
TestMAX ATPG and TestMAX

Diagnosis User Guide

Version S-2021.06, June 2021

Copyright and Proprietary Information Notice
© 2021 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

2

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents

1. TestMAX ATPG and TestMAX Diagnosis Overview . 53

Launching TestMAX ATPG and TestMAX Diagnosis . 54

Setting the Thread Count in TestMAX ATPG . 55

Multithreading in TestMAX ATPG and TestMAX Diagnosis 56
Multithreading Limitations . 57
TestMAX ATPG Multithreading Command Option Support 58

run_atpg . 59
run_fault_sim . 59
run_simulation . 60
set_atpg . 60
set_delay .61
set_drc . 61

ATPG Capabilities . 61

TestMAX ATPG Modes . 62

Features and Benefits . 63

Operation Modes .65

2. Getting Started .66

Basic TestMAX ATPG Processes . 66
Installing TestMAX ATPG . 66

Specifying the Location for TestMAX ATPG Installation67
Setting the Environment . 67
Launching TestMAX ATPG . 68
Executable Commands .68
Setup Command Files . 69
Using Command Files . 70

Batch Files . 71
Launching TestMAX ATPG Using Command Files 71

Using Variables . 72
Tcl Mode . 73
Native Mode . 74

Running the TestMAX ATPG GUI .74

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Starting and Stopping the TestMAX ATPG GUI .74
Interrupting a Long Process .74
Setting Preferences . 76
Saving GUI Preferences . 77

Basic ATPG Flow . 78

Reference Methodology . 80

Getting Started for TestMAX DFT Users . 80
Design Flow Using TestMAX DFT and TestMAX ATPG 81

3. ATPG Design Flow . 85

ATPG Design Flow Overview . 85
Basic ATPG Run Script . 87

Running the Basic ATPG Design Flow . 87

Preparing a Netlist .88

Configuring to Read a Netlist . 89

Reading a Netlist .90

Reading Library Models . 91

Preparing to Build the ATPG Model . 92

Building the ATPG Model . 92

Performing Design Rule Checking (DRC) . 94
Specifying STIL Procedures . 94
Specifying DRC Settings . 95

Options for Specifying DRC Settings .96
Starting DRC .97
Reviewing the DRC Results . 99
Understanding Rule Violations . 100
Viewing DRC Violations in the GSV .101

Preparing for ATPG .103
Specifying General ATPG Settings .103

Options for Specifying ATPG Settings . 104
Specifying Fault Lists . 105

Selecting an Existing Fault List File .106
Generating a Fault List Containing All Fault Sites 106
Including Specific Faults in a Fault List . 106
Writing Faults to a File .107
Example Fault Lists . 108

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Specifying Fault Models . 108
Selecting a Fault Model . 110

Specifying the Pattern Source . 111
Scan and Nonscan Functional Patterns .112
STIL Functional Pattern Input . 112
Verilog Functional Pattern Input .115
WGL Functional Pattern Input . 121
VCDE Functional Pattern Input . 124
Options for Selecting the Pattern Source . 125

Specifying the ATPG Mode . 127
Basic Scan Mode Settings .128
Fast-Sequential Mode Settings . 129
Setting Full-Sequential Mode . 130

Running ATPG .131
Running ATPG in Basic Scan or Fast-Sequential Mode 132
Using Automatic Mode to Generate Optimized Patterns 133

Setting Automatic Mode . 134
Quickly Estimating Test Coverage . 134
Specifying a Test Coverage Target Value . 139
Increasing ATPG Effort Over Multiple Passes . 139
Multiple Session Test Pattern Generation . 140

Splitting Patterns . 140
Extracting a Pattern Sub-Range . 141
Merging Multiple Pattern Files . 141
Using Pattern Files Generated Separately . 142

Compressing Patterns . 143
Balancing Pattern Compaction and CPU Runtime 143
Compression Reports .144

Analyzing ATPG Output . 146
Standard Format . 146
Expert Format . 148
Verbose Format with Merge (without -auto_compression) 149
Verbose Format with Merge and -auto_compression .151

Reviewing Test Coverage . 153

Writing ATPG Patterns . 156

4. ATPG Modeling . 157

Modeling Topics .157
ATPG Modeling Primitive Summary . 157

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

TestMAX ATPG Memory Modeling . 159
Basic Template . 159
Defining Write Ports . 160
Defining Read Ports . 162
Read Off Behavior . 164
Complete Example . 165
Memory Address Range . 165
Multiple Read or Write Ports . 166
Rules and Limitations .167
Controlling Contention Behavior . 167

Memory Modeling Syntax in Backus-Naur Form (BNF) 174
RAM and ROM Modeling Examples .176
Memory Data File Examples . 192
Interpreting UDP Messages . 193

Variant #1 . 193
Variant #2 . 196
Variant #3 . 199
Variant #4 . 200
Debugging UDP-based Models . 202

Modeling Examples .203
Optimistic MUX .203
MUX, 4-to-1 . 204
Latch . 205
Latch With Active Low Asynchronous Set/Reset . 205
Latch With Asynchronous Set/Reset . 206
Latch With Asynchronous Set/Reset Dominant Over EN 207
Latch With Asynchronous Set/Reset Dominant Over EN, Reset
Dominant .208
Latch With Asynchronous Set/Reset Dominant Over EN, Set Dominant . . 208
Dual Port Latch . 209
Positive-edge Clocked DFF With Notify .210
DFF With Active Low Asynchronous Set/Reset and Notify 211
DFF With Active Low Asynchronous Reset and Notify 212
DFF With Active High Asynchronous Set/Reset . 213
DFF With Synchronous Reset and Notify . 213
Negative-Edge Clocked DFF With Active Low Asynchronous Clear and
Notify .214
DFF and Latch . 215
JK Flip-Flop With Active Low Asynchronous Set/Reset and Notify 216
Bus Keeper Examples . 217

Scan Cell Models . 218
Scan Cell Models - MUX Flop Scan . 218
Scan Cell Models - Master Slave Latch .220

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Scan Cell Models - MUX Latch Scan .221
Scan Cell Models - Clocked Scan Flip-Flop .222
Scan Cell Models - Clocked Scan Latch . 223
Scan Cell Models - Single Latch LSSD . 224
Scan Cell Models - Double Latch LSSD . 225
Scan Cell Models - Clocked LSSD . 226
Scan Cell Models - Auxiliary Clocked LSSD . 228
Scan Cell Models - Retention Cell . 229

ATPG Simulation Primitives . 229
AND Primitive . 231

Simulation Behavior . 231
Verilog Netlist Usage . 231

ADRBUS Primitive (Address Bus) . 232
Simulation Behavior . 232
Verilog Netlist Usage . 233

BUF Primitive (Buffer) .233
Simulation Behavior . 233
Verilog Netlist Usage . 233

BUS Primitive . 234
Simulation Behavior . 234
Verilog Netlist Usage . 235

BUSK Primitive (Bus Keeper) .235
Simulation Behavior . 236
Verilog Netlist Usage . 236

CMUX Primitive (Conservative Multiplexer) . 236
Simulation Behavior . 237
Verilog Netlist Usage . 237

DATABUS Primitive (Data Bus) . 238
Simulation Behavior . 238
Verilog Netlist Usage . 238

DFF Primitive . 239
Approximate Simulation Behavior . 239
Textual Simulation Behavior .240
Verilog Netlist Usage . 241

DLAT Primitive . 241
Simulation Behavior . 242
Verilog Netlist Usage . 243

EQUIV Primitive (Equivalence) .243
Simulation Behavior . 243
Verilog Netlist Usage . 244

INV Primitive (Inverter) . 244

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Simulation Behavior . 244
Verilog Netlist Usage . 245

MEMORY Primitive (RAM/ROM Memory) . 245
Simulation Behavior . 246
Verilog Netlist Usage . 247

MOUT Primitive (Macro Output) .247
Simulation Behavior . 247
Verilog Netlist Usage . 248

MUX Primitive (Multiplexer) . 248
Simulation Behavior . 248
Verilog Netlist Usage . 249

NAND Primitive . 249
Simulation Behavior . 249
Verilog Netlist Usage . 250

NOR Primitive . 250
Simulation Behavior . 250
Verilog Netlist Usage . 251

OR Primitive . 251
Simulation Behavior . 252
Verilog Netlist Usage . 252

PI Primitive (Primary Input) . 253
Simulation Behavior . 253
Verilog Netlist Usage . 253

PIO Primitive (Primary Input/Output) . 253
Simulation Behavior . 254
Verilog Netlist Usage . 254

PO Primitive (Primary Output) . 254
Simulation Behavior . 254
Verilog Netlist Usage . 254

RPORT Primitive (Read Port) .255
Simulation Behavior . 255
Verilog Netlist Usage . 256

SEL01 Primitive . 256
Simulation Behavior . 256
Verilog Netlist Usage . 257

SEL1 Primitive . 257
Simulation Behavior . 257
Verilog Netlist Usage . 258

SW Primitive (Switch) . 258
Simulation Behavior . 258
Verilog Netlist Usage . 259

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

TIE0 Primitive . 259
Simulation Behavior . 259
Verilog Netlist Usage . 260

TIE1 Primitive . 260
Simulation Behavior . 260
Verilog Netlist Usage . 260

TIEX Primitive . 261
Simulation Behavior . 261
Verilog Netlist Usage . 261

TIEZ Primitive . 262
Simulation Behavior . 262
Verilog Netlist Usage . 262

TSD Primitive (tristate Device) . 262
Simulation Behavior . 263
Verilog Netlist Usage . 263

WIRE Primitive . 264
Simulation Behavior . 264
Verilog Netlist Usage . 264

XNOR Primitive (Exclusive NOR) .265
Simulation Behavior . 265
Verilog Netlist Usage . 266

XOR Primitive (Exclusive OR) . 266
Simulation Behavior . 266
Verilog Netlist Usage . 267

5. Command Interface . 268

TestMAX ATPG GUI . 268

Command Entry . 270
Menu Bar . 270
Command Toolbar and GSV Toolbar . 270
Command-Line Window . 271

Command Mode Indicator . 271
Command-Line Entry Field . 272
Command Continuation . 272
Command History .273
Stop Button .273

Commands From a Command File . 273
Command Logging . 274

Transcript Window .274
Setting the Keyboard Focus . 275

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using the Transcript Text . 275
Selecting Text in the Transcript . 276
Copying Text From the Transcript . 276
Finding Commands and Messages in the Transcript . 276
Saving or Printing the Transcript . 277
Clearing the Transcript Window . 277

Interacting with the TestMAX ATPG GUI . 278
Using Keys in the Command Line . 278
Using the Graphical Schematic Viewer . 278
Using the Transcript Window . 279
Saving Preferences .280

Using Online Help . 280
Browser-Based Online Help . 280

Setting Up Online Help in Linux .281
Launching Online Help .281
Installing and Running Stand-Alone Online Help in Windows 284
How to Browse, View, and Copy Scripts . 286

Text-Only Help . 289

6. Using the Graphical Schematic Viewer . 291

Getting Started With the GSV .291
Using the SHOW Button to Start the GSV .292
Starting the GSV From a DRC Violation or Specific Fault 293
Navigating, Selecting, Hiding, and Finding Data . 296

Navigating Within the GSV . 296
Selecting Objects in the GSV Schematic .296
Hiding Objects in the GSV Schematic . 297
Using the Block ID Window . 297

Expanding the Display From Net Connections .298
Hiding Buffers and Inverters in the GSV Schematic . 300
ATPG Model Primitives .301

Tied Pins .302
Primary Inputs and Outputs . 302
Basic Gate Primitives . 303
Additional Visual Characteristics . 304
RAM and ROM Primitives . 305

Displaying Symbols in Primitive or Design View . 306
Displaying Instance Path Names . 307

Displaying Pin Data .307

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using the Setup Dialog Box to Display Pin Data . 308
Pin Data Types . 309
Displaying Clock Cone Data .310
Displaying Clock Off Data . 311
Displaying Constrain Values . 312
Displaying Load Data . 313
Displaying Shift Data . 314
Displaying Test Setup Data . 315
Displaying Pattern Data . 315
Displaying Tie Data .317

Analyzing a Feedback Path . 317

Checking Controllability and Observability . 318
Using the Run Justification Dialog Box . 319
Using the run_justification Command .319

Analyzing DRC Violations in the GSV . 320
Troubleshooting a Scan Chain Blockage . 320
Troubleshooting a Bidirectional Contention Problem . 322

Analyzing Buses . 324
BUS Contention Status .325
Understanding the Contention Checking Report . 325
Reducing Aborted Bus and Wire Gates . 326

Using the Analyze Buses Dialog Box . 327
Using the set_atpg and analyze_buses Commands 327

Causes of Bus Contention . 327

Analyzing ATPG Problems . 328
Analyzing an AN Fault . 329
Analyzing a UB Fault . 330
Analyzing a NO Fault . 332

Printing a Schematic to a File .332

7. Using the Hierarchy Browser .334

Launching the Hierarchy Browser .334

Basic Components of the Hierarchy Browser .336
Using the Hierarchy Pane . 336
Viewing Data in the Instance Pane . 340

Copying an Instance Name . 342
Viewing Data in the Lib Cells/Tree Map Pane . 343

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Performing Fault Coverage Analysis . 345
Understanding the Types of Coverage Data . 345
Expanding the Design Hierarchy . 347
Viewing Library Cell Data . 350
Adjusting the Threshold Slider Bar .351
Identifying Fault Causes . 352
Displaying Instance Information in the GSV .355

Exiting the Hierarchy Browser .356

8. Using the Simulation Waveform Viewer . 358

Getting Started With the SWV . 358

Understanding the SWV Color Codes . 359

Supported Pin Data Types and Definitions .360

Invoking the SWV . 362

Using the SWV Interface . 363
Understanding the SWV Layout . 364

Refreshing the View . 364
Manipulating Signals .365

Using the Signal List Pane . 365
Adding Signals . 365
Deleting Signals . 366
Inserting Signals .366

Identifying Signal Types in the Graphical Pane . 367
Using the Time Scales . 368
Using the Marker Header Area . 368

Adding and Deleting Pointers . 369
Moving a Marker Pointer . 369
Measuring Between Two Pointers . 370

Using the SWV With the GSV . 370
Using the SWV Without the GSV .372

Example Flow .372
Example 2 . 372
Example 3 . 373

SWV Inputs and Outputs . 373
Analyzing Violations . 373

9. Using Tcl With TestMAX ATPG . 374

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Converting TestMAX ATPG Command Files to Tcl Mode .374

Converting a Collection to a List in Tcl Mode . 375

Tcl Syntax and TestMAX ATPG Commands . 375
Specifying Lists in Tcl Mode .376

Tcl Mode and Backslashes . 377
Using Positional Arguments . 377

Abbreviating Commands and Options in Tcl Mode . 377
Using Tcl Special Characters . 378
Using the Result of a Tcl Command . 379
Using Built-In Tcl Commands . 379
TestMAX ATPG Extensions and Restrictions in Tcl Mode 380

Redirecting Output in Tcl Mode . 380
Using the redirect Command in Tcl Mode . 381
Getting the Result of Redirected Tcl Commands . 382
Using Redirection Operators in Tcl Mode .382

Using Command Aliases in Tcl Mode .382

Interrupting Tcl Commands . 383

Using Command Files in Tcl Mode .383
Adding Comments . 384
Controlling Command Processing When Errors Occur 384
Using a Setup Command File . 385

An Introduction to the TestMAX ATPG Tcl API . 385
Retrieving Information .385
Using the -filter Option . 386
Using the -regexp Option . 386

10. Design Netlists and Library Models . 387

Netlist Format Requirements . 388
EDIF Netlist Requirements . 388

Logic 1/0 Using Global Nets . 388
Logic 1/0 by Special Library Cell . 388

Verilog Netlist Requirements . 389
VHDL Netlist Requirements . 390

About Reading a Netlist . 390

Using Wildcards to Read Netlists . 391

About Reading Library Models . 392

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Controlling Case-Sensitivity .392

Setting Parameters for Learning . 393
Learned Behavior Types .393
Controlling the ATPG Learning Algorithm . 394

About Building the ATPG Model . 395

Processes That Occur When Building the ATPG Model .396

Flattening Optimization for Hierarchical Designs . 397

Identifying Missing Modules . 404

Removing Unused Logic . 406

Using Black Box and Empty Box Models . 409
Declaring Black Boxes and Empty Boxes . 410
Behavior of RAM Black Boxes . 412

Case 1 . 412
Case 2 . 412
Case 3 . 412
Case 4 . 413
Case 5 . 414
Case 6 . 415
Troubleshooting Unexplained Behavior . 416

Handling Duplicate Module Definitions . 417

Creating Custom ATPG Models . 417

Condensing ATPG Libraries . 419

Assertions . 420
Implementing Assertions .420
Using Assertions with PLLs and Memories . 422
Assertion Descriptions . 425
Limitations . 427

Memory Modeling . 427
Memory Model Functions . 427
Basic Memory Modeling Template . 428
Initializing RAM and ROM Contents .429

The Memory Initialization File . 429
Default Initialization . 430
Instance-Specific Initialization . 430

Improving Test Coverage for RAMs . 431

11. STIL Procedures . 433

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

STIL Procedure File Guidelines . 433

Creating a New STIL Procedure File . 435
Declaring Primary Input Constraints .436

Using the Add PI Constraints Dialog Box . 436
Using the add_pi_constraints Command . 437

Declaring Clocks . 437
Using the Edit Clocks Dialog Box . 437
Using the add_clocks Command . 438
Asynchronous Set and Reset Ports .438

Declaring Scan Chains and Scan Enables . 438
Using the DRC Dialog Box . 439
Declaring Scan Chains at the Command Line .439

Writing the SPF Template .440
Example SPF Template File .440

Defining STIL Procedures . 442
Defining Scan Chains . 443
Defining the load_unload Procedure . 444

Controlling Bidirectional Ports . 445
Defining the Shift Procedure . 446

Defining the test_setup Procedure . 447
Using Loop Statements . 449

Predefined Signal Groups in STIL . 450
Defining Basic Signal Timing . 450

Defining Pulsed Ports .452
Selecting Strobed or Windowed Measures in STIL 454
Supporting Clock ON Patterns in STIL . 455
Defining the End-of-Cycle Measure . 457

Defining Capture Procedures in STIL .458
Limiting Clock Usage . 459

Defining Constrained Primary Inputs . 460
Defining Equivalent Primary Inputs . 461
Defining PO Masks .461
Defining System Capture Procedures . 462
Creating Generic Capture Procedures . 464

Generating Generic Capture Procedures .465
Controlling Multiple Clock Capture .468
Using Allclock Procedures . 470
Using load_unload for Last Shift-Launch Transition 471
Example Post-Scan Protocol . 472
Generic Capture Procedures Limitations . 473

Defining Sequential Capture Procedures . 474

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using Default Capture Procedures . 474
Using a Sequential Capture Procedure . 475
Sequential Capture Procedure Syntax .475

Defining Reflective I/O Capture Procedures . 476
Using the master_observe Procedure . 477
Using the shadow_observe Procedure .478
Using the delay_capture_start Procedure . 479
Using the delay_capture_end Procedure . 481
Using the test_end Procedure . 482
Scan Padding Behavior . 483
Using the Condition Statement in STIL . 485
Excluding Vectors From Simulation . 486

Using the DontSimulate Statement for Loops and Reference Clocks 486
Syntax and Example for Excluding Vectors . 487

Defining Internal Clocks for PLL Support . 488
Specifying an On-Chip Clock Controller Inserted by DFT Compiler490

Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller . 492
ClockTiming Block Syntax . 492
Timing and Clock Pulse Overlapping . 493
Controlling Latency for the PLLStructures Block . 495
ClockTiming Block Selection . 495
ClockTiming Block Example . 496

Specifying Internal Clocking Procedures . 497
ClockConstraints and ClockTiming Block Syntax .498
Specifying the Clock Instruction Register .500
Specifying External Clocks . 500
Example 1 . 501
Example 2 . 502

JTAG/TAP Controller Variations for the load_unload Procedure503

Multiple Scan Groups . 504

DFTMAX Compression with Serializer . 511

12. Design Rule Checking . 512

Understanding the DRC Process . 513

Contention Analysis .513
BUS Contention Ability Checking . 514
BUS Z State Ability Checking .515

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Contention Prevention Checking . 515
Simulation Contention Detection . 515
ATPG Contention Prevention . 515
Post-Capture Contention Checking . 516

Scan Chain Tracing .516

Clock Grouping . 516
Reducing the Pattern Count Through Clock Grouping517
Clock Grouping Analysis .518
Generating a Clock Group Report . 520
Clock Grouping Limitations .521

Declaring Equivalent and Differential Input Ports . 521
Using the Add PI Equivalences Dialog Box . 522
Using the add_pi_equivalences Command . 522

Cells With Asynchronous Set/Reset Inputs . 523

Masking Input and Output Ports . 523

Masking Scan Cell Inputs and Outputs . 524
Specifying Cell Constraints Locations and Scan Cell Controls 524
Using the Add Cell Constraints Dialog Box . 525
Using the add_cell_constraints Command . 525

Previewing Potential Scan Cells . 525
Scan Cell Types . 526

Identifying Scan Cells .527
Reporting Scan Cells . 528
Scan Cell Inversion Data . 528

Using the set_scan_ability Command . 528
Using the Set Scan Ability Dialog Box . 529

Transparent Latches . 529

Shadow Register Analysis . 529

Feedback Paths Analysis . 530

Procedure Simulation . 530

Changing the Design Rule Severity . 530
Using the Set Rules Dialog Box .531
Using the set_rules Command . 531

Understanding the DRC Summary Report . 532

Binary Image Files . 536
Creating and Reading Image Files .536

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Creating a Non-Secure Image File . 538
Creating a Secure Image File . 538

Save/Restore in TEST Mode . 540

13. Optimizing ATPG . 541

Optimizing Basic Scan Patterns . 542

Using ATPG Constraints . 543
Adding ATPG Constraints to Block a Timing-Sensitive Path 543
Defining, Reporting, and Removing No Detection Credit Cells 544
Using ATPG Constraints to Control ATPG Assertions 544

Using the Random Decision Option . 546

Obtaining Target Test Coverage Using Fewer Patterns . 546

Maximizing Test Coverage Using Fewer Patterns . 547

Improving Test Coverage With Test Points .547
Test Points Analysis Options . 548
Running the Test Points Analysis Flow . 548
Limitation . 549

Limiting the Number of Patterns . 549

Limiting the Number of Aborted Decisions . 549

Using ATPG Checkpoint Files .550

Creating Test Patterns for Diagnosing Scan Chain Failures551
Understanding DFTMAX Unload Modes and Chain Diagnosis Patterns 552
Generating Pattern Sets . 553

Performing Scan Chain Diagnosis . 554
Running Scan Chain Diagnosis . 554
Understanding the Scan Chain Diagnosis Report . 555
Diagnosing Defects Related to Power Issues . 555

Creating End-of-Cycle Measures in ATPG Patterns . 556
Drawbacks of Using End-of-Cycle Measures .557
Requirements Needed to Produce End-of-Cycle Measures557

Deleting Top-Level Ports From Output Patterns . 558

Detecting Faults Multiple Times Using N-Detect . 558

WGL Pattern Generation Options . 559
Creating LSI-Compatible WGL Patterns .560
Creating NEC-Compatible WGL Patterns . 562

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

WGL Scan Chain Padding . 563
WGL Scan Chain Definitions . 564
Macro Usage in WGL .564
Grouping Bidirectional Port Data in WGL .566
Controlling Port Data Order in WGL . 567
Specifying Windowed Measures in WGL . 568
Delayed Input Force Timing and Force Prior in WGL 568
Balancing Vector and Scan Statements in WGL . 569
Mapping Bidirectional Ports Within Vector Statements in WGL 570
Mapping Bidirectional Ports Within Scan Statements in WGL 574
Adjusting Pattern Data for Serial Versus Parallel Interpretation in WGL 575
Selecting Scan Chain Inversion Reference in WGL .576
Effect of CELLDEFINE in WGL . 578
Ambiguity of the Master Cell in WGL .579

Running Multicore ATPG .580
Comparing Multicore ATPG and Distributed ATPG . 580
Invoking Multicore ATPG . 581
Typical Multicore ATPG Run .582
Multicore Interrupt Handling . 582
Understanding the Processes Summary Report . 583
Multicore Limitations . 584

Running Logic Simulation . 584
Comparing Simulated and Expected Values . 585
Patterns in the Simulation Buffer . 586
Sequential Simulation Data . 586
Single-Point Failure Simulation .587
GSV Display of a Single-Point Failure . 588

Data Volume and Test Application Time Reduction Calculations 588
Test Data Volume Calculations .589
Test Application Time Calculations .590

Pattern Porting . 590
Pattern Porting Flow . 591
Core-Level DFTMAX Insertion . 592
Core-Level TestMAX ATPG Generation . 592
Top-Level Requirements . 593
Pattern Generation Requirements at Core Level . 593
Top-Level Pattern Simulation . 593

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

14. Fault Lists and Faults . 594

Working with Fault Lists . 594
Using Fault List Files . 595
Collapsed and Uncollapsed Fault Lists . 596
Random Fault Sampling . 598
Fault Dictionary . 599

Fault Categories and Classes .599
Fault Class Hierarchy . 599
DT (Detected) = DR + DS + DI + D2 + TP . 600
PT (Possibly Detected) = AP + NP + P0 + P1 .601
UD (Undetectable) = UU + UO + UT + UB + UR .602
AU (ATPG Untestable) = AN . 603
AE (ATPG Untestable) = AE . 603
ND (Not Detected) = NC + NO . 604

Fault Summary Reports . 605
Fault Summary Report Examples .605
Test Coverage .607
Fault Coverage . 608
ATPG Effectiveness . 609

Using Clock Domain-Based Faults . 610
Using Signals That Conflict With Reserved Keywords613
Finding Particular Untested Faults Per Clock Domain 614

15. Fault Simulation .615

Supported Fault Models . 615

Fault Simulation Design Flow . 616

Preparing Functional Test Patterns for Fault Simulation .618
Pattern Compliance with ATE .618
Checking Patterns for Timing Insensitivity . 619

Timing Sensitivity . 619

Preparing Your Design for Fault Simulation . 620
Preprocessing the Netlist . 620
Reading the Design and Libraries . 620
Building the ATPG Design Model .620
Declaring Clocks . 621
Running DRC . 621

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

DRC for Nonscan Operation . 622
DRC for Scan Operation . 624

Reading Functional Test Patterns . 624
Using the Set Patterns Dialog Box .624
Using the set_patterns Command . 625
Specifying Strobes for VCDE Pattern Input . 625

Initializing the Fault List . 627
Using the Add Faults Dialog Box . 628
Using the add_faults Command . 628

Performing Good Machine Simulation . 628
Using the Run Simulation Dialog Box . 629
Using the set_simulation and run_simulation Commands 629

Performing Fault Simulation . 629
Using the Run Fault Simulation Dialog Box . 630
Using the run_fault_sim Command . 630
Writing the Fault List .631

Combining ATPG and Functional Test Patterns . 631
Creating Independent Functional and ATPG Patterns 631
Creating ATPG Patterns After Functional Patterns . 632
Creating Functional Patterns After ATPG Patterns . 633
Using TestMAX ATPG with Z01X . 635

Transition Fault Flow . 636

Running Multicore Simulation . 637
Invoking Multicore Simulation .638
Interrupt Handling . 638
Processes Summary Report .638
Resimulating ATPG Patterns . 640
Limitations . 640

Per-Cycle Pattern Masking . 641
Flow Options . 641
Masks File .642
Running the Flow . 642
Limitations . 645

16. On-Chip Clocking Support . 646

OCC Background . 646

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

OCC Definitions, Supported Flows, Supported Patterns . 647

OCC Limitations . 648

TestMAX DFT to TestMAX ATPG Flow .650

OCC Support in TestMAX ATPG . 653
Design Set Up . 653
OCC Scan ATPG Flow . 654
Waveform and Capture Cycle Example . 654
Using Synchronized Multi Frequency Internal Clocks 655

Enabling Internal Clock Synchronization . 655
Clock Chain Reordering . 655
Clock Chain Resequencing . 656
Finding Clock Chain Bit Requirements . 658
Reporting Clocks . 658
Reporting Patterns . 660

Using Internal Clocking Procedures . 661
Enabling Internal Clocking Procedures . 661
Performing DRC with Internal Clocking Procedures 661
Reporting Clocks . 662
Performing ATPG with Internal Clocking Procedures 663
Grouping Patterns By ClockingProcedure Blocks 663
Writing Patterns Grouped by Clocking Procedure 665
Reporting Patterns . 665
Limitations .666

OCC-Specific DRC Rules . 666

17. TestMAX Diagnosis . 668

Understanding Diagnosis . 669
Diagnosis Reporting . 669

Running Diagnosis . 670
Using the Run Diagnosis Dialog Box . 671
Using the run_diagnosis Command . 671

Running the TestMAX Diagnosis Flow . 671
Script Example . 674

Writing and Reading Binary Image Files . 674

Reading Pattern Files . 675
Reading Patterns . 675
Reading Multiple Pattern Files . 676
Translating DFTMAX Compressed Patterns Into Normal Scan Patterns 676

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Example Flow .677
Translation Limitations . 678

Failure Data Files . 678
Pattern-Based Failure Data File . 679

Pattern-Based Failure Data File for DFTMAX Serialized Adaptive Scan . . 681
Cycle-Based Failure Data File . 681

Cycle-Based Failure Data File Format .682
Failure Data File Extensions . 683
Adding Header Information to a Failure Data File . 685

Creating a Header Section .685
Creating a Header Schema File . 686
Examples . 687

Failure Data File Limitations .690

Class-Based Diagnosis Reporting . 690
Filtering Candidates . 691
Filtering Bridge Candidates . 691
Resetting User-Specified Filters . 692
Reporting Detailed Candidate Information . 692
Example Flow . 693
Understanding the Class-Based Diagnosis Report . 694
Class-Based Cell-Aware Diagnosis . 696

Fault-Based Diagnosis Reporting . 697
Verbose Format . 700
Physical Diagnosis Format . 701
Scan Chain Diagnosis Format . 703

Using a Dictionary for Diagnosis . 705
Example Flow . 706
Diagnosis Dictionary Commands . 707
Limitations . 708

Failure Mapping Report for DFTMAX Patterns .708

Composite Fault Model Data Report . 709

Parallel Diagnosis . 712
Specifying Parallel Diagnosis . 712
Converting Serial Scripts to Parallel Scripts .713
Using Split Datalogs to Perform Parallel Diagnosis for Split Patterns 714
Diagnosis Log Files . 715
Parallel Diagnosis Limitations .717

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

18. Using Physical Data for Diagnosis . 718

Physical Diagnosis Flow Overview . 718

Creating and Validating a PHDS Database . 720

Reading a PHDS Database into TestMAX ATPG . 722
Starting and Stopping the DAP Server Process .723
Setting Up a Connection to the PHDS Database .724

Name Matching Using a PHDS Database . 725
Name Matching Overview .725
Understanding the Name Matching Coverage Report 726
Reporting the Name Matching Coverage . 727
Using Name Matching Results for Diagnosis .728

Setting Up and Running Physical Diagnosis . 729
Running Physical Diagnosis . 730

Static Subnet Extraction Using a PHDS Database .731

Reporting Physical Subnet ID Data . 732
Understanding Physical Subnet ID Data . 733

Writing Physical Data for Yield Explorer . 734

19. Power Aware ATPG . 736

Input Data Requirements . 737

Setting a Power Budget . 737

Preparing Your Design . 738
Reporting Clock-Gating Cells . 738
Constraining Clock-Gating Cells for Power Aware ATPG 739
Setting a Strict Power Budget . 740

Running Power Aware ATPG . 740

Applying Quiet Chain Test Patterns . 742

Testing with Asynchronous Primary Inputs . 742

Power Reporting By Clock Domain . 743

Setting a Capture Budget for Individual Clocks . 749

Testing for Partitions . 751
Specifying a Test Coverage Target for Partitions . 751
Specifying Capture Power for Partitions .751
Specifying Shift Power for Partitions . 751

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Reporting Power Per Partition . 751
Example . 752
Limitations . 753

Retention Cell Testing . 753
Typical Retention Cell Used for Testing by TestMAX ATPG754
Creating the chain_capture Procedure .755
Identifying Retention Cells for Testing . 756
Pattern Generation for Retention Cells . 756
Pattern Formatting for Retention Cells . 757
Pattern Formatting by Masking Non-Retention Cells . 758
Retention Cell Testing Limitations . 760

Power Aware ATPG Limitations . 760

20. Bridging Fault ATPG . 762

Bridging Fault ATPG Flow Overview . 762

Running the Bridging Fault ATPG Flow . 763
Setup . 763
Input Faults . 764
Manipulating the Fault List . 764
Examining the Fault List . 764
Fault Simulation . 765
Running ATPG . 765
Analysis . 765
Example Script . 766

Detecting Bridging Faults . 766
Defining Bridging Faults . 767
Bridge Locations . 767
Strength-Based Patterns .768

Bridging Fault Model Limitations .769

Running the Dynamic Bridging Fault ATPG Flow .769
Dynamic Bridging Fault Model Introduction . 770
Preparing to Run Dynamic Bridging Fault ATPG . 770

Specifying a List of Input Faults .771
Manipulating the Fault List .771
Examining the Fault List .772

Fault Simulation . 772
Running ATPG . 773

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Analyzing Fault Detection .773
Example Script . 774
Limitations . 775

21. Cell-Aware Test . 776

Cell-Aware Test Flow . 776

Targeting lnternal Cell Defects . 778

Cell Test Models . 780

Generating Cell Test Models .781

Running Cell-Aware ATPG . 782
Example Script . 784

Running Cell-Aware Simulation . 785

Cell-Aware Diagnosis . 786
Identifying a Defect Within a Cell . 787
Running Cell-Aware Physical Diagnosis . 789

22. Transition Delay Fault ATPG . 791

Using the Transition Delay Fault Model . 791
Transition Delay Fault ATPG Flow . 792

Typical Transition Delay Fault ATPG Run . 794
Transition Delay Fault ATPG Timing Modes . 795

Launch-On Shift Mode Versus System Clock Launch Mode 796
Launch-On Extra Shift Timing . 797

STIL Protocol for Transition Faults .799
Creating Transition Fault Waveform Tables . 800
DRC for Transition Faults .802
Limitations of Transition Delay Fault ATPG . 803

Specifying Transition Delay Faults . 803
Selecting the Fault Model .804
Adding Faults to the Fault List . 804
Reading a Fault List File . 804

Pattern Generation for Transition Delay Faults .805
Using the set_atpg Command . 805
Using the set_delay Command . 806
Using the run_atpg Command . 806
Pattern Compression for Transition Faults . 807

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using the report_faults Command . 807
Using the write_faults Command . 807

Pattern Formatting for Transition-Delay Faults . 808
MUXClock Support for Transition Patterns .809

Specifying Timing Exceptions From an SDC File . 810
Reading an SDC File . 810
Interpreting an SDC File .811
How TestMAX ATPG Interprets SDC File Commands 811
Controlling Clock Timing, ATPG, and Timing Exceptions for SDC 812
Reporting SDC Results . 813

Slack-Based Transition Fault Testing . 813
Basic Usage Flow .814

Extracting Slack Data from PrimeTime . 814
Utilizing Slack Data in the TestMAX ATPG Flow . 814
Command Support . 815

Special Elements of Slack-Based Transition Fault Testing 817
Allowing Variation From the Minimum-Slack Path 817
Defining Faults of Interest . 818
Reporting Faults . 818

Limitations . 819
Engine and Flow Limitations . 819
ATPG Limitations . 819
Limitations in Support for Bus Drivers . 819

23. Path Delay Fault and Hold Time Testing . 820

Path Delay Fault Theory . 820
Path Delay Fault Term Definitions . 821
Models for Manufacturing Tests . 823
Models for Characterization Tests . 824
Testing I/O Paths . 825
Path Delay Test Patterns . 825

Path Delay Testing Flow . 826

Obtaining Delay Paths . 829

Hold Time ATPG Test Flow .829

Generating Path Delay Tests . 831
Flow for Generating Path Delay Tests . 832
Using set_delay Options .833

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Reading and Reporting Path Lists . 833
Analyzing Path Rule Violations .833
Viewing Delay Paths .833
Path Delay ATPG Options . 834
Internal Loopback and False/Multicycle Paths . 834
Creating At-Speed WaveformTables .835
Maintaining At-Speed Waveform Table Information . 838
MUXClock Support for Path Delay Patterns . 838

Enabling MUXClock Functionality . 839
Delay Test Vector Format .839
Limitations of MUXClock Support for Path Delay Patterns 841
ATPG Requirements to Support MUXClock .841

Handling Untested Paths . 841
Understanding False Paths . 842
Understanding Untestable Paths . 842
Reporting Untestable Paths . 843
Analyzing Untestable Faults . 844

TestMAX ATPG Commands for Path Delay Fault Testing Example844

24. Quiescence Test Pattern Generation . 846

Why Do IDDQ Testing? .846
CMOS Circuit Characteristics . 847
IDDQ Testing Methodology .848
Types of Defects Detected . 849
Number of IDDQ Strobes . 849

About IDDQ Pattern Generation . 850

Fault Models . 851

DRC Rule Violations . 852

Generating IDDQ Test Patterns . 853
IDDQ Test Pattern Generation Flow .854
Using the iddq_capture Procedure .854
Off-Chip IDDQ Monitor Support . 855

Specifying Additional Signals in the Netlist . 855
Defining the iddq_capture Procedure to Support Additional Signals 856

Using IDDQ Commands . 861
Using the set_faults Command . 861
Using the set_iddq Command . 861

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using the add_atpg_constraints Command . 862

IDDQ Bridging . 863

Design Principles for IDDQ Testability . 864
I/O Pads . 864
Buses . 865
RAMs and Analog Blocks .865
Free-Running Oscillators . 866
Circuit Design . 866
Power and Ground . 866
Models With Switch/FET Primitives . 866
Connections . 867
IDDQ Design-for-Test Rule Summary . 867

Additional System-on-a-Chip Rules . 868

25. Running Distributed ATPG . 869

Debugging Name Matching Errors . 870
Debugging Missing Instances .871
Debugging Hierarchical Mismatches . 871

Checking Your Environment for Distributed Processing . 873

Machine Access and Setup for Distributed ATPG . 873

Preparing to Run Distributed Processing . 874

Setting Up the Distributed Environment . 875

Setting Up the Distributed Environment With Load Sharing 877

Verifying Your Environment .879
Remote Shell Considerations . 879
Tuning Your .cshrc File . 880
Checking the Load Sharing Setup . 880

Starting Distributed ATPG . 880
Saving Results . 883
Distributed Processor Log Files . 883

Starting Distributed Fault Simulation .884
Events After Starting A Distributed Run . 885
Interpreting Distributed Fault Simulation Results . 885

Debugging Distributed ATPG Issues . 886

Distributed ATPG Limitations . 888

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

26. Persistent Fault Model Support .889

Persistent Fault Model Overview . 889

Persistent Fault Model Operations . 890
Switching Fault Models .891
Working With Internal Pattern Sets . 891
Manipulating Fault Lists . 891

Automatically Saving Fault Lists . 892
Automatically Restoring Fault Lists . 892
Removing Fault Lists . 893
Adding Faults . 893

Reporting Persistent Fault Models . 894

Direct Fault Crediting . 895

Example Commands Used in Persistent Fault Model Flow 898

27. Using TestMAX ATPG and DFTMAX Ultra Compression900

Generating Patterns for DFTMAX Ultra Designs . 900
Pattern Types Required by DFTMAX Ultra . 901
Script Example for Generating Patterns for DFTMAX Ultra 901
Manipulating Patterns for DFTMAX Ultra . 902

Controlling the Peak and Average Power During Shifting 902
Increasing the Maximum Shift Length of Patterns 903
Optimizing Padding Patterns . 903
Removing and Reordering Patterns .904

High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnosis905
Identifying Defective Chains . 906
Generating High Resolution Patterns . 906
Rerunning Diagnosis .906
Flow Example . 906

Test Validation and VCS Simulation for DFTMAX Ultra Designs 907

Limitations for Using DFTMAX Ultra .907

28. Troubleshooting .909

Reporting Port Names .909

Reviewing a Module Representation . 910

Rerunning Design Rule Checking .911

Troubleshooting Netlists . 912

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Troubleshooting STIL Procedures .913
Opening the STL Procedure File . 913
STIL load_unload Procedure . 913
STIL Shift Procedure . 914
STIL test_setup Macro . 915
Correcting DRC Violations by Changing the Design . 916

Analyzing the Cause of Low Test Coverage .916
Where Are the Faults Located? . 917
Why Are the Faults Untestable or Difficult to Test? . 918
Using Justification . 919

Completing an Aborted Bus Analysis . 920

Using Pipeline Guidance .920
Specifying the Head Pipeline Structures in the SPF . 921
Using set_drc -pipeline_structures . 922

29. ATPG FAQ . 923

What is the Difference Between Multicore Processing and Multithreading? 924

How Can I Avoid Generating Patterns With Floating BIDI Ports?926

How Do I Abbreviate Commands? . 926
Tcl Mode . 926

Example . 927
Native Mode . 927

What Special Characters Are Used in Tcl Mode? . 927

What Are Limited Regular Expressions? . 928
Regular Expression Meta-Characters .928

Usage Notes: . 929
Examples .929
Using Escape Characters With Wildcards and Regular Expressions930

What are the Compressor Connections in report_scan_chains Output? 930

What are Some Examples of Pin Data? .940
Bidi Control Value . 940
Clock Cone . 940
Clock On . 941
Clock Off . 941
Constraint Data . 942
Debug Sim Data . 943

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Delay Data . 943
Error Data . 943
Fault Data . 943
Fault Sim Result . 944
FULL_SEQ_Scoap_data .945
Full Sequential TG Data . 945
Good Sim Results .946
Load . 946
Master Observe . 947
None . 947
Pattern .947
SCOAP Data .948
SDC Case Analysis . 949
Seq Sim Data . 949
Shadow Observe . 951
Shift . 951
Stability Patterns . 952
Test Setup . 952
Tie Data .953

How Do I Use the write_testbench Command to Customize MAX Testbench
Output? . 953

Example . 954

Validating Simulation Libraries Used For ATPG . 956

How Do I Customize Ltran Output for FTDL, TSTL2, or TDL91? 959
Customizing Ltran Configuration Files . 959

Customizing Simulator Format-Specific Controls .960
Common Ltran Controls . 960
Character Padding . 960

How TestMAX ATPG Processes Setup and Hold Violations961
Example of How TestMAX ATPG Handles an Ambiguous Case 961

Interpreting UDP Messages . 962
Variant #1 . 962
Variant #2 . 965
Variant #3 . 968
Variant #4 . 970
Debugging UDP-based Models . 971

What is the Difference between the add_capture_masks vs add_cell_constraints
Commands? . 972

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Masking a Scan Cell by Instance Name . 972
Masking a Nonscan Cell by Instance Name . 973

JTAG Support . 973
Common Tasks for Supporting JTAG . 973
Initializing TAP Using test_setup . 974
Keeping the TAP Controller from Changing State . 975
When to Constrain TMS . 976
Controlling TAP using load_unload . 976
Accessing Internal Scan Chains Through the TAP . 977
Limiting Clocks during ATPG . 977

TAP controllers with no reset pin . 978

Node File Format for Bridging Faults . 978
Star-RCXT Format . 978
Node File Format . 979

Optimizing Basic Scan Patterns . 981

Design and ATPG Usage Tips for Designs with Phase Lock Loops (PLLs) 983
Design Considerations: .983
ATPG Tool Considerations: .983

Shared Scan-In Designs . 984

Creating End-of-Cycle Measures in ATPG Patterns . 985
Drawbacks of Using End-of-Cycle Measures .986
Requirements Needed to Produce End-of-Cycle Measures986

Troubleshooting Pattern Simulation Failures . 987
Your ATPG Patterns are Failing: What Next? . 988
Interpreting the Simulation Failure Messages . 991
Isolating a Failing Pattern to Assist in Troubleshooting 994
Eliminating a Few Failing Patterns from a Larger Set 995
Locating the Target Fault Site for the Failing Pattern .995
Isolating a Fault List to Assist in Troubleshooting . 997
Interpreting the report_patterns Command . 998
Viewing Pattern Data in the Graphical Schematic Viewer 999
Using the analyze_simulation_data Command . 1000

WGL Pattern Generation Options . 1001
Creating LSI-Compatible WGL Patterns . 1002
Creating NEC-Compatible WGL Patterns . 1004
WGL Scan Chain Padding . 1005
WGL Scan Chain Definitions .1006

