With an Update Stage

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStart 9;
    UnloadDataStart 10;
    ExternalCyclesPerShift 4;
    LoadSerializer "U0/U_deserializer_my_serial" {
        Length 4;
        ActiveScanChains load_group;
    }
    UnloadSerializer "U0/U_serializer_my_serial" {
        Length 4;
        ActiveScanChains unload_group;
    }
}
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In addition to the configuration shown in Example 22-28, if pipelined scan data is used (for 
example, two stages of head pipeline), the InternalShiftStart is delayed by another two 
cycles, from 9 to 11. If two stages of tail pipeline are also used, UnloadDataStart is delayed 
by two cycles, from 12 to 14. Example 22-29 and Example 22-30 show these two cases.

Example 22-29 SerializerStructures Example With Update Stage and Head Pipeline Registers

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStart 11;
    UnloadDataStart 12;
    ExternalCyclesPerShift 4;
    SerializerInputPipelineStages 2;
    LoadSerializer "U0/U_deserializer_my_serial" {
        Length 4;
        ActiveScanChains load_group;
    }
    UnloadSerializer "U0/U_serializer_my_serial" {
        Length 4;
        ActiveScanChains unload_group;
    }
}

Example 22-30 SerializerStructures Example With Update Stage and Head and Tail Pipeline 
Registers

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStart 11;
    UnloadDataStart 14;
    ExternalCyclesPerShift 4;
    SerializerInputPipelineStages 2;
    SerializerOutputPipelineStages 2;
    LoadSerializer "U0/U_deserializer_my_serial" {
        Length 4;
        ActiveScanChains load_group;
    }
    UnloadSerializer "U0/U_serializer_my_serial" {
        Length 4;
        ActiveScanChains unload_group;
    }
}

When you use the wide duty cycle feature, the “UserKeywords SerializerStructures” section 
of the STIL procedure file shows at which external clock cycle the leading and trailing edges 
of the internally generated scan shift clocks occur. Example 22-31 provides an example with 
this information included.

Example 22-31 Chip-Level STIL Procedure File Example With Wide Duty Cycle Feature

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStartLeadingEdge 12;
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    InternalShiftStartTrailingEdge 15;
    UnloadDataStart 16;
    ExternalCyclesPerShift 7;
    LoadSerializer "U0/U1_deserializer_my_serial" {
        Length 7;
        ActiveScanChains load_group;
    }
    UnloadSerializer "U0/U1_serializer_my_serial" {
        Length 7;
        ActiveScanChains unload_group;
    }
}

This example shows that the leading edge occurs at the 12th cycle and the trailing edge at 
the 15th cycle. Figure 22-43 shows the corresponding timing diagram.

Figure 22-43 Correspondence Between SerializerStructures and Clock Creation

Core-Level STIL Procedure File

For a core-level test protocol, the InternalShiftStart is used differently. This number is 
always one and specifies the number of generic shift procedures performed before the first 
internal shift. Example 22-32 provides a core-level STIL procedure file example.

Example 22-32 Core-Level STIL Procedure File Example

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStart 1;
    UnloadDataStart 6;
    ExternalCyclesPerShift 4;
    LoadSerializer "bottom1_U_deserializer_ScanCompression_mode" {
        Length 4;
        ActiveScanChains load_group;
    }
    UnloadSerializer "bottom1_U_serializer_ScanCompression_mode" {
        Length 4;
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        ActiveScanChains unload_group;
    }
}

Compressor Structures

Figure 22-44 and Figure 22-45 contrast the compressor structures of the serial and parallel 
modes.

Figure 22-44 Decompressor SPF
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Figure 22-45 Compressor SPF

This comparison assumes the architecture represented in Figure 22-46. TetraMAX ATPG 
assigns indexes 0 1 2 ... to the deserializer and serializer registers from the scan-out side. 
The scan-in port SI_0 in parallel mode corresponds to the deserializer register bit 0 in serial 
mode. The scan-out port SO_0 in parallel mode corresponds to the serializer register bit 0 
in serial mode.
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Figure 22-46 Correspondence Between Serial and Parallel Modes

ClockStructures

The ClockStructures section prints the output pins of the internally generated scan clocks, 
as shown in Example 22-33:

Example 22-33 ClockStructures Example for a STIL Procedure File

UserKeywords DontSimulate;
ClockStructures {
    PLLStructures “serializer_init_shift_clocks” {
        Clocks {
            “u_clockcntrl/wide_clkgen/C75/U1/Z” PLLShift {
                OffState 0;
            }
            “u_clockcntrl/wide_clkgen/C75/U2/Z” PLLShift {
                OffState 0;
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            }
        }
    }
}

This information about internally-generated clocks can help TetraMAX DRC. You can 
prevent the write_test_protocol command from including this information in the SPF by 
setting the test_serialize_put_fsm_clock_output variable to false.

Debugging TetraMAX Serializer DRC Errors

When running TetraMAX ATPG on designs that contain serializer blocks, you might 
encounter design rule violation (DRC) errors which are specific to the serializer flow. This 
topic provides debugging information for such DRC errors.

The following topics are discussed in this section:

• Debugging R33 Through R38 DRC Errors

• Providing Guidance for R34 and R36 DRC Errors

Debugging R33 Through R38 DRC Errors

When R33 to R38 errors are issued by TetraMAX ATPG, the following debug method might 
be helpful to isolate the issue.

For an R37 error:

Error: Scan cell 19806 was clocked during serializer nonshifting cycle. 
(R37-1)

The scan cells of the compressed scan chains must be clocked as described in Figure 22-2 
on page 22-6. This error indicates that the scan cells are clocked at incorrect cycles.

To debug the issue, apply the following method:

DRC-T> set_drc -store_initial_shifts
DRC-T> set_pindata -shift
DRC-T> run_drc -patternexec my_serial
DRC-T> (gui_start)

When you open the TetraMAX GSV, look at the cell 19806. Figure 22-47 shows the pin data.
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Figure 22-47 Pin Data Example for a Scan Cell With an R37 Error

You can find the clock being pulsed in every shift cycle at the CP pin of the scan cell, which 
is not correct. Refer to the SerializerStructures section in your SPF to determine the 
correct clocking. If you see the following in the SerializerStructures section:

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStart 14;
    UnloadDataStart 17;
    ExternalCyclesPerShift 6;
    SerializerInputPipelineStages 1;
    SerializerOutputPipelineStages 2;
    LoadSerializer
"my_top_U_deserializer_ScanCompression_mode" {
        Length 4;
        ActiveScanChains load_group;
    }
    UnloadSerializer
"my_top_U_serializer_ScanCompression_mode" {
        Length 4;
        ActiveScanChains unload_group;
    }
    LoadSerializer "I_coreA/U_deserializer_ScanCompression_mode" {
        Length 6;
        ActiveScanChains "coreA_load_group";
    }
    UnloadSerializer "I_coreA/U_serializer_ScanCompression_mode" {
        Length 6;
        ActiveScanChains "coreA_unload_group";
    }
}

then the first clocking for compressed scan chains is at the 14th cycle. You can check this 
with the value of the InternalShiftStart. If clocking exists in some other cycles, the 
clocking scheme is incorrect.

Figure 22-48 shows the pin data example on one of the scan cells with the correct clocking 
behavior.
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Figure 22-48 Pin Data Example for a Scan Cell With Correct Clocking

Verify that the clock pulse happens at 14th cycle, which is consistent with the 
InternalShiftStart value in the SPF.

As a reference, in the following pin data example shown in Figure 22-49, notice what 
happens to one of the deserializer registers, the serializer registers, serializer FSM counter, 
and update stage registers, when you have the same SerializerStructures as the 
serializer structure just described.

Figure 22-49 Pin Data Example for Some Cells of the Serializer Logic

The first cell is one of the serializer registers at the output side. The second cell is one of the 
deserializer registers at the input side. The third cell is one of the serializer FSM counter 
registers. Those registers need to have the external clock pulses from the primary port 
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without serializer clock gating. The fourth cell is one of the update stage registers. The clock 
pulses appear on the registers at the 8th cycle and 14th cycles, which can be explained in 
the following way:

The number of head pipeline registers is 1 and the maximum length of the serializer 
registers is 6. To load scan data fully to the deserializer registers, 6+1=7 cycles are required. 
Then at the next cycle, which is 8th cycle, the scan data that has been loaded into the 
deserializer registers is transferred to the update stage registers. This is the reason why the 
8th cycle on the update register has a clocking. The next scan data is also serially loaded 
through the pipeline register to the deserializer registers, consecutively. Since the length of 
the serializer registers is 6, 8+6=14 is the next clocking for the update stage to obtain the 
second scan data. Also, at the 14th cycle, the data transfers from the update registers to the 
compressed scan chains.

These examples show you how to read the pin data, using the set_drc 
-store_initial_shifts command. After you apply this command, TetraMAX DRC does 
not pass, but it does show you the stored shift data. You need to reset using the set_drc 
-nostore_initial_shifts command after you have completed your debug to proceed in 
the same session.

Providing Guidance for R34 and R36 DRC Errors

In some cases, TetraMAX DRC cannot identify the deserializer/serializer registers due to the 
presence of other topologically-connected nonscan cells. In these cases, TetraMAX DRC 
might issue R34 or R36 violations. The TetraMAX tool provides a method to allow user 
guidance to be provided in the STIL procedure file to specify the correct deserializer/
serializer registers.

For example, consider the following TetraMAX DRC violations:

Error: Multiple candidates (192417,185880) for mode-port input with 
serializer connection test_si1 (4). (R36-1)
Error: Multiple candidates (192418,185824) for mode-port input with 
serializer connection test_si1 (3). (R36-2)
Error: Multiple candidates (192419,185825) for input 2 of load compressor 
abc_top_U_decompressor_abc. (R36-3)
Error: Multiple candidates (192420,185826) for input 1 of load compressor 
abc_top_U_decompressor_abc. (R36-4)
Error: Multiple candidates (192421,185827) for input 0 of load compressor 
abc_top_U_decompressor_abc. (R36-5)

To determine the cell names of the reported primitives for the first DRC error, use the 
report_primitives command on the two reported primitive IDs:

DRC-T> report_primitives 192417
abc_top_U_decompressor_abc/serial_reg_4_ (192417)  DFF (DFF_X1)
     ---       I  (TIE_0)
     ---       I  (TIE_0)
    !CK        I  88837-u_clockcntrl/U14/X
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     ---       I  159-
     Q         O  178252-/abc_top_U_decompressor_abc/serial_reg_3_/D
                  178253-/abc_top_U_decompressor_abc/U7/A ...
DRC-T> report_primitives 185880
xyz_dig_u/xyz__u/shiftreg_reg_47_ (185880)  DFF (DFF_X2)
     ---       I  (TIE_0)
    !RD      P I  143-xyz_dig_u/xyz__u/U83/X
     CK        I  156-xyz_dig_u/gpio_pads_ctrl_u/svn_buf_s_16_u2/X
     ---       I  88745-
     ---       O  88743-
                  88745-

The reported instance names show that the primitive ID 192417 represents the correct 
serializer register. Next, you must identify the serializer index for this primitive. Since the 
R36 violations are issued on the deserializer side, which is a compressor, you must run the 
report_serializers -load -verbose command. For this example, the output is as 
follows:

DRC-T> report_serializers -load -verbose
------------------------------------------------   ------      ------
name                                               type        length
------------------------------------------------   ------      ------
abc_top_U_deserializer_abc                         load         5
------       -----   ----------------     -----------------    ------
Scanin       Index   Serializer Index     Parallel Outputs     invert
------       -----   ----------------     -----------------    ------
test_si1       0     0     xyz_dig_u/xyz__u/shiftreg_reg_43_     no
test_si1       1     1     xyz_dig_u/xyz__u/shiftreg_reg_44_     no
test_si1       2     2     xyz_dig_u/xyz__u/shiftreg_reg_45_     no
test_si1       3     3     xyz_dig_u/xyz__u/shiftreg_reg_46_     no
test_si1       4     4     xyz_dig_u/xyz__u/shiftreg_reg_47_     no

From this report, you can determine that primitive ID 192417 corresponds to the serializer 
index 4, as the other primitive ID 185880 matches the load register for serializer index 4. You 
can repeat this process to match the other serializer register names to their corresponding 
index values.

Next, open the STIL procedure file in a text editor. Locate the SerializerStructures 
section, and create a ParallelOutputs block as demonstrated in the following file:

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
    InternalShiftStart 6;
    UnloadDataStart 7;
    ExternalCyclesPerShift 5;
    LoadSerializer "abc_top_U_deserializer_abc" {
        Length 5;
        ActiveScanChains load_group;
        ParallelOutputs {
          0 "abc_top_U_decompressor_abc/serial_reg_0_" no
          1 "abc_top_U_decompressor_abc/serial_reg_1_" no
          2 "abc_top_U_decompressor_abc/serial_reg_2_" no
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          3 "abc_top_U_decompressor_abc/serial_reg_3_" no
          4 "abc_top_U_decompressor_abc/serial_reg_4_" no
        }
    }
    UnloadSerializer "abc_top_U_serializer_abc" {
        Length 5;
        ActiveScanChains unload_group;
    }
}

Note the following points when providing deserializer/serializer register guidance to 
TetraMAX DRC:

• The numbers specified before the serializer register name on each line must match the 
serializer index values as reported by the report_serializers -verbose command.

• The serializer register names should be enclosed in double quotation marks.

• The no or yes value specified after the serializer register names specifies whether a logic 
inversion exists between the data input pin of each serializer register and the 
corresponding scan port.

• When you provide deserializer register (input side) guidance as with the previous 
example, you must supply it in a ParallelOutputs block inside the LoadSerializer 
section. When you provide serializer register (output side) guidance, you must supply it 
in a ParallelInputs block inside the UnloadSerializer section.

• Guidance is only needed for deserializer/serializer registers with R36 DRC violations. 
You do not need to supply guidance for other deserializer/serializer registers.

When TetraMAX DRC processes the updated STIL procedure file, it will verify that the 
specified register names and inversion flags are correct. If TetraMAX DRC determines that 
the register name is incorrect, it will issue an M873 warning message:

Warning: Possibly incorrect load serializer parallel output
specification: %d %s.(M873)
Warning: Possibly incorrect unload serializer parallel input
specification: %d %s.(M873)

If TetraMAX DRC determines that the register inversion flag is incorrect, it will issue an M874 
warning message:

Warning: Possibly incorrect load serializer parallel output inversion
specification: %d %s %s.(M874)
Warning: Possibly incorrect unload serializer parallel output inversion
specification: %d %s %s.(M874)

When the register names and inversion flags are valid, TetraMAX DRC honors the specified 
serializer register definitions and proceeds with the DRC process.
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Pattern Translation

This topic describes the following types of serialized scan pattern translation:

• Translating Parallel Mode Patterns to Serial Mode Patterns

• Translating Serial Mode Patterns to Standard Scan Mode Patterns

Translating Parallel Mode Patterns to Serial Mode Patterns

Designs with serialized compressed scan can have both a serial scan mode, where the 
codec is connected to deserializer and serializer registers for I/O-limited operation, and a 
parallel scan mode, where the codec is connected directly to top-level scan I/O ports. If the 
same codec is used in both modes, you can create parallel mode scan patterns in TetraMAX 
ATPG first, then translate them to serial mode scan patterns. This eliminates the need for a 
second pattern generation run.

To ensure that the same codec is used in both modes, you must use the -parallel_mode 
option of the set_serialize_configuration command to tie the parallel mode to the 
serial mode:

set_scan_compression_configuration \
    -base_mode my_base_mode \          # standard scan base mode
    -test_mode my_serial_mode \        # serial compressed scan mode
    -xtolerance ... \
    -chain_count ... \
    -inputs ... \
    -outputs ... \
    -serialize ...
set_serialize_configuration \
    -test_mode my_serial_mode \        # serial compressed scan mode
    -parallel_mode my_parallel_mode \  # parallel compressed scan mode
    -inputs ... \
    -outputs ...

Note:   
The terms serial and parallel in this section refer to the type of scan compression being 
used, not to serial or parallel scan data loading in TetraMAX testbenches.

Performing Pattern Translation for Matching Scan Data Pipeline Depths

Use this pattern translation flow if you are not using pipelined scan data, or if you are using 
pipelined scan data and the parallel mode has the same pipeline depth as the serial mode.

Note:   
When you use the tool to perform automatic pipeline register insertion, it ensures that all 
test modes have the same pipeline depth.
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To use this pattern translation flow, perform the following steps:

1. Run TetraMAX ATPG in parallel scan mode.

2. Execute the run_drc command using the parallel mode SPF:

run_drc my_parallel_mode.spf

In the log file, you will see information reported during compressor rules checking:

Begin compressor rules checking...
Warning: Rule R11 (X on chain affects observe ability of other chains)
was violated 1008 times.
Compressor rules checking completed: #chains=200, #scanins=8,
#scanouts=8, #shifts=100, CPU time=0.13 sec.

Note the #shifts= value, which represents the number of shift cycles used in the 
parallel mode.

3. Perform ATPG in the parallel mode.

4. Write out the parallel mode pattern set with the -format binary and 
-compressor_based options:

write_patterns compressor_based.db \
  -format binary -replace -compressor_based

When you write out the pattern set with the -compressor_based option, the pattern set 
can be only read back into a serial scan mode TetraMAX run.

5. Run TetraMAX ATPG in serial scan mode.

6. Set the number of shift cycles to the #shifts= value obtained from the compressor rules 
checking log file entry from the parallel mode run:

set_drc -dftmax_shift_cycles 100

7. Execute the run_drc command using the serial mode SPF:

run_drc my_serial_mode.spf
add_nofaults ...
add_faults ...

8. Read the previously saved patterns into the TetraMAX tool:

set_patterns -external compressor_based.db

9. Optionally, execute the run_simulation command, the run_fault_sim command, or 
an incremental ATPG step:

run_simulation
run_fault_sim
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10.Write out the translated serial mode pattern set:

write_patterns translated_serial.stil -format stil -external

It is expected that you might see a small amount of coverage difference between the original 
parallel mode ATPG results and the run_fault_sim result using the translated serial mode 
patterns. This difference can be caused by different lock-up latch configurations, different 
scan chain MUXing, different primary input constraints, and other minor scan configuration 
differences.

You should use options for the set_build and set_drc commands that are as similar as 
possible between the parallel mode and the serial mode runs.

Performing Pattern Translation Across Different Scan Data Pipeline Depths

Use this pattern translation flow if you are manually inserting pipelined scan data registers 
and the parallel mode has a different pipeline depth from the serial mode.

To use this pattern translation flow, perform the following steps:

1. Run TetraMAX ATPG in parallel scan mode.

2. Execute the run_drc command using the parallel mode SPF:

run_drc my_parallel_mode.spf

In the log file, you will see information reported during compressor rules checking:

Begin compressor rules checking...
Warning: Rule R11 (X on chain affects observe ability of other chains) 
was violated 1008 times.
Compressor rules checking completed: #chains=200, #scanins=8, 
#scanouts=8, #shifts=201, CPU time=0.13 sec.

Note the #shifts= value, which represents the number of shift cycles used in the 
parallel mode.

3. Run TetraMAX ATPG in serial scan mode.

4. Execute the run_drc command using the serial mode SPF:

run_drc my_serial_mode.spf

Obtain the resulting #shifts= value from the serial mode:

Begin compressor rules checking...
Warning: Rule R11 (X on chain affects observe ability of other chains) 
was violated 1008 times.
Compressor rules checking completed: #chains=200, #scanins=8, 
#scanouts=8, #shifts=202, CPU time=0.13 sec.
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5. Take the larger #shifts= value from the two test modes. In this example, the larger 
value is 202.

6. Run TetraMAX ATPG in parallel scan mode.

7. Set the number of shift cycles to the larger #shifts= value obtained from the parallel 
and serial modes:

set_drc -dftmax_shift_cycles 202

8. Follow the steps in “Performing Pattern Translation for Matching Scan Data Pipeline 
Depths,” starting with the parallel mode ATPG performed in step 3. In the serial mode in 
step 6, use the larger #shifts= value determined from the two test modes.

Translating Serial Mode Patterns to Standard Scan Mode Patterns

To convert serial mode scan patterns to standard scan mode format, use the translation flow 
provided in “Translating DFTMAX Compressed Patterns Into Normal Scan Patterns” in 
TetraMAX Online Help. This translation flow applies to both normal compressed scan 
patterns as well as serialized scan patterns.

Known Issues

The known issues for serializer designs in a TetraMAX flow are described in the following 
topics:

• C1 Violations

• Serializer Core-Level Flow With Pipelined Scan Data Insertion

C1 Violations

A C1 violation might occur in parallel mode or regular scan mode when you use Synopsys 
automated pipeline scan data in which the clock is shared with the ATE clock of a 
DFT-inserted OCC controller. The violation is related to gate-level optimization and causes 
the clock-off state to be X on a lock-up-latch clock pin that has been inserted after the 
pipeline head registers. The violation can be reduced to a warning if the situation is the same 
as described earlier. You cannot expect to be able to downgrade all C1 violations. 

Serializer Core-Level Flow With Pipelined Scan Data Insertion

Serialized compressed scan core creation with implemented pipeline stages could produce 
R rule violations in TetraMAX design rule checking. One workaround is to implement the 
pipeline stage only at the top level in a HASS or Hybrid flow.
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DFTMAX Compression With Serializer Limitations

The following functionalities are not supported:

• Integrating unserialized DFTMAX compression cores

If you integrate DFTMAX compression cores, you must use serializer IP insertion to 
serialize them.

• Having a different number of scan ports between a serial mode and a standard scan 
mode during HASS or Hybrid core integration

• Multiple serializer test modes

• Sparse scheduling

You cannot use the -target option of the define_test_mode command to target some 
cores but not others (also known as sparse targeting) in serializer and serializer IP 
insertion flows.

• Parallel mode support in top-down partition with concatenated serializer chain flow, 
HASS with concatenated serializer chain flow, and Hybrid flows

• DFT connectivity associations using the set_dft_connect or set_dft_signal 
-connect_to commands

• Pipeline scan data registers whose clock is shared with scan cells’ clock

The tool inserts the serializer clock controller on the clock lines to provide internally 
generated clocks to the compressed scan chains. If it is inserted on the clock line feeding 
the pipelined scan data registers, the pipeline registers do not work properly.

• Pattern translation from serial to parallel

• Launch-on-shift (LOS) transition ATPG 

• Internally generated scan-enable signals

• LSSD, scan-enabled LSSD, and clocked scan styles

• Lock-up flip-flops

• Retiming flip-flops

• Terminal lock-up latches

When enabled, terminal lock-up latches are inserted at the end of the compressed scan 
chains (before the serializer compressor) instead of at the scan output ports. This might 
result in scan structures that do not shift into the compressor correctly.

• Mix of -xtolerance high and -xtolerance default codecs in top-down partition, 
HASS, and Hybrid flows
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• Any case with core wrapping in which a dedicated wrapper clock is created when the 
insert_dft command is run

The dedicated wrapper clock is not gated by the serializer clock controller.

• Any case with core wrapping in which the DFTMAX Hybrid integration mode is also used

• tmax2pt (TetraMAX to PrimeTime utility)

Out-of-Scope Serializer Functionality

The following serializer functionalities are out of the current scope:

• Serialized standard scan mode

• Serialized asymmetrical I/O codec compression

• Serialized core with standard scan chains

This is supported only when all scan chains are compressed by the serializer codec

• Legacy Verilog testbench 

DFTMAX Compression Error Messages

The following TEST error messages involve the serializer feature.

TEST-1093

Size of the deserializer and serializer are not equal. 

TEST-1094

The number of deserializer inputs and serializer outputs are not equal.

TEST-1095

Scan compression mode chains that are outside the codec are not supported in the 
serializer flow. 
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TEST-1096

The head and tail pipeline flip-flops are not triggered by the same clock in the serializer flow. 

TEST-1097

Pipeline clock is not dedicated to pipeline flip-flops in serializer flow. 
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Introduction to DFTMAX Ultra 23

DFTMAX Ultra compression is an advanced test compression technology that is designed 
for hierarchical flows to deliver high quality results as measured by test time, data volume, 
design area and congestion, and time to implementation. The technology delivers very high 
compression, even with few scan I/O pins. It uses the same signal interface as standard 
scan with minimal impact to the clock tree. The technology is designed to deliver good 
results with few internal chains to minimize any impact on layout.

The following topics introduce DFTMAX Ultra compression:

• The DFTMAX Ultra Compression Architecture

• Usage Flow

• Hierarchical DFT Insertion

• Test Pattern Creation Using TetraMAX ATPG

• Pattern Simulation
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The DFTMAX Ultra Compression Architecture

DFTMAX Ultra compression is an advanced method of scan compression that provides high 
levels of compression, high fault coverage, short scan chains, and low pin count. The scan 
architecture uses a shift register structure to shift in and shift out the scan data streams, 
allowing all test operations to occur at high frequencies. All scan circuits operate at the same 
frequency and no codec clock controller circuit is needed for scan operations.

Figure 23-1 shows the basic decompression and compression (codec) architecture. The 
codec logic uses an existing scan clock; for simplicity, clock connections are not shown.

Figure 23-1 Basic DFTMAX Ultra Compression Architecture

The scan-in data port feeds an input shift register. Some bits in the shift register are used as 
control bits, while others are used as data bits. The control bits are latched once per pattern 
and the latched values configure the compression logic for the pattern. The data bits supply 
streaming data to the decompression multiplexer (MUX), which is a combinational logic 
block that distributes the data to the compressed scan chains.

At the scan chain outputs, a combinational XOR compression tree and a sequential XOR 
output shift register compress the data into a single stream. The compression tree is a 
multilevel combinational network of XOR gates that compresses the bits from the scan 
chains into a smaller number of bits. The output shift register compresses the data further to 
produce a single bit per shift cycle. Redundant connections to the output shift register help 
minimize the effect of X values.

The DFTMAX Ultra compression architecture allows test data to be streamed in through a 
single input port and to be read out through a single output port, using the normal shift clock. 
At the same time, the input and output shift registers allow high levels of compression to be 
achieved with very good fault coverage.
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DFTMAX Ultra compression is an optional add-on to DFTMAX compression. Together, they 
synthesize the streaming scan compression circuitry. You specify the number of scan inputs, 
number of scan outputs, and the target number of chains. The tool then determines the 
optimum architecture for optimal compression and fault coverage possible with the available 
resources.

Usage Flow

To use DFTMAX Ultra compression, you specify the number of scan data inputs and outputs 
and the target number of scan chains. The tool determines the optimum architecture to 
achieve the desired compression with the available resources and synthesizes the DFT 
compressor and decompressor (codec) circuitry. It also generates a STIL file to describe the 
test protocol and codec architecture.

The following example shows a typical DFTMAX Ultra compression script:

set_dft_configuration -streaming_compression enable
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 80
set_dft_signal -port SI1 -type ScanDataIn 
set_dft_signal -port SO1 -type ScanDataOut
...

The set_dft_configuration -streaming_compression enable command enables 
DFTMAX Ultra compression.

The chip can be tested in two different modes: standard scan (uncompressed) mode and 
compressed scan mode. The -chain_count option is used with two different commands to 
specify the number of chains in these two modes:

• In the set_scan_configuration command, the -chain_count option specifies the 
number of scan chains for the standard scan chains, which are the scan chains used in 
standard scan mode. (This option value is also the default number of input and outputs 
ports used in compressed scan mode so that both modes share the same I/O 
characteristics.)

• In the set_streaming_compression_configuration command, the -chain_count 
option specifies the target number of compressed scan chains, which are the scan 
chains used in compressed scan mode.

The tool synthesizes scan compression circuitry for the target number of compressed scan 
chains using the specified number of scan data inputs and outputs. In this example, the 
circuit has one scan input, one scan output, and 80 compressed scan chains.
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Hierarchical DFT Insertion

The DFTMAX Ultra tool supports hierarchical DFT insertion. You can perform scan 
synthesis independently for each lower-level block. When you use instances of these blocks 
at a higher level of hierarchy, the tool integrates the scan circuitry of the lower-level blocks 
at the higher level.

There are many ways to build and integrate lower-level blocks to create the top-level design. 
Figure 23-2 shows a few examples.

Figure 23-2 Hierarchical DFT Examples

Several criteria can help you choose the best strategy for a hierarchical design:

• What is the target compression level? The need to reduce tester time and test data 
volume can determine the DFT flow and choice of block sizes.

• How many I/O pins at the top level are available for use as test I/O pins? Using a larger 
number of available pins can improve testing speed and quality of results.

• Is the chip layout congested? To reduce congestion and preserve routing resources, you 
can partition the design into smaller blocks, each having its own test circuitry.

• Are multiple test modes needed? Should the modes be implemented at the top level or 
at the block level? Which combinations of lower-level test modes need to be accessible 
at the top level? You could use different testing modes such as high compression, low 
compression, and standard scan, for different purposes.
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When using hierarchical scan synthesis, it is important to consider the top-level scan 
architecture at the core level. Cores built with scan I/O counts that are a multiple of the 
top-level scan I/O count give maximum chain balancing flexibility during integration. Careful 
consideration of hierarchical block integration in the early stages of the design flow can have 
a significant impact on the final test coverage and pattern count.

Test Pattern Creation Using TetraMAX ATPG

The write_test_protocol command writes out a STIL procedure file (SPF) containing a 
description of the test circuitry in a given test mode. For compression modes, the SPF 
contains information about the scan compression architecture. You use a separate 
write_test_protocol command for each test mode that will be used for testing the device.

The TetraMAX tool performs automatic test pattern generation for the DFTMAX Ultra 
compression designs. The tool has knowledge of the DFTMAX Ultra compression 
architecture and its pattern decompression and compression algorithms. Given the design 
netlist and an SPF, TetraMAX ATPG generates a set of test patterns for that test mode. The 
tool attempts to get the best possible fault coverage using a reasonable number of patterns.

See Also

• “Using TetraMAX and DFTMAX Ultra Compression” in TetraMAX Online Help for more 
information about running TetraMAX ATPG on DFTMAX Ultra designs

Pattern Simulation

The test synthesis flow typically uses VCS simulation to validate the test protocol and test 
patterns. You can choose either serial or parallel loading of scan data patterns for 
simulation. Use serial loading to simulate the full scan-in and scan-out behavior of the test 
circuitry and test protocol. Use parallel loading of patterns to simulate just the launch and 
capture phases of test.

Parallel simulation of test patterns is much faster than serial simulation. However, only serial 
simulation can fully validate the scan circuitry and test protocol. You can use serial loading 
for the first few patterns for complete testing, and then use parallel loading for fast simulation 
of many patterns.
Chapter 23: Introduction to DFTMAX Ultra
Test Pattern Creation Using TetraMAX ATPG 23-5
Chapter 23: Introduction to DFTMAX Ultra
Test Pattern Creation Using TetraMAX ATPG 23-5



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Chapter 23: Introduction to DFTMAX Ultra
Pattern Simulation 23-6



24
DFTMAX Ultra Compression Architecture 24

DFTMAX Ultra compression uses a shift-register scan-data architecture and a single scan 
clock to deliver very high compression without restriction on the number of I/O pins. The 
input shift register feeds the decompression logic that provides data to many internal scan 
chains. The output shift register compresses the scan-out data using XOR logic. This 
architecture delivers high scan compression levels while providing a scan-compatible 
interface that retains the simplicity of a basic scan design.

The following topics describe the DFTMAX Ultra compression architecture:

• DFTMAX Ultra Compression Architecture

• Multiple-Input, Multiple-Output Architecture

• On-Chip Clocking Support
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DFTMAX Ultra Compression Architecture

DFTMAX Ultra compression supports high levels of compression, high fault coverage, short 
scan chains, and low pin count. The scan architecture uses shift-register structures to feed 
in and read out the scan data streams, which enables high shift frequencies. All scan circuits 
operate at the same frequency; no codec clock controller circuit is needed for scan 
operations.

To insert DFTMAX Ultra scan compression, you specify the number of scan inputs and scan 
outputs, and the target number of compressed scan chains. The tool then implements an 
architecture based on your configuration. The DFTMAX Ultra architecture supports high 
compression levels using as few as one scan input and one scan output, even for a large 
number of internal scan chains.

Figure 24-1 shows a block diagram for a single-input, single-output DFTMAX Ultra codec. 
Clock and control signals are active-high. The codec logic uses an existing scan clock; for 
simplicity, clock connections are not shown.

Figure 24-1 DFTMAX Ultra Compression Architecture, Single Scan-In and Scan-Out Pins
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The features and function of the DFTMAX Ultra architecture are covered in the following 
topics:

• Input Shift Register and Decompression MUX

• Control Register

• Output XOR Compression Tree and Shift Register

• Test Pattern Scan Procedure

• Scan-Enable Signal Requirements for Codec Operation

Input Shift Register and Decompression MUX

The input decompressor circuit uses a shift register and a decompression multiplexer 
(MUX). The input scan data at the scan-in pin feeds into the shift register, which is clocked 
on the trailing clock edge at the normal scan clock rate. In this implementation example, the 
register has eight bits. The four register bits farthest from the scan-in pin feed into the 
decompression MUX.

The decompression MUX is a combinational logic block that causes each of the four scan 
data bits to fan out to multiple scan chains. The mapping of the four bits from the shift 
register to the scan chains remains constant for a particular pattern. However, the mapping 
can change from one pattern to the next. The mapping is controlled by bits in the control 
register. (For more details, see the next section, “Control Register.”)

The shift-register structure that feeds into the decompression MUX causes the input data to 
stream into the scan chains multiple times. Therefore, the timing is shifted by one clock cycle 
from successive register bits in the shift register. This architecture allows the TetraMAX 
ATPG tool to disperse the input data stream both in space and time – in space by fanning 
out to multiple chains under the control of the decompression MUX, and in time by 
controlling the stream of bits feeding the shift register. Although a single data stream enters 
the design, different chains receive different data by this time shifting.

The four last-arriving bits in the shift register are latched into the control register when the 
scan enable signal, test_se, is de-asserted. This de-assertion occurs exactly once per 
pattern. Other than this once-per-pattern latching function, the input shift register bits 
feeding the control register operate only as a time-delay pipeline for the input data stream.

Control Register

The control register is a bank of latch cells that stores the configuration of the scan circuit for 
a given pattern. Some of the register bits control the mapping of input shift-register bits to 
scan chains through the decompression MUX, while others control the X-masking logic at 
Chapter 24: DFTMAX Ultra Compression Architecture
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the ends of the scan chains. In this example, two bits control the decompression MUX and 
two bits control the X-masking logic. The control register latches remain constant during 
scan shifting, so the scan configuration stays the same within a given pattern.

To program the control register, TetraMAX ATPG appends the desired string of control bits 
to the end of the previous pattern’s data stream. When scan-in completes, the control bits 
occupy the register positions that feed into the control register. The de-asserted scan-enable 
signal, test_se, latches these bits into the control register. Thus, the final bits of the scan-in 
pattern control X-masking for the current pattern to be scanned out and the decompression 
MUX mapping for the next pattern to be scanned in.

Output XOR Compression Tree and Shift Register

The output compressor circuit uses a combinational XOR compression tree and a 
sequential XOR output shift register.

The XOR compression tree is a multilevel combinational network of XOR gates that 
compresses the output bits from the scan chains into a smaller number of bits. Each scan 
chain feeds into multiple XOR tree outputs; this redundant logic helps to minimize the 
propagation of X values. In this example, the scan chain outputs are compressed into four 
bits that feed the output shift register.

If TetraMAX ATPG determines that there are too many X values for the redundant XOR tree 
to isolate the X values, it invokes X-masking to block one or more scan chains during 
scan-out. The X-masking bits from the control register specify the chain or chains to mask 
for the current pattern and also specify the order of the signals feeding into the XOR 
compression logic.

The compressed bits feed into a chain of flip-flops that operate as an output shift register, 
which is clocked on the leading clock edge at the normal scan clock rate. During scan 
capture, the register is reset by the scan-enable signal. During scan shift, the XOR gate 
between each stage of the shift register merges scan data from an XOR compressor output 
into the scan data already moving through the output shift register. This architecture further 
compresses the scan data outputs from the XOR compression tree into a single data 
stream.

Test Pattern Scan Procedure

The ATE equipment performs the scan-in, scan-out procedure as specified by TetraMAX 
ATPG. In this example, the scan procedure uses 15 extra clock cycles to flush out the extra 
bits from the input and output shift registers. For example, if the longest scan chain is 10,000 
bits long, then the scan-in, scan-out procedure takes 10,015 scan clock cycles.
Chapter 24: DFTMAX Ultra Compression Architecture
DFTMAX Ultra Compression Architecture 24-4



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Consider two consecutive test patterns, 1 and 2, starting from the point at which pattern 1 
has just been scanned in:

1. The first four bits of the input shift register (shifted in at the end of pattern 1) contain the 
desired scan control bits to be latched into the control register. The output XOR shift 
register contains leftover data from the previous pattern.

2. The scan-enable signal test_se changes from high to low, transitioning the device from 
scan shift mode to scan capture mode. The de-assertion of the test_se pin performs the 
following:

❍ It latches the four control bits from the input shift register into the control register 
latches. This configures the X-masking circuit to scan out the data from pattern 1, and 
it configures the decompression MUX to decompress the data for incoming pattern 2.

❍ It resets the output XOR shift register to known zero values.

3. The ATE equipment applies the test vector to the primary inputs of the device and reads 
the output vector from the primary outputs.

4. A clock pulse applied to the clock input causes the capture event, which changes the 
contents of the scan flip-flops.

5. The scan-enable signal test_se is asserted, which transitions the device from scan 
capture mode back into scan shift mode.

6. The ATE equipment applies a sequence of clock pulses at the scan clock rate. This reads 
out the captured scan data for pattern 1 through the test_so1 output and, at the same 
time, scans in the data for pattern 2 through the test_si1 input.

7. Scan-in and scan-out continue until the scan chains are filled with the data for pattern 2 
(and the first four bits of the input shift register are filled with the control bits for the next 
pattern).

This same sequence is repeated for each pattern until the device is fully tested.

Before the initial scan-in of test pattern data, the MUX control bits of the control register must 
be programmed with values for proper decompression of the first test pattern. Therefore, the 
first test cycle uses an abbreviated “padding” pattern containing only the MUX control bits 
and no actual scan data. For more information about padding patterns, see “Optimizing 
Padding Patterns” in TetraMAX Online Help.

Scan-Enable Signal Requirements for Codec Operation

When the streaming codec scan-enable signal is de-asserted, the control register latches 
new control bit values, and the output shift register resets to a known state. Therefore, for 
proper operation, this scan-enable signal must be held in the inactive state in all capture 
procedures.
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If you use the STIL procedure file created by the tool, the protocol already meets this 
requirement. In the capture procedures, the tool constrains all scan-enable signals that drive 
streaming codecs to the inactive state.

Note:   
In some flows, streaming codecs cannot use signals defined with the -usage option of 
the set_dft_signal command. See “DFT Synthesis Limitations” on page 27-2.

Note:   
When OCC controllers are present, the tool uses different behavior that could constrain 
additional scan-enable signals. For more information, see “OCC Controllers and 
Streaming Codec Scan-Enable Constraints” on page 25-20.

If you use a custom STIL procedure file, make sure that all scan-enable signals used by 
DFTMAX Ultra codecs are constrained to the inactive state in all capture procedures.

Multiple-Input, Multiple-Output Architecture

If the codec is configured to use multiple scan-in and scan-out connections, the tool 
synthesizes the scan circuitry in a manner similar to the single-pin circuit, but it splits the 
input and output shift registers into smaller segments and connects them to the available 
input and output pins. By using more scan I/O pins, you get shorter shift registers, improved 
controllability, and improved observability into the design.

Figure 24-2 shows a DFTMAX Ultra codec with two scan data inputs and two scan data 
outputs. The codec has four input shift-register scan data bits feeding into the 
decompression MUX, four control register bits that control the decompression and 
compression logic, and four output shift-register bits.
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Figure 24-2 DFTMAX Ultra Compression Architecture, Multiple Scan-In and Scan-Out Pins

The tool determines the total input and output shift register lengths based on the number of 
compressed scan chains, then it then splits these shift register lengths across the scan 
inputs and outputs (rounding up shorter registers as needed). Therefore, as you increase 
the number of scan inputs and outputs, the scan shift overhead of the shift registers is 
reduced.

This bit distribution is more flexible than the single-input, single-output design because there 
are multiple independent data streams rather than one. This flexibility might allow the same 
fault coverage to be achieved with fewer patterns, but at the cost of using more device pins.

In this example, the distribution of bits in the input shift registers allows TetraMAX ATPG to 
generate two independent data streams at the same time, one each for test_si1 and 
test_si2. Each input shift register provides its own scan data bits for multiplexing to the scan 
chains. For each compressed scan chain, TetraMAX ATPG has a choice of up to four 
different bit streams: two from test_si1 and two from test_si2.

The control register bits are the last data bits shifted into the device for a pattern. Therefore, 
the bits of the shift register used for loading the control register are located closest to the 
input pin, whereas the bits of the shift register that are available to the decompression MUX 
are located farthest from the input pin.
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On the output side, the output XOR shift register is divided into two smaller shift registers, 
one each for the output pins test_so1 and test_so2. This reduces the amount of data 
compression performed in the shift register, which reduces the propagation of X values and 
provides greater observability into the design.

On-Chip Clocking Support

An on-chip clocking (OCC) generator circuit is typically used to create high-speed clocks. 
For example, the OCC generator shown in Figure 24-3 is a phase-locked loop (PLL) that 
generates three high-speed clocks synchronized to an externally supplied reference clock. 
The PLL clocks run at frequencies that are integer multiples of the reference clock. 

Figure 24-3 On-Chip Clock Generator Before Scan Insertion

The high-speed clocks are generated on-chip because the capacitance effects of the 
external device pin connections and packaging make it impractical to supply these clocks 
from outside the chip. 

Most scan testing is done at much slower clock rates than the normal operating rates of the 
on-chip clocks. This is because the timing paths used for scan shifting cannot meet the tight 
timing requirements of the on-chip clocks. However, for at-speed testing for transition faults 
and delay faults, the device must be clocked at the normal operating rate between the 
launch and capture events. Therefore, a slower externally driven clock is used for scan shift 
and the faster on-chip clock is used for launch and capture cycles during scan capture.

An OCC controller allows the test program to switch between these two clocks. When using 
DFTMAX Ultra compression with an OCC controller, the tool inserts the clock control 
circuitry similar to what is shown in Figure 24-4. For scan capture, the circuit selects the fast 
PLL-generated clocks. For scan shift, the circuit blocks the PLL-generated clocks and uses 
a slower ATE-generated clock, which is supplied through a device input.

To clock pins 
of flip-flops

On-chip clock 
generator

(PLL)

PLLclk1

PLLclk2

PLLclk3
REFclk
Chapter 24: DFTMAX Ultra Compression Architecture
On-Chip Clocking Support 24-8



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 24-4 On-Chip Clocking Control After Scan Insertion

The OCC controller must select the proper clock signals for each phase of scan testing. A 
small shift register, known as the clock chain, controls the behavior of the fast clock pulse 
sequence. In the DFTMAX Ultra flow, the clock chain is constructed as an external clock 
chain with a dedicated input pin and a dedicated output pin; it is excluded from compression.

For ATPG purposes, the clock chain is seen as an additional scan chain. The tool writes the 
register bit functions to the SPF file so that TetraMAX ATPG has the information needed to 
configure the clock control circuit.

For more background information, see Chapter 13, “On-Chip Clocking Support.”

The following script shows an example of an OCC controller implementation with DFTMAX 
Ultra compression.

Example 24-1 On-Chip Clock Implementation Script Example

set_dft_signal -view existing_dft -type Oscillator \
  -hookup_pin U_pll/clka
set_dft_signal -view existing_dft -type Oscillator \
  -hookup_pin U_pll/clkb
set_dft_signal -view existing_dft -type Oscillator \
  -hookup_pin U_pll/clkc
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create_port -direction in shift_clk
set_dft_signal -view existing_dft -type ScanClock \
  -timing {45 55} -port shift_clk
set_dft_signal -view existing_dft -type Oscillator -port shift_clk

set_dft_configuration -clock_controller enable
set_dft_clock_controller -cell_name U_snps_clk_muxa \
  -design snps_clk_mux \
  -pllclocks [list U_pll/clka U_pll/clkb U_pll/clkc] \
  -ateclocks {shift_clk} -chain_count 1 -cycles_per_clock 2

set_dft_configuration -streaming_compression enable
set_streaming_compression_configuration -chain_count 30
create_test_protocol
dft_drc
preview_dft -show scan_clocks
insert_dft

Note:   
For information about requirements that apply when using OCC controllers in a DFTMAX 
Ultra flow, see Chapter 27, “DFTMAX Ultra Limitations and Known Issues.”
Chapter 24: DFTMAX Ultra Compression Architecture
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Using DFTMAX Ultra Compression 25

To use DFTMAX Ultra compression, you specify the desired number of compressed chains 
and the number of I/O ports to be used for scan input and scan output. The tool synthesizes 
the scan circuitry and writes the architectural information to the SPF file. TetraMAX ATPG 
then generates test patterns for simulation and device testing.

This chapter includes the following topics:

• DFTMAX Ultra Compression Requirements

• Top-Down Insertion Compressed Scan Flow

• Top-Down Insertion Compressed Scan Flow With Partitions

• The Multiple-Input, Multiple-Output Codec Architecture

• DFTMAX Ultra Compression and Multiple Test Modes

• Using OCC Controllers With DFTMAX Ultra Compression

• Reducing Power Consumption in DFTMAX Ultra Designs

• Planning, Previewing, and Inserting DFTMAX Ultra Compression

• Library Cell Requirements for Codec Implementation
25-1
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DFTMAX Ultra Compression Requirements

To use DFTMAX Ultra scan compression,

• You must have the Design Compiler, DFTMAX, and DFTMAX Ultra tools installed and 
licensed at your site.

• You must have an HDL-Compiler license for compressed scan insertion.

• You must have the following cell types available for mapping when using the insert_dft 
command:

❍ Level-sensitive latch

❍ Flip-flop with asynchronous reset

For more information, see “Library Cell Requirements for Codec Implementation” on 
page 25-38.

• You must use a preclock strobe (which is the default). If you set the 
test_default_strobe variable, ensure that the strobe occurs before the active edges 
of the test clock waveforms.

Note:   
See Chapter 29, “DFTMAX Ultra Flow Naming Conventions,” for information on the flow 
naming conventions used for DFTMAX Ultra flows.

Top-Down Insertion Compressed Scan Flow

This topic describes the top-down insertion (TDI-C) flow with DFTMAX Ultra compression. 
In this flow, you insert scan compression into a design that contains no existing scan 
compression logic.

This flow is covered in the following topics:

• Enabling DFTMAX Ultra Compression

• Configuring the DFTMAX Ultra Codec

• Configuring the Codec Clock
Chapter 25: Using DFTMAX Ultra Compression
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Enabling DFTMAX Ultra Compression

Commands and command options related to DFTMAX Ultra compression use the word 
“streaming.” To enable top-down insertion of DFTMAX Ultra compression (TDI-C), simply 
enable DFTMAX Ultra compression as follows:

dc_shell> set_dft_configuration -streaming_compression enable

The tool automatically performs TDI-C compression when all of the following are true:

• DFTMAX Ultra compression is enabled and a codec is configured.

• Scanned or scannable logic exists.

• No standard scan or compressed scan s exist.

When these criteria are met, the preview_dft and insert_dft commands issue the 
following messages:

Information: Detected scanned or scannable logic. (TEST-1462)
Information: Inferring the top-down scan insertion (TDI) flow.
(TEST-1436)

Example 25-1 shows a script that implements DFTMAX Ultra compression using a top-down 
insertion flow.

Example 25-1 Script for Top-Down Insertion of DFTMAX Ultra Compression

# enable DFTMAX Ultra compression
set_dft_configuration -streaming_compression enable

# specify standard scan chain count
set_scan_configuration -chain_count 3

# configure the DFTMAX Ultra codec
set_streaming_compression_configuration \
  -chain_count 8 -inputs 3 -outputs 3

# configure required scan clock signals
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}

# configure optional placeholder DFT signal ports
set_dft_signal -view spec -type ScanDataIn -port SI
set_dft_signal -view spec -type ScanDataOut -port SO
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM
Chapter 25: Using DFTMAX Ultra Compression
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When DFTMAX Ultra compression is enabled, the insert_dft command inserts 
compressed scan logic into the design and defines the following two test modes:

• Compressed scan mode

This mode configures the scan elements as short chains accessed through a DFTMAX 
Ultra codec. The default name for this test mode is ScanCompression_mode.

• Standard scan mode

This mode joins the short compressed scan chains to reconfigure them into longer 
standard scan chains. This is also known as standard scan mode. The default name for 
this test mode is Internal_scan.

These test modes are created automatically during compressed scan insertion; you do not 
need to create them or reference them. Figure 25-1 shows the scan structures for the two 
test modes created by Example 25-1. Three standard scan chains and eight compressed 
scan chains are created.

Figure 25-1 Standard Scan and Compressed Scan Modes

At least one test-mode signal is required to select between standard scan mode and 
compressed scan mode. If a TestMode signal is defined with the set_dft_signal 
command, it is used for mode selection. If no test-mode signals are defined, a test-mode 
port is created and used. Test-mode encodings are created that map the test-mode signal 
values to each scan mode.

Note:   
For more information about working with multiple test modes in DFT Compiler, including 
information on specifying test-mode encodings, see “Multiple Test Modes” on 
page 11-63.

A compressed scan mode is always associated with a corresponding standard scan mode. 
The standard scan mode associated with a compressed scan mode is known as its base 
mode. The base mode controls aspects of scan configuration that are common to both 
modes, such as scan I/O port definitions, scan signal hookup pin definitions, and top-level 
test access structures.
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Configuring the DFTMAX Ultra Codec

The set_streaming_compression_configuration command configures aspects of the 
DFTMAX Ultra compressed scan mode, just as the set_scan_configuration command 
configures aspects of the standard scan mode.

Use one of the following options of the set_streaming_compression_configuration 
command to configure the compression architecture of the codec:

• -compressed_max_length chain_length

The -compressed_max_length option specifies the maximum number of shift cycles of 
the entire scan compression path (from decompressor inputs to compressor outputs). 
The tool adjusts the shift register and compressed chain lengths together to find an 
optimal compression architecture that meets this constraint.

Note:   
The shift cycle count is not simply the sum of the input shift register, compressed 
chain, and output shift register lengths. See SolvNet article 2151939, “How Do I 
Determine the Shift Cycle Count of My Scan, DFTMAX, or DFTMAX Ultra Design?”.

• -max_length chain_length

The -max_length option specifies the maximum allowed length of the compressed scan 
chains only (not including the codec shift registers). The tool creates the number of 
compressed scan chains needed to meet this requirement.

• -chain_count chain_count

The -chain_count option specifies the number of compressed scan chains. The tool 
adjusts the compressed scan chain lengths to meet this requirement.

Figure 25-2 Streaming Compression Codec Configuration Options

Input
shift register

Output
shift register

-chain_count

-max_length

-compressed_max_length
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Specify only one of these options. If no option is specified, the DFT architect aborts with an 
error. If multiple options are specified, precedence applies as described in the man page.

DFTMAX Ultra compression automatically determines the following aspects of codec 
architecture:

• It computes the input and output shift register lengths that are optimal for the number of 
scan inputs and outputs and the number of compressed scan chains.

• If multiple scan clocks exist, it uses the clock that minimizes the number of lock-up 
latches. For more information, see “Configuring the Codec Clock” on page 25-6.

By default, a compressed scan mode inherits and uses the same scan I/Os as its base 
mode. To specify the number of scan I/Os to use for the codec in compression mode, use 
the -inputs and -outputs options of the set_streaming_compression_configuration 
command.

Configuring the Codec Clock

By default, the tool selects clocks for the decompressor and compressor that minimize the 
number of lock-up latches at the decompressor outputs and compressor inputs. The 
selection rules are as follows:

• The decompressor uses a clock whose trailing edge is as late or later than all head scan 
elements.

• The compressor uses a clock whose leading edge is as early or earlier than all tail scan 
elements.

• If multiple clocks meet these criteria for the decompressor or compressor, the dominant 
clock across the head or tail scan elements is used, respectively.

You can determine which clocks are selected for the decompressor and compressor by 
looking at the codec information reported by the preview_dft or insert_dft commands. 
For example,

Architecting Streaming Decompressor
  Number of inputs = 1
  Maximum size per input = 80
  Decompresor Clock = CLK2
Architecting Streaming Compressor
  Number of outputs = 1
  Maximum size per output = 67
  Compressor Clock = CLK2
Architecting Load Decompressor (version 5.8)
  Number of inputs/chains/internal modes = 80/70/4
Architecting Unload compressor (version 5.8)
  Number of outputs/chains = 67/70
  Information: Compressor will have 100% x-tolerance
Chapter 25: Using DFTMAX Ultra Compression
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In most designs, the decompressor and compressor clocks are the same. If they differ, the 
tool issues the following information message:

Information: Different clocks are chosen for the streaming codec
decompressor and compressor clocks. (TEST-1480)

To exclude one or more clocks from automatic clock selection, use the -exclude_clocks 
option of the set_streaming_compression_configuration command:

dc_shell> set_streaming_compression_configuration -exclude_clocks {IPCLK}

To specify a particular scan clock for the codec (both decompressor and compressor), use 
the -clock option of the set_streaming_compression_configuration command:

dc_shell> set_streaming_compression_configuration -clock CLK2

To specify a particular scan clock for the decompressor or compressor, use the 
-decompressor_clock or -compressor_clock option, respectively:

dc_shell> set_streaming_compression_configuration \
            -decompressor_clock CLK1 \
            -compressor_clock CLK3

A referenced scan clock must be previously defined as a scan clock using the 
set_dft_signal -type ScanClock command.

By default, DFT Compiler makes the codec clock connections at the source port specified in 
the -view existing_dft signal definition, as shown in Figure 25-3.

Figure 25-3 Default Codec Clock Connection

However, if you want DFT Compiler to make the clock connection at an internal pin, such as 
a pad cell or clock buffer output, you can specify it with the -hookup_pin option in a 
subsequent -view spec signal definition, as shown in Figure 25-4.

CLK U1

set_dft_signal -view existing_dft -type ScanClock \
  -timing {45 55} -port CLK
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Figure 25-4 User-Defined Codec Clock Connection

For more information on specifying a clock hookup pin, see “Specifying a Hookup Pin for 
DFT-Inserted Clock Connections” on page 10-51.

Top-Down Insertion Compressed Scan Flow With Partitions

In the DFTMAX Ultra compression top-down insertion flow, you can use the DFT partitions 
feature to divide the design into multiple partitions. The tool inserts a separate codec for 
each partition. This is known as the TDI-C-P flow.

This flow is described in the following topics:

• Using Dedicated Scan Data Connections for Each Partition

• Using Serial Scan Data Connections Between Partitions

• Per-Partition Streaming Configuration Commands

See Also

• “Partitioning a Scan Design With DFT Partitions” on page 10-89 for general information 
about DFT partitions

Using Dedicated Scan Data Connections for Each Partition

When creating DFT partitions, dedicated scan data connections are created for each 
partition by defining the scan data DFT signals within each partition. In Example 25-2, 
scan-in and scan-out signals are created inside each DFT partition.

CLK U1

set_dft_signal -view existing_dft -type ScanClock \
  -timing {45 55} -port CLK
set_dft_signal -view spec         -type ScanClock \
  -port CLK -hookup_pin U1/Z
Chapter 25: Using DFTMAX Ultra Compression
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Example 25-2 Script for Top-Down Insertion Flow With Partitions and Dedicated Scan Data 
Connections

# enable streaming compression in global configuration
# (before any DFT partitions are defined)
set_dft_configuration -streaming_compression enable

# define and configure a user-defined DFT partition
define_dft_partition my_part -include {...}
current_dft_partition my_part
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI1 -type ScanDataIn
set_dft_signal -port SO1 -type ScanDataOut

# define and configure the default DFT partition
current_dft_partition default_partition
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI2 -type ScanDataIn
set_dft_signal -port SO2 -type ScanDataOut

When the set_dft_signal command is used inside a partition definition, it includes the 
partition name in the resulting message:

Accepted dft signal specification for partition 'my_part' and modes: 
all_dft

The script in Example 25-2 results in the scan data connections shown in Figure 25-5. Each 
DFT partition has dedicated scan-in and scan-out connections.
Chapter 25: Using DFTMAX Ultra Compression
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Figure 25-5 Top-Down Insertion Flow With Partitions and Dedicated Scan Data Connections 

This is the default method for scan data connections. If you do not explicitly define scan data 
signals with the set_dft_signal command, dedicated scan data signals are created as 
needed for each partition.

Using Serial Scan Data Connections Between Partitions

When creating DFT partitions, serial scan data connections between the partition codecs 
are created by defining the scan data DFT signals with the define_dft_signal 
-partition all command. In Example 25-2, global scan-in and scan-out signals are 
created for all DFT partitions.

Example 25-3 Script for Top-Down Insertion Flow With Partitions and Serial Scan Data 
Connections

# enable streaming compression in global configuration
# (before any DFT partitions are defined)
set_dft_configuration -streaming_compression enable

set_dft_signal -port SI1 -type ScanDataIn -partition all
set_dft_signal -port SO1 -type ScanDataOut -partition all

# define and configure a user-defined DFT partition

SI1

SO

SO

SI2
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define_dft_partition my_part -include {...}
current_dft_partition my_part
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4

# define and configure the default DFT partition
current_dft_partition default_partition
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4

The script in Example 25-3 results in the scan data connections shown in Figure 25-6. The 
partition codecs are connected using serial scan data connections.

Figure 25-6 Top-Down Insertion Flow With Partitions and Serial Scan Data Connections

All static control shift registers are stitched into the scan chain first, followed by all dynamic 
input data shift registers. This ensures that all control register bits are shifted in last. The 
output shift registers are stitched together, with the second and subsequent output shift 
registers incorporating the output of the previous register into their XOR shift chain.

This connection method has the following requirements:

• You must use only one scan-in and one scan-out signal. You cannot use multiple scan-in 
or scan-out signals.

SI1

SO
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• You must explicitly define the scan data signals with the set_dft_signal -partition 
all command. You cannot use this connection method with automatically created scan 
data signals.

Per-Partition Streaming Configuration Commands

This topic lists the commands you can use to configure DFTMAX Ultra streaming 
compression on a per-partition basis. Streaming compression commands and options not 
listed in this section should be applied as part of the global DFT configuration settings.

See Also

• “Per-Partition Scan Configuration Commands” on page 10-93 for the per-partition 
commands that are not specific to the streaming compression flow.

set_streaming_compression_configuration

The following set_streaming_compression_configuration options can be specified on 
a per-partition basis:

• -inputs

• -outputs

• -compressed_max_length

• -max_length

• -chain_count

• -clock

• -min_power

• -shift_power_chain_length

• -shift_power_chain_ratio

• -shift_power_clock

• -shift_power_disable

set_dft_signal

The following set_dft_signal options can be specified on a per-partition basis:

• -type ScanEnable -usage streaming_codec
Chapter 25: Using DFTMAX Ultra Compression
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Note:   
The streaming_codec usage is the only scan-enable usage that supports 
per-partition specification. Do not include other usages when defining per-partition 
scan-enable signals.

The Multiple-Input, Multiple-Output Codec Architecture

The multiple-input, multiple-output codec architecture uses multiple scan data signals for a 
single codec to increase the scan data shifting throughput.

To implement this architecture, specify a standard chain count value larger than one. For 
example,

# use two scan-ins/scan-outs in standard scan and compressed scan modes
set_scan_configuration -chain_count 2

# create four compressed scan chains
set_streaming_compression_configuration -chain_count 4

This creates two scan chains in standard scan mode, but it also provides two scan-in and 
scan-out signals in the compressed scan mode. The tool splits the codec input and output 
shift registers across the available scan-ins and scan-outs, as shown in Figure 25-7.

Figure 25-7 The Multiple-Input, Multiple-Output Codec Architecture

If you want to specify a different number of scan connections for standard scan mode and 
compressed scan, use the -inputs and -outputs options of the 
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set_streaming_compression_configuration command to specify the number of scan 
connections in compressed scan mode:

# use eight scan-ins/scan-outs in standard scan mode
set_scan_configuration -chain_count 8

# use two scan-ins/scan-outs in compressed scan mode
set_streaming_compression_configuration \
  -inputs 2 -outputs 2 -chain_count 4

You can use the multiple-input, multiple-output architecture with DFT partitions. Apply the 
scan configuration commands within each partition definition.

See Also

• “Multiple-Input, Multiple-Output Architecture” on page 24-6 for more information about 
this architecture

• “DFT Synthesis Limitations” on page 27-2 for a list of requirements and limitations of this 
architecture

DFTMAX Ultra Compression and Multiple Test Modes

You invoke DFTMAX Ultra compression by setting the DFT configuration to scan 
compression and specifying the streaming scan compression configuration:

set_dft_configuration -streaming_compression enable
set_streaming_compression_configuration ...

When you insert DFTMAX Ultra compressed scan into your design, the tool creates two test 
modes by default:

• A standard scan mode

The default name for this test mode is Internal_scan.

• A DFTMAX Ultra compressed scan mode

The default name for this test mode is ScanCompression_mode.

Just as you can create multiple standard scan modes with the DFT Compiler tool, you can 
also create multiple compressed scan modes with the DFTMAX Ultra tool. This capability 
uses the same multiple test-mode creation, configuration, and reporting commands as used 
with multiple standard scan modes.

Usage of multiple compressed scan modes is described in the following topics:

• Defining Multiple DFTMAX Ultra Compressed Scan Modes

• Mixing DFTMAX and DFTMAX Ultra Compression Modes
Chapter 25: Using DFTMAX Ultra Compression
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• Per-Test-Mode Streaming Configuration Options

See Also

• “Multiple Test Modes” on page 11-63 for more information about defining multiple test 
modes

Defining Multiple DFTMAX Ultra Compressed Scan Modes

You can define user-defined test modes with the define_test_mode command. Define 
streaming compression modes with the streaming_compression usage. For example,

dc_shell> define_test_mode COMP -usage streaming_compression

Note:   
For backward compatibility, you can also define streaming compression modes with the 
scan_compression usage, but only if no DFTMAX compression modes also exist in the 
design. This behavior will be obsoleted in a future release.

You can define and use more than one compressed scan mode for a device. For example, 
you might create one compressed scan mode to use for wafer sort testing and another for 
class testing of finished devices. When you define multiple compressed scan modes, the 
tool creates circuitry to support all such modes in the device.

TetraMAX ATPG can select the testing mode by forcing one or more control inputs to 
specified values. Example 25-4 shows a script that defines two compressed scan modes 
and one standard scan mode, together with the encoding to select the three test modes.

Example 25-4 Defining Two Compressed Scan Modes and One Standard Scan Mode

set_dft_configuration -streaming_compression enable

set_dft_signal -type TestMode -port {TM0 TM1}
set_dft_signal -port SI -type ScanDataIn
set_dft_signal -port SO -type ScanDataOut
set_dft_signal -view spec -port SE -type ScanEnable

define_test_mode SCAN  -usage scan \
  -encoding {TM0 1 TM1 1}
define_test_mode COMP1 -usage streaming_compression \
  -encoding {TM0 0 TM1 1}
define_test_mode COMP2 -usage streaming_compression \
  -encoding {TM0 1 TM1 0}

set_scan_configuration -test_mode SCAN -chain_count 1

set_streaming_compression_configuration \
  -test_mode COMP1 -base_mode SCAN \
  -chain_count 80
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set_streaming_compression_configuration \
  -test_mode COMP2 -base_mode SCAN \
  -chain_count 40

Subsequent commands in the DFT synthesis flow use the -test_mode option to specify the 
test mode to which the command applies. For example,

set_streaming_compression_configuration -test_mode COMP1 ...
set_streaming_compression_configuration -test_mode COMP2 ...
set_scan_path -test_mode COMP1 ...
set_scan_path -test_mode COMP2 ...

For information on how to order global and mode-specific configuration commands in your 
scripts, see “Recommended Ordering of Global and Mode-Specific Commands” on 
page 11-70.

In a hierarchical design, each lower-level block can itself have multiple test modes defined. 
By default, all combinations of lower-level test modes blocks are selected from the top level. 
However, if only certain combinations of lower-level test modes are needed, you can specify 
which combinations of lower-level test modes are selected from the top level.

See Also

• “Using Multiple Test Modes in Hierarchical Flows” on page 26-11 for more information 
about defining multiple test modes in hierarchical DFTMAX Ultra flows

Mixing DFTMAX and DFTMAX Ultra Compression Modes

You can mix DFTMAX and DFTMAX Ultra compression modes in the same design. 
However, note the following requirements:

• Both compression types cannot be active in the same test mode.

• User-defined DFTMAX Ultra test modes must be defined with the 
streaming_compression usage so that the tool can differentiate them from DFTMAX 
test modes defined with the scan_compression usage.

Example 25-5 shows a top-down insertion (TDI) flow that configures three compression 
modes: a standard scan mode, a DFTMAX compression mode, and a DFTMAX Ultra 
compression mode.

Example 25-5 Script Example With DFTMAX and DFTMAX Ultra Compression

# enable the DFTMAX and DFTMAX Ultra compression clients
set_dft_configuration \
  -scan_compression enable \
  -streaming_compression enable

# apply global DFT configuration
Chapter 25: Using DFTMAX Ultra Compression
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set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}
set_dft_signal -view spec -type ScanEnable -port SE
set_scan_configuration -clock_mixing mix_clocks

# define the test modes
define_test_mode SCAN -usage scan
define_test_mode DFTMAX -usage scan_compression
define_test_mode DFTMAX_ULTRA -usage streaming_compression  ;# note usage

# configure each test mode
set_scan_configuration -test_mode SCAN -chain_count 4
set_scan_compression_configuration \
  -test_mode DFTMAX -base_mode SCAN \
  -chain_count 20
set_streaming_compression_configuration \
  -test_mode DFTMAX_ULTRA -base_mode SCAN \
  -chain_count 80

See Also

• “Mixing DFTMAX and DFTMAX Ultra Compression Core Modes” on page 26-12 for 
information on integrating cores with DFTMAX and DFTMAX Ultra compression modes

Per-Test-Mode Streaming Configuration Options

The following set_streaming_compression_configuration options can be applied to 
specific test modes:

• -inputs

• -outputs

• -compressed_max_length

• -max_length

• -chain_count

• -base_mode

• -clock

• -min_power

• -shift_power_chain_length

• -shift_power_chain_ratio
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• -shift_power_clock

• -shift_power_disable

Note:   
Although the set_streaming_compression_configuration command applies to the 
current test mode by default, the -test_mode option is typically used together with the 
-base_mode option so that the relationship between the test mode and base mode is 
explicitly highlighted.

Using OCC Controllers With DFTMAX Ultra Compression

When you use OCC controllers with DFTMAX Ultra compression, consider the requirements 
and specification behaviors described in the following topics:

• Creating External Clock Chains

• Budgeting Scan I/Os and External Clock Chains

• OCC Controllers and Streaming Codec Scan-Enable Constraints

Creating External Clock Chains

DFTMAX Ultra requires that the clock chains of OCC controllers be uncompressed so that 
the control bits are directly controllable without conflict by ATPG. Figure 25-8 shows an 
external clock chain structure for two core-level OCC controllers and a top-level OCC 
controller.

Figure 25-8 External Clock Chain in a DFTMAX Ultra Design

In a DFTMAX Ultra design, DFT-inserted clock chains are clocked by the rising clock edge. 
User-defined clock chains can be clocked by the rising or falling edge.
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You can create external clock chains automatically or manually, as described in the following 
topics:

• Automatically Creating External Clock Chains

• Manually Specifying External Clock Chains

Automatically Creating External Clock Chains

By default, DFTMAX Ultra builds a single external (uncompressed) clock chain for all 
available core-level and top-level clock chains. The tool uses existing scan-in and scan-out 
signals, creating new signals as needed.

For top-level user-defined OCC controllers, define the existing clock chain segments with 
the set_scan_group command; the tool automatically includes these segments in its clock 
chain.

Note the following:

• To build multiple clock chains, you must manually specify the external clock chains.

• Automatic creation of external clock chains applies to all test modes created for the 
design, not just DFTMAX Ultra compression modes.

If you have DFTMAX-only cores with compressed clock chains, the tool does not include 
these compressed clock chains in the automatically created external clock chain. These 
compressed clock chains operate normally when the core is active in its DFTMAX mode.

Manually Specifying External Clock Chains

To manually define the complete external clock chain for special cases, you can use the 
set_scan_path command with the -class occ option. This method allows you to use 
specific scan-in and scan-out signals for the clock chain. It also allows you to concatenate 
multiple clock chains in a specific order.

For details on defining external clock chains, see “Defining External Clock Chains” on 
page 18-27.

Budgeting Scan I/Os and External Clock Chains

When you use OCC controllers in a DFTMAX Ultra flow, the tool does not include external 
clock chains in the set_scan_configuration -chain_count value. Figure 25-9 shows an 
example.
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Figure 25-9 External Clock Chain Excluded From set_scan_configuration -chain_count Value

Note the following:

• This behavior is different than non-DFTMAX Ultra flows, which include the clock chains 
in the value.