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Macro Usage in WGL . 1007
Grouping Bidirectional Port Data in WGL .1009
Controlling Port Data Order in WGL . 1010
Specifying Windowed Measures in WGL . 1011
Delayed Input Force Timing and Force Prior in WGL 1011
Balancing Vector and Scan Statements in WGL .1012
Mapping Bidirectional Ports Within Vector Statements in WGL 1014
Mapping Bidirectional Ports Within Scan Statements in WGL 1017
Adjusting Pattern Data for Serial Versus Parallel Interpretation in WGL 1018
Selecting Scan Chain Inversion Reference in WGL .1019
Effect of CELLDEFINE in WGL .1021
Ambiguity of the Master Cell in WGL .1022

Subnet Formats for Diagnosis . 1023

Handling Escape Characters in Tcl Mode .1026

Passing Complex Options to LSF/GRID .1027

30. Scripts .1028

Basic ATPG Run Script .1029

Basic TestMAX ATPG Run . 1030

ATPG Run No SPF . 1032

Bridging Fault ATPG . 1033

Cell-Aware ATPG . 1034

Dynamic Bridging Fault ATPG . 1036

Low Power ATPG . 1038

Multicore ATPG . 1039

Scan-Through-TAP ATPG Flow . 1041

Transition Delay Fault ATPG .1042

Transition Delay Fault ATPG Using LOES Timing . 1043

Basic TestMAX ATPG Diagnosis Run .1045

Distributed Processing Fault Simulation Flow .1047

DFTMAX What-If Analysis . 1048

DFTMAX Ultra High Resolution Pattern Flow .1048

Fault Coverage of Combined ATPG and JTAG Test Vectors 1049

Generating Patterns for DFTMAX Ultra . 1050

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

IDDQ Bridging Flow . 1051

Slack-Based Testing . 1053

31. Validating Test Patterns . 1055

TestMAX ATPG Pattern Format Overview . 1055

Writing STIL Patterns . 1056

Design to Test Validation Flow . 1058

32. Using MAX Testbench .1060

Overview . 1060
Installation . 1061
Obtaining Help . 1061

Running MAX Testbench .1061

write_testbench Command Syntax . 1063

MAX Testbench Command-Line Parameters Used With the write_testbench
Command . 1065

stil2Verilog Command Syntax . 1071
Setting the Run Mode .1077

Configuring MAX Testbench . 1078
Understanding the Failures File . 1086

MAX Testbench and Legacy Scan Failures . 1086
MAX Testbench and DFTMAX Compression Failures 1087
MAX Testbench and Serializer Scan Failures . 1089

Using the Failures File . 1090
Using Split STIL Pattern Files . 1094

Execution Flow for -split_in Option . 1095
Splitting Large STIL Files . 1095

Why Split Large STIL Files? . 1096
Executing the Partition Process . 1096
Example Test . 1097

Controlling the Timing of a Parallel Check/Assert Event 1098
Using MAX Testbench to Report Failing Scan Cells 1102

Flow Overview . 1103
Flow Example .1105

MAX Testbench Runtime Programmability . 1108
Basic Runtime Programmability Simulation Flow1108
Runtime Programmability for Patterns . 1109

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Example: Using Runtime Predefined VCS Options 1112
MAX Testbench Runtime Programmability Limitations 1113

MAX Testbench Support for IDDQ Testing .1114
Compile-Time Options for IDDQ . 1114
IDDQ Configuration File Settings .1115
Generating a VCS Simulation Script . 1116

How MAX Testbench Works .1117
Predefined Verilog Options .1118
MAX Testbench Limitations . 1121
Example of the Configuration Template . 1121

MAX Testbench Error Messages and Warnings . 1124
Error Message Descriptions . 1125
Warning Message Descriptions . 1131
Informational Message Descriptions .1148

Troubleshooting MAX Testbench . 1150
Introduction . 1150
Troubleshooting Compilation Errors . 1151

FILELENGTH Parameter . 1151
NAMELENGTH Parameter .1152
Memory Allocation . 1152
MDEPTH Parameter .1152

Troubleshooting Miscompares . 1153
Handling Miscompare Messages . 1153
Understanding MAX Testbench Parallel Miscompares 1156
Localizing a Failure Location . 1157
Adding More Fingerprints .1159

Debugging Simulation Mismatches Using the write_simtrace Command1160
Overview .1160
Debugging Flow . 1161
Input Requirements . 1162
Using the write_simtrace Command . 1163
Understanding the Simtrace File . 1163
Error Conditions and Messages .1164
Example Debug Flow . 1164
Restrictions and Limitations . 1167

Debugging Parallel Simulation Failures Using Combined Pattern Validation 1167
Overview . 1168
Understanding the PSD File .1169
Creating a PSD File . 1171

Using the run_atpg Command to Create a PSD File1172
Using the run_simulation Command to Create a PSD File 1173

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Flow Configuration Options . 1175
Example Simulation Miscompare Messages . 1175

Displaying the Instance Names of Failing Cells . 1179
Debug Modes for Simulation Miscompare Messages 1180
Pattern Splitting .1182

Splitting Patterns Using TestMAX ATPG . 1182
Splitting Patterns Using MAX Testbench . 1186
Specifying a Range of Split Patterns Using MAX Testbench 1188

MAX Testbench and Consistency Checking .1188
Using the PSD File with DFTMAX Ultra Compression1189

Script Example . 1190
Limitations for Debugging Simulation Failures Using CPV1190

33. Using Loadable Nonscan Cells in TestMAX ATPG . 1192

Simulation Support . 1192

ATPG Support . 1193

Multithreading ATPG . 1193

Fault Simulation Support .1193

Reporting Loadable Nonscan Cells . 1193

Analyzing . 1195

Limitations . 1196

34. PowerFault . 1198

PowerFault Simulation .1198
PowerFault Simulation Technology .1198
IDDQ Testing Flows . 1200

IDDQ Test Pattern Generation . 1201
IDDQ Strobe Selection From an Existing Pattern Set 1202

Licensing . 1202

Verilog Simulation with PowerFault .1203
Preparing Simulators for PowerFault IDDQ . 1203

Using PowerFault IDDQ With Synopsys VCS . 1204
Using PowerFault IDDQ With Cadence NC-Verilog1205
Using PowerFault IDDQ With Cadence Verilog-XL 1209
Using PowerFault IDDQ With Model Technology ModelSim 1211

PowerFault PLI Tasks .1213
Getting Started . 1213

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

PLI Task Command Summary Table . 1214
PLI Task Command Reference . 1216

Faults and Fault Seeding . 1240
Fault Models . 1241

Fault Models in TestMAX ATPG . 1241
Fault Models in PowerFault . 1241

Fault Seeding . 1242
Seeding From a TestMAX ATPG Fault List . 1242
Seeding From an External Fault List . 1244
PowerFault-Generated Seeding .1244

Options for PowerFault-Generated Seeding . 1245
Stuck-At Fault Model Options . 1245
Bridging Faults . 1253

PowerFault Strobe Selection .1257
Overview of IDDQPro . 1258
Invoking IDDQPro . 1259

ipro Command Syntax . 1259
Strobe Selection Options . 1260
Report Configuration Options .1262
Log File and Interactive Options . 1265

Interactive Strobe Selection . 1265
cd . 1267
desel . 1267
exec . 1268
help . 1268
ls . 1268
prc .1268
prf . 1268
prs .1269
quit . 1269
reset . 1269
sela . 1269
selm . 1269
selall . 1270

Strobe Selection Tutorial . 1270
Simulation and Strobe Selection . 1271
Interactive Strobe Selection . 1274

Understanding the Strobe Report .1279
Example Strobe Report . 1279
Fault Coverage Calculation . 1280
Adding More Strobes . 1281
Deleting Low-Coverage Strobes . 1281

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Fault Report Formats . 1282
TestMAX ATPG Fault Report Format .1282
Verifault Fault Report Format .1283
Listing Seeded Faults .1283

Verifault Interface . 1283
Iterative Simulation . 1285

Using PowerFault Technology .1286
PowerFault Verification and Strobe Selection . 1287

Verifying TestMAX ATPG IDDQ Patterns for Quiescence 1287
Selecting Strobes in TestMAX ATPG Stuck-At Patterns 1288
Selecting Strobe Points in Externally Generated Patterns1289

Testbenches for IDDQ Testability . 1290
Separate the Testbench From the Device Under Test 1290
Drive All Input Pins to 0 or 1 . 1290
Try Strobes After Scan Chain Loading . 1291
Include a CMOS Gate in the Testbench for Bidirectional Pins 1291
Model the Load Board . 1291
Mark the I/O Pins . 1291
Minimize High-Current States . 1291
Maximize Circuit Activity . 1292

Combining Multiple Verilog Simulations . 1292
Improving Fault Coverage . 1294

Determine Why the Chip Is Leaky . 1294
Evaluate Solutions . 1295

Floating Nodes and Drive Contention . 1300
Floating Node Recognition .1300
Drive Contention Recognition . 1303

Status Command Output . 1304
Status Command Overview . 1304
Leaky Reasons .1305
Nonleaky Reasons . 1307
Driver Information .1308

Behavioral and External Models .1309
Disallowing Specific States . 1309
Disallowing Global States . 1309

Multiple Power Rails . 1310
Testing I/O and Core Logic Separately . 1314

35. Types of Reports . 1316

Output From the report_scan_ability Command . 1317

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Standard Format . 1317

Output From the report_scan_cells Command . 1318
Standard Format . 1318
-Pin Format . 1319
Verbose Format . 1320

Output From the report_scan_chains Command . 1322
Standard Format . 1322
Verbose Format . 1322

Output From the report_scan_path Command . 1323
Standard Format . 1323
Verbose Format . 1324

Output From the report_settings Command . 1325
Standard Format . 1326

Output From the report_summaries Command . 1328
Standard Format . 1328
Verbose Format . 1328
Primitives Report .1329
Library Cells Report . 1330
Optimizations Report . 1330
Sequential Depths Report .1331

Output From the report_version Command . 1332
Standard Format . 1332
Full Format . 1332
Short Format . 1332
Address Format . 1332
Banner Format . 1333
Verbose Format . 1333

Output From the report_violations Command .1333
Standard Format . 1333

Output From the report_wires Command . 1334
Summary Format . 1334
Standard Format . 1334
Verbose Format . 1335

Output From the analyze_buses Command . 1336
Standard Format - defaults .1336
Standard Format - zstate . 1336

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Standard Format - exclusive . 1336
Standard Format - prevention . 1337

Output From the analyze_faults Command . 1337
Standard Format for Blocked pin_pathname . 1338
Standard Format for Successful pin_pathname . 1338
Standard Format for Class . 1339
Blockage and Constraint Value Source Points Format1341
Verbose Format . 1342

Output From the report_atpg_constraints Command . 1343
Summary Format . 1343
Standard Format . 1344

Output From the report_atpg_primitives Command . 1344
Summary Format . 1345
Standard Format . 1345
Verbose Format . 1345

Output From the report_buses Command . 1346
Summary Format . 1346
Standard Format . 1347
Verbose Format . 1348

Output From the report_cell_constraints Command . 1348
Standard Format . 1348

Output From the report_clocks Command . 1349
Standard Format . 1349
Matrix Format . 1350
Internal Clocks Format . 1352
Verbose Format . 1353

Output From the report_commands Command . 1354
Summary Format . 1354
Standard Format . 1354
Usage Format . 1354

Output From the report_memory Command .1355
SUMMARY FORMAT . 1355
Standard Format . 1356
Verbose Format . 1356
Standard Format With Constants . 1357

Output From the report_modules Command . 1358

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Summary Format . 1358
Standard Format . 1359
Verbose Format . 1359

Output From the report_net_connections Command . 1360
Standard Format . 1360

Output From the report_nets Command .1361
Standard Format . 1361

Output From the report_nofaults Command . 1362
Standard Format . 1362

Output From the report_nonscan_cells Command . 1362
Summary Format . 1363
Standard Format . 1363

Output From the report_patterns Command .1364
Summary Format . 1364
Standard Format . 1365
Pattern Type Format .1366
Understanding the Cycle Count for Designs with OCCs 1368

Output From the report_pi_constraints Command . 1369
Standard Format . 1369

Output From the report_pi_equivalences Command . 1369
Standard Format . 1369

Output From the report_po_masks Command . 1370
Standard Format . 1370

Output From the report_primitives Command .1370
Summary Format . 1371
Standard Format . 1372
Verbose Format . 1373
Pin/PI/PO/PIO Format .1373

Output From the report_rules Command . 1374
Standard Format . 1374

Output From the run_build_model Command .1375
Standard Format . 1375
Verbase Format . 1376

Output From the run_fault_sim Command . 1379
Standard Format . 1379

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Output From the run_justification Command . 1381
Standard Format (Examples) . 1381

Output From the run_simulation Command . 1382
Standard Format . 1382
With Simulation Mismatches .1383
Using the -max_fails Option . 1384
Using the -progress_message Option of the set_simulation Command1385

36. Glossary . 1387

At-speed Clock . 1389

ATPG Primitive ID . 1389

ATPG Primitive Name . 1390

Black Box . 1391

Bus Keeper . 1391

Capture Clock . 1391

Capture Clock Edge (Capture Edge) . 1392

Capture Vector . 1392

Circuit Path . 1392

Clock . 1393

Clock Cone . 1393

Comment Lines . 1393

Repeating Commands .1393

Continuation Character . 1394

Delay Path .1394

Effect Cone . 1395

Empty Box . 1395

False Path . 1395

Fanin Number . 1395

backward . 1396

Fanout Number . 1397

forward .1398

report_primitives . 1399

Primitive ID . 1404

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Gray Box . 1405

Head of the Path .1405

How to Copy and Paste . 1405
Cut/Paste between X11 window and TestMAX ATPG GUI window 1405

Instance Name . 1406

Launch Clock .1406

Launch Clock Edge (Launch Edge) . 1406

Feedback Path ID . 1407

Majority Gate . 1407

Measure Scan Chain Output .1407

Modifying Timing Data in an Existing STL Procedures File 1407

Module Name . 1408

Module Pin Name . 1408

Net Name . 1409

Non-robust Detection of a Path Delay Fault .1409

Non-robust Test (For a Path Delay Fault) .1410

Nonscan Behavior: C0 . 1410

Nonscan Behavior: C1 . 1410

Nonscan Behavior: CU . 1410

Nonscan Behavior: L0 .1411

Nonscan Behavior: L1 .1411

Nonscan Behavior: LE . 1411

Nonscan Behavior: LS . 1411

Nonscan Behavior: RAM_out . 1411

Nonscan Behavior: TE . 1411

Nonscan Behavior: TLA . 1412

Null Module . 1412

Off-path Input .1412

Off State . 1412

On-path Input . 1413

Output Redirection . 1413

Path Delay Fault . 1414

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Pin Pathname . 1414

Port Name . 1414

Primitive ID . 1415

Sequential Model Port Priorities . 1416

Reconverging Path . 1416

Robust Detection of a Path Delay Fault . 1416

Robust Test (For a Path Delay Fault) .1416

Scan Clock . 1417

SCOAP . 1417

Setup Vector (Launch Vector) .1417

Shift Position . 1418

Simulation Events . 1418

Tail of the Path . 1418

Test For A Path Delay Fault . 1419

Unstable Set / Resets . 1419

WFCMap . 1419

Ungated Circuitry .1419

37. Limitations . 1420

A. Test Concepts . 1425

Why Perform Manufacturing Testing? .1425

Understanding Fault Models . 1426
Stuck-At Fault Models .1426
Detecting Stuck-At Faults . 1427
Transition Delay Fault Models . 1429
Detecting Transition Delay Faults .1429
Using Fault Models to Determine Test Coverage .1430
IDDQ Fault Model .1430
Fault Simulation . 1431
Automatic Test Pattern Generation .1431
Translation for the Manufacturing Test Environment 1432

Coverage Calculations . 1432
Test Coverage .1433

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Fault Coverage . 1433
ATPG Effectiveness . 1433

Internal Scan . 1433
Example . 1434
Applying Test Patterns . 1435
Scan Design Requirements . 1436

Controllability of Sequential Cells . 1436
Observability of Sequential Cells . 1437

Full-Scan Design .1437
Partial-Scan ATPG Design . 1438

What Is Boundary Scan? . 1438

B. ATPG Design Guidelines . 1441

ATPG Design Guidelines . 1441
Internally Generated Pulsed Signals . 1442
Clock Control . 1445
Pulsed Signals to Sequential Devices . 1447
Multidriver Nets . 1448
Bidirectional Port Controls . 1450

Exception . 1451
Clocking Scan Chains: Clock Sources, Trees, and Edges1451

Clock Trees . 1452
Clock Flip-Flops . 1453
XNOR Clock Inversion and Clock Trees . 1455

Protection of RAMs During Scan Shifting . 1456
RAM and ROM Controllability During ATPG . 1456
Pulsed Signal to RAMs and ROMs . 1458
Bus Keepers . 1458

Non-Z State on a Multidriver Net . 1459
Non-Clocked Events .1460

Bus Keepers . 1461
Non-Z State on a Multidriver Net . 1462
Non-Clocked Events .1462

Checklists for Quick Reference .1463
ATPG Design Guideline Checklist . 1463
Ports for Test I/O Checklist .1464

C. Importing Designs From TestMAX DFT . 1466

46

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

D. Utilities . 1468

Ltran Translation Utility . 1468
Ltran in the Shell Mode . 1469
FTDL, TDL91, and TSTL2 Configuration Files .1470
Understanding the Configuration File . 1471

Customizing the FTDL Configuration File . 1472
Customizing the TDL91 Configuration File . 1472
Customizing the TSTL2 Configuration File . 1474
Additional Controls . 1474

Configuration File Syntax . 1475
OVF_BLOCK Statements .1475
PROC_BLOCK Statements . 1476
TVF_BLOCK Statements . 1479

Generating PrimeTime Constraints . 1480
Input Requirements .1481
Starting the Tcl Command Parser Mode . 1481
Setting Up TestMAX ATPG .1482
Making Adjustments for OCC Controllers . 1485
Performing an Analysis for Each Mode . 1486
Implementation . 1488

Converting Timing Violations Into Timing Exceptions . 1490

Importing PrimeTime Path Lists . 1492
Path Definition Syntax . 1496

stilgen Utility and Configuration Files . 1498
Using stilgen for Pattern Porting . 1498

stilgen Configuration File Syntax for Pattern Porting 1499
Port-Mapping File Syntax .1500

Using stilgen for Protocol Generation .1500
stilgen Configuration File Syntax for Protocol Generation 1501

Pattern Porting Example .1504
Protocol Generation Notes . 1505
Supported Configurations . 1506
Limitations . 1509

E. STIL Language Support . 1510

STIL Overview .1510
IEEE Std. 1450-1999 . 1511

47

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

IEEE Std. 1450.1 Design Extensions to STIL . 1511

TestMAX ATPG and STIL . 1512

STIL Conventions in TestMAX ATPG . 1512
Use of STIL Procedures . 1513
Context of Partial Signal Sets in Procedure Definitions 1513
Use of STIL SignalGroups . 1514
WaveFormCharacter Interpretation .1515

IEEE Std. 1450.1 Extensions Used in TestMAX ATPG . 1516
Vector Data Mapping Using \m . 1516

Syntax .1518
Example . 1519

Vector Data Mapping Using \j .1519
Syntax .1520
General Example . 1520
Usage Example . 1521

Signal Constraints Using Fixed and Equivalent . 1523
ScanStructures Block . 1524

Elements of STIL Not Used by TestMAX ATPG . 1524
TestMAX ATPG STIL Output . 1525
TestMAX ATPG STIL Input .1527

Testing the STIL Procedure File . 1527

F. STIL99 Versus STIL .1529

G. Defective Chain Masking for DFTMAX . 1540

Introduction . 1540

Running the Flow . 1541
Placing Constraints on the Defective Chain .1541
Generating Patterns . 1542
Regenerating Patterns . 1542

Examples . 1542

Limitation . 1544

H. Simulation Debug Using MAX Testbench and Verdi . 1545

Setting the Environment . 1545

48

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Preparing MAX Testbench . 1546

Linking Novas Object Files to the Simulation Executable1547

Running VCS and Dumping an FSDB File .1547

Running Verdi . 1547
Debugging MAX Testbench and VCS . 1548
Changing Radix to ASCII . 1549
Displaying the Current Pattern Number . 1549
Displaying the Vector Count . 1550
Using Search in the Signal List . 1551

49

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This User Guide
The TestMAX ATPG and TestMAX Diagnosis User Guide describes the usage and
methodology for TestMAX ATPG and TestMAX Diagnosis. Both products are used to
check testability design rules and to automatically generate manufacturing test vectors for
a logic design.

This manual provides background material on design-for-test (DFT) concepts, especially
test terminology and scan design techniques. You can obtain more information on
TestMAX ATPG and TestMAX ATPG Diagnosis features and commands by accessing
TestMAX ATPG and Diagnosis Online Help.

This manual is intended for design engineers who have ASIC design experience and
some exposure to testability concepts and strategies.

This manual is also useful for DFT engineers who incorporate the test vectors produced by
TestMAX ATPG and TestMAX Diagnosis into test programs for a particular tester or who
work with DFT netlists. Engineers involved in the testing and diagnostics of manufactured
parts also find this manual useful.

This preface includes the following sections:

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

50

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

New in This Release
Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARs) is available in the TestMAX ATPG
Release Notes on the SolvNetPlus site.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

51

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Related Products, Publications, and
Trademarks
For additional information about the ATPG tool, see the documentation on the Synopsys
SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

You might also want to see the documentation for the following related Synopsys products:

• <list_of_related_products_with_trademarks>

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

52

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

Feedback

1
TestMAX ATPG and TestMAX Diagnosis
Overview

TestMAX ATPG and TestMAX Diagnosis is part of the Synopsys TestMAX suite of tools.
Key components include advanced compression, diagnosis, and fault simulation engines
that are fast, memory-efficient, and optimized for fine-grained multithreading of ATPG
and diagnosis processes across multiple cores. TestMAX ATPG and TestMAX Diagnosis
achieve higher diagnostics throughput by transparently running multiple simulations.

TestMAX ATPG and TestMAX Diagnosis use multithreading for most processes.
Multithreading provides virtually unlimited memory usage for its core engines. This
enables the full use of multiple cores and results in extremely fast runtime. For more
information on multithreading, see Multithreading in TestMAX ATPG and TestMAX
Diagnosis.

By default, TestMAX ATPG and TestMAX Diagnosis use eight threads. For information on
how to set the thread count for multithreading, see Setting the Thread Count in TestMAX
ATPG.

If a particular command option or process does not support multithreading, non-threaded
processing is used instead. For a description of all command options that have limited
multithreading support, see TestMAX ATPG Multithreading Command Option Support. For
a description of processes that have limited multithreading support, see Multithreading
Limitations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

53

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Launching TestMAX ATPG and TestMAX Diagnosis

Feedback

Figure 1

 

BUILD Mode TEST Mode Diagnosis

Read the Netlist

Read Library Models

Build ATPG Model

Perform DRC

DRC Mode

Gate-Level

Netlist

Verilog

Simulation

Library

STIL

Procedures

Prepare for ATPG

Run ATPG

Write the Patterns

Test Patterns

TestMAX Diagnosis

 TestMAX

Physical Diagnosis

Other Flows

Cell-Aware Tests

Power-Aware ATPG

Bridging Fault ATPG

Verify the Patterns

MAX Testbench

 

Launching TestMAX ATPG and TestMAX Diagnosis
To start TestMAX ATPG and TestMAX Diagnosis, specify the tmax2 executable located
in the $SYNOPSYS/bin/ directory. You can set up the same environment and include the
same options and input used by the tmax executable, as shown in the following steps:

1. Set your environment.
setenv SYNOPSYS /synopsys/m_branch/ set path =($SYNOPSYS/bin $path)
 setenv SNPSLMD_LICENSE_FILE synopsys_licenses/my_license.lic

2. Do one of the following:

• Launch TestMAX ATPG and TestMAX Diagnosis in shell mode using the -shell
option with the tmax2 command.
tmax2 my_command_file -shell

• Launch the TestMAX GUI by specifying the tmax2 command without the -shell
option.
tmax2 my_command_file

The following table summarizes the various methods you can use to invoke TestMAX
ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

54

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Setting the Thread Count in TestMAX ATPG

Feedback

Invoke With1 You Get Process List

tmax2 64-bit kernel plus
GUI

tmax2, tmax64, tmaxgui, sometimes MAX Testbench (using
the
write_testbench
command)

tmax2
-shell

64-bit kernel tmax2, tmax64, sometimes MAX Testbench (using the
write_testbench
command)

tmax2 -man Online help tmax2, HTML browser

tmax2 -help List of options

1 - The order of switches is not important.
2 - The tmax2 process invokes the shell. The CPU is idle after the kernel launches, but
remains open so that the kernel has a transcript window in which to display output.
3 - The tmax2 and tmax2 -shell commands sometimes invoke the stil2verilog
command.

For a complete list of options associated with TestMAX ATPG, see "tmax and tmax2
Command Syntax."

Setting the Thread Count in TestMAX ATPG
When TestMAX ATPG starts, it uses eight threads by default.

To change the default values, use the -num_threads option with the set_atpg command
and the set_simulation command. Make sure to specify a positive integer, and always
use the same number of threads for both commands. Also, make sure to specify this
option before the run_drc or read_image commands.

set_atpg –num_threads 12
set_simulation –num_threads 12

There is no limit to the number of cores you can use. However, since performance is not
optimized for more than 20 cores, you can use this as a limit.

You can display the number of threads currently in use for ATPG or simulation using the
report_settings command. If you specify the report_settings atpg command or the
report_settings simulation command, the following message is displayed:

 num_threads=8

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

55

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Multithreading in TestMAX ATPG and TestMAX Diagnosis

Feedback

Look for messages similar to the following example after the first time you specify the
run_atpg, run_diagnosis,

run_fault_sim, or the run_simulation commands:

Parallel simulation data created for 16 threads
#TLA_input_gates=2312 #levels=1 CPU_time=0.00 sec.
Parallel simulation data created for 16 threads
#internal_gates=1876366 #levels=6 CPU_time=1.02 sec.

The numbers will differ depending on run-specific details. The essential information is that
threads are being used, as shown in bold in the previous example (for 16 threads).

Image files written after changing the -num_threads settings cannot be read into TestMAX
ATPG.

Multicore settings for TestMAX ATPG are not used for commands that use threads. They
are used for commands that are not supported with threads. Multicore settings are saved
in image files and can be disabled after they are read by setting the -num_processes
option to 0 in the set_atpg and set_simulation commands, as shown in the following
example:

set_atpg –num_processes 0
set_simulation –num_processes 0

Multithreading in TestMAX ATPG and TestMAX Diagnosis
TestMAX ATPG and TestMAX Diagnosis is built upon the use of multithreading. This
technique concurrently executes small, multiple tasks or threads based upon instructions
from a single central controlling scheduler.

A thread is the flow of execution through a single process. Each thread is comprised of
its own program counter to track instructions, system registers to store its current working
variables, and a stack which contains the execution history.

Some of the key benefits of multithreading include:

• Improved Responsiveness

Each activity is defined as a thread, which can be replicated as many times as
required.

• Efficient Use of Multiprocessors

Because performance improves transparently with additional processors, there is no
need to account for the number of available processors. Numerical algorithms and the
use of parallelism run much faster when implemented with threads on a multiprocessor.

• Efficient and Adaptive Program Structure

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

56

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Multithreading in TestMAX ATPG and TestMAX Diagnosis

Feedback

Multithreaded architecture is more efficiently structured as a series of multiple
independent execution units rather than a single, monolithic thread.

• Minimizes the Use of System Resources

The use of two or more processes that access common data through shared memory
usually requires more than one thread of control. But in multithreaded architecture,
each process has a full address space and operating environment state, which
minimizes overall system resources.

For more information on multithreading, see the "What is the Difference Between Multicore
Processing and Multithreading?" topic in TestMAX ATPG and TestMAX Diagnosis Online
Help.

Note: TestMAX ATPG and TestMAX Diagnosis do not use multithreading in all processes.
For more information, see TestMAX ATPG Multithreading Command Option Support and
Multithreading Limitations.

Multithreading Limitations
The following multithreading limitations apply to features of the design or protocol, but
not limitations of command options. These limitations apply to the P-2019.03 release and
are subject to change in future releases. For command option limitations, see TestMAX
Command Option Support.The following multithreading limitations apply to features of the
design or protocol, but not limitations of command options. These limitations apply to the
-P-2019.03- release and are subject to change in future releases. For command option
limitations, see TestMAX Command Option Support.

• DFTMAX LogicBist

When using TestMAX DFTMAX LogicBIST, an M729 message is printed and non-
threaded processing is run instead of multithreading.

• Launch on Last Shift

TestMAX ATPG multithreading does not generate patterns if you specify the set_delay
-launch_cycle last_shift command. If you specify this command, an M729
message is printed and a non-threaded process is run instead. TestMAX ATPG
supports Launch on Extra Shift (LOES) if you specify the set_delay -launch_cycle
extra_shift command.

• Internal and Synchronized Multi-Frequency Clocking Procedures

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

57

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/latest/dg/tmax_olh/Content/tmax2/command_options.htm

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Multithreading in TestMAX ATPG and TestMAX Diagnosis

Feedback

There is partial multithreading support for both internal and synchronized multi-
frequency clocking procedures:

◦ Internal clocking procedures are supported for two-clock transition ATPG. Fast-
sequential ATPG that requires more than two frames and pattern grouping is not
supported.

◦ Synchronized multi-frequency clocking (or synchronized OCC) is supported for
two-clock transition ATPG with integer clock period ratios. Fast-sequential ATPG
that requires more than two clock cycles is not supported. Non-integer clock period
ratios and multi-frame paths are not supported.

• Fault Models that Switch to Non-Threaded Processing:

The following fault models are not supported in multithreading:

◦ Hold Time

• Full-sequential ATPG and Full-Sequential Simulation

Full-sequential ATPG and full-sequential simulation cannot be run using multithreading.
If you attempt to do so, an M729 message is printed and non-threaded processing is
run instead.

• TestMAX ATPG Homogeneous Product Usage

TestMAX ATPG is available as an 8-core product (supports up to 8 threads per seat)
and a 20-core product. You cannot use both 8-core and 20-core TestMAX ATPG
products in the same pattern generation session.

TestMAX ATPG Multithreading Command Option Support
Some options in TestMAX are limited in their support of multithreading (described in the
Multithreading in TestMAX ATPG and TestMAX Diagnosis topic). In these cases, TestMAX
ATPG uses either non-threaded processing or ignores the option.

This topic describes how TestMAX ATPG handles various command options impacted
by the limitations of multithreading. These limitations apply to the P-2019.03 release and
related service pack releases and are subject to change in future releases.

For a list of general feature limitations specific to TestMAX ATPG multithreading, see the
TestMAX ATPG Multithreading Limitations topic.

TestMAX ATPG multithreading command are:

• run_atpg

• run_fault_sim

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Multithreading in TestMAX ATPG and TestMAX Diagnosis

Feedback

• run_simulation

• set_atpg

• set_delay

• set_drc

run_atpg
The following run_atpg command options switch to non-threaded processing:

• full_sequential_only

• -distributed

• -random

• -resolve_differences

These options are ignored by TestMAX ATPG:

• -auto_compression (the only effect of this option is to add all faults if the fault list is
empty)

• -optimize_patterns

• -rerun_for_timing_exceptions

run_fault_sim
The following run_fault_sim command options switch to non-threaded processing:

• -checkpoint

• -detected_pattern_storage

• -distributed

• -nodrop_faults

• -sequential

• -store
This option is ignored by TestMAX ATPG fault simulation:

• -strong_bridge

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

59

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Multithreading in TestMAX ATPG and TestMAX Diagnosis

Feedback

run_simulation
The following run_simulation command options switch to non-threaded processing:

• -fast

• -sequential

• -sequential_update

• -update

set_atpg
The following set_atpg command options are silently ignored by multithreaded TestMAX
ATPG:

• -capture_cycles with a setting of 0 (two-cycle patterns can be generated)

• -shared_io_analysis
The following option has a different effect when running multithreaded TestMAX ATPG
than non-threaded processing. In this case, ATPG uses multithreading, but resimulation
uses non-threaded processing simulation:

• -resim_atpg_patterns
These options switch to non-threaded processing:

• -allow_clockon_measures

• -fast_path_delay
These options are ignored by multithreaded TestMAX ATPG:

• -abort_limit (values up to 100 are used, but values greater than 100 are ignored)

• -calculate_power

• -decision

• -fast_min_detects_per_pattern (use the -basic_min_detects_per_pattern
option instead)

• -full_* (all full sequential settings are unsupported)

• -lete_fastseq

• -merge

• -new_capture

• -nosingle_load_per_pattern (the default)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

60

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
ATPG Capabilities

Feedback

• -num_processes

• -parallel_strobe_data_file (the PSD file is created but it is incorrect; use the
run_simulation PSD generation flow instead)

• -save_patterns

• -power_aware_asyncs

set_delay
The following set_delay command options are silently ignored by the multithreaded
TestMAX ATPG:

• -nodisturb_clock_grouping (use the run_atpg -nodisturb_clock_grouping
command to get this behavior)

• -extra_force | -noextra_force
The following option affects both multithreading and non-threaded processing. The only
difference is that in multithreading, it is used during stuck-at ATPG, to constrain two-cycle
patterns and in transition ATPG:

• -common_launch_capture_clock
The following option switches to non-threaded processing, except for the system_clock
and extra_shift parameters, which are supported by multithreading:

• -launch_cycle last_shift | any

set_drc
The following set_drc command option is silently ignored by multithreading, except
when the -dynamic, -one_hot, or -any options are specified, which are supported by the
TestMAX ATPG:

• -clock

ATPG Capabilities
TestMAX ATPG supports a wide variety of ATPG functionality, and has the following
capabilities:

• Reads design netlists in Verilog, VHDL, and EDIF formats; and test protocol
information in STIL format

• Writes test pattern files in a variety of standard and proprietary formats: WGL, STIL,
Fujitsu TDL, TI TDL91, and Toshiba TSTL2

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

61

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
TestMAX ATPG Modes

Feedback

• Offers a choice of the following ATPG modes:

◦ Basic-Scan ATPG, an efficient combinational-only mode for full-scan designs

◦ Fast-Sequential ATPG for limited support of partial-scan designs

• Supports the following design-for-test (DFT) styles:

◦ Various scan flip-flop types (multiplexed flip-flop, master, slave, transparent latch,
and so on)

◦ Internal, non-decoded three-state buses

◦ Bus keepers

◦ RAM and ROM models

◦ Proprietary and standard test controllers (such as IEEE 1149.1-compliant boundary
scan)

• Produces and verifies ATPG patterns that avoid bus contention and float conditions

• Offers interactive analysis and debugging with the graphical schematic viewer (GSV),
for easy analysis of design rule violations and other conditions found in the design

• Provides links to Verilog and VHDL simulators

• Provides an integrated fault simulator that supports fault simulation of functional
patterns

• Can perform direct automated test equipment (ATE) diagnostics, allowing you to
quickly map a test failure to a fault site in the design

See Also

• ATPG Modes

• Supported Fault Models

TestMAX ATPG Modes
TestMAX ATPG offers three types of ATPG modes:

• Basic-Scan ATPG

In basic-scan mode, TestMAX ATPG operates as a full-scan, combinational-only ATPG
tool. To get high test coverage, the sequential elements need to be scan elements.
Combinational ROMs can be used to gain coverage of circuitry in their shadows in this
mode.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

62

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Features and Benefits

Feedback

• Fast-Sequential ATPG

Fast-sequential ATPG provides limited support for partial-scan designs. In this mode,
multiple capture procedures are allowed between scan load and scan unload, allowing
data to be propagated through nonscan sequential elements in the design such as
functional latches, nonscan flops, and RAMs and ROMs. However, all clock and reset
signals to these nonscan elements must still be directly controllable at the primary
inputs of the device. You enable the Fast-Sequential mode and specify its effort level
by using the -capture_cycles option of the set_atpg command.

• Full-Sequential ATPG

Full-sequential ATPG is available only in non-threaded mode. Like fast-sequential
ATPG, full-sequential ATPG supports multiple capture cycles between scan load and
unload, thus increasing test coverage in partial-scan designs. Clock and reset signals
to the nonscan elements do not need to be controllable at the primary inputs; and
there is no specific limit on the number of capture cycles used between scan load and
unload. You enable the Full-Sequential mode by using the full_seq_only option
of the run_atpg command. The full-sequential mode supports an optional feature
called Sequential Capture. Defining a sequential capture procedure in the STIL file
lets you compose a customized capture clock sequence applied to the device during
Full-Sequential ATPG. For example, you can define the clocking sequence for a two-
phase latch design, where CLKP1 is followed by CLKP2. This feature is enabled by the
-clock -seq_capture option of the set_drc command. Otherwise, the tool creates its
own sequence of clocks and other signals to target the as-yet-undetected faults in the
design.

See Also

• ATPG Capabilities

• Supported Fault Models

Features and Benefits
TestMAX ATPG provides the following key features and benefits:

• Increases product quality with power aware test patterns for high defect detection.

For more information, see "Power Aware ATPG."

• Reduces testing costs through the use of advanced pattern compaction techniques.

For more information, see "Compressing Patterns."

• Increases designer productivity by leveraging integration with Synopsys DFTMAX
compression.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

63

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Features and Benefits

Feedback

For more information, see the TestMAX DFT, DFTMAX, and DFTMAX User Guide.

• Multicore support for faster runtime.

For more information, see "Running Multicore ATPG" and "Running Multicore
Simulation.

"

• Integrated graphical user interface and simulation waveform viewer.

For more information, see "Using the Graphical Schematic Viewer," "Using the
Hierarchy Browser," and "Using the Simulation Waveform Viewer."

• Comprehensive scan design rule checking.

For more information, see "Performing Test Design Rule Checking (DRC)."

• Generates patterns targeting specific defect mechanisms.

For more information, see "Supported Fault Models."

• Supports on-chip clocking using phase-lock loops (PLLs).

For more information, see "On-Chip Clocking Support."

• Supports quiescent test validation.

For more information, see "Quiescence Test Pattern Generation."

• Integrated fault simulator for functional vectors.

For more information, see "Fault Simulation.

• Yield Diagnosis with automatic defect isolation.

For more information, see "Diagnosing Manufacturing Test Failures."

See Also

• ATPG Capabilities

• ATPG Modes

• Supported Fault Models

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: TestMAX ATPG and TestMAX Diagnosis Overview
Operation Modes

Feedback

Operation Modes
For each TestMAX ATPG session, you progress through a series of operation modes.
Each mode reflects the types of processes you can perform:

• BUILD Mode

This is the initial mode in which you read in your design netlists and libraries, and
create and read ATPG simulation models in preparation for design rule checking.

• DRC Mode

In this mode, you perform design rule checking (DRC), which analyzes your design
against a set of predefined rules, and reports any anomalies.

• TEST Mode

In this mode, you perform ATPG, fault simulation, and fault diagnosis, and write
simulation testbenches.

See Also

• ATPG Capabilities

• Supported Fault Models

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

65

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2
Getting Started

The following sections describe how to get started with TestMAX ATPG:

• Basic TestMAX ATPG Processes

• Basic ATPG Flow

• Reference Methodology

• Getting Started for TestMAX DFT Users

Basic TestMAX ATPG Processes
The following sections describe the basic TestMAX ATPG processes:

• Installing TestMAX ATPG

• Setting the Environment

• Launching TestMAX ATPG

• Executable Commands

• Setup Command Files

• Using Command Files

• Using Variables

• Running the TestMAX ATPG GUI

Installing TestMAX ATPG
To obtain the TestMAX ATPG installation files, download them from Synopsys using
electronic software transfer (EST) or File Transfer Protocol (FTP).

TestMAX ATPG can be installed as a standalone product or over an existing Synopsys
product installation (an “overlay” installation). An overlay installation shares certain support
and licensing files with other Synopsys tools, whereas a standalone installation has its
own independent set of support files. You specify the type of installation you want when
you install the product.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

An environment variable called SYNOPSYS specifies the location for the TestMAX ATPG
installation. You need to explicitly set this environment variable.

Complete installation instructions are provided in the Installation Guide that comes with
each release of TestMAX ATPG .

Specifying the Location for TestMAX ATPG Installation
TestMAX ATPG requires the SYNOPSYS environment variable, a variable typically used with
all Synopsys products. For backward compatibility, SYNOPSYS_TMAX can be used instead of
the SYNOPSYS variable. However, TestMAX ATPG looks for SYNOPSYS and if not found, then
looks for SYNOPSYS_TMAX. If SYNOPSYS_TMAX is found, then it overrides SYNOPSYS and
issues a warning that there are differences between them.

The conditions and rules are as follows:

• SYNOPSYS is set and SYNOPSYS_TMAX is not set. This is the preferred and recommended
condition.

• SYNOPSYS_TMAX is set and SYNOPSYS is not set. The tool will set SYNOPSYS using the
value of SYNOPSYS_TMAX and continue.

• Both SYNOPSYS and SYNOPSYS_TMAX are set. SYNOPSYS_TMAX will take precedence and
SYNOPSYS is set to match before invoking the kernel.

• Both SYNOPSYS and SYNOPSYS_TMAX are set, and are of different values, then a warning
message is generated similar to the following:

WARNING: $SYNOPSYS and $SYNOPSYS_TMAX are set differently, using
 $SYNOPSYS_TMAX WARNING: SYNOPSYS_TMAX = /mount/groucho/joeuser/tmax
 WARNING: SYNOPSYS = /mount/harpo/production/synopsys WARNING: Use of
 SYNOPSYS_TMAX is outdated and support for this will be removed in a
 future release. Use SYNOPSYS instead.

Setting the Environment
Before invoking TestMAX ATPG , you need to set your environment. Make sure your
PATH environment variable includes the path to the Synopsys tools, which is typically
$SYNOPSYS/bin. Also set the license file using the SNPSLMD_LICENSE_FILE setting. For
example:

setenv SYNOPSYS /synopsys/m_branch/
set path =($SYNOPSYS/bin $path)
setenv SNPSLMD_LICENSE_FILE synopsys_licenses/my_license.lic

You can optionally specify the TMAX_SHELL variable to avoid the need to constantly
specify the -shell switch with the tmax2 command.

% setenv TMAX_SHELL

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

67

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

If the TMAX_SHELL environment variable is defined, you can override it by invoking:

% tmax2 -gui // overrides TMAX_SHELL=1

Launching TestMAX ATPG
You can launch TestMAX ATPG in either shell mode or using the TestMAX ATPG GUI:

• To launch TestMAX in shell mode, specify the -shell option with the tmax2 command.

tmax2 my_command_file -shell
• To launch the TestMAX ATPG GUI specify the tmax or tmax2 command without using

the -shell option.

tmax2 my_command_file
The following table summarizes the various methods you can use to invoke TestMAX
ATPG.

Table TestMAX ATPG Invocation Methods

Invoke With1 You Get Process List

tmax2 64-bit kernel plus GUI tmax2, tmaxgui

tmax2 -shell 64-bit kernel tmax2

tmax2 -man Online help tmax2, HTML browser

tmax2 -help List of options

1 - The order of switches is not important.
2 - The tmax2 process invokes the shell. The CPU is idle after the kernel launches, but
remains open so that the kernel has a transcript window in which to display output.

Executable Commands
The following sections describe the various executable commands associated with
TestMAX ATPG and TestMAX Diagnosis:

• stil2Verilog – Starts MAX Testbench as a standalone executable

• write_testbench – Starts MAX Testbench within the TestMAX environment

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

See Also

• Setup Command Files

• Variables

Setup Command Files
A setup command file is similar to a command file, except that it is executed automatically
when TestMAX ATPG starts. You can include any commands in a setup command file that
are used in a command file.

TestMAX ATPG includes a tmaxtcl.rc setup file (for Tcl mode) or a tmax.rc setup file (for
legacy mode).

Upon startup, TestMAX ATPG automatically executes command files from multiple
locations based upon the following order:

1. $SYNOPSYS/admin/setup/tmax.rc

2. $TMAXRC, if defined (intended for use by ASIC vendors)

3. $HOME/.tmaxrc or $HOME/.tmaxtclrc

4. tmaxrc, tmax.rc, .tmaxtclrc, or tmaxtcl.rc in the current working directory

Setup command files are executed before any command files specified in the TestMAX
ATPG invocation line. You can specify a command file using any of the following
techniques:

% tmax command_file [other_args]...

% tmax [other_args]... command_file

Within a script as a "here" document:

 #!/bin/sh

 tmax [other_args] -shell <<!

 source command_file
 exit -force

 !

 % tmax [other_args]

 BUILD> source command_file

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

69

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

By default, commands in a command setup file are not echoed to the transcript. To see
the commands as they are executed, place a set_messages -display command at the
beginning of the command setup file.