• This behavior affects all test modes created for the design, not just the DFTMAX Ultra 
compression modes.

OCC Controllers and Streaming Codec Scan-Enable Constraints

For proper operation, scan-enable signals that drive streaming codecs must be de-asserted 
during capture.

In a DFTMAX Ultra design without OCC controllers, the tool creates a test protocol that 
constrains only streaming codec scan-enable signals, as described in “Scan-Enable Signal 
Requirements for Codec Operation” on page 24-5.

OCC controllers also require that their scan-enable signals be de-asserted during capture. 
When OCC controllers are present in a DFTMAX Ultra design, the tool constrains all 
scan-enable signals except those defined with a usage of clock_gating, as described in 
“Scan-Enable Signal Requirements for OCC Controller Operation” on page 13-13.

Reducing Power Consumption in DFTMAX Ultra Designs

You can reduce the power consumption of designs with streaming compression by using the 
following features:

• Reducing Compressor Power When Codec Is Inactive

• Reducing Scan Shift Power Using Shift Power Groups
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Reducing Compressor Power When Codec Is Inactive

In a streaming compression architecture, an XOR compression tree combines the shift 
outputs from all compressed chains into a reduced set of scan data that is captured by the 
output register. This XOR compression tree is needed only during scan shifting in that 
codec’s compressed scan mode. At other times, the compression logic is not needed, but it 
will still toggle when the tail scan flip-flops of the compressed chains toggle. This is a 
particular concern during mission mode, when the flip-flops are clocked at their full operating 
frequency.

To address this, the tool can insert logic that enables the streaming compressor only when 
needed, as shown in Figure 25-10.

Figure 25-10 Example of a Streaming Compressor With Compressor Gating

The control register signals to the compressor are enabled only when the codec shifts data 
in its test mode. At all other times, the control signals are held at logic 0, which causes the 
X-blocking logic in the compressor to block the toggle activity of the tail scan cells from 
propagating into the compressor logic.

To enable compressor XOR gating, specify the following option:

dc_shell> set_streaming_compression_configuration -min_power true

When enabled, this feature adds one AND gate for each compressor control signal (but not 
the decompressor control signals).
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Reducing Scan Shift Power Using Shift Power Groups

You can use shift power groups to reduce power consumption during scan shift. This feature 
is described in the following topics:

• The Shift Power Groups Architecture

• Configuring Shift Power Groups

• Integrating Cores With Shift Power Groups in Hierarchical Flows

• Configuring Shift Power Groups in TetraMAX

• Using Shift Power Groups With Other DFT Features

• Limitations of Shift Power Groups

The Shift Power Groups Architecture

During scan shift, there is significant toggle activity in the scan chains. At high scan shift 
frequencies, this can result in higher-than-desired shift power consumption.

The shift power groups feature helps reduce power consumption during scan shift in 
DFTMAX Ultra compressed scan modes. This feature inserts AND gates at the 
decompressor outputs before each compressed scan chain. The chains are gated in groups 
that are controlled by a shift power control (SPC) chain, as shown in Figure 25-11.

Figure 25-11 Shift Power Groups Decompressor Architecture

The SPC chain is not part of the control chain. Instead, it is an external (uncompressed) 
chain outside the DFTMAX Ultra codec. When scan-in completes, the SPC registers contain 
the group mask values for the next pattern. The de-asserted scan-enable signal, test_se, 
latches these bits into shadow latches that retain the mask values for scan-in of the next 
pattern.
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TetraMAX ATPG configures the group masking in each pattern, depending on the power 
constraints and the number of care bits in each chain group. The larger number of short 
chains inherent to scan compression provide finer granularity for this control. Masked 
groups load constant values into their chains, which reduces overall toggle activity.

SPC chains cannot be compressed because a compressed SPC chain would gate itself, 
preventing it from reliably loading in each pattern.

The shift power logic also includes a hardware disable signal that, when asserted, disables 
the shift power logic by enabling all compressed chains, as shown in Figure 25-12. This 
signal must be de-asserted or asserted prior to DRC, depending on whether the shift power 
groups feature is enabled in TetraMAX ATPG or not, respectively.

Figure 25-12 Shift Power Disabling Logic

Configuring Shift Power Groups

To configure the shift power groups feature, do the following:

1. Enable the shift power groups feature.

dc_shell> set_streaming_compression_configuration \
            -shift_power_groups true

2. Specify the configuration of the compressed chain groups.

❍ To directly specify the number of compressed chain groups, and therefore the length 
of the SPC chain, use the -shift_power_chain_length option:

dc_shell> set_streaming_compression_configuration \
            -shift_power_chain_length 16

❍ To specify the number of compressed chains in each group, which makes the SPC 
chain length a function of the compressed chain count, use the 
-shift_power_chain_ratio option:

dc_shell> set_streaming_compression_configuration \
            -shift_power_chain_ratio 12
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These options are mutually exclusive.

The default is to include three compressed chains in each group, while still limiting the 
SPC chain length to the maximum chain length in the design. 

3. Define the shift power groups disable signal.

dc_shell> set_dft_signal -view spec -type TestControl \
            -port SPC_DISABLE

dc_shell> set_streaming_compression_configuration \
            -shift_power_disable SPC_DISABLE

You can define the disable signal using the -port and/or -hookup_pin options of the 
set_dft_signal command. For an “internal pins” hookup pin, you must use a 
test_setup protocol that de-asserts the disable signal.

4. Configure the shift power control chain.

❍ If no OCC controllers (DFT-inserted or user-defined) are configured in the current 
design, you must configure an external SPC chain.

Specify the scan-in and scan-out signals to use for the SPC chain:

dc_shell> set_scan_path SPC -class spc \
            -scan_data_in SPC_IN \
            -scan_data_out SPC_OUT \
            -test_mode all

You do not need to specify SPC scan path elements; the SPC chain is automatically 
included in the specification.

❍ If OCC controllers (DFT-inserted or user-defined) are configured in the current 
design, you must explicitly configure an external clock chain:

dc_shell> set_scan_path OCC -class occ \
            -scan_data_in OCC_IN \
            -scan_data_out OCC_OUT \
            -test_mode all  ;# includes the SPC chain too

You cannot use the default tool-created external clock chain when using SPC.

By default, the tool automatically includes the SPC chain in the clock chain. It is 
clocked by the ATE clock unless specified otherwise with the -shift_power_clock 
option of the set_streaming_compression_configuration command.

Alternately, you can explicitly define a separate external SPC chain as previously 
described, which provides independent access to the OCC and SPC chains when the 
core is integrated.
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5. (Optional) Configure the shift power clock.

To specify a particular clock for the SPC chain, use the -shift_power_clock option:

dc_shell> set_streaming_compression_configuration \
            -shift_power_clock CLK

The default is to use the ATE clock in OCC flows and the decompressor clock in 
non-OCC flows.

Integrating Cores With Shift Power Groups in Hierarchical Flows

This topic describes how to integrate cores with shift power groups.

Configuring the Control Chain for Shift Power Groups Cores

When you integrate cores that use shift power groups, you must define a top-level external 
control chain that includes all core-level and top-level clock chains and/or SPC chains, as 
shown in Figure 25-13.

Figure 25-13 External Control Chain in a Shift Power Groups Design

Use the set_scan_path command to define the top-level external control chain as follows:

• If any core-level or top-level clock chains exist or will be inserted, then define the external 
chain using the -class occ option.

• If only core-level or top-level SPC chains exist or will be inserted, then define the external 
chain using the -class spc option.

• All core-level clock chains and SPC chains must be explicitly included in the specification 
using the -include_elements option. They are not automatically included.

• All top-level clock chains must be explicitly included in the specification using the 
-include_elements option. They are not automatically included.

• Top-level SPC chains are automatically included in the external chain.

Clock chain
OCC

controller

SPC chain

Clock chain
OCC

controller

SPC chain

SPC chain
Chapter 25: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs 25-25
Chapter 25: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs 25-25



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
The following example includes core-level clock chains and SPC chains along with top-level 
clock chains and SPC chains:

set_scan_path clock_chain -class occ \
  -include_elements { \
   core1/SPC \
   core2/SPC \
   coreOCC1/OCC \
   coreOCC2/OCC \
   snps_clk_chain_2/clock_chain} \
  -complete true \
  -scan_data_in OCC_SI \
  -scan_data_out OCC_SO \
  -test_mode all
# (the top-level SPC chain is automatically included)

If you concatenate external control chains from pipelined cores, those cores must be 
created with beginning and ending retiming registers to avoid edge-related concatenation 
issues at the top level. See the retiming register information in “Using Shift Power Groups 
With Other DFT Features” on page 25-27.

Connecting Core-Level Shift Power Disable Signals

When integrating cores that contain shift power groups, you must manually connect 
core-level shift power disable signals to a top-level disable signal.

You can use one of the following methods:

• Include preexisting connections to the cores in your top-level RTL.

• Use ECO commands, such as disconnect_net and connect_pin, to make the 
connections to the cores.

You can share a single disable signal or use multiple disable signals.

All shift power disable signals must be de-asserted (set to logic 0) to enable the shift power 
logic. The DFT-created disable signal for a top-level codec is already de-asserted in the 
SPF. Additional disable signals must be manually de-asserted by defining constant signals 
on them. For example,

dc_shell> set_dft_signal -view existing_dft -type Constant \
            -port SPC_CORE_DISABLE* -active_state 0

Configuring Shift Power Groups for a Top-Level Codec

If you are implementing a top-level codec, you must configure shift power groups for that 
codec using the pertinent options of the set_streaming_compression_configuration 
command. For more information, see “Configuring Shift Power Groups” on page 25-23.
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Configuring Shift Power Groups in TetraMAX

Use the following commands in TetraMAX to configure ATPG use of the shift power groups 
hardware:

DRC_T> set_drc -spc_chain SPC_chain_name
DRC_T> set_atpg -shift_controller_peak probability_value

SPC_chain_name is the name of the scan path that contains the SPC chain. 
probability_value is the maximum percentage of scan cells that can switch in a shift cycle. 
TetraMAX ATPG rejects patterns that exceed this switching percentage.

The STIL procedure file (SPF) created by the DFTMAX Ultra tool enables shift power groups 
by default. When enabled, you must configure the feature with the preceding commands, 
otherwise the compressed scan chains will fail DRC due to chain blockages.

Alternatively, you can assert the shift power disable signal, in which case the DFTMAX Ultra 
codec degenerates to a non-shift-power codec and no shift power configuration commands 
are needed.

Using Shift Power Groups With Other DFT Features

The shift power groups feature interacts with other DFT features as follows: 

• Multiple test modes

You can use shift power groups with multiple test modes, including multiple DFTMAX 
Ultra compression modes. Configure the SPC chain in each DFTMAX Ultra compression 
mode. See “Per-Test-Mode Streaming Configuration Options” on page 25-17 for 
supported options.

The control chain must be external only in DFTMAX Ultra compression modes. You can 
use the -test_mode option of the set_scan_path specification to limit the external chain 
specification to those modes (instead of all); the control chains are incorporated into 
regular scan chains in other modes.

If shift power groups are used, they must be used in all DFTMAX Ultra test modes. You 
cannot mix codecs with and without shift power groups across test modes.

• DFT partitions

You can use shift power groups with DFT partitions. Configure the SPC chain in each 
partition that contains a DFTMAX Ultra codec. See “Per-Partition Streaming 
Configuration Commands” on page 25-12 for supported options.

Although SPC chains can be created for multiple partitions, they are all stitched into the 
single external control chain specified by the set_scan_path command.

If shift power groups are used, they must be used in all partitions that contain a DFTMAX 
Ultra codec. You cannot mix codecs with and without shift power groups across 
partitions.
Chapter 25: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs 25-27
Chapter 25: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs 25-27



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
• Retiming registers

When you enable beginning and/or ending retiming registers, SPC chains are clocked on 
the leading clock edge instead of the trailing clock edge. This facilitates control chain 
concatenation at the top level. See “Retiming Scan-Ins and Scan-Outs to the Leading 
Clock Edge” on page 10-17.

Limitations of Shift Power Groups

Shift power groups have the following limitations:

• This feature applies only to scan chains compressed by DFTMAX Ultra codecs. 
Standard scan modes cannot use this feature.

• When shift power groups are used, they must be used

❍ In all DFTMAX Ultra test modes

❍ In all codecs in the design (across both cores and DFT partitions)

You cannot mix DFTMAX Ultra codecs with and without shift power groups within the 
same design.

• The shift power control (SPC) chain must be an external (uncompressed) chain that you 
explicitly define using the set_scan_path command.

• When integrating cores that contains shift power groups, you must manually connect the 
core-level shift power disable signal to a top-level shift power disable signal.

• The report_scan_path command does not report SPC chain information.

In TetraMAX ATPG, the following requirements apply:

• Diagnosis capability is limited. High-resolution diagnostics are not supported when shift 
power groups are used. Assert the shift power disable signal to generate patterns for 
high-resolution diagnostics.

In TetraMAX ATPG, the following tasks are not supported when using shift power groups:

• Analyzing X effects or X sources performed during a TetraMAX simulation

• Comparing simulation results from a VCD simulation file, the internal patterns from the 
fast-sequential simulator, or the internal patterns from the full-sequential simulator

• Reporting total (cumulative) power data with the report_power command after multiple 
incremental ATPG runs

• Saving patterns and fault lists to files at a specified checkpoint interval during ATPG 
pattern generation
Chapter 25: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs 25-28



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
• Saving a GZIP-compressed parallel pattern set that can be simulated during the ATPG 
process

• Assigning ATPG constraints during an IDDQ measure strobe when the IDDQ fault model 
is selected

Planning, Previewing, and Inserting DFTMAX Ultra Compression

The following topics describe how to plan, preview, and insert DFTMAX Ultra compression 
in your design:

• Planning the Streaming DFT Architecture

• Previewing and Inserting DFT Logic

• Writing Out Test Protocols for TetraMAX ATPG

Planning the Streaming DFT Architecture

As you configure the streaming DFT architecture, you can use the streaming DFT planner 
to visualize the currently configured architecture:

streaming_dft_planner [-show flow | elements | all]

The flow report (the default) focuses on the overall DFT architecture structure, scan chain 
lengths, and compression ratios. The elements report focuses on the elements within the 
scan chains, such as clock and polarity information, lock-up latches, retiming registers, and 
test clock waveform information.

The output is ASCII so you can capture it in log files. You can modify the DFT configuration 
and rerun the streaming_dft_planner command as many times as needed until you are 
satisfied with the architecture.

The following topics provide more information about the streaming DFT planner:

• DFT Planner Flow Report

• DFT Planner Elements Report

• DFT Planner Limitations

See Also

• SolvNet article 2150838, “Understanding the Streaming DFT Planner Report” for more 
information on the conventions and information fields shown in the DFT planner report
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DFT Planner Flow Report

The DFT planner flow report focuses on scan chain lengths and compression ratios. This 
report summarizes the DFT architecture. It is useful for length-balancing multiple codecs.

The flow report shows many DFT architecture details, including

• Scan chain counts and lengths, including external chains

• Codec clock, scan-enable, scan-in, and scan-out signal information

• Codec input and output shift register lengths

• Pipeline stages (core-level and top-level)

• Clock chains (core-level and top-level)

• DFT partitions

• The contents of streaming compression cores, including external chains

• The total shift latency of the design architecture

• The streaming compression overhead for each codec

• The streaming compression overhead of the codec that determines the maximum total 
shift latency

• The overall input and output target compression of the design architecture

To generate a flow report, use the following command:

dc_shell> streaming_dft_planner -show {flow}

The flow report is the default report type, so you can omit the -show option.

Example 25-6 shows the planner flow report for a streaming compression core and a 
top-level codec.

Example 25-6 DFT Planner Flow Report Example

Information: Detected compressed scan core(s): core  (TEST-1463)
Information: Detected scanned or scannable logic. (TEST-1462)
Information: Inferring the mixed scan insertion and core integration (MII) flow
(TEST-1438)
  Information: Using test design rule information from previous dft_drc run.
Architecting Scan Compression structures
Integrating Streaming Decompressor core/U_deserializer_ScanCompression_mode
  Number of inputs = 2
  Maximum size per input = 8
  Decompressor Clock  = CLK
Integrating Streaming Compressor core/U_serializer_ScanCompression_mode
  Number of outputs = 2
  Maximum size per output = 4
  Compressor Clock  = CLK
  Architecting Scan Chains
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Architecting Pipeline Structures
Information: For incremental pipeline balancing, 0 head stages will be inserted at the
top, along with 1 existing head stages in core core. (TEST-1433)
Information: For incremental pipeline balancing, 0 tail stages will be inserted at the
top, along with 1 existing tail stages in core core. (TEST-1434)
  Number of Head Pipeline Stages = 1
  Number of Tail Pipeline Stages = 1
Architecting scan compression mode ScanCompression_mode with base mode Internal_scan
Architecting Streaming Decompressor
  Number of inputs = 1
  Maximum size per input = 6 
  Decompressor Clock = ATECLK
Architecting Streaming Compressor
  Number of outputs = 1
  Maximum size per output = 6
  Compressor Clock = ATECLK
Architecting Load Decompressor (version 5.8)
  Number of inputs/chains/internal modes = 13/6/2
Architecting Unload compressor (version 5.8)
  Number of outputs/chains = 6/6
  Information: Compressor will have 100% x-tolerance

            Running Streaming Compression DFT Planner (version 1.0)
==================================================================================

           Compression DFT Flow for test mode: ScanCompression_mode
           ========================================================

    ____________________________________________________________________________
   | design top                                                                 |
   |                                                                            |
   |            OCC chain                                                       |
SI1|---1P------>---------1-----[o]------------------------2---------------1P--->|SO1
   |                                                                            |
   |         __________________________________________________________         |
   |        | top-level logic: 6 chains, 128 cells, DIDO               |        |
   |        | chains/channels I(O):6.0(6.0), codec/chain=60%           |        |
   |        |        __                                      __        |        |
   |        |       /  |-1-----[][][][][][][][][]--------22-|  \       |        |
   |        |      /   |-2-----[][][][][][][][][]--------22-|   \      |        |
   |        |    _/    |-3-----[][][][][][][][]----------21-|    \_    |        |
   |        |   |_|    |                ...                 |    |_|---|---1P-->|SO4
   |        |   |_|13  |                                    |   6|_|   |        |
   |        |   |_|    |                                    |    |_|   |        |
SI4|---1P---|-->|_|ATECLK(45,55)                            |    |_|   |        |
   |        |     \test_se                                  |    /     |        |
   |        |      \   |-5-----[][][][][][][][]----------21-|   /      |        |
   |        |       \__|-6-----[][][][][][][][]----------21-|__/       |        |
   |        |                                                          |        |
   |        |__________________________________________________________|        |
   |     __________________________________________________________________     |
   |    | cell core (CTL model: ScanCompression_mode) .....................|    |
   |    |..................................................................|    |
   |    |.....________________________________________________________.....|    |
   |    |....| core: 8 chains, 256 cells, DIDO                        |....|    |
   |    |....| chains/channels I(O):4.0(4.0), codec/chain=25%         |....|    |
   |    |....|       __                                      __       |....|    |
   |    |....|      /  |-core_1-[...........s..........]-32-|  \      |....|    |
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   |    |....|     /   |-core_2-[...........s..........]-32-|   \     |....|    |
   |    |....|   _/    |-core_3-[...........s..........]-32-|    \_   |....|    |
   |    |....|  |_|    |                 ...                |    |_|--|-1P-|--->|SO2
SI2|----|-1P-|->|_|8   |                                    |   4|_|  |....|    |
   |    |....|  |_|    |                                    |    |_|--|-1P-|--->|SO3
SI3|----|-1P-|->|_|CLK2(45,55)                              |    |_|  |....|    |
   |    |....|    \test_se                                  |    /    |....|    |
   |    |....|     \   |-core_7-[...........s..........]-32-|   /     |....|    |
   |    |....|      \__|-core_8-[...........s..........]-32-|__/      |....|    |
   |    |....|                                                        |....|    |
   |    |....|________________________________________________________|....|    |
   |    |..................................................................|    |
   |    |__________________________________________________________________|    |
   |                                                                            |
   |____________________________________________________________________________|

==================================================================================

               Streaming Compression DFT Flow Information

DFT Flow:                               MII
Base scan mode:                         Internal_scan
Base scan mode chains:                  4
Base scan mode maximum shift length:    129

Compression mode maximum shift length:  41
Codec with maximum shift length:        core
Codec shift penalty (codec/chain):      25%
Target input compression:               3.15X (w.r.t. Internal_scan)
Target output compression:              3.15X (w.r.t. Internal_scan)

==================================================================================

Note the following tips for effective use of the DFT planner flow report:

• The scan chains in the diagrams are sized relative to their length. This allows you to 
adjust the architecture to balance the shift latency across codecs, cores, and external 
chains to maximize ATPG efficiency.

• Use the report to adjust the architecture to not exceed a codec shift penalty of 30%.

DFT Planner Elements Report

The DFT planner elements report uses the same architectural structure as the flow report for 
showing cores, top-level logic, and external scan chains. However, it also provides more 
information about elements within the scan chains, such as

• Clock timing and waveforms

• OCC controllers

• Scan element clocks and edges

• Pipeline register clocks and edges
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• Clock and edge mixing transitions within scan chains

• Lock-up latches

To generate an elements report, use the following command:

dc_shell> streaming_dft_planner -show {elements}

Example 25-7 shows the planner elements report for a streaming compression core and a 
top-level codec.

Example 25-7 DFT Planner Elements Report Example

Information: Detected compressed scan core(s): core  (TEST-1463)
Information: Detected scanned or scannable logic. (TEST-1462)
Information: Inferring the mixed scan insertion and core integration (MII) flow
(TEST-1438)
  Information: Using test design rule information from previous dft_drc run.
Architecting Scan Compression structures
Integrating Streaming Decompressor core/U_deserializer_ScanCompression_mode
  Number of inputs = 2
  Maximum size per input = 8
  Decompressor Clock  = CLK
Integrating Streaming Compressor core/U_serializer_ScanCompression_mode
  Number of outputs = 2
  Maximum size per output = 4
  Compressor Clock  = CLK
  Architecting Scan Chains
Architecting Pipeline Structures
Information: For incremental pipeline balancing, 0 head stages will be inserted at the
top, along with 1 existing head stages in core core. (TEST-1433)
Information: For incremental pipeline balancing, 0 tail stages will be inserted at the
top, along with 1 existing tail stages in core core. (TEST-1434)
  Number of Head Pipeline Stages = 1
  Number of Tail Pipeline Stages = 1
Architecting scan compression mode ScanCompression_mode with base mode Internal_scan
Architecting Streaming Decompressor
  Number of inputs = 1
  Maximum size per input = 6 
  Decompressor Clock = ATECLK
Architecting Streaming Compressor
  Number of outputs = 1
  Maximum size per output = 6
  Compressor Clock = ATECLK
Architecting Load Decompressor (version 5.8)
  Number of inputs/chains/internal modes = 13/6/2
Architecting Unload compressor (version 5.8)
  Number of outputs/chains = 6/6
  Information: Compressor will have 100% x-tolerance

            Running Streaming Compression DFT Planner (version 1.0)
==================================================================================

           Compression DFT Elements for test mode: ScanCompression_mode
           ============================================================

  Rising edge     : r        Falling edge     : f        Lockup latch     : L
  Clocks          : ATECLK, CLK2
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  Pipeline clocks : CLK2(P1)
  Timing          :
                                _
    ATECLK(45,55)    : ________| |_________
                                _
    CLK2(45,55)      : ________| |_________

       ___________________________________________________________________________
      | design top                                                                |
      |                                                                           |
      |            ____________                                                   |
ATECLK|---------->| OCC: MYOCC |--------------------->UPLL/CLKO                   |
      |           |____________|                                                  |
      |                                                                           |
      |              OCC chain                                                    |
   SI1|-1P1(f)------>---------1--------UPLL/CLKO(r)-------2-------------L-1P1(r)->|SO1
      |            ___________________________________________________            |
      |           | top-level logic: 6 chains, 128 cells, DIDO        |           |
      |           |       __                                 __       |           |
      |           |      /  |-2--------UPLL/CLKO(r)------22-|  \      |           |
      |           |     /   |-3--------UPLL/CLKO(r)------22-|   \     |           |
      |           |   _/    |-4--------UPLL/CLKO(r)------21-|    \_   |           |
      |           |  |_|    |                      ...      |    |_|--|-L-1P1(r)->|SO4
      |           |  |_|13  |                               |   6|_|  |           |
      |           |  |_|    |                               |    |_|  |           |
   SI4|-1P1(f)-L--|->|_|ATECLK(f)                       ATECLK(r)|_|  |           |
      |           |    \test_se                             |    /    |           |
      |           |     \   |-6--------UPLL/CLKO(r)------21-|   /     |           |
      |           |      \__|-7--------UPLL/CLKO(r)------21-|__/      |           |
      |           |                                                   |           |
      |           |___________________________________________________|           |
      |     _________________________________________________________________     |
      |    | cell core (CTL model: ScanCompression_mode) ....................|    |
      |    |.................................................................|    |
      |    |....._______________________________________________________.....|    |
      |    |....| core: 8 chains, 256 cells, DIDO                       |....|    |
      |    |....|       __                                     __       |....|    |
      |    |....|      /  |-core_1---CLK2(r)---------------32-|  \      |....|    |
      |    |....|     /   |-core_2---CLK2(r)---------------32-|   \     |....|    |
      |    |....|   _/    |-core_3---CLK2(r)---------------32-|    \_   |....|    |
      |    |....|  |_|    |                      ...          |    |_|--|-1P-|--->|SO2
   SI2|----|-1P-|->|_|8   |                                   |   4|_|  |....|    |
      |    |....|  |_|    |                                   |    |_|--|-1P-|--->|SO3
   SI3|----|-1P-|->|_|CLK2(f)                                CLK(r)|_|  |....|    |
      |    |....|    \test_se                                 |    /    |....|    |
      |    |....|     \   |-core_7---CLK2(r)---------------32-|   /     |....|    |
      |    |....|      \__|-core_8---CLK2(r)---------------32-|__/      |....|    |
      |    |....|                                                       |....|    |
      |    |....|_______________________________________________________|....|    |
      |    |.................................................................|    |
      |    |_________________________________________________________________|    |
      |                                                                           |
      |___________________________________________________________________________|

==================================================================================

               Streaming Compression DFT Elements Information
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DFT Flow:                              MII
Base scan mode:                        Internal_scan

Clock with maximum number of flops:    CLK2 (r, 256 FFs)
Clock with minimum number of flops:    UPLL/CLKO (r, 128 FFs)
Total number of lockup latches:        3

==================================================================================

Note the following tip for effective use of the DFT planner elements report:

• Scan elements clocked by OCC-controlled clocks show the fast clock names for 
identification, but the scan architecture (such as ordering and lock-up latches) is 
determined by the ATE clock.

DFT Planner Limitations

Note the following limitations of the DFT planner:

• When using OCC controllers,

❍ The top-level connections between core-level and top-level clock chain segments are 
not shown.

❍ In the elements report, compressed scan chains (core-level or top-level) clocked by 
an OCC controller inside a core show the top-level ATE clock name, not the 
OCC-controlled clock name.

• When using streaming compressed scan cores,

❍ The codec clock name shown might be the core-level clock name instead of the name 
of the top-level clock that reaches it.

❍ In the elements report, pipeline stages inside cores only show depth information, not 
clock information.

❍ In the elements report, clock edge information for scan chains inside cores might be 
incorrect.

❍ In the elements report, scan chains inside cores do not show full element details.

❍ In mixed insertion and integration (MII) flows, when external chains with pipeline 
registers inside cores are included in a top-level external chain, the tail pipeline depth 
might not be shown properly.

❍ All CTL-modeled cores must be created with the K-2015.06 release or later. Cores 
created with earlier releases are not supported.
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• In the elements report,

❍ The correct maximum chain length might not be shown.

❍ Warnings about invalid lock-up latch structures might be incorrect.

• Nested integration flows are not supported.

• Core wrapping is not supported.

• The internal pins flow is not supported.

• Other compression technologies, such as DFTMAX compression, are not supported.

Previewing and Inserting DFT Logic

After you complete your DFT configuration, you can use the preview_dft command to 
review the scan architecture and test-mode signal details before scan insertion is 
performed, as shown in Example 25-8.

Example 25-8 Output From the preview_dft Command for a Compressed Scan Configuration

****************************************
Current mode: Internal_scan
****************************************

Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 22 cells
  Active in modes: Internal_scan

Scan chain '2' (test_si2 --> test_so2) contains 21 cells
  Active in modes: Internal_scan

Scan chain '3' (test_si3 --> test_so3) contains 21 cells
  Active in modes: Internal_scan

****************************************
Current mode: ScanCompression_mode
****************************************

Number of chains: 8
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

Scan chain '1' contains 8 cells
  Active in modes: ScanCompression_mode
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(...omitted...)

Scan chain '8' contains 8 cells
  Active in modes: ScanCompression_mode

================================
Test Mode Controller Information
================================

Test Mode Controller Ports
--------------------------
test_mode: test_mode

Test Mode Controller Index (MSB --> LSB)
----------------------------------------
test_mode

Control signal value - Test Mode
--------------------------------
0 Internal_scan - InternalTest
1 ScanCompression_mode - InternalTest

During scan insertion, the insert_dft command creates and instantiates two scan 
compression designs: one for the compressor and one for the decompressor. By default, the 
insert_dft command instantiates these blocks at the top level of the current design. To 
insert the codec logic into a lower-level hierarchical block, use the set_dft_location 
-include {CODEC} command. For more information, see the man page.

After DFT insertion, you can use the report_scan_path command to review the scan chain 
structures that now exist in the standard scan and compressed scan modes:

dc_shell> report_scan_path -view existing_dft -test_mode all

See Also

• Chapter 15, “Previewing, Inserting, and Checking DFT Logic” for more information about 
previewing and inserting DFT logic

Writing Out Test Protocols for TetraMAX ATPG

You can write out test protocols for both test modes using the write_test_protocol 
-test_mode command:

dc_shell> write_test_protocol -output scan.spf \
            -test_mode Internal_scan
dc_shell> write_test_protocol -output scancompress.spf \
            -test_mode ScanCompression_mode

TetraMAX ATPG uses these protocol files, along with the design netlist, for pattern 
generation.
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See Also

• “Using TetraMAX and DFTMAX Ultra Compression” in TetraMAX Online Help for more 

information about running TetraMAX ATPG on DFTMAX Ultra designs

Library Cell Requirements for Codec Implementation

The DFTMAX Ultra codec architecture requires that the target libraries have the following 
cell types available for mapping when using the insert_dft command:

• Level-sensitive latch

• Flip-flop with asynchronous reset

If applied, the dont_use attribute prevents these cell types from being available for 
mapping. This attribute might be present in the original library. More commonly, it is applied 
by set_dont_use commands in the synthesis script to prevent particular cell types from 
being used in the design.

Use the report_lib command to check for library cells that have the dont_use attribute 
applied, indicated by the “u” attribute annotation. For example,

dc_shell> report_lib lsi_10k
...
    Attributes:
   Cell      Attributes
   ------------------------------
...
   LD1           s, u
   LD2           s, u
   LD3           s, u
   LD4           s, u
...

Use the remove_attribute command to remove the dont_use attribute from any required 
library cells before DFT insertion. For example,

dc_shell> remove_attribute lsi_10k/LD* dont_use
lsi_10k/LD1 lsi_10k/LD2 lsi_10k/LD3 lsi_10k/LD4
dc_shell> insert_dft

If needed, use the set_dont_use command to reapply the attributes after the insert_dft 
command completes.
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Hierarchical DFTMAX Ultra Compression 26

DFTMAX Ultra compression supports hierarchical scan synthesis. You can perform scan 
synthesis independently for each lower-level DFT-inserted core. When you use instances of 
these cores at a higher level of hierarchy, the tool automatically incorporates their scan 
structures at the higher level. 

Hierarchical DFT using DFTMAX Ultra compression is described in the following topics: 

• Overview of Hierarchical DFTMAX Ultra Compression

• Creating Cores for Integration

• Performing Core Integration

• Using DFT Partitions During Core Integration

• Using Multiple Test Modes in Hierarchical Flows
26-1



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Overview of Hierarchical DFTMAX Ultra Compression

DFTMAX Ultra compression supports hierarchical scan synthesis. You can perform scan 
synthesis independently for each lower-level DFT-inserted block, called a core. When you 
use instances of these cores at a higher level of hierarchy, the tool automatically 
incorporates their scan structures at the higher level. This is called core integration.

Figure 26-1 shows a core that is created with two DFT partitions, then integrated at a higher 
level of hierarchy.

Figure 26-1 Integrating a Core in a Hierarchical Flow

Note:   
The resulting integrated design can itself become a core for use at even higher levels of 
hierarchy. However, for simplicity, this section refers to the integration level as the “top 
level.”

Creating Cores for Integration

To create a standard scan or compressed scan core, insert scan at the core level. No special 
options are needed for core creation. Example 26-1 shows a simple top-down insertion 
compressed scan core creation script.

Example 26-1 Script for Creation of DFTMAX Ultra Compression Core

# enable scan compression
set_dft_configuration -streaming_compression enable

# specify standard scan chain count
set_scan_configuration -chain_count 1

# enable core-level DFTMAX Ultra compression insertion
# and specify compressed chain count
set_streaming_compression_configuration -chain_count 4

# configure required scan clock signals
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}

(Core level) (Top level)
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# configure core-level DFT signal ports (if they exist)
set_dft_signal -view spec -type ScanDataIn -port SI
set_dft_signal -view spec -type ScanDataOut -port SO
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM

# insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

# write out design in multiple formats
write -format ddc -hierarchy -output core1.ddc
write_test_model -format ddc -output core1.ctlddc
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output core1.v

Each core must have CTL test model information so that the tool can perform top-level 
integration. If the block fits in memory during top-level integration, you can use the write 
command to write a design .ddc file that contains the full design netlist as well as the CTL 
test model information:

dc_shell> write -format ddc -hierarchy -output design_name.ddc

If the block is large, you can use the write_test_model command to write out a 
test-model-only .ddc file that contains the CTL test model along with an interface-only 
representation of the core that allows the test model to be linked at the top level:

dc_shell> write_test_model -format ddc -output design_name.ctlddc

You can use either format for standard scan and compressed scan cores in core integration 
flows.

Performing Core Integration

In the DFTMAX Ultra flow, you can perform DFT insertion with any combination of the 
following logic types present anywhere in the logical hierarchy of the design:

• DFTMAX Ultra compressed scan cores

• Standard scan cores

• Scanned or scannable logic
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If only scanned or scannable logic exists, the tool performs top-down scan insertion, as 
described in Chapter 25, “Using DFTMAX Ultra Compression.” However, if one or more 
cores are present, the tool performs core integration, as described in the following topics:

• Automatic Detection of Existing Logic Types

• Configuring Core Integration

• Core Integration Script Examples

Automatic Detection of Existing Logic Types

You do not need to specify what types of logic exist at the top level; the tool automatically 
detects and prints information messages about what scanned or scannable logic, standard 
scan cores, or compressed scan cores exist.

When you run the preview_dft or insert_dft command, the tool detects the existing logic 
types and prints one or more of the following information messages:

Information: Detected standard scan core(s): core_list. (TEST-1463)

Information: Detected compressed scan core(s): core_list. (TEST-1463)

Information: Detected scanned or scannable logic. (TEST-1462)

After logic detection, the tool infers and reports the flow type as follows:

• If only noncore scanned or scannable logic is detected (TEST-1462), the tool prints the 
following message:

Information: Inferring the top-down scan insertion (TDI) flow.
(TEST-1436)

• If only cores are detected (TEST-1463), the tool prints the following information 
message:

Information: Inferring the bottom-up core integration (BUI) flow.
(TEST-1437)

• If noncore scanned or scannable logic and cores are both detected (TEST-1462 and 
TEST-1463), the tool prints the following message:

Information: Inferring the mixed scan insertion and core integration
(MII) flow. (TEST-1438)

For more information about logic types and flow names, see Chapter 29, “DFTMAX Ultra 
Flow Naming Conventions.”
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Configuring Core Integration

To perform core integration, simply enable DFTMAX Ultra compression:

dc_shell> set_dft_configuration -streaming_compression enable

Then, configure the standard scan and compressed scan modes to be created, as described 
in the following topics.

• Configuring the Standard Scan Mode

• Configuring the Compressed Scan Mode

Configuring the Standard Scan Mode

In standard scan mode, all core and noncore logic operates in uncompressed mode. 
DFTMAX Ultra compression uses the following core integration rules to create scan chains 
from the existing logic in standard scan mode:

• Any scanned or scannable logic is stitched into scan chains.

• Scan chains inside standard scan cores become scan segments that are incorporated 
into scan chains, as needed, for length-balancing purposes.

• Scan chains from the standard scan mode of compressed scan cores become scan 
segments that are incorporated into scan chains, as needed, for length-balancing 
purposes.

Use the -chain_count or -max_length option of the set_scan_configuration command 
to specify the target scan chain configuration for the standard scan mode. For example,

dc_shell> set_scan_configuration -chain_count 3

Configuring the Compressed Scan Mode

By default, the tool reuses the base mode scan I/Os for the compressed mode. The number 
of base mode I/Os is determined by the base mode chain count, which is typically set with 
the set_scan_configuration -chain_count command.

Note:   
For simplicity, this section assumes that the set_scan_configuration -chain_count 
option is used to specify the base mode chain count. However, the base mode chain 
count can also be specified indirectly with the -max_length option. In addition, either 
specification can be altered due to requirements such as clock mixing.
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DFTMAX Ultra compression uses the following core integration rules to create scan 
structures from the existing logic in compressed scan mode:

• Scan connections of compressed scan cores are promoted to top-level scan 
connections.

• Scan chains inside standard scan cores become scan segments that are incorporated 
into top-level scan structures as described in the following rule.

• For uncompressed logic (scanned or scannable logic or standard scan core segments),

❍ If no such uncompressed logic exists, then only compressed scan cores exist. See 
“Integrating Compressed Scan Cores With No Uncompressed Logic” on page 26-6.

❍ If a top-level codec is configured, the tool inserts a top-level codec to compress the 
uncompressed logic. See “Compressing Uncompressed Logic” on page 26-6.

❍ If no top-level codec is configured, the tool creates standard scan chains from the 
uncompressed logic. See “Building Standard Scan Chains From Uncompressed 
Logic” on page 26-8.

Integrating Compressed Scan Cores With No Uncompressed Logic

If only compressed scan cores exist, all compressed scan core connections are promoted to 
top-level connections, regardless of the I/O configuration of the base mode. See 
Figure 26-2.

Figure 26-2 Integrating Only Compressed Scan Cores

In this case, you should set your base mode chain count to match the I/Os used by the cores 
in compression mode so that the I/O resources are equally and fully used in both modes.

Compressing Uncompressed Logic

If you have uncompressed logic in your design, you can compress the logic by configuring 
a top-level codec with the -chain_count or -max_length option of the 
set_streaming_compression_configuration command. For example,

dc_shell> set_streaming_compression_configuration -chain_count 4

The term “top-level” differentiates this codec from codecs in compressed scan cores.
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By default, the codec uses the scan I/Os inherited from the base mode. Figure 26-3 shows 
an example with only uncompressed logic.

Figure 26-3 Compressing Uncompressed Logic, Including a Standard Scan Core

If compressed scan cores exist, their promoted connections reduce the number of scan I/Os 
available to the top-level codec. Figure 26-4 shows an example with a compressed scan 
core along with uncompressed logic.

Figure 26-4 Integrating Compressed Scan Cores and Compressing Uncompressed Logic

If you want to force a specific number of scan-in or scan-out connections to be used for the 
top-level codec, use the -inputs or -outputs option, respectively. For example,

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_streaming_compression_configuration \
            -chain_count 4 -inputs 2 -outputs 2

Figure 26-5 shows the previous design example with these commands applied. Note that 
the -inputs and -outputs options might cause the scan I/O requirements of the 
compressed scan mode to differ from the base standard scan mode.

set_scan_configuration -chain_count 2

set_streaming_compression_configuration -chain_count 4

set_scan_configuration -chain_count 2

set_streaming_compression_configuration -chain_count 3
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Figure 26-5 Specifying The Number of Codec Scan I/Os for a Top-Level Codec

Building Standard Scan Chains From Uncompressed Logic

If you have uncompressed logic in your design and you do not define a codec with the 
set_streaming_compression_configuration command, the tool builds standard scan 
chains from the uncompressed logic. The target chain count is determined by the available 
I/Os inherited from the base mode, less any I/Os needed for promoted compressed scan 
core connections. See Figure 26-6.

Figure 26-6 Integrating Compressed Scan Cores and Scan-Stitching Uncompressed Logic

Core Integration Script Examples

This topic provides script examples of core integration.

Integrating Only Compressed Scan Cores

Example 26-2 shows a script that performs BUI[C] integration of DFTMAX Ultra cores.

set_streaming_compression_configuration
-inputs 2 -outputs 2set_scan_configuration

-chain_count 2

Base standard scan mode
Compressed scan mode

set_scan_configuration -chain_count 2
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Example 26-2 Script for Bottom-Up Integration of Compressed Scan Cores

# enable DFTMAX Ultra compression
# BUI[C] flow is used automatically when only compressed scan cores exist
set_dft_configuration -streaming_compression enable

# configure top-level chain count
# (set to number of I/Os required by compressed scan cores in
# compressed scan mode)
set_scan_configuration -chain_count 2

# configure top-level DFT clocks
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}

# configure top-level DFT signal
set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM

# insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

Integrating Compressed Scan Cores With Uncompressed Logic

Example 26-3 shows a script that performs MII[C]-C or MII[S][C]-C integration of DFTMAX 
Ultra cores and inserts a top-level codec to compress the uncompressed logic. The only 
difference from the previous example is the configuration of a top-level codec to compress 
the uncompressed logic. 

Example 26-3 Script for Mixed Insertion and Integration of Compressed Scan Cores

# enable and configure DFTMAX Ultra compression;
# MII[C]-C flow is used when compressed scan cores exist along with
# additional scanned or scannable logic
set_dft_configuration -streaming_compression enable

# configure scan, including top-level codec
set_scan_configuration -chain_count 2 ;# includes compressed core I/Os
set_streaming_compression_configuration -chain_count 4

# configure top-level DFT clocks
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}

# configure top-level DFT signal
set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_dft_signal -view spec -type ScanEnable -port SE
Chapter 26: Hierarchical DFTMAX Ultra Compression
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set_dft_signal -view spec -type TestMode -port TM

# insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

Using DFT Partitions During Core Integration

In the MII[C]-C flow, if the amount of top-level logic is large, you can optionally create 
multiple top-level DFT partitions, each having its own codec. This is known as the 
MII[C]-C-P flow. For more information about creating DFT partitions in the DFTMAX Ultra 
flow, see “Top-Down Insertion Compressed Scan Flow With Partitions” on page 25-8.

Note:   
In the MII[C]-C-P flow, all compressed scan cores must remain in the default partition. 
You cannot reassign them to user-defined partitions.

Example 26-4 shows a script that performs MII[C]-C-P integration of DFTMAX Ultra cores, 
along with the insertion of two codecs to compress top-level scan logic.

Example 26-4 Script for Mixed Insertion and Integration of DFTMAX Ultra Compression Cores 
With Partitions

# enable and configure DFTMAX Ultra compression MII[C]-C flow
set_dft_configuration -streaming_compression enable

# configure scan in each partition
define_dft_partition my_part -include {...}
current_dft_partition my_part
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI1 -type ScanDataIn
set_dft_signal -port SO1 -type ScanDataOut

current_dft_partition default_partition
set_scan_configuration -chain_count 2 ;# includes core scan I/Os
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI2 -type ScanDataIn
set_dft_signal -port SO2 -type ScanDataOut

# configure top-level DFT clocks
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}

# configure top-level DFT signal
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM
Chapter 26: Hierarchical DFTMAX Ultra Compression
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# insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

For a design with a single compressed scan core, the script in Example 26-4 results in the 
top-level scan logic shown in Figure 26-7.

Figure 26-7 The Mixed Insertion and Integration With Partitions (MII[C]-C-P) Flow

Using Multiple Test Modes in Hierarchical Flows

When you invoke DFTMAX Ultra compression, by default the tool creates two test operating 
modes: a standard (uncompressed) scan mode and a compressed scan mode. To create a 
larger set of test modes, use the define_test_mode command. The tool creates logic to 
support each defined mode. For details, see “DFTMAX Ultra Compression and Multiple Test 
Modes” on page 25-14.

In hierarchical flows that perform core integration, each lower-level core can have multiple 
test modes defined. By default, the tool groups together identically named modes in different 
cores and at the top level and selects those core-level modes as a single mode at the top 
level. If the modes have different names, they are grouped by usage and then combined into 
all name combinations.

You can also explicitly specify which combinations of lower-level test modes are to be 
targeted by top-level test modes by using the -target option of the define_test_mode 
command. This is known as test mode scheduling.
Chapter 26: Hierarchical DFTMAX Ultra Compression
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The default test mode assignment and test mode scheduling behaviors for integrating 
DFTMAX Ultra cores are the same as for integrating DFTMAX cores. For more information, 
see “Using Multiple Test Modes in Hierarchical Flows” on page 19-14.

Note:   
The -target option has a limitation when used in the MII compressed scan core 
integration mode. See “DFT Synthesis Limitations” on page 27-2.

Mixing DFTMAX and DFTMAX Ultra Compression Core Modes

You can integrate cores that have both DFTMAX and DFTMAX Ultra test modes. This 
includes any mix of

• Cores that have only DFTMAX modes

• Cores that have only DFTMAX Ultra modes

• Cores that have both DFTMAX and DFTMAX Ultra modes

The requirements described in “Mixing DFTMAX and DFTMAX Ultra Compression Modes” 
on page 25-16 also apply to core integration modes; see that section for more information.

By default, the relationship between core-level and top-level test modes is determined by 
test mode name. If your core-level DFTMAX modes do not share any names with your 
core-level DFTMAX Ultra modes, you can use this default name-based core test mode 
assignment.

Alternatively, you can override the default name-based association of core-level test modes. 
This is known as test mode scheduling. To do this, use the -target option of the 
define_test_mode command.

Example 26-5 shows the integration of two wrapped DFTMAX Ultra cores (CORE1 and 
CORE2) and an unwrapped DFTMAX legacy IP core (COREIP). Note that HASS integration 
must be enabled for DFTMAX compression, while the integration mode is automatically 
detected for DFTMAX Ultra.

Example 26-5 Core Integration Example With DFTMAX and DFTMAX Ultra Compression Cores

# enable the DFTMAX and DFTMAX Ultra compression clients
set_dft_configuration \
  -scan_compression enable \
  -streaming_compression enable

# configure DFTMAX core integration mode
# (DFTMAX Ultra configures itself automatically)
set_scan_compression_configuration -hybrid true

# apply global DFT configuration
Chapter 26: Hierarchical DFTMAX Ultra Compression
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set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}
set_dft_signal -view spec -type ScanEnable -port SE
set_scan_configuration -clock_mixing mix_clocks

# define the test modes, including core test-mode scheduling
define_test_mode CORES_SCAN -usage scan \
  -target {CORE1:wrp_if CORE2:wrp_if}
define_test_mode CORES_DFTMAX_ULTRA -usage streaming_compression \
  -target {CORE1:ScanCompression_mode CORE2:ScanCompression_mode}
define_test_mode TOP_SCAN -usage scan \
  -target {COREIP:Internal_scan top}
define_test_mode TOP_DFTMAX -usage scan_compression \
  -target {COREIP:ScanCompression_mode top}

# configure each test mode
# (modes with inward-facing cores use their default configuration)
set_scan_configuration -test_mode TOP_SCAN -chain_count 8
set_scan_compression_configuration \
  -test_mode TOP_DFTMAX -base_mode TOP_SCAN \
  -chain_count 10

See Also

• “Using Multiple Test Modes in Hierarchical Flows” on page 19-14 for more information 
about default test-mode assignment and test mode scheduling
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27
DFTMAX Ultra Limitations and Known 
Issues 27

This chapter contains the limitations and known issues that apply to DFTMAX Ultra 
compression.

This chapter contains the following topics:

• DFT Synthesis Limitations

• Supported DFT Insertion Flows
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DFT Synthesis Limitations

The following DFT synthesis requirements and limitations apply to DFTMAX Ultra 
compression: 

• The minimum compression ratio for DFTMAX Ultra compression is 3. For example, with 
five scan inputs and five scan outputs, a minimum of 15 internal chains must be used.

• The target libraries must have the following cell types available for codec 
implementation:

❍ Level-sensitive latch

❍ Flip-flop with asynchronous reset

If applied, the dont_use attribute prevents these cell types from being used for mapping. 
Use the remove_attribute command to remove the dont_use attribute from any 
required library cells before running the insert_dft command. See “Library Cell 
Requirements for Codec Implementation” on page 25-38.

• In core integration (BUI and MII) flows, post-DFT DRC of test modes that contain active 
compressed scan cores is not supported.

• When DFT partitions are used,

❍ All partitions must use streaming DFT compression. Any partitions that contain 
uncompressed logic (top-level logic or standard scan cores) must have a codec 
configured using the set_streaming_compression_configuration command.

You can also keep scan logic or standard scan cores uncompressed by defining 
external chains.

❍ All compressed scan cores must remain in the default partition. You cannot reassign 
them to user-defined partitions.

• When you use the -target option of the define_test_mode command in the MII core 
integration flow, a top-level codec is inserted in a test mode only when you target the 
top-level logic by including the name of the current design in the target list. You cannot 
insert a codec for targeted cores without also compressing the top-level logic, which 
includes any untargeted standard scan cores and any wrapped cores in outward-facing 
mode.

• When using the OCC feature, the clock chain must be implemented as an external clock 
chain (which is uncompressed and outside of the codec logic). For more information, see 
“Using OCC Controllers With DFTMAX Ultra Compression” on page 25-18.

• You can mix DFTMAX and DFTMAX Ultra compression modes in the same design. 
However, both compression types cannot be active in the same test mode. Compression 
types other than DFTMAX and DFTMAX Ultra are not supported.
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• When integrating pipelined cores, the top-level depths reported by the TEST-1433 and 
TEST-1434 information messages are incorrect, and DFT insertion does not abort if the 
total pipeline depth is smaller than the largest core-level depth.

• Synthesis of static-X chains is not supported.

• Scan groups, defined with the set_scan_group command, are not supported.

• Scan-through-TAP, which provides access to internal scan chains through the TDI and 
TDO ports of the IEEE Std 1149.1 test access ports (TAP), is not supported.

• End-of-cycle measures are not supported.

• For flows other than top-down insertion (TDI) flows, streaming codecs cannot use 
scan-enable signals defined with the -usage option of the set_dft_signal command. 
You should define at least one scan-enable signal without a usage for proper codec 
insertion and operation.

• Modifications to the streaming compression IP blocks, such as adding inversions in 
codec scan paths, are not supported.

Supported DFT Insertion Flows

The following DFT insertion flows are supported by DFTMAX Ultra compression:

• TDI-S/C-DIDO

• TDI-S/C-P-DIDO

• BUI[C]-DIDO

• BUI[C-P]-DIDO

• MII[S/C]-S/C-DIDO

• MII[S/C]-S/C-P-DIDO

• MII[S/C-P]-S/C-DIDO

• MII[S/C-P]-S/C-P-DIDO

See Chapter 29, “DFTMAX Ultra Flow Naming Conventions,” for information on the flow 
naming conventions used in this list.
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28
DFTMAX Ultra STIL Procedure File Syntax 28

The write_test_protocol command writes out a STIL procedure file containing a 
complete description of the DFTMAX Ultra compression architecture. TetraMAX ATPG uses 
this information to generate test patterns for the compressed scan design.

This chapter contains the following topics:

• STIL Procedure File Contents

• STIL Procedure File Example
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STIL Procedure File Contents

The write_test_protocol command writes out a STIL procedure file containing a 
description of the DFTMAX Ultra compression architecture. TetraMAX ATPG uses the 
information from the file to determine what types of patterns to generate for the specific scan 
compression architecture. In general, you do not need to be concerned about the contents 
of this file. However, for debugging purposes, you might want to know the meanings of the 
statements in the file.

The CompressorStructures section specifies the architecture of the decompression and 
compression logic of the device. Within that section, a Compressor section represents a 
decompression or compression structure in the design and provides detailed information 
about the logic connections in that structure. TetraMAX ATPG uses this information to 
configure the test logic for each pattern and generate pattern data to target specific faults.

STIL Procedure File Example

Example 28-1 shows the sections in a STIL procedure that describe the DFTMAX Ultra 
compression architecture implemented for a particular device. The file was written by the 
write_test_protocol command for the design shown in Figure 28-1. Note that the line 
numbers shown along the left of the example are not included in the file. 

Example 28-1 STIL Procedure File and DFTMAX Ultra Compression Architecture

1  UserKeywords StreamingStructures CompressorStructures;
2  StreamingStructures {
3      ExternalCyclesPerShift 59;
4      LoadSerializer "top_U_deserializer_ScanCompression_mode" {
5          Length 59;
6          ActiveScanChains load_group;
7      }
8      UnloadSerializer "top_U_serializer_ScanCompression_mode" {
9          Length 49;
10          ActiveScanChains unload_group;
11      }
12  }
13  CompressorStructures {
14      Compressor "top_U_decompressor_ScanCompression_mode" {
15          LoadSerializer "top_U_deserializer_ScanCompression_mode" 0 1 2 3 4 5 6 7
16              8 9;
17          ModeSerializer "top_U_deserializer_ScanCompression_mode" 56 57;
18          LoadSerializerDir "top_U_deserializer_ScanCompression_mode" 55;
19          CoreGroup core_group;
20          Modes 4;
21          Mode 0 {
22              UnloadModeSerializer "top_U_deserializer_ScanCompression_mode" 10 11 
23              12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
24              35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
25              ModeSerializerControls {
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26                  "top_U_deserializer_ScanCompression_mode"[56] = 0;
27                  "top_U_deserializer_ScanCompression_mode"[57] = 0;
28              }
29              Connection 0 "1" "11" "21" "31" "41";
30              Connection 1 "2" "12" "22" "32" "42";
31              Connection 2 "3" "13" "23" "33" "43";
32              Connection 3 "4" "14" "24" "34" "44";
33              Connection 4 "5" "15" "25" "35" "45";
34              Connection 5 "6" "16" "26" "36" "46";
35              Connection 6 "7" "17" "27" "37" "47";
36              Connection 7 "8" "18" "28" "38" "48";
37              Connection 8 "9" "19" "29" "39" "49";
38              Connection 9 "10" "20" "30" "40" "50";
39          }
40          Mode 1 {
41              UnloadModeSerializer "top_U_deserializer_ScanCompression_mode" 10 11 
42              12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
43              35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
44              ModeSerializerControls {
45                  "top_U_deserializer_ScanCompression_mode"[56] = 0;
46                  "top_U_deserializer_ScanCompression_mode"[57] = 1;
47              }
48              Connection 0 "1" "18" "25" "32" "49";
49              Connection 1 "2" "19" "26" "33" "50";
50              Connection 2 "3" "20" "27" "34" "41";
51              Connection 3 "4" "11" "28" "35" "42";
52              Connection 4 "5" "12" "29" "36" "43";
53              Connection 5 "6" "13" "30" "37" "44";
54              Connection 6 "7" "14" "21" "38" "45";
55              Connection 7 "8" "15" "22" "39" "46";
56              Connection 8 "9" "16" "23" "40" "47";
57              Connection 9 "10" "17" "24" "31" "48";
58          }
59          Mode 2 {
60              UnloadModeSerializer "top_U_deserializer_ScanCompression_mode" 10 11 
61              12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
62              35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
63              ModeSerializerControls {
64                  "top_U_deserializer_ScanCompression_mode"[56] = 1;
65                  "top_U_deserializer_ScanCompression_mode"[57] = 0;
66              }
67              Connection 0 "1" "15" "29" "33" "47";
68              Connection 1 "2" "16" "30" "34" "48";
69              Connection 2 "3" "17" "21" "35" "49";
70              Connection 3 "4" "18" "22" "36" "50";
71              Connection 4 "5" "19" "23" "37" "41";
72              Connection 5 "6" "20" "24" "38" "42";
73              Connection 6 "7" "11" "25" "39" "43";
74              Connection 7 "8" "12" "26" "40" "44";
75              Connection 8 "9" "13" "27" "31" "45";
76              Connection 9 "10" "14" "28" "32" "46";
77          }
78          Mode 3 {
79              UnloadModeSerializer "top_U_deserializer_ScanCompression_mode" 10 11 
80              12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
81              35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
82              ModeSerializerControls {
83                  "top_U_deserializer_ScanCompression_mode"[56] = 1;
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84                  "top_U_deserializer_ScanCompression_mode"[57] = 1;
85              }
86              Connection 0 "1" "12" "23" "34" "45";
87              Connection 1 "2" "13" "24" "35" "46";
88              Connection 2 "3" "14" "25" "36" "47";
89              Connection 3 "4" "15" "26" "37" "48";
90              Connection 4 "5" "16" "27" "38" "49";
91              Connection 5 "6" "17" "28" "39" "50";
92              Connection 6 "7" "18" "29" "40" "41";
93              Connection 7 "8" "19" "30" "31" "42";
94              Connection 8 "9" "20" "21" "32" "43";
95              Connection 9 "10" "11" "22" "33" "44";
96          }
97      }
98      Compressor "top_U_compressor_ScanCompression_mode" {
99          UnloadSerializer "top_U_serializer_ScanCompression_mode" 0 1 2 3 4 5 6 7 
100          8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
101          33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48;
102          ModeSerializer "top_U_deserializer_ScanCompression_mode" 56 57;
103          UnloadModeSerializer "top_U_deserializer_ScanCompression_mode" 10 11 12 
104          13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
105          37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
106          UnloadModeControl "top_U_deserializer_ScanCompression_mode" 10;
107          UnloadEnableSerializer "top_U_deserializer_ScanCompression_mode" 58;
108          UnloadSerializerDir "top_U_deserializer_ScanCompression_mode" 54;
109          CoreGroup core_group;
110          Modes 5;
111          Mode 0 {
112              ModeSerializerControls {
113                  "top_U_deserializer_ScanCompression_mode"[58] = 0;
114              }
115              Connection "1" 0 17 37;
116              Connection "2" 1 18 38;
117              Connection "3" 2 19 39;
118              Connection "4" 3 20 40;
119              Connection "5" 4 21 41;
120              Connection "6" 5 22 42;
121              Connection "7" 6 23 43;
122              Connection "8" 7 24 44;
123              Connection "9" 8 25 45;
124              Connection "10" 9 26 46;
125              Connection "11" 10 27 47;
126              Connection "12" 11 28 48;
127              Connection "13" 0 12 29;
128              Connection "14" 1 13 30;
129              Connection "15" 2 14 31;
130              Connection "16" 3 15 32;
131              Connection "17" 4 16 33;
132              Connection "18" 5 17 34;
133              Connection "19" 6 18 35;
134              Connection "20" 7 19 36;
...
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Figure 28-1 DFTMAX Ultra Compression Architecture for SPF Example

Line 1, StreamingStructures, starts the section of the STIL procedure file that describes 
the DFTMAX Ultra compression architecture for the device. Line 3, 
ExternalCyclesPerShift, contains the number of external shift cycles. This number is 
added to the maximum length of the internal chains to get the number of shifts per load 
operation. Line 5, Length 59 under LoadSerializer, declares that the length of the input 
shift register on the input side is 59 bits, whereas Line 9, Length 49 under 

SI

SO

CLK

SE

To clock pins of 
flip-flops

D
ec

om
pr

es
si

on
 M

U
X

C
o

m
pr

es
si

on

47 X-masking control bits
1 enable masking bit
1 direction control bit

Scan-out XOR 
shift register

Scan-in 
shift 

register

2 MUX control bits
1 direction control bit

XOR

58

57

56

55

9

8

...

1

0

54

10

53

52

18

...

48

 47

2

1

0

Control register

 46

To scan-enable 
pins of flip-flops

Load 
config. 
register

GN

RN

TM
Chapter 28: DFTMAX Ultra STIL Procedure File Syntax
STIL Procedure File Example 28-5
Chapter 28: DFTMAX Ultra STIL Procedure File Syntax
STIL Procedure File Example 28-5



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
UnloadSerializer, declares that the length of the output shift register on the output side is 
49.

Line 14, Compressor ..., starts the section that describes the architecture of the input 
decompression MUX. Lines 15 through 18 describe the functions of the scan-in shift-register 
bits used for scan-in data and for configuration of the decompression MUX. Bits 0 through 
9, LoadSerializer bits, are the ten data bits that feed into the decompression MUX. Bits 56 
and 57, ModeSerializer bits, control the mapping configuration of these ten bits to the scan 
chains. Line 18, the LoadSerializerDir bit, is a direction control bit that selects one of two 
ways to order the mapping, either from least to most significant bit or vice versa.

The DFT logic can be configured into multiple modes, so the STIL procedure file describes 
the characteristics of each mode in a separate section. Line 20, Modes 4, declares that there 
are four operating modes for the decompression MUX. Line 21, Mode 0, starts the section 
that describes Mode number 0.

Line 22, UnloadModeSerializer ..., declares that bits 10 through 53 of the scan-in shift 
register are used for configuring the output compression logic in Mode 0. Line 25, 
ModeSerializerControls, starts the section that describes the decompression MUX 
control bits. Lines 29 through 38, Connection ..., describe the mapping of the scan-in 
shift-register data bits to the scan chains.

Line 98, Compressor ..., starts the section that describes the architecture of the output 
compression XOR logic. Line 99, UnloadSerializer, declares that 49 bits are used in the 
scan-out XOR shift-register stages, designated bits 0 through 48. Lines 102 and 103, which 
are identical to lines 17 and 22, specify the usage of control bits in the scan-in shift register. 
Line 106, UnloadModeControl, and Line 107, UnloadEnableSerializer, specify that bit 
10 and bit 58 control the different modes used for the application of output masking. Line 
108, UnloadSerializerDir, specifies that bit 54 of the scan-in shift register is a direction 
control bit, which selects one of two ways to order the mapping of scan chains to the XOR 
compression logic.

Each successive Mode section in the compression section describes the usage of masking 
control bits from the scan-in shift register and the mapping of scan chains to the XOR 
compression logic for that particular mode.
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DFTMAX Ultra Flow Naming Conventions 29

The DFTMAX Ultra tool uses a structured naming convention for describing DFT flows. This 
naming convention uses a structured set of abbreviations that describes what type of logic 
exists before DFT insertion and what type of scan, compression, and DFT structures are 
created by DFT insertion. This chapter describes the naming convention. It also provides 
examples of how traditional DFT Compiler and DFTMAX flow names map to the new flow 
names.

This chapter contains the following topics:

• Describing Existing Logic

• Describing DFT Logic To Be Inserted

• Describing Additional DFT Features

• Scan Flow Mapping
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Describing Existing Logic

In a design, the existing sequential logic can be divided into two types, shown in Figure 29-1.

Figure 29-1 Two Types of Existing Sequential Logic

CTL-modeled cores include any standard scan or compressed scan DFT-inserted blocks 
represented by a CTL model during DFT insertion, such as

• Full .ddc block netlists with CTL information

• Binary .ctlddc models created by the write_test_model -format ddc command

• ASCII .ctl models created by the write_test_model -format ctl command

Scanned or scannable logic includes any noncore logic to be included in scan chains after 
DFT insertion, such as

• Nonscan (but scannable) cells

• Test-ready scan cells

• Scan segments or complete scan chains defined with the set_scan_path command

Table 29-1 shows the flow name associated with each combination of sequential logic types.

Table 29-1 Flow Names Indicating Existing Sequential Logic Types 

Scanned or
scannable logic?

CTL-modeled
cores?

Flow name Description

(Nothing to do)

X TDI Top-down insertion

X BUI Bottom-up integration

X X MII Mixed insertion and integration

C_CORES_CORE

CTL-modeled cores Scanned or scannable logic
(outside cores)
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The top-down insertion (TDI) flow type describes the case where no scan-inserted cores 
exist, but valid scanned or scannable cells exist to be stitched into newly inserted scan 
structures. Figure 29-2 shows an example of the existing logic in a TDI flow.

Figure 29-2 Existing Logic in a Top-Down Insertion (TDI) Flow

The bottom-up integration (BUI) flow type describes the case where scan-inserted cores 
exist to be integrated, and no valid scannable cells remain outside the cores. Figure 29-3 
shows examples of the existing logic in a BUI flow. The cores to be integrated are shown in 
blue.

Figure 29-3 Existing Logic in a Bottom-Up Integration (BUI) Flow

The mixed insertion and integration (MII) flow type describes the case where scan-inserted 
cores exist to be integrated, and valid scannable cells exist outside the cores to be stitched 
into newly inserted scan structures. Figure 29-4 shows an example of the existing logic in an 
MII flow.

Figure 29-4 Existing Logic in a Mixed Insertion and Integration (MII) Flow

Scannable logic

S_CORE2S_CORE1 C_CORE1 C_CORE2and/or

Standard scan cores Compressed scan cores

C_CORE

A mix of scannable logic and a core
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In the flows that contain cores, which are the BUI and MII flows, add square-bracket suffixes 
to indicate what types of cores exist:

• If standard scan cores exist, add [S]:

Figure 29-5 [S] Flow Suffix for Existing Standard Scan Cores

• If compressed scan cores exist, add [C]:

Figure 29-6 [C] Flow Suffix for Existing Compressed Scan Cores

• If both standard scan and compressed scan cores exist, add [S][C]:

Figure 29-7 [S][C] Flow Suffix for Existing Standard Scan and Compressed Scan Cores

The square brackets visually indicate that the suffixes represent cores.

S_CORE2S_CORE1 S_CORE

BUI[S] MII[S]
Bottom-up integration

with standard scan cores
Mixed insertion and integration

with standard scan cores

C_CORE1 C_CORE2 C_CORE

BUI[C] MII[C]
Bottom-up integration

with compressed scan cores
Mixed insertion and integration
with compressed scan cores

C_CORES_CORE C_CORES_CORE

BUI[S][C] MII[S][C]
Bottom-up integration

with standard scan and
compressed scan cores

Mixed insertion and integration
with standard scan and
compressed scan cores
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Describing DFT Logic To Be Inserted

The previous section shows how the base flow describes what types of sequential logic 
already exist. This topic shows how dashed suffixes, appended to the base flow name, 
indicate what scan structures are to be inserted. Dashed suffixes represent scan 
characteristics applied to the design by DFT configuration commands and options.

If standard scan chains are created from scanned or scannable logic, add the -S suffix:

Figure 29-8 Inserting Standard Scan Chains in the TDI Flow

Figure 29-9 Inserting Standard Scan Chains in the MII[S] Flow

Figure 29-10 Inserting Standard Scan Chains in the MII[C] Flow

If a codec is inserted to compress scanned or scannable logic or standard scan cores, add 
the -C suffix:

Figure 29-11 Inserting Scan Compression in the TDI Flow

TDI-S

S_CORE S_CORE

MII[S]-S

C_COREC_CORE

MII[C]-S

TDI-C
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Figure 29-12 Inserting Scan Compression in the BUI[S] Flow

Figure 29-13 Inserting Scan Compression in the MII[S] Flow

Figure 29-14 Inserting Scan Compression in the MII[C] Flow

If only core scan connections are made in a BUI flow, no suffix is needed:

Figure 29-15 Making Core Scan Connections in the BUI[S] Flow

Figure 29-16 Making Core Scan Connections in the BUI[C] Flow

S_CORE2S_CORE1S_CORE2S_CORE1 S_CORE1

BUI[S]-C

S_CORES_CORE

MII[S]-C

C_COREC_CORE

MII[C]-C

S_CORE2S_CORE1 S_CORE1 S_CORE2

BUI[S]

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]
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Describing Additional DFT Features

Use the optional conventions described in the following topics to describe additional DFT 
insertion features that can be used:

• Partitions

• Scan I/Os

• Multiple Test Modes

• Additional Naming Convention Rules

Partitions

DFT partitions are created with the define_dft_partition command. Use the following 
conventions to describe whether DFT partitions exist or are inserted in the flow.

Dashed suffixes indicate the scan characteristics applied during scan insertion. Add -P at 
the end of the flow name if partitions are used during insertion or integration.

Figure 29-17 shows the TDI-C-P flow.

Figure 29-17 The TDI-C-P Flow

Figure 29-18 shows the MII[C]-C-P flow.

Figure 29-18 The MII[C]-C-P Flow

TDI-C-P

C_COREC_CORE

MII[C]-C-P
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Scan I/Os

Use the following conventions to describe how the scan I/Os are connected to the scan 
structures in the flow:

• Use DIDO (dedicated inputs, dedicated outputs) to describe scan I/O connections that 
are dedicated to each scan chain or core scan pin. Figure 29-19 shows the BUI[C]-DIDO 
flow.