To invoke TestMAX ATPG without using a setup command file, use the -nostartup
switch:

 % tmax -nostartup

Using Command Files
A command file is a simple ASCII text file containing any command accepted by TestMAX
ATPG. You can place multiple commands into a file and execute them sequentially by
running the name of the command file using the source command_file_name command.

There are several ways you can specify a command file:

• % tmax command_file [other_args]...

• % tmax [other_args]... command_file

• Within a script as a “here” document:

#!/bin/sh tmax [other_args] -shell <<! source command_file exit
 -force !

• % tmax [other_args]

BUILD-T> source command_file
You can use the abort, noabort, or exit options of the set_commands command to
specify the command file execution to stop or continue when TestMAX ATPG encounters
an error.

You can specify whether comments and command output will appear in the transcript or
log files using the set_messages command.

You can reference one command file from within another by nesting source
command_file_name commands.

You can specify a command file to be executed when you invoke TestMAX ATPG on a
UNIX or NT machine running a command shell. The syntax is:

 % tmax command_file
 % tmax command_file -shell

Use of the optional -shell argument runs the non-GUI form of TestMAX ATPG. This might
be more convenient if no user interaction or interactive debugging is expected, or when
you are running TestMAX ATPG from a remote telnet session or other environment where
a graphic display is not available.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

Note: You can condition TestMAX ATPG to pause by invoking it with the -shellargument
followed by a command file specification; for example:

 % tmax -shell
 % source command_file

Batch Files
When you operate TestMAX ATPG in batch mode using command files,you should use
the set_commands noabort command at the beginning and the exit -force command
at the end of each command file. Then you can safely use commands such as the
following at the shell prompt:

 % tmax batch_command_file -shell &

Without these commands at the beginning and end of a command file, the situation could
arise where the tool encounters an error, but there is no way to make it exit.

Launching TestMAX ATPG Using Command Files
The following example launches TestMAX ATPG using a command file:

% tmax -shell spec_command_file.cmd
The following example shows a typical command file, which reads in a design that has
been debugged to eliminate DRC problems. The commands in this file create and store
ATPG patterns and fault lists while saving the execution log.

Example 1: Typical Command File

--- basic ATPG command sequence
#
set_messages log last_run.log -replace
#
--- read design and libraries
#
read_netlist spec_design.v -delete
read_netlist /home/vendor_A/tech_B/verilog/*.v -noabort
report_modules -summary
report_modules -error
#
--- build design model
#
run_build_model spec_top_level_name
report_rules -fail
#
--- define clocks and pin constraints
#
add_clocks 1 CLK MCLK SCLK
add_clocks 0 resetn iosc14m
add_pi_constraints 1 testmode
#

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

71

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

--- define scan chains & STIL procedures, perform DRC checks
#
run_drc spec_design.spf
report_rules -fail
report_nonscan_cells -summary
report_buses -summary
report_feedback_paths -summary
#
--- create patterns
#
set_atpg -abort 20 -pat 1500 -merge high
add_faults -all
run_atpg -auto_compression
report_summaries
#
--- save fault list and patterns
#
report_faults -level 5 64 -class au -collapse -verbose
write_faults faults.all -all -replace
write_patterns patterns.v -format verilog -parallel 2 -replace
#
exit
#

See Also

• Command Files

• Using Command Files in Tcl Mode

• Command Entry

• Invoking TestMAX ATPG

Using Variables
TestMAX ATPG supports limited use of variables in commands and command files.
Variables are accepted only as the prefix (or first) string of a file path name argument. No
other arguments or options of commands support the use of variables.

A variable is recognized by the leading dollar sign ($), followed by the variable name, as
shown in the following examples:

set_messages log $specLOG -replace
read_netlist $LIBDIR/cmos/verilog/*.v
write_patterns $tmp/testbench.v -format verilog -replace

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

TestMAX ATPG supports two types of variables:

• UNIX environment variables

These variables are typically defined using the setenv command, or the set and
export commands.

• User-defined environment variables

These variables are defined in the TestMAX ATPG invocation line as shown in the
following example:

% tmax -env specLOG save/tmax.log -env tmp /tmp
You can define multiple variables by repeating the -env argument of the tmax command.
To view the current setting of any user-defined environment variable, specify the
report_settings command. A variable defined with -env will override any existing
environment variable with the same name.

TestMAX ATPG recognizes UNIX environment variables specified within a command. You
can also set variables in a script using the set or setenv commands. The set command
can be used for most commands; the setenv command makes the variable available for
programs called from the TestMAX ATPG shell.

For example:

setenv LTRAN_SHELL 1
setenv SNPSLMD_QUEUE

There are several differences in behavior between Tcl mode and native mode when using
variables.

Tcl Mode
In Tcl mode, you can use the getenv or get_unix_variable commands to return the
value of the variable. You can also use the $env(VAR) syntax.

Some usage examples are as follows:

set_messages –log [get_env LOG_DIR]/tmax.log
report_rules –fail > [getenv RPTS]/violations.rpt
set_atpg –num_processes [get_env cpu]
source $env(SYNOPSYS)/auxx/syn/tmax/tmax2pt.tcl

For more information on Tcl mode, see Using Tcl With TestMAX ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

73

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

Native Mode
In native mode, you can use variables only at the beginning of the path file names, as
shown in the following examples:.

set messages log $specLOG -replace
read netlist $LIBDIR/cmos/verilog/*.v
write patterns $tmp/testbench.v -format verilog -replace

Running the TestMAX ATPG GUI
The following sections describe how to set up and run the TestMAX ATPG GUI:

• Starting and Stopping the TestMAX ATPG GUI

• Interrupting a Long Process

• Setting Preferences

• Saving GUI Preferences

Starting and Stopping the TestMAX ATPG GUI
If you are in shell mode, you can display the TestMAX ATPG GUI in its current state by
entering the gui_start command:

BUILD-T> gui_start

This command switches the context to listen-only in the GUI console.

After you start the TestMAX ATPG GUI (using the gui_start command), enter the
gui_stop command to exit the GUI:

BUILD-T> gui_stop

This command stops the TestMAX ATPG GUI session and reverts to the TestMAX ATPG
shell command prompt. If you did not use the gui_start command to start the GUI, the
gui_stop command exits the TestMAX ATPG application. You can also use the gui_stop
command from the pull-down menu: File > Exit GUI. If you use the gui_stop command
before invoking TestMAX ATPG using the gui_start command to start the GUI, the
gui_stop command exits the TestMAX ATPG application.

Interrupting a Long Process
While TestMAX ATPG is processing commands, the Submit button in the TestMAX ATPG
window changes to a Stop button. To stop a process, click the Stop button. (Depending on
the type of platform you are using, Control-c and Control-Break may also perform the Stop
function.)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

74

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

The Stop button usually works within a few seconds. However, interrupting a large file I/O
process might take longer.

You can use the Stop function to interrupt the following types of processes:

• Reading netlists

• Running ATPG, simulation, or fault simulation

• Reporting faults to the screen

• Running design rule checking (DRC)

• Building the design-level ATPG model

• Learning following an ATPG build

• Compressing patterns

• Writing patterns to a file

• Reading or writing fault lists from files

• Reporting scan cells

• Executing command files

When you use the Stop function to stop execution of a command file, TestMAX ATPG
normally stops execution of the entire file, unless the file contains the following line:

set_commands noabort

In that case, TestMAX ATPG stops execution of only the current command in the file
and continues execution of any commands following the stopped command. The
set_commands noabort command is useful when you want a file to continue command file
execution even though an error might occur.

Discarding Pending Output
There are times when the Stop button doesn't interrupt lengthy output from TestMAX
ATPG. This occurs, for example, if you enter the following command:

report_atpg_constraints -all

To discard pending output, you can use the "Discard pending output" button located at the
bottom of the TestMAX ATPG console. This button is visible only after an interrupt (via the
Stop button or ESC key) is detected, as shown in Figure 1.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

75

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

Figure 2 Discard Pending Output Button

   

Note that the Stop button will always be enabled and operational if the kernel is still
processing the current command.

Setting Preferences
You can adjust settings such message formatting, workspace size, aliases, GUI font and
color display, and schematic display options. To access the Preferences dialog box, select
Edit > Preferences, as shown in the following figure.

Figure 3 Preferences Dialog Box

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

76

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic TestMAX ATPG Processes

Feedback

The following table describes the various Preferences settings:

Table 1 TestMAX ATPG GUI Preferences

Categ
ory

Description

Messa
ges

Directs output messages to a log file, formats messages with a prefix, displays comments,
sets message levl to standard or expert.

Kernel Sets maximum workspace sizes for ATPG gates, decisions, file line length, string line
length, connectors.

Aliase
s

Adds, removes, and modifies alias names and text.

GUI Sets the display of the toolbar, the default font size and type, and the default font color for
commands and error messages.

Schem
atic

Sets the default color scheme, the hierarchy display, the display of gates and instance
names, and the pin data length.

To save any Preferences specifications you made, select Edit -> Save Preferences or Edit
-> Autosave Preferences.

As an alternative to the Preferences dialog box, you can use the set_workspace_sizes
command to change the workspace size settings.

See Also

• Displaying Symbols in Primitive or Design View

Saving GUI Preferences
You can save GUI preferences so that the settings are used the next time you invoke
TestMAX ATPG.

When you invoke the TestMAX ATPG GUI, it reads some of the default graphical
schematic viewer (GSV) preferences from the tmax.rc file. The TestMAX ATPG GUI
has a Preferences dialog box to change the default settings to control the appearance
and behavior of the GUI. These default settings control the size of main window, window
geometry, application font, size, GSV preferences and other preferences. If you change
the appearance and behavior of the GUI using the Preferences dialog box, TestMAX

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

77

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic ATPG Flow

Feedback

ATPG saves your changes in the $(HOME)/.config/Synopsys/tmaxgui.conf file before
it exits. The next time you invoke TestMAX ATPG, it does the following:

• Reads the default preferences from the tmax.rc file.

• Reads the preferences from the $(HOME)/.config/Synopsys/tmaxgui.conf file. For
the preferences that are listed in the tmax.rc file, the $(HOME)/.config/Synopsys/
tmaxgui.conf file has precedence over the tmax.rc file. For all other GUI preferences,
TestMAX ATPG uses the values from the tmaxgui.rc file to define the appearance
and behavior of the GUI.

See Also

• TestMAX ATPG GUI Main Window

• Using the Graphical Schematic Viewer

Basic ATPG Flow
To run the basic ATPG flow:

1. Set your environment and launch TestMAX ATPG.

To launch TestMAX, specify the tmax2 command.

setenv SYNOPSYS /synopsys/m_branch/ set path =($SYNOPSYS/bin $path)
 setenv SNPSLMD_LICENSE_FILE \
synopsys_licenses/my_license.lic tmax2 my_command_file -shell

2. Prepare your netlist.

TestMAX ATPG can read netlists in Electronic Design Interchange Format (EDIF),
Verilog, and VHDL formats. You might need to make some minor edits to make the
netlists compatible with TestMAX ATPG. For more information, see Preparing a Netlist.

3. Read your netlist into TestMAX ATPG using either the read_netlist command or the
Read Netlist dialog box in the TestMAX ATPG GUI. The following example specifies the
read_netlist command to read in all Verilog netlists in the /tech directory:

BUILD-T> read_netlist /tech/*.v
For more information, see Reading a Netlist.

4. Read the Verilog library models using either the read_netlist command or the Read
Netlist dialog box in the TestMAX ATPG GUI. The following example reads in all Verilog
library model files in the /proj1234/shared_verilog directory:

BUILD-T> read_netlist /proj1234/shared_verilog/*.v -noabort

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

78

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Basic ATPG Flow

Feedback

For more information on reading the Verilog library models, see Reading Library
Models.

5. Create an in-memory design model using either the run_build_model command
or the Run Build Model dialog box in the TestMAX ATPG GUI. The following
example builds a design model based on the last unreferenced module read by the
read_netlist command or the Read Netlist dialog box:

BUILD-T> run_build_model
For more information, see Preparing to Build the ATPG Model and Building the ATPG
Model.

6. Create the STIL procedures file. For more information, see STIL Procedures.

7. Define the clocks and asynchronous set and reset ports using either the STIL
procedures file (SPF), the add_clocks command or the Add Clocks dialog box in the
TestMAX ATPG GUI. The following example use the add_clocks command to specify a
set of clocking parameters:

DRC-T> add_clocks 0 CLK1 -timing 200 50 80 40 -unit ns -shift
For more information on specifying timing and clocks, see Defining Basic Signal Timing
and Declaring Clocks.

8. Set up and perform design rule checking (DRC) using the set_drc and run_drc
commands, or the Run DRC dialog box in the TestMAX ATPG GUI. The following
example, prepares and runs DRC using the set_drc and run_drc commands:

DRC-T> set_drc -oscillation 200 -clock -any DRC-T> run_drc
 spec_stil_file.spf
For more information, see Specifying DRC Settings, Starting DRC, and Performing
Design Rule Checking.

9. Set up and run ATPG using the set_atpg and run_atpg commands or the Run ATPG
dialog box in the TestMAX ATPG GUI. The following example uses the set_atpg and
run_atpg command to prepare for and run ATPG:

TEST-T> set_atpg -patterns 500 -coverage 98 TEST-T> run_atpg
For more information, see Preparing for ATPG and Running ATPG.

10. Using the write_patterns command or the Write ATPG dialog box in the
TestMAX ATPG GUI to save the ATPG patterns. The following example uses the
write_patterns command to write a set of serial STIL patterns.

TEST-T> write_patterns patterns.stil -serial -format stil

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

79

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Reference Methodology

Feedback

Reference Methodology
TestMAX ATPG Reference Methodology Scripts are also

available for download at:https://solvnet.synopsys.com/rmgen/

Getting Started for TestMAX DFT Users
The following steps show how to generate ATPG patterns when you start from a netlist in
which TestMAX DFT has performed scan insertion:

1. Before performing scan insertion, configure TestMAX DFT for optimal results in
TestMAX ATPG.

test_default_delay 0 test_default_bidir_delay 0 test_default_strobe 40
 test_default_period \
100 test_stil_multiclock_capture_procedures true

If your ASIC vendor has specific requirements, you might need to change these
settings.

2. Within dc_shell or design_analyzer, write the netlist and the test protocol file.

test_stil_netlist_format verilog write -hierarchy -format verilog
 -output \
name.v write_test_protocol -format stil -out name.spf

3. Read the netlist and models into TestMAX ATPG.

Use the read_netlist command or the Read Netlist dialog box in the TestMAX ATPG
GUI. For more information, see the Reading the Netlist and Reading Library Models
topics.

4. Create the in-memory design model.

Use the run_build_model command or the Run Build Model dialog box in the
TestMAX ATPG GUI.

For details, see Building the ATPG Model.

5. Define clocks and scan chains.

For details, see Declaring Clocks in STIL. If your vendor requires LSI WGL protocols,
additional edits to the DRC procedure file might be required. See LSI Compatible WGL.

run_drc name.spf
6. Perform circuit initialization and Design Rule Checking (DRC) using the STIL procedure

file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

80

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/rmgen/

Chapter 2: Getting Started
Getting Started for TestMAX DFT Users

Feedback

For details, see Performing Test Design Rule Checking.

7. Initialize the fault list and set ATPG options, effort, and dynamic compression.

For details, see Preparing for ATPG.

8. Run ATPG to develop patterns.

For details, see Running ATPG.

9. Write the fault lists using the write_faults command.

For details, see Writing Fault Lists.

Design Flow Using TestMAX DFT and TestMAX ATPG
TestMAX ATPG is compatible with a wide range of design-for-test tools, such as TestMAX
DFT.

The following figure shows how TestMAX ATPG fits into the TestMAX DFT design-for-test
flow for a module or a medium-sized design of less than 750K gates.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

81

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Getting Started for TestMAX DFT Users

Feedback

Figure 4 Design Flow for a Module or Medium-Sized Design

   

The design flow shown in the preceding figure is as follows:

1. Starting with an HDL netlist at the register transfer level (RTL) within TestMAX DFT, run
a test-ready compilation, which integrates logic optimization and scan replacement.

The compile -scan command maps all sequential cells directly to their scan
equivalents. At this point, you still don’t know whether the sequential cells meet the test
design rules.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

82

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Getting Started for TestMAX DFT Users

Feedback

2. Perform test design rule checking; the check_scan command reports any sequential
cells that violate test design rules.

3. After you resolve the DRC violations, run the preview_scan command to examine
the scan architecture that is synthesized by the insert_scan command. Repeat this
procedure until you are satisfied with the scan architecture, then run the insert_scan
command, which implements the scan architecture.

4. Rerun the check_scan command to identify any remaining DRC violations and to infer
a test protocol. For details about the TestMAX DFT design flow through completion of
the scan design, see the TestMAX DFT User Guide.

5. When your netlist is free of DRC violations, it is ready for ATPG. For medium-sized and
smaller designs, TestMAX DFT provides the write_test_protocol command, which
allows you to write out a STL procedure file. TestMAX ATPG reads the STL procedure
file and design netlist.

For details of the TestMAX ATPG portion of the design flow, see ATPG Design Flow.

The following figure shows the design flow for a design that is too large for test protocol file
generation from a single netlist (about 750K gates or larger).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

83

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Getting Started
Getting Started for TestMAX DFT Users

Feedback

Figure 5 Design Flow for a Very Large Design

   

For large designs, you initially follow the design flow shown in Figure 4 at the module level,
using modules of 200K gates or fewer, to get the completed scan design for each module.

Then, as shown in Figure 5, you start with the completed scan design for each module.
You write the netlists, combine and link the netlists, and make the final scan chain
connections, thus generating a combined netlist for the entire design. A test protocol file is
created automatically.

For information on creating a test procedure file, see STIL Procedure Files. You use the
combined netlist and the manually generated test protocol file as inputs to TestMAX ATPG.
For more information, see ATPG Design Flow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

84

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

3
ATPG Design Flow

The ATPG process creates a sequence of test patterns that enable an ATE to distinguish
between the correct circuit behavior and the faulty circuit behavior caused by the defects.
The generated patterns are used to test devices and to determine the cause of failure.
ATPG effectiveness is measured by the amount of modeled defects, or fault models, that
are detected and the number of generated patterns.

The following sections describe the basic ATPG design flow:

• ATPG Design Flow Overview

• Running the Basic ATPG Design Flow

• Preparing a Netlist

• Configuring to Read a Netlist

• Reading a Netlist

• Reading Library Models

• Preparing to Build the ATPG Model

• Building the ATPG Model

• Performing Design Rule Checking (DRC)

• Preparing for ATPG

• Running ATPG

• Analyzing ATPG Output

• Reviewing Test Coverage

• Writing ATPG Patterns

ATPG Design Flow Overview
The basic ATPG flow applies to most designs. To get started running ATPG, you must
provide a supported netlist, a model library, and a set of STIL procedures used for design
rule checking.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

85

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
ATPG Design Flow Overview

Feedback

STIL procedures are usually provided via a STIL procedures file generated from the DFT
Compiler tool or an equivalent tool. You can also provide many of the parameters via
TestMAX ATPG commands. For complete information on STIL procedures, see STIL
Procedures.

The following figure shows the basic ATPG design flow. For a step-by-step overview of the
ATPG design flow, see Running the Basic ATPG Design Flow.

Figure 6 Basic ATPG Design Flow

 

Prepare for ATPG

Run ATPG

BUILD Mode

Gate-Level
Netlist

TEST Mode

Test
Patterns

Read the
Netlist

Read the
Library Models

Library

Verilog
Simulation

Build the
ATPG Model

DRC Mode

STIL
Procedures Perform Design

Rule Checking

Save the
Patterns

 

If you encounter problems with your design, see Using the GSV for Review and Analysis,
which provides information on graphical analysis and troubleshooting.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

86

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running the Basic ATPG Design Flow

Feedback

Basic ATPG Run Script
set_messages -log mylog -replace

Read in the netlist library and
 # Verilog library
 read_netlist -library library/*.v

 read_netlist design.v

Build the ATPG Model
 run_build_model DESIGN_TOP

Set up and run DRC
 set_drc stil_procedures.spf
 run_drc

Add faults and run ATPG
 add_faults -all
 run_atpg -auto

Write the patterns
 write_patterns DESIGN.stil -format STIL \
 -replace

 write_patterns DESIGN.bin -replace

Running the Basic ATPG Design Flow
The basic ATPG design flow consists of the following steps:

1. Prepare your netlist or netlists (see Preparing a Netlist).

2. Read the netlist (see Reading a Netlist).

3. Read the library models (see Reading Library Modules)

4. Build the ATPG design model (see Setting Up and Building the ATPG Model)

5. Perform test DRC and make any necessary corrections (see Performing Test Design
Rule Checking).

6. Prepare the design for ATPG, set up the fault list, analyze buses for contention, and set
the ATPG options (see Preparing for ATPG).

7. Run automatic test pattern generation (see Running ATPG).

8. Analyze the ATPG pattern generation output (see Analyze ATPG Output).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

87

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing a Netlist

Feedback

9. Review the test coverage (see Reviewing Test Coverage).

10. Rerun ATPG, as needed.

11. Write and save the test patterns (see Writing ATPG Patterns).

For an example of a typical command file used for running a basic ATPG design flow in
TestMAX ATPG, see Using Command Files.

The following figure shows a typical ATPG design flowchart.

Figure 7 ATPG Design Flowchart

   

See Also

• Design Flow Using TestMAX DFT and TestMAX ATPG

• ATPG Design Guidelines

Preparing a Netlist
TestMAX ATPG accepts netlists in Verilog, EDIF, and VHDL formats. For more information
on these formats, see Netlist Format Requirements.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

88

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Configuring to Read a Netlist

Feedback

Netlists can be flat or hierarchical and can be in standard ASCII format or GZIP format.
TestMAX ATPG automatically detects compressed files and decompresses them during
the read operation.

Before reading in a netlist or library models, you should compare the names of the
modules in your netlist to the names of the Verilog library models you are using. If there
are duplicate module definitions, TestMAX ATPG uses the last definition it encounters.
If you read in your netlist and then read in library models, the modules in your netlist are
overwritten by any library models using the same names.

You can specify the following options in preparation for reading a netlist:

• Set the maximum number of parsing errors allowed before terminating the parsing of
the current netlist file

• Use the last module read if your design has duplicate modules. This allows TestMAX
ATPG to reread a file if you edit a module or read multiple files if there is a duplication
of module definitions.

• Accept or ignore the 'celldefine, 'enable_portfaults, and 'supress_faults Verilog compiler
directives

• Set check and warning behavior for reading netlists and designs

• Specify if conservative or combinational MUX gates are extracted from conservative
UDP models of a MUX

• Set parameters for handling dominance behavior between set, reset, and clock pins

• Specify behavior for escape characters, redefined modules, scalar nets, and X
modeling

For complete descriptions of these options, see the description of the set_netlist
command in TestMAX ATPG Help.

See Also

• Configuring to Read a Netlist

• Reading a Netlist

Configuring to Read a Netlist
You can use either the set_netlist command or the Set Netlist dialog box or Read
Netlist dialog box to specify options for reading a netlist into TestMAX ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

89

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Reading a Netlist

Feedback

The following example shows how to use the set_netlist command to allow a maximum
of 15 parsing errors, extract combinational MUX Gates from conservative MUX UDP
models, and use the remaining default parameters for reading a netlist:

BUILD> set_netlist -max_errors 15 -conservative_mux combo_udp
To use the TestMAX ATPG GUI to set the parameters specified in the previous example:

1. Do one of the following:

• From the menu bar, select Netlist > Set Netlist Options.

The Set Netlist dialog box appears.

• From the command toolbar, click the Netlist button.

The Read Netlist dialog box appears.

2. In either the Set Netlist dialog box or the Read Netlist dialog box, enter 15 in the
Maximum Errors text field, and select Combinational UPD in the Conversative MUX
drop-down menu.

3. Click OK.

For a complete description of the requirements and contents of netlists used for TestMAX
ATPG, see Design Netlists and Libraries.

Reading a Netlist
You can read one or more netlists associated with your design using the read_netlist
command or the Read Netlist dialog box in the TestMAX ATPG GUI.

The following example specifies the read_netlist command to read in all Verilog netlists
in the /tech directory:

BUILD-T> read_netlist /tech/*.v
You can specify as many read_netlist commands as necessary to read in all portions of
a design. You can read multiple files from the same directory using wildcards (for example,
*.v). For more information, see Using Wildcards to Read Netlists.

To read a netlist using the Read Netlist dialog box:

1. Do one of the following:

• From the menu bar, select Netlist > Read Netlist.

• From the command toolbar, click the Netlist button.

In both cases, the Read Netlist dialog box appears with the selected default values.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

90

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Reading Library Models

Feedback

2. Change or select any values to meet your requirements. The options in the Read
Netlist dialog box are equivalent to the options for the read_netlist command (see
the description in TestMAX ATPG Help).

3. Click OK.

See Also

• Working with Design Netlists and Models

• About Reading a Netlist

• Netlist Requirements

• Reading the Library Models

Reading Library Models
To read library models, use the read_netlist command or the Read Netlist dialog box.

The following example uses the read_netlist command to read in all Verilog library
model files in the /proj1234/shared_verilog directory and to not terminate the process if
there is an error reported for a model:

BUILD-T> read_netlist /proj1234/shared_verilog/*.v -noabort
You can specify as many read_netlist commands as necessary to read in all portions of
a design. You can read multiple files from the same directory using wildcards (for example,
*.v). For more information, see Using Wildcards to Read Netlists.

To read library models using the Read Netlist dialog box:

1. Do one of the following:

• From the menu bar, select Netlist > Read Netlist.

• From the command toolbar, click the Netlist button.

In both cases, the Read Netlist dialog box appears with the selected default values.

2. Change or select any values to meet your requirements. To duplicate the previous
command line example, make sure the Abort on Error check box is not selected. The
options in the Read Netlist dialog box are equivalent to the options for the

read_netlist command (see the description in TestMAX ATPG Help).

3. Click OK.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

91

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing to Build the ATPG Model

Feedback

See Also

• About Reading a Library Model

• Reading a Netlist

• Building the ATPG Model

Preparing to Build the ATPG Model
You can use either the set_build command or the Set Build dialog box to set parameters
for building the ATPG model.

The following example uses the set_build command to set the parameters to build an
ATPG model. In this case, it specifies TestMAX ATPG to use a period (.) as a hierarchical
delimiter and to not to delete any unused gates:

DRC-T> set_build -hierarchical_delimiter . -nodelete_unused_gates

You can make the same settings from the previous example using the Set Build dialog
box, as shown in the following steps:

1. Do one of the following:

• From the menu bar, select Netlist > Set Build Options.

• From the command toolbar, click the Build button. When the Build Model dialog box
appears, click the Set Build Options button.

In both cases, the Set Build dialog box appears with the selected default values.

2. Change or select the values in the Set Build dialog box to meet your requirements.

The options in this dialog box are equivalent to the options for the set_build
command (see the description in TestMAX ATPG Help). To match the options specified
in the previous example, enter a period (.) in the Hierarchical text field and unselect the
Delete Unused Gates checkbox.

3. Click OK.

See Also

• Building the ATPG Model

Building the ATPG Model
You can use the run_build_model command or the Run Build dialog box to build the
ATPG model.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

92

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Building the ATPG Model

Feedback

TestMAX ATPG builds a model based on the last unreferenced module read by the
read_netlist command or the Read Netlist dialog box. This means you do not need
to specify any options with the run_build_model command, as shown in the following
example:

BUILD-T> run_build_model
You can also specify a particular module, as shown in the following example, which
includes the command transcript:

BUILD-T> run_build_model spec_asic
--
Begin build model for topcut = spec_asic ...
--
End build model: #primitives=101004, CPU_time=13.90 sec,
Memory=34702381
--
Begin learning analyses...
End learning analyses, total learning CPU time=33.02
--

To build the ATPG model using the Run Build Model dialog box:

1. Do one of the following:

• From the menu bar, select Netlist > Run Build Model.

• From the command toolbar, click the Build button.

In both cases, the Run Build dialog box appears with the selected default values.

2. Change or select the additional values in the Run Build dialog box to meet your
requirements. The options in this dialog box are equivalent to the options for the
run_build_model command and the set_learning command (see the descriptions
for both commands in TestMAX ATPG Help). To match the option specified in the
previous example, enter spec_asic in the Top Module name text field.

3. Click OK.

The build model process begins.

See Also

• About Building the ATPG Model

• Processes That Occur When Building the ATPG Model

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

93

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

Performing Design Rule Checking (DRC)
During DRC, TestMAX ATPG performs a set of checks to ensure that the scan structure
is correct and to determine how to use the scan structure for test generation and fault
simulation. These checks include ensuring that the scan chains operate properly,
identifying scan cells, identifying nonscan cell behavior, and ensuring that clocks obey the
required rules.

The following sections describe how to prepare for and perform DRC:

• Specifying STIL Procedures

• Specifying DRC Settings

• Starting DRC

• Reviewing the DRC Results

• Understanding Rule Violations

• Viewing DRC Violations in the GSV

Specifying STIL Procedures
The STIL language describes scan-shifting protocol, test procedures, and ATPG signal,
timing, and data information. STIL procedures provide information TestMAX ATPG uses as
a basis to perform design rule checking (DRC).

TestMAX ATPG supports a subset of STIL syntax that describe:

• Scan chain inputs and outputs

• Pin constraints for test modes

• Clock ports and waveform definitions

• Shifting and capturing protocols

• Initialization sequences

There are several ways you can provide STIL procedures to TestMAX ATPG for DRC:

• Create an SPF using Synopsys' TestMAX DFT tool.

• Create an SPF template file using the write_drc_file command. For details, see
Creating a New SPF.

• Use the QuickSTIL tab in the DRC dialog box of the TestMAX ATPG GUI.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

94

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

• Use TestMAX ATPG commands, such as add_clocks, add_scan_chains, and

add_pi_constraints."

The following figure provides a brief description of the major sections of a STIL procedures
file.

Figure 8 STIL Procedures File

   

Specifying DRC Settings
Prior to performing DRC, make sure you specified a set of STIL procedures as described
in Specifying STIL Procedures. These procedures provide key information that TestMAX
ATPG needs to perform DRC.

You can set a variety of parameters that control the DRC process, including:

• Specify clock grouping and skew values

• Set the number of simulation passes before oscillation

• Define restrictions on clock usage for pattern generation

• Specify DLAT clock checks and DRC violation parameters for DFF and DLAT devices
with unstable sets or resets

• Display primitives in scan chains that were sensitized during scan chain tracing

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

95

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

• Generate patterns with capture cycles that always have clock pulses from a controller
clock

• Limit the reporting of shadows

• Specify the top-level port that globally enables or disables bidirectional pins

• Define the number of PLL clock pulses supported per load and the number of pulses to
extend the simulation of the load procedure

• Allow patterns to have more than one capture clock procedure per load

• Store simulated time periods of the test_setup procedure, stability patterns, and unload
mode data

Options for Specifying DRC Settings
You can use the set_drc command or the DRC dialog box to specify DRC parameters.

The following example shows how to specify the set_drc command:

DRC-T> set_drc -oscillation 200 -clock -any
This example uses the -oscillation option to specify that 200 simulation passes are
allowed during DRC simulation before oscillation is declared. It also uses the

-clock -any setting to allow pattern generation using any single clock, including patterns
that don't use clocks.

To use the Run DRC dialog box to set DRC parameters:

1. Do one of the following:

• From the menu bar, select Rules > Run DRC

• From the command toolbar, click the DRC button

In both cases, the DRC dialog box appears with the Run tab active.

2. In the Set field of the DRC dialog box, specify the options you want to apply to the DRC
process. To duplicate the settings of the set_drc command in the previous example:

a. Enter 200 in the Oscillation Passes text field

b. Select -Any from the Capture Clock drop-down menu.

3. Click the Set button to save your settings.

For more information on specifying DRC options, see Design Rule Checking.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

96

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

See Also

• Starting Test DRC

• Reviewing the DRC Results

Starting DRC
Before starting DRC, make sure you specified the appropriate STIL procedures. See
Specifying STIL Procedures and Specifying DRC Settings.

To start DRC, use the run_drc command or the Run DRC dialog box in the TestMAX
ATPG GUI.

The following example uses the run_drc command to start DRC:

DRC-T> run_drc spec_stil_file.spf
The argument in the example, spec_stil_file.spf, is the name of the STIL procedure
file.

To use the Run DRC dialog box to perform DRC:

1. Do one of the following:

• From the menu bar, select Rules > Run DRC.

• From the command toolbar, click the DRC button

In both cases, the DRC dialog box appears with Run tab active.

2. In the Test Protocol File Name field, enter the path name of the STIL procedure file
previously created, or use the Browse button to navigate and select the file.

3. Click Run.

As TestMAX ATPG performs the DRC checks, it produces a status report and lists the
DRC violations, as shown in the following example.

See"DRC Rules" in TestMAX ATPG Help for a list of the rule categories, including links to
each category.

Typical DRC Run
BUILD-T> run_drc spec_stil_file.spf
--
Begin scan design rule checking...
--
Begin reading test protocol file lander.spf...
End parsing STIL file lander.spf with 0 errors.
Test protocol file reading completed, CPU time=0.10 sec.
--

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

97

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

Begin Bus/Wire contention ability checking...
Bus summary: #bus_gates=40, #bidi=40, #weak=0, #pull=0,
#keepers=0
Contention status: #pass=0, #bidi=40, #fail=0, #abort=0,
#not_analyzed=0
Z-state status : #pass=0, #bidi=40, #fail=0, #abort=0,
#not_analyzed=0
Bus/Wire contention ability checking completed, CPU time=0.04 sec.
--
Begin simulating test protocol procedures...
Nonscan cell constant value results: #constant0 = 4, #constant1 = 7
Nonscan cell load value results : #load0 = 4, #load1 = 7
Warning: Rule Z4 (bus contention in test procedure) failed 48 times.
Test protocol simulation completed, CPU time=0.14 sec.
--
Begin scan chain operation checking...
Chain c1 successfully traced with 31 scan_cells.
Chain c2 successfully traced with 31 scan_cells.
Scan chain operation checking completed, CPU time=0.34 sec.
--
Begin clock rules checking...
Warning: Rule C17 (clock connected to PO) failed 16 times.
Warning: Rule C19 (clock connected to non-contention-free BUS)
failed 1 times.
Clock rules checking completed, CPU time=0.14 sec.
--
Begin nonscan rules checking...
Nonscan cell summary: #DFF=201 #DLAT=0 tla_usage_type=none
Nonscan behavior: #C0=4 #C1=7 #LE=11 #TE=179
Nonscan rules checking completed, CPU time=0.05 sec.
--
Begin contention prevention rules checking...
26 scan cells are connected to bidirectional BUS gates.
Warning: Rule Z9 (bidi bus driver enable affected by scan cell)
failed 24 times.
Contention prevention checking completed, CPU time=0.02 sec.
--
Begin DRC dependent learning...
DRC dependent learning completed, CPU time=0.97 sec.
--
DRC Summary Report
--
Warning: Rule C17 (clock connected to PO) failed 16 times.
Warning: Rule Z4 (bus contention in test procedure) failed 48
times.
Warning: Rule Z9 (bidi bus driver enable affected by scan cell)
failed 24 times.
There were 72 violations that occurred during DRC process.
Design rules checking was successful, total CPU time=2.01 sec.
--

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

98

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

Reviewing the DRC Results
After you run DRC (see Starting Test DRC), TestMAX ATPG generates a summary report
that provides a starting point for reviewing the DRC results. To view a description of the
summary report, see Understanding the DRC Summary Report.

You should inspect and correct all DRC violations that are classified as errors. If you
ignore or overlook these violations, the ATPG patterns might fail in simulation or on the
real device. For more information about DRC rule violations and how to fix them, see
Understanding DRC Rule Violations.

To view descriptions of specific violations and how to fix them, see "DRC Rules by
Category" in TestMAX ATPG Help).

If you want to view a summary of failing rule messages, enter the following command:

DRC-T> report_rules -fail
The DRC summary report in the following example shows one class of clock rule warnings
(C17) and two classes of bus rule warnings (Z4 and Z9).

The following example shows an example of the report_rules -fail output.

Example 2 Reporting Rules That Fail

TEST-T> report_rules -fail
// C16: #fails=190 severity=warning
// C17: #fails=16 severity=warning
// C19: #fails=1 severity=warning
// Z4: #fails=128 severity=warning
// Z9: #fails=24 severity=warning

For more detailed information about specific DRC violations in the design, use the
report_violations command. You can identify a single violation, all violations of a single
type, all violations within a class, or all violations, as in the following examples:

DRC-T> report_violations c17-2
DRC-T> report_violations c17
DRC-T> report_violations c
DRC-T> report_violations -all

See Also

• Understanding run_drc Output

• Starting Test DRC

• Viewing Violations in the GSV

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

99

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

Understanding Rule Violations
The test design rules are organized by category. Each rule has an identification code (rule
ID) consisting of a single character followed by a number. The first character defines the
major category of the rule.

The rules are organized functionally into nine major categories:

• B (Build rules)

• C (Clock rules)

• N (Netlist rules)

• P (Path Delay rules)

• S (Scan Chain rules)

• V (Vector rules)

• X (X-state rules)

• Z (Tristate rules)

Links to descriptions of individual rules are provided in the "Rules Violation Messages"
topic in TestMAX ATPG Help.

When a rule is violated, each violation is assigned a unique violation ID, which is the rule
ID followed by a dash and then a sequence number. For example, the rule violation ID
for the 24th violation of a Z4 rule is Z4-24. You can use this number to identify a specific
violation for reporting or analysis.

Some violation IDs show an abort indicator suffix, which appears as Z7-12.A or Z6-3
(Abort). This means that the ATPG analysis of the violation was aborted. In such cases,
you might want to increase the ATPG abort limit.

Each rule violation also includes a brief description of what is checked by the rule. For
example, a B8 rule violation explains that the circuit contains an unconnected module
input pin.

The effects of a rule violation vary depending on the rule’s severity level. For example, rule
N5, “redefined module,” has a default Warning severity level and in most cases notifies
you that a module was defined and then redefined, and that the last definition encountered
is being used. In contrast, the rule S1, “scan chain blockage,” has a default Fatal severity
level. The scan chain is not usable in its current state, and you must correct the problem
before trying further pattern generation.

The default severity level for each rule reflects a conservative approach to ATPG efforts.
When an error or warning is produced, review the potential problem and determine

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

whether you need to change the design or the ATPG procedures. You might be able to
adjust the severity level downward and continue ATPG.

TestMAX ATPG Help provides a complete description of each rule violation. The "What
Next" section in the description for a rule suggests an action you can take to analyze the
cause of the rule violation and determine whether the violation is fixable by changing a
procedure or setup, or whether the design may have to be changed.

For rule violations with an error severity, the occurrence message is displayed when the
rule violation occurs. For rule violations with a warning severity, the summary message is
displayed at the end of the process. You can selectively display the occurrence messages
for a warning using the report_violations command.

Viewing DRC Violations in the GSV
You can visually inspect many of the rule violations using the graphical schematic viewer
(GSV). The GSV displays a subset of the design showing the logic gates involved in the
DRC violation, along with appropriate diagnostic data such as logic values, constrained
ports, or clock cones. For more information on using the GSV, see Using the Graphical
Schematic Viewer.

To analyze a warning message in the GSV:

1. Click the Analyze button in the command toolbar at the top of the TestMAX ATPG GUI
main window.

The Analyze dialog box appears.

2. Click the Rules tab if it is not already active.

A dialog lists all the most recent violations. All violations are numbered. For example,
Z4-1:12 means there are 12 violations of rule Z4, designated Z4-1 through Z4-12.

3. Select a violation from the list or type a specific violation occurrence number in the
Rule Violation field.

4. Click OK.

The GSV opens and displays the violation. The transcript window also displays the
error message.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Performing Design Rule Checking (DRC)

Feedback

Figure 9 Schematic Display of DRC Violation

   

An example Z4 violation message is shown in the following example:

Warning: Bus contention on /bixcr (17373) occurred at time 0 of
test_setup procedure. (Z4-1)

A simple and fast way to view the schematic for a violation message is to point to the red-
highlighted error message in the transcript window, click the right mouse button, and select
Analyze in the pop-up menu.

The preceding figure shows the gates involved in the Z4 violation, along with the logic
values resulting from simulation of the test_setup macro. The test_setup macro is
described in more detail in the section Defining the test_setup Macro.

In this example, most of the logic values are X (unknown). The violation might be caused
by failing to force a Z on a bidirectional port called IO[0] in the test_setup procedure. You
can choose to ignore or correct this violation. If you choose to ignore it, fault coverage
is lowered because the ATPG algorithm will not generate any pattern that would cause
contention.

Some messages can be safely ignored. Others can be resolved through adjustment of a
procedure definition; and others require a change to the design.

See Also

• Using the Graphical Schematic Viewer

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

Preparing for ATPG
ATPG creates a sequence of test patterns that enable an ATE to distinguish between
the correct circuit behavior and the faulty circuit behavior caused by the defects. The
generated patterns are used to test devices and to determine the cause of failure.

To prepare for ATPG, you can specify general ATPG settings, set up the fault list, select
the fault model (stuck-at, IDDQ, path delay, hold time, transition, or bridging), select the
pattern source (internal, external, or random patterns), and select the ATPG mode (basic-
scan, fast-sequential, or full-sequential).

The following tasks show you how to prepare for ATPG:

• Specifying General ATPG Settings

• Specifying Fault Lists

• Specifying Fault Models

• Specifying the Pattern Source

• Specifying the ATPG Mode

See Also

• Running ATPG

Specifying General ATPG Settings
There are a variety of general parameters you can use to control pattern generation by
TestMAX ATPG. For example, you can:

• Specify the maximum number of patterns to generate before terminating ATPG

• Set the maximum CPU time allowed per fault before terminating fault detection

• Limit the maximum coverage for ATPG to attain before terminating

• Set the minimum number of system cycles for each pattern

• Use fill options for running internal scan and compressed scan patterns

• Establish checkpoints to save patterns and fault lists to files

For complete details on these settings and all other settings that control ATPG, see ATPG
Settings.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

Options for Specifying ATPG Settings
You can specify several types of general settings for ATPG using the set_atpg command
or the TestMAX ATPG GUI, as shown in the following examples:

• The following command specifies TestMAX ATPG to generate a maximum of 500
patterns and to terminate ATPG when the coverage reaches 98 percent:

set_atpg -patterns 500 -coverage 98
• The following command specifies that each pattern must have minimum of 5 system

cycles and to report extras messages during the pattern merge operation:

set_atpg -min_ateclock_cycles 5 -verbose
• The following command specifies TestMAX ATPG to use the random decision method

when compressing patterns and to save patterns to the chkp_patt file every 360 CPU
seconds:

set_atpg -checkpoint {360 chkp_patt}
The following steps make the same settings specified in the previous examples using the
Run ATPG dialog box:

1. Do one of the following:

• Select Run > Run ATPG

• Click the ATPG button in command bar

In both cases, the Run ATPG dialog box appears.

2. Click the General ATPG Settings tab, then do the following:

a. Enter 500 in the Max patterns text field.

b. Enter 98 in the Coverage % text field.

c. Enter 5 in the Min. system cycles per pattern text field.

d. Click the Verbose check box.

e. Click the Random fill check box.

f. Click the Check point check box. In the Set Check Point dialog box, enter chkp_patt
in the Pattern file name text field and 360 in the Time interval text field.

g. Click OK.

The following figure shows the appearance of the Run ATPG dialog box after entering the
specifications from the previous steps (note that the default settings are also selected).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

Figure 10 General Pattern Generation Options in the Run ATPG Dialog Box

   

Specifying Fault Lists
TestMAX ATPG maintains a list of potential faults for a design. You can specify TestMAX
ATPG to use an existing fault list provided in a formatted ASCII file, create a fault list, or
use only particular faults.

For complete information on using faults and fault lists, see Working with Faults and Fault
Lists.

The following sections show several methods for specifying and creating fault lists:

• Selecting an Existing Fault List File

• Generating a Fault List Containing All Fault Sites

• Including Specific Faults in a Fault List

• Writing Faults to a File

• Example Fault Lists

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

Selecting an Existing Fault List File
To specify TestMAX ATPG to use an existing fault list file, do one of the following:

• Use the read_faults command, as shown in the following example:

TEST-T> read_faults spec_faults.all
• Use the Add Faults dialog box by doing the following:

1. Select Faults > Add Faults

The Add Faults dialog box appears.