Figure 29-19 The BUI[C]-DIDO Flow

• Use FIFO (fanin, fanout) to describe scan I/O connections that have multiple connections 
in their fanin or fanout. Figure 29-20 shows the BUI[C]-FIFO flow.

Figure 29-20 The BUI[C]-FIFO Flow

• Use SISO (serial input, serial output) to describe scan I/O connections that connect 
serially to multiple codecs. Figure 29-21 shows the TDI-C-P-SISO flow.

Figure 29-21 The TDI-C-P-SISO Flow

Note:   
The SISO scan I/O connection type pertains only to sequential scan compression 
technologies, such as DFTMAX Ultra compression.

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]-DIDO

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]-FIFO

TDI-C-P-SISO
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You can mix different scan connection types for scan inputs and scan outputs. Figure 29-22 
shows the BUI[C]-FIDO flow, which uses shared scan inputs and dedicated scan outputs.

Figure 29-22 The BUI[C]-FIDO Flow

Multiple Test Modes

User-defined test modes are created with the define_test_mode command. Use the 
following conventions to describe how multiple user-defined test modes exist or are created 
in the flow:

• Add -MM at the end of the flow name if multiple user-defined test modes are defined in 
the current flow.

• Include [-MM] after the integration flow type if cores containing multiple user-defined test 
modes are integrated in the flow.

Additional Naming Convention Rules

Any dashed DFT feature suffixes at the core level can become square-bracketed feature 
descriptions at the integration level. In Figure 29-23, compressed scan with partitions is 
inserted at the core level using a TDI-C-P flow. When this core is integrated, the core 
characteristics are captured parenthetically in the MII[C-P]-C flow name.

Figure 29-23 Integration of a [C-P] Scan-Inserted Core Created in a TDI-C-P Flow

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]-FIDO

C_CORE

TDI-C-P

(Core level) (Top level)

MII[C-P]-C
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When constructing a flow name, you only need to specify the flow and feature aspects 
needed for your reference. The flow name can be as specific or as general as you need it to 
be. If scan connections, partitions, or test modes are not relevant for a generalized flow you 
are describing, do not include them in the description.

Scan Flow Mapping

This topic contains several figures that show how the traditional DFT Compiler and DFTMAX 
flow names map to this flow name convention. The figure titles specify the traditional flow 
names and the figures specify the flow names using this naming convention.

Figure 29-24 The Top-Down Insertion Standard Scan Insertion Flow

Figure 29-25 The Top-Down Insertion Compressed Scan Insertion Flow

Figure 29-26 The Standard Scan HSS Integration Flow

Figure 29-27 The Compressed Scan HSS Integration Flow

TDI-S

TDI-C

S_CORE2S_CORE1 S_CORE1 S_CORE2

BUI[S]

S_CORE2S_CORE1S_CORE2S_CORE1 S_CORE1

BUI[S]-C
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Figure 29-28 The HASS Integration Flow

Figure 29-29 The Hybrid Integration Flow

Figure 29-30 The Hybrid Flow With Top-Level Partitions

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]

C_COREC_CORE

MII[C]-C

C_COREC_CORE

MII[C]-C-P
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30
Introduction to LogicBIST 30

This chapter provides an introduction to the LogicBIST tool, which is a synthesis-based 
solution for in-system self-test of digital integrated circuits used in automotive, medical, and 
aerospace applications. LogicBIST addresses functional safety requirements set forth by 
standards such as ISO 26262 for the automotive semiconductor industry.

The following topics introduce LogicBIST self-test:

• Introduction to LogicBIST

• LogicBIST Requirements

• The LogicBIST Flow
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Introduction to LogicBIST

Built-in self-test (BIST) capability enables a design to test itself autonomously without using 
external test data. The LogicBIST tool provides a low-overhead logic BIST (LBIST) solution 
for digital logic designs, such as automotive applications. The characteristics of this solution 
are:

• Low BIST controller area overhead

• Reuses the scan chain and test-mode control logic already implemented for 
manufacturing test

• Low self-test pin requirements

• Easy interface to functional logic

• Seed and expected signature values can be hardcoded or programmable

• Targets stuck-at and transition-delay faults

• Simple one-pass DFT insertion flow

LogicBIST Requirements

The LogicBIST flow requires the following:

• You must have the Design Compiler, DFTMAX LogicBIST, and TetraMAX tools installed 
and licensed at your site.

• You must have an HDL Compiler license for compressed scan insertion.

• Blocks must be X-clean. See “Blocking Internal X Sources” on page 31-21.

• You must integrate the self-test logic into your design in one of the following ways:

❍ Through signal connections to your functional logic

❍ Through DFT-inserted IEEE 1500 logic

See Also

• “The LogicBIST Control and Data Signals” on page 31-6 for details on the control and 
status signals used

• “Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces” on page 11-82 for 
details on inserting IEEE 1500 logic
Chapter 30: Introduction to LogicBIST
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The LogicBIST Flow

From a high level, the standard LogicBIST flow can be summarized as follows:

1. Insert the LogicBIST DFT logic in the design.

2. Use TetraMAX ATPG to create self-test patterns for the design. TetraMAX ATPG 
chooses a seed value for the design, then it computes the expected signature value for 
that seed value.

3. Write out an autonomous self-test testbench file, which simulates on-chip self-test.

4. Apply the bused seed, signature, and pattern count values computed by TetraMAX 
ATPG to the design.

5. Simulate the resulting netlist and testbench in a Verilog simulator, such as VCS, to verify 
the correctness of autonomous BIST operation.

Constant-Driven Values

By default, the seed, signature, and pattern count values are driven by constants in the 
netlist. This results in the lowest area overhead, but it also requires that the netlist be 
modified to drive those values.

Figure 30-1 shows the flow diagram for LogicBIST insertion, pattern generation, and 
verification. The original netlist (in blue) has the seed, signature, and pattern count values 
tied to all-zeroes, and the modified netlist (in red) contains the values computed by 
TetraMAX ATPG.

Figure 30-1 The LogicBIST Flow With Constant-Driven Values

LogicBIST

User-specified
pattern count value

VCS
(or other)

Simulate autonomous LogicBIST, 
check DONE and PASS results

top_initial.vgLBIST.spf

top_pre_DFT.v DFT 
insertion

TetraMAX Run ATPG, compute PRPG seed, 
MISR signature, fault coverage

testbench.v
testbench.dat

serial.stil

testbench.stil

Modify netlist with 
PRPG seed, MISR 

signature, pattern count

top_modified.vg

stil2verilog
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Programmable Values

You can also implement programmable seed, signature, and pattern count values. This can 
provide the following benefits:

• Test with multiple seed and signature pairs, for coverage-critical applications

• Divide self-test into many small segments over time, for time-critical applications

• No need for constant-value netlist modification for scan or functional logic changes

Figure 30-2 shows this flow. In this case, no netlist modification step is needed, but you still 
generate the testbench files from the DFT environment.

Figure 30-2 The LogicBIST Flow With Programmable Values

Programmable values can be implemented in one of two ways:

• Using DFT-inserted IEEE 1500 logic

The tool creates the self-test protocol and testbench for you.

• Connecting self-test signals to internal functional registers using hookup pins

You must create your own self-test protocol and testbench for simulation.

See Also

• “Using Programmable LogicBIST Configuration Values” on page 33-2 for details on 
configuring programmable self-test logic

• “Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces” on page 11-82 for 
details on inserting IEEE 1500 logic
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The LogicBIST Architecture 31

LogicBIST self-test enables a design to test itself using the same scan chains already 
implemented for manufacturing test. It uses a pseudo-random pattern generator (PRPG) to 
create scan data, and a multiple-input signature register (MISR) to capture the design 
response. At the end of the test, if the actual signature matches the expected signature, the 
self-test asserts a PASS status.

The following topics describe the LogicBIST architecture:

• LogicBIST Architecture Overview

• LogicBIST Clock Control

• Isolating the Design During LogicBIST Self-Test

• Providing Testability for LogicBIST Self-Test

LogicBIST Architecture Overview

The LogicBIST architecture consists of four components - LogicBIST controller, 
decompressor, compressor, and LogicBIST clock controller - as shown in Figure 31-1.
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Figure 31-1 The LogicBIST Architecture

The primary components are described in the following sections:

• The LogicBIST Decompressor

• The LogicBIST Compressor

• The LogicBIST BIST Controller

• The LogicBIST Clock Controller

• The LogicBIST Control and Data Signals

The LogicBIST Decompressor

The LogicBIST decompressor feeds data into the compressed scan chains in the core logic. 
It is responsible for generating target fault care bits.

A PRPG, or pseudo-random pattern generator, is comprised of the following two 
components:

• A linear feedback shift register (LFSR) that generates the next data bit of the next data 
word as a linear XOR function of its current data word

• An XOR phase shifter that removes the correlations that result from the shift-register 
nature of the LFSR output taps

Figure 31-2 shows a simple example PRPG register.

STATUS_0 STATUS_1
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Compressor
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MY_SI0
MY_SI1

START

FSM

Pattern counter
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User pattern value

User shift value
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CARE PRPG
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= User signature value

User seed value

MY_SO0

LogicBIST clock 
controller
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Clock control 
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(LE)
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Figure 31-2 An Example PRPG Register

The PRPG operates as follows:

• When the design is operating in mission mode, the PRPG is idle and is not clocked.

• When the design is in a non-LogicBIST scan mode, the PRPG operates as scannable 
design logic so that the decompressor logic can be scan-tested.

• During LogicBIST operation,

❍ At the beginning of the test program, the user-specified seed value is parallel-loaded 
into the PRPG in a single clock cycle.

❍ During the test program, the PRPG generates a new pseudorandom data word in 
each clock cycle, which is used to generate scan data for the compressed scan 
chains.

Note:   
For simplicity, the control logic that implements these modes of operation is not shown in 
Figure 31-2.

After the PRPG is loaded with a seed value and clocked, it generates a stream of data 
values that appear to be random values, but are actually a function of that seed value. Each 
seed value produces a stream of data values unique to that seed value.

The LogicBIST Compressor

The LogicBIST compressor receives and compresses data from the internal chains during 
the unload process. It consists of an XOR-tree compressor and a multiple-input signature 
register (MISR). The XOR compressor has no X-tolerance masking.

In the MISR, each register input captures an XOR of the previous register's input and a data 
input signal from the XOR compressor to the MISR. Figure 31-3 shows a simple example 
MISR.

PRPG

Output scan data

XOR phase shifter
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Figure 31-3 An Example MISR Register

The MISR operates as follows:

• When the design is operating in mission mode, the MISR is idle and is not clocked.

• When the design is in a non-LogicBIST scan mode, the MISR operates as scannable 
design logic so that the compressor logic can be scan-tested.

• During LogicBIST operation,

❍ The MISR is reset when the design enters the LogicBIST operation mode. The MISR 
now has an initial known signature value (all zeros).

❍ For the first pattern, the MISR remains unclocked because the unloaded scan data is 
unknown.

❍ For the second and subsequent patterns, the MISR is clocked. The MISR captures 
values from the XOR compressor in each shift clock cycle and incorporates it into the 
current signature value of the MISR.

During the test program, the sequence of MISR values is dependent on the scan data that it 
captures. At the end of the test program, the signature value of the MISR is compared 
against the user-specified expected signature value, and the STATUS_* signals are set to 
indicate test completion and pass/fail status.

The LogicBIST BIST Controller

The LogicBIST BIST controller contains the following:

• A small finite state machine (FSM) that controls BIST operation.

• A pattern counter that applies the user-specified number of test patterns.

• A shift counter that applies the correct number of shift clock cycles for each test pattern. 
For each completed sequence of the shift counter, the pattern counter decrements by 
one.

MISR

(Data from XOR compressor)

Current MISR signature value
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The LogicBIST controller operates as follows:

• When the design is in mission mode and LogicBIST is disabled, the LogicBIST controller 
is idle and its clock is disabled. The FSM registers are held in reset (unless mission mode 
is overloaded onto a scan mode).

• When the design is in a non-LogicBIST scan mode, the pattern counter and shift counter 
operate as scannable design logic so that their logic can be scan-tested. The FSM 
flip-flops are excluded from scan testing so any OCC, ICG, reset, or scan-enable control 
logic does not interfere with scan testing.

• When the design is in mission mode and LogicBIST is enabled,

❍ The LogicBIST controller controls the scan-enable and wrapper-shift signals in the 
design.

❍ At the beginning of the test program, the FSM initializes the decompressor PRPG and 
compressor MISR to their initial states, and it loads the pattern and shift counters to 
their user-specified initial values.

❍ During the test program, the LogicBIST controller runs the pattern and shift counters 
through their sequences. As the shift counter counts through its sequence, the scan 
chains perform load/unload using the PRPG/MISR, respectively. When the shift 
counter reaches zero, the FSM issues the capture cycle(s), decrements the pattern 
counter, and begins a new shift counter sequence.

❍ When the pattern counter reaches zero, the current MISR signature value is 
compared with the user-specified expected signature value. If they match, the test 
passes; if not, the test fails.

See Also

• “Previewing and Inserting the LogicBIST Implementation” on page 32-11 for information 
on determining the mission-mode and self-test-mode encodings

The LogicBIST Clock Controller

The LogicBIST clock controller operates as follows:

• When the design is in mission mode, the clocks operate normally.

• When the design is in a non-LogicBIST scan mode, the clocks operate normally.

• When LogicBIST self-test is active,

❍ The clock controller gates the clock signal to the functional design logic as directed 
by the LogicBIST controller.
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❍ A free-running BIST clock must be available, running at the desired scan frequency, 
for the duration of the LogicBIST test operation.

LogicBIST self-test supports multiple clock configurations, each of which uses its own clock 
controller logic structure. For more information, see “LogicBIST Clock Control” on 
page 31-9.

The LogicBIST Control and Data Signals

The LogicBIST-specific control and data signals in a LogicBIST implementation are 
described in the following topics:

• The LogicBIST Operational Modes

• The LBIST_EN and START Signals

• The STATUS_0 and STATUS_1 Signals

• The Scan-In and Scan-Out Signals

The LogicBIST Operational Modes

LogicBIST self-test can operate in the following modes:

• TetraMAX mode—This mode is used only for core-level seed and signature computation 
in TetraMAX ATPG. TetraMAX accesses state elements (via a scan chain) through 
core-level scan ports during this process; the LogicBIST FSM is unused.

This mode is activated when the LogicBIST test-mode encoding is applied. The 
LBIST_EN and START signals are not used.

• Autonomous mode—This mode can be used after the seed and signature values have 
been applied to the design. All BIST operations perform autonomously, as controlled by 
the LogicBIST FSM. This is the mode that is simulated and ultimately used in silicon 
operation.

This mode is activated when the LBIST_EN and START signals are asserted while the 
mission-mode test-mode encoding is applied.

The LBIST_EN and START Signals

The LBIST_EN and START signals work together as follows:

• The LBIST_EN signal is used only when the mission-mode test-mode encoding is 
applied. When this signal is asserted in mission mode, the design enters autonomous 
LogicBIST operation mode. Any DFT logic associated with the LogicBIST self-test mode 
(wrapper chains, test points, and so on) is enabled.
Chapter 31: The LogicBIST Architecture
LogicBIST Architecture Overview 31-6



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
• When the START signal is de-asserted (regardless of the state of the LBIST_EN signal), 
the LogicBIST FSM is unclocked and asynchronously held in reset to the idle state.

• When the LBIST_EN signal is asserted while the START signal is de-asserted, the 
pattern counter and MISR are reset to all-zeros. 

• LogicBIST self-test begins when the START signal is asserted while the LBIST_EN 
signal is already asserted. The test runs to completion as long as the START signal 
remains asserted. If the START signal is de-asserted during the test, the test halts and 
the LogicBIST logic returns to its idle state.

• When the LBIST_EN signal is de-asserted, any DFT logic associated with the LogicBIST 
self-test mode (wrapper chains, test points, and so on) is disabled.

Because all reset signals inside the LogicBIST IP are generated from the START signal, no 
connection to a functional reset signal is needed.

The START signal is synchronized to the BIST clock, as shown in Figure 31-4, to avoid 
metastability issues. Due to the synchronizer delay, the pattern counter and MISR are reset 
even if the LBIST_EN and START signals are asserted at the same time. The metastability 
registers are included in scan testing.

Figure 31-4 Synchronization of the START Signal to the BIST Clock

These signals are used in autonomous mode.

See Also

• “Enabling DFT Logic During Autonomous Self-Test” on page 31-18 for more information 
on how test-mode signals are used in a LogicBIST design
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The STATUS_0 and STATUS_1 Signals

The STATUS_0 and STATUS_1 signals indicate the status of autonomous self-test. When 
the LBIST_EN signal is asserted, the two-bit bus {STATUS_1, STATUS_0} has the following 
possible values:

• 00: LogicBIST logic idle or inactive

• 01: LogicBIST test running

• 10: LogicBIST test complete and passed

• 11: LogicBIST test complete and failed

These signals are used in autonomous mode.

Figure 31-5 shows the status signal behavior when self-test completes and passes. The 
passing status is held until START is de-asserted.

Figure 31-5 Status Signal Behavior When Self-Test Completes and Passes

Figure 31-6 shows the status signal behavior when self-test completes and fails. The failing 
status is held until START is de-asserted.

Figure 31-6 Status Signal Behavior When Self-Test Completes and Fails

The status signals are combinationally derived from the self-test FSM state. For details on 
monitoring them from your functional logic, see “Monitoring the Self-Test Status Signals” on 
page 32-23.
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The Scan-In and Scan-Out Signals

A LogicBIST implementation requires at least one user-defined scan-in signal. (For designs 
with IEEE 1500 logic, the WSI signal serves this purpose.)

When the design is in TetraMAX mode, key LogicBIST registers (pattern counter, shift 
counter, START synchronizer, PRPG, and MISR) are placed in a scan chain driven by the 
first user-defined scan-in signal. This allows TetraMAX DRC to access the registers during 
LogicBIST seed and signature computation.

For other test modes, this scan-in port is used as a regular scan-in port.

Figure 31-7 shows how TetraMAX accesses the scannable LogicBIST access chain in 
TetraMAX mode.

Figure 31-7 Scan Chain Access to the LogicBIST Logic

See Also

• “Enabling DFT Logic During Autonomous Self-Test” on page 31-18 for details on how the 
drc_en (TetraMAX mode) signal is generated

LogicBIST Clock Control

LogicBIST clock control is described in the following topics:

• Overview of Clock Configurations

• External Clocks

• OCC-Controlled Clocks With Default Capture Behavior

• OCC-Controlled Clocks With Weighted Clock Capture Groups

• External and Internal Clocks in the Same Design
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Overview of Clock Configurations

LogicBIST self-test supports the following three clock configurations:

• External (port-driven) clocks

Use this configuration when all clocks are driven by input ports and there are no on-chip 
clocking (OCC) sources, such as phase-locked loops (PLLs).

• OCC-controlled clocks with default capture behavior

Use this configuration when there is a single OCC-controlled clock or multiple 
OCC-controlled clocks that do not interact during capture.

• OCC-controlled clocks with weighted clock captures

Use this configuration when there are multiple OCC-controlled clocks that interact or if 
there is an asynchronous set or reset signal in your design.

If there is minimal communication between asynchronous clock domains, you can use 
test points to block the capture paths between those domains. This can reduce or 
eliminate the need for clock weights.

All clocks in the design must use the same configuration. If you have a mix of external and 
OCC-controlled clocks, you must use an OCC controller for the external clocks. If you have 
an asynchronous set or reset in your design, you must disable it or use weighted clock 
captures—even for a single clock.

External Clocks

If the design has no on-chip clocking (OCC) sources, then all clocks are external (driven by 
input ports). Figure 31-8 shows how the clock controller passes all clocks transparently 
when LogicBIST self-test is inactive.

Figure 31-8 External Clocks When LogicBIST Self-Test Is Inactive
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When LogicBIST self-test is active, if the design contains multiple scan clock domains, the 
clock controller drives all scan clock domains with a single BIST clock. The non-BIST clock 
input ports do not clock any scan chains.

Figure 31-9 shows how the clock controller drives all scan clock domains with the LogicBIST 
clock when LogicBIST self-test is active (gated under the control of the LogicBIST 
controller). CLK1 is selected as the BIST clock.

Figure 31-9 External Clocks When LogicBIST Self-Test Is Active

Important:   
When the design contains multiple external clocks, you must ensure that cross-domain 
paths meet timing in LogicBIST mode because the clock trees are driven by a single port 
but might have different latencies.

The LogicBIST clock controller logic structure is shown in Figure 31-10. (The figure is 
intended to show the logic function; actual implementation might vary.)

Figure 31-10 External Clock Controller Structure
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OCC-Controlled Clocks With Default Capture Behavior

When you have a DFT-inserted OCC controller in your design, the tool uses an OCC 
controller design with additional LogicBIST clock control logic. The ATE clock is used as the 
BIST clock.

In autonomous mode, the OCC controller operates normally, except that the clock pulses 
are determined by a pulse pattern signal (lbist_clk_enable[]) instead of the clock chain. The 
width of this bus is the same as the clock chain length. By default, the clocks use a 
single-pulse pattern. You can also specify a programmable pattern, as described in “Using 
Programmable LogicBIST Configuration Values” on page 33-2.

In TetraMAX mode, the test protocol asserts the pll_bypass signal so that the ATE clock is 
used during TetraMAX ATPG seed and signature computation.

The OCC controller logic is shown in Figure 31-11.

Figure 31-11 LogicBIST OCC Controller

If you have multiple OCC-controlled clocks in your design, all clocks capture in each pattern. 
If capture paths exist between the clock domains, you must use weighted-clock captures as 
described in the next section, or you must block the capture paths using RTL logic or test 
points.

Some limitations apply to designs with OCC controllers. See Chapter 34, “LogicBIST 
Limitations and Known Issues.”
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OCC-Controlled Clocks With Weighted Clock Capture Groups

By default, all OCC clocks capture in each LogicBIST pattern. If capture paths exist between 
clock domains, additional logic is required to selectively enable non-interacting capture 
clocks in each pattern. This avoids capturing an X value from an asynchronous clock 
domain that is also clocked in that pattern.

To implement this logic, you separate clocks into groups and assign a weight to each group. 
In each pattern, a single clock group is selected for capture, proportionally to the weight 
values.

In the following example, clock domains A2 and B1 do not interact with each other and can 
be grouped together. Clock domains A1 and B2 have less logic than A2+B1 and can have a 
lower weight than A2+B1 to capture less often.

Figure 31-12 LogicBIST OCC Controller With Weighted Capture Groups

Because LogicBIST does not use the clock chain registers, they are repurposed for clock 
group selection during LogicBIST self-test. In each pattern, the clock chains load a 
pseudorandom value from the PRPG. This value feeds a weighted clock group selector that 
enables the pulse pattern for one of the capture groups, as shown in Figure 31-13.
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Figure 31-13 Weighted Capture Groups Logic Structure

The comparator value is seven bits. Thus, you must have at least seven clock chain bits in 
the design; additional bits are not used for clock selection. In addition, all OCC controller 
clocks must have the same clock chain length.

The clock pulses are determined by a pulse pattern signal instead of the clock chain. The 
width of this bus is the value specified with the -cycles_per_clock option of the 
set_dft_clock_controller command. By default, the clocks use a single-pulse pattern. 
You can also specify a programmable pattern, as described in “Using Programmable 
LogicBIST Configuration Values” on page 33-2.

Table 31-1 shows the minimum clock chain length as a function of clock count.

Additional limitations apply to designs with OCC controllers. See Chapter 34, “LogicBIST 
Limitations and Known Issues.”

Table 31-1 Minimum Total Clock Chain Length in a LogicBIST Design 
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See Also

• “Configuring Clock and Reset Weights” on page 32-5 for details on configuring clock 
weights

• “Simplifying the Weighted Clock/Reset Logic” on page 33-4 for details on simplifying the 
comparator logic

External and Internal Clocks in the Same Design

If your design uses both external (port-driven) and internal (OCC-controlled) clocks, you 
must control the external clocks with a DFT-inserted OCC controller. If the clock domains 
have capture interactions, you must also use weighted clock capture groups.

Figure 31-14 shows a design with one external clock and one internal clock using weighted 
clock capture groups.

Figure 31-14 Using OCC Control for External Clocks

For more information, see “Specifying OCC Controllers for External Clock Sources” on 
page 13-32.

Isolating the Design During LogicBIST Self-Test

When LogicBIST self-test is active, it generates and applies the test data autonomously 
(on-chip). ATE data is not available to control the design input ports, and the ATE does not 
observe the design output ports.

As a result, the design must be isolated on-chip during LogicBIST self-test. Its inputs must 
be controlled to avoid X capture; its outputs should be observed to ensure coverage.
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The following topics describe two design isolation methods:

• Isolating the Self-Test Design Using Core Wrapping

• Isolating the Self-Test Design Using Test Points

• Comparing the Two Isolation Approaches

Isolating the Self-Test Design Using Core Wrapping

You can use the core wrapping feature to insert a wrapper chain that isolates the design 
during self-test. Wrapper chains inherently provide this needed isolation.

With this approach, the LogicBIST test mode becomes an inward-facing mode that drives 
LogicBIST-generated data into the input wrapper chain and incorporates the captured 
output wrapper chain data into the MISR, as shown in Figure 31-15.

Figure 31-15 Isolating the Self-Test Design Using Core Wrapping

If your design already implements wrapper chains, you use this approach by default.

If most of the I/O ports in your design are registered, you can reuse the existing I/O registers 
to build the wrapper chain, which minimizes area. This is called the maximized-reuse flow.

If the self-test design drives top-level logic that cannot tolerate pseudorandom output data 
during self-test, you can specify safe values to be driven at the outputs during self-test.

See Also

• “Configuring Wrapper Chain Isolation Logic” on page 32-6 for details on using wrapper 
chains for self-test isolation

Core
logic

CORE
wrp_si1 wrp_so1

CLK

test_si1 test_so1

Wrapper chain
Scan Chain

PRPG LogicBIST FSM MISR
Chapter 31: The LogicBIST Architecture
Isolating the Design During LogicBIST Self-Test 31-16



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Isolating the Self-Test Design Using Test Points

To reduce area, you can use test points instead of core wrapping to provide boundary 
testability. The core_wrapper target of automatic test point insertion inserts force_01 test 
points at the inputs and observe test points at the outputs, as shown in Figure 31-16. 

Figure 31-16 Isolating the Self-Test Design Using Test Points

Multiple test points can share a single test point register, which reduces the area.

Use this isolation method only if your design is not already core-wrapped.

See Also

• “Configuring Test Point Isolation Logic” on page 32-8 for details on using test points for 
self-test isolation

Comparing the Two Isolation Approaches

Table 31-2 compares the two isolation approaches.

Table 31-2 Comparison of the Two Self-Test Isolation Approaches 

Core wrapping Test points

Primary benefit “Free” for core-wrapped designs Minimal area for unwrapped designs

Controlled by Current test-mode encoding Dedicated test-point control signal
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In general,

• Use core-wrapping isolation if your design already uses core wrapping for hierarchical 
test reasons.

• Use test-point isolation if your design does not require core-wrapping capabilities.

Providing Testability for LogicBIST Self-Test

During LogicBIST self-test, no X values can be captured during testing. If an X value 
reaches the MISR, it recirculates and spreads within the MISR, corrupting its value. The 
following topics describe ways to keep the design clean of X values:

• Enabling DFT Logic During Autonomous Self-Test

• Blocking Internal X Sources

• Ensuring Testability for Reset Signals

• Ensuring Testability for Integrated Clock-Gating Cells

Enabling DFT Logic During Autonomous Self-Test

When a LogicBIST core performs autonomous self-test, its LBIST_EN signal is asserted 
while its test-mode signals are set to the mission-mode encoding. To ensure that testability 
logic inside the core is enabled during autonomous self-test, the LogicBIST test-mode 
output of the test control module (TCM) is asserted during self-test:

Figure 31-17 shows the TCM logic for a core-wrapped design.

Provides EXTEST? Yes No

Provides transparent 
(unisolated) ATPG 
mode?

Optional

(see “Top-Down Flat Testing With 
Transparent Wrapped Cores” on 
page 12-69)

Yes

(deassert the isolation test-point 
control signal)

Table 31-2 Comparison of the Two Self-Test Isolation Approaches (Continued)
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Figure 31-17 Test Control Module (TCM) in a Core-Wrapped LogicBIST Design

The TCM self-test output enables all testability logic controlled by the DFT-inserted TCM, 
such as reconfiguration MUXs, wrapper chains, and so on.

DFT Logic Intended for Self-Test Only

If you have testability logic in your design that should be enabled only during self-test 
operation (autonomous and TetraMAX modes), then enable it using the LBIST_EN signal 
instead of a test-mode signal.

During DFT insertion, any features that use LBIST_EN as the control signal are enabled 
from the self-test-mode output decoded by the TCM, as shown in Figure 31-18. Any existing 
RTL logic connections to the LBIST_EN signal source are also remapped to this 
self-test-mode output.

Figure 31-18 Self-Test Assertion Logic for Self-Test-Only DFT Signals
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Important:   
The self-test-mode output of the TCM is not synchronized, registered, or guaranteed 
glitch-free. Any logic connections made to it (including test points) must be handled 
accordingly.

DFT Logic Intended for Both Manufacturing Test and Self-Test

By default, global DFT logic enabled for manufacturing test modes is also enabled during 
self-test operation (autonomous and TetraMAX modes).

The tool automatically inserts self-test assertion logic for the following DFT signals:

• The self-test mode output of the test control module (TCM)

• Test-mode signals for OCC controllers

The tool does not insert self-test assertion logic for the following DFT signals: 

• Test-mode signals for test points

• Constant signals (set_dft_signal -type Constant)

To assert these signals during self-test, you must insert a force_0 or force_1 user-defined 
test point that uses LBIST_EN as the control signal:

dc_shell> set_test_point_element -control_signal LBIST_EN \
            -type force_1 my_test_mode

This results in the assertion logic shown in Figure 31-19. The test point also asserts any 
existing RTL logic connections to the signal source.

Figure 31-19 Self-Test Assertion Logic for Unasserted DFT Signals
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during mission mode. However, you can insert a test point to meet the design requirements, 
if needed.

Blocking Internal X Sources

LogicBIST designs must be X-clean. If a scan cell captures an X value, the signature value 
in the MISR is corrupted and the self-test results are useless (despite what coverage might 
be reported). If you have X sources inside your design, you must block them during self-test 
operation.

TetraMAX provides features to identify X sources. For DRC, you can set the X2 violation 
severity to warning to identify scan cells that capture X values. During seed and signature 
computation, M740 violations report patterns in which the MISR captures X values.

Possible X sources include:

• Unwrapped or unisolated input ports

During self-test, input ports must block external X values from being captured. You can 
use core wrapping or isolation test points, as described in “Isolating the Design During 
LogicBIST Self-Test” on page 31-15.

Warning:   
Avoid sharing functional input ports with DFT signals (such as scan-in or scan-enable 
signals) if possible. DFT signals are not wrapped during core wrapping, and inserting 
isolation test points that do not interfere with manufacturing test requires careful 
attention to detail.

• Nonscan cells

If you have scan cells that capture values from nonscan cells, you might be able to use 
the loadable nonscan cell feature in TetraMAX ATPG to prevent the nonscan cells from 
driving X values into the scan cells. For more information, see “Using Loadable Nonscan 
Cells” in TetraMAX Online Help.

• Black boxes

If you have unmodeled macro cells or memories without ATPG models, and any outputs 
of these blocks reach a scan cell, you must insert X-blocking logic at the component 
outputs by inserting test points or modifying the RTL.

• Timing exceptions

Scan cells that are endpoints of timing exceptions capture X values. You can use test 
points to prevent these X values from being captured.
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Ensuring Testability for Reset Signals

Asynchronous reset (and set) signals are defined using the set_dft_signal command:

set_dft_signal -view existing_dft -type Reset \
  -port RSTN -active_state 0

These signals are similar to clocks in that they cause sequential cells to capture a value. As 
a result, you must ensure that there is no capture interaction between clock and reset 
signals during LogicBIST operation.

If you have OCC-controlled clocks, you must use weighted clock capture groups to allocate 
capture cycles between clocks and reset signals.

If all clocks are external (port-driven), you can choose either of the following:

• Insert OCC controllers for the external clocks and use weighted clock capture groups to 
allocate capture cycles between clocks and reset signals.

Because clocks and resets are separated into groups that avoid capture interactions, this 
method provides coverage of the reset network but might increase pattern count for a 
given coverage.

• Use the external clock controller and disable the reset signal during LogicBIST 
operation.

Because all clocks capture on every cycle, this method improves clock capture efficiency 
but does not provide coverage on the reset network.

Important:   
Do not define any asynchronous reset signal with this method. Instead, define the 
reset source as a constant signal. For TetraMAX ATPG in manufacturing test modes, 
you must manually define the reset signal.

Figure 31-20 shows the weighted clock/reset logic structure.

Figure 31-20 Using Weighted Capture Groups for Reset (or Set) Signals
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When LogicBIST operation is active,

• The reset signal is asserted when LBIST_EN is asserted but START is de-asserted. 
(Because of the synchronizer delay on the START signal, this condition always occurs.)

• When START is asserted, the test begins. Within each self-test pattern,

❍ The reset signal is de-asserted during scan shift.

❍ The reset signal is controlled by the clock/reset weight decoder during scan capture.

• The reset signal is reasserted when the test completes.

• The reset signal is controlled by the functional logic when LBIST_EN is de-asserted.

For a design with multiple reset signals, you typically include all reset signals in a single 
reset group.

If your design uses external clocks, see “Specifying OCC Controllers for External Clock 
Sources” on page 13-32.

See Also

• “OCC-Controlled Clocks With Weighted Clock Capture Groups” on page 31-13 for 
details on how weighted capture groups work

Ensuring Testability for Integrated Clock-Gating Cells

The tool automatically inserts testability logic for integrated clock-gating cells identified by 
DFT insertion. Figure 31-21 shows the clock-gating cell testability logic structure.

Figure 31-21 LogicBIST Testability Logic for Clock-Gating Cells

When LogicBIST operation is active,

• The clock-gating scan-enable signal is asserted during scan shift.

• The clock-gating scan-enable signal is controlled by a dedicated testability scan cell 
during scan capture.
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If you declare multiple clock-gating scan-enable signals, the tool inserts a separate control 
register for each signal declaration.

Important:   
Clock-gating cells require a dedicated scan-enable signal. For details, see “LogicBIST 
Limitations and Known Issues” on page 34-2.

If you have instantiated clock-gating cells in your RTL, they must be identified so they are 
controlled during self-test (see “Instantiating Clock-Gating Cells in the RTL” on page 10-76). 
If a test pin has an existing, non-constant connection in the RTL, it is still controlled during 
self-test, but remains logically unchanged in all other cases—including manufacturing test. 

Discrete-logic clock-gating cells have no test pin, so no testability logic can be inserted for 
them.
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Using LogicBIST Self-Test 32

To use LogicBIST self-test, you specify the desired number of compressed chains and scan 
patterns to run. The tool synthesizes the scan and BIST circuitry and writes the architectural 
information to the SPF file. The TetraMAX tool then computes seed and signature values, 
which are used for both testbench simulation and autonomous device self-test operation.

This chapter includes the following topics:

• Configuring LogicBIST Self-Test

• Previewing and Inserting the LogicBIST Implementation

• Computing the Seed and Signature Values in TetraMAX

• Setting the Seed and Signature Values in Synthesis

• Simulating Autonomous BIST Operation

• Integrating the Self-Test Logic into the Functional Design Logic

• Example LogicBIST Scripts
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Configuring LogicBIST Self-Test

LogicBIST configuration is described in the following topics:

• Defining the LogicBIST Control Signals

• Defining the LogicBIST Scan-In Signal

• Defining the LogicBIST Self-Test Mode

• Configuring the PRPG and MISR Lengths

• Configuring the Pattern Counter and Shift Counter Lengths

• Configuring Clock and Reset Weights

• Controlling Self-Test Through IEEE 1500 Logic

• Configuring Self-Test Isolation Logic

• Inserting LogicBIST in Designs With Trailing-Edge Flip-Flops

• Inserting LogicBIST in Designs With External Chains

Defining the LogicBIST Control Signals

You can define the LogicBIST-specific signals (LBIST_EN, START, STATUS_0, STATUS_1) 
on existing ports using the following signal types:

set_dft_signal -view spec -port my_enable  -type lbistEnable
set_dft_signal -view spec -port my_start   -type lbistStart
set_dft_signal -view spec -port my_status0 -type lbistStatus_0
set_dft_signal -view spec -port my_status1 -type lbistStatus_1

You can also define these signals on internal pins using the -hookup_pin option.

The LBIST_EN and START signals cannot be defined on the same source object within the 
design because TetraMAX mode requires that they be separately controllable at the design 
level. However, they can both be driven by the same signal external to the design.

If you do not define these signals, the tool automatically creates them using the following 
signal port names: LBIST_EN, START, STATUS_0, STATUS_1.

See Also

• “The LogicBIST Control and Data Signals” on page 31-6 for details on how the control 
and status signals work
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Defining the LogicBIST Scan-In Signal

A LogicBIST implementation requires at least one user-defined scan-in signal. Define it on 
an existing input port:

set_dft_signal -view spec -port {SI1} -type ScanDataIn

This signal is used for TetraMAX mode, which is described in “The LogicBIST Operational 
Modes” on page 31-6. No user-defined scan-out signal is required.

Defining the LogicBIST Self-Test Mode

Synthesis commands and command options related to LogicBIST self-test contain the word 
“logicbist”. To enable LogicBIST self-test insertion, use the following command:

dc_shell> set_dft_configuration -logicbist enable

To insert LogicBIST self-test in your design, define a test mode with a usage of logicbist. 
Then, use the set_logicbist_configuration command to configure the self-test 
configuration parameters.

The following example script is for a design that uses core wrapping for boundary testability:

# define scan clocks
set_dft_signal -view existing_dft -type ScanClock \
  -timing {45 55} -port CLK1

# enable self-test insertion
set_dft_configuration -logicbist enable

# define the uncompressed inward-facing mode and its
# corresponding inward-facing scan compression mode
define_test_mode WRP_IF -usage wrp_if
define_test_mode LBIST -usage logicbist

# configure uncompressed scan mode
set_scan_configuration -test_mode WRP_IF -chain_count 2

# configure LogicBIST self-test mode
set_logicbist_configuration \
  -base_mode WRP_IF -test_mode LBIST \
  -clock CLK1 \
  -chain_count 32

You must explicitly configure the LogicBIST codec using the -chain_count or  
-max_length option of the set_logicbist_configuration command; there is no default 
for these options.
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If your design has multiple scan clocks, you can use the -clock option to specify which 
clock to use for LogicBIST operation. The specified clock must be previously defined as a 
scan clock using the set_dft_signal command. The default is the first-defined scan clock.

Note that the test-mode encoding of the self-test mode is not actually applied to the design 
during in-place self-test; it is applied only during seed and signature computation in the 
TetraMAX tool. For details, see “The LogicBIST Operational Modes” on page 31-6.

Configuring the PRPG and MISR Lengths

By default, the tool chooses the PRPG and MISR register widths based on the scan 
architecture. To specify a particular width for the PRPG or MISR register, use the following 
options:

set_logicbist_configuration \
  -prpg_width width_value \
  -misr_width width_value

The minimum width value is a function of the number of compressed chains in the self-test 
mode. The specified width must be large enough to satisfy the following requirement:

width_value*(width_value-1)/2 >= num_compressed_chains

Configuring the Pattern Counter and Shift Counter Lengths

By default, the tool creates a pattern counter register with a width of 8, which allows up to 
256 patterns. To specify a particular width for the pattern counter register, use the following 
option:

set_logicbist_configuration \
  -pattern_counter_width width_value

By default, the tool sizes the shift counter register according to the longest shift chain in the 
design. In most cases, this is sufficient. To change the shift counter width, use the following 
option:

set_logicbist_configuration \
  -shift_counter_width width_value
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Configuring Clock and Reset Weights

If your design requires weighted clock capture groups, use the -occ_clock_weights option 
to define them:

set_logicbist_configuration ... \
  -occ_clock_weights {{weight1 clock1 [clock2 ...]} \
                      {weight2 clock3 [clock4 ...]} \
                      ...}

The -occ_clock_weights option takes a list of group definitions, where each group is a list 
containing a weight value followed by the OCC-controlled clock signals in that group.

If you also have asynchronous reset or set signals, specify their weights with the 
-reset_weights option using the same group syntax. Typically there is a single reset 
group.

For example,

set_logicbist_configuration \
  -occ_clock_weights {{80 UPLL/CLKO CLK33} {44 CLK266}} \
  -reset_weights {{4 RSTN1 RSTN2}}

Important:   
The signals in a -reset_weights specification must be defined as resets using the 
set_dft_signal -type Reset command.

The weight values must be positive integers. There is no fixed scale for the weights; each 
group's capture probability is relative to the sum of all clock and reset group weights. 
However, the weight comparator logic uses a 7-bit PRPG word. Thus, the most accurate 
total weight values are powers of 2, from 2 to 128. For other total weight values, the weights 
are remapped to comparator values between 0 and 127, which might perturb the 
probabilities due to rounding errors.

You can also specify two special weight values, always_on and always_off, for clocks that 
should always pulse or never pulse, respectively. These values do not affect the sum of all 
numeric clock and reset group weights.

To determine how noninteracting clocks can be grouped, you can perform clock grouping 
analysis in the TetraMAX tool. For details, see "Clock Grouping" in the TetraMAX Online 
Help.
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Configuring Self-Test Isolation Logic

The following topics describe how to configure logic that isolates your design from 
surrounding logic during self-test operation:

• Configuring Wrapper Chain Isolation Logic

• Configuring Test Point Isolation Logic

Configuring Wrapper Chain Isolation Logic

Wrapper chains inherently provide the isolation needed by self-test operation. If your design 
already implements wrapper chains, no further action is needed. Otherwise, you can enable 
and configure wrapper chains.

To use wrapper chains for self-test isolation, do the following:

1. Enable both the core wrapper and LogicBIST clients:

set_dft_configuration -wrapper enable -logicbist enable

2. Define global DFT signals, wrapper configuration settings, and LogicBIST configuration 
settings.

Any logic between the I/O ports and wrapper chain cannot be tested by LogicBIST 
self-test. To minimize such logic, either use the simple wrapper flow, or use the 
maximized-reuse flow and specify a low value for the -depth_threshold option of the 
set_wrapper_configuration command.

3. If the self-test design drives top-level logic that cannot tolerate pseudorandom output 
data during self-test, specify safe values for the output wrapper cells:

# global:
set_wrapper_configuration -class core_wrapper \
  -safe_state 0  ;# or 1

# per-port:
set_boundary_cell -class core_wrapper \
  -ports port_list -safe_state 0  ;# or 1

4. Define the uncompressed wrapper modes, scan compression modes, and LogicBIST 
self-test modes:

define_test_mode WRP_IF -usage wrp_if
define_test_mode WRP_OF -usage wrp_of       ;# if needed
define_test_mode DFTMAX -usage scan_compression
define_test_mode BIST -usage logicbist
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5. When configuring the LogicBIST test mode, reference the inward-facing uncompressed 
test mode as its base mode:

set_logicbist_configuration -test_mode BIST -base_mode WRP_IF ...

The LogicBIST test mode becomes an inward-facing mode that drives LogicBIST-generated 
data into the input wrapper chain, and incorporates the captured output wrapper chain data 
into the MISR. As with other DFT signals, LogicBIST-specific signals (LBIST_EN, START, 
STATUS_0, and STATUS_1) are not wrapped.

When the core wrapper and LogicBIST clients are both enabled, the following core wrapping 
behaviors change:

• The tool no longer creates the outward-facing wrp_of mode by default; you must 
explicitly define it with the define_test_mode -usage wrp_of command. This allows 
core wrapping to be used only for self-test isolation and not full hierarchical test.

• In the maximized reuse core wrapping flow, dedicated wrapper cells are added for

❍ Ports associated with feedthrough paths.

❍ Ports that drive black-box cells that have no CTL model.

You can suppress wrapper cells on these ports by assigning them a wrapper cell type of 
none:

set_boundary_cell -class core_wrapper -type none -ports {port_list}

Note the following requirements and limitations when using core wrapping with LogicBIST 
self-test:

• If you have functional ports reused as scan ports, you must isolate them with 
user-defined test points. The tool does not wrap these ports.

For simplicity, it is best to avoid this where possible.

• If your design has feedthrough paths, restrictions apply to the use of shared wrapper 
cells on them. For details, see SolvNet article 2506549, “Feedthrough Path Caveats in 
Maximized-Reuse Wrapped LogicBIST Designs.”

• The tool-created wrapper clock (wrp_clk) is not controlled by the BIST clock controller 
(OCC or non-OCC) and cannot be used. To avoid this, ensure that it is not present in the 
wrapper preview report.

See Also

• “Isolating the Self-Test Design Using Core Wrapping” on page 31-16 for details on how 
core wrapping provides design isolation

• “Example Core Insertion Script Using Core Wrapping” on page 32-25 for an example 
script
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Configuring Test Point Isolation Logic

If your design is very area-sensitive and is not already core-wrapped, you can isolate the 
design using test points instead of a wrapper chain.

Note:   
If the I/O ports in your design are mostly registered, a maximized-reuse wrapper chain 
might require less area than adding test points.

To use test points for isolation, enable and configure the core_wrapper target of automatic 
test point insertion. For example,

# enable automatic test point insertion
set_dft_configuration -testability enable

# enable and configure the core_wrapper target
set_testability_configuration \
  -target core_wrapper \
  -control_signal LBIST_EN

In this example, because the core_wrapper target uses LBIST_EN as the control signal, 
the test points isolate the logic during self-test but not manufacturing test.

The core_wrapper target provides additional configuration features and options. For 
details, see “Configuring the Core Wrapper Test Point Target” on page 11-23.

See Also

• “Isolating the Self-Test Design Using Test Points” on page 31-17 for details on how test 
points provide lightweight design isolation

• “Connecting the Self-Test Signals to the Functional Design Logic” on page 32-20 for 
details on how the tool uses LBIST_EN as a control signal

• “Example Core Insertion Script Using Test-Point Isolation” on page 32-26 for an example 
script

Controlling Self-Test Through IEEE 1500 Logic

If you insert IEEE 1500 test-mode control and LogicBIST self-test together in the same 
design, the tool implements logic to control self-test entirely through the IEEE 1500 
interface.

In this architecture,

• The pattern count, shift count, seed, and signature values are driven by the TMCDR.

In designs with OCC controllers, the OCC capture mask is driven by the TMCDR. 
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• The control signals (START and LBIST_EN) are driven by the TMCDR.

• The status signals are captured for observation by the TMCDR.

Configuration

To properly allocate the TMCDR bits, all four self-test value widths must be explicitly 
specified. For example,

# Enable both IEEE 1500 and LogicBIST insertion
set_dft_configuration -ieee_1500 enable -logicbist enable

# Specify self-test value widths so that CDR bits are allocated
set_logicbist_configuration ... \
  -pattern_counter_width 12 \
  -shift_counter_width 6 \
  -prpg_width 18 \
  -misr_width 18

Any signals definitions of the following types are ignored:

lbistEnable
lbistStart
lbistStatus_0
lbistStatus_1

Testbench Generation

After DFT insertion, the write_test command writes a self-test testbench that runs self-test 
and checks the status entirely through the IEEE 1500 interface. To use it, you must specify 
the values and the TMCDR register name to use for the testbench as follows:

    write_test -format stil -output bist_tb \
     -seed 110100100101010011 \
     -signature 011000011110100110 \
     -shift_counter 50 \
     -pattern_counter 250 \
     -capture_cycle {10} \
     -cdr_name CDR

The -cdr_name option specifies the name of the CDR register segment. By default, the tool 
names it "CDR". If you configure a TMCDR register with the set_scan_path command (see 
“Customizing the IEEE 1500 Architecture” on page 11-89), then specify that segment name 
instead.

If you have a serial STIL file containing the seed, signature, and pattern count values, you 
can use the set_logicbist_constants Tcl procedure (instead of the write_test 
command) to generate the testbench. For details, see SolvNet article 2231010, “Setting the 
Seed and Signature Values in a LogicBIST Design."
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See Also

• “Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces” on page 11-82 for 
details on implementing IEEE 1500 logic in your design

Inserting LogicBIST in Designs With Trailing-Edge Flip-Flops

The PRPG register in the LogicBIST decompressor is clocked on the leading edge. If your 
design has trailing-edge flip-flops, the tool inserts retiming registers as needed.

The beginning retiming registers inserted between the LogicBIST decompressor and 
trailing-edge head scan cells have a state-holding loop that is used during scan capture.

If you enable ending retiming flip-flops, the ending retiming registers inserted between 
trailing-edge tail scan cells and the LogicBIST compressor are regular non-state-holding 
retiming registers. They are inserted even though the path to the leading-edge MISR 
register would make timing without them, so a value of begin_only is preferred for minimal 
area.

Inserting LogicBIST in Designs With External Chains

External chains are scan chains that are excluded from scan compression. They are defined 
using the -scan_data_in and -scan_data_out options of the set_scan_path command 
to directly connect the scan chain to scan-in and scan-out ports, as shown in the following 
figure.

Figure 32-1 External Chains in a Compressed Scan Design

External chains are supported in DFTMAX and DFTMAX Ultra test modes. However, 
external chains are not supported in LogicBIST test modes because the inputs are unknown 
and the outputs are unobserved. This causes all scan elements in the external chain to 
become X sources.

To avoid this, use the -test_mode option of the set_scan_path command to define the 
external chain for the required test modes, but not the LogicBIST self-test mode.

External 
chains
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For example, to define an external clock chain for all test modes except the self-test mode,

# define test modes
define_test_mode wrp_if -usage wrp_if
define_test_mode wrp_of -usage wrp_of
define_test_mode bist -usage logicbist
...

# must define external chain AFTER all test modes are defined,
# so that all_test_modes returns the set of defined modes
foreach tm [lminus [all_test_modes] bist] {
  set_scan_path EXT_OCC_${tm} -class occ \
    -scan_data_in OCC_SI \
    -scan_data_out OCC_SO \
    -test_mode $tm
}

Previewing and Inserting the LogicBIST Implementation

The following topics describe how to preview and insert LogicBIST self-test in your design, 
then write out the files needed for seed and signature generation:

• Previewing the LogicBIST Implementation

• Inserting the LogicBIST Logic

• Writing Out the LogicBIST Design Files

Previewing the LogicBIST Implementation

After you have configured your LogicBIST implementation, use the preview_dft command 
to preview the implementation. The preview report contains a LogicBIST section that 
describes the self-test values.

Constant-Driven Values

For a design with constant-driven values, the report shows the initial values:

****************************************
LogicBIST Compression information
****************************************

   PRPG size: 31
   MISR size: 30
   Shift counter size: 4
   Pattern counter size: 12

   Shift counter data:
     top_U_LogicBISTController_bist/shift_count_data = 4'b1001
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   Pattern counter data:
     top_U_LogicBISTController_bist/user_pattern_count_data =
       12'b000000000000
   PRPG seed data:
     top_U_decompressor_bist/user_prpg_seed =
       31'b0000000000000000000000000000000
   MISR signature data:
     top_U_compressor_bist/user_misr_signature =
       30'b000000000000000000000000000000

The pattern counter, PRPG seed, and MISR signature values are set to all-zeros in the initial 
implementation; these values are determined later in TetraMAX ATPG. The shift counter is 
automatically set according to the longest scan chain length in LogicBIST mode.

The test-mode section indicates the mission mode encoding that must be asserted for 
autonomous self-test. For example,

Test Mode Controller Index (MSB --> LSB)
----------------------------------------
TM1, TM0

Control signal value - Test Mode
--------------------------------
00 Mission_mode - Normal

10 bist - InternalTest

01 wrp_if - InternalTest

11 dftmax - InternalTest

Information: For self-test, test mode 'Mission_mode' (opcode '00') is
used for autonomous operation, while 'bist' (opcode '10') is used for
TetraMAX DRC. (TEST-2096)

Designs With IEEE 1500

For a design with DFT-inserted IEEE 1500 logic, the report shows how the CDR bits are 
allocated to the self-test values and test-mode signals using a bit-by-bit format:

****************************************
LogicBIST Compression information
****************************************

   PRPG size: 18
   MISR size: 18
   Shift counter size: 6
   Pattern counter size: 12

   SHIFT COUNTER CONNECTIONS:
   **************************
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       top_Test_Controller_1500_inst/CDR[9] connected to
         top_U_LogicBISTController_bist/shift_count_data[0]
       top_Test_Controller_1500_inst/CDR[8] connected to
         top_U_LogicBISTController_bist/shift_count_data[1]
..
       top_Test_Controller_1500_inst/CDR[4] connected to
         top_U_LogicBISTController_bist/shift_count_data[5]

   PATTERN COUNTER CONNECTIONS:
   ****************************
       top_Test_Controller_1500_inst/CDR[21] connected to
         top_U_LogicBISTController_bist/user_pattern_count_data[0]
...
       top_Test_Controller_1500_inst/CDR[10] connected to
         top_U_LogicBISTController_bist/user_pattern_count_data[11]

   SEED CONNECTIONS:
   *****************
       top_Test_Controller_1500_inst/CDR[57] connected to
         top_U_decompressor_bist/user_prpg_seed[0]
...
       top_Test_Controller_1500_inst/CDR[40] connected to
         top_U_decompressor_bist/user_prpg_seed[17]

   EXPECTED SIGNATURE CONNECTIONS:
   *******************************
       top_Test_Controller_1500_inst/CDR[39] connected to
         top_U_compressor_bist/user_misr_signature[0]
...
       top_Test_Controller_1500_inst/CDR[22] connected to
         top_U_compressor_bist/user_misr_signature[17]

The test-mode section indicates the mission mode encoding that must be asserted by the 
TMCDR for autonomous self-test. For example,

================================
Test Mode Controller Information
================================

Test Mode Controller Ports
--------------------------
test_mode: top_Test_Controller_1500_inst/CDR[0]
test_mode: top_Test_Controller_1500_inst/CDR[1]

Test Mode Controller Index (WSO --> WSI)
------------------------------------------
top_Test_Controller_1500_inst/CDR[0],
top_Test_Controller_1500_inst/CDR[1]

Control signal value - Test Mode
--------------------------------
00 Mission_mode - Normal
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01 bist - InternalTest

10 wrp_if - InternalTest

11 dftmax - InternalTest

Information: For self-test, test mode 'Mission_mode' (opcode '00') is
used for autonomous operation, while 'bist' (opcode '01') is used for
TetraMAX DRC. (TEST-2096)

The LBIST_EN and START signals are also driven by the TMCDR, but they are not shown 
in the report.

Clock Information

The self-test section of the preview report lists the number of scan cells clocked by each 
clock:

Clock to scan registers distribution
Clock source  UPLL1/CLKO: drives 64 scan registers (33%)
Clock source  UPLL2/CLKO: drives 128 scan registers (66%)

If you are using clock weights, the report also lists the implemented weight percentages:

OCC clock weights information
****************************************
Group  1: Normalized Weight = 37 % : UPLL1/CLKO
Group  2: Normalized Weight = 62 % : UPLL2/CLKO
****************************************

Inserting the LogicBIST Logic

When you are satisfied with your DFT configuration, run the insert_dft command. Do not 
run an explicit incremental compile yet.

Writing Out the LogicBIST Design Files

After DFT insertion, write out the design netlist, SPF, and testbench file using the following 
commands:

# write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

# write protocol for TetraMAX to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

# write testbench for Verilog simulation to validate
# LogicBIST implementation
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#
# (this command produces bist_tb.stil)
write_test -format stil -output bist_tb

The files created by these commands serve the following purposes:

• The write_test_protocol command creates an SPF used by TetraMAX ATPG to 
compute the seed and signature values in TetraMAX mode. This SPF does not simulate 
the actual autonomous LogicBIST test process; instead, it enables TetraMAX mode so 
that TetraMAX ATPG can access the LogicBIST configuration registers through scan to 
evaluate seed values. OCC controllers are bypassed in the SPF.

• The write_test command creates a STIL pattern file that can be used to simulate the 
LogicBIST logic in autonomous mode (with the test-mode signals set to mission mode 
encoding). OCC controllers are enabled in the testbench.

Autonomous BIST operation cannot be simulated until you set the seed, signature, and 
pattern count values, as described in “Setting the Seed and Signature Values in 
Synthesis” on page 32-17.”

For designs with IEEE 1500, you can use the set_logicbist_constants Tcl procedure 
(instead of the write_test command) to write out the testbench.

The test protocol and STIL pattern files drive X values at the design inputs, which validates 
that self-test is unaffected by external values.

Post-DFT DRC (running the dft_drc command after DFT insertion) is supported for 
LogicBIST designs. DRC checking is also performed in the TetraMAX tool during seed and 
signature calculation.

If desired, you can leave your synthesis session up while you generate seed and signature 
values in TetraMAX ATPG. You can then return to the synthesis session to set the seed and 
signature values.

Computing the Seed and Signature Values in TetraMAX

To calculate the seed and signature value in TetraMAX ATPG, use the initial netlist and 
LogicBIST-mode SPF. For example,

read_netlist -library /project/libs/my_class.v
read_netlist top_no_seed_signature.vg
run_build top

# Enable LogicBIST DRC
set_drc -seq_comp_jtag_lbist_mode light_lbist
set_drc -allow_unstable_set_reset  ;# only needed if reset signal exists
run_drc LBIST.spf

# Specify a particular seed value (optional)
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#add_lbist_seeds 00000000000000000000000000000001

# Run LogicBIST ATPG for 133 patterns and 1 capture clock cycle
run_atpg -auto -jtag_lbist {1 133 1}
run_simulation
report_patterns -all

# write serial STIL file containing seed and signature values
write_patterns serial.stil -format stil -replace -unified -serial

If your design contains asynchronous set or reset signals, you must apply the set_drc 
-allow_unstable_set_reset setting to enable DRC to understand the reset-control logic.

The resulting STIL pattern file contains the seed and signature values generated by the 
run_atpg command.

Important:   
You cannot use this STIL pattern file to simulate autonomous self-test, as it contains only 
the computation of the signature value from the seed value. Instead, use the STIL pattern 
file written out by the DFTMAX write_test command. For details, see Figure 30-1 on 
page 30-3.

Choosing a Seed Value

By default, the run_atpg command uses seed values from a pseudorandom sequence of 
seed values. To evaluate a new seed value, run the run_atpg command again. Identical 
TetraMAX sessions yield the same sequence of seed values.

You can also explicitly specify seed values using the add_lbist_seeds command. For 
details, see TetraMAX Online Help.

Some seed values provide better coverage than others. To find an optimal seed value, use 
the find_seed Tcl procedure provided in SolvNet article 2220819, “Finding Optimal Seed 
Values for the LogicBIST PRPG.”

Computing the Signature Value

The values provided to the -jtag_lbist option are: number of seed values (always 1), 
pattern count, number of capture cycles (usually 1). The maximum pattern count value is 
(2^pattern_count_width)-2, which allows for an additional load-only pattern at the beginning 
of self-test.

After ATPG completes, the serial STIL pattern file contains the seed, signature, pattern 
counter, and shift counter values for the test, provided in STIL annotation comments. The 
report_patterns command also reports this information.

If the run_atpg command issues M740 (MISR X capture) violations, the resulting signature 
value is invalid. For details on resolving these violations, see SolvNet article 2460245, “How 
Do I Debug M740 Violations (MISR X Capture) in TetraMAX?”
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Note that the write_testbench command in the TetraMAX tool writes a testbench that uses 
TetraMAX mode to externally access seed and signature values. It does not write a 
testbench that tests autonomous LogicBIST operation, as the write_test command does 
in the DFT environment.

Setting the Seed and Signature Values in Synthesis

After you write the serial STIL pattern file from TetraMAX, you can use the file to set the 
seed, signature, and pattern counter values in your design. You can do this in the same DFT 
session where you wrote out the files for TetraMAX ATPG. If that session is no longer 
running, reload the design from a .ddc file.

To set the values in the design to the values contained in the serial STIL file, use the 
set_logicbist_constants Tcl procedure from SolvNet article 2231010, “Setting the Seed 
and Signature Values in a LogicBIST Design”. Its behavior depends on the type of seed, 
signature, and pattern count values used in your design:

• For constant-driven values, it modifies the netlist in memory to the desired values.

• For port-driven values, it creates a VCS command value to force the desired values at 
the block ports.

• For IEEE 1500 designs, it writes a testbench that performs self-test through the IEEE 
1500 interface using the desired values.

Note:   
There is no automation for programmable seed, signature, or pattern count values driven 
by functional logic. In this case, you must create your own initialization protocol and 
testbench for simulation.

The following example shows constant-driven values being set in a netlist:

dc_shell> source set_logicbist_constants.tcl
1
dc_shell> set_logicbist_constants -file_name serial.stil
Found LogicBIST controller for 'LBIST' test mode.
Obtained data from 'serial.stil' file.

Verifying shift counter value is set to '1011'...
  Verified top_U_LogicBISTController_LBIST/shift_count_data[3] is set to logic 1
  Verified top_U_LogicBISTController_LBIST/shift_count_data[2] is set to logic 0
  Verified top_U_LogicBISTController_LBIST/shift_count_data[1] is set to logic 1
  Verified top_U_LogicBISTController_LBIST/shift_count_data[0] is set to logic 1

Setting pattern counter value to '000001100101'...

Setting PRPG seed value to '1101011000000100111100100000110'...

Setting MISR signature value to '100011110010000110000111111011'...
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Once you have set the desired values, the serial STIL pattern file is no longer needed. The 
LogicBIST simulation is performed using only the testbench created by the write_test 
command in the tool.

For constant-driven values, you should take care when optimizing the DFT logic early in the 
flow. For details, see “Post-DFT Design Optimization” on page 33-10.

Simulating Autonomous BIST Operation

To simulate autonomous LogicBIST operation in VCS, create a testbench from the STIL file 
generated by the write_test command in synthesis. To do this, use the stil2verilog 
command:

% stil2verilog bist_tb.stil bist_tb

This generates a Verilog testbench file (bist_tb.v) and associated data file (bist_tb.dat). You 
can then simulate autonomous operation using this testbench along with the final netlist.

An example VCS command line is as follows:

vcs \
  -notice -Mupdate -timescale=1ns/10ps \
  +nospecify +notimingcheck +tetramax +delay_mode_zero \
  -l vcs_lbist.log \
  -v libs/class.v \
  bist_tb.v \
  top.vg

./simv -l vcs_sim_lbist.log

For other simulators, see their documentation.

The resulting simulation should complete with no errors:

% ./simv -l vcs_sim_lbist.log
Notice: timing checks disabled with +notimingcheck at compile-time
Chronologic VCS simulator copyright 1991-2014
Contains Synopsys proprietary information.
Compiler version J-2014.12-SP2; Runtime version J-2014.12-SP2;  Jun 23 15:34 2015
#############################################################################
 MAX TB Version K-2015.06
 Test Protocol File generated from original file "bist_tb.stil"
 STIL file version: 1.0
#############################################################################

XTB: Starting serial simulation of 0 pattern
XTB: Simulation of 0 patterns completed with 0 mismatches (time: 6144800.00 ns,
  cycles: 61448)

           V C S   S i m u l a t i o n   R e p o r t

Time: 6144800 ns
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If the design logic is modified, the simulation should complete with unexpected values on the 
STATUS_0 output:

% ./simv -l vcs_sim_lbist.log
Notice: timing checks disabled with +notimingcheck at compile-time
Chronologic VCS simulator copyright 1991-2014
Contains Synopsys proprietary information.
Compiler version J-2014.12-SP2; Runtime version J-2014.12-SP2;  Jun 23 15:34 2015
#############################################################################
 MAX TB Version K-2015.06
 Test Protocol File generated from original file "bist_tb.stil"
 STIL file version: 1.0
#############################################################################

XTB: Starting serial simulation of 0 pattern
>>>  Error during VectorStmt pattern 0
>>>     At T=6144540.00 ns, V=61446, exp=0, got=1, signal STATUS_0
>>>  Error during VectorStmt pattern 0
>>>     At T=6144640.00 ns, V=61447, exp=0, got=1, signal STATUS_0
XTB: Simulation of 0 patterns completed with 2 mismatches (time: 6144800.00 ns,
 cycles: 61448)

           V C S   S i m u l a t i o n   R e p o r t

Time: 6144800 ns

See Also

• “Using MAX Testbench” in TetraMAX Online Help for more information on the 
stil2verilog command

Integrating the Self-Test Logic into the Functional Design Logic

The following topics describe how to integrate the LogicBIST self-test logic into your 
functional design:

• Connecting the Self-Test Signals to the Functional Design Logic

• Ensuring the Required Test Mode for Autonomous Self-Test

• Monitoring the Self-Test Status Signals
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Connecting the Self-Test Signals to the Functional Design Logic

To connect LogicBIST self-test logic to your functional design logic, you must connect the 
signal pins shown in Table 32-1 to your preexisting design logic.

Important:   
The lbistEnable signal must be de-asserted during manufacturing test as well as 
mission mode.

In addition, you can connect the optional signal pins shown in Table 32-2 to your preexisting 
design logic.

For LogicBIST signals connected by DFT insertion to input and output ports of the core 
module, the connections should preexist (or be made manually) at the next hierarchical level 
where the core is integrated, as shown in Figure 32-2.

Table 32-1 Required LogicBIST Self-Test Signals 

Signal type Direction Description

lbistEnable Input Enables autonomous self-test during mission mode

lbistStart Input Begins autonomous self-test

lbistStatus_0
lbistStatus_1

Output Reports current self-test status (idle, running, pass, fail)

Table 32-2 Optional LogicBIST Self-Test Signals 

Signal type Direction Description

lbistPatternCount Input Specifies the number of self-test patterns to run

lbistShiftLength Input Specifies the number of shift cycles in each pattern

lbistSeedValue Input Specifies the initial seed value loaded into the PRPG

lbistSignatureValue Input Specifies the expected final signature value of the MISR

lbistBurnInEnable Input Enables burn-in mode using self-test logic

lbistBurnInStopOnFail Input Specifies whether burn-in mode should stop or continue 
upon failure
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Figure 32-2 Connecting LogicBIST Self-Test Port Signals at the Top Level 

For LogicBIST signals that connect to hookup pins inside the core module, the connections 
are made inside the core during DFT insertion, as shown in Figure 32-3. The hookup pins 
can be pins of leaf cells or hierarchical cells.

Figure 32-3 Connecting LogicBIST Self-Test Hookup Pin Signals Inside the Core 

You can use a mix of port-connected and hookup-pin-connected signals as needed.

If you have test points used only in self-test mode (and not in manufacturing test modes), 
connect their test-mode control signal to the lbistEnable signal. This connection should 
preexist (or be manually made) prior to DFT insertion, as DFT insertion does not modify 
existing test-mode signal connections.

You do not need to connect any scan-in, scan-out, or test-mode signals to your functional 
design logic. LogicBIST self-test automatically enables any required DFT logic during 
autonomous mode, as described in “Enabling DFT Logic During Autonomous Self-Test” on 
page 31-18.

See Also

• “Isolating the Self-Test Design Using Test Points” on page 31-17 for details on how test 
points provide design isolation
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Ensuring the Required Test Mode for Autonomous Self-Test

Autonomous self-test is intended for operation in the device’s final functional environment—
the die has been packaged, passed manufacturing test, is installed on a circuit board, and 
is powered up in its operating environment and conditions.

The self-test logic is designed to operate in this functional environment. Correspondingly, 
the LBIST_EN signal enables autonomous self-test only when the test-mode signals of the 
device are asserted to their mission-mode encoding.

The preview_dft and insert_dft commands report this required encoding as follows:

Information: For self-test, test mode 'Mission_mode' (opcode '00') is
used for autonomous operation, while 'bist' (opcode '10') is used for
TetraMAX DRC. (TEST-2096)

By default, the tool selects this required test-mode encoding as follows:

• In core-wrapped designs, the tool-created Mission_mode mode

• In non-core-wrapped designs, in order of highest precedence first:

❍ Unused all-zeroes encoding (created as Mission_mode)

❍ A random unused nonzero encoding (created as Mission_mode)

❍ A random standard scan test mode

Figure 32-4 shows a simple DFT design in its manufacturing test and functional operating 
environments. In the functional (board-level) environment, the test-mode package pins are 
tied to the ground plane. Thus, LBIST_EN enables autonomous self-test when asserted.

Figure 32-4 Test-Mode Pin Connections During Manufacturing Test and Functional Operation

00 - Mission_mode
01 - SCAN
10 - DFTMAX
11 – LBIST

00 - Mission_mode
01 - SCAN
10 - DFTMAX
11 – LBISTTest 
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Important:   
Be sure that the manufactured device sets the test-mode signals to the value required by 
the self-test logic. The autonomous self-test testbench written by the DFTMAX tool uses 
the required values, assuming they will be driven accordingly in the functional operating 
environment.