2. Click the Read File button, and enter or browse and select the name of the fault file.

3. Click OK

Generating a Fault List Containing All Fault Sites
To generate a fault list that includes all possible fault sites in the ATPG design model, do
one of the following:

• Specify the add_faults command, as shown in the following example:

TEST-T> add_faults -all
• Use the Add Faults dialog box by doing the following:

1. Select Faults > Add Faults

The Add Faults dialog box appears.

2. Click the All button.

3. Click OK

Including Specific Faults in a Fault List
You can exclude specific blocks, instances, gates, or pins from the fault list using any of
the following methods:

• Specify objects to be excluded using the add_nofaults command and then execute
the add_faults -all command, as shown in the following example:

TEST-T> add_nofaults /sub_block_A/adder
 TEST-T> add_nofaults /io/demux/alu TEST-T> add_faults -all

• Remove faults based on fault locations in a fault list file specified by the add_faults
-all command, as shown in the following example:

TEST-T> add_faults -all TEST-T> read_faults fault_list_file -delete

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

• Remove faults using the remove_faults command after executing the add_faults
-all command, as shown in the following example:

TEST-T> add_faults -all TEST-T> remove_faults /sub_block_A/adder
 TEST-T> remove_faults /io/demux/alu

• If you have a small number of faults, you can add them explicitly using the add_faults
command:

TEST-T> remove_faults -all TEST-T> add_faults /proc/io TEST-T>
 add_faults /demux TEST-T> add_faults /reg_bank/bank2/reg5/Q

Note: You can perform these same tasks in the TestMAX ATPG GUI using the Add Faults,
Add No Faults, Remove Faults dialog boxes.

Writing Faults to a File
You can use the write_faults command or the Report Faults dialog box to write a fault
list to a file for analysis or to read back in for future ATPG sessions:

• Write a fault list containing only AU class faults, as shown in the following example:

TEST-T> write_faults faults.AU -class au -replace
• Write a fault list for all faults:

TEST-T> write_faults filename -all -replace
• Write only the undetectable blocked (UB) and undetectable redundant (UR) fault

classes:

TEST-T> write_faults filename -class UB -class UR -replace
• Write only the faults down one hierarchical path:

TEST-T> write_faults filename /top/demux/core/mul8x8 -replace
• By default, the list of faults is either collapsed or uncollapsed as determined by the

last set_faults -report command. The following command overrides the default by
using the -collapsed option:

TEST-T> write_faults filename -all -replace -collapsed
• Generate a fault list using the Report Faults dialog box:

1. From the menu bar, choose Faults > Report Faults.

The Report Faults dialog box appears.

2. Use the Report Type list box to select the type of fault report that you want. A set of
additional options might appear to the right of the Report Type list box, depending
on your selection.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

3. Select the options you want.

4. Click OK.

Example Fault Lists
The following example shows a typical uncollapsed fault list. The equivalent faults always
immediately follow the primary fault and are identified by two dashes (--) in the second
column.

Uncollapsed Fault List
sa0 NP /moby/bus/Logic0206/N01
sa0 -- /moby/bus/Logic0206/H01
sa0 -- /xyz_nwr
sa0 NP /moby/i278/N01
sa0 -- /moby/i278/H01
sa0 -- /moby/i337/N01
sa0 -- /moby/i337/H02
sa1 -- /moby/i337/H01
sa0 -- /moby/i222/N01
sa0 -- /moby/i222/H01
sa0 -- /moby/i222/H02
sa0 NP /moby/core/PER/PRT_1/POUTMUX_1/i411/N01
sa0 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H03
sa0 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H04
sa1 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H01
sa1 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H02

For comparison, the following example shows the same fault list written with the
-collapsed option specified.

Collapsed Fault List
sa0 NP /moby/bus/Logic0206/N01
sa0 NP /moby/i278/N01
sa0 NP /moby/core/PER/PRT_1/POUTMUX_1/i411/N01

See Also

• Fault Lists and Faults

Specifying Fault Models
Effective testing requires an accurate behavioral description of a design containing
defects. Fault models represent how a manufacturing defect affects a design, and are

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

crucial in identifying target faults and performing fault analysis. You can run TestMAX
ATPG using any of the following fault models:

• Stuck-At — This is the default model used by TestMAX ATPG, and is the industry
standard model used for generating test patterns. This model assumes that a circuit
defect behaves as a node stuck at either 0 or 1. The test pattern generator attempts
to propagate the effects of these faults to the primary outputs and scan cells of the
device, where they can be observed at a device output or captured in a scan chain.
For more information on the stuck-at fault model and fault models in general, see
"Understanding Fault Models"

• Transition Delay — Generates test patterns to detect single-node slow-to-rise and
slow-to-fall faults. Using this model, TestMAX ATPG launches a logical transition upon
completion of a scan load operation and uses a capture clock procedure to observe the
transition results. For more information, see "Transition-Delay Fault ATPG.”

• Path Delay — Tests and characterizes critical timing paths in a design. Path delay fault
tests exercise the critical paths at-speed (the full operating speed of the chip) to detect
whether the path is too slow because of manufacturing defects or variations. For more
information, see "Path Delay Fault and Hold Time Testing.”

• Hold Time — This model is similar to the transition delay and path delay models,
except that it detects a fault through the shortest possible path to increase the
probability of finding small delay defects or process variations. For more information,
see "Hold Time ATPG Test Flow."

• IDDQ — Assumes that a circuit defect causes excessive current drain due to an
internal short circuit from a node to ground or to a power supply. For this model,
TestMAX ATPG does not attempt to observe the logical results at the device outputs.
Instead, it tries to toggle as many nodes as possible into both states while avoiding
conditions that violate quiescence, so that defects can be detected by the excessive
current drain that they cause. For more information, see "Quiesence Test Pattern
Generation."

• Bridging — Detects shorts that cause a connection between two normally unconnected
signals. These defects can be detected if one of the nets (the aggressor) causes the
other net (the victim) to take on a faulty value, which can then be propagated to an
observable location. For more information, see "Bridging Fault ATPG."

• IDDQ Bridging — Uses the IDDQ model to generate additional patterns and increase
the IDDQ coverage. The IDDQ bridging model uses only the toggle version of the
standard IDDQ model, which means that the fault site at a gate input does not
require propagation to an output of the same gate to be identified as a fault. For more
information, see "IDDQ Bridging."

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

• Dynamic Bridging — Combines components of the static bridging fault model and the
transition fault model to analyze transition effects in the presence of a specified value
on a bridge aggressor node. For more information, see "Running the Dynamic Bridging
Fault ATPG Flow."

Selecting a Fault Model
TestMAX ATPG uses the stuck-at fault model by default. You can select any supported
fault model using the -model option of the set_faults command or the Set Faults or Run
ATPG dialog boxes.

The following example shows how to use the set_faults command to specify the
transition-delay fault model:

TEST-T > set_faults -model transition
The following table shows the keywords used with the -model option to specify the various
fault models:

Keyword Fault Model

stuck Stuck-At

iddq IDDQ

iddq_bridging IDDQ Bridging

transition Transition-Delay

path_delay Path Delay

hold_time Hold Time

bridging Bridging

dynamic_bridging Dynamic Bridging

The following sets of steps show you how to specify a fault model using the Set Faults
dialog box:

1. Select Faults > Set Fault Options from the menu bar.

The Set Faults dialog box appears.

2. In the Model section, click the button associated with the fault model you want to use.

3. Click OK.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

To use the Run ATPG dialog box to specify a fault model:

1. Do one of the following:

• Select Run > Run ATPG from the menu bar

• Click the ATPG button in the command toolbar

In both cases, the Run ATPG dialog box appears.

2. In the Fault model section, click the button associated with the fault model you want to
use.

3. Click the Set button to save your specification.

Specifying the Pattern Source
You can configure TestMAX ATPG to use the following pattern sources:

• Internal patterns - These patterns are stored in memory and generated internally by
TestMAX ATPG. You can identify internal patterns by running the report_patterns
command.

• External patterns - These patterns are stored in a file. TestMAX ATPG can read
external pattern files in several formats, including Verilog, VHDL, STIL, and WGL.
These patterns must use the same syntax TestMAX ATPG uses when it writes
patterns.

• Random patterns - These patterns are defined by parameters set by the

set_random_patterns command)

Patterns should be stored in a binary file, if possible. The WGL and STIL formats are
unable to accurately store all the pattern data required by TestMAX ATPG. When you read
back a STIL or WGL pattern file, the fast-sequential patterns might be interpreted as a
full-sequential patterns, and errors are reported. Do not assume that TestMAX ATPG can
correctly read STIL or WGL patterns created by tools other than TestMAX ATPG.

The following sections describe the pattern types and formats accepted by TestMAX
ATPG, including how to select the pattern source:

• Scan and Nonscan Functional Patterns

• STIL Functional Pattern Input

• Verilog Functional Pattern Input

• WGL Functional Pattern Input

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

• VCDE Functional Pattern Input

• Options for Selecting the Pattern Source

Scan and Nonscan Functional Patterns
TestMAX ATPG accepts two primary types of functional pattern files:

• Scan functional patterns - These patterns contain scan chain load and unload
sequences and define structures and procedures that can be recognized as scan-chain
related.

They must use the same style and format that TestMAX ATPG uses to write ATPG
patterns. All scan chains, clocks, and primary input constraints must match the usage
in the patterns. The load_unload, Shift, and other test procedures must be consistent
with the patterns.

• Nonscan functional patterns - These patterns have no recognizable structure and do
not contain procedures of a standard scan pattern. Nonscan patterns can exercise
scan chains, can be completely functional, or can perform a combination of scan
chain and functional testing. They must use a simple, sequential application of input
stimulus and output measures and hey must not define scan chains or any ATPG-
related procedures (for example, load_unload or Shift).

If the functional nonscan patterns do not contain timing information, you can use a STIL
procedure file to define pin timing, and reference the STL procedure file using the run_drc
command or the Run DRC dialog box. The following steps describe this process:

1. For your current design, use the add_clocks command or the Add Clock dialog box to
define as clocks all ports in the input data that function as clocks or pulsed ports.

Note that defining the clocks is optional. Some clock violations found during the
run_drc process can affect the simulator and it might be necessary to remove
add_clocks commands.

2. Switch to TEST mode without the use of an STL procedure file. Typically, you must
change the severity of many of the rules from their defaults to either warning or ignore.

3. After you achieve TEST mode, execute run_atpg to generate at least one pattern.

4. Write out a few patterns. Because no scan chains have been defined, this pattern file
represents a template for nonscan functional pattern input.

STIL Functional Pattern Input
TestMAX ATPG accepts pattern input in STIL format using some limited variations of the
example shown in the following example.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

The supported format has the following characteristics:

• The Header block is optional.

• The Signals block is required.

• The SignalGroups block is optional.

• The Timing block, with at least one WaveformTable, is required to define the point in
the cycle where the clocks pulse and the outputs are measured.

• The PatternBurst, PatternExec, and Pattern blocks are used to set up a single
block of functional patterns.

• The Pattern block consists only of W and V statements.

Functional Pattern Input in STIL
STIL 0.23;

Header { Title "Functional Patterns for Design-X"; }

Signals {

 d11 In; d10 In; d9 In; d8 In; d7 In;

 d6 In; d5 In; d4 In; d3 In; d2 In;

 d1 In; d0 In; i3 In; i2 In; i1 In;

 i0 In; oe In; rld In; ccen In; ci In;

 cp In; cc In; sdi1 In; sdi2 In; se In;

 tsel In; y11 Out; y10 Out; y9 Out; y8 Out;

 y7 Out; y6 Out; y5 Out; y4 Out; y3 Out;

 y2 Out; y1 Out; y0 Out; full Out; pl Out;

 map Out; vect Out; sdo1 Out; sdo2 Out; tout Out;

 vcoctl Out;

}

SignalGroups {

 input_ports = 'd11 + d10 + d9 + d8 + d7 + d6 + d5 + d4 + d3 + d2

 + d1 + d0 + i3 + i2 + i1 + i0 + oe + rld + ccen + ci

 + cp + cc + sdi1 + sdi2 + se + tsel';

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

 output_ports = 'y11 + y10 + y9 + y8 + y7 + y6 + y5 + y4 + y3 + y2

 + y1 + y0 + full + pl + map + vect + sdo1 + sdo2 + tout

 + vcoctl';

}

Timing {

 WaveformTable TSET1 {

 Period '250ns';

 Waveforms {

 input_ports { 01Z { '0ns' D/U/Z; } }

 cp { P { '0ns' D; '62ns' U; '187ns' D; } }

 output_ports { X { '0ns' X; } }

 output_ports { LHT { '0ns' X; '240ns' L/H/T; } }

 }

 }

}

PatternBurst functional_burst { FUNC_BLOCK_1; }

PatternExec { Timing; PatternBurst functional_burst; }

Pattern FUNC_BLOCK_1 {

 W TSET1;

 V {

 d1=0; d9=0; sdo2=X; sdi2=0; y9=X; y1=X; d6=0; cp=0; i3=0; cc=0;

 vcoctl=X; y6=X; ci=1; d3=0; i0=0; d11=0; y3=X; y11=X; oe=0; d0=0;

 d8=0;vect=H; map=H; y8=X; y0=X; i2=0; d5=0; sdo1=X; y5=X;sdi1=0;

 tout=X; d2=0; y2=X; d7=0; d10=0; full=X; y7=X; tsel=0; ccen=0;

se=0;

 y10=X;rld=0; i1=0; d4=0; y4=X; }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

 V {tsel=1; tout=T;}

 V {d3=1;y3=H;map=L;i1=1;}

 V {sdo2=L; d3=0; i0=0; y0=H;i2=1;}

 V {sdo2=H; y1=L; i0=1; y3=L; i2=0; d4=1; y4=H;}

 V {y1=H; i3=0; cc=1; y0=L; d4=0;}

 V {y0=H; d10=1;}

 V {sdo2=L; y1=H; i0=0; i2=1;}

 V {y0=H;}

 V {y0=H;}

 V {y1=H; y0=L;}

 V {y0=H;}

 V {y1=L; y3=H; y0=L; sdo1=L; y2=L;}

 V {y0=H; full=L;}

 V {y1=L; y0=L; y2=H;}

 V {y1=H; y0=L;}

 V {y1=L; y3=L; y0=L; y2=L; y4=H;}

 V {y0=H;}

}

Verilog Functional Pattern Input
TestMAX ATPG accepts pattern input in Verilog format using some limited variations of the
example shown in the following example.

The supported format has the following characteristics:

• ‘timescale is optional.

• A vector is used for primary outputs, expected data, and mask.

• Each clock capture cycle that can perform a measure is defined in an event procedure.

• Cycles with a measure and no clocks are defined in event procedures.

• Cycles with a clock and no measures are defined in event procedures.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

• The data stream occurs within an initial/end block.

• Assignment to the variable pattern allows TestMAX ATPG to track the pattern
boundaries.

Example 2 Functional Pattern Input in Verilog

`timescale 1 ns / 100 ps

module amd2910_test;

 reg [0:8*9] POnames [19:0];

 integer nofails, bit, pattern;

 wire [11:0] d;

 wire [3:0] i;

 wire oe, tsel, ci, rld, ccen, cc, sdi1, sdi2, se, cp;

 wire [11:0] y;

 wire full, pl, map, vect, tout, vcoctl, sdo1, sdo2;

 wire [19:0] PO; // primary output vector

 reg [19:0] XPCT; // expected data vector

 reg [19:0] MASK; // compare mask vector

 assign PO[0] = y[0];

 assign PO[1] = y[1];

 assign PO[2] = y[2];

 assign PO[3] = y[3];

 assign PO[4] = y[4];

 assign PO[5] = y[5];

 assign PO[6] = y[6];

 assign PO[7] = y[7];

 assign PO[8] = y[8];

 assign PO[9] = y[9];

 assign PO[10] = y[10];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

 assign PO[11] = y[11];

 assign PO[12] = full;

 assign PO[13] = pl;

 assign PO[14] = map;

 assign PO[15] = vect;

 assign PO[16] = tout;

 assign PO[17] = vcoctl;

 assign PO[18] = sdo1;

 assign PO[19] = sdo2;

 // instantiate the device under test

 amd2910 dut (.o_y11(y[11]), .o_y10(y[10]), .o_y9(y[9]),

 .o_y8(y[8]), .o_y7(y[7]), .o_y6(y[6]), .o_y5(y[5]),

 .o_y4(y[4]), .o_y3(y[3]), .o_y2(y[2]), .o_y1(y[1]),

 .o_y0(y[0]), .o_full(full), .o_pl(pl), .o_map(map),

 .o_vect(vect), .o_sdo1(sdo1), .o_sdo2(sdo2), .tout(tout),

 .vcoctl(vcoctl), .i_d11(d[11]), .i_d10(d[10]), .i_d9(

d[9]),

 .i_d8(d[8]), .i_d7(d[7]), .i_d6(d[6]), .i_d5(d[5]),

 .i_d4(d[4]), .i_d3(d[3]), .i_d2(d[2]), .i_d1(d[1]),

 .i_d0(d[0]), .i_i3(i[3]), .i_i2(i[2]), .i_i1(i[1]),

 .i_i0(i[0]), .i_oe(oe), .i_rld(rld), .i_ccen(ccen),

 .i_ci(ci), .i_cp(cp), .i_cc(cc), .i_sdi1(sdi1),

.i_sdi2(sdi2),

 .i_se(se), .tsel(tsel));

 // define pulse on "i_cp"

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

 event pulse_i_cp;

 always @ pulse_i_cp begin

 #500 cp = 1;

 #100 cp = 0;

 end

 // define capture event without a clock

 event capture;

 always @ capture begin

 #0;

 #950; ->measurePO;

 end

 // define how to measure outputs

 event measurePO;

 always @ measurePO begin

 if ((XPCT&MASK) !== (PO&MASK)) begin

 $display($time," ----- ERROR(S) during pattern %0d ---

--",pattern);

 for (bit = 0; bit < 20; bit=bit + 1) begin

 if((XPCT[bit]&MASK[bit]) !== (PO[bit]&MASK[bit])) begin

 $display($time, " : %0s (output %0d), expected %b,

got %b",

 POnames[bit], bit, XPCT[bit],

PO[bit]);

 nofails = nofails + 1;

 end

 end

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

 end

 end

 event capture_i_cp;

 always @ capture_i_cp begin

 #0;

 #500 cp = 1; // i_cp

 #100 cp = 0;

 #350; ->measurePO;

 end

initial begin

 nofails = 0;

// --- initalize port name table

 POnames[0] = "Y0"; POnames[1] = "Y1"; POnames[2] = "Y2";

 POnames[3] = "Y3"; POnames[4] = "Y4"; POnames[5] = "Y5";

 POnames[6] = "Y6"; POnames[7] = "Y7"; POnames[8] = "Y8";

 POnames[9] = "Y9"; POnames[10] = "Y10"; POnames[11] = "Y11";

 POnames[12] = "full"; POnames[13] = "pl"; POnames[14] = "map";

 POnames[15] = "vect"; POnames[16] = "tout"; POnames[17] =

"vcoctl";

 POnames[18] = "sdo1"; POnames[19] = "sdo2";

#0; pattern= 0;

se=0; sdi2=0; sdi1=0; cc=0; ccen=0; ci=0; tsel=0; oe=0;

cp = 0; i=4'b0010; rld=1; d=12'b000000000111;

XPCT=20'bXXXX1011000000000001; MASK=20'b00000000000000000000;

->pulse_i_cp;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

#1000; pattern= 1; i=4'b1110; d=12'b000000000000;

->pulse_i_cp;

#1000; pattern= 2; i=4'b0000; oe=0;

->capture;

#1000; pattern= 3; i=4'b0010; oe=1;

d=12'b000000000001; XPCT=20'bXXXX1011000000000001;

MASK=20'b00001111111111111111;

->capture_i_cp;

#1000; pattern= 4;

d=12'b000000000010; XPCT=20'bXXXX1011000000000010;

MASK=20'b00001111111111111111;

->capture_i_cp;

#1000; pattern= 5;

d=12'b000000000100; XPCT=20'bXXXX1011000000000100;

MASK=20'b00001111111111111111;

->capture_i_cp;

#1000;

$display("Simulation of %0d cycles completed with %0d errors",

 pattern, nofails);

$finish;

end

endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

WGL Functional Pattern Input
TestMAX ATPG accepts pattern input in WGL format using some limited variations of the
example shown in the following example.

The supported format has the following characteristics:

• The waveform function is required.

• The pmode function is optional.

• The signal block is required.

• The timeplate block is required.

• The pattern block consists of simple vectors applied sequentially.

Example 3 Functional Pattern Input in WGL

waveform funct_1

pmode[last_drive];

signal

 TEST : input; RESET_B : input; EXTS1 : input; EXTS0 : input;

 LOBAT : input; SS_B : input; SCK : input; MOSI : input;

 EXTAL : input; TOUTEN : input; TOUTSEL : input;

 XTAL : output; MISO : output; READY_B : output;

 CLKOUT : output; SYMCLK : output; S7 : output;

 S6 : output; S5 : output; S4 : output;

 S3 : output; S2 : output; S1 : output;

 S0 : output; TOUT3 : output; TOUT2 : output;

 TOUT1 : output; TOUT0 : output;

end

timeplate tts0 period 500nS

 TEST := input[0pS:P, 200nS:S];

 RESET_B := input[0pS:P, 200nS:S];

 EXTS1 := input[0pS:P, 200nS:S];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

 EXTS0 := input[0pS:P, 200nS:S];

 LOBAT := input[0pS:P, 200nS:S];

 SS_B := input[0pS:P, 200nS:S];

 SCK := input[0pS:P, 200nS:S];

 MOSI := input[0pS:P, 200nS:S];

 EXTAL := input[0pS:P, 100nS:S];

 TOUTEN := input[0pS:P, 200nS:S];

 TOUTSEL := input[0pS:P, 200nS:S];

 XTAL := output[0pS:X, 450nS:Q, 451nS:X];

 MISO := output[0pS:X, 450nS:Q, 451nS:X];

 READY_B := output[0pS:X, 450nS:Q, 451nS:X];

 CLKOUT := output[0pS:X, 450nS:Q, 451nS:X];

 SYMCLK := output[0pS:X, 450nS:Q, 451nS:X];

 S7 := output[0pS:X, 450nS:Q, 451nS:X];

 S6 := output[0pS:X, 450nS:Q, 451nS:X];

 S5 := output[0pS:X, 450nS:Q, 451nS:X];

 S4 := output[0pS:X, 450nS:Q, 451nS:X];

 S3 := output[0pS:X, 450nS:Q, 451nS:X];

 S2 := output[0pS:X, 450nS:Q, 451nS:X];

 S1 := output[0pS:X, 450nS:Q, 451nS:X];

 S0 := output[0pS:X, 450nS:Q, 451nS:X];

 TOUT3 := output[0pS:X, 450nS:Q, 451nS:X];

 TOUT2 := output[0pS:X, 450nS:Q, 451nS:X];

 TOUT1 := output[0pS:X, 450nS:Q, 451nS:X];

 TOUT0 := output[0pS:X, 450nS:Q, 451nS:X];

end

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

pattern group_ALL (TEST,RESET_B,EXTS1,EXTS0,LOBAT,SS_B,

 SCK,MOSI,EXTAL,TOUTEN,TOUTSEL,XTAL,

 MISO,READY_B,CLKOUT,SYMCLK,S7,S6,

 S5,S4,S3,S2,S1,S0,TOUT3,TOUT2,

 TOUT1,TOUT0)

 vector(0, 0pS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 X X X X X X X

X X X X X X X X X X] (0pS);

 vector(1, 500nS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X X

X X

 X X X X] (500nS);

 vector(2, 1uS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 1 0 1 X 0 Z Z

Z Z Z Z Z Z Z Z Z Z] (1uS);

 vector(3, 1.5uS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 1 0 1 X 0 Z Z Z Z Z Z

Z Z

 Z Z Z Z] (1.5uS);

 vector(4, 2uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z

Z Z Z Z Z Z Z Z Z Z] (2uS);

 vector(5, 2.5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z Z Z Z Z

Z Z

 Z Z Z Z] (2.5uS);

 vector(6, 3uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z

Z Z Z Z Z Z Z Z Z Z] (3uS);

 vector(7, 3.5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z Z Z Z Z

Z Z

 Z Z Z Z] (3.5uS);

 vector(8, 4uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

Z Z Z Z Z Z Z Z Z Z] (4uS);

 vector(9, 4.5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z Z Z Z Z

Z Z

 Z Z Z Z] (4.5uS);

 vector(10, 5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z

Z Z Z Z Z Z Z Z Z Z] (5uS);

end

end

VCDE Functional Pattern Input
TestMAX ATPG can read patterns in extended VCD (VCDE) format. This format is not
the same as traditional VCD. To create a VCDE data file, you need a Verilog-compatible
simulator that supports the IEEE draft definition of VCDE. (For details, refer to IEEE
P1364.1-1999, Draft Standard for Verilog Register Transfer Level Synthesis.) The
Synopsys VCS simulator, version 5.1 or later, supports this standard.

Creating a VCDE data file is fairly simple for most Verilog simulators. You need to add
a single $dumpports() system task to the initial block of the top-level module. The
syntax is similar to the following:

initial begin

 //

 // --- other variable inits here

 //

 $dumpports(testbench.DUT, "vcde_output_file");

 ...

end

In this example, the simulator captures all of the I/O events for the simulation instance
testbench.DUT into a file called vcde_output_file. If your simulation is performed
directly on your design, the path to this file might be DUT. If your design is instantiated in a
testbench, then this path is more likely to betestbench.DUT, wheretestbench is the top-
level module name and DUT is the instance name of the design found within the module
testbench.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

If you want to generate a VCDE file from a TestMAX ATPG Verilog testbench, you can use
the +define+tmax_vcde variable to help generate that file. Do this by adding the +define
+tmax_vcde variable to your VCS command line when you simulate the TestMAX ATPG-
generated Verilog testbench. An VCDE file called sim_vcde.out is automatically created.

Do not create a VCDE file with complex timing events. The most efficient functional
patterns are those most closely resembling what would be applied on a tester. Within a
cycle, use as few separate events as possible as in the following sequence:

1. Force all inputs at the same time.

2. Pulse the clock.

3. Measure all outputs at the same time.

Functional patterns in VCDE format do not need to have any measures defined. TestMAX
ATPG decides what values to expect on output and bidirectional pins by keeping a running
tally of the most recently reported values in the VCDE event stream. For an output port,
all values other than X are measurable. For a bidirectional port, the values L, H, T, l, and
h are measurable; the value X is not measured; and the values 0, 1, and Z indicate input
mode (which is not measurable).

In TestMAX ATPG, when you read in VCDE patterns, you specify the cycle period and
measure points within each cycle. TestMAX ATPG uses this information to construct
internal measure points and expected data. For more information, see "Specifying Strobes
for VCDE Pattern Input."

Options for Selecting the Pattern Source
You can select the pattern source using the set_patterns command, the Set Patterns
dialog box, or the Run ATPG dialog box. In addition, you can specify various options that
affect how TestMAX ATPG uses the patterns.

The following examples show how to use the set_patterns command to specify the
pattern source:

• To use internal patterns, specify the -internal option, as shown in the following
example:

TEST-T> set_patterns -internal
• To use external patterns, specify the -external option and the name of the file

containing the patterns (in the following example, the file name is b010.vi1). You can
also use the -append option to append the external patterns to any existing internal
patterns, and use the -load_summary option to enable the report_summaries
command to display the total number of scan loads used by the basic-scan and fast-
sequential patterns, as shown in the following example:

TEST-T> set_patterns -external b010.vi1 -append -load_summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

125

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

• To use random patterns, do the following:

1. Specify the parameters for defining the random patterns using the

set_random_patterns command, as shown in the following example:

TEST-T> set_random_patterns -length 3000 -observe_master
2. Specify the -random option of the set_patterns command, as shown in the

following example:

TEST-T> set_patterns -random
The Set Patterns dialog box generally uses the same options specified by the
set_patterns command. To select the pattern source using the Set Patterns dialog box:

1. From the menu bar, choose Patterns > Set Pattern Options.

The Set Patterns dialog box appears.

2. Do one of the following:

• To select internal patterns as the pattern source, click the Internal button in Pattern
source section.

• To select external patterns, do the following:

a. Click the External button in the Pattern source section.

b. Enter the pattern file name you want to use as the pattern source, or use the
Browse button to navigate and select the file.

• To select random patterns, click the Random button.

3. Select or enter any applicable options in the Set Patterns dialog box.

4. Click OK.

To select the pattern source using the Run ATPG dialog box:

1. Click the ATPG button in the command toolbar.

The Run ATPG dialog box appears.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

126

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

2. Do one of the following:

• To select internal patterns as the pattern source, click the Internal button in Pattern
source section.

• To select external patterns, do the following:

a. Click the External button in the Pattern source section.

b. Enter the pattern file name you want to use as the pattern source, or use the
Browse button to navigate and select the file.

• To select random patterns, click the Random button.

3. Select or enter any applicable options in the Set Patterns dialog box.

4. Click OK.

Specifying the ATPG Mode
TestMAX ATPG can use three different modes when performing pattern generation. Each
mode provides different types and levels of optimization. Since ATPG normally requires
multiple runs, the mode you select depends on your particular pattern generation goals
and where you are in the ATPG process.

TestMAX ATPG supports the following ATPG modes:

• Basic Scan Mode - This is the default mode for TestMAX ATPG, and is usually the first
mode you run. It enables TestMAX ATPG to operate as a full-scan, combinational-only
ATPG tool. To get high test coverage, the sequential elements must be scan elements.

• Fast-Sequential Mode - This mode provides limited support for partial-scan designs,
and accommodates multiple capture procedures between scan load and scan unload.
Fast-sequential mode allows data to be propagated through nonscan sequential
elements in the design, such as functional latches, nonscan flops, and RAMs and
ROMs. However, all clock and reset signals to these nonscan elements must be
directly controllable at the primary inputs of the device.

• Full-Sequential Mode - This mode supports multiple capture cycles between scan load
and unload, which increases test coverage in partial-scan designs. Clock and reset
signals to the nonscan elements do not need to be controllable at the primary inputs
and there is no specific limit on the number of capture cycles used between scan load
and unload.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

127

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

Each mode is described in more detail in the following sections:

• Basic Scan Mode Settings

• Fast-Sequential Mode Settings

• Setting Full-Sequential Mode

Basic Scan Mode Settings
The basic scan mode is the default mode for running ATPG. This mode uses the
combinational ATPG method, which tests the individual nodes (or flip-flops) of a logic
circuit without concern to the overall operation of the circuit. During test, basic-scan
mode forces a simplified connection of flip-flops that effectively bypasses their normal
interconnections. This allows TestMAX ATPG to use a relatively simple vector matrix to
quickly test all the comprising flip-flops and to trace failures to specific flip-flops.

You can use the set_atpg command or the Run ATPG dialog box to set several options
specific to basic-scan mode. For example, you can do the following:

• Specify the -abort_limit option to set the maximum number of remade decisions
before terminating a basic-scan test generation effort.

• Specify the -resim_atpg_patterns option to enable and disable the resimulation of
patterns generated by basic-scan ATPG to increase the robustness of patterns.

The following example shows how to specify both options:

TEST-T> set_atpg -abort_limit 8 -resim_atpg_patterns nofault_sim
To perform these same tasks using the Run ATPG dialog box:

1. Do one of the following:

• Select Run > Run ATPG from the command menu

• Click the ATPG button in the command toolbar.

In both cases, the Run ATPG dialog box appears.

2. Click the Basic Scan Settings tab.

3. Enter 8 in the Abort limit field, and select Mask in the drop-down menu of the Resim
basic scan patterns field.

4. Click the Set button.

After making the appropriate settings, you can run ATPG in basic scan mode. For details
on this process, see Running TestMAX ATPG in Basic Scan, Fast-Sequential, or Full-
Sequential Mode.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

128

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

Fast-Sequential Mode Settings
Fast-sequential ATPG provides limited support for partial-scan designs (designs containing
some nonscan sequential elements). This mode is particularly useful when there are AU
(ATPG Undetectable) faults remaining after you run ATPG in basic-scan mode.

You can use the -capture_cycles option of the set_atpg command to specify an integer
between 2 and 10 . This specification sets the level of effort used by the ATPG algorithm
based on the number of capture procedures allowed between scan load and unload.

You should not set the -capture_cycles option value too high since it can cause
excessive runtimes. In most cases, you should use a starting value of 4 (the default), and
generate an initial set of patterns. You can then incrementally increase the value following
each pattern generation until you achieve your required coverage.

You can use the sequential_depths options of the report_summaries command to
identify the maximum depth for controlling, observing , and detecting faults, as shown in
the following example:

TEST> report_summaries sequential_depths
 type depth gate_id
 ------- ----- -------
 Control 1 21569
 Observe 2 6866
 Detect 3 6859

Based on this report, to obtain optimal runtime you should set the -capture_cycles
option to 3 as shown in the following example:

TEST> set_atpg -capture_cycles 3
For optimal coverage, set the -capture_cycles option to 10:

TEST> set_atpg -capture_cycles 10
To perform these same tasks using the TestMAX ATPG GUI:

1. Do one of the following:

• Select Report > Report Summaries from the command menu

• Click the Summary button in the command toolbar.

In both cases, the Report Summaries dialog box appears.

2. Select the Sequential depths button.

3. In the Output to section, select either the Report window, Transcript, or File.

4. Click OK.

The Report Summaries dialog prints a report that shows the sequential depths.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Preparing for ATPG

Feedback

5. Do one of the following:

• Select Run > Run ATPG from the command menu.

• Click the ATPG button in the command toolbar.

In both cases, the Run ATPG dialog box appears.

6. Click the Fast Sequential Settings tab.

7. Enter a value in the Capture cycle field (for example, enter 4).

8. Click the Set button.

Setting Full-Sequential Mode
Full-sequential ATPG supports multiple capture cycles between scan load and unload,
and supports RAM and ROM models, which increases the test coverage in partial-scan
designs (similar to fast-sequential ATPG). However, in full-sequential mode, clock and
reset signals to the nonscan elements do not need to be controllable at the primary inputs
and there is no specific limit on the number of capture cycles used between scan load and
unload.

To enable TestMAX ATPG to use the full-sequential mode, specify the -full_seq_atpg
option of the set_atpg command, as shown in the following example:

TEST-T> set_atpg -full_seq_atpg
Full-sequential mode supports a feature called sequential capture. If you define a
sequential capture procedure in the STIL procedure file, you can customize the capture
clock sequence applied to the device during full-sequential ATPG. For example, you can
define the clocking sequence for a two-phase latch design, in which CLKP1 is followed by
CLKP2. Otherwise, the tool creates its own sequence of clocks and other signals to target
the as-yet-undetected faults in the design. For more information, see Defining a Sequential
Capture Procedure.

The following limitations apply to full-sequential ATPG:

• It supports stuck-at faults, transition faults, and path delay faults, but not IDDQ or
bridging faults.

• It does not support the -fault_contention option of the set_buses command.

• It does not support the -nocapture, -nopreclock, and -retain_bidi options of the
set_contention command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

• Patterns generated by Full-Sequential ATPG are not compatible with failure diagnosis
using the run_diagnosis command.

• The following options of the set_simulation command are not implemented for Full-
Sequential simulation:

-bidi_fill | -strong_bidi_fill -measure <sim|pat> -oscillation

Running ATPG
ATPG generates a sequence of test patterns that enable an ATE to distinguish between
the correct circuit behavior and the faulty circuit behavior caused by the defects. You use
these patterns to test devices and to determine the cause of failure. Before running ATPG,
make sure you have completed the recommended the processes described in Preparing
for ATPG.

Basic scan mode (the default) is usually the first mode first you run in the ATPG process,
followed by fast-sequential mode. For detailed descriptions of these modes, see ATPG
Modes.

After running ATPG, you can review a set of output reports that provide coverage
information on primitives, faults, patterns, library cells, memories, and other data relevant
to ATPG. Based on these reports, you can make incremental adjustments to meet
your ATPG goals, such as obtaining a good balance between pattern compaction and
execution speed.

The following sections describe how to run ATPG:

• Running ATPG in Basic Scan or Fast-Sequential Mode

• Using Automatic Mode to Generate Optimized Patterns

• Quickly Estimating Test Coverage

• Specifying a Test Coverage Target Value

• Increasing ATPG Effort Over Multiple Passes

• Multiple Session Test Pattern Generation

• Compressing Patterns

You can also set a variety of optimization parameters for running ATPG. For details on
these settings, see Optimizing ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

131

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

Running ATPG in Basic Scan or Fast-Sequential Mode
You can run ATPG using either the run_atpg command or the Run ATPG dialog box. This
topic explains how to run ATPG in the basic scan or fast-sequential modes. You can also
run ATPG in automatic mode, which automatically selects the best settings and algorithms
to provide reasonably good results. For details on automatic mode, see Using Automatic
Mode to Generate Optimized Patterns.

To run ATPG using the basic scan mode (the default), specify the run_atpg command
without any options. This mode uses default two-clock transition ATPG when running
distributed ATPG for system clock transition, and is usually the first mode you use during
the ATPG process. The following example runs ATPG in basic scan mode:

TEST-T> run_atpg
For information on specifying settings for basic scan mode, see Basic Scan Mode
Settings.

You can run ATPG in fast-sequential mode using the fast_sequential_only option of
the run_atpg command. This mode provides limited support for partial-scan designs, and
accommodates multiple capture procedures between scan load and scan unload. The
following example runs ATPG in fast-sequential mode:

TEST-T> run_atpg fast_sequential_only
You can also use the -capture_cycles option of the set_atpg command to set a level
of effort used by fast-sequential mode. For information on specifying settings for fast-
sequential mode, see Fast-Sequential Mode Settings.

To use the Run ATPG dialog box to specify the ATPG mode and start the ATPG process,
do the following:

1. Do one of the following:

• Select ATPG > Run ATPG

• Click the ATPG button

In both cases, the Run ATPG dialog box appears.

2. On the right side of the Run ATPG dialog box, click the button associated with the
ATPG mode you want to run:

• To run basic scan mode, click the Basic Scan button.

• To run fast-sequential mode, click the Fast-Seq button.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

132

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

Using Automatic Mode to Generate Optimized Patterns
You can specify TestMAX ATPG to use an automatic mode that optimally generates
compact sets of ATPG patterns. This mode automatically selects the best settings and
algorithms to provide reasonably good results. Automatic mode is a good starting point for
most ATPG flows. Although this mode uses a set of default parameters, you can still make
manual adjustments as necessary.

Automatic pattern compression uses a combination of algorithms to achieve optimal
results: a fast test generation algorithm that results in a lower pattern count and a
secondary algorithm that produces excellent fault detection results in a slower runtime.

TestMAX ATPG performs the following tasks in automatic mode:

• Fault Population

If there is no existing fault population, TestMAX ATPG automatically populates a fault
list (the same as running the add_faults -all command). If a fault population exists,
the faults are left undisturbed and used for the remainder of the automatic mode
process. For more information, on setting the fault population, see Specifying Fault
Lists.

• Pattern Source

Internal patterns are used as the pattern source (the default). For more information on
internal patterns, see Setting the Pattern Source.

• Pattern Generation

TestMAX ATPG automatically uses basic-scan mode (the default) to generate an initial
set of patterns. All patterns are stored and dynamic merge is enabled. The merge effort
is automatically set to high, unless you have set the merge parameter to some other
value. TestMAX ATPG adheres to any other set_atpg command settings you specified
(see Specifying General ATPG Settings for details). If you set the -capture_cycles
option of the set_atpg command to a value greater than 1, fast-sequential ATPG is
performed after basic-scan ATPG. Also, if you set the -full_seq_atpg option of the
set_atpg command, full-sequential ATPG is performed after basic-scan ATPG or fast-
sequential ATPG.

• Reports

After TestMAX ATPG generates the patterns, it produces a fault summaries report,
a test coverage report, and a pattern count report. In addition, the total CPU time is
reported.

• Restoration

After completing the automatic mode process, TestMAX ATPG restores all settings to
their original values.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

133

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

Setting Automatic Mode
To run ATPG in automatic mode:

1. Use the set_atpg command or the Run ATPG Dialog box to select the ATPG abort
limit, ATPG verbose mode, and the ATPG merge effort, if necessary. You can also
create a non-default fault population, or you can use defaults for any or all of these
settings. For more information, see Specifying General ATPG Settings.

2. Do one of the following to initiate automatic mode:

• Specify the -auto_compression option of the run_atpg command, as shown in the
following example:

run_atpg -auto_compression
• Use the Run ATPG dialog box, as shown in the following steps:

a. Do one of the following:

◦ Select ATPG > Run ATPG

◦ Click the ATPG button

In both cases, the Run ATPG dialog box appears.

b. Click the Auto button.

Note the following:

• Multiple fault sensitization is only available if you use the -auto_compression option.

• You can use the -optimize_patterns option of the run_atpg command to produce a
very compact set of patterns with high test coverage. The trade-off is a longer runtime.
For details, see Optimizing Patterns during the run_atpg Process.

Quickly Estimating Test Coverage
You can quickly estimate the final test coverage by setting a low abort limit and low merge
effort before running ATPG.

To quickly estimate coverage, use the -abort_limit and -merge option of the

set_atpg command, as shown in the following example:

TEST-T> set_atpg -abort_limit 5 -merge off
TEST-T> run_atpg

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

134

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

To estimate coverage using the Run ATPG dialog box:

1. Select ATPG > Run ATPG or click the ATPG button in the command toolbar.

The Run ATPG dialog box appears.

2. Set the Abort Limit to 5.

3. Set the Merge Effort to Off.

4. Click Set.

5. For details about these and other settings, see the description of the set_atpg and
run_atpg commands in TestMAX ATPG Help.

6. Click Run.

Examples

The following example shows a transcript produced by these commands. The reported
test coverage is usually within 1 percent of the final answer, and the number of patterns
with merge effort turned off is usually two to three times the number of patterns produced
by a final pattern generation run with the merge effort set to high.

Run ATPG Transcript, Merge Effort Turned Off
TEST-T> set_atpg -abort 5 -merge off
TEST-T> run_atpg
ATPG performed for 71800 faults using internal
 pattern source.
--
#patterns #faults
 #ATPG faults test process
stored detect/active
 red/au/abort coverage CPU time
--------- ------------- ------------ --------

32
 41288 30512
 0/0/2 60.92% 1.35
64
 7135 23377
 0/0/3 69.04% 2.17
96
 3231 20146
 0/0/6 72.73% 2.81
128
 2643 17503
 0/0/7 75.74% 3.33
160
 1976 15527
 0/0/11 78.00% 3.91
192

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

135

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

 1977 13550 0/0/13
 80.26% 4.43
224
 1450 12100
 0/0/16 81.92% 4.85
256
 1246 10854
 0/0/21 83.35% 5.32
288
 1101 9753
 0/0/24 84.61% 5.77
319
 683 9070
 0/0/26 85.39% 6.13
351
 748 8322
 0/0/27 86.24% 6.46
383
 620 7702
 0/0/29 86.95% 6.77
:
 :
 : : :
 :
 : :
1617
 41 348
 0/0/170 95.37% 22.02
1648
 51 297
 0/0/171 95.43% 22.34
1652
 12 285
 0/0/171 95.45% 22.43
TEST-T>

For comparison, the following example shows a transcript from an ATPG run on the same
design with the merge effort set to high.

Run ATPG Transcript, Merge Effort Set to High
TEST-T> set_atpg -abort 5 -merge high
TEST-T> run_atpg
ATPG performed for 71800 faults using internal
 pattern source.
--
#patterns #faults
 #ATPG faults test process
stored detect/active
 red/au/abort coverage CPU time
--------- ------------- ------------ --------

Begin deterministic ATPG: abort_limit = 5...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

136

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

32
 52694 19106
 0/0/2 73.93% 39.05
64
 6363 12743
 0/0/6 81.21% 58.29
96
 3200 9543
 0/0/10 84.88% 74.35
128
 2082 7461 0/0/13
 87.26% 91.86
160
 1234 6227
 0/0/15 88.65% 105.62
192
 1182 5045
 0/0/17 90.00% 117.14
224
 849 4196
 0/0/21 90.97% 127.18
256
 610 3586
 0/0/25 91.67% 136.52
288
 572 3014
 0/0/29 92.32% 145.44
320
 514 2500
 0/0/34 92.91% 154.06
352
 420 2080
 0/0/37 93.39% 161.81
383
 327 1753
 0/0/43 93.77% 169.07
415
 320 1433
 0/0/49 94.13% 176.13
447
 253 1180
 0/0/72 94.42% 183.10
479
 212 968
 0/0/80 94.67% 189.54
511
 176 792
 0/0/90 94.87% 195.15
543
 110 682
 0/0/111 94.99% 200.98
575
 97 585

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

137

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

 0/0/133 95.11% 205.85
607
 60 525
 0/0/145 95.17% 210.38
639
 90 435
 0/0/175 95.28% 214.81
671
 84 351
 0/0/177 95.37% 218.10
695
 46 305
 0/0/177 95.43% 220.55
TEST-T>

The columns in the Run ATPG transcript are described as follows:

• #patterns stored – The total cumulative number of stored patterns (patterns that
TestMAX ATPG keeps).