See Also

• “Changing the Test Mode Used for Autonomous Self-Test” on page 33-10 for details on 
specifying a nondefault test mode for autonomous self-test

Monitoring the Self-Test Status Signals

The BIST status signals, STATUS_0 and STATUS_1, are combinationally derived from the 
self-test FSM state. The status encodings, shown in Figure 32-5, are designed so that 
STATUS_1 indicates self-test completion, at which time STATUS_0 indicates the pass/fail 
condition.

Figure 32-5 Status Signal Values for Passing and Failing Self-Test

If you monitor the status signals using the BIST clock (or a clock synchronous to it), then

• No synchronization logic is needed.

• The status signal paths are synchronous single-cycle register-to-register paths.

• You can further process the status signals using combinational logic, as it becomes part 
of the register-to-register paths.

Figure 32-6 shows an example of synchronous status monitoring logic.
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Figure 32-6 Synchronous-Clock BIST Status Monitoring Logic

If you monitor the status signals using a clock asynchronous to the BIST clock, then

• You must implement synchronization logic to monitor the status signals.

• The status signals are combinational and must be re-registered on the BIST clock.

• The transition from RUNNING to PASS toggles both status signals. Take care to avoid 
race conditions between the completion (STATUS_1) and pass/fail (STATUS_0) signals 
when resynchronizing the status signals.

Figure 32-7 shows an example of asynchronous status monitoring logic. When the 
synchronized completion signal is asserted in the functional clock domain, the pass/fail 
signal is registered and stable (while START remains asserted).

Figure 32-7 Asynchronous-Clock BIST Status Monitoring Logic

When designing your interface logic, take the following into consideration: relative clock 
frequencies, clock-tree skew within each domain, and relative delays in the cross-domain 
status paths.
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Important:   
The schematics in this section are conceptual examples only. You should implement 
status monitoring logic that meets your specific design requirements.

See Also

• “The STATUS_0 and STATUS_1 Signals” on page 31-8 for details on status signal 
behavior and values

Example LogicBIST Scripts

This topic provides the following example scripts:

• Example Core Insertion Script Using Core Wrapping

• Example Core Insertion Script Using Test-Point Isolation

• Example Script to Automatically Set Seed and Signature Values

Example Core Insertion Script Using Core Wrapping

This example script uses core wrapping to isolate the core during self-test. It also uses the 
random_resistant testability target (see “Automatically Inserted Test Points” on page 11-14) 
to improve coverage.

read_verilog ./top.v
current_design top
link
compile -scan

# define DFT signals
set_dft_signal -view spec -type ScanDataIn -port {SI1}
set_dft_signal -view spec -type TestMode -port {TM}
set_dft_signal -view spec -type lbistEnable -port {LBIST_EN}
set_dft_signal -view existing_dft -type MasterClock -port CLK1 \
  -timing {45 55}
set_dft_signal -view existing_dft -type MasterClock -port CLK2 \
  -timing {45 55}
set_dft_signal -view existing_dft -type Reset -port RSTN -active 0

# enable clients
set_dft_configuration -logicbist enable -wrapper enable

set_dft_configuration -testability enable
set_testability_configuration \
  -target random_resistant \
  -control_signal TM  ;# enable during manufacturing test AND self-test
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# ensure that TM is asserted during self-test too
set_test_point_element -control_signal LBIST_EN -type force_1 TM

# define and configure test modes
define_test_mode SCAN -usage wrp_if
define_test_mode LBIST -usage logicbist
set_scan_configuration -test_mode SCAN -chain_count 2 \
  -clock_mixing mix_clocks
set_logicbist_configuration -test_mode LBIST -base_mode SCAN \
  -chain_count 32 \
  -clock CLK1 \
  -pattern_counter_width 16  ;# maximum of 2^16 patterns

# preview and insert DFT
create_test_protocol
dft_drc
run_test_point_analysis  ;# for random_resistant target
preview_dft -show all
insert_dft

# write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

# write test protocol for TetraMAX to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

# write testbench for Verilog simulation to validate
# LogicBIST implementation
#
# (this command produces bist_tb.stil)
write_test -format stil -output bist_tb

Example Core Insertion Script Using Test-Point Isolation

This example uses the core_wrapper and random_resistant testability targets (see 
“Automatically Inserted Test Points” on page 11-14) to isolate the core during self-test and 
improve coverage, respectively.

read_verilog ./top.v
current_design top
link
compile -scan

# define DFT signals
set_dft_signal -view spec -type ScanDataIn -port {SI1}
set_dft_signal -view spec -type TestMode -port {TM}
set_dft_signal -view spec -type lbistEnable -port {LBIST_EN}
set_dft_signal -view existing_dft -type MasterClock -port CLK1 \
  -timing {45 55}
set_dft_signal -view existing_dft -type MasterClock -port CLK2 \
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  -timing {45 55}
set_dft_signal -view existing_dft -type Reset -port RSTN -active 0

# enable clients
set_dft_configuration -logicbist enable

set_dft_configuration -testability enable
set_testability_configuration \
  -target core_wrapper \
  -control_signal LBIST_EN  ;# enable ONLY during self-test
set_testability_configuration \
  -target random_resistant \
  -control_signal TM  ;# enable during manufacturing test AND self-test

# ensure that TM is asserted during self-test too
set_test_point_element -control_signal LBIST_EN -type force_1 TM

# define and configure test modes
define_test_mode SCAN -usage scan
define_test_mode LBIST -usage logicbist
set_scan_configuration -test_mode SCAN -chain_count 2 \
  -clock_mixing mix_clocks
set_logicbist_configuration -test_mode LBIST -base_mode SCAN \
  -chain_count 32 \
  -clock CLK1 \
  -pattern_counter_width 16  ;# maximum of 2^16 patterns

# preview and insert DFT
create_test_protocol
dft_drc
run_test_point_analysis  ;# for core_wrapper and random_resistant targets
preview_dft -show all -test_points all
insert_dft

# write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

# write test protocol for TetraMAX to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

# write testbench for Verilog simulation to validate
# LogicBIST implementation
#
# (this command produces bist_tb.stil)
write_test -format stil -output bist_tb

Example Script to Automatically Set Seed and Signature Values

The following script excerpt shows how to automate TetraMAX seed and signature 
computation, netlist modification, and testbench creation. The commands prior to the 
insert_dft command are omitted.
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Note:   
Using the Tcl exec command requires the current process to be forked, which can 
require a lot of memory when large designs are loaded.

# ...previous commands omitted...
insert_dft

# write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

# write test protocol for TetraMAX to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

# write testbench for Verilog simulation to validate
# LogicBIST implementation
#
# (this command produces bist_tb.stil)
write_test -format stil -output bist_tb

# create Verilog testbench file
#
# (this command produces bist_tb.v and bist_tb.dat)
exec stil2verilog -replace bist_tb.stil bist_tb

# generate seed and signature value in TetraMAX
#
# (this command produces serial.stil)
exec tmax -shell ./tmax_bist.tcl

# set seed and signature values in design and write out final netlist
set_logicbist_constants -file_name serial.stil
write -f verilog -h -o top.vg

quit

The following script is the tmax_bist.tcl script referenced by the preceding synthesis script.

read_netlist -library /project/libs/my_class.v
read_netlist top_no_seed_signature.vg
run_build top

# Enable LogicBIST DRC
set_drc -seq_comp_jtag_lbist_mode light_lbist
run_drc LBIST.spf

# Run LogicBIST ATPG for 133 patterns and 1 capture clock cycle
run_atpg -auto -jtag_lbist {1 133 1}
run_simulation
report_patterns -all
Chapter 32: Using LogicBIST Self-Test
Example LogicBIST Scripts 32-28



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
# write serial STIL file containing seed and signature values
write_patterns serial.stil -format stil -replace -unified -serial

quit  ;# required to resume execution in dc_shell
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33
Advanced LogicBIST Configuration 33

This chapter describes advanced features that can be used while inserting LogicBIST 
self-test circuitry into your design. These features can be used to improve self-test flexibility 
and reduce the implementation area.

This chapter includes the following topics:

• Using Programmable LogicBIST Configuration Values

• Simplifying the MISR XOR Compressor

• Simplifying the Weighted Clock/Reset Logic

• Minimizing Reconfiguration MUXs Across Test Modes

• Choosing a Particular Integrated Clock-Gating Cell

• Implementing Burn-In Mode

• Implementing Power Ramp-Up and Ramp-Down Logic

• Implementing MISR Monitoring Logic

• Changing the Test Mode Used for Autonomous Self-Test

• Post-DFT Design Optimization
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Using Programmable LogicBIST Configuration Values

By default, the tool implements the LogicBIST logic with placeholder buses in the netlist for 
the following values:

• User seed value - tied to logic 0 (eventually computed by TetraMAX)

• User signature value - tied to logic 0 (eventually computed by TetraMAX)

• User pattern value - tied to logic 0 (eventually computed by TetraMAX)

• User shift value - automatically set to the longest shift chain length by DFT insertion (but 
can be overridden if needed)

• User OCC clock pulse pattern - tied to a single-pulse constant mask (2’b10)

Instead of setting these to hardcoded constant values in the netlist, you can make them 
programmable by driving them from ports or internal hookup pins. To do this, define DFT 
signals using the following signal types:

set_dft_signal -view spec -type lbistSeedValue ...
set_dft_signal -view spec -type lbistSignatureValue ...
set_dft_signal -view spec -type lbistPatternCount ...
set_dft_signal -view spec -type lbistShiftLength ...
set_dft_signal -view spec -type lbistCaptureCycleEnable ...

For each signal type, define the signal bits in order of most-significant bit (MSB) to 
least-significant bit (LSB). If fewer signals are defined than the bus width, the signals are 
justified against the LSB as shown in Figure 33-1.

Figure 33-1 Assigning User-Defined Signals to Bus Bits

You can use the -port or -hookup_pin option when defining these signals. For bused 
ports, you can sort in dictionary order and define them all in a single command:

 set_dft_signal -view spec -type lbistSeedValue \
   -port [sort_collection -dictionary -descending [get_ports {SEED[*]}]]

For hookup pins, define them one at a time in the required order:

# define a 31-bit initial PRPG seed register
for {set i 30} {$i >= 0} {incr i -1} {

LogicBIST controller

user_prpg_seed[0]
user_prpg_seed[1]
user_prpg_seed[2]
user_prpg_seed[3]

user_prpg_seed[30]

1'b0
1'b0

1'b0
# define user seed value
# (lower two bits only, MSB to LSB)

set_dft_signal -view spec \
  -type lbistSeedValue -port SEED[1]

set_dft_signal -view spec \
  -type lbistSeedValue -port SEED[0]
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 set_dft_signal -view spec -type lbistSeedValue \
   -hookup_pin CONFIG/SEED_reg[${i}]
}

# define a 32-bit MISR expected signature register
for {set i 31} {$i >= 0} {incr i -1} {
 set_dft_signal -view spec -type lbistSignatureValue \
   -hookup_pin CONFIG/SIGNATURE_reg[${i}]
}

When you define internally driven LogicBIST configuration signals, the preview_dft 
command reports the connections on a bitwise basis so you can confirm their correctness. 
For example,

****************************************
LogicBIST Compression

User signals information
****************************************

Shift counter data: top_U_LogicBISTController_bist/shift_count_data = 4'b1000
Pattern counter data: top_U_LogicBISTController_bist/user_pattern_count_data = 4'b0000
 SEED CONNECTIONS:
 *****************
   CONFIG/SEED_reg[0] connected to top_U_decompressor_bist/user_prpg_seed[0]
   CONFIG/SEED_reg[1] connected to top_U_decompressor_bist/user_prpg_seed[1]
...
   CONFIG/SEED_reg[29] connected to top_U_decompressor_bist/user_prpg_seed[29]
   CONFIG/SEED_reg[30] connected to top_U_decompressor_bist/user_prpg_seed[30]

 EXPECTED SIGNATURE CONNECTIONS:
 *******************************
   CONFIG/SIGNATURE_reg[0] connected to top_U_compressor_bist/user_misr_signature[0]
   CONFIG/SIGNATURE_reg[1] connected to top_U_compressor_bist/user_misr_signature[1]
...
   CONFIG/SIGNATURE_reg[28] connected to top_U_compressor_bist/user_misr_signature[28]
   CONFIG/SIGNATURE_reg[29] connected to top_U_compressor_bist/user_misr_signature[29]

You can use the find_seed Tcl procedure from SolvNet article 2220819, “Finding Optimal 
Seed Values for the LogicBIST PRPG” to find an optimal sequence of seed values.

For port-driven signals, you can use the set_logicbist_constants Tcl procedure from 
SolvNet article 2231010, “Setting the Seed and Signature Values in a LogicBIST Design” to 
write out a VCS command file that forces the desired values for simulation.

Simplifying the MISR XOR Compressor

When the number of internal chains is equal to the MISR size, the XOR compressor inside 
the LogicBIST compressor is automatically removed and a direct connection is performed 
between the compressed scan chains and the MISR.
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Set the following options of the set_logicbist_configuration command to the same 
value to implement this simplification:

set_logicbist_configuration ... \
  -chain_count chain_count_value \
  -misr_width chain_count_value

There is no equivalent removal of the XOR phase shifter in the LogicBIST decompressor 
because it is needed to remove correlations from the LFSR values.

Simplifying the Weighted Clock/Reset Logic

Weighted clock/reset capture groups use a seven-bit comparator/decoder driven by the first 
seven bits of the clock chain (clk_chain_val[6:0]). Any arbitrary positive group weight values 
can be specified, but the values are scaled (if needed) to a total weight of 128 for 
implementation.

Thus, certain weight conventions simplify the comparator logic. For example,

• Two groups, each with a weight of 50%, use comparator ranges that are 64 values wide, 
which requires only clk_chain_val[6].

• Groups using weights that are a multiple of 25% use comparator ranges that are 32 
values wide, which requires only clk_chain_val [6:5].

Weight values that result in boundary (comparator) values with a longer sequence of 
least-significant zeros, like 32 (7'b0100000) or 96 (7'b1100000), require less comparator 
logic than boundary values with a shorter sequence of least-significant zeros, like 34 
(7'b0100010) or 98 (7b'1100010).

If your design is area sensitive, you can consider this effect while determining weight values 
that meet your coverage requirements.

Minimizing Reconfiguration MUXs Across Test Modes

When you implement DFTMAX or DFTMAX Ultra scan compression alongside LogicBIST 
self-test, you can align their compressed chain structures to minimize reconfiguration MUXs.

However, the self-test registers are scannable in manufacturing test modes (to ensure that 
the self-test logic itself is tested) but not in self-test mode. As a result, simply specifying the 
same compressed chain count for both modes does not guarantee alignment.

To resolve this, you can define additional compressed scan chains that contain only the 
scannable self-test registers, as shown in Figure 33-2.
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Figure 33-2 Aligning the Compressed Chain Structures

For details, see SolvNet article 2656631, "Minimizing Reconfiguration MUXs in LogicBIST 
Designs."

Choosing a Particular Integrated Clock-Gating Cell

The LogicBIST architecture uses clock gating for the following constructs to reduce area and 
power consumption:

• MISR

• PRPG

• Pattern counter

• Shift counter

• LogicBIST clock controller (external or OCC)

By default, the tool builds discrete clock-gating logic using separate latch and combinational 
gate cells. To use integrated clock-gating cells (ICGs) instead, enable ICG insertion and 
specify the desired ICG library cell using the following variables:

set_app_var test_occ_insert_clock_gating_cells true
set_app_var test_icg_p_ref_for_dft ICG_library_cell

CARE PRPG

MISR

DFTMAX or DFTMAX Ultra
manufacturing test

DFTMAX LogicBIST
self-test

set_scan_path
lbist_regs

-chain_count N
-chain_count N+1
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Implementing Burn-In Mode

LogicBIST provides a burn-in mode feature that runs autonomous self-test continuously as 
long as the START signal is asserted. The scan and capture activity stresses the tested logic 
and causes continuous power draw during self-test. Power consumption can be controlled 
by adjusting the clock frequency.

Burn-in operation is configured by two DFT signals. Table 33-1 shows how they affect 
self-test while the START signal is held asserted.

Table 33-1 Burn-In Configuration Signals and Behaviors 

Self-test success? lbistBurnInEnable
signal value

lbistBurnInStopOnFail
signal value

Pass or fail 0 (burn-in disabled) X

Pass 1 X (don’t-care when passing)

Fail 1 0 (continue on fail)

STATUS_0

STATUS_1
RUNNING PASS (or FAIL)

STATUS_0

STATUS_1
RUNNING PASS IDLE RUNNING

STATUS_0

STATUS_1
RUNNING FAIL IDLE RUNNING
Chapter 33: Advanced LogicBIST Configuration
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When the lbistBurnInEnable signal is de-asserted, the LogicBIST engine runs in its normal 
mode of operation to completion, generating the pass or fail indication as described in “The 
STATUS_0 and STATUS_1 Signals” on page 31-8.

The burn-in capability is not implemented by default. To implement it, specify the following 
option:

dc_shell> set_logicbist_configuration -burn_in enable

Define the burn-in configuration signals on existing ports using the following signal types:

dc_shell> set_dft_signal -view spec \
            -type lbistBurnInEnable -port my_burnin_enable
dc_shell> set_dft_signal -view spec \
            -type lbistBurnInStopOnFail -port my_burnin_SOF

You can also define these signals on internal pins using the -hookup_pin option.

If you do not define these signals, the tool automatically creates them using the following 
signal port names: burnin_mode, fail_mode.

The burn-in capability is implemented by modifying existing states in the BIST state machine 
rather than adding states; the area overhead is negligible.

Implementing Power Ramp-Up and Ramp-Down Logic

By default, when self-test starts, it immediately operates at the provided clock frequencies. 
When self-test completes, it stops the clock to the functional logic. These abrupt changes in 
functional logic activity could cause transient spikes in the power rail voltage.

However, you can use the power ramp-up and ramp-down features to smooth these 
transitions in power consumption. These features are disabled by default.

Fail 1 1 (stop on fail)

Table 33-1 Burn-In Configuration Signals and Behaviors (Continued)

Self-test success? lbistBurnInEnable
signal value

lbistBurnInStopOnFail
signal value

STATUS_0

STATUS_1
RUNNING FAIL
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Power Ramp-Up

To implement power ramp-up, specify the following option:

dc_shell> set_logicbist_configuration \
            -power_ramp_up enable

The self-test logic is augmented to shift through two “ramp-up” dummy patterns—one at 1/4 
frequency, then one at 1/2 frequency—before beginning full-frequency self-test, as shown in 
Figure 33-3.

Figure 33-3 Power Ramp-Up Clocking

The BIST controller creates the dummy ramp-up patterns by modulating the clock-enable 
signal within the LogicBIST clock controller. The dummy patterns are a preamble to the 
actual self-test operation; they perform no testing and are not included in the pattern count 
specification. The seed value is loaded in the PRPG after ramp-up completes.

Enabling ramp-up patterns increases self-test duration by the equivalent of six full-frequency 
self-test patterns. The testbench written out by the write_test command includes this 
additional duration.

Power Ramp-Down

Power ramp-down requires that power ramp-up also be enabled. To implement them, 
specify the following options:

dc_shell> set_logicbist_configuration \
            -power_ramp_up enable \
            -power_ramp_down enable

The self-test logic is augmented to shift through two “ramp-down” dummy patterns—one at 
1/2 frequency, then one at 1/4 frequency—after full-frequency self-test completes, as shown 
in Figure 33-3.

BIST clock (out)

BIST clock (in)

START

PRPG Dummy (ramp-up) shift data Self-test operation

Scan enable (out)

25% 50%

Seed

100%

STATUS_0

STATUS_1
RUNNINGIDLE
Chapter 33: Advanced LogicBIST Configuration
Implementing Power Ramp-Up and Ramp-Down Logic 33-8



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Figure 33-4 Power Ramp-Down Clocking

The dummy patterns are a postamble to the actual self-test operation; they perform no 
testing and are not included in the pattern count specification. The status signals are not 
asserted until ramp-down completes.

Enabling ramp-up and ramp-down patterns together increases self-test duration by the 
equivalent of twelve full-frequency self-test patterns.

Implementing MISR Monitoring Logic

In designs with LogicBIST self-test, it might be useful to monitor the MISR during self-test. 
For example, an on-chip microcontroller could initiate self-test, then verify that the MISR is 
toggling as expected.

You can use the lbistMISROutput signal type to monitor one or more MISR bits. Usage is as 
follows:

• Define the signals in downward order (the last signal defined is driven by bit zero of the 
MISR).

• You can monitor a single bit (bit zero) or the entire MISR.

• To monitor the MISR using output ports, use the -port option:

set_dft_signal -view spec -type lbistMISROutput \
  -port {MISR[2] MISR[1] MISR[0]}

• To monitor the MISR using hookup pins, use the -hookup_pin option:

set_dft_signal -view spec -type lbistMISROutput \
  -hookup_pin my_MISR_check_reg[2]/D

FAIL

BIST clock (out)

BIST clock (in)

START

MISR Final signature valueSelf-test operation

Scan enable (out)

25%50%

STATUS_0

STATUS_1
RUNNING

100%

PASS
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set_dft_signal -view spec -type lbistMISROutput \
  -hookup_pin my_MISR_check_reg[1]/D
set_dft_signal -view spec -type lbistMISROutput \
  -hookup_pin my_MISR_check_reg[0]/D

You do not need to enable the internal pins flow, as the signal connection does not affect 
DRC.

Changing the Test Mode Used for Autonomous Self-Test

By default, autonomous self-test operation requires that the design be placed in mission 
mode when LBIST_EN is asserted. In other words, the test-mode signals must be asserted 
to their mission-mode encoding. The tool chooses this encoding as described in “Ensuring 
the Required Test Mode for Autonomous Self-Test” on page 32-22.

However, if needed, you can specify that another test mode be used for autonomous 
self-test operation. To do this, specify the desired test mode with the following option:

set_logicbist_configuration -self_test_mode my_selftest_mode

The specified mode must be previously defined with the define_test_mode command. It 
cannot be a scan compression mode of any type (LogicBIST, DFTMAX, or DFTMAX Ultra).

When you use this feature, references to mission mode in this documentation apply to the 
specified mode instead.

Post-DFT Design Optimization

LogicBIST self-test provides some unique considerations in the synthesis flow. BIST is often 
used in area-sensitive designs. Propagating the seed and signature values as hardcoded 
constants into the design logic yields an area savings, but at the cost of no longer being able 
to change their values (such as for a functional ECO).

These aspects of post-DFT optimization are described in more detail in the following topics:

• Post-DFT Optimization and BIST Constants

• Preserving the BIST Constants in a compile Flow

• Preserving the BIST Constants in a compile_ultra Flow

• Regenerating Seed and Signature Values after Design Changes

• Ungrouping LogicBIST Blocks for Additional Area Reduction
Chapter 33: Advanced LogicBIST Configuration
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Post-DFT Optimization and BIST Constants

LogicBIST self-test requires that the values in Table 33-2 be specified in the design logic.

These values are set in the design after determining the values in TetraMAX ATPG, as 
described in “Setting the Seed and Signature Values in Synthesis” on page 32-17.

By default, these BIST values are driven by constants. If post-DFT optimization propagates 
these BIST constants into the design, they become permanently integrated into the logic 
and their values cannot be changed, as shown in Figure 33-5.

Figure 33-5 BIST Constant Propagation Into Block Logic

This prevents you from performing design ECOs later in the flow, which would require new 
seed and signature values to be set in the design.

If you use programmable (register-driven) values as described in “Using Programmable 
LogicBIST Configuration Values” on page 33-2, you do not need to worry about constant 
propagation for those values.

Table 33-2 User-Specified LogicBIST Constant Values 

BIST value Hierarchical bused pins

PRPG seed design_U_decompressor_mode/user_prpg_seed[*]

MISR signature design_U_compressor_mode/user_misr_signature[*]

Pattern count design_U_LogicBISTController_mode/user_pattern_count_data[*]

Shift count1

1. This value is set by DFT insertion and does not need to be user-modified (unless the BIST mode 
scan length is manually changed later in the flow). Accordingly, this bus name has no “user_” prefix.

design_U_LogicBISTController_mode/shift_count_data[*]

1'b0

1'b1

1'b1

n12

n34

n56

n56
Chapter 33: Advanced LogicBIST Configuration
Post-DFT Design Optimization 33-11
Chapter 33: Advanced LogicBIST Configuration
Post-DFT Design Optimization 33-11



DFTMAX™ Design-for-Test User Guide O-2018.06-SP4DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
Preserving the BIST Constants in a compile Flow 

The compile command does not propagate constants into DFT-created blocks (which have 
the is_test_circuitry attribute set to true) when boundary optimization is enabled. The 
only way to propagate such constants is to ungroup the DFT blocks, via the ungroup, 
set_ungroup, or compile -auto_ungroup command.

To preserve the BIST constants, do not ungroup the LogicBIST controller, decompressor, or 
compressor blocks.

See Also

• “Ungrouping LogicBIST Blocks for Additional Area Reduction” on page 33-14 for 
information on ungrouping the LogicBIST blocks

Preserving the BIST Constants in a compile_ultra Flow 

By default, the compile_ultra command propagates constants into blocks, even 
DFT-created blocks (which have the is_test_circuitry attribute set to true). To preserve 
the BIST constants while allowing full optimization for the rest of the logic, disable constant 
propagation specifically on these pins, with a "user_" name prefix:

# disable constant propagation for BIST constants
# (these pins have a "user_" prefix)
set_compile_directives -constant_propagation false \
  [get_pins -of [get_cells -hier * -filter {is_hierarchical == true && \
   is_test_circuitry == true}] -filter {name =~ user_*}]

# perform post-DFT optimization
compile_ultra -scan -incremental

These commands do not prevent constant propagation on the shift_count_data[*] bus 
because the shift length set by the insert_dft command does not typically need to be 
changed and can be optimized into the logic. To allow for functional ECOs that affect the 
shift length, disable constant propagation on this bus too.

To propagate the constants later in the flow, ungroup the LogicBIST blocks or reenable 
constant propagation for the pins, then perform an incremental compile.

See Also

• “Ungrouping LogicBIST Blocks for Additional Area Reduction” on page 33-14 for 
information on ungrouping the LogicBIST blocks
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Regenerating Seed and Signature Values after Design Changes

You must regenerate the LogicBIST signature value whenever the functional or DFT logic 
changes. This includes design logic ECOs and scan chain reordering or repartitioning in 
layout. In addition, to improve coverage, the seed value can also be changed.

To regenerate the seed and signature values, do the following:

1. Write out the modified Verilog design netlist. You can do this from any source, such as 
the Design Compiler tool, the layout tool, or a text editor.

2. Modify the TetraMAX seed and signature generation script to use the modified design 
netlist, then run it to write out a STIL pattern file with new seed and signature values. See 
“Computing the Seed and Signature Values in TetraMAX” on page 32-15.

When generating new seed and signature values for a design, existing seed and 
signature values in the design are not considered. Accordingly,

❍ If the logic changes are small (such as a small design logic ECO) and you have an 
optimal seed value you want to keep, specify it with the add_lbist_seeds command.

❍ If the logic changes are significant (such as scan reordering), you will likely obtain 
better results by finding a new seed value.

3. Read the modified Verilog netlist from step 1 into the Design Compiler tool. No timing or 
DFT constraints are needed.

4. Use the set_logicbist_constants command to apply the new seed and signature 
values from the STIL patterns generated in step 2. See “Setting the Seed and Signature 
Values in Synthesis” on page 32-17.

5. Write out the updated netlist, which contains new seed and signature values.

6. Reuse the original testbench to simulate the updated netlist from step 5. See “Simulating 
Autonomous BIST Operation” on page 32-18.

The following TetraMAX script generates new seed and signature values for an 
ECO-modified netlist:

read_netlist -library /project/libs/my_class.v
read_netlist top_eco_oldseedsig.vg
run_build top

# Enable LogicBIST DRC
set_drc -seq_comp_jtag_lbist_mode light_lbist
run_drc LBIST.spf

# Run LogicBIST ATPG for 133 patterns and 1 capture clock cycle
run_atpg -auto -jtag_lbist {1 133 1}
run_simulation
report_patterns -all
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# write serial STIL file containing seed and signature values
write_patterns serial_eco.stil -format stil -replace -unified -serial

quit  ;# required to resume execution in dc_shell

The following Design Compiler script updates the design netlist with the new seed and 
signature values:

# (library setup not shown)

# read netlist containing ECO change and pre-ECO seed/signature values
read_verilog top_eco_oldseedsig.vg
current_design top
link

# set seed and signature values in design and write out final netlist
set_logicbist_constants -file_name serial_eco.stil
write -format verilog -hierarchy -output top_eco_newseedsig.vg

See Also

• SolvNet article 2231010, “Setting the Seed and Signature Constant Values in a 
LogicBIST Design” to obtain the set_logicbist_constants Tcl procedure

• “The LogicBIST Operational Modes” on page 31-6 for more information on TetraMAX 
mode versus autonomous mode

Ungrouping LogicBIST Blocks for Additional Area Reduction

After DFT insertion and seed and signature setting, you can achieve significant area 
reduction by grouping the LogicBIST controller, clock or OCC controller(s), and codec 
together, then ungrouping the hierarchy inside that block. This allows the control logic to be 
highly optimized between those blocks while still containing the logic within a block. You can 
use this technique with the compile or compile_ultra command.

The following commands perform this ungrouping. Hierarchical clock-gating cells are left 
grouped. This example assumes that all cells to be grouped exist at the top level. Change 
the "bist" suffix in the filter expression to match your LogicBIST test mode name.

Important:   
Ungrouping propagates the BIST constants, which prevents future modifications to their 
values. Use this only when the design is finalized (including scan reordering) or when 
you can rerun synthesis and DFT insertion if the design logic changes.

# group LogicBIST controller and OCC blocks together into a new
# block named "LogicBIST"
group -cell_name LogicBIST -design_name LogicBIST \
  [get_cells * -filter {ref_name == LOGICBIST_CONTROLLER ||
   ref_name =~ top_DFT_clk_mux_* || name =~ *compressor_bist}]
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# flatten everything in the new LogicBIST block except hierarchical
# clock-gating cells
set_ungroup [get_cells -hierarchical -filter {is_hierarchical == true
  && full_name =~ LogicBIST/* && full_name !~ *clkgt*}]

# incrementally compile
compile_ultra -scan -incremental
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This chapter contains the limitations and known issues that apply to LogicBIST self-test.

This chapter contains the following topic:

• LogicBIST Limitations and Known Issues
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LogicBIST Limitations and Known Issues

The following requirements, limitations, and known issues apply to LogicBIST self-test:

• LogicBIST settings are not stored in .ddc files; you must apply any 
set_logicbist_configuration settings if you read a pre-DFT .ddc file back in.

• Designs that capture X values are not supported.

• Clock-gating cells require a dedicated ScanEnable signal defined with the -usage 
{clock_gating} option of the set_dft_signal command.

If there is no such signal, no clock-gating testability logic is created. If the signal is 
defined with -usage {scan clock_gating}, scan cells are hooked up to the 
clock-gating testability scan-enable signal, which is incorrect.

TestMode signals cannot be used as clock-gating control signals.

• External (uncompressed) chains cannot be used in LogicBIST test modes. See 
“Inserting LogicBIST in Designs With External Chains” on page 32-10.

• Clock-gating cells with pre-existing test-mode pin connections are not supported. All 
clock-gating cells must be identified prior to DFT insertion. For details, see the TEST-130 
man page.

• The LogicBIST test mode requires at least one user-defined scan-in signal; it is not 
automatically created.

• Sharing scan-in ports with functional ports is not supported.

• You can integrate a core that contains a LogicBIST test mode, but there is no automation 
provided to access the LogicBIST functionality at the integration level.

• For designs with OCC controllers,

❍ A mix of non-OCC-controlled and internal OCC-controlled scan clock domains is not 
supported. In this case, you must also control the port-driven clocks with an OCC 
controller.

❍ All OCC controllers must have the same clock chain length.

❍ If you are using weighted clock capture groups, there must be at least seven clock 
chain bits across all clock chains in the design.

❍ Synchronous OCC controllers are not supported.

❍ User-defined OCC controllers are not supported.

❍ Existing OCC controllers inside DFT-inserted cores are not supported.
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❍ External clock chains cannot be used in LogicBIST test modes. See “Inserting 
LogicBIST in Designs With External Chains” on page 32-10.

• If any DFT signals use bused ports, the bus indexes must be ordered highest-to-lowest.

• If you are using test points, you must specify an existing clock as the test point clock. You 
cannot use the DFT-created default test point clock.

• The following DFT features are not supported:

❍ Pipelined scan enable

❍ DFT partitions

❍ Multiple LogicBIST test modes

❍ Domain-based scan enable

❍ Terminal lock-up latches

• In TetraMAX ATPG,

❍ Diagnostics is not supported.

❍ The -observe_file option of the run_atpg command is not supported.
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A
DFT Attributes A

This appendix describes DFT-related attributes available in DFT Compiler and DFTMAX 
tools.

The DFT attributes are listed in the following tables:

• Cell Attributes

• Design Attributes

• Pin Attributes

• Port Attributes

Note:   
All attributes are undefined if the described conditions are not met.
A-1
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Cell Attributes

Table A-1 shows the DFT attributes for cell objects.

Table A-1 Attributes of the cell Object Class 

Attribute name Type Description

cell_is_test_only Boolean This attribute is true for lock-up latches, retiming 
flip-flops, and pipeline registers.

dft_dont_connect_clock_gate
_of_register

Boolean This attribute is true for registers specified with the 
-dont_connect_cgs_of option of the 
set_dft_clock_gating_configuration command

is_test_circuitry Boolean This attribute is true for any cells inserted by the 
insert_dft command.

lockup_cell_to_segment_attr String This attribute is set on lock-up latches. It takes the 
form

cell_name;before|after

which describes which scan cell it is associated with 
and whether that scan cell is before or after the 
lock-up latch.

retiming_flop Boolean This attribute is true for retiming flip-flops inserted 
by the insert_dft command.

scan_element Boolean This attribute is set by the set_scan_element 
command. It is undefined if the set_scan_element 
command is not applied, even if the scan cell is 
scanned by default or unscanned due to a DRC 
violation.

scan_lockup Boolean This attribute is true for lock-up latches inserted by 
the insert_dft command.

scanned_by_test_compiler Boolean This attribute is true for cells that are scan-replaced 
by the compile -scan, compile_ultra -scan, or 
insert_dft commands.

Note that this attribute is set to true for 
DRC-violating cells that remain scan-replaced but 
are excluded from scan chains, and it is set to false 
for the unscanned registers in a shift register; thus, it 
is not a reliable indicator that the cell is in a scan 
chain.
Appendix A: DFT Attributes
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Design Attributes

Table A-2 shows the DFT attributes for design objects.

shift_register_flop Boolean This attribute is true for all unscanned shift-register 
cells after the scanned first (head) element.

shift_register_head Boolean This attribute is true for the scanned first (head) 
element of an identified shift-register segment.

test_dft_cell_is_skew_group Boolean This attribute is true for cells that are part of a scan 
skew group, defined with the set_scan_skew_group 
command. This attribute is set by the preview_dft 
and insert_dft commands.

test_dft_xcell_violation Boolean This attribute is true for static-X cells identified by 
the dft_drc command. Static-X analysis is enabled 
by the -static_x_analysis option of the 
set_dft_drc_configuration command.

test_scan_suppress_toggling Boolean This attribute is true for gating cells inserted by 
functional output gating, which is configured by the 
set_scan_suppress_toggling command.

testdb_test_cell_violated Boolean This attribute is set to true for cells that have DRC 
violations. Pre-DFT DRC and post-DFT DRC both 
update this attribute.

Table A-2 Attributes of the design Object Class 

Attribute name Type Description

current_dft_partition String This attribute indicates the current DFT 
partition set by the 
current_dft_partition command.

Table A-1 Attributes of the cell Object Class (Continued)

Attribute name Type Description
Chapter A: DFT Attributes
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Pin Attributes

Table A-3 shows the DFT attributes for pin objects.

shift_registers_extracted Boolean This attribute is true on a design compiled 
with the compile_ultra command if at least 
one shift register was identified within the 
design hierarchy.

This attribute is not set on subdesigns within 
the hierarchy that contain identified shift 
registers.

Table A-3 Attributes of the pin Object Class 

Attribute name Type Description

created_by_test_compiler

created_during_dft

Boolean This attribute is true for pins created on 
hierarchical cells by the insert_dft 
command to route new signals.

is_clock_gate_test_pin Boolean This attribute is true for test pins of 
clock-gating cells automatically or manually 
identified for DFT Compiler. It is also true 
for test pins of integrated clock-gating cells 
instantiated in the design that have not been 
manually identified. It is false for all other 
pins.

signal_type String This attribute is set on leaf cell and 
hierarchical cell pins that have a DFT signal 
type.

Possible values include:
test_scan_enable
test_scan_in
test_scan_out

An _inverted suffix on the value indicates 
an inverted signal value.

Table A-2 Attributes of the design Object Class (Continued)

Attribute name Type Description
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Port Attributes

Table A-4 shows the DFT attributes for port objects.

testdb_autofix_d1

testdb_autofix_d2

testdb_autofix_d3

testdb_autofix_d4

testdb_autofix_d5

testdb_autofix_d6

testdb_autofix_d9

testdb_autofix_d12

testdb_autofix_d17

Boolean These attributes are true for pins with the 
corresponding DRC violation that can be 
fixed by AutoFix. These attributes are set by 
pre-DFT DRC even if AutoFix is not 
enabled.

Table A-4 Attributes of the port Object Class 

Attribute name Type Description

created_by_test_compiler

created_during_dft

Boolean This attribute is true for ports created for the 
current design by the insert_dft command 
to route new signals.

Table A-3 Attributes of the pin Object Class (Continued)

Attribute name Type Description
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Legacy Test Point Insertion B

This appendix documents the legacy test point functionality that results when you do not 
enable the testability client. For best results, use the newer functionality described in 
“Inserting Test Points” on page 11-3.

The legacy test point capabilities are described in the following topics:

• Introduction

• Differences Between Newer and Legacy Test Point Features

• Test Point Types

• Test Point Signals

• Sharing Test Point Scan Cells

• Automatically Inserted Test Points (Legacy)

• User-Defined Test Points (Legacy)

• Previewing the Test Point Logic

• Inserting the Test Point Logic
B-1
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Introduction

Test points are points in the design where DFT Compiler inserts logic to improve the 
testability of the design. The tool can automatically determine where to insert test points to 
improve test coverage and reduce pattern count. You can also manually define where test 
points are to be inserted.

Important:   
This section documents the legacy test point functionality that results when you do not 
enable the testability client by using the following command:

dc_shell> set_dft_configuration -testability enable

It is recommended that you use the improved functionality provided by the testability 
DFT client, as described in “Inserting Test Points” on page 11-3.

Differences Between Newer and Legacy Test Point Features

When the legacy test point functionality is used, the test point functionality differs from the 
newer testability test point functionality as follows:

• During capture, force and control registers no longer hold state.

• Observe registers might be reused as control registers (because control registers no 
longer need to hold state).

• The following three-state test point types are supported:

❍ control_z0, control_z1, and control_z01

❍ force_z0, force_z1, and force_z01

• The following options of the set_test_point_element command are supported:

❍ -power_saving disable | enable

❍ -test_points_per_test_point_enable tp_count

❍ -scan_source_or_sink enable | disable

❍ -source_or_sink port_pin_name

❍ -scan_test_point_enable enable | disable

❍ -test_point_enable port_pin_name
Appendix B: Legacy Test Point Insertion
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Test Point Types

The force and control test point types allow signals within logic cones to be actively 
controlled during test mode to improve the controllability of the logic. These test point types 
require the insertion of a multiplexer to conditionally override the original signal value, 
resulting in a slight delay and area penalty.

The observe test point type passively captures the value of selected hard-to-observe signals 
to improve the observability of the logic. No additional levels of logic are inserted along the 
path of the observed signal, but the extra observation logic does slightly increase the 
capacitive loading of the observed signal.

Test points are described in the following topics:

• Force Test Points

• Control Test Points

• Observe Test Points

Note:   
The test point schematics in these topics show the functional operation of the test points. 
During synthesis, constant logic is simplified, and the test point logic is optimized into the 
surrounding logic.

Force Test Points

Force test points are used when a value must be forced throughout the entire test session. 
The following force test point types are available:

• force_0

• force_1

• force_01

• force_z0

• force_z1

• force_z01

The force_0 and force_1 test point types allow a signal to be replaced with a constant 0 or 
constant 1 value throughout the entire test session. These test point types are useful when 
a particular signal must be forced to a known value for testability purposes. A multiplexer is 
used to replace the original signal with a fixed constant 0 or 1 value when the TestMode 
signal is asserted. See Figure B-1.
Chapter B: Legacy Test Point Insertion
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Figure B-1 Example of a force_0 or force_1 Test Point

The force_01 test point type allows a signal to be replaced with a scan-selected value 
throughout the entire test session. The scan-selected value comes from a source signal 
scan register, allowing the forced value to change for each test vector. A multiplexer is used 
to replace the original signal with the output of this scan register when the TestMode signal 
is asserted. See Figure B-2.

Figure B-2 Example of a force_01 Test Point

The force_z0, force_z1, and force_z01 test point types allow either a constant value or 
a scan-selected source signal value to be driven onto a tristate bus that is guaranteed to 
have no other active drivers during test mode. See Figure B-3.

Figure B-3 Examples of force_z0, force_z1, and force_z01 Test Points

Note that the AutoFix feature of DFT Compiler uses force_0 and force_1 test points for 
asynchronous signal fixing and force_01 test points for clock fixing and for fixing 
clock-as-data and X propagation.
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Control Test Points

Control test points are used when a hard-to-control signal should be controllable (selectively 
forced) for some test vectors but left unaltered for others. Control test points are typically 
inserted to increase the fault coverage of the design. The following control test point types 
are available:

• control_0

• control_1

• control_01

• control_z0

• control_z1

• control_z01

A control_0 or control_1 test point is built with a multiplexer, an AND gate, and a test 
point enable scan register. When TestMode is not asserted, the signal always retains its 
original value. When TestMode is asserted, the signal is forced with a fixed constant 0 or 1 
value only when the output of the test point enable scan register selects the constant value. 
This allows the test program to select either the original signal behavior, or the 
constant-forced behavior on a vector-by-vector basis. This has the advantage of being able 
to control the signal for some test vectors without losing the observability of the upstream 
logic for the remaining vectors. See Figure B-4.

Figure B-4 Example of a control_0 or control_1 Test Point

A control_01 test point is similar to the control_0 and control_1 test point types, except 
that a scan-selected source signal value from a scan register is selectively driven onto the 
net on a vector-by-vector basis. As a result, the control_01 test point requires two scan 
cells per control point, one for the source signal value and one for the enable register that 
specifies that the source signal should be driven. See Figure B-5.
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Figure B-5 Example of a control_01 Test Point

The  control_Z0, control_Z1, and control_z01 test point types allow either a constant 
value or a scan-selected source signal value to be selectively driven onto a bus that might 
be in a high-impedance state for some vectors but not for others. See Figure B-6 and 
Figure B-7.

Figure B-6 Example of a control_z0 or control_z1 Test Point
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Figure B-7 Example of a control_z01 Test Point

Observe Test Points

The observe test point type is typically inserted at hard-to-observe signals in a design to 
reduce test data volume or to increase the coverage.

An observe test point is a scan register with its data input connected to the sink signal to be 
observed. See Figure B-8.

Figure B-8 Example of an observe Test Point
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Test Point Signals

Test points use source, sink, test point enable, and control signals as shown in Table B-1.

The control signal is the TestMode signal that activates the test point logic.

Sharing Test Point Scan Cells

To reduce the area requirements of test point logic, DFT Compiler allows you to share the 
test point enable, source signal, and sink signal scan registers with multiple test points.

You can share the same test point enable or source signal register with multiple control or 
force test points. No additional logic gates are required; the scan register outputs are tied to 
multiple test point logic gates. Figure B-9 shows the logic for multiple control_01 test 
points that share the same scan registers.

Table B-1 Test Point Signal Types 

Test point 
type

Source signal Enable signal Sink signal Control signal

force_0,
force_1

X

force_01 X X

force_z0,
force_z1

X

force_z01 X X

control_0,
control_1

X X

control_01 X X X

control_z0,
control_z1

X X

control_z01 X X X

observe X X1

1. Test-mode signal used only if low-power XOR observability tree is enabled
Appendix B: Legacy Test Point Insertion
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Figure B-9 Shared Scan Registers for Multiple control_01 Test Points

Test point enable and source signal scan registers are not shared between different test 
point types.

You can share the same observe sink signal scan register with more than one observe test 
point. DFT Compiler builds an observability XOR tree which collapses multiple observed 
signals down to a single sink signal connected to the data input of the shared sink signal 
scan register. See Figure B-10.

Figure B-10 XOR Observability Tree For Multiple observe Test Points

When a device is in functional mode, every time the logic value on an observe node 
changes, either from 1 to 0 or from 0 to 1, the entire fanout path through the XOR 
observability tree toggles. This toggling results in unnecessary power losses.
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To avoid such losses in power, you can create a low-power observability tree for a shared 
observe scan register. The observe point signals are gated with a 2-input AND gate, with a 
test-mode signal used as the gating signal. See Figure B-11.

Figure B-11 Low-Power XOR Observability Tree For Multiple observe Test Points

If a test-mode signal is defined, DFT Compiler uses it for the low-power gating signal. 
Otherwise, DFT Compiler creates a new test-mode signal that is used only for low-power 
observability gating.

Automatically Inserted Test Points (Legacy)

The tool can automatically insert test points to improve the testability of the design. You can 
optionally specify requirements for test point insertion, such as the maximum number of test 
points or the maximum additional area overhead. During DFT insertion, the tool inserts the 
optimal set of test points that meets the requirements.

The following topics describe how to configure automatic test point insertion:

• Enabling Automatic Test Point Insertion

• Configuring Pattern Reduction and Testability Test Point Insertion

• Script Example

Enabling Automatic Test Point Insertion

To enable automatic test point insertion, you must first issue the following command before 
pre-DFT DRC:

dc_shell> set_dft_configuration -test_points enable
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Note:   
A DFTMAX license is required to use the automatic test point insertion feature.

After you have enabled automatic test point insertion, you can enable and configure one or 
more automatic test point targets with the set_test_point_configuration command, as 
described in the following topics. To enable multiple test point targets, issue a separate 
configuration command for each target.

Configuring Pattern Reduction and Testability Test Point Insertion

You can use the pattern reduction and testability automatic test point insertion targets to 
improve the testability of hard-to-test logic in your design. They work as follows:

• pattern_reduction – Enables only observe points

This mode reduces the pattern count needed to achieve a given amount of test 
coverage. Observe points increase the loading along the observed path, but do not 
directly increase the logic depth. This mode has less impact on timing.

• testability – Enables both control and observe points

This mode improves the testability of the design by increasing the controllability of 
hard-to-test logic. Keep in mind that control points insert logic along the path being 
controlled. Although gate-level optimization can combine the control points with the 
surrounding logic, there might be some impact on timing.

During pre-DFT DRC, performed by the dft_drc command, the tool analyzes the design to 
determine the optimal set of test points. During DFT insertion, performed by the insert_dft 
command, the tool inserts the test points into the design. Any needed dedicated clock or test 
mode signals are created.

To enable and configure the testability or pattern reduction targets of automatic test point 
insertion, use the set_test_point_configuration command as follows:

set_test_point_configuration
    -target pattern_reduction | testability
    [-control_signal control_name]
    [-clock_signal clock_name]
    [-clock_type dominant | dedicated]
    [-max_control_points n]
    [-max_observe_points n]
    [-test_points_per_scan_cell n]
    [-power_saving enable | disable]
    [-max_additional_logic_area n]

The -target option specifies which automatic test point insertion target to enable and is a 
required option. The pattern_reduction and testability targets are mutually exclusive.
Chapter B: Legacy Test Point Insertion
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You can use the following additional options, along with the -target option, to configure 
pattern reduction or testability test point insertion:

• By default, control points use any available TestMode port previously defined with the 
set_dft_signal command. To specify the TestMode signal that should activate the test 
points, use the following option:

dc_shell> set_test_point_configuration ... -control_signal pin_port

The specified control signal must be defined as a TestMode signal type with the 
set_dft_signal command.

• By default, the insert_dft command uses the dominant clock, which is the clock that 
clocks the most sequential elements in the design, to clock the inserted test point scan 
registers. In an on-chip clocking (OCC) flow, it chooses an OCC clock instead.

To specify that a dedicated test point clock signal should be used, use the following 
option:

dc_shell> set_test_point_configuration ... -clock_type dedicated

This option causes a new dedicated test point clock signal, tpclk, to be created.

To specify the test clock signal that should clock the test point scan registers, use the 
-clock_signal option:

dc_shell> set_test_point_configuration ... \
            -clock_type dedicated \
            -clock_signal clock_name

DFT Compiler supports the following clock name specifications:

❍ You can specify the name of a scan clock signal, defined as a ScanClock signal type 
with the set_dft_signal command.

❍ In a DFT-inserted OCC controller flow, you can specify the name of a PLL output pin. 
In this case, DFT Compiler maps the test point clock to the output pin of the 
corresponding OCC controller during DFT insertion.

❍ In a user-defined OCC controller flow, you can directly specify the name of an output 
pin of an existing OCC controller.

For more information about OCC controller flows, see Chapter 13, “On-Chip Clocking 
Support.”

• By default, automatic test point insertion is limited to a maximum of 1000 control points. 
To specify a different limit, use the following option:

dc_shell> set_test_point_configuration ... -max_control_points n

This option is only valid in testability mode; it is ignored in pattern reduction mode.
Appendix B: Legacy Test Point Insertion
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• By default, automatic test point insertion is limited to a maximum of 1000 observe points. 
To specify a different limit, use the following option:

dc_shell> set_test_point_configuration ... -max_observe_points n

• By default, each source, sink, or enable scan register can be shared by up to eight test 
points. To specify the maximum number of test points that can share a single source, 
sink, or enable scan register, use the following option:

dc_shell> set_test_point_configuration ... \
            -test_points_per_scan_cell n

For more information about sharing scan cells, see “Sharing Test Point Scan Cells” on 
page B-8.

• To insert power-saving AND gates at the top of the XOR observability trees to avoid 
excess switching power consumption during scan shift, use the following option:

dc_shell> set_test_point_configuration ... -power_saving enable

For more information about power-saving logic, see “Sharing Test Point Scan Cells” on 
page B-8.

• To apply an area limit to the inserted test point logic, use the following option:

dc_shell> set_test_point_configuration ... \
            -max_additional_logic_area P

The value p is the percentage of the total design area that can be consumed by the test 
point logic and must be a value between 1 and 50. Low-power observability logic is 
included in the test point area value. If specified, the area limit applies in addition to the 
test point limit.

Script Example

The following script inserts testability test points, using a test-mode control signal named 
TM_TESTPOINTS.

# define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing [list 45 55]
set_dft_signal -view spec -type TestMode -port TM_TESTPOINTS

# enable automatic test point insertion
set_dft_configuration -test_points enable

# enable and configure testability test points
set_test_point_configuration \
  -target testability \
  -control_signal TM_TESTPOINTS
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# preview test points
preview_dft -test_points all

# insert DFT logic
insert_dft

User-Defined Test Points (Legacy)

User-defined test points provide you with the flexibility to insert control and observe test 
points at user-specified locations in the design. User-defined test points can be used for a 
variety of purposes, including the ability to fix uncontrollable clocks and asynchronous 
signals, increase the coverage of the design, and reduce the pattern count.

The following topics describe how to implement user-defined test points:

• Configuring User-Defined Test Points

• User-Defined Test Points Example

Configuring User-Defined Test Points

You can use the set_test_point_element command to specify the location and type of 
user-defined test points to insert in the design during DFT insertion, as well as other aspects 
of test point construction. User-defined test points can be defined at leaf pins, hierarchy 
pins, and ports. These test points are then inserted during the insert_dft command. 

To define a user-defined test point, specify the test point type and list of signal pins or ports 
to be forced, controlled, or observed:

dc_shell> set_test_point_element -type test_point_type signal_list

For a list of test point types and their descriptions, see “Test Point Types” on page B-3.

By default, any needed source, sink, and enable signals are supplied by scan registers 
inserted by the insert_dft command. Each scan register is shared by up to eight source, 
sink, or enable test point signals. For shared source and enable signal registers, the same 
scan-selected signal value is used by all shared test points. For shared sink signal registers, 
an XOR observability tree is used to combine the observed signals for capture by the sink 
register.

You can use the following options to control user-defined test point insertion:

• By default, force and control points use any available TestMode port previously defined 
with the set_dft_signal command. To specify the TestMode or ScanEnable signal that 
should activate the test points, use the following option:

dc_shell> set_test_point_element -control_signal pin_port ...
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The specified control signal must be defined as a TestMode or ScanEnable signal type 
with the set_dft_signal command.

• By default, the insert_dft command creates a new clock signal, tpclk, to clock any 
inserted test point scan registers, even when test clocks have been defined. To specify 
the test clock signal that should clock the scan registers, use the -clock_signal option:

dc_shell> set_test_point_element -clock_signal clock_name ...

DFT Compiler supports the following clock name specifications:

❍ You can specify the name of a scan clock signal, defined as a ScanClock signal type 
with the set_dft_signal command.

❍ In a DFT-inserted OCC controller flow, you can specify the name of a PLL output pin. 
In this case, DFT Compiler maps the test point clock to the output pin of the 
corresponding OCC controller during DFT insertion.

❍ In a user-defined OCC controller flow, you can directly specify the name of an output 
pin of an existing OCC controller.

For more information about OCC controller flows, see Chapter 13, “On-Chip Clocking 
Support.

• To specify the maximum number of test points that can share a single source, sink, or 
enable register, use the following options:

dc_shell> set_test_point_element \
            -test_points_per_source_or_sink n ...

dc_shell> set_test_point_element \
            -test_points_per_test_point_enable n ...

Source, sink, or enable registers are created as needed, according to the specified 
sharing limit and the number of test point signal pins provided.

• To specify that the source, sink, or enable signals should come from primary input and 
output ports instead of scan registers, use the following options:

dc_shell> set_test_point_element -scan_source_or_sink false ...

dc_shell> set_test_point_element -scan_test_point_enable false ...

The same source, sink, and enable signal sharing is performed, except that primary input 
and output ports are created instead of scan registers.
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• To specify that a specific user-supplied source, sink, or enable signal be used for a given 
test point definition, use the following options:

dc_shell> set_test_point_element \
            -source_or_sink source_or_sink_name ...

dc_shell> set_test_point_element \
            -test_point_enable test_point_enable_name ...

When a user-supplied source, sink, or enable signal is specified, it is used for all test 
points in that set_test_point_element command, and the previously described 
sharing limit and scan register options do not apply.

• To insert power-saving AND gates at the top of an XOR observability tree to avoid 
excess switching power consumption during scan shift, use the following option:

dc_shell> set_test_point_element -power_saving enable ...

Each set_test_point_element command describes a unique test point element definition. 
Sharing is not performed between test point element definitions. If test points within a limited 
geographic region should share the same source, sink, or enable signals, they should all be 
provided in a single set_test_point_element command. If test points across a wide 
geographic region should not share signals to avoid routing congestion, they should be 
broken up into localized groups and specified with separate set_test_point_element 
commands.

After specifying test point definitions with the set_test_point_element command, you can 
report them with the report_test_point_element command, or remove them before DFT 
insertion with the remove_test_point_element command. For more information about 
these commands, see the man pages.

User-Defined Test Points Example

Consider the simple design shown in Figure B-12 and the corresponding example using the 
user-defined test points flow shown in Example B-1 on page B-17.

Figure B-12 Design Example for User-Defined Test Points
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In this design example, some control signals are combined using a cloud of combinational 
logic, then fed to the DI input of an analog block. The DO output of the analog passes 
through an output drive buffer so that it can drive a possible long route outside the block. 
Because this analog block is untestable, the logic fanin to the DI input cannot be observed, 
and the logic fanout from the DO output cannot be controlled.

To improve the testability of the logic around this analog block, the following user-defined 
test points can be specified:

• Insert an observe test point at the DI input of the analog block to provide observability of 
the data logic cone:

set_test_point_element -type observe U_ANALOG/DI

• Insert a force_0 test point at the RSTN pin of the analog block to hold the block in a 
quiet, low-power reset state during the test program:

set_test_point_element -type force_0 U_ANALOG/RSTN 

• Insert a force_01 test point at the DO output of the analog block to provide controllability 
of the downstream logic:

set_test_point_element -type force_01 U_ANALOG/DO 

A force test point is used at the DO output pin instead of a control test point. The output of 
the analog block is always unknown, and there is no reason to selectively allow this 
unknown value to propagate downstream. This force test point is placed at the analog block 
DO output instead of the DOUT output port so that faults at the drive buffer can be detected. 
If the test point was placed at the DOUT output port instead, faults between the analog block 
and the output port could not be detected.

The existing clock CLK is used to clock the test point scan registers. A new TESTMODE port 
is created to enable the test points.

Example B-1 Example of a User-Defined Test Point Flow

# Read in the design and synthesize it
read_file -format verilog ./rtl/design.v
current_design TEST
link
read_sdc TEST.sdc
compile -scan

# Define the clock, reset, test-mode ports
set_dft_signal -view existing_dft -type ScanClock \
  -port CLK -timing {45 55}
set_dft_signal -view existing_dft -type Reset \
  -port RST -active_state 0
set_dft_signal -view spec -type TestMode \
  -port TESTMODE -active_state 1
set_scan_configuration -chain_count 10
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# Provide the UDTP specifications
set_test_point_element -type observe U_ANALOG/DI \
  -clock_signal CLK -control_signal TESTMODE

set_test_point_element -type force_0 U_ANALOG/RSTN \
  -clock_signal CLK -control_signal TESTMODE

set_test_point_element -type force_01 U_ANALOG/DO \
  -clock_signal CLK -control_signal TESTMODE

# Run pre-DFT DRC
create_test_protocol
dft_drc -verbose

# Preview and insert DFT
preview_dft -show all -test_points all
insert_dft

# Run post-DFT DRC
dft_drc -verbose
report_scan_path

# Write out the netlist
write -hierarchy -format ddc -output TEST_udtp_scan.ddc
change_names -rules verilog
write -hierarchy -format verilog -output TEST_udtp_scan.v

Previewing the Test Point Logic

To preview the test point logic that the tool will implement according to your specifications, 
use the following command:

dc_shell> preview_dft -test_points all

This command reports the following information:

• Test point locations

• Instance names of inserted test point flip-flops

• Clocks used by inserted test point flip-flops

• Low-power observability tree status

You can use other options of the preview_dft command with the -test_points option.
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Inserting the Test Point Logic

After you define the test point insertion configuration, the insert_dft command inserts the 
test point logic. Test point scan registers are placed in the lowest level of hierarchy shared 
by all test points for that register.

The following additional signals are created, depending on the test configuration:

• A new test point clock signal, if a test point clock is not defined

• A new test-mode signal for force, control, and observe test points, if a test-mode signal 
is not defined
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Glossary GL

Associated internal clocks
A set of one or more user-defined internal clocks in a clock network, each of which is the 
root of a skew subdomain within its parent clock network.

ATPG
Automated Test Pattern Generation, the generation of scan data sequences used for 
scan testing, with the goal of achieving as much test coverage as possible using the 
smallest possible number of patterns. The test patterns contain nonfunctional data 
selected to detect faults on nets in the design.

ATE
Automated Test Equipment, industrial equipment used to test semiconductor devices by 
applying input stimuli, observing the device response, and comparing it against the 
expected response.

BIST
Built-in self-test, design-for-test logic where both the scan data generation and the scan 
data comparison logic are included in the design.

BSD
Boundary Scan Design, which refers to test logic that implements IEEE Std 1149.1.

Burn-in mode
A mode that continuously runs autonomous self-test. The scan and capture activity 
stresses the tested logic and causes continuous power draw during self-test. Burn-in 
operation can be configured to stop or continue if self-test fails.

CDR
Core data register, an optional register in an IEEE 1500 implementation that can be 
loaded with a value after loading a corresponding instruction into the wrapper instruction 
register (WIR). 
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Clock chain
A special scan chain segment associated with an on-chip clocking (OCC) controller 
whose scanned-in values control the pulse sequence of a controlled clock.

Clock gating
A method of reducing power by shutting off clocks to circuits that are not being used. 

Codec
The combination of the decompressor and compressor in a compressed scan flow. A 
single design can have multiple codecs, but each codec consists of its own 
decompressor/compressor pair.

Compressed scan
A scan methodology that uses more scan chains (called compressed scan chains) than 
scan-in/scan-out pairs. A decompressor decompresses the scan-in data to drive the 
greater number of scan chains. A compressor compresses the scan chain data to drive 
the lesser number of scan-outs. The combination of the decompressor and compressor 
wrapped around the scan chains is called the codec.

Compressed scan chains
In a compressed scan flow, the scan chains that are driven by the decompressor and 
drive the compressor. There are a greater number of compressed scan chains than 
scan-in/scan-out pairs.

Compressor
In a compressed scan flow, the part of a codec that compresses the scan chain data to 
drive the lesser number of scan-outs.

Core
A design block that is DFT-inserted and has CTL model information about the inserted 
DFT structures. Cores are used in hierarchical scan synthesis flows.

Core wrapping
See wrapped core.

Decompressor
In a compressed scan flow, the part of a codec that decompresses the scan-in data to 
drive the greater number of scan chains.

DFT
Design-for-Test, pertains to logic that helps the testability of a design.

DFTMAX scan compression
Scan compression implemented by the DFTMAX tool that uses combinational codecs to 
yield high scan compression ratios.
Glossary GL-2



DFTMAX™ Design-for-Test User Guide Version O-2018.06-SP4
DFTMAX Ultra scan compression
Scan compression implemented by the DFTMAX Ultra tool that uses streaming 
(sequential) codecs to yield very high scan compression ratios, even down to a single 
scan-in/scan-out pair.

DFT partition
A DFT specification that allows the sequential cells in a design to be separated into 
multiple independent partitions for the purpose of DFT insertion.

DRC
Design Rule Checking, checking a design against a rule set that ensures good testability 
and reporting any violations of those rules.

EXTEST mode
Outward-facing test mode used to test logic external to (outside) a core, independent of 
the logic inside the core. It uses the wrapper chain to drive scan-controllable values at 
the output wrapper cells and capture the values at the input wrapper cells.

FSM
Finite state machine, a logic construct that moves through states (like navigating 
elements in a flowchart diagram) to implement a certain logic behavior.

Hierarchical DFT insertion
Refers to a flow that performs DFT insertion in a lower level block (known as a core), 
then incorporates that block’s scan structures into a higher level.

This term pertains to how DFT insertion is performed in the tool flow. Do not confuse this 
term with hierarchical testing, which pertains to how manufacturing test is run on the 
ATE.

Hierarchical testing
Refers to the process of testing different hierarchy levels of the design independently. 
Wrapped cores are often used to enable hierarchical testing.

This term pertains to how manufacturing test is run on the ATE. Do not confuse this term 
with hierarchical DFT insertion, which pertains to how DFT insertion is performed.

HSS
Hierarchical scan synthesis. See hierarchical DFT insertion.

Internal chains
The scan chains inside a block (uncompressed or compressed), as opposed to other 
kinds of chains, such as boundary scan chains or core-wrapping chains.

Internal clock
A scan clock, defined on an internal pin in the design, that is the root driver of a skew 
subdomain. Internal clocks can be automatically determined by the tool at multi-input 
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gate outputs or specified manually at associated internal clock pins within the clock 
network.

INTEST mode
Inward-facing test mode used to test logic internal to (inside) a core, independent of the 
logic outside the core. It uses the wrapper chain to drive scan-controllable values at the 
input wrapper cells and capture the resulting values at the output wrapper cells.

Inward-facing test mode
See INTEST.

Leading edge
The first edge of a clock waveform definition. It is a rising edge for a return-to-zero clock, 
and it is a falling edge for a return-to-one clock.

LFSR
Linear feedback shift register, a shift register whose next data word is a linear XOR 
function of its current data word. The PRPG uses an LSFR to generate pseudorandom 
data.

MISR
Multiple-input signature register, a recirculating shift register that XORs scan-captured 
data values into the loop. After capturing all values, the MISR contains a signature value 
for that test.

OCC controller
On-chip clocking controller, a DFT design structure that controls a free-running on-chip 
clocking source (such as a PLL output clock) in test mode.

Outward-facing test mode
See EXTEST.

Pad cell
A special cell at the chip boundaries that allows communication with other integrated 
circuits outside the chip, as opposed to an internal core cell, which makes up the core of 
an integrated circuit. 

Pipelined scan data
A feature that inserts additional scan registers, called pipeline registers, at the scan-in 
and scan-out ports of the design to accommodate long wires between the scan chain 
input and the first flip-flop and between the last flip-flop and the scan chain output. 
Pipeline registers inserted at the scan-in and scan-out ports are called head and tail 
pipeline registers, respectively. 
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Pipelined scan enable
A feature that adds a pipeline register to the scan-enable signal. It is used for transition 
delay testing by making use of launch-on-extra-shift (LOES). This method of transition 
delay testing requires additional circuitry to manipulate the scan-enable signals.

PLL
Phase-locked loop, an analog design block that creates a stable on-chip 
latency-adjusted clock from a free-running (and possibly less stable) input clock.

Pre-DFT DRC
DRC checking run before DFT insertion, evaluates the readiness of the design for DFT 
insertion. Certain types of pre-DFT DRC violations will result in scan cells being 
excluded from scan chains.

PRPG
Pseudo-random pattern generator, uses an LSFR and an XOR phase shifter to generate 
a stream of pseudorandom data values that have the appearance of random values, but 
are actually a function of a seed value.

Post-DFT DRC
DRC checking run after DFT insertion, evaluates the implemented DFT functionality of 
the design for correct operation.

Return-to-one clock
A clock whose value is normally high, with an active-low pulse during the clock period.

Return-to-zero clock
A clock whose value is normally low, with an active-high pulse during the clock period.

Scan cell
A sequential cell that has both functional and scan-shift modes of operation.

Scan compression
See compressed scan.

SCANDEF
A DEF file that uses a set of scan-specific constructs to describe how a design’s scan 
chains can be reordered and repartitioned by a layout tool.

Scan group
A group of scan cells to be kept together in a scan chain.

Seed value
The initial value loaded into a PRPG. Different seed values result in different 
pseudorandom value sequences.
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Shadow wrapper
A “wrapper” around an untestable block or macrocell that allows surrounding logic to be 
tested. Known values are forced at the outputs, and to improve coverage, the values at 
the inputs are captured. It can be easily inserted using automatic test point insertion.

Shared codec I/O
A feature that allows the scan-in and scan-out connections of DFTMAX cores or codecs 
to be shared to reduce scan I/O requirements.

Shift register
A sequence of sequential cells in the design whose functional operation is to shift bits 
through the register like a scan chain. Shift registers only need their first (head) element 
scan-replaced to be stitched into a scan chain.

Skew subdomain
Part of a parent clock network that is considered to have different clock skew 
characteristics than the rest of the clock network. Lock-up latches are inserted 
whenever a scan chain crosses a skew subdomain boundary. A skew subdomain is 
driven by an internal clock pin.

SPF
STIL Procedure File, a file written out by DFT Compiler to describe DFT aspects of the 
design, such as: test ports, test clocks, primary input constraints, scan chains, codecs, 
and test modes. It is used by TetraMAX ATPG (or other ATPG tool) for DRC and ATPG.

STIL
Standard Test Interface Language, documented in IEEE Std 1450, which is a language 
used to describe the DFT capabilities of a design. It is a standard for simplifying the 
number of test vector formats that automated test equipment (ATE) vendors and 
computer-aided engineering (CAE) tool vendors must support.

Standard scan
A scan methodology in which there is a one-to-one relationship between each scan-in/
scan-out pair and each scan chain.

TCM
Test control module, a DFT design structure that selects the current test mode. The 
input is a vector of test-mode selection signals that can have binary, one-hot, or 
user-defined encodings. The output is a set of decoded one-hot enable signals, one for 
each test mode encoding.

TMCDR
Test-mode core data register, a special core data register (CDR) in an IEEE 1500 
implementation that takes the place of traditional port-driven test-mode signals.
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Trailing edge
The last edge of a clock waveform definition. It is a falling edge for a return-to-zero 
clock, and it is a rising edge for a return-to-one clock.

Weighted capture groups
An OCC-based capture method that uses comparator logic to enable one capture group 
in each pattern, based on user-specified probabilities.

UPF
Unified Power Format, a standard set of commands used to specify the low-power 
design intent for electronic systems, an alternative name of the IEEE 1801 Standard for 
Design and Verification of Low Power Integrated Circuits. 

WIR
Wrapper instruction register, a required register in an IEEE 1500 implementation that 
controls what data register is selected for access.

Wrapped core
A core that has a wrapper chain along the I/O boundary of the design. Wrapped cores 
are used to implement hierarchical testing capability, which allows different hierarchy 
levels of the design to be tested independently.

Wrapper chain
A special scan chain in a core-wrapped design that consists of wrapper cells along the I/
O boundary of the design. It can operate in inward-facing or outward-facing modes 
during testing to isolate the logic inside the core from logic outside the core.
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