• #faults detect – The number of faults detected by the current group of 32 patterns

• #faults active – The number of faults remaining active

• #ATPG faults red/au/abort – The cumulative number of faults found to be
redundant, ATPG untestable, or aborted

• test coverage – The cumulative test coverage

• process CPU time – The cumulative CPU runtime, in seconds

With merge effort turned off, the design example produced the following results:

• Test coverage = 95.45 percent

• Number of patterns stored = 1652

• CPU time = 22 seconds

With merge effort set to high, the same design produced the following results:

• Test coverage = 95.43 percent

• Number of patterns stored = 695

• CPU time = 221 seconds

For a compromise between pattern compactness and CPU runtime, you can use the
-auto_compression option of the run_atpg command. This option selects an automatic
algorithm designed to produce reasonably compact patterns and high test coverage, with
very little user effort and a reasonable amount of CPU time. To use this option, the fault
source must be internal.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

138

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

Specifying a Test Coverage Target Value
By default, TestMAX ATPG processes faults and generates patterns in an attempt to
achieve 100 percent test coverage. You can specify a lower test coverage target value by
entering a decimal number between 0 and 100.0 in the Coverage % field of the Run ATPG
dialog box or by issuing a command similar to the following example:

TEST-T> set_atpg -coverage 88.5
To specify the test coverage target for specific partitions, use the -coverage option of the
set_atpg command with the -partition option. For example:

TEST-T> set_atpg -coverage 90 -partition {p1 p2}
You might want to specify a test coverage lower than 100 percent if you want to produce
fewer patterns, your design requirements are satisfied with a lower coverage, or you want
an alternative to using a pattern limit for decreasing CPU time.

Increasing ATPG Effort Over Multiple Passes
Determining an appropriate setting for the abort limit is an iterative process. The following
multipass approach produces reasonable results without using excessive CPU time:

1. Set the abort limit to 10 or less.

2. Set the merge effort to Off.

3. Generate test patterns (run_atpg).

4. Examine the results. If there are too many ND (not detected) faults remaining, increase
the abort limit and generate test patterns again.

5. Repeat as necessary to determine the minimum abort limit necessary to achieve the
required results.

The following example sequence shows how to specify these settings:

TEST-T> set_atpg -abort_limit 10 -merge off
TEST-T> run_atpg
TEST-T> set_atpg -abort 50
TEST-T> run_atpg
TEST-T> set_atpg -abort 250
TEST-T> run_atpg

Increasing the abort limit might decrease the number of ND faults, but it will not decrease
the number of AU (ATPG untestable) faults.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

Multiple Session Test Pattern Generation
You can create patterns using multiple sessions as well as using multiple passes. For an
example of using multiple passes, see Increasing Effort Over Multiple Passes.

The following examples describe situations where you might use multiple sessions:

• Your pattern set is too large for the tester, so you try an additional compression effort. If
that is unsuccessful, you truncate the pattern set to a size that fits the tester.

• Your pattern set is too large for the tester, so you split the pattern set into two or more
smaller sets.

• You have 2,000 patterns and a simulation failure occurs around pattern 1,800. You
want to look at the problem in more detail but do not want to take the time to resimulate
1,799 patterns, so you read in the original patterns and write out the pattern with the
error, plus one pattern before and after for good measure.

• You have three separate pattern files from previous attempts, and you want to merge
them all into a single pattern file that eliminates duplications.

• Your design has asymmetrical scan chains or other irregularities, and you want to
create separate pattern files with different environments of scan chains, clocks, and PI
constraints.

• You have changed the conditions under which your existing patterns were generated
(for example, by using a different fault list). You want to see how the existing patterns
perform with the new fault list.

These examples are explained in more detail in the following sections:

• Splitting Patterns

• Extracting a Pattern Sub-Range

• Merging Multiple Pattern Files

• Using Pattern Files Generated Separately

Splitting Patterns
To split patterns, reestablish the exact environment under which the patterns were
generated. You do not need to restore a fault list. After achieving test mode, you can
split the patterns at the 500-pattern mark by using a command sequence similar to the
following example:

TEST-T> set_patterns -external session_1_patterns
TEST-T> write_patterns pat_file1 -last 499 -external

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

140

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

TEST-T> write_patterns pat_file2 -first 500 -external

Extracting a Pattern Sub-Range
To extract part of the pattern, you use the same environment setup rules as for splitting
patterns, except that you use the -first and -last options of the write_patterns
command when writing patterns. After achieving test mode, you can extract a subrange of
three patterns using a command sequence similar to the following example:

TEST-T> set_patterns -external session_1_patterns
TEST-T> write_patterns subset_file -first 198 -last 200 -ext

Merging Multiple Pattern Files
You can merge multiple pattern files only if all the files were generated under the same
conditions of clocks and constraints and have identical scan chains. The fault lists do not
have to match. To accomplish the merge, reestablish the environment and choose the final
fault list to be used. Patterns in the external files are eliminated during the merge effort if
they do not detect any new faults based on the current fault list.

After you achieve test mode and initialize a starting fault list, execute commands similar to
the following example:

TEST-T> set_patterns -external patterns_1
TEST-T> run_atpg
TEST-T> set_patterns -external patterns_2
TEST-T> run_atpg
TEST-T> set_patterns -external patterns_3
TEST-T> run_atpg
TEST-T> report_summaries
Alternatively, if you want to avoid running ATPG repeatedly or want to avoid potentially
dropping patterns, then you can replace the run_atpg commands with run_simulation
-store commands:

TEST-T> set_patterns -delete
TEST-T> set_patterns -external patterns_1
TEST-T> run_simulation -store
TEST-T> set_patterns -external patterns_2
TEST-T> run_simulation -store

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

141

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

TEST-T> set_patterns -external patterns_3
TEST-T> run_simulation -store
TEST-T> report_summaries
This alternative approach copies and appends the patterns from an external buffer into an
internal one without performing ATPG and without any potential dropping of patterns.

Using Pattern Files Generated Separately
Using multiple sessions to generate patterns, you can use different definitions for clocks,
PI constraints, or even scan chains to obtain two or more separate sets of ATPG patterns
that achieve a cumulative test coverage effect. The key to determining cumulative test
coverage is sharing and reusing the fault list from one session to another.

For example, suppose that you want to create separate pattern files for a design that has
the following characteristics:

• 20 scan chains, evenly distributed so that they all are between 240 and 250 bits in
length

• 1 boundary scan chain that is 400 bits in length

• 1,500 patterns that have been run through ATPG and produced 98 percent test
coverage

• A tester cycle budget of 500,000 cycles

Some rough calculations indicate that the 1,500 patterns require approximately 600,000
tester cycles (400*1,500), which exceeds the tester cycle budget. One possible solution
is to set up two different environments, one that uses all scan chains and another that
eliminates the definition of the 400-bit long scan chain.

Your two ATPG sessions are organized in the following manner:

• Session 1: You create an STL procedure file that defines all scan chains except the
400-bit chain. You proceed to generate maximum coverage using minimum patterns.
After saving the patterns and before exiting, you save the final fault list, as in the
following command:

TEST-T> write_faults sess1_faults.gz -all -uncollapsed -compress gzip
• Session 2: You create an STL procedure file that defines all scan chains. You read in

the fault list saved in Session 1, as in the following command:

TEST-T> read_faults sess1_faults.gz -retain_code

The first session probably achieves less than the original 98 percent coverage, but still
consumes approximately 1,500 patterns. More important, the combination of the two

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

142

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

sessions matches the original 98 percent test coverage but generates fewer than 20
percent of the original patterns for the second session (about 300 patterns). The total test
cycles for both sets of patterns are now as follows:

(1,500*250) + (300*400) = 495,000 tester cycles
The number of patterns has increased from 1,500 to 1,800, but the number of tester cycles
has decreased by more than 100,000 and the original test coverage has been maintained.

When you pass a fault list from one session to another and perform pattern compression,
you will see different test coverage results before and after pattern compression. Pattern
compression performs a fault grade on the patterns that exist only at that point in time.
After pattern compression, the test coverage statistics reflect the coverage of the current
set of patterns. The correct cumulative test coverage for both sessions is the output from
the last report_summaries command executed before any pattern compression.

Compressing Patterns
Test patterns produced by ATPG techniques usually have some amount of redundancy.
You can usually reduce the number of patterns significantly by compressing them, which
means eliminating some patterns that provide no additional test coverage beyond what
has been achieved by other patterns.

Dynamic pattern compression is performed while patterns are being created. With this
technique, each time a new pattern is created, an attempt is made to merge the pattern
with one of the existing patterns within the current cluster of 32 patterns in the pattern
simulation buffer.

To enable dynamic pattern compression, use the -merge option of the set_atpg
command or the equivalent options in the Run ATPG dialog box.

The following sections describe the process for compressing patterns:

• Balancing Pattern Compaction and CPU Runtime

• Compression Reports

Balancing Pattern Compaction and CPU Runtime
Normally, a reasonable number of passes of static compression produces a smaller
number of patterns. However, this reduced pattern count results in a CPU runtime penalty.

For a compromise between pattern compactness and CPU runtime, you can use the
-auto_compression option of the run_atpg command. This option selects an automatic
algorithm designed to produce reasonably compact patterns and high test coverage, using
a reasonable amount of CPU time. For more information, look in the online help under the
index topic “Automatic ATPG.”

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

To obtain the maximum test coverage while achieving a reasonable balance of CPU time
and patterns:

1. Obtain an estimate of test coverage using the Quick Test Coverage technique (see
Quickly Estimating Test Coverage). If you are not satisfied with the estimate, determine
the cause of the problem and obtain satisfactory test coverage before you attempt to
achieve minimum patterns.

2. Set Abort Limit to 100–300.

3. Set Merge Effort to High.

4. Specify the run_atpg -auto_compression command.

5. Examine the results. If there are still some NC or NO faults remaining, increase the
Abort Limit by a factor of 2 and execute run_atpg again.

Compression Reports
The following example shows a dynamic compression report generated using the
-verbose option of the set_atpg command. The -verbose option produces the following
additional information:

• The pattern number within the current group of 32 patterns

• The number of fault detections successfully merged into the pattern (#merges)

• The number of faults that were attempted but could not be merged into the current
pattern, which matches the merge iteration limit unless the number of faults remaining
is less than this limit (#failed_merges)

• The number of faults remaining in the active fault list (#faults)

• The CPU time used in the merge process

If you monitor the verbose information, you will eventually see a point at which the number
of merges approaches zero. At this point, stop the process and reduce the merge effort
or disable it because the effect is not producing sufficient benefit to justify the CPU effort
expended.

Verbose Dynamic Compression Report
TEST-T> set_atpg -patterns 150 -merge medium -verbose

TEST-T> run_atpg

ATPG performed for 72440 faults using internal pattern source.

--

#patterns #faults #ATPG faults test process

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

144

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Running ATPG

Feedback

stored detect/active red/au/abort coverage CPU time

--------- ------------- ------------ -------- --------

Begin deterministic ATPG: abort_limit = 5...

Patn 0: #merges=452 #failed_merges=100 #faults=40083 CPU=1.51 sec

Patn 1: #merges=637 #failed_merges=100 #faults=33938 CPU=2.82 sec

Patn 2: #merges=380 #failed_merges=100 #faults=30325 CPU=3.67 sec

Patn 3: #merges=211 #failed_merges=100 #faults=27403 CPU=4.52 sec

Patn 4: #merges=115 #failed_merges=100 #faults=25827 CPU=5.16 sec

Patn 5: #merges=798 #failed_merges=100 #faults=24633 CPU=6.66 sec

Patn 6: #merges=97 #failed_merges=100 #faults=23436 CPU=7.19 sec

Patn 7: #merges=82 #failed_merges=100 #faults=22431 CPU=7.69 sec

Patn 8: #merges=73 #failed_merges=100 #faults=21348 CPU=8.27 sec

Patn 9: #merges=77 #failed_merges=100 #faults=20340 CPU=8.83 sec

Patn 10: #merges=58 #failed_merges=100 #faults=19906 CPU=9.34 sec

Patn 11: #merges=65 #failed_merges=100 #faults=18231 CPU=9.97 sec

Patn 12: #merges=39 #failed_merges=100 #faults=17414 CPU=10.44 sec

Patn 13: #merges=50 #failed_merges=100 #faults=16759 CPU=10.96 sec

Patn 14: #merges=35 #failed_merges=100 #faults=16383 CPU=11.28 sec

Patn 15: #merges=36 #failed_merges=100 #faults=15994 CPU=11.62 sec

Patn 16: #merges=29 #failed_merges=100 #faults=15588 CPU=11.99 sec

Patn 17: #merges=28 #failed_merges=100 #faults=15112 CPU=12.36 sec

Patn 18: #merges=36 #failed_merges=100 #faults=14763 CPU=12.69 sec

Patn 19: #merges=34 #failed_merges=100 #faults=14510 CPU=13.02 sec

Patn 20: #merges=21 #failed_merges=100 #faults=14289 CPU=13.35 sec

Patn 21: #merges=342 #failed_merges=100#faults=13933 CPU=14.18 sec

Patn 22: #merges=37 #failed_merges=100 #faults=13711 CPU=14.50 sec

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

145

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Analyzing ATPG Output

Feedback

Patn 23: #merges=24 #failed_merges=100 #faults=13570 CPU=14.79 sec

Patn 24: #merges=24 #failed_merges=100 #faults=13438 CPU=15.05 sec

Patn 25: #merges=20 #failed_merges=100 #faults=13294 CPU=15.32 sec

Patn 26: #merges=23 #failed_merges=100 #faults=13145 CPU=15.59 sec

Patn 27: #merges=134 #failed_merges=57 #faults=12687 CPU=16.93 sec

Patn 28: #merges=27 #failed_merges=100 #faults=12552 CPU=17.28 sec

Patn 29: #merges=23 #failed_merges=100 #faults=12410 CPU=17.54 sec

Patn 30: #merges=29 #failed_merges=100 #faults=12296 CPU=17.82 sec

Patn 31: #merges=22 #failed_merges=100 #faults=12202 CPU=18.09 sec

32 51756 20684 0/0/1 72.80% 19.37

Patn 0: #merges=19 #failed_merges=100 #faults=11909 CPU=19.65 sec

Patn 1: #merges=34 #failed_merges=100 #faults=11755 CPU=19.93 sec

Patn 2: #merges=17 #failed_merges=100 #faults=11666 CPU=20.22 sec

Analyzing ATPG Output
You can analyze ATPG pattern generation output from the run_atpg command. This output
includes the following formats:

• Standard Format

• Expert Format

• Verbose Format with Merge Without -auto_compression

• Verbose Format with Merge Without -auto_compression

Standard Format
 TEST> run_atpg
 ATPG performed for 72436 faults using internal pattern source.
 --
 #patterns #faults #ATPG faults test process
 stored detect/active red/au/abort coverage CPU time
 --------- ------------- ------------ -------- --------
 Begin deterministic ATPG: abort_limit = 5...
 32 49465 22971 0/0/1 70.05% 6.50

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Analyzing ATPG Output

Feedback

 64 6808 16163 0/0/3 77.82% 10.52
 96 3779 12380 1/1/4 82.13% 13.48
 128 2220 10156 2/2/6 84.66% 16.02
 160 1264 8890 4/2/7 86.11% 18.54
 192 1415 7474 4/3/11 87.73% 20.87
 224 1021 6450 6/4/13 88.89% 23.04
 256 835 5610 9/6/17 89.85% 25.17
 288 722 4881 13/8/19 90.68% 27.20
 320 653 4223 15/11/21 91.43% 29.16
 352 572 3648 16/13/26 92.08% 31.15
 : : : : : : : :
 831 78 378 176/105/132 95.69% 62.35
 862 73 295 184/107/142 95.78% 64.08
 889 49 212 205/113/143 95.87% 65.35

#patterns stored

This indicates the current number of patterns which are stored in the internal
pattern set. These patterns were created during the ATPG process and are
selected only if they are required for fault detection.

#faults detect/active

The first field indicates the number of faults that were detected in the current
simulation pass. The second field indicates the number of faults that still remain
active in the fault list. Depending on the fault-report setting, the fault counts are
either uncollapsed (default) or collapsed.

#ATPG faults red/au/abort

The first field indicates the cumulative number of faults identified as redundant in
the current ATPG process. The second field indicates the cumulative number of
faults identified as ATPG untestable in the current ATPG process. The third field
indicates the cumulative number of faults that were aborted in the current ATPG
process. All of these fault counts are collapsed fault counts.

test coverage

This indicates the current value of the test coverage considering the current fault
list and patterns previously evaluated. There is a user selectable credit given for
possible-detected faults (default 50%) and ATPG untestable faults (default 0%).
Depending on the fault-report setting, the test coverage is calculated using fault
counts which are either uncollapsed (default) or collapsed.

process CPU time

This indicates the cumulative number of CPU seconds that have been used up
to this point in the current ATPG process.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

147

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Analyzing ATPG Output

Feedback

Expert Format
 TEST> run_atpg
 ATPG performed for stuck fault model using internal pattern source.

 Fast-seq simulation is used to verify Basic-Scan patterns.
 --
 #patterns #patterns #faults #ATPG faults test process

 simulated eff/total detect/active red/au/abort coverage CPU time
 --------- --------- ------------- ------------ -------- --------
 Begin deterministic ATPG: #uncollapsed_faults=72346,
 abort_limit=10...
 32 32 32 49273 23072 1/0/1 69.89% 7.40

 64 32 64 6890 16182 1/0/2 77.75% 11.59

 96 32 96 3233 12948 2/0/6 81.45% 15.06

 128 32 128 2295 10651 3/1/7 84.07% 18.04

 160 32 160 1986 8662 4/2/7 86.33% 20.80

 192 32 192 1256 7403 6/3/7 87.77% 23.37

 224 32 224 971 6429 8/4/8 88.88%
 25.76
 256 32 256 842 5583 10/6/10 89.84%
 28.12
 288 32 288 702 4875 14/7/12 90.65%
 30.44
 320 32 320 639 4235 14/8/13 91.38% 32.73

 352 32 352 514 3718 16/9/16 91.97% 35.02

 : : : : : : :
 :
 832 32 830 80 294 143/92/58 95.78% 68.51

 864 32 862 59 212 163/93/65 95.87% 70.85

 896 32 894 58 133 179/94/70 95.96% 72.91

 909 13 907 29 83 197/96/70 96.01% 73.72

 Begin fast-seq ATPG: #uncollapsed_faults=179, abort_limit=10,
 depth=4...
 910 1 908 5 174 0/0/9 96.02%
 73.87
 911 1 909 1 172 0/1/38 96.02%
 74.43

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

148

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Analyzing ATPG Output

Feedback

 912 1 910 1 171 0/1/47 96.02%
 74.61
 913 1 911 2 169 0/1/48 96.02%
 74.67

This form is generated when set messages-level expert is in effect.

#patterns eff/total

This report is identical to the Standard Form with the exception that an additional
information appears as the 2nd and 3rd columns. The 2nd column is the number
of patterns in the current working group of 32 which were effective and kept. The
3rd column is the cumulative total number of patterns kept.

Verbose Format with Merge (without -auto_compression)
 run_atpg
 ATPG performed for stuck fault model using internal pattern
 source.
 Fast-seq simulation is used to verify Basic-Scan patterns.
 --
 #patterns #patterns #faults #ATPG faults test process
 simulated eff/total detect/active red/au/abort coverage CPU time
 --------- --------- ------------- ------------ -------- --------
 Begin deterministic ATPG: #uncollapsed_faults=266012,
 abort_limit=10...
 Patn 1: #merges=537 #failed_merges=20 #faults=154875 #det=8693
 CPU=1.14 sec
 Patn 2: #merges=316 #failed_merges=20 #faults=124914 #det=53161
 CPU=1.71sec
 Patn 3: #merges=256 #failed_merges=20 #faults=107012 #det=29741
 CPU=2.19sec
 Patn 4: #merges=83 #failed_merges=20 #faults=95837
 #det=17827
 CPU=2.48sec
 Patn 5: #merges=235 #failed_merges=20 #faults=85826
 #det=15586
 CPU=2.92sec

 Patn 28: #merges=40 #failed_merges=20 #faults=34518
 #det=1181
 CPU=9.10 sec
 Patn 29: #merges=44 #failed_merges=20 #faults=33872
 #det=959
 CPU=9.28 sec
 Patn 30: #merges=56 #failed_merges=20 #faults=33223
 #det=1009
 CPU=9.47 sec
 Patn 31: #merges=32 #failed_merges=20 #faults=32730 #det=829
 CPU=9.63 sec
 32 32

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

149

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Analyzing ATPG Output

Feedback

 32 210799 55209
 2/0/0 80.42% 10.23
 Patn 0: #merges=43 #failed_merges=20 #faults=32127
 #det=1179 CPU=10.39sec
 Patn 1: #merges=28 #failed_merges=20 #faults=31515 #det=1059
 CPU=10.54 sec

 Patn 31: #merges=33 #failed_merges=20 #faults=21284
 #det=353
 CPU=15.18 sec
 64 32
 64 18839 36366
 4/0/0 86.43% 15.43
 Patn 0: #merges=18 #failed_merges=20 #faults=21145
 #det=232
 CPU=15.55 sec

 Patn 31: #merges=32 #failed_merges=20 #faults=15576
 #det=225
 CPU=19.81 sec
 96 32
 96 9508 26846
 7/0/2 89.47% 20.02

This form is generated when set_atpg -verbose -merge is in effect.

#merges

This indicates the number of additional patterns merged with the original pattern.
Each pattern successfully detects a fault on at least one target fault (primary
fault). The combined pattern can also detect additional faults (secondary faults).
A merge count of 10 means the single pattern is doing the work of 11 patterns
and it will detect at least the 11 target faults (primary faults) and might also
detect many more faults that were not the original targets (secondary faults).

#failed_merges

This indicates the number of faults for which a pattern was generated but
that new pattern could not be merged with the existing pattern for the primary
fault site. When the count is less than the merge limit (low=20, medium=100,
high=500) then TestMAX ATPG ran out of active faults/patterns to merge into the
primary pattern before it reached the iteration limit. When the count is equal to
the merge limit, then the limit was reached and there were still faults that could
have attempted to be merged.

When you see the merge limit being reached over and over again, there
can be value in increasing the merge effort using the -merge option of the
set_atpg command. However, this increase in merge effort will come at a cost of
additional CPU time.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

150

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Analyzing ATPG Output

Feedback

When the failed merge count is consistently less than the limit on each pattern
attempt, then the optimal setting for the merge effort is just higher than the
maximum failure count.

If you assume in the previous example that the merge effort was 300, then the
majority of patterns showed a #failed_merges count less than 300 and this value
is reasonably good. Increasing the merge effort to 400 or 500 can improve the
number of patterns merged for patterns 0, 1, and 4 in the first group of 32, but
at a cost of increased runtime. The optimal value for merge effort often requires
repeated ATPG runs and seeking the optimal value can often take more time is
efficient. One shortcut approach is to set the merge effort high, say 3000, and
then watch the progress for the first 32 patterns and then stop the run. Using
the information learned in the first 32 patterns to set the merge effort for a more
complete run. When -auto_compression is not used, only the first parameter of
set_atpg -merge is in effect.

#faults

If single-pattern fault simulation is performed, this number represents the
number of faults detected by the pattern. If single-pattern fault simulation is not
performed, this number represents the number of faults targeted by the test
generator (that is, primary, secondary and side-path detection faults). In either
case, fault simulation at the end of the interval ultimately decides which faults
are truly detected and which are not.

A heuristic algorithm is used to decide whether or not to perform single-pattern
fault simulation. This algorithm attempts to simultaneously maximize coverage
and minimize pattern count and CPU time.

In some cases, single-pattern fault simulation is performed on some patterns in
an interval (thus the #faults can be high). But simulation may not be performed
on other patterns (thus the #faults is low). This does not indicate incorrect
behavior and is not a cause for concern.

CPU=

This indicates the cumulative number of CPU seconds that have been used up
to this point in the current ATPG process.

Verbose Format with Merge and -auto_compression
 run_atpg -auto_compression
 ATPG performed for stuck fault model using internal pattern
 source.
 Fast-seq simulation is used to verify Basic-Scan patterns.
 --
 #patterns #patterns #faults #ATPG faults test process

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

151

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Analyzing ATPG Output

Feedback

 simulated eff/total detect/active red/au/abort coverage CPU time
 --------- --------- ------------- ------------ -------- --------
 Begin deterministic ATPG: #uncollapsed_faults=3199364,
 abort_limit=10...
 Patn 1: #merges=0/922(0%) #failed_merges=0/34 #faults=1783833
 #det=14023 CPU=32.58 sec clocks=

 Patn 2: #merges=0/86808(3%) #failed_merges=0/3484 #faults=1435411
 #det=642019 CPU=58.32 sec clocks= cclk pclk

 Patn 3: #merges=0/46986(0%) #failed_merges=0/125 #faults=1366319
 #det=101465 CPU=81.48 sec clocks= cclk crst_ pclk

 Patn 31: #merges=0/2110(0%) #failed_merges=0/272 #faults=411938
 #det=12251 CPU=324.24 sec clocks= pclk
 Warning: 3 (4) basic-scan patterns failed current pass simulation
 check and is treated as ignored measures. (M212)
 32 32 32 2492119 707234 2/4/6 77.30% 362.76
 Local redundancy analysis results: #redundant_faults=4398,
 CPU_time=3.00 sec

 Patn 0: #merges=0/1761(0%) #failed_merges=0/242 #faults=400847
 #det=9765 CPU=370.68 sec clocks= cclk pclk

 Patn 31: #merges=0/869(0%) #failed_merges=0/62 #faults=276129
 #det=3269 CPU=484.81 sec clocks= ZXIN ZADCK
 Warning: 1 (1) basic-scan patterns failed current pass simulation
 check and is treated as ignored measures. (M212)
 64 32 64 238165 462910 3/6/10 83.51% 499.63

 Patn 0: #merges=0/1437(0%) #failed_merges=0/231 #faults=272195
 #det=6860 CPU=502.74 sec clocks= inclk zxin ad[0]

 Patn 1: #merges=0/1253(0%) #failed_merges=0/155 #faults=268677
 #det=6429 CPU=505.99 sec clocks= clk inclk crst_ pclk

 Patn 31: #merges=0/568(0%) #failed_merges=0/39 #faults=221584
 #det=2037 CPU=587.17 sec clocks= inclk

This form is generated when set_atpg -verbose -merge is in effect.

#merges=d1/d2(d3%)

This indicates the number of additional patterns merged with the original pattern.
Each pattern successfully detects a fault on at least one target fault (primary
fault). The combined pattern can also detect additional faults (secondary faults).
A merge count of 10 means the single pattern is doing the work of 11 patterns
and it will detect at least the 11 target faults (primary faults) and may also detect
many more faults that were not the original targets.

o d1 is number of secondary faults detected and merged into the pattern.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

152

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Reviewing Test Coverage

Feedback

o d2 is number of faults detected and merged through multiple fault
sensitization.

o d3 is the percentage of of multiple fault sensitization merges that did not detect
any faults (d2 and d3 are printed only when using -auto_compression and
verbose mode is turned on)

The first and second values passed to the set_atpg -merge command control
the secondary fault merge effort and multiple fault sensitization merge effort,
respectively.

#failed_merges=d4/d5

Where d4 is the number of failed merges of secondary faults and d5 is the
number of failed merges of multiple fault sensitization (d5 is printed only when
-auto_compression is used and verbose mode is turned on)

#faults

This indicates the calculated number of collapsed faults that are still active in the
fault list.

#detects

This indicates the number detected faults.

CPU=

This indicates the cumulative number of CPU seconds that have been used up
to this point in the current ATPG process.

clock=s

This is a list of clocks pulsed during the capture cycle. With dynamic clock
grouping, you can have multiple clocks pulsing together in the same capture
cycle, which results in a considerable reduction in the pattern count. This field is
printed only when -auto_compression is used.

Note: For d3, #faults and #detects, you might sometimes see "---". When the design is
large and only multiple fault sensitization is in progress, it is more efficient and productive
to run fault simulation at the end of an interval (that is, 32 patterns). For these conditions,
because each pattern is not fault simulated as soon as it is generated, some information
required in verbose messages is not available.

Reviewing Test Coverage
You can view the results of the test coverage and the number of patterns generated using
the report_summaries command or the Report Summaries dialog box.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

153

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Reviewing Test Coverage

Feedback

The following example shows how to generate a fault summary report using the
report_summaries command:

TEST-T> report_summaries
For the complete syntax and option descriptions, see the description of the
report_summaries command in TestMAX ATPG Help.

To use the Report Summaries dialog box to generate a fault summary report:

1. From the command toolbar, click the Summary button. The Report Summaries dialog
box appears.

2. Select the appropriate summary settings.

For details about available settings, see the description of the report_summaries
command in TestMAX ATPG Help.

3. Click OK.

An example output report showing the fault counts and the test coverage obtained by
using the uncollapsed fault list is shown in the following example. A detailed description of
each fault class is shown in Fault Lists and Faults.

Example 3: Uncollapsed Fault Summary Report

TEST-T> report_summaries
Uncollapsed Fault Summary Report

fault
 class
 code #faults
------------------------------ ---- ---------
Detected
 DT 83348
Possibly
 detected
 PT 324
Undetectable
 UD 1071
ATPG
 untestable
 AU 3453
Not
 detected
 ND 212

total
 faults
 88408
test
 coverage

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

154

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Reviewing Test Coverage

Feedback

 95.62%

 Pattern Summary Report

#internal
 patterns
 1636

The following example shows the same report with collapsed fault reporting. Notice that
there are fewer total faults, and fewer individual fault categories.

Collapsed Fault Summary Report
TEST-T> set_faults -report collapsed
TEST-T> report_summaries
Collapsed Fault Summary Report

fault
 class
 code #faults
------------------------------ ---- ---------
Detected
 DT 50993
Possibly
 detected
 PT 214
Undetectable
 UD 1035
ATPG
 untestable
 AU 2370
Not
 detected
 ND 122

total
 faults
 54734
test
 coverage
 95.16%

 Pattern Summary Report

#internal
 patterns
 1636

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

155

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: ATPG Design Flow
Writing ATPG Patterns

Feedback

To find out where the faults are located in the design, see “Analyzing the Cause of Low
Test Coverage”

Writing ATPG Patterns
TestMAX ATPG can write pattern files in binary, STIL, and WGL. By default, TestMAX
ATPG generates new internal patterns. To save the test patterns, you can you can use the
write_patterns command or the Write Patterns dialog box.

For information on translating adaptive scan patterns into normal scan-mode patterns, see
Reading Pattern Files.

By default, TestMAX ATPG writes parallel patterns in the unified STIL flow format when
the -format option of the write_patterns command is specified with the stil or stil99
arguments.

The following examples show how to use the write_patterns command to write serial
STIL patterns:

write_patterns patterns.stil -serial -format stil

The following example writes patterns in a proprietary binary format that can be read by
TestMAX ATPG:

write_patterns patterns.bin -format binary -replace

To use the Write Patterns dialog box to format and save test patterns:

1. From the command toolbar, click the Write Pat button.

The Write Patterns dialog box appears.

2. In the Pattern File Name field, enter the name of the pattern file to be written or use the
Browse button to find the directory you want to use or to view a list of existing files.

3. Accept the default settings unless you require more.

4. Click OK.

For descriptions of all the options for writing patterns, see the description of the

write_patterns command in TestMAX ATPG Help.

For information on generating patterns for DFTMAX Ultra, see Pattern Types Accepted by
DFTMAX Ultra.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

156

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4
ATPG Modeling

This section contains the following topics:

• Modeling Topics

• Scan Cell Models

• ATPG Simulation Primitives

Modeling Topics
ATPG Modeling Primitive Summary

TestMAX ATPG Memory Modeling

Memory Modeling Specification

RAM/ROM Modeling

Memory Data File Example

Interpreting UDP Messages

UDP Modeling Examples

ATPG Modeling Primitive Summary
You can build ATPG models using Verilog, EDIF, or VHDL netlists that reference ATPG
modeling primitives within TestMAX ATPG. For Verilog, you can describe an ATPG model
using either Verilog primitives or TestMAX ATPG primitives, or a mixture of both. After
reading the netlist and building a simulation model, TestMAX ATPG converts all design
modules into internal simulation primitives.

In general, there is one-to-one correspondence between ATPG modeling primitives and
ATPG simulation primitives. However, some of the ATPG modeling primitives, such as
WBUF and WIRE, are converted to other simulation primitives during the model build
process. Also, there are some simulation primitives that do not have a corresponding
ATPG modeling primitive, such as a BUS.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

157

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

To view a list of simulation primitives currently used by your simulation model, use the
report_primitives -summary command. To find out how a particular design module was
converted to TestMAX ATPG simulation primitives, use the report_modules -verbose
command.

When used in a Verilog module, all ATPG modeling primitives begin with an underscore,
such as "_AND". When used in an EDIF netlist, the primitives are referenced starting with
"&_", as in "&_AND". When used in VHDL netlists, the modeling primitives have no prefix;
a component with the same name has priority over the primitive.

Most ATPG modeling primitives can accept up to 32 inputs, and have a single output, as
shown in the following example:

 AND (in1, ..., inN, out)
 BUF (in, out)
 BUSK0 inout ; # bus keeper, keeps only 0
 BUSK1 inout ; # bus keeper, keeps only 1
 BUSK01 inout ; # bus keeper, keeps 0 and 1
 CMUX (sel, d0, d1, out)
 DFF (set, rst, clk1, d1, [clkN, dN,]... , out)
 DLAT (set, rst, clk1, d1, [clkN, dN,]... , out)
 INV (in, out)
 MUX (sel, d0, d1, out)
 NAND (in1, ..., inN, out)
 NOR (in1, ..., inN, out)
 OR (in1, ..., inN, out)
 SW (ena, in, out)
 TIE0 ([in1, ..., inN,] out)
 TIE1 ([in1, ..., inN,] out)
 TIEX ([in1, ..., inN,] out)
 TIEZ ([in1, ..., inN,] out)
 TSD (ena, in, out)
 WBUF (in, out) # weak buffer, drops strength
 WIRE (in1, ..., inN, out)
 XNOR (in1, ..., inN, out)
 XOR (in1, ..., inN, out)

 ---- RAM/ROM related (cannot be directly used) ----

 ADRBUS (An, An-1, An-2, ..., A0, addr_out_vector)
 DATABUS (Dn, Dn-1, Dn-2, ..., D0, data_out_vector)
 MEMORY (set, rst, [wclk1, wen1, addr_vec1, data_vec1,]... ,
 out_vector)
 RPORT (rclk, addr_in_vec, data_in_vec, out_vector1 [,out_vectorN]...)
 MOUT (rport_out_vec, out_vector)
 #
 # Example Verilog module using TestMAX ATPG models
 #
 module FLOP (se,d,sdi,clk,rb,q,qb);
 input se, d, sdi, clk, rb;
 output q, qb;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

158

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 _TIE0 u1 (tz);
 _INV u2 (rb, rst);
 _MUX u3 (se, d, sdi, n1);
 _DFF u4 (tz, rst, clk, n1, q);
 _INV u5 (q, qb);
 endmodule
 module rtranif1 (pad1, pad2, ctrl);
 inout pad1, pad2; input ctrl;
 rnmos n1 (pad1, pad2, ctrl);
 rnmos n2 (pad2, pad1, ctrl);
 endmodule

TestMAX ATPG Memory Modeling
TestMAX ATPG uses a limited Verilog behavioral syntax to define RAM and ROM models
for ATPG. This is equivalent to defining simple RAM and ROM functional models. For
information on the supported subset of the Verilog language syntax, see Memory Modeling
Language Specification and RAM/ROM Examples.

To use TestMAX ATPG memory modeling, you should be familiar with the BNF (Backus-
Naur Form) memory syntax description and understand its usage concepts.

TestMAX ATPG attempts to map the behavioral description of a memory with a fixed
set of ATPG primitives with fixed behavior. This modeling language is a simplified way
to describe a netlist of connected ATPG primitives. TestMAX ATPG does not support
behavioral simulation, and many language constructs supported by Verilog are not allowed
for memory modeling.

Basic Template
The following template is for a 16-word by 8-bit RAM. It consists of a Verilog module
definition with the inputs and outputs , the output holding register data_out, and the
memory storage array memory.

 module MY_ATPG_RAM (read, write, data_in, data_out, read_addr,
 write_addr);
 input read, write;
 input [7:0] data_in; # 8 bit data width
 input [3:0] read_addr; # 16 words
 input [3:0] write_addr; # 16 words
 output [7:0] data_out; # 8 bit data width
 reg [7:0] data_out; # output holding register
 reg [7:0] memory [0:15] ; # memory storage

 event WRITE_OP; # declare event for write-through

 ...memory port definitions...

 endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

159

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

The basic structure of this template applies to most RAMs. However, the port list changes
as you define more complicated RAMs or ROMs with multiple ports. Also, you must used
bussed ports for ATPG modeling of RAMs.

If you use an event declaration, make sure you define it after declaring the port input/
output and registers and memory.

The supported Verilog syntax is limited. You cannot use Verilog syntax to define all the
read and write ports. In particular, the use of begin and .. end statements is limited.
Make sure your intended usage of these statements matches the examples exactly, or do
not use them.

Defining Write Ports
There are two types of memory port controls: level sensitive and edge sensitive. A level-
sensitive read or write port is continuously active when the control input is asserted. The
edge-sensitive read or write port is only active on an edge transition.

Edge-Sensitive Write Port
An edge-sensitive write port has a single write control input that can be active on the rising
or falling edge of the input. It also has a level-sensitive, single qualifier input. This write
qualifier can be either active high or low, and is an optional input control.

Here are some common examples of edge-sensitive write ports:

 # example #1: edge sensitive, no qualifiers

 always @(posedge write) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end
 # example #2: rising edge sensitive, qualifier

 always @(posedge write) if (CS) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end
 # example #3: falling edge sensitive, qualifier

 always @(negedge write) if (!CSB) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end

Example #2 is an edge sensitive write port with the optional write qualifier. A write occurs
on a rising edge of the write control net as long as the CS input is high.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

160

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

Example #3 is a falling edge sensitive write port with an active low control CSB as a write
qualifier. Notice the use of the exclamation mark "!" to indicate that CSB must be zero to
enable the write operation.

If you have a more complex set of write qualifier controls, add some glue logic using
Verilog primitives to produce a single qualifier control which is passed to the write port
definition. For example, if you want a rising edge sensitive write control with three enables,
CS, en2, and en3b, with the first two active high and the third one active low you would do
something like example #4:

 # example #4: rising edge sensitive, multiple qualifiers

 and U1 (wen, CS, en2, !en3b);

 always @(posedge write) if (wen) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end

Level-Sensitive Write Port
A level-sensitive write port has a single write control input that can be either active high
or active low. It also has the optional level sensitive write qualifier input. In addition it
must also be sensitive to changes of write address or write data while the write control is
asserted.

Here are some common examples of level sensitive write ports:

 # example #5: level sensitive, no qualifiers

 always @(write or write_addr or data_in) if (write) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end
 # example #6: level sensitive, CS qualifier

 and u1 (WEN, write, CS);

 always @(WEN or write_addr or data_in) if (WEN) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end
 # example #7: active low control, active low qualifier

 and u1 (WEN, !write, !CSB);

 always @(WEN or write_addr or data_in) if (WEN) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

161

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

Note: The first net in the always sensitivity list must match the net used in the following if
clause.

Example #5 is level sensitive write port without the optional write qualifier control. A
write occurs while write is high. If write is high and any change to either write_addr or
data_in occurs, this will update the write operation.

Example #6 shows the use of the optional write qualifier. In this case the control net CS
must be high for the write operation to be active.

Example #7 shows the use of the exclamation mark "!" to define an active low write
control as well as an active low CSB qualifier.

As in the edge sensitive write port, if we have a more complex set of write qualifiers we
support this by adding some glue logic to form a single write qualifier net. Example #8
shows a 3-term write qualifier in which CS and en2 must be high, and en3b must be low in
order for a write operation to occur while write is high.

 # example #8: level sensitive, multiple qualifiers

 and U1 (WEN, write, CS, en2, !en3b);

 always @(WEN or write_addr or data_in) if (WEN) begin
 memory[write_addr] = data_in;
 #0; ->WRITE_OP;
 end

Defining Read Ports
Read ports can be either edge sensitive or level sensitive, with a user-selected polarity.
Like the write ports, there is support for a single read clock qualifier.

A read port which is edge sensitive is created with DFF primitives on the data outputs of
the ATPG Memory primitive. This implementation means that for a simultaneous write/read
the data on the read port is the OLD data from the RAM by default. This behavior can be
changed using the read/write contention selection.

A read port which is level sensitive is created with LATCH primitives on the data outputs of
the ATPG Memory primitive. This implementation means that for a simultaneous write/read
the data on the read port is the NEW data being written to the RAM.

Edge-Sensitive Read Port
An edge-sensitive read port has a single read control input that might be active on the
rising or falling edge of the input. A single (optional) read clock qualifier is supported.

Here are some common examples of edge-sensitive read ports:

 # example #9: rising edge sensitive

 always @(posedge read) data_out = memory[read_addr];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

162

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 # example #10: falling edge sensitive

 always @(negedge read) begin
 data_out = memory[read_addr];
 end

Example #9 is an edge sensitive read port for which the read occurs on the rising edge of
the read control net. Example #10 shows a falling edge read control.

What if a read qualifier is needed? To support this we add some external glue logic to form
a single read enable control. For example, if we desire a rising edge sensitive read CLK
with two enables, CS, and en2b, with the first active high and the second active low we
would do something similar to example #11:

 # example #11: rising edge sensitive, multiple qualifiers

 and U1 (REN, CS, !en2b);

 always @(posedge CLK) if (REN) data_out = memory[read_addr];

Level-Sensitive Read Port
A level-sensitive read port has a single read control input that can be either active high or
active low. In addition it must also be sensitive to changes of read address as well as any
write or set/reset operation that can change the data being read.

Here are some common examples of level-sensitive read ports:

 # example #12: active high level sensitive

 always @(read or read_addr or WRITE_OP) if (read)
 data_out = memory[read_addr];
 # example #13: active low level sensitive

 always @(read or read_addr or WRITE_OP) if (!read)
 data_out = memory[read_addr];

Note: The first net in the always sensitivity list must match the net used in the following if
clause.

Example #12 describes a read port which is active when readis high, and which will
update the value supplied to data_out if the read_addr changes or the WRITE_OPoccurs
while a read is active. Example #13 shows an active low read control.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

163

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

Read Off Behavior
You can also model a RAM or ROM with a tristate output or a return-to-zero or return-to-
one. For a level sensitive read port, you need to make a slight modification to the read port
syntax to add an else clause as follows:

 # example #14: level sensitive read with tristate outputs

 always @(read or read_addr or WRITE_OP)
 if (read) data_out = memory[read_addr]
 else data_out = 8'bzzzzzzzz;
 # example #15: level sensitive read, read off = zero

 always @(read or read_addr or WRITE_OP)
 if (read) data_out = memory[read_addr]
 else data_out = 8'b0;
 # example #16: level sensitive read, read off = ones

 always @(read or read_addr or WRITE_OP)
 if (read) data_out = memory[read_addr]
 else data_out = 8'b11111111;

You can use an independent output enable for the tristate outputs by adding an additional
register to hold the RAM data outputs, and passing this through a tristate function using an
additional always clause. This always clause needs to be sensitive to the output enable
OEB control as well as any changes on the data output register.

 # example #17 : level sensitive with independent output enable

 output [7:0] data_out;
 reg [7:0] data_out, data_reg; /* add data_reg */

 always @(read or read_addr or WRITE_OP)
 if (read) data_reg = memory[read_addr];

 always @(OEB or data_reg) if (!OEB) data_out = data_reg; else
 data_out = 8'bZZZZZZZZ;

In example #17 the first always clause defines a level sensitive read port and the second
always defines the tristate output behavior.

An edge sensitive read port does not easily support read-off behavior or zeros or ones.
However, it does support an independent output enable. An example is shown in #18.

 # example #18 : edge sensitive with independent output enable

 output [7:0] data_out;
 reg [7:0] data_out, data_reg; /* add data_reg */

and u1 (RCLK, read, CS);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

164

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 always @(posedge RCLK)
 data_reg = memory[read_addr];

 always @(OEB or data_reg)
 if (!OEB) data_out = data_reg;
 else data_out = 8'bZZZZZZZZ;

Complete Example
This complete example shows a simple RAM with 256x8 words, a chip select, and a single
read and write port. The write port is rising edge control. The read port is level sensitive
active low and has an independent tristate output control. This example uses a common
address bus for both the read and write ports.

 # example #19 : a completed RAM

 module ATPG_RAM (CS, OE, read, write, data_in, data_out, addr);
 input CS, OE; # chip select, output enable
 input read, write; # read and write controls
 input [7:0] data_in; # 8 bit data width
 input [3:0] addr; # 16 words
 output [7:0] data_out; # module outputs
 reg [7:0] data_reg; # RAM outputs
 reg [7:0] data_out; # output holding register
 reg [7:0] memory [0:15]; # memory storage
 event WRITE_OP;

 and u1 (REN, !read, CS); # form read enable
 and u2 (TSO, OE, CS); # form tristate out control

 always @(posedge write) if (CS) begin
 memory[addr] = data_in;
 #0; ->WRITE_OP;
 end

 always @(REN or addr or WRITE_OP)
 if (REN) data_reg = memory[addr];

 always @(TSO or data_reg)
 if (TSO) data_out = data_reg;
 else data_out = 8'bzzzzzzzz;

 endmodule

Memory Address Range
You do not need to use the entire 2**N range of words. Instead, change the range
definition on the memory [0:15] definition to correspond to the valid memory range
required. For example, to use only the lower 12 words define: reg [7:0] memory[0:11];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

165

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

Limiting the range on the memory address does not prevent the test generator from
accessing the higher addresses in the ATPG vectors.

The range limitation:

1. Causes any write operation that has an address in the prohibited range to leave the
memory contents unmodified

2. Causes any read operation that has an address in the prohibited range to place an X on
all of the memory outputs. TestMAX ATPG reads X from the prohibited address range and
ignores any write operations to the prohibited address range.

Multiple Read or Write Ports
More complex RAMS involving multiple read and write ports are supported by expanding
the module port list and input/output definitions and by adding additional read and write
port defining statements. The following example shows a RAM with four write ports and
two read ports, all level sensitive, and with independent address, bus, and read/write
controls:

 # example #20 : a multi port RAM

 module multi_port_ram (w1,a1,d1, w2,a2,d2, w3,a3,d3, w4,a4,d4,
 r5,a5,d5, r6,a6,d6);
 input w1,w2,w3,w4,r5,r6;
 input [3:0] a1,a2,a3,a4,a5,a6;
 input [7:0] d1,d2,d3,d4;
 output [7:0] d5,d6;
 reg [7:0] d5,d6;
 reg [7:0] MMY [0:15] ;
 event WRITE_OP;

 always @(w1 or a1 or d1) if (w1) begin
 MMY[a1] = d1;
 #0; ->WRITE_OP;
 end

 always @(w2 or a2 or d2) if (w2) begin
 MMY[a2] = d2;
 #0; ->WRITE_OP;
 end

 always @(w3 or a3 or d3) if (w3) begin
 MMY[a3] = d3;
 #0; ->WRITE_OP;
 end

 always @(w4 or a4 or d4) if (w4) begin
 MMY[a4] = d4;
 #0; ->WRITE_OP;
 end

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

166

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 always @(r5 or a5 or WRITE_OP) if (!r5) d5 = MMY[a5];

 always @(r6 or a6 or WRITE_OP) if (!r6) d6 = MMY[a6];

 endmodule

Rules and Limitations
The following rules and limitations apply to RAM/ROM modeling within TestMAX ATPG:

• You cannot simultaneously use both level-sensitive and edge -sensitive write ports. All
write ports must be the same type. However, the read ports have no restrictions and
can be mixed edge- and level-sensitive as well as different from the write ports.

• You should use bussed nets for defining data and address buses. If your RAM or ROM
uses bit-blasted nets, then create a two-level hierarchical module and make sure the
top level has bit-blasted nets and the lower level has bussed nets. See example #18
under RAM Modeling Examples.

• Most designs containing RAMs require that you turn on the Fast-Sequential ATPG
algorithm using the -capture_cycles option of the set_atpg command to develop
patterns which use the RAM.

• The supported Verilog syntax is very limited. Do not assume that you can use any legal
Verilog syntax for the definition of the read and write ports. In particular, the allowed
use and placement of begin.. end is limited to just a few areas. If you have not seen
a begin/end usage in the examples to match what you wish to use, then it is probably
not going to work. Another area of difference is that the allowed syntax is expecting
nets or the write_op event, and not arbitrary expressions. Keep it simple. If you need
to develop an expression for say a read or write enable term, do so using discrete
Verilog and/nand/or/nor primitives to create a control net.

• Only a single WRITE_OP event is supported. If two events are defined, an N2 error is
reported.

Controlling Contention Behavior
This section explains the default contention behavior on a memory device with
independent read and write ports and multiple read and write ports. The following example
illustrates how to explicitly define, by use of the `define statement, the desired contention
behavior for simultaneously active read ports (read_read), simultaneously active read and
write ports (read_write), and simultaneously active write ports (write_write). The example
also illustrates the default settings.

 # example #21 : Default contention behavior

 `define read_read normal
 `define read_write mixed
 `define write_write xbit

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

167

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 module multi_port_ram (w1,a1,d1, w2,a2,d2, r5,a5,d5, r6,a6,d6);
 input w1,w2,r5,r6;
 input [3:0] a1,a2,a5,a6;
 input [7:0] d1,d2;
 output [7:0] d5,d6;
 reg [7:0] d5,d6;
 reg [7:0] MMY [0:15] ;
 event WRITE_OP;

 always @(w1 or a1 or d1) if (w1) begin
 MMY[a1] = d1;
 #0; ->WRITE_OP;
 end

 always @(w2 or a2 or d2) if (w2) begin
 MMY[a2] = d2;
 #0; ->WRITE_OP;
 end

 always @(r5 or a5 or WRITE_OP) if (!r5) d5 = MMY[a5];

 always @(r6 or a6 or WRITE_OP) if (!r6) d6 = MMY[a6];

 endmodule
 `undef read_read
 `undef read_write
 `undef write_write

Read-Read Contention
The following behaviors can be specified with the read_read directive:

• normal - Simultaneously active read ports accessing the same address will return the
data word at that address. This is the default behavior.

• readx - Simultaneously active read ports accessing the same address will return all X's
for data.

Read-Write Contention
The following behaviors are specified with the read_write directive:

• mixed - For simultaneous active read and write ports to the same address, the write
operation succeeds and the read operation returns the new value for level-sensitive
read ports and the old value for the edge-sensitive read ports. This is the default
behavior. This is the same behavior as new for level-sensitive read ports and old for
edge-sensitive read ports.

• new - For simultaneous active read and write ports to the same address, the write
operation succeeds and the read operation returns the new value. This behavior is fully
supported for level-sensitive read ports, but applies only to ATPG pattern generation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

168

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

of edge-sensitive read ports. Do not attempt to use a model with this behavior for fault
simulation of functional patterns.

• readx - For simultaneous active read and write operation to the same address, the
write operation succeeds, but the read operation returns all Xs for data.

new_but_readx_across_ports - This behavior is a combination of two previously
defined behaviors: new and readx. When writing to a particular port, TestMAX ATPG
considers the data on that port as newly written data. If another port simultaneously
reads the same address, the data read on that particular port contains all Xs.

• xword - For simultaneous active read and write operation to the same address, the
write operation writes Xs and the read operation returns all Xs for data.

• xfill - For simultaneous active read and write operation to the same address, the
entire contents of the memory is set to X and the read operation returns Xs for data.

Write-Write Contention
The following behaviors can be specified with the write_write directive:

• xbit - Simultaneously active write ports to the same address will write Xs on bits of
the data word which differ, and non-Xs on bits which are the same. For example, if
data values of 4'b1010 and 4'b1100 were being written to the same address then the
resulting stored value would be 4'b1xx0. This is the default behavior.

• xword - Simultaneously active write ports to the same address will cause the entire
data word addressed to be set to X.

• xfill - Simultaneously active write ports to the same address will cause the entire
MEMORY contents to be set to X.

• dominance - Simultaneously active write ports to the same address will use port order
to determine dominance. Port dominance is established by the order the ports are
defined in the module. The ports defined last have priority over ports defined earlier.
When more than one write port is active, the data value which is written is taken from
the highest priority active write port. So, for example, if the first and third write port are
active the value being written by the third write port is stored.

• forbidden - Simultaneously active write ports to the same address are forbidden and
ATPG methods is employed to ensure no patterns are created where this condition
exists.

The placement of `define within design or library source files should be carefully
considered. The selected behavior specified by the use of the 'define is applied to all
memory models defined after the occurrence of these controls. To avoid unwanted or
unexpected effects due to the persistence of these statements it is strongly suggested that

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

169

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

the `undef command be used immediately after each memory model to restore contention
behavior to defaults. For example:

 # example #22 : removing affect of `define

 `define read_read readx
 `define read_write readx
 `define write_write xword
 module multi_port_ram (...port_list...);
 :
 :
 :
 endmodule
 `undef read_read
 `undef read_write
 `undef write_write

Set Contention Controls
In addition to the various R/R, R/W, and W/W contention behaviors that can be defined
within the RAM model, there is also an additional control the end user can select during
ATPG pattern generation. This is the RAM option of the set_contention command. This
option can be used to declare that having a single RAM with multiple write ports active is
a type of "contention" and patterns which have this contention are to be avoided. This is a
global control, and affects all RAMS in the design simultaneously.

Memory Image Initialization
Can we support initializing a RAM to specific contents for use by ATPG? Yes, this is
done with either the $readmemb() or $readmemh() call placed within an initial block,
depending upon whether the memory image file is in binary or hexadecimal format.
This is a standard Verilog memory format file and is described on the page for Memory
Initialization Files.

The following is an example RAM with an initialization file.

 # example #23 : Initialization file

 module ATPG_RAM (read, write, data_in, data_out, addr);,
 input read, write;
 input [7:0] data_in;
 input [3:0] addr;
 output [7:0] data_out;
 reg [7:0] data_out;
 reg [7:0] memory [0:15] ;

 always @(posedge write) memory[addr] = data_in;
 always @(posedge read)) data_out = memory[addr]

 initial $readmemh("/net/tga/myproj/ram1.dat", memory);

 endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

170

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

Note: Just because you define a memory initialization file does not mean the ATPG
algorithm can make use of this data. Your RAM must pass DRC checks for RAM stability
and write operations must be blocked, otherwise the RAM contents are lost as soon as
random patterns are applied, which is generally the very first ATPG pattern. This means
your RAM must behave like a ROM, which is probably not a restriction you want.

ROM Modeling
How do we model a ROM? Very simply, we create a RAM with no write ports and make
sure it has an initialization file. Here's a simple ROM with a tristate output enable.

 # example #24 : ROM with tristate output

 module MY_ROM (oe, addr, data_out);
 input oe; # output control
 input [3:0] addr; # 16 words
 output [7:0] data_out; # 8 bits per word
 reg [7:0] data_out; # output holding register
 reg [7:0] memory [0:15] ; # memory storage

 always @(oe or addr)
 if (!oe) data_out = memory[addr];
 else data_out = 8'bZZZZZZZZ;
 initial $readmemh("rom_image.dat", memory);

 endmodule

Decoded Address Support
Can we support RAMS or ROMS with decoded address lines? Yes, but this gets a little
more complicated. There are three new areas of syntax which need to be defined: (1) the
'ENCODE' function as shown in the following example; (2) each read or write port where a
decoded address bus is desired should reference the 'ENCODE' function where normally
the address itself would be placed; and (3) and additional check of the address bus for
having a nonzero value must be added to any "if" clause qualifier.

 # example #25 : RAM with decoded addresses

 module MY_ATPG_RAM (read, write, data_in, data_out, ra, wa);
 parameter addrbits = 4, addrmax = 15, num_words = 16;
 parameter databits = 8;
 parameter XWORD = 8'bxxxxxxxx;
 input read, write;
 input [databits-1:0] data_in;
 input [addrmax:0] ra, wa;
 output [databits-1:0] data_out;
 reg [databits-1:0] data_out;
 reg [databits-1:0] memory [0:addrmax];
 event WRITE_OP;

 function [addrbits-1:0] ENCODE; input [addrmax:0] addr;
 integer n; begin ENCODE = XWORD; for (n=0; n <

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

171

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 num_words; n=n+1) begin if (addr[n]==1) begin
 addr[n] = 0; if (|addr == 0) ENCODE = n; n =
 num_words; end end end endfunction always
 @(posedge write)
 if (wa) begin
 memory[ENCODE(wa)] = data_in;
 #0; ->WRITE_OP;
 end

 always @ (read or ra or WRITE_OP)
 if (!read && ra) data_out = memory[ENCODE(ra)];

 endmodule

In the previous example, the bold text draws attention to the portions of the RAM definition
related to the decoded address bus support. The function ENCODE has been defined, and
to make it more convenient for reuse the address and data widths are parameterized.
There is nothing special about the name of this function, we just picked one. For the
write port, the additional if (wa) has been added and for the read port the && ra has
been added to an existing if() clause. This avoids a read or write if all address bits are
zero which is desired behavior when decoded address busses are used. And finally the
address bus references have been replaced with a call to the ENCODE function.

Memory Set/Reset Capability
It is not uncommon for DSP related RAMS or RAMS used in FIFOs or CAMS to have a
global asynchronous reset which zeros all data bits in all words. TestMAX ATPG supports
both an asynchronous set and clear capability. The following example shows additional
statements added to asynchronously clear the memory if CLR is low.

 # example #26 : RAM with asynchronous reset

 module MY_ATPG_RAM (CLR, read, write, data_in, data_out, addr);
 input CLR;
 input read, write;
 input [7:0] data_in;
 input [3:0] addr;
 output [7:0] data_out;
 reg [7:0] data_out;
 reg [7:0] memory [0:15] ;
 integer i;
 event WRITE_OP;

 always @(posedge write) begin
 memory[addr] = data_in;
 #0; ->WRITE_OP;
 end

 always @(read or addr or WRITE_OP)
 if (!read) data_out = memory[addr];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

172

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 always @ CLR if (!CLR) begin for (i=0; i<16; i=i+1) memory[i] =
 8'b0; #0; ->WRITE_OP; end

 endmodule

If you require a synchronous set or reset, use an external DFF primitive to create this
synchronization.

 # example #27 : RAM with synchronous reset

 _DFF u1 (0,0,write,CLR, sync_CLR); # synchronize CLR
 always @ sync_CLR if (!sync_CLR) begin
 for (i=0; i<16; i=i+1) memory[i] = 8'b0;
 #0; ->WRITE_OP;
 end

 endmodule

If you require a synchronous set or reset with an enable, use an external DFF + MUX
primitive to create this synchronization.

 # example #28 : RAM with synchronous reset and write enable

 _MUX u1 (enable, sync_CLR, CLR, din);
 _DFF u2 (0,0,write, din, sync_CLR); # synchronize CLR
 always @ sync_CLR if (!sync_CLR) begin
 for (i=0; i<16; i=i+1) memory[i] = 8'b0;
 #0; ->WRITE_OP;
 end

 endmodule

Debugging Your Models
Here are some tips for debugging any RAM/ROM modules you create:

• Keep your module under development in a separate file until you've finished testing it.

• Use the -delete option along with the read_netlist command to read your memory
model and do the initial parsing. Pay attention to any and all warnings or errors and
work to eliminate them. Watch out for N2 violations because this could mean your entire
RAM or ROM has been rejected and replaced with a black box.

• Use the run_build_model command to build just your model by name. There should
be no warnings or errors from the build.

• After building, use the report_memory command with both the -alland -verbose
options to review data on your RAM or ROM model. Identify the gate_id of the ATPG
RAM primitive and then use a report_primitives command to display information

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

on this gate ID. Review the reported contention behavior for the RAM primitive to make
sure it is as you intended.

• After building, set the display mode to primitive and show a few module ports. Click
net diamonds to expand the drawing until all of the RAM/ROM building blocks are in
view. Review the graphical display to check that your address and data bus widths
are correct, you have the correct number of read and write ports, and so forth. Consult
the Simulation Primitives for a more complete description of the various RAM/ROM
building blocks.

• For a rigorous test of the ATPG memory model construct a testbench into which you
instantiate the RAM. The testbench should have both read address, write address,
and data write lines coming to the RAM from: a) primary inputs, b) scan registers, c)
nonscan registers. Similarly, the data outputs of the read port should go to: a) primary
outputs, b) scan registers, c) nonscan registers which then feed either PO's or scan
registers. This type of testbench provides almost all of the variations of address/
data lines likely to be experienced in designs. Generate ATPG patterns under this
environment and then simulate them to validate the RAM model is usable under all
conditions.

• As a test of functional pattern behavior, generate and simulate your functional patterns
in a Verilog simulator capable of create Extended VCD output. This VCD-E stimulus/
response file can then be read into TestMAX ATPG as functional patterns, and by using
the run_simulation -sequential command, the TestMAX ATPG behavior can be
compared to the actual response of the Verilog model. Differences sometimes occur,
but the prime goal is to have the ATPG model never generate a non-X value when the
Verilog response is X. Having the ATPG model predict X when Verilog predicts non-X is
often time a necessary conservative modeling approach.

Memory Modeling Syntax in Backus-Naur Form (BNF)
This section describes the BNF memory modeling syntax, which is a restricted subset
of the Verilog language used for modeling of RAMs and ROMs. Constructs identical to
the Verilog BNF definition are not described. Refer to IEEE Std 1364-1995 for the syntax
definitions of standard Verilog.

memory_definition ::= { contention_mode } module_declaration
 { contention_defaults }
contention_mode ::= rr_contention | rw_contention | ww_contention
module_declaration ::= module module_identifier [list_of_ports] ;
 { module_item
} endmodule
contention_defaults ::= rr_undef | rw_undef | ww_undef
list_of_ports ::= (port_identifier {,port_identifier })
module_item ::= module_item_declaration | read_port | write_port |
 set_port | reset_port | memory_initialization
| gate_instantiation | udp_instantiation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

174

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

module_item_declaration ::= data_out_reg_declaration | memory_declaration
 | parameter_declaration | input_declaration
| output_declaration | inout_declaration | net_declaration |
 reg_declaration | integer_declaration | event_declaration
data_out_reg_declaration ::= reg data_range data_out_reg_identifier;
memory_declaration ::= reg data_range memory_name_identifier
 address_range ;
data_range ::= [data_high_bit : data_low_bit]
address_range ::= [address_low : address_high]
read_port ::= level_sensitive_read_port | edge_sensitive_read_port
write_port ::= level_sensitive_write_port | edge_sensitive_write_port
set_port ::= always @ set_control_net if ([!] set_control_net) 1_fill
reset_port ::= always @ reset_control_net if ([!] reset_control_net)
 0_fill
level_sensitive_read_port ::= always @ (read_sensitivity_list) if ([!]
 control_net
) read_assign [else data_out_reg = bus_constant ;]
edge_sensitive_read_port ::= always @ (edge read_control_net) [if
 ([!]
control_net)] read_assign
level_sensitive_write_port ::= always @ (write_sensitivity_list) if
 ([!] control_net
) write_assign
edge_sensitive_write_port ::= always @ (edge write_control_net) [if
 ([!]
control_net)] write_assign
read_assign ::= data_out_reg = memory_name [address_net] ;
write_assign ::= begin memory_name [address_net] = data_in_net ;#0;
->event_identifier; end
read_sensitivity_list ::= read_control_net [or address_net]
 [orevent_identifier
]
write_sensitivity_list ::= write_control_net or address_net or
 data_in_net
control_net ::= net_identifier
read_control_net ::= net_identifier
write_control_net ::= net_identifier
set_control_net ::= net_identifier
reset_control_net ::= net_identifier
address_net ::= bus_identifier
data_in_net ::= bus_identifier
memory_initialization ::= initial readmem_type (filespec ,
 memory_name) ;
readmem_type ::= $readmemh | $readmemb
filespec ::= " filepath "
0_fill ::= for (i=0; i < max_address ; i=i+1) memory_name [i] =
 0_constant
;
1_fill ::= for (i=0; i < max_address ; i=i+1) memory_name [i] =
 1_constant
;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

175

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

edge ::= posedge | negedge
rr_contention ::= `define read_read rr_choices
rw_contention ::= `define read_write rw_choices
ww_contention ::= `define write_write ww_choices
rr_choices :: = normal | readx
rw_choices ::= mixed | new | readx | xfill| new_but_readx_across_ports
ww_choices ::= xbit | xword | xfill | dominance | forbidden
rr_undef ::= `undef read_read
rw_undef ::= `undef read_write
ww_undef ::= `undef write_write
data_high_bit ::= decimal_number
data_low_bit ::= decimal_number
address_low ::= decimal_number
address_high ::= decimal_number
max_address ::= decimal_number
bus_constant ::= 0_constant | 1_constant | x_constant | z_constant
0_constant :: = size base { 0 }+
1_constant :: = size base { 1 }+
x_constant :: = size base { x }+
z_constant :: = size base { z }+
size ::= decimal_digit { decimal_digit }
base ::= 'b | 'B | 'h | 'H
digit ::= dec_digit | hex_digit | sim_digit
decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
decimal_number ::= { decimal_digit }+
hex_digit ::= decimal_digit | a | A | b | B | c | C | d | D | e | E | f |
 F
binary_digit ::= x | X | z | Z | 0 | 1
bus_identifier ::= net_identifier
net_identifier ::= <standard Verilog syntax>
module_identifier ::= <standard Verilog syntax>
port_identifier :: = <standard Verilog syntax>
parameter_declaration ::= <standard Verilog syntax>
input_declaration ::= <standard Verilog syntax>
output_declaration ::= <standard Verilog syntax>
inout_declaration ::= <standard Verilog syntax>
net_declaration ::= <standard Verilog syntax>
reg_declaration ::= <standard Verilog syntax>
integer_declaration ::= <standard Verilog syntax>
gate_instantiation ::= <standard Verilog syntax>
udp_instantiation ::= <standard Verilog syntax>
event_declaration ::= <standard Verilog syntax>

RAM and ROM Modeling Examples
This section contains a set of Verilog module definitions of functional RAMS recognized
by TestMAX ATPG. For additional information on how to construct a memory model see
"Memory Modeling."

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

176

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

#
#1 Simple RAM with common address,
edge sensitive read/write. If the read and
write clocks come from a common source
in the design, this will produce R/W
contention behavior of old.
#
module ram1024x8 (wclk, rclk, a, din, dout);
 parameter databits = 8;
 parameter addrbits = 10;
 parameter addrmax = (1<<addrbits) - 1;
 input wclk, rclk;
 input [addrbits-1:0] a;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;

 always @ (posedge wclk) mymem[a] = din;
 always @ (posedge rclk) dout = mymem[a];

endmodule
#
#2 RAM with common address, level sensitive read/write,
chip select, and active low write enable. If the read and
write ports should both be active, the R/W contention behavior
is to read the new value.
#
module ram128x32 (DO, DI, A, WEB, OE, CS);
 parameter databits = 32;
 parameter addrbits = 7;
 parameter addrmax = (1<<addrbits) - 1;
 output [databits-1:0] DO;
 input [databits-1:0] DI;
 input [addrbits-1:0] A;
 input WEB, OE, CS;
 reg [databits-1:0] memory [0:addrmax];
 reg [databits-1:0] DO;

 and u0 (OEN, CS, OE);
 and u1 (WEN, CS,!WEB);

 event WRITE_OP;

 always @ (WEN or A or DI) if (WEN) begin
 memory[A] = DI;
 #0; ->WRITE_OP;
 end

 always @ (OEN or A or WRITE_OP)
 if (OEN) DO = memory[A];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 else DO = 32'hZ;

endmodule

#
#3 Simple ROM
#
module rom16x24 (a, dout);
 parameter databits = 24;
 parameter addrbits = 4;
 parameter addrmax = (1<<addrbits) - 1;
 input [addrbits-1:0] a;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout;

 initial $readmemh("rom16x24.dat", mymem);

 always @ (a)
 if (a <= addrmax) dout = mymem[a];

endmodule
see also: Sample Memory Initialization Files
#
#4 Simple ROM with output tri-state
#
module rom16x16 (ren, a, dout);
 parameter databits = 16;
 parameter addrbits = 4;
 parameter addrmax = (1<<addrbits) - 1;
 input ren;
 input [addrbits-1:0] a;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout;

 initial $readmemh("rom16x16.dat", mymem);

 always @ (ren or a)
 if (ren) dout = mymem[a];
 else dout = 16'bzzzz_zzzz_zzzz_zzzz ;

endmodule
see also: Sample Memory Initialization Files
#
#5 ROM with output hold
#
module rom32x16 (ren, a, dout);
 parameter databits = 16;
 parameter addrbits = 5;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

178

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 parameter addrmax = (1<<addrbits) - 1;
 input ren;
 input [addrbits-1:0] a;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;

 initial $readmemh("rom32x16.dat", mymem);

 always @ (ren or a) if (ren) dout = mymem[a] ;

endmodule
#
#6 Simple RAM with common address, active low level
sensitive read, and an initialization file (in hex).
R/W contention behavior of this example is new.
#
module ram500x8 (wclk, ren, a, din, dout);
 parameter databits = 8;
 parameter addrbits = 9;
 parameter addrmax = 499;
 input wclk, ren;
 input [addrbits-1:0] a;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;
 event WRITE_OP;

 initial $readmemh("ram512x8.dat", mymem);

 always @ (posedge wclk) begin
 mymem[a] = din;
 #0; ->WRITE_OP;
 end

 always @ (ren or a or WRITE_OP)
 if (!ren) dout = mymem[a] ;

endmodule
#
#7 Simple RAM with R/W direction and strobe
#
module ram64x8 (rwb, st, a, din, dout);
 parameter databits = 8;
 parameter addrbits = 6;
 parameter addrmax = (1<<addrbits) - 1;
 input rwb, st;
 input [addrbits-1:0] a;
 input [databits-1:0] din ;
 output [databits-1:0] dout;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;

 always @ (posedge st) if (!rwb) mymem[a] = din;

 # A potentially dangerous method to make 'RCLK', see example #10
 # for a more accurate clock qualifier example.
 #
 and u1 (RCLK, st, rwb);
 always @(posedge RCLK) dout = mymem[a] ;

endmodule
#
#8 Simple RAM with read and write enable, a common
read/write strobe, and common address
#
module ram9x32 (st, ren, wen, dout, din, a);
 parameter databits = 32;
 parameter addrbits = 4;
 parameter addrmax = 8;
 input st,ren,wen;
 input [databits-1:0] din;
 output [databits-1:0] dout;
 input [addrbits-1:0] a;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout;

 always @ (posedge st) if (wen) mymem[a] = din;

 # A potentially dangerous method to make 'RCLK', see example #10
 # for a more accurate clock qualifier example.
 #
 and u1 (RCLK, st, ren);
 always @ (posedge RCLK) dout = mymem[a];

endmodule
#
#9 Simple RAM with separate R/W address
The R/W contention behavior of this example is old
#
module ram256x4 (wclk, wa, din, rclk, ra, dout);
 parameter databits = 4;
 parameter addrbits = 8;
 parameter addrmax = (1<<addrbits) - 1;
 input wclk, rclk;
 input [addrbits-1:0] wa, ra;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

180

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 always @ (posedge wclk) mymem[wa] = din;
 always @ (posedge rclk) dout = mymem[ra] ;

endmodule
#
#10 Clocked read port with clock qualifier
#
`define read_write new
module ram48x4 (CS, wclk, wen, wa, DI, RCLK, REN, RA, DO);
 parameter databits = 4;
 parameter addrbits = 6;
 parameter addrmax = 47;
 input wclk, RCLK, wen, REN, CS;
 input [addrbits-1:0] wa, RA;
 input [databits-1:0] DI ;
 output [databits-1:0] DO;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] DO;

 always @ (posedge wclk) if (wen) mymem[wa] = DI;

 and u2 (read_ena, CS, REN); # chip select & read enable
 always @ (posedge RCLK) if (read_ena) DO = mymem[RA];

endmodule
`undef read_write
#
#11 Synchronous RAM with write-through behavior. A read
operation occurs for every write operation and the
new data written appears on the read port outputs.
#
Note: Change R/W contention from new to mixed
to have read port provide previous data during a
write.
#
Note 2: This write-through behavior is not supported for the
fault grading of functional patterns, only for ATPG pattern
generation.
#
`define read_write new
module ram192x6 (CLK, WEN, CS, ADDR, DI, DO);
 parameter databits = 6;
 parameter addrbits = 8;
 parameter addrmax = 191;
 input CLK, WEN, CS;
 input [addrbits-1:0] ADDR;
 input [databits-1:0] DI;
 output [databits-1:0] DO;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] DO ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

181

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 #
 # --- rising CLK with CS=1, WEN=0 causes a write
 #
 and u1 (write_en, !WEN, CS); # write qualifier
 always @ (posedge CLK) if (write_en) mymem[ADDR] = DI;
 #
 # --- rising edge on CLK with CS=1 always causes a read
 #
 always @ (posedge CLK) if (CS) DO = mymem[ADDR];

endmodule
`undef read_write
#
#12 RAM with a write enable, separate R/W address
#
module ram256x8 (wclk, wen, wa, din, rclk, ra, dout);
 parameter databits = 8;
 parameter addrbits = 8;
 parameter addrmax = (1<<addrbits) - 1;
 input wclk, wen, rclk;
 input [addrbits-1:0] wa, ra;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;

 initial $readmemh("ram256x8.dat", mymem);

 always @ (posedge wclk) if (wen) mymem[wa] = din;

 always @ (posedge rclk) dout = mymem[ra] ;

endmodule
#
#13 RAM with two edge sensitive R/W ports
#
module ram64x12 (w1,a1,d1, w2,a2,d2, r3,a3,d3, r4,a4,d4);
 parameter databits = 12;
 parameter addrbits = 5;
 parameter addrmax = (1<<addrbits) - 1;
 input w1,w2,r3,r4;
 input [addrbits-1:0] a1, a2, a3, a4;
 input [databits-1:0] d1, d2 ;
 output [databits-1:0] d3, d4;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] d3, d4 ;

 always @ (posedge w1) mymem[a1] = d1;
 always @ (posedge w2) mymem[a2] = d2;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

182

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 always @ (posedge r3) d3 = mymem[a3] ;
 always @ (posedge r4) d4 = mymem[a4] ;

endmodule
#
#14 RAM with dual READ/WRITE ports and the READ
ports are level sensitive
#
module ram64x6 (w1,a1,d1, w2,a2,d2, r3,a3,d3, r4,a4,d4);
 parameter databits = 6;
 parameter addrbits = 6;
 parameter addrmax = (1<<addrbits) - 1;
 input w1,w2,r3,r4;
 input [addrbits-1:0] a1, a2, a3, a4;
 input [databits-1:0] d1, d2 ;
 output [databits-1:0] d3, d4;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] d3, d4 ;
 event WRITE;

 always @ (posedge w1) begin
 mymem[a1] = d1; #0; ->WRITE; end
 always @ (posedge w2) begin
 mymem[a2] = d2; #0; ->WRITE; end

 always @ (r3 or a3 or WRITE)
 if (r3) d3 = mymem[a3] ;
 always @ (r4 or a4 or WRITE)
 if (r4) d4 = mymem[a4] ;

endmodule
#
#15 Falling edge sensitive write ports, level sensitive
read ports, separate tristate output, Chip Select
#
module ram50x20 (w1,a1,d1, w2,a2,d2, r3,a3,d3,oe3, r4,a4,d4,oe4, cs);
 parameter databits = 20;
 parameter addrbits = 6;
 parameter addrmax = 49;

 input w1,w2,r3,oe3,r4,oe4, cs;
 input [databits-1:0] d1, d2;
 input [addrbits-1:0] a1, a2, a3, a4;
 output [databits-1:0] d3, d4;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] d3, d3_reg, d4, d4_reg;
 event WRITE;

 /* internal control logic terms */

 and u1 (readena1, cs, !r3);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

183

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 and u2 (readena2, cs, !r4);
 and u3 (outena1, cs, !oe3);
 and u4 (outena2, cs, !oe4);

 /* write ports, edge sensitive active high */

 always @(posedge w1) if (cs) begin
 mymem[a1] = d1; #0; ->WRITE; end
 always @(posedge w2) if (cs) begin
 mymem[a2] = d2; #0; ->WRITE; end

 /* read ports, level sensitive */

 always @(readena1 or a3 or WRITE)
 if (readena1) d3_reg = mymem[a3];
 always @(readena2 or a4 or WRITE)
 if (readena2) d4_reg = mymem[a4];

 /* output enables, qualified by chip select */

 always @(outena1 or d3_reg)
 if (outena1) d3 = d3_reg; else d3 = 20'bZZZZ_ZZZZ_ZZZZ_ZZZZ_ZZZZ ;
 always @(outena2 or d4_reg)
 if (outena2) d4 = d4_reg; else d4 = 20'bZZZZ_ZZZZ_ZZZZ_ZZZZ_ZZZZ ;

endmodule
#
#16 RAM with asynchronous set & clear capability
#
module ram32x5 (set, rst, wclk, wa, din, rclk, ra, dout);
 parameter databits = 5;
 parameter addrbits = 4;
 parameter words = (1<<addrbits);
 parameter addrmax = words - 1;
 parameter ONES = 5'b11111;
 parameter ZEROS = 5'b0;
 input set, rst, wclk, rclk;
 input [addrbits-1:0] wa, ra;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;
 integer i;
 event WRITE_OP;

 always @ rst if (rst) begin
 for (i=0; i<words; i=i+1) mymem[i] = ZEROS;
 #0; ->WRITE_OP;
 end

 always @ set if (set) begin
 for (i=0; i<words; i=i+1) mymem[i] = ONES;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

184

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 #0; ->WRITE_OP;
 end

 always @ (posedge wclk) begin
 mymem[wa] = din;
 #0; ->WRITE_OP;
 end

 always @ (rclk or ra or WRITE_OP)
 if (rclk) dout = mymem[ra] ;

endmodule
#
#17 RAM with synchronous set & clear capability
#
module ram32x5_s (set, rst, wclk, wa, din, rclk, ra, dout);
 parameter databits = 5;
 parameter addrbits = 4;
 parameter words = (1<<addrbits);
 parameter addrmax = words - 1;
 parameter ONES = 5'b11111;
 parameter ZEROS = 5'b0;
 input set, rst, wclk, rclk;
 input [addrbits-1:0] wa, ra;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;
 integer i;
 event WRITE_OP;

 _DFF u1 (1'b0, 1'b0, wclk, rst, srst);
 always @ srst if (srst) begin
 for (i=0; i<words; i=i+1) mymem[i] = ZEROS;
 #0; ->WRITE_OP;
 end

 _DFF u1 (1'b0, 1'b0, wclk, set, sset);
 always @ sset if (sset) begin
 for (i=0; i<words; i=i+1) mymem[i] = ONES;
 #0; ->WRITE_OP;
 end

 always @ (posedge wclk) begin
 mymem[wa] = din;
 #0; ->WRITE_OP;
 end

 always @ (rclk or ra or WRITE_OP)
 if (rclk) dout = mymem[ra] ;

endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

185

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

#
#18 RAM that uses a core and a wrapper to accomplish
bit-blasted address and data pins
#

the inner core
module ramcore_16x6 (wba, wa, din, ra, dout);
 parameter databits = 6;
 parameter addrbits = 4;
 parameter addrmax = (1<<addrbits) - 1;
 input wba;
 input [addrbits-1:0] wa, ra;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout;
 event WRITE_OP;

 always @ (wba or wa or din) if (!wba) begin
 mymem[wa] = din;
 #0; ->WRITE_OP;
 end
 always @ (wba or ra or WRITE_OP) if (wba) dout = mymem[ra];
endmodule

the outer wrapper
module ram16x6(DO0, DO1, DO2, DO3, DO4, DO5,
 WA0, WA1, WA2, WA3, RA0, RA1, RA2, RA3,
 DI0, DI1, DI2, DI3, DI4, DI5, WBA);
 input WA0, WA1, WA2, WA3, RA0, RA1, RA2, RA3,
 DI0, DI1, DI2, DI3, DI4, DI5, WBA;
 output DO0, DO1, DO2, DO3, DO4, DO5;

 ramcore_16x6 u1 (
 .wba(WBA),
 .wa({WA3,WA2,WA1,WA0}),
 .din({DI5, DI4, DI3, DI2, DI1, DI0}),
 .ra({RA3, RA2, RA1, RA0}),
 .dout({DO5, DO4, DO3, DO2, DO1, DO0}));

endmodule
#
#19 RAM with data out off value of zero
#
module ram64x32 (wen, wa, din, ren, ra, dout);
 parameter databits = 32;
 parameter addrbits = 6;
 parameter addrmax = (1<<addrbits) - 1;
 parameter ZERO = 32'b0;
 input wen, ren;
 input [addrbits-1:0] wa, ra;
 input [databits-1:0] din ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

186

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout ;
 event WRITE_OP;

 always @ (wen or wa or din) if (wen) begin
 mymem[wa] = din;
 #0; ->WRITE_OP;
 end

 always @ (ren or ra or WRITE_OP)
 if (ren) dout = mymem[ra] ;
 else dout = ZERO;

endmodule
#
#20 RAM with data out offstate = 1, and tri-state output
#
module ram64x128 (wen, wa, din, ren, ra, dout, oe);
 parameter databits = 128;
 parameter addrbits = 6;
 parameter addrmax = (1<<addrbits) - 1;
 input wen, ren, oe;
 input [addrbits-1:0] wa, ra;
 input [databits-1:0] din ;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout, dout_reg ;
 event WRITE_OP;

 always @ (wen or wa or din) if (wen) begin
 mymem[wa] = din;
 #0; -> WRITE_OP; /* signal event */
 end

 always @ (ren or ra or WRITE_OP)
 if (ren) dout_reg = mymem[ra] ;
 else dout_reg = 128'hFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

 always @ (oe or dout_reg)
 if (oe) dout = dout_reg;
 else dout = 128'bZ;

endmodule
#
#21 a RAM with non-default contention behavior
#
`define read_read readx
`define read_write readx
`define write_write xword
module ram252x7 (w1,a1,d1, w2,a2,d2, r3,a3,d3, r4,a4,d4);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

187

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 parameter addrbits = 8;
 parameter addrmax = 251;
 parameter databits = 7;
 input w1,w2,r3,r4;
 input [addrbits-1:0] a1, a2, a3, a4;
 input [databits-1:0] d1, d2;
 output [databits-1:0] d3, d4;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] d3, d4;
 event WRITE_OP;

 always @ (w1 or a1 or d1) if (w1) begin
 mymem[a1] = d1;
 #0; ->WRITE_OP; /* signal event */
 end

 always @ (w2 or a2 or d2) if (w2) begin
 mymem[a2] = d2;
 #0; ->WRITE_OP; /* signal event */
 end

 always @ (r3 or a3 or WRITE_OP) if (r3) d3 = mymem[a3] ;

 always @ (r4 or a4 or WRITE_OP) if (r4) d4 = mymem[a4] ;

endmodule
`undef read_read
`undef read_write
`undef write_write
#
#22 a RAM with decoded address bus
#
module RAM_decode (read, write, data_in, data_out, ra, wa);
 parameter addrbits = 4, addrmax = 15, num_words = 16;
 parameter databits = 8;
 parameter XWORD = 8'bxxxxxxxx;
 input read, write;
 input [databits-1:0] data_in;
 input [addrmax:0] ra, wa;
 output [databits-1:0] data_out;
 reg [databits-1:0] data_out;
 reg [databits-1:0] memory [0:addrmax];
 event WRITE_OP;

 function [addrbits-1:0] ENCODE;
 input [addrmax:0] addr;
 integer n;
 begin
 ENCODE = XWORD;
 for (n=0; n < num_words; n=n+1) begin
 if (addr[n]==1) begin
 addr[n] = 0;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

188

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 if (|addr == 0) ENCODE = n;
 n = num_words;
 end
 end
 end
 endfunction

 always @(posedge write)
 if (wa) begin
 memory[ENCODE(wa)] = data_in;
 #0; ->WRITE_OP;
 end

 always @ (read or ra or WRITE_OP)
 if (!read && ra) data_out = memory[ENCODE(ra)];

endmodule
#
#23 a RAM with a mixture of encoded and decoded address buses
#
module ram_decode2 (reset, w1,c1,a1,d1, w2,a2,d2, r3,a3,d3, r4,a4,d4);
 parameter addrbits = 4, addrmax = 15, num_words = 16;
 parameter databits = 8;
 parameter ZEROS = 8'h00, XWORD = 8'bx;

 input reset, w1, c1, w2, r3, r4;
 input [addrbits-1:0] a1, a3;
 input [addrmax:0] a2, a4; # decoded addresses
 input [databits-1:0] d1, d2;
 output [databits-1:0] d3, d4;

 reg [databits-1:0] mymem [0:addrmax], d3, d4;
 integer i;
 event WRITE_OP;

 function [addrbits-1:0] ENCODE;
 input [addrmax:0] addr;
 integer n;
 begin
 ENCODE = XWORD;
 for (n=0; n < num_words; n=n+1) begin
 if (addr[n]==1) begin
 addr[n] = 0;
 if (|addr == 0) ENCODE = n;
 n = num_words;
 end
 end
 end
 endfunction

 always @ reset if (reset) begin
 for (i=0; i<num_words; i=i+1) mymem[i] = ZEROS;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

189

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 #0; ->WRITE_OP;
 end

 always @ (posedge w1) if (c1) begin
 mymem[a1] = d1; #0; ->WRITE_OP; end

 always @ (negedge w2) if (a2) begin
 mymem[ENCODE(a2)] = d2; #0; ->WRITE_OP; end

 always @ (r3 or a3 or WRITE_OP)
 if (r3) d3 <= mymem[a3]; else d3 <= ZEROS;

 always @ (r4 or a4 or WRITE_OP)
 if (!r4 && a4) d4 <= mymem[ENCODE(a4)];

endmodule
#
#24 A level sensitive RAM with bitwise read/write control
#
module RAM16x8 (CS, A0,A1,A2,A3,
 DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7,
 DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7,
 WE0, WE1, WE2, WE3, WE4, WE5, WE6, WE7);

 input CS;
 input A0, A1, A2, A3;
 input DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7;
 output DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7;
 input WE0, WE1, WE2, WE3, WE4, WE5, WE6, WE7;

 wire [3:0] ADDR;
 assign ADDR = {A3,A2,A1,A0};

 RAM16x1 sl0 (ADDR, DI0, DO0, WE0, CS);
 RAM16x1 sl1 (ADDR, DI1, DO1, WE1, CS);
 RAM16x1 sl2 (ADDR, DI2, DO2, WE2, CS);
 RAM16x1 sl3 (ADDR, DI3, DO3, WE3, CS);
 RAM16x1 sl4 (ADDR, DI4, DO4, WE4, CS);
 RAM16x1 sl5 (ADDR, DI5, DO5, WE5, CS);
 RAM16x1 sl6 (ADDR, DI6, DO6, WE6, CS);
 RAM16x1 sl7 (ADDR, DI7, DO7, WE7, CS);

endmodule

The core 1-bit RAM
module RAM16x1 (ADDR, DI, DO, WE, CS);
 input [3:0] ADDR;
 input DI, WE, CS;
 output DO;
 reg DO;
 reg [0:0] memory [0:15];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

190

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 event WRITE_OP;

 and u1 (read_en, CS, !WE);
 and u2 (write_en, CS, WE);

 always@(write_en or ADDR or DI) if (write_en) begin
 memory[ADDR] = DI;
 #0; ->WRITE_OP;
 end

 always@(read_en or ADDR or WRITE_OP) if (read_en) DO = memory[ADDR];

endmodule
#
#25 A level sensitive RAM with constantly enabled READ port
#
module ram512x11 (addr, din, wen, dout);
 parameter databits = 11;
 parameter addrbits = 9;
 parameter addrmax = (1<<addrbits)-1;
 input wen;
 input [addrbits-1:0] addr;
 input [databits-1:0] din;
 output [databits-1:0] dout;
 reg [databits-1:0] mymem [0:addrmax];
 reg [databits-1:0] dout;

 supply1 ren;
 event WRITE_OP;

 always @ (wen or addr or din) if (wen) begin
 mymem[addr] = din;
 #0; ->WRITE_OP;
 end

 always @ (ren or addr or WRITE_OP)
 if (ren) dout = mymem[addr];

endmodule
#
#26 RAM with Data In to Data Out bypass using "assign"
to describe a bank of MUX prims.
#
module bypass_RAM (DO, RA, WA, DI, WE, RE, CLK, BYPASS);
 output [15:0] DO;
 input [15:0] DI;
 input [3:0] RA,WA;
 input CLK, WE, RE, BYPASS;
 reg [15:0] memory [0:15];
 reg [15:0] DO_REG;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

191

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 always @(posedge CLK) if (WE) memory[WA] = DI;
 always @(posedge CLK) if (RE) DO_REG = memory[RA];

 assign DO = BYPASS ? DI : DO_REG ;

endmodule

Memory Data File Examples
A ROM model is required to have a memory initialization file. For a RAM, this file is
optional. TestMAX ATPG accepts the data file format specified by Verilog. Some examples
follow:

A memory initialization file for a 16x16 device, with data presented in binary.

 0000000000000001
 0000000000000010
 0000000000000100
 0000000000001000
 0000000000010000
 0000000000100000
 0000000001000000
 0000000010000000
 0000000100000000
 0000001000000000
 0000010000000000
 0000100000000000
 0001000000000000
 0010000000000000
 0100000000000000
 1000000000000000

The same data 16x16 presented in hex.

 0001
 0002
 0004
 0008
 0010
 0020
 0040
 0080
 0100
 0200
 0400
 0800
 1000
 2000
 4000
 8000

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

192

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

A more complicated Memory Initialization File which makes use of whitespace, comments,
multiple data entries per line, underscores in data, and address skipping. This one is 64
words of 16 bits.

 0001
 0002
 0004
 0008

 0010 0020 0040 0080
 0100 0200 0400 0800
 1000 2000 4000 8000

 # address = 0010
 A001 c401 e404 700a
 3816 1c2c 2e58 07b0
 23e0 07c0 25e0 0b70
 363c 2c1c 7c0e b006

 # address = 0020
 8001 4002 2004 1008 8810 4421 2242 1184
 0908 0650 0620 0950 1088

 # skip to hex address 30
 @30
 fffe fffd fffb fff7 ffef ffdf ffbf ff7f
 /* another comment */
 feff fdff fbff f7ff # end of line comment
 # underscores for readability
 efff dfff bfff 7_f_f_f

Interpreting UDP Messages
Many of the detailed DRC violation messages associated with creating derived ATPG
models for UDPs from vendor libraries need additional explanation on how the messages
should be interpreted and whether further action is needed.

Variant #1
For example, one such commonly occurring message is something on the order of
"Expected <string of chars with 't'> got <non 't'>. Users ask, "How do I interpret the 't', ':',
and '.'?

For the LAT2 UDP table shown below, TestMAX ATPG issues the following text:

underspecified UDP (Expected "tx.:.:." got "?x?:?:-")
 primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

193

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 input d, gn, ntfy;

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? p ? : ? : - ; #6 "p" includes (0x)
 ? ? * : ? : X ; #7
 endtable
 endprimitive

In this case the string Expected "tx.:.:." contains a 't' meaning a test for 0 or 1 is
expected. The periods "." occur for each position for which TestMAX ATPG does not care
what the value is after the mismatch is detected, and the colons ':' occur as separators in
the same position they hold in the table entries.

The 't' occurs in the first character position, so TestMAX ATPG is expecting the first
character of the table entry to test for a 0 or 1. Instead it got "?x?:?:-", which can be
used to help identify table entry #1 or #6 as the entry corresponding to the violation
message. In this case you might need to get the Verilog reference manual out to decipher
that the "p" is shorthand for the edge combinations of (01), (0x), (x1), (0z), and (z1).
TestMAX ATPG is warning about the (0x) transition, which is similar to a steady state input
on GN of "X" because the table entry implies that the output holds state when GN goes
from 0 to X regardless of the value of D and Q-.

Let's rewrite table entry #6 and expand it into its variants, skipping those that have edge
combinations which include Z.

primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;
 input d, gn, ntfy;

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? (01) ? : ? : - ; #6a expanded
 ? (x1) ? : ? : - ; #6b expanded
 ? (0x) ? : ? : - ; #6c expanded
 ? ? * : ? : X ; #7
 endtable
endprimitive

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

194

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

This new variant of the UDP table has three lines to replace the original. If you read this
with TestMAX ATPG and then perform a run build_model on it, you get the same violation
message:

underspecified UDP (Expected "tx.:.:." got "?x?:?:-")
Note the entry 6c which has the (0x) edge transition for GN and is the closest match to
the error message showing "? x ? : ? : -". If the latch enable GN transitions to an X state,
the table entry should not indicate a hold state, it would be better if it tested that D and
Q- were identical, and if so then the output would be known. You can test this change by
expanding entry 6c into two new lines as follows:

 primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;
 input d, gn, ntfy;

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? (01) ? : ? : - ; #6a expanded
 ? (x1) ? : ? : - ; #6b expanded
 0 (0x) ? : 0 : 0 ; #6c1 expanded
 1 (0x) ? : 1 : 1 ; #6c2 expanded
 ? ? * : ? : X ; #7
 endtable
 endprimitive

This new variant of the UDP table has two lines to replace the original 6c. If you read this
with TestMAX ATPG and then perform a run build_model on it, you get a different violation
this time:

unsupported UDP entry (Entry "??*?:X")
The reason the violation is different is because by default TestMAX ATPG shows only
the single most significant violation for each module. By curing one violation message
you expose the next. To see all of the violation messages at once issue the set_netlist
-nocheck_only_used_udps command before reading the file with the modules being
tested.

This N21 violation occurs any time a UDP has a notify column entry. There is no gate-level
representation for the functionality described by the characters in the notify column and
TestMAX ATPG is issuing a warning. Nearly all such models use this column for setting the
output to an X as a result of a timing violation. For our ATPG functional model (timingless),

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

195

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

this violation can be ignored. At this point you have eliminated all the warnings that we
can.

This example has been useful for demonstrating how to interpret UDP related warning
messages and what action to take to try to reduce the warnings. Having led you through
the process we'll now suggest some additional changes to the table that you can or cannot
have noticed along the way.

The first change is that entry 6a and 6b are essentially redundant to entry 1. An edge
transition on GN to a 1 for a level sensitive device is identical to a constant 1 on GN. So
we could drop these entries from the table.

The second change is that entries 6c1 and 6c2 are essentially redundant to entries 4and 5
by a similar argument.

So in the end we could have reduced warnings for this UDP by commenting out the
original entry 6rather than by expanding it into other lines. Each case is different and
sometimes an idea for the final solution becomes more obvious by commenting out
troublesome lines than by expanding them. Both methods should be considered when
troubleshooting UDP messages. The reduced warning UDP is then:

 primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;
 input d, gn, ntfy;

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? ? * : ? : X ; #6
 endtable
 endprimitive

Variant #2
As another example, a message similar to "Expected <string of chars with 't'> got <string
with 0 or 1 or X> is provided.

For the UDP table shown below TestMAX ATPG reporst the following message:

underspecified UDP (Expected "1xr11?:t:." got "1xr11?:?:X")
 primitive FJK (q, j, k, cp, cd, sd, ntfy);
 output q;
 reg q;
 input j,k, cp, cd, sd, ntfy;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

196

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 table
 # J K CP CD SD ntfy Q- : Q+
 # --- --- --- --- --- --- : --- : ---
 0 0 r 1 1 ? : ? : - ; # 1. hold

 0 1 r 1 1 ? : ? : 0 ; # 2. clocked K
 0 1 r x 1 ? : ? : 0 ; # 3.
 ? ? ? x 1 ? : 0 : 0 ; # 4.

 1 0 r 1 1 ? : ? : 1 ; # 5. clocked J
 1 0 r 1 x ? : ? : 1 ; # 6.
 ? ? ? 1 x ? : 1 : 1 ; # 7.

 1 1 r 1 1 ? : 0 : 1 ; # 8.
 1 1 r 1 1 ? : 1 : 0 ; # 9.

 ? ? f 1 1 ? : ? : - ; # 10.

 0 0 (x1) 1 1 ? : ? : - ; # 11.
 0 1 (x1) 1 1 ? : 0 : 0 ; # 12.
 1 0 (x1) 1 1 ? : 1 : 1 ; # 13.
 0 0 (0x) 1 1 ? : ? : - ; # 14.
 0 1 (0x) 1 1 ? : 0 : 0 ; # 15.
 1 0 (0x) 1 1 ? : 1 : 1 ; # 16.

 * ? ? 1 1 ? : ? : - ; # 17.
 ? * ? 1 1 ? : ? : - ; # 18.

 ? ? ? 0 1 ? : ? : 0 ; # 19. clear
 ? ? ? 1 0 ? : ? : 1 ; # 20. set
 ? ? ? 0 0 ? : ? : 0 ; # 21. clear and set active
 ? ? ? 0 x ? : ? : 0 ; # 22. pessimism

 ? ? (?0) 1 1 ? : ? : - ; # 23. ignore falling clock.
 ? ? (1x) 1 1 ? : ? : - ; # 24.

 ? ? ? (?1) 1 ? : ? : - ; # 25. ignore changes on set and
 ? ? ? 1 (?1) ? : ? : - ; # 26. reset.
 ? ? ? ? ? * : ? : X ; # 27.
 endtable
 endprimitive

Here the message "Expected "1xr11?:t:." got "1xr11?:?:X" provides a useful hint. When we
try to find the table entry to match the "1xr11?:?:X" we won't be able to do so. Notice that
the Q+ entry is an X and the only entry in our UDP table that explicitly sets the next state
Q+ to X is entry 27. By Verilog default, all input combinations not explicitly defined by UDP
table entries result in outputs set to X. So what TestMAX ATPG is trying to hint at is that a
table entry is missing and it expects to see one of the form "1 x r 1 1 ? : t : . ;", where the t
is replaced by 0 and 1, and an appropriate value for Q+ has been used of either 0/1/x/- .

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

197

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

Let us construct two additional entries and add them to the table by expanding the 't' into
0 and 1, and expanding the final output column, shown as a period, into its appropriate
values given the input states:

J K CP CD SD ntfy Q : Q+

--- --- --- --- --- --- : --- : ---

1 x r 1 1 ? : 0 : 1 ; # A. Q=0, clock J=1

1 x r 1 1 ? : 1 : x ; # B. Q=1, clock K=X

When we insert these new entries we don't really need the ones in which the output is X
as that is the default but it wont' hurt for now. We also don't want to add these to the end
of the table after all the entries with wildcard '?' or we wont get a match. We'll add our two
new lines after entry #9 as lines A and B.

 primitive FJK (q, j, k, cp, cd, sd, ntfy);
 output q;
 reg q;
 input j,k, cp, cd, sd, ntfy;

 table
 # J K CP CD SD ntfy Q- : Q+
 # --- --- --- --- --- --- : --- : ---
 0 0 r 1 1 ? : ? : - ; # 1. hold

 0 1 r 1 1 ? : ? : 0 ; # 2. clocked K
 0 1 r x 1 ? : ? : 0 ; # 3.
 ? ? ? x 1 ? : 0 : 0 ; # 4.

 1 0 r 1 1 ? : ? : 1 ; # 5. clocked J
 1 0 r 1 x ? : ? : 1 ; # 6.
 ? ? ? 1 x ? : 1 : 1 ; # 7.

 1 1 r 1 1 ? : 0 : 1 ; # 8.
 1 1 r 1 1 ? : 1 : 0 ; # 9.

 1 x r 1 1 ? : 0 : 1 ; # A. Q=0, clock J=1
 1 x r 1 1 ? : 1 : x ; # B. Q=1, clock K=X

 ? ? f 1 1 ? : ? : - ; # 10.

 0 0 (x1) 1 1 ? : ? : - ; # 11.
 0 1 (x1) 1 1 ? : 0 : 0 ; # 12.
 1 0 (x1) 1 1 ? : 1 : 1 ; # 13.
 0 0 (0x) 1 1 ? : ? : - ; # 14.
 0 1 (0x) 1 1 ? : 0 : 0 ; # 15.
 1 0 (0x) 1 1 ? : 1 : 1 ; # 16.

 * ? ? 1 1 ? : ? : - ; # 17.
 ? * ? 1 1 ? : ? : - ; # 18.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

198

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 ? ? ? 0 1 ? : ? : 0 ; # 19. clear
 ? ? ? 1 0 ? : ? : 1 ; # 20. set
 ? ? ? 0 0 ? : ? : 0 ; # 21. clear and set active
 ? ? ? 0 x ? : ? : 0 ; # 22. pessimism

 ? ? (?0) 1 1 ? : ? : - ; # 23. ignore falling clock.
 ? ? (1x) 1 1 ? : ? : - ; # 24.

 ? ? ? (?1) 1 ? : ? : - ; # 25. ignore changes on set and
 ? ? ? 1 (?1) ? : ? : - ; # 26. reset.
 ? ? ? ? ? * : ? : X ; # 27.
 endtable
 endprimitive

After adding these new entries TestMAX ATPG now produces a different violation
message of:

underspecified UDP (Expected "xtr11.:.:." got "x?r11?:?:X")
We have succeeded in eliminating one warning message by adding a table entry which
reduces pessimism in the model behavior. By repeatedly analyzing the UDP messages
in this manner and adjusting the table we can eventually eliminate all of the warning
messages due to missing entries.

Variant #3
As another example, a violation message of N28, unsupported priority can occur.
This is an indication of incomplete information in the table needed for asynchronous set or
clear behavior of the UDP to match the TestMAX ATPG primitive's asynchronous set/clear
behavior. N28 violations deal generally with prioritization between asynchronous set, clear,
and clocks.

For the UDP table shown below TestMAX ATPG issues an N28 violation:

unsupported priority (reset "CD" has no priority over other clocks)
 primitive TOGGLE (Q, CP, CD, ntfy);
 output Q;
 reg Q;
 input CP, CD, ntfy;

 table
 # CP CD ntfy: Q- : Q+
 # --- --- --- : --- : --- ;
 (01) 1 ? : 0 : 1 ; # 1. toggle
 (01) 1 ? : 1 : 0 ; # 2. toggle

 0 1 ? : ? : - ; # 3. hold

 ? 0 ? : ? : 0 ; # 4. async clear

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

199

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 (01) x ? : 1 : 0 ; # 5. reduce pessimism
 0 x ? : 0 : 0 ; # 6. potential clear
 ? ? * : ? : X ; # 7. go to X
 endtable
 endprimitive

What TestMAX ATPG is trying to indicate with the N28 message is that the pin CD has
been identified as an asynchronous reset but that it has not been completely described to
have priority over "other clocks", or in this case the CP pin. The TestMAX ATPG primitive
for a DFF device models the behavior of the asynchronous reset pin to have priority over
the clock pin, so the ATPG primitive we wish to use does not exactly match this table.

If you are interested in eliminating the N28 violation look for entries in the table which
describe asynchronous set or reset functions. Generally they define the behavior when the
"clock" pins are at steady states. You should add an entry that defines the async behavior
in the presence of clock events. In our exampleline "4b" is added to produce the model
below:

 primitive TOGGLE (Q, CP, CD, ntfy);
 output Q;
 reg Q;
 input CP, CD, ntfy;

 table
 # CP CD ntfy: Q- : Q+
 # --- --- --- : --- : --- ;
 (01) 1 ? : 0 : 1 ; # 1. toggle
 (01) 1 ? : 1 : 0 ; # 2. toggle

 0 1 ? : ? : - ; # 3. hold

 ? 0 ? : ? : 0 ; # 4. async clear
 * 0 ? : ? : 0 ; # 4b. async clear

 (01) x ? : 1 : 0 ; # 5. reduce pessimism
 0 x ? : 0 : 0 ; # 6. potential clear
 ? ? * : ? : X ; # 7. go to X
 endtable
 endprimitive

Line 4 specifies that the output is cleared whenever CD=0 for any steady state value on
CP (? = 0, 1, or x). By adding line 4b we also define the behavior that any edge event
on CP while CD=0 also produces Q=0. This then fully describes an asynchronous reset
behavior with priority over clocks and matches our ATPG primitive. This eliminates the N28
violation.

Variant #4
As another example, a violation message of N23, inconsistent entry can occur. This
is an indication that two entries in the table define conflicting behavior.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

200

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

For the UDP table shown below TestMAX ATPG issues the N23 violation:

inconsistent UDP (Entry should have clocks off: *?1??:-)
 primitive DFF (Q, D, CP, SD, ntfy);
 output Q;
 input D, CP, SD, ntfy;
 reg Q;
 table
 # D CP SD ntfy: Q- : Q+
 # --- --- --- --- : --- : --- ;
 1 r 1 ? : ? : 1 ; # 1. clock D
 0 r 1 ? : ? : 0 ; # 2.

 ? ? 0 ? : ? : 1 ; # 3. async set
 ? * 0 ? : ? : 1 ; # 4.

 ? 0 1 ? : ? : - ; # 5. hold
 ? (?0) 1 ? : ? : - ; # 6.

 * ? ? ? : ? : - ; # 7. ignore edge
 ? ? (?1) ? : ? : - ; # 8. ignore edge

 1 (0x) 1 ? : 1 : 1 ; # 9. possible clock with Q- = D
 0 (0x) 1 ? : 0 : 0 ; # 10.

 1 r x ? : ? : 1 ; # 11. possible SD
 ? ? x ? : 1 : 1 ; # 12. possible SD, with Q- = 1

 1 (0x) x ? : 1 : 1 ; # 13. possible set, possible clock

 ? ? ? * : ? : X ; # 14. go to X
 endtable
 endprimitive

Reviewing the violation message against the lines in the table we can identify line 7 as
the closest match to "* ? 1 ? : ? : -". The difference between the violation message and
line 7 is that the violation message shows SD=1. In reviewing line 7 we see that this line
indicate the output is held for any transition on the D input and for any values of CP and
SD, including SD=0!!! So TestMAX ATPG is suggesting we change this line to indicate
SD=1 is required.

 primitive DFF (Q, D, CP, SD, ntfy);
 output Q;
 input D, CP, SD, ntfy;
 reg Q;
 table
 # D CP SD ntfy: Q- : Q+
 # --- --- --- --- : --- : --- ;
 1 r 1 ? : ? : 1 ; # 1. clock D
 0 r 1 ? : ? : 0 ; # 2.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

201

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 ? ? 0 ? : ? : 1 ; # 3. async set
 ? * 0 ? : ? : 1 ; # 4.

 ? 0 1 ? : ? : - ; # 5. hold
 ? (?0) 1 ? : ? : - ; # 6.

 * ? 1 ? : ? : - ; # 7. ignore edge
 ? ? (?1) ? : ? : - ; # 8. ignore edge

 1 (0x) 1 ? : 1 : 1 ; # 9. possible clock
 0 (0x) 1 ? : 0 : 0 ; # 10.

 1 r x ? : ? : 1 ; # 11. possible SD
 ? ? x ? : 1 : 1 ; # 12.
 1 (0x) x ? : 1 : 1 ; # 13. possible set, possible clock

 ? ? ? * : ? : X ; # 14. go to X
 endtable
 endprimitive

After changing CP=? in line 7 to SD=1 we've eliminated the N23 violation.

Debugging UDP-based Models
The following advice is beneficial if you are debugging violation messages encountered
when reading UDP modules:

1. Put the UDP definition into its own file until debugging is completed. By doing so, the
only warning or error messages are from the single UDP you are debugging.

2. Enable display of ALL messages in the model, not just the most serious ones by
issuing "set netlist -nocheck_only_used_udps" before reading the file containing the
UDP.

3. Within TestMAX ATPG define an alias to make the repeated steps easier. For example,
if the file containing the UDP is named 'udp.v' then define an alias named 'go' similar
to:v
alias go clear ; build -f ; read net udp.v -del ; \ run build ; rep
 viol -all

4. Now type "go" and review the violation messages for guidance on what might need
changed. Next, edit your source 'udp.v' file, save the edits and return to TestMAX
ATPG and type "go" again, or "!!". Repeat this process until you've eliminated as many
violation messages as possible.

5. Review the resulting derived ATPG model in the graphical schematic viewer:

a. Use the SHOW button and select ALL.

b. Compare the gate level functionality of the derived ATPG model with the intended
functionality of the truth table.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

202

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

6. If your UDP table is complex, or results in more gates than you expected then
consider using the set_netlist -noxmodelingoption before reading in the UDP.
This avoids trying to explicitly model output=X states. After this is done you can use a
write_netlist command to get a gate level implementation of the simplified function
using ATPG primitives. This might be helpful in trying to understand how to modify your
UDP table to produce fewer ATPG gates.

Modeling Examples

• Optimistic MUX

• MUX, 4-to-1

• Latch

• Latch With Active Low Asynchronous Set/Reset

• Latch With Asynchronous Set/Reset

• Latch With Asynchronous Set/Reset Dominant Over EN

• Latch With Asynchronous Set/Reset Dominant Over EN, Reset Dominant

• Latch With Asynchronous Set/Reset Dominant Over EN, Set Dominant

• Dual Port Latch

• Positive-edge Clocked DFF With Notify

• DFF With Active Low Asynchronous Set/Reset and Notify

• DFF With Active Low Asynchronous Reset and Notify

• DFF With Active High Asynchronous Set/Reset

• DFF With Synchronous Reset and Notify

• Negative-Edge Clocked DFF With Active Low Asynchronous Clear and Notify

• DFF and Latch

• JK Flip-Flop With Active Low Asynchronous Set/Reset and Notify

• Bus Keeper Examples

Optimistic MUX
 //
// --- Optimistic MUX:
// Y=D0 if SL=0
// Y=D1 if SL=1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

203

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

// if SL=x and D0=D1, then Y=D0=D1
//
primitive MUX (Y, SL, D0, D1);
 output Y;
 input SL, D0, D1;
 table
 // SL D0 D1 : Y
 // -- -- -- : --
 0 0 ? : 0 ;
 0 1 ? : 1 ;

 1 ? 0 : 0 ;
 1 ? 1 : 1 ;

 x 0 0 : 0 ; // reduce pessimism
 x 1 1 : 1 ; // reduce pessimism

 endtable
endprimitive

MUX, 4-to-1
 //
// --- Four-input to one-output non-inverting digital multiplexer.
//
primitive MUX41 (y, d0, d1, d2, d3, s0, s1);

 input d0, d1, d2, d3, s0, s1;
 output y;

 table

// D0 D1 D2 D3 S0 S1 : Y
// -- -- -- -- -- -- :---
 0 ? ? ? 0 0 : 0 ;
 1 ? ? ? 0 0 : 1 ;

 ? 0 ? ? 1 0 : 0 ;
 ? 1 ? ? 1 0 : 1 ;

 ? ? 0 ? 0 1 : 0 ;
 ? ? 1 ? 0 1 : 1 ;

 ? ? ? 0 1 1 : 0 ;
 ? ? ? 1 1 1 : 1 ;

 0 0 0 0 ? ? : 0 ;
 1 1 1 1 ? ? : 1 ;

 0 0 ? ? ? 0 : 0 ;
 1 1 ? ? ? 0 : 1 ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

204

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 ? ? 0 0 ? 1 : 0 ;
 ? ? 1 1 ? 1 : 1 ;

 0 ? 0 ? 0 ? : 0 ;
 1 ? 1 ? 0 ? : 1 ;

 ? 0 ? 0 1 ? : 0 ;
 ? 1 ? 1 1 ? : 1 ;

 endtable
endprimitive

See Also

• Modeling Examples

Latch
 primitive LATCH (Q, D, G);
 output Q; reg Q;
 input D, G;

 table
 // D G : Q- : Q+
 // --- --- :----: ---
 ? 0 : ? : - ; // hold

 0 1 : ? : 0 ; // pass 0
 1 1 : ? : 1 ; // pass 1

 0 x : 0 : 0 ; // reduce pessimism
 1 x : 1 : 1 ; // reduce pessimism

 endtable
endprimitive

See Also

• Modeling Examples

Latch With Active Low Asynchronous Set/Reset
 //
// --- active high level sensitive latch with active
// low set and reset.
//
primitive LAT_SB_RB (Q, D, G, SB, RB);
 output Q; reg Q;
 input D, G, SB, RB;
 table
 // D G SB RB : Q- : Q+

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

205

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 // --- --- --- --- :----: ---
 ? 0 1 1 : ? : - ; // hold

 0 1 1 1 : ? : 0 ; // pass 0
 1 1 1 1 : ? : 1 ; // pass 1

 ? 0 0 1 : ? : 1 ; // async set
 ? 0 1 0 : ? : 0 ; // async clear

 1 1 ? 1 : ? : 1 ; // G and SB active
 0 1 1 ? : ? : 0 ; // G and RB active

 1 x 0 1 : ? : 1 ; // G=X and SB
 0 x 1 0 : ? : 0 ; // G=X and RB

 0 x 1 1 : 0 : 0 ; // G=X, Q=D
 1 x 1 1 : 1 : 1 ;

 ? 0 x 1 : 1 : 1 ; // SB=X, Q=1
 ? 0 1 x : 0 : 0 ; // RB=X, Q=0

 1 x x 1 : 1 : 1 ; // G=SB=X
 0 x 1 x : 0 : 0 ; // G=RB=X

 endtable
endprimitive

See Also

• Modeling Examples

Latch With Asynchronous Set/Reset
 //
// --- active high level sensitive latch with active
// high set and reset.
//
primitive DLAT1 (q, set, rst, en, data);
 output q; reg q;
 input set, rst, en, data;
 table
 // set rst en d : Q- : Q+
 // --- --- --- --- :----: ---
 0 0 0 ? : ? : - ; // hold

 0 0 1 0 : ? : 0 ; // pass 0
 0 0 1 1 : ? : 1 ; // pass 1

 1 0 0 ? : ? : 1 ; // async set
 0 1 0 ? : ? : 0 ; // async clear

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

206

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 ? 0 1 1 : ? : 1 ; // ena and set active
 0 ? 1 0 : ? : 0 ; // ena and rst active

 1 0 x 1 : ? : 1 ; // ena=X and set
 0 1 x 0 : ? : 0 ; // ena=X and rst

 0 0 x 0 : 0 : 0 ; // ena=X, Q=D
 0 0 x 1 : 1 : 1 ;

 x 0 0 ? : 1 : 1 ; // set=X, Q=1
 0 x 0 ? : 0 : 0 ; // rst=X, Q=0

 x 0 x 1 : 1 : 1 ; // ena=set=X
 0 x x 0 : 0 : 0 ; // ena=rst=X

 endtable
endprimitive

See Also

• Modeling Examples

Latch With Asynchronous Set/Reset Dominant Over EN
 //
// --- active high level sensitive latch with active
// high set and reset dominant over EN.
//
primitive DLAT2 (q, set, rst, en, data);
 output q; reg q;
 input set, rst, en, data;
 table
 // set rst en d : Q- : Q+
 // --- --- --- --- :----: ---
 0 0 0 ? : ? : - ; // hold

 1 0 ? ? : ? : 1 ; // async set
 0 1 ? ? : ? : 0 ; // async clear

 0 0 1 0 : ? : 0 ; // pass 0
 0 0 1 1 : ? : 1 ; // pass 1

 ? 0 x 1 : 1 : 1 ; // ena=X, Q=D
 0 ? x 0 : 0 : 0 ;

 x 0 0 ? : 1 : 1 ; // set=X, Q=1
 0 x 0 ? : 0 : 0 ; // rst=X, Q=0

 x 0 x 1 : 1 : 1 ; // ena=set=X
 0 x x 0 : 0 : 0 ; // ena=rst=X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

207

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 endtable
endprimitive

See Also

• Modeling Examples

Latch With Asynchronous Set/Reset Dominant Over EN, Reset
Dominant
 //
// --- active high level sensitive latch with active
// high set and reset dominant over EN, RST dominates SET.
//
primitive DLAT3 (q, set, rst, en, data);
 output q; reg q;
 input set, rst, en, data;
 table
 // set rst en d : Q- : Q+
 // --- --- --- --- :----: ---
 0 0 0 ? : ? : - ; // hold

 ? 1 ? ? : ? : 0 ; // async clear, dominant
 1 0 ? ? : ? : 1 ; // async set

 0 0 1 0 : ? : 0 ; // pass 0
 0 0 1 1 : ? : 1 ; // pass 1

 ? 0 x 1 : 1 : 1 ; // ena=X, Q=D
 0 ? x 0 : 0 : 0 ;

 x 0 0 ? : 1 : 1 ; // set=X, Q=1
 0 x 0 ? : 0 : 0 ; // rst=X, Q=0

 x 0 x 1 : 1 : 1 ; // ena=set=X
 0 x x 0 : 0 : 0 ; // ena=rst=X

 endtable
endprimitive

See Also

• Modeling Examples

Latch With Asynchronous Set/Reset Dominant Over EN, Set
Dominant
//
 // --- active high level sensitive latch with active

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

208

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 // high set and reset dominant over EN, SET dominates RST.
 //
 primitive DLAT4 (q, set, rst, en, data);
 output q; reg q;
 input set, rst, en, data;
 table
 // set rst en d : Q- : Q+
 // --- --- --- --- : ----: ---
 0 0 0 ? : ? : - ; // hold

 1 ? ? ? : ? : 1 ; // async set, dominant
 0 1 ? ? : ? : 0 ; // async clear

 0 0 1 0 : ? : 0 ; // pass 0
 0 0 1 1 : ? : 1 ; // pass 1

 ? 0 x 1 : 1 : 1 ; // ena=X, Q=D
 0 ? x 0 : 0 : 0 ;

 x 0 0 ? : 1 : 1 ; // set=X, Q=1
 0 x 0 ? : 0 : 0 ; // rst=X, Q=0

 x 0 x 1 : 1 : 1 ; // ena=set=X
 0 x x 0 : 0 : 0 ; // ena=rst=X

 endtable
 endprimitive

See Also

• Modeling Examples

Dual Port Latch
 //
// --- dual port latch. D1 enabled by G1 and D2 enabled
// by G2.
//
primitive DPLATCH (Q, D1, G1, D2, G2);
 output Q; reg Q;
 input D1,G1,D2,G2;
 table
 // D1 G1 D2 G2 Q- Q+
 // --- --- --- --- : --- : ---
 ? 0 ? 0 : ? : - ; // hold

 0 1 ? 0 : ? : 0 ;
 1 1 ? 0 : ? : 1 ;

 ? 0 0 1 : ? : 0 ;
 ? 0 1 1 : ? : 1 ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

209

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 0 1 0 1 : ? : 0 ;
 1 1 1 1 : ? : 1 ;

 0 x 0 1 : ? : 0 ;
 1 x 1 1 : ? : 1 ;
 0 x ? 0 : 0 : 0 ;
 1 x ? 0 : 1 : 1 ;

 0 1 0 x : ? : 0 ;
 1 1 1 x : ? : 1 ;

 ? 0 0 x : 0 : 0 ;
 ? 0 1 x : 1 : 1 ;

 0 x 0 x : 0 : 0 ;
 1 x 1 x : 1 : 1 ;

 endtable
endprimitive

See Also

• Modeling Examples

Positive-edge Clocked DFF With Notify
// FUNCTION : POSITIVE EDGE TRIGGERED D FLIP-FLOP WITH NOTIFY.
//
primitive DFF_N (q, d, clk, ntfy);
 output q;
 input d, clk, ntfy;
 reg q;

 table
 // d clk ntfy : q- : q+
 // --- --- ---- : --- : ---
 * ? ? : ? : - ; // hold
 ? (?0) ? : ? : - ; // hold
 ? (1?) ? : ? : - ; // hold

 0 (01) ? : ? : 0 ; // clock 0
 1 (01) ? : ? : 1 ; // clock 1

 0 (0x) ? : 0 : 0 ; // clk=X with D=Q=0
 1 (0x) ? : 1 : 1 ; // clk=X with D=Q=1

 0 (x1) ? : 0 : 0 ; // possibly clk
 1 (x1) ? : 1 : 1 ;

 ? ? * : ? : x ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

210

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 endtable
endprimitive

See Also

• Modeling Examples

DFF With Active Low Asynchronous Set/Reset and Notify
 //
 // --- positive edge clocked DFF with active low
 // asynchronous set and reset and also a notify
 // function.
 //
 primitive DFF_SB_RB_N (Q, D, CLK, RB, SB ,notifier);
 output Q;
 input D, CLK, RB, SB, notifier;
 reg Q;

 table
 // D CLK RB SB noti : q- : q+
 // --- --- --- --- ---- : --- : ---
 * ? 1 1 ? : ? : - ; // hold
 ? (?0) 1 1 ? : ? : - ; // hold
 ? (1?) 1 1 ? : ? : - ; // hold
 ? ? (?1) 1 ? : ? : - ; // hold
 ? ? 1 (?1) ? : ? : - ; // hold

 0 (01) ? 1 ? : ? : 0 ; // clock 0
 1 (01) 1 ? ? : ? : 1 ; // clock 1

 ? ? 1 0 ? : ? : 1 ; // active low preset
 ? ? 0 1 ? : ? : 0 ; // active low clear

 ? ? 1 x ? : 1 : 1 ; // preset=X with Q=1
 ? ? x 1 ? : 0 : 0 ; // clear=X with Q=0

 0 (0x) ? 1 ? : 0 : 0 ; // clk=X with D=Q=0
 1 (0x) 1 ? ? : 1 : 1 ; // clk=X with D=Q=1

 0 (x1) ? 1 ? : 0 : 0 ; // possible clk with
 D=Q=0
 1 (x1) 1 ? ? : 1 : 1 ; // possible clk with
 D=Q=1

 ? ? ? ? * : ? : x ; // this line is
 unsupported; it references a
 // notify construct and
 generates

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

211

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 // N21 warnings in
 TestMAX ATPG

 endtable

 endprimitive

See Also

• Modeling Examples

DFF With Active Low Asynchronous Reset and Notify
// FUNCTION : POSITIVE EDGE TRIGGERED D FLIP-FLOP WITH ACTIVE LOW
// ASYNCHRONOUS CLEAR WITH NOTIFY.
//
primitive DFF_RB_N (q, d, clk, rb, ntfy);
 output q;
 input d, clk, rb, ntfy;
 reg q;

 table
 // d clk rb ntfy : q- : q+
 // --- --- --- ---- : --- : ---
 * ? ? ? : ? : - ; // hold
 ? (?0) ? ? : ? : - ; // hold
 ? (1?) ? ? : ? : - ; // hold
 ? 0 (?1) ? : ? : - ; // hold

 0 (01) ? ? : ? : 0 ; // clock 0
 1 (01) 1 ? : ? : 1 ; // clock 1

 ? ? 0 ? : ? : 0 ; // clear

 0 (01) x ? : ? : 0 ; // clock 0 with RB=x
 ? ? (?x) ? : 0 : 0 ; // RB=X with Q=0

 0 (0x) ? ? : 0 : 0 ; // clk=X with D=Q=0, possible clear
 1 (0x) 1 ? : 1 : 1 ; // clk=X with D=Q=1

 0 (x1) ? ? : 0 : 0 ; // possible clock
 1 (x1) 1 ? : 1 : 1 ;

 ? ? ? * : ? : x ;

 endtable
endprimitive

See Also

• Modeling Examples

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

212

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

DFF With Active High Asynchronous Set/Reset
 //
 // --- positive edge clocked DFF with active high
 // asynchronous set and clear.
 //
 primitive DFF_S_R (q, set, rst, clk, data);
 output q;
 input set, rst, clk, data;
 reg q;

 table
 // set rst clk data : q- : q+
 // --- --- --- ---- : --- : ---
 0 0 ? * : ? : - ; // hold
 0 0 (?0) ? : ? : - ; // hold
 0 0 (1?) ? : ? : - ; // hold
 (?0) 0 ? ? : ? : - ; // hold
 0 (?0) ? ? : ? : - ; // hold

 1 0 ? ? : ? : 1 ; // set
 0 1 ? ? : ? : 0 ; // reset

 0 ? (01) 0 : ? : 0 ; // clock data
 ? 0 (01) 1 : ? : 1 ; // clock data

 0 ? (0x) 0 : 0 : 0 ; // possible clk, D=Q=0
 ? 0 (0x) 1 : 1 : 1 ; // possible clk, D=Q=1

 0 ? (x1) 0 : 0 : 0 ; // possible clk
 ? 0 (x1) 1 : 1 : 1 ;

 0 x ? ? : 0 : 0 ; // rst=X with Q=0
 x 0 ? ? : 1 : 1 ; // set=X with Q=1

 endtable
 endprimitive

See Also

• Modeling Examples

DFF With Synchronous Reset and Notify
 //
// --- Positive edge clocked DFF with active low synchronous// reset and
 a notify function.
//
primitive DFF_SR_N (Q, D, CLK, SR ,notifier);
 output Q;
 input D, CLK, SR, notifier;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

213

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 reg Q;

 table
 // D CLK SR noti : q- : q+
 // --- --- --- ---- : --- : ---
 ? (?0) ? ? : ? : - ; // hold
 ? (1?) ? ? : ? : - ; // hold
 * ? ? ? : ? : - ; // ignore changes on D
 ? ? * ? : ? : - ; // ignore changes on SR

 ? (01) 0 ? : ? : 0 ; // synchronous clear
 0 (01) ? ? : ? : 0 ; // clock D=0
 1 (01) 1 ? : ? : 1 ; // clock D=1

 ? (0x) 0 ? : 0 : 0 ; // clk=X with RB=Q=0
 0 (0x) ? ? : 0 : 0 ; // clk=X with D=Q=0
 1 (0x) 1 ? : 1 : 1 ; // clk=X with D=Q=1

 ? (x1) 0 ? : 0 : 0 ; // possible clk
 0 (x1) ? ? : 0 : 0 ;
 1 (x1) 1 ? : 1 : 1 ;

 ? ? ? * : ? : x ;

 endtable
endprimitive

See Also

• Modeling Examples

Negative-Edge Clocked DFF With Active Low Asynchronous Clear
and Notify
The following is an example of a negative-edge triggered D flip-flop with active low
asynchronous clear and notify.

// FUNCTION : NEGATIVE EDGE TRIGGERED D FLIP-FLOP WITH ACTIVE LOW
// ASYNCHRONOUS CLEAR AND NOTIFY.
//
primitive NDFF_RB_N (q, d, clkb, rst, ntfy);
 output q;
 input d, clkb, rst, ntfy;
 reg q;

 table

 // d clkb rst ntfy : q- : q+
 // --- --- --- ---- : --- : ---
 * ? 1 ? : ? : - ; // hold
 ? (?1) 1 ? : ? : - ; // hold

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

214

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 ? (0?) 1 ? : ? : - ; // hold
 ? ? (?1) ? : ? : - ; // hold

 0 (10) ? ? : ? : 0 ; // clock 0
 1 (10) 1 ? : ? : 1 ; // clock 1

 ? ? 0 ? : ? : 0 ; // clear
 ? * 0 ? : ? : 0 ; // clk while reset

 0 (10) x ? : 0 : 0 ;
 ? ? (?x) ? : 0 : 0 ; // reset=X with Q=0

 0 (1x) ? ? : 0 : 0 ; // clk=X with D=Q=0
 1 (1x) 1 ? : 1 : 1 ; // clk=X with D=Q=1

 0 (x0) ? ? : 0 : 0 ; // possible clk
 1 (x0) 1 ? : 1 : 1 ;

 ? ? ? * : ? : x ;

 endtable
endprimitive

See Also

• Modeling Examples

DFF and Latch
//
// --- mixed positive edge clocked input plus level
// sensitive latched input.
// D1,CLK is edge sensitive
// D2,G is level sensitive
//
primitive FLOPLATCH (Q, D1,CLK, D2,G);
 output Q;
 input D1, CLK, D2, G;
 reg Q;

 table
 // D1 CLK D2 G : q- : q+
 // --- --- --- --- : --- : ---
 * 0 ? 0 : ? : - ; // hold for data changes
 ? 0 * 0 : ? : - ; // hold for data changes

 ? 0 ? 0 : ? : - ; // hold for CK off

 ? ? 0 1 : ? : 0 ; // latch enabled, D2=0
 ? ? 1 1 : ? : 1 ; // latch enabled, D2=1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

215

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

 0 (01) ? 0 : ? : 0 ; // clock 0
 1 (01) ? 0 : ? : 1 ; // clock 1

 0 (01) 0 1 : ? : 0 ; // clock with latch active
 1 (01) 1 1 : ? : 1 ; // clock with latch active

 0 (01) 1 1 : ? : 1 ; // latch overrides clock
 1 (01) 0 1 : ? : 0 ;

 0 (01) 0 x : ? : 0 ; // clock with possible latch
 1 (01) 1 x : ? : 1 ;

 ? 0 0 x : 0 : 0 ; // latch=X, D2=Q=0
 ? 0 1 x : 1 : 1 ; // latch=X, D2=Q=1

 0 (0x) 0 1 : ? : 0 ; // latch on, possible clock
 1 (0x) 1 1 : ? : 1 ;

 0 (0x) 1 1 : ? : 1 ; // latch overrides clock
 1 (0x) 0 1 : ? : 0 ;

 0 (0x) ? 0 : 0 : 0 ; // possible clock, D1=Q=0
 1 (0x) ? 0 : 1 : 1 ;

 0 (0x) 0 x : 0 : 0 ; // D1=Q=0, possible clocks
 1 (0x) 1 x : 1 : 1 ;

 endtable
endprimitive

See Also

• Modeling Examples

JK Flip-Flop With Active Low Asynchronous Set/Reset and Notify
 //
// --- Positive edge clocked JK flip-flop with active low
// asynchronous set/rst plus a notify function.
//
`celldefine
 module JK_SCAN_SB_RB_N (Q, J, K, TI, TE, CP, CD, SD, notifier);
 output Q;
 reg Q;
 input J, K, TI, TE, CP, CD, SD, notifier;

 MUX m1 (jknet, Q, J, !K);
 MUX m2 (din , TE, jknet, TI);
 DFF_SB_RB_N r1 (Q, din, CP, CD, SD, notifier);

endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

216

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Modeling Topics

Feedback

`endcelldefine

See Also

• Modeling Examples

• UDP Example: MUX

• UDP Example: DFF_SB_RB_N

Bus Keeper Examples
TestMAX ATPG attempts to automatically identify modules that are acting in a bus keeper
or bus hold manner. However, it is sometimes useful to explicitly assist in this identification
process. This is done by adding the "BUSK0", "BUSK1", or "BUSK01" net attribute into the
module definition as in buskeep2/3/4 below. You can also model a bus keeper using an
empty module with a single bidirectional pin and the BUSK attribute as in buskeep1 below.

The "BUSK01" holds both a 0 and 1. The "BUSK1" holds just a 1, and the "BUSK0" holds
just a 0.

 #
 # #1 - null module
 #
 module buskeep1 (X);
 inout X;
 _BUSK01 X;
 endmodule
 #
 # #2 - back-to-back inverters
 #
 module buskeep2 (X);
 inout X;
 wire fb;
 _BUSK01 X; # this line is optional
 not u1 (fb, X);
 not (weak0,weak1) u2 (X, fb);
 endmodule
 #
 # #3 - back-to-back buffers
 #
 module buskeep3 (X);
 inout X;
 _BUSK01 X; # this line is optional
 buf u1 (fb, X);
 buf (weak0,weak1) u2 (X, fb);
 endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

217

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 #
 # #4 - single buffer feedback loop
 #
 module buskeep4 (X);
 inout X;
 _BUSK01 X; # this line is optional
 buf (weak0,weak1) u1 (X,X);
 endmodule

See Also

• Modeling Examples

Scan Cell Models
This chapter contains the following topics:

• Scan Cell Models - MUX Flop Scan

• Scan Cell Models - Master Slave Latch

• Scan Cell Models - MUX Latch Scan

• Scan Cell Models - Clocked Scan Flip-Flop

• Scan Cell Models - Clocked Scan Latch

• Scan Cell Models - Single Latch LSSD

• Scan Cell Models - Double Latch LSSD

• Scan Cell Models - Clocked LSSD

• Scan Cell Models - Auxiliary Clocked LSSD

• Scan Cell Models - Retention Cell

Scan Cell Models - MUX Flop Scan
The MUX Flip-Flop Scan uses a MUX in front of the data input to an edge sensitive D-flop.
In this example, the "SE" pin selects either "D" or "SDI" input and the flop is clocked on the
rising edge of "CLK".

 primitive mux_flop (Q, SE, D, SI, CLK);
 output Q; reg Q;
 input SE, D, SI, CLK;

 table
 // SE D SI CLK : Q- : Q+
 // --- --- --- ----- : --- : ---

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

218

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 0 0 ? (01) : ? : 0 ;
 0 1 ? (01) : ? : 1 ;
 1 ? 0 (01) : ? : 0 ;
 1 ? 1 (01) : ? : 1 ;

 // MUX select is X
 x 0 0 (01) : ? : 0 ;
 x 1 1 (01) : ? : 1 ;
 x 0 0 (0x) : 0 : 0 ;
 x 1 1 (0x) : 1 : 1 ;

 // stable clock, but data changes

 (??) ? ? ? : ? : - ;
 ? (??) ? ? : ? : - ;
 ? ? (??) ? : ? : - ;

 // X->1 transitions of clock

 0 0 ? (x1) : 0 : 0 ;
 0 1 ? (x1) : 1 : 1 ;

 1 ? 0 (x1) : 0 : 0 ;
 1 ? 1 (x1) : 1 : 1 ;

// transitions of clock to 0

 ? ? ? (10) : ? : - ;
 ? ? ? (x0) : ? : - ;

 // transitions of clock to X
 x ? ? (1x) : ? : - ;
 ? ? ? (1x) : ? : - ;

 0 0 ? (0x) : 0 : 0 ;
 0 1 ? (0x) : 1 : 1 ;

 1 ? 0 (0x) : 0 : 0 ;
 1 ? 1 (0x) : 1 : 1 ;

 ? ? ? (0x) : ? : x ;
 endtable
 endprimitive

For designs using this type of scan cell model here is a representative sample of
load_unload, shift, and test_setup procedures.

 // clk has been defined as an active high clock
 Procedures {
 load_unload {
 V { test=1; scan_en=1; bidi_en=0; clk=0; bidi_port=Z; }
 V { bidi_port=1; }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

219

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 Shift {
 V { _si=#; _so=#; clk=P; }
 }
 }
 }

 MacroDefs {
 test_setup {
 V { bidi_en=0; test=1; bidi_port=Z; clk=0; }
 }
 }

Scan Cell Models - Master Slave Latch
The Master-Slave Latch features a MUX preceding a pair of latches. Each latch has a
separate enable. In this example, the "SE" pin selects either the "D" or "SDI" input into the
master latch, which is enabled by "MCLK". The output of the master latch feeds the slave
latch which is enabled by "SCLK".

 module mux_ms_latch(D, SDI, SE, MCLK, SCLK, Q);
 input D, SDI, SE, MCLK, SCLK;
 output Q;
 MUX mx1 (.D0(D), .D1(SDI), .SL(SE), .Y(din));
 LATCH master (.G(MCLK), .D(din), .Q(mq));
 LATCH slave (.G(SCLK), .D(mq), .Q(Q));
 endmodule

For designs using this type of scan cell model here is a representative sample of
load_unload, shift, and test_setup procedures.

 // mclk and sclk have been defined to be active high clocks
 Procedures {
 load_unload {
 V { mclk=0; sclk=0;
 test=1; scan_en=1; bidi_en=0; bidi_port=Z; }
 V { bidi_port=1; }
 Shift {
 V { _si=#; _so=#; mclk=P; sclk=0; }
 V { mclk=0; sclk=P; }
 }
 V { sclk=0; }
 }

 master_observe {
 V { sclk=P; }
 }

 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

220

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 MacroDefs {
 test_setup {
 V { mclk=0; sclk=0;
 bidi_en=0; test=1; bidi_port=Z; }
 }
 }

Scan Cell Models - MUX Latch Scan
The MUX Latch is similar to the Master Slave Latch style of scan with the exception that it
uses a single clock. The slave latch uses the opposite polarity of the clock for the master.
In this example the "SE" pin selects either the "D" or "SDI" pin for data input and the "CLK"
pin is the latch enable. Because of the clocking scheme this style of scan is functionally
identical to the MUX Flop Scan.

 module mux_latch (D, SDI, SE, CLK, Q, SDO);
 input D, SDI, SE, CLK;
 output Q, SDO;
 not (clkb, CLK);
 MUX mx1 (.D0(D), .D1(SDI), .SL(SE), .Y(din));
 LATCH master (.G(CLK), .D(din), .Q(Q));
 LATCH slave (.G(clkb), .D(Q), .Q(SDO));
 endmodule

For designs using this type of scan cell model here is a representative sample of
load_unload, shift, and test_setup procedures.

 // clk has been defined as an active high clock
 Procedures {
 load_unload {
 V { test=1; scan_en=1; bidi_en=0; clk=0; bidi_port=Z;}
 V { bidi_port=1;}
 Shift {
 V { _si=#; _so=#; clk=P; }
 }
 }
 }

 MacroDefs {
 test_setup {
 V { bidi_en=0; test=1; bidi_port=Z; clk=0; }
 }
 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

221

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

Scan Cell Models - Clocked Scan Flip-Flop
The Clocked Scan Flip-Flop uses a latch for both the "D" and "SDI" inputs with separate
latch enables, and then feeds the outputs of these master latches into a single dual port
slave latch. The slave latch enables use the compliment of the master latch enables. In
this example, "CLK" clocks the "D" input to the "Q" output and "SCLK" clocks the "SDI"
input to the "Q" output. Care must be taken that both clocks are not active at the same
time.

 primitive clocked_scan_flop_1 (Q, SDI, SCLK, D, CLK);
 output Q; reg Q;
 input SDI, SCLK, D, CLK;

 table
 // SDI SCLK D CLK : Q- : Q+
 // --- --- --- ----- : --- : ---
 ? 0 0 (01) : ? : 0 ; // clock D=0
 ? 0 1 (01) : ? : 1 ; // clock D=1

 0 (01) ? 0 : ? : 0 ; // scan clock SDI=0
 1 (01) ? 0 : ? : 1 ; // scan clock SDI=1

 ? 0 * 0 : ? : - ; // hold
 * 0 ? 0 : ? : - ;
 ? 0 ? 0 : ? : - ;
 ? 0 ? (?0) : ? : - ;
 ? (?0) ? 0 : ? : - ;

 // clock recovers from X
 ? ? 0 (x1) : 0 : 0 ;
 ? ? 1 (x1) : 1 : 1 ;
 0 (x1) ? ? : 0 : 0 ;
 1 (x1) ? ? : 1 : 1 ;

 // clock goes to X
 ? ? 0 (?x) : 0 : 0 ;
 ? ? 1 (?x) : 1 : 1 ;
 0 (?x) ? ? : 0 : 0 ;
 1 (?x) ? ? : 1 : 1 ;

 // clock with other clock is active or X
 0 r ? x : 0 : 0 ;
 1 r ? x : 1 : 1 ;

 0 r ? 1 : 0 : 0 ;
 1 r ? 1 : 1 : 1 ;

 endtable
 endprimitive

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

222

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 module clocked_scan_flop_2 (Q, SDI, SCLK, D, CLK);
 output Q; reg Q;
 input SDI, SCLK, D, CLK;

 not u1 (ckb, CLK);
 not u2 (skb, SCLK);

 LATCH rm1 (n1, D, ckb);
 LATCH rm2 (n2, SDI, skb);

 DPLATCH rs (Q, n1,CLK, n2,SCLK);
 endmodule

For designs using this type of scan cell model here is a representative test procedure file
showing the load_unload, shift, and test_setup procedures.

 // clk and sclk have been defined as active high clocks
 Procedures {
 load_unload {
 V { clk=0; sclk=0;
 test=1; scan_en=1; bidi_en=0; bidi_port=Z; }
 V { bidi_port=1; }
 Shift {
 V { _si=#; _so=#; sclk=P; }
 }
 }
 }

 MacroDefs {
 test_setup {
 V { bidi_en=0; test=1; bidi_port=Z; clk=0; sclk=0; }
 }
 }

Scan Cell Models - Clocked Scan Latch
The Clocked Scan Latch is a hybrid device. The "D" to "Q" path passes through a latch
enabled by "G" but the "SDI" to "Q" path passes through master-slave latches to create
an edge clocked behavior controlled by "SCLK". It is important to ensure that "G" is not
asserted when using "SCLK".

 module clocked_scan_latch_1 (Q, D, G, SDI, SCLK);
 input D, G, SDI, SCLK;
 output Q;
 FLOPLATCH r1 (Q, SDI,SCLK, D,G);
 endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

223

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 module clocked_scan_latch_2 (Q, D, G, SDI, SCLK);
 output Q;
 input D, G, SDI, SCLK;
 not u1 (scb, SCLK);
 LATCH rlat (q1, SDI, scb);
 DPLATCH rdff (Q, D,G, q1,SCLK);
 endmodule

For designs using this type of scan cell model here is a representative set of load_unload,
shift, and test_setup procedures.

 // latch_en and sclk have been defined as active high clocks
 Procedures {
 load_unload {
 V { latch_en=0; sclk=0;
 test=1; scan_en=1; bidi_en=0; bidi_port=Z; }
 V { bidi_port=1; }
 Shift {
 V { _si=#; _so=#; sclk=P; }
 }
 }
 }

 MacroDefs {
 test_setup {
 V { bidi_en=0; test=1; bidi_port=Z; latch_en=0; sclk=0; }
 }
 }

Scan Cell Models - Single Latch LSSD
The Single Latch LSSD uses a dual port latch for a front end. The "D" to "Q" path passes
through a single latch enabled by "G". The scan data path has an additional latch on the
output with a separate enable "SCKB". In normal mode the "G" enables data flow. In scan
mode the combination of non-overlapping "SCKA" and "SCKB" shift data from "SDI" to
"SDO".

 module single_latch_lssd (Q, SDO, D, G, SDI, SCKA, SCKB);
 output Q, SDO;
 input D, G, SDI, SCKA, SCKB;

 DPLATCH rdff (Q, D,G, SDI,SCKA);
 LATCH rlat (SDO, Q,SCKB);
 endmodule

For designs using this type of scan cell model here is a representative sample of
load_unload, shift, master_observe, and test_setup procedures.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

224

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 // latch_clk, scka, and sckb have been defined as active high clocks
 Procedures {
 load_unload {
 V { latch_clk=0; scka=0; sckb=0;
 test=1; scan_en=1; bidi_en=0; bidi_port=Z; }
 V { bidi_port=1; }
 Shift {
 V { _si=#; _so=#; scka=P; sckb=0; }
 V { scka=0; sckb=P; }
 }
 V { sckb=0; }
 }

 master_observe {
 V { sckb=P; }
 }

 }

 MacroDefs {
 test_setup {
 V { latch_clk=0; scka=0; sckb=0;
 bidi_en=0; test=1; bidi_port=Z; }
 }
 }

Scan Cell Models - Double Latch LSSD
The Double Latch LSSD is similar to the Single Latch LSSD with the exception that the
"D" to "Q" path passes through two latches instead of one. In normal mode, data is moved
from "D" to "Q" by the application of non-overlapping "G" followed by "SCKB". In scan
mode data is moved from "SDI" to "Q" by the application of "SCKA" followed by "SCKB".

 module double_latch_lssd (Q,D, G, SDI, SCKA, SCKB);
 output Q;
 input D, G, SDI, SCKA, SCKB;

 DPLATCH rdff (q1, D,G, SDI,SCKA);
 LATCH rlat (Q, q1,SCKB);
 endmodule

For designs using this type of scan cell model here is a representative sample of
load_unload, shift, master_observe, and test_setup procedures.

 // latch_clk, scka, and sckb have been defined as active high clocks
 Procedures {
 load_unload {
 V { latch_clk=0; scka=0; sckb=0;
 test=1; scan_en=1; bidi_en=0; bidi_port=Z; }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

225

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 V { bidi_port=1; }
 Shift {
 V { _si=#; _so=#; scka=P; sckb=0; }
 V { scka=0; sckb=P; }
 }
 V { sckb=0; }
 }

 master_observe {
 V { sckb=P; }
 }

 }

MacroDefs {
 test_setup {
 V { latch_clk=0; scka=0; sckb=0;
 bidi_en=0; test=1; bidi_port=Z; }
 }
 }

Scan Cell Models - Clocked LSSD
In the Clocked LSSD model, the "D" to "Q" path exhibits clocked behavior controlled from
the "CLK" input. The "SDI" to "Q" path uses master-slave latching with separate enables
"SCKA" and "SCKB".

 module clocked_lssd_1 (Q, D, CLK, SDI, SCKA, SCKB);
 output Q;
 input D, CLK, SDI, SCKA, SCKB;
 FLOPLATCH r1 (n1, D,CLK, SDI,SCKA);
 FLOPLATCH r2 (Q, D,CLK, n1, SCKB);
 endmodule

 module clocked_lssd_2 (Q, D, CLK, SDI, SCKA, SCKB);
 output Q;
 input D, CLK, SDI, SCKA, SCKB;

 not u1 (clk, CLK);
 LATCH rmd (d1, D,clkb);
 LATCH rms (d2, SDI,SCKA);
 DPLATCH rs (Q, d1,CLK, d2,SCKB);
 endmodule

 module clocked_lssd_3 (Q, SDO, D, CLK, SDI, SCKA, SCKB);
 output Q, SDO;
 input D, CLK, SDI, SCKA, SCKB;
 not u1 (clkb, CLK);
 LATCH rm (d1, D,clkb);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

226

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 DPLATCH rs1 (Q, d1,CLK, SDI,SCKA);
 LATCH rs2 (SDO, Q,SCKB);
 endmodule

 module clocked_lssd_4 (Q, SDO, D, CLK, SDI, SCKA, SCKB);
 output Q, SDO;
 input D, CLK, SDI, SCKA, SCKB;
 not u1 (clkb, CLK);
 not u2 (sckab, SCKA);
 and u3 (sck, sckab, CLK);
 DPLATCH rm (d1, D,clkb, SDI,sck);
 LATCH rs1 (Q, d1,CLK);
 LATCH rs2 (SDO, Q,SCKB);
 endmodule

 module clocked_lssd_5 (Q, D, CLK, SDI, SCKA, SCKB);
 output Q;
 input D, CLK, SDI, SCKA, SCKB;
 LATCH r1 (n1, SDI,SCKA);
 FLOPLATCH r2 (Q, D,CLK, n1,SCKB);
 endmodule

 module clocked_lssd_6 (Q, SDO, D, CLK, SDI, SCKA, SCKB);
 output Q, SDO;
 input D, CLK, SDI, SCKA, SCKB;
 FLOPLATCH r2 (Q, D,CLK, SDI,SCKA);
 LATCH r1 (SDO, Q,SCKB);
 endmodule

For designs using this type of scan cell model here is a representative sample of
load_unload, shift, master_observe, and test_setup procedures.

 // clk, scka, and sckb have been defined as active high clocks
 Procedures {
 load_unload {
 V { clk=0; scka=0; sckb=0;
 test=1; scan_en=1; bidi_en=0; bidi_port=Z; }
 V { bidi_port=1; }
 Shift {
 V { _si=#; _so=#; scka=P; sckb=0; }
 V { scka=0; sckb=P; }
 }
 V { sckb=0; }
 }

 master_observe {
 V { sckb=P; }
 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

227

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
Scan Cell Models

Feedback

 }

 MacroDefs {
 test_setup {
 V { clk=0; scka=0; sckb=0;
 bidi_en=0; test=1; bidi_port=Z; }
 }
 }

Scan Cell Models - Auxiliary Clocked LSSD
The Auxiliary Clocked LSSD features a "D" to "Q" path that exhibits clocked behavior
using either "CLK" or "TCK" with SCKA=SCKB=0. For scan mode, "TCK" and "SCKB"
are brought high and data is shifted from "SDI" to "Q" by non-overlapping enables
"SCKA" (active high) followed by "SCKB" (active low).

 module auxiliary_clocked_lssd (Q, D,CLK, TCK, SDI,SCKA,SCKB);
 output Q;
 input D, CLK, TCK, SDI, SCKA, SCKB;

 or u1 (c1, CLK, TCK);
 not u2 (c1b, c1);
 not u3 (bcb, SCKB);
 and u4 (c2, bcb,c1);
 DPLATCH rm (n1, D,c1b, SDI,SCKA);
 LATCH rs (Q, n1,c2);
 endmodule

For designs using this type of scan cell model here is a representative test procedure file.

 // clk and sckb have been define as active low clocks
 // scka has been defined as an active high clock
 // tck is not defined as a clock
 //
 Procedures {
 load_unload {
 V { clk=1; tck=1; scka=0; sckb=1;
 test=1; scan_en=1; bidi_en=0; bidi_port=Z; }
 V { bidi_port=1; }
 Shift {
 V { _si=#; _so=#; scka=P; sckb=1; }
 V { scka=0; sckb=P; }
 }
 V { scka=0; sckb=1; }
 }

 master_observe {
 V { sckb=P; }
 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

228

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

 }

 MacroDefs {
 test_setup {
 V { clk=1; tck=1; scka=0; sckb=1;
 bidi_en=0; test=1; bidi_port=Z; }
 }
 }

Scan Cell Models - Retention Cell
Scan cells that use SAVE and RESTORE functions are directly addressed by the TestMAX
ATPG retention cell testing flows, as shown in the following example.

   

The behavior of this scan cell is as follows:

• When the SAVE and RESTORE functions are deasserted, the cell behaves as a
normal scan flip-flop.

• When the retention function is required, the SAVE sequence stores the flip-flop value in
the retention latch.

• After power is restored to the flip-flop portion of the cell, the RESTORE sequence
disables the flip-flop clock and any asynchronous controls, and loads the value from
the retention latch into the flip-flop.

ATPG Simulation Primitives

See Also

• AND

• ADRBUS

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

229

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

• BUF (Buffer)

• BUSK (Bus Keeper)

• BUS

• CMUX (Conservative Multiplexer)

• DATABUS

• DFF (Flipflop)

• DLAT (Latch)

• EQUIV

• INV (Inverter)

• MEMORY

• MOUT

• MUX (Multiplexer)

• NAND

• NOR

• OR

• PI (Primary Input)

• PIO (Primary Inout)

• PO (Primary Output)

• RPORT

• SEL01

• SEL1

• SW (Switch)

• TIE0

• TIE1

• TIEX

• TIEZ

• TSD (Tristate Driver)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

230

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

• WIRE

• XNOR

• XOR

• ADRBUS Primitive (Address Bus)

AND Primitive

   

Description

The AND primitive has two or more inputs on the left side and one output on the right side.
The inputs are identified starting with the topmost as input 0, then 1, and so forth. The
numeric gate ID appears below the symbol.

Simulation Behavior
 I0 I1 : out

--- --- : ---

 0 ? : 0

 ? 0 : 0

 1 1 : 1

 X 1 : X

 1 X : X

 X X : X

The AND primitive provides as the output a 1 if all inputs are 1, or a 0 if any input is zero.
Any other input conditions result in an output of X. A Z on an input is treated as an X.
The inputs might be inverted and this is displayed as an inversion bubble on the symbol
graphics.

Verilog Netlist Usage
 _AND u1 (in0, in1, [inN,]... out);

or

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

231

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

 and u1 (out, in0, in1 [,inN]...);

See Also

• ATPG Modeling Primitive Summary

ADRBUS Primitive (Address Bus)

   

Description

The ADRBUS primitive has one or more inputs on its left side, and a single bussed output
on its right side. The inputs are identified starting with the topmost input, which is input I0,
then I1, then I2, and so forth. The address lines are connected with the MSB bit at the top
and the LSB bit at the bottom. Any input might be inverted, in which case it is drawn with
an inversion bubble on its input. The output is a bussed net with the same number of bits
as on the left side of the ADRBUS gate. The output of the ADRBUS gate can connect only
to a MEMORY primitive or an RPORT primitive. Multiple connections are possible.

Simulation Behavior
There is no simulation behavior of the ADRBUS gate. It provides a grouping of individual
address nets into a bussed net for connection to the MEMORY primitive or an RPORT
gate.

Any Z on an input is treated as an X.

Any input which is an X causes the output to be X across all bits.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

232

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

The number of address inputs must match the defined address range of the associated
MEMORY primitive.

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG
during the flattening process in response to the presence of an ATPG RAM or ROM
model.

See Also

• TestMAX ATPG Memory Modeling

BUF Primitive (Buffer)

   

Description

The BUF primitive has one input on the left side and one output on the right side. The
input cannot be inverted. The numeric gate ID appears under the symbol.

Simulation Behavior
 in : out
 --- : ---
 0 : 0
 1 : 1
 X : X
 Z : X

The BUF primitive provides as the output the same value as the input for inputs of 0 or 1.
For all other inputs the output is X.

Verilog Netlist Usage
 _BUF u1 (in, out);

or

 buf u1 (out, in);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

233

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

See Also

• ATPG Modeling Summary

BUS Primitive

   

Description

The BUS primitive has two or more inputs or bidirectional connections on its left side, and
a single output on its right side. However, the output is not always connected when one
of the connections on the left side is a bidirectional connection. The inputs are identified
starting with the topmost as input 0, then 1, and so forth. A gate ID appears below the
symbol.

Input connections can be inverted and shown with a bubble. Bidirectional connections and
connections to BUSK (Bus Keeper) primitives cannot be inverted.

Input connections can be weak and are shown with a resistor symbol on the input wire.

Simulation Behavior
The BUS primitive represents a net resolution function for multiple driver nets when the
drivers are tristateable. All inputs and bidirectional connections are strong or weak.

1. If all inputs are Z, then the output is Z.

2. If at least one input is a strong 0 and no other input is a strong 1 or X, then the output is
0.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

234

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

3. If at least one input is a strong 1 and no other input is a strong 0 or X, then the output is
1.

4. If at least one input is a strong 1 or X and at least one other input is a strong 0 or X,
then the output is X. This condition is called a bus contention.

5. If all strong inputs are Z and weak inputs exist, then rules #1 through #4 are checked
using weak inputs in place of strong inputs.

6. If all strong inputs are Z and all weak inputs are Z, then rules #1 through #4 are
checked using weak inputs sourced from BUS keepers.

Verilog Netlist Usage
The BUS primitive cannot be directly referenced in a netlist. It is automatically inserted by
TestMAX ATPG during flattening when a net resolution function is required.

BUSK Primitive (Bus Keeper)

   

Description

The BUSK (bus keeper) primitive has one weak bidirectional connection that connects to a
BUS primitive. The numeric gate ID appears under the symbol.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

235

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Simulation Behavior
If the value of the associated BUS primitive's output is Z, then the BUSK outputs its prior
value, otherwise the BUSK's output matches that of the BUS and it stores this value for its
next evaluation.

Verilog Netlist Usage
A bus keeper function is automatically determined from most Verilog module definitions.
However, if you need to explicitly define a bus keeper, you can do so in the same way you
declare a wire or tri net:

_BUSK0 net1; # keep only 0

_BUSK1 net2; # keep only 1

_BUSK01 net3; # keep 0 and 1

See Also

• BUS Keeper Examples

• ATPG Modeling Summary

CMUX Primitive (Conservative Multiplexer)

   

Description

The CMUX primitive is a conservative version of the MUX primitive. It has one select input
on the top side. There are two inputs on the left side, the first input is I0 and the second
is I1. Any input can be inverted, in which case it has a bubble shown on the symbol. The
numeric gate ID appears under the symbol.

The CMUX primitive differs from the MUX primitive only in its behavior when S=X and
D0=D1. Under those conditions, the output of the CMUX is X, while the output of the MUX
is the same value as D0 and D1. In all other conditions, the behavior of the CMUX is
intended to be the same as the behavior of the MUX.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

236

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Simulation Behavior
 S I0 I1 : out

--- --- --- : ---

 0 0 ? : 0

 0 1 ? : 1

 0 X ? : X

 1 ? 0 : 0

 1 ? 1 : 1

 1 ? X : X

 X 0 0 : X

 X 0 1 : X

 X 1 0 : X

 X 1 1 : X

The CMUX primitive provides as the output the I0 input when S=0, or the I1 input when
S=1.

A Z on an input is treated as an X.

The -conservative_mux option of the set_netlist command enables you to specify
how TestMAX ATPG should handle a conservative MUX. The default is for TestMAX ATPG
to extract conservative MUXes from combinational UDPs, but not from sequential UDPs.
You can also specify TestMAX ATPG to handle either all or none of the conservative
MUXes.

Verilog Netlist Usage
 _CMUX u1 (S, I0, I1, out);

See Also

• ATPG Modeling Summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

237

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

DATABUS Primitive (Data Bus)

   

Description

The DATABUS primitive has one or more inputs on its left side, and a single bussed output
on its right side. The inputs are identified starting with the topmost input, which is input
I0, then I1, then I2, and so forth. The data lines are connected with the MSB bit at the top
and the LSB bit at the bottom. Any input can be inverted, in which case it is drawn with an
inversion bubble on its input. The output is a bussed net with the same number of bits as
on the left side of the DATABUS gate. The output of the DATABUS gate can connect only
to a MEMORY primitive data input. Multiple connections are possible.

Simulation Behavior
There is no simulation behavior of the DATABUS gate. It provides a grouping of individual
data nets into a bussed net for connection to the MEMORY primitive.

Any Z on an input is treated as an X.

The number of data inputs must match the defined data width of the associated MEMORY
primitive.

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG
during the flattening process in response to the presence of an ATPG RAM or ROM
model.

See Also

• Memory Modeling

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

238

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

DFF Primitive

   

Description

The DFF primitive has one output, one asynchronous set input, one asynchronous clear
input, and one or more pairs of clock and data inputs. The numeric Gate ID appears under
the symbol.

For Mode 1 graphics, the inputs are identified on the left starting at the top as set, reset,
and then clock/data pairs in the order clock, then data. The example shows only one
clock/data pair but additional ones would cascade down the left side.

For Mode 2 graphics, the input on the top is the set, the input on the bottom is the reset,
and the inputs on the left side are clock/data pairs in the order clock, then data.

For Mode 3 graphics, the input on the top is the set, the input on the bottom is the reset,
and the inputs on the left side are clock/data pairs in the order data, then clock.

All inputs are active high. Clock inputs are active on a 0 to 1 transition. However, all inputs
can be inverted, in which case they are shown with an inversion bubble in the graphical
schematic viewer.

Approximate Simulation Behavior
 #
 # for the single clock/data case
 #
 set rst clk data : q- : out
 --- --- --- ---- : --- : ---
 ? ? b * : ? : - ; # data event, hold unless clk=x
 ? ? (?0) ? : ? : - ; # clk to 0, hold

 0 ? (1x) 0 : 0 : 0 ; # clk to x, hold
 ? 0 (1x) 1 : 1 : 1 ; #

 (?0) 0 b ? : ? : - ; # set to off, hold
 0 (?0) b ? : ? : - ; # rst to off, hold

 0 1 ? ? : ? : 0 ; # async reset

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

239

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

 1 0 ? ? : ? : 1 ; # async set

 0 ? (01) 0 : ? : 0 ; # clock data
 ? 0 (01) 1 : ? : 1 ; # clock data

 0 ? (0x) 0 : 0 : 0 ; # possible clk, D=Q=0
 ? 0 (0x) 1 : 1 : 1 ; # possible clk, D=Q=1

 0 ? (x1) 0 : 0 : 0 ; # possible clk, D=Q=0
 ? 0 (x1) 1 : 1 : 1 ; # possible clk, D=Q=1

 0 ? x 0 : 0 : 0 ; # metastable clk, D=Q=0
 ? 0 x 1 : 1 : 1 ; # metastable clk, D=Q=1

 0 (?x) b ? : 0 : 0 ; # rst=X with Q=0
 (?x) 0 b ? : 1 : 1 ; # set=X with Q=1

 0 (?x) x 0 : 0 : 0 ; # rst=X with Q=0
 (?x) 0 x 1 : 1 : 1 ; # set=X with Q=1

 # 0 0 x * : ? : x ; # data change with clk=metastable

Note 1: The -xclock_gives_xout option of the set_simulation command controls
behavior when a clock changes to X. By default a 1->X transition causes no change while
a 0->X transition is processed as a potential clock. Specifying this option causes any
transition to X or steady state value of X to cause the output to be set to X.

Set and Reset inputs are active high level sensitive. Clock inputs are activated by a 0 to
1 transition. For the clock pin, the label "active" should be considered the same as have a
rising edge event.

A Z on any input is treated the same as an X.

Textual Simulation Behavior
1. >If set and reset inputs are off and all clocks are stable non-X values, then the output

retains its previous state.

2. If set is on and reset is off then the output is set to 1. The asynchronous set is
dominant over a clock edge event.

3. If reset is on and set is off then the output is set to 0. The asynchronous reset is
dominant over a clock edge event.

4. If a single clock line is active and the set, reset, and other clocks are off, then the
output becomes the value of the associated data input at the time of the capturing clock
edge. If multiple clocks are active, then the output is reviewed for whether the captured
value would be the same from all capturing inputs. If the output would be the same it is
set to that value, otherwise the output is set to X.

5. If set and reset are both on, the output is set to X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

240

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

6. If any set or reset input is at X and all clocks are non-X, then the output is reviewed
for whether it would change if that X were really a 0 and 1. If the output would be
unchanged, then it is kept; otherwise, it is set to X.

7. If a possible clock transition has occurred (0->X, X->1), then the output is reviewed for
whether it would change if the clock did occur. If the output would be unchanged, then
it is kept; otherwise, it is set to X.

8. If any clock is at X and its corresponding data input is X, then the output is set to X.

9. If any clock is at X (with set/reset off) and the data input changes during this time (0->1,
1->0), then the output is set to X.

10. If any clock is at X and the -xclock_gives_xout option of the set_simulation
command has been selected, then the output is set to X.

Verilog Netlist Usage
 _DFF u1 (set, rst, clk, data, [clkN, dataN,]... out);

See Also

• ATPG Modeling Summary

DLAT Primitive

   

Description

The DLAT primitive has one output, one asynchronous set input, one asynchronous clear
input, and one or more pairs of clock and data inputs. The numeric gate ID appears under
the symbol.

Note: The -xclock_gives_xout option of the set_simulation command controls behavior
when a clock changes to X. By default, a clock value of X causes no change while D=Q.
Specifying this option causes any transition to X, or steady state value of X, to immediately
set the output to X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

241

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

For Mode 1 graphics, the inputs are identified on the left starting at the top as set, reset,
and then clock/data pairs in the order clock, then data. The example shows only one
clock/data pair but additional ones would cascade down the left side.

For Mode 2 graphics, the input on the top is the set, the input on the bottom is the reset,
and the inputs on the left side are clock/data pairs in the order clock, then data.

For Mode 3 graphics, the input on the top is the set, the input on the bottom is the reset,
and the inputs on the left side are clock/data pairs in the order data, then clock.

All inputs are active high. However, all inputs can be inverted, in which case they are
shown with an inversion bubble.

Simulation Behavior
 set rst clk data : q- : out
 --- --- --- ---- : --- : ---
 0 0 0 ? : ? : - ; # clocks off

 0 ? 1 0 : ? : 0 ; # latch open, D=0
 ? 0 1 1 : ? : 1 ; # latch open, D=1

 1 0 0 ? : ? : 1 ; # async set
 0 1 0 ? : ? : 0 ; # async reset

 1 0 1 ? : ? : x ; # clk while async set
 0 1 1 ? : ? : x ; # clk while async reset

 x 0 0 ? : 1 : 1 ; # set=X, but Q=1
 0 x 0 ? : 0 : 0 ; # reset=X, but Q=0

 ? 0 x 1 : 1 : 1 ; # possible clk of D=1, but Q=1
 0 ? x 0 : 0 : 0 ; # possible clk of D=0, but Q=0

Set, Reset, and Clock inputs are active high level sensitive. if:

• all clock/set/reset inputs are inactive, the output retains its previous state.

• the set line is active and the reset and clocks are inactive, then out=1.

• the reset line is active and the set and clocks are inactive, then out=0.

• a single clock line is active and the other set/reset/clocks are inactive, then the output
becomes the value of the associated data input.

• any clock/set/reset input is at X then the output is reviewed for whether it would
change if that X were really a 0 and 1. If the output would be unchanged then it is kept,
otherwise it is set to X.

• set and reset are both active, the output is X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

242

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

If multiple clock/set or clock/reset or clock/clock inputs are active, then the output is
reviewed for whether the captured value would be the same from all active inputs. If the
output would be the same, it is kept; otherwise, the output is set to X.

A Z on any input is treated as an X.

Verilog Netlist Usage
 _DLAT u1 (set, rst, clk, data, [clkN, dataN,]... out);

See Also

• ATPG Modeling Summary

EQUIV Primitive (Equivalence)
There is no graphic for this primitive. It is a virtual gate added in response to the creation
of an ATPG primitive and does not show up in the schematic view.

Description

The EQUIV gate has two or more inputs and one output. The inputs can be inverted.

Simulation Behavior
 I0 I1 I2 : out

--- --- --- : ---

 0 0 0 : 1

 1 1 1 : 1

 0 1 ? : 0

 ? 0 1 : 0

 1 ? 0 : 0

 0 0 X : X

 X 0 0 : X

 0 X 0 : X

 1 1 X : X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

243

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

 X 1 1 : X

 1 X 1 : X

A Z on any input is treated as an X.

If all inputs are 0, the output is 1.

If all inputs are 1, the output is 1.

If at least one input is 0 and one input is 1, then the output is 0; otherwise, the output is X.

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG as
a result of the add_atpg_primitives command.

INV Primitive (Inverter)
The following figure shows the INV primitive inverter:

   

Description

The INV primitive has one input on the left side and one output on the right side. The input
cannot be inverted. The numeric gate ID appears under the symbol.

Simulation Behavior
 in : out

--- : ---

 0 : 1

 1 : 0

 X : X

 Z : X

The INV primitive provides on the output the inverted value of the input for inputs of 0 or 1.
For all other inputs the output is X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

244

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Verilog Netlist Usage
 _INV u1 (in, out);

 or

 not u1 (out, in);

See Also

• ATPG Modeling Summary

MEMORY Primitive (RAM/ROM Memory)

   

Description

The MEMORY gate has inputs on its left side and a single output on its right side. Starting
from the topmost input on the left side, the first input is the active high set control. The
second input is the active high reset control. Next, there are zero or more groups of four
inputs designated "write ports". The order of the four inputs for a write port are, from top to

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

245

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

bottom: write_control, write_enable, address_bus, and data_bus. Beneath the symbol is
the gate ID.

The set/reset inputs, as well as the write_control and write_enable inputs of any write port,
can be inverted, in which case they are drawn with inversion bubbles.

The address_bus input can only connect to the output of an ADRBUS gate.

The data_bus input can only connect to the output of a DATABUS gate.

The MEMORY gate's output can only connect to one or more RPORT gates.

Simulation Behavior
A Z state on any input is treated as an X.

The set and reset control inputs are level sensitive, active high controls. The
write_control input is either level sensitive (active high) or edge triggered (active on
0 to 1 edge). The write operation requires that the write_control be asserted with the
write_enable line at 1.

When the set control is asserted and no other reset or write_control operations are active,
then the memory contents are all set to 1. If the set control is X, then the entire memory
contents are set to X.

When the reset control is asserted and no other set or write_control operations are
active, then the memory contents are all set to 0. If the reset control is X, then the entire
memory contents are set to X.

When both the set and reset controls are simultaneously asserted, the memory contents
are all set to X.

If all write_operations/set/reset are inactive, the memory contents remain unchanged.

If a single write_operation is active and the other set/reset/write_operations are inactive
then a write operation occurs to the corresponding memory word determined by the
address_bus using the data values on data_bus. If the associated address_bus has a
value of X, then the entire memory contents are set to X.

If any write_control is X while its corresponding write_enable is high, then the data value of
the currently addressed memory location is set to X.

If multiple write_operation/set/reset lines are active then TestMAX ATPG determines if all
possible data writes to the associated address would produce the same value. If this is
true, the value is written; otherwise, the memory location is set to X's.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

246

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG
during the flattening process in response to the presence of an ATPG RAM or ROM
model.

See Also

• Memory Modeling

MOUT Primitive (Macro Output)

   

Description

An MOUT gate has one input on its left side and one output on its right side. The input is
a bussed net and the output is a single bit of that net. The gate acts as a bus splitter. The
gate ID appears beneath the symbol.

An MOUT gate can connect only to the data_bus output of an RPORT gate.

Simulation Behavior
The MOUT gate has no simulation behavior. It functions to hold the value for each data bit
from the associated RPORT gate. Selecting the MOUT gate in the schematic viewer and
opening the Gate Info window will report which bit of the bus is being split off.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

247

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG
during the flattening process in response to the presence of an ATPG RAM or ROM
model.

See Also

• Memory Modeling

MUX Primitive (Multiplexer)

   

Description

The MUX primitive has one select input on the top side. There are two inputs on the left
side, the first input is I0 and the second is I1. Any input can be inverted, in which case it
has a bubble shown on the symbol. The numeric gate ID appears under the symbol.

Simulation Behavior
 S I0 I1 : out

--- --- --- : ---

 0 0 ? : 0

 0 1 ? : 1

 0 X ? : X

 1 ? 0 : 0

 1 ? 1 : 1

 1 ? X : X

 X 0 0 : 0

 X 0 1 : X

 X 1 0 : X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

248

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

 X 1 1 : 1

The MUX primitive provides as the output the I0 input when S=0, or the I1 input when S=1.

If S=X and I0=I1, then the out=I0=I1; otherwise the output is X.

A Z on an input is treated as an X.

Verilog Netlist Usage
 _MUX u1 (S, I0, I1, out);

See Also

• ATPG Modeling Summary

NAND Primitive

   

Description

The NAND primitive has two or more inputs on the left side and one output on the right
side. The inputs are identified starting with the topmost as input 0, then 1, and so forth.
The numeric gate ID appears below the symbol.

Simulation Behavior
 I0 I1 : out

--- --- : ---

 0 ? : 1

 ? 0 : 1

 1 1 : 0

 X 1 : X

 1 X : X

 X X : X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

249

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

The NAND primitive provides as the output a 0 if all inputs are 1, or a 1 if any input is zero.
Any other input conditions result in an output of X.

A Z on an input is treated as an X.

The inputs can be inverted and this is displayed as an inversion bubble on the symbol
graphics.

Verilog Netlist Usage
 _NAND u1 (in1, in2, [inN,]... out);

or

 nand u1 (out, in1, in2 [,inN]...);

See Also

• ATPG Modeling Summary

NOR Primitive

   

Description

The NOR primitive has two or more inputs on it's left side and one output on its right side.
The inputs on the left are identified going from top to bottom as I0, I1, I2, and so forth. Any
input can be inverted in which case it is drawn with an input bubble. The numeric gate ID
appears under the symbol.

Simulation Behavior
 I0 I1 : out

--- --- : ---

 0 0 : 1

 0 1 : 0

 1 0 : 0

 1 1 : 0

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

250

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

 X 0 : X

 X 1 : 0

 0 X : X

 1 X : 0

 X X : X

The NOR primitive provides as its output the inverted OR function of its inputs. When any
input is 1, the output is 0. When all inputs are 0 the output is 1. For all other combinations
the output is X.

Any Z input is treated as an X.

Verilog Netlist Usage
 _NOR u1 (in0, in1, [,inN]... out);

 or

 nor u1 (out, in0, in1, [,inN]...);

See Also

• ATPG Modeling Summary

OR Primitive

   

Description

The OR primitive has two or more inputs on its left side and one output on its right side.
The inputs on the left are identified going from top to bottom as I0, I1, I2, and so forth. Any
input can be inverted, in which case it is drawn with an input bubble. The numeric gate ID
appears under the symbol.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

251

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Simulation Behavior
 I0 I1 : out

--- --- : ---

 0 0 : 0

 0 1 : 1

 1 0 : 1

 1 1 : 1

 X 0 : X

 X 1 : 1

 0 X : X

 1 X : 1

 X X : X

The OR primitive provides as its output the OR function of its inputs. When any input is 1,
the output is 1. When all inputs are 0, the output is 0. For all other combinations the output
is X.

Any Z input is treated as an X.

Verilog Netlist Usage
 _OR u1 (in0, in1, [,inN]... out);

or

 or u1 (out, in0, in1, [,inN]...);

See Also

• ATPG Modeling Summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

252

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

PI Primitive (Primary Input)

   

Description

The PI primitive has one output. It represents a primary input for the top level of the
design. The name of the top level port appears within the PI symbol. The numeric gate ID
appears under the symbol.

Simulation Behavior
There is no simulation behavior associated with a PI gate. It is a holding place for values
of 0/1/X/Z applied as inputs.

Verilog Netlist Usage
Direct access to a PI primitive is not supported in a netlist. TestMAX ATPG inserts PI
primitives during flattening to correspond to top level module inputs declared.

PIO Primitive (Primary Input/Output)

   

Description

The PIO primitive has one bidirectional connection. It represents a primary input and
output for the top level of the design. The name of the top level port appears within the
PIO symbol. The numeric gate ID appears under the symbol.

The PIO primitive always attaches to a corresponding BUS primitive.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

253

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Simulation Behavior
There is no simulation behavior associated with a PIO gate. It is a holding place for values
of 0/1/X/Z applied as inputs and a place to observe the output value from its companion
BUS gate.

Verilog Netlist Usage
Direct access to a PIO primitive is not supported in a netlist. TestMAX ATPG inserts PIO
primitives during flattening to correspond to top level module inouts declared.

PO Primitive (Primary Output)

   

Description

The PO primitive has one input. It represents a primary output for the top level of the
design. The name of the top level port appears within the PO symbol. The numeric gate ID
appears under the symbol.

Simulation Behavior
There is no simulation behavior associated with a PO gate. It is an observation point for
values from the attached output net.

Verilog Netlist Usage
Direct access to a PO primitive is not supported in a netlist. TestMAX ATPG inserts PO
primitives during flattening to correspond to top level module outputs declared.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

254

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

RPORT Primitive (Read Port)

   

Description

This primitive with its connecting ADRBUS, MEMORY, and MOUT primitives represent a
read port which is used to model RAMs and ROMs.

The RPORT primitive has three inputs on the left side and one output on the right side.
Starting with the topmost input, the first input is the active high read_control input, the
second input is the address_bus input, and the third input is the data_bus input. A gate ID
appears below the symbol.

The data_bus input can connect only to the output of a MEMORY gate. This is a bussed
input.

The address_bus input can connect only to the output of an ADRBUS gate of appropriate
width for the MEMORY to which the RPORT is associated. This is a bussed output.

The RPORT's output is a bussed net having the same data width as its data_bus input. It
can connect only to MOUT gates.

Simulation Behavior
If the read_control input is 1, the MOUT primitives attached to the RPORT's output
are set to the data values of the memory location specified by the address_bus. If the
address_bus is X, the MOUT primitives are set to X.

If the read_control input is 0, the MOUT primitives are set to the read_off value of the
associated MEMORY primitive (set by attributes when the model is defined).

If the read_control input is X, the MOUT primitives are set to X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

255

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG
during the flattening process in response to the presence of an ATPG RAM or ROM
model.

See Also

• Memory Modeling

SEL01 Primitive
There is no graphic for this primitive. It is a virtual gate added in response to the creation
of an ATPG primitive and does not show up in the schematic view.

Description

The SEL01 gate has two or more inputs and one output. The inputs can be inverted.

Simulation Behavior
 I0 I1 I2 : out

--- --- --- : ---

 0 0 0 : 1

 0 0 1 : 1

 0 1 0 : 1

 1 0 0 : 1

 0 1 1 : 0

 1 0 1 : 0

 1 1 0 : 0

 1 1 1 : 0

 X ? ? : X

 ? X ? : X

 ? ? X : X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

256

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

If a single input is at 1 with all other inputs 0, then the output is 1.

If all inputs are 0, then the output is also 1.

If more than one input is 1, then the output is 0.

If any input is X, the output is X. A Z on any input is treated as an X.

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG as
a result of the add_atpg_primitives command.

SEL1 Primitive
There is no graphic for this primitive. It is a virtual gate added in response to the creation
of an ATPG primitive and does not show up in the schematic view.

Description

The SEL1 gate has two or more inputs and one output. The inputs can be inverted.

Simulation Behavior
 I0 I1 I2 : out

--- --- --- : ---

 0 0 1 : 1

 0 1 0 : 1

 1 0 0 : 1

 0 0 0 : 0

 0 1 1 : 0

 1 0 1 : 0

 1 1 0 : 0

 1 1 1 : 0

 X ? ? : X

 ? X ? : X

 ? ? X : X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

257

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

A Z on any input is treated as an X.

If a single input is at 1 and all other inputs are at 0, the output is 1.

If more than one input is at 1 or all inputs are 0, the output is 0.

If any input is at X, the output is an X.

Verilog Netlist Usage
This primitive cannot be directly referenced in a netlist. It is inserted by TestMAX ATPG as
a result of the add_atpg_primitives command.

SW Primitive (Switch)

   

Description

The SW primitive has one control input on its top side, one data input on its left side and
one output on its right side. The control input can be inverted, in which case it is drawn
with an inversion bubble. The numeric gate ID appears under the symbol.

Simulation Behavior
 C in : out

--- --- : ---

 0 ? : Z

 1 0 : 0

 1 1 : 1

 1 X : X

 1 Z : Z

 X ? : X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

258

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

The SW primitive provides as the output its data input value when the control input is 1, a
Z value when its control input is 0, and X for all other combinations. It can pass a Z value.

Verilog Netlist Usage
 _SW u1 (control, in, out);

or

 nmos u1 (out, in, control);

See Also

• ATPG Modeling Summary

TIE0 Primitive

   

Description

The TIE0 primitive has one output on the right side and zero or more optional inputs on the
left side. The symbol can appear as both a small oval with the letters T0 inside and as a
rectangular block. For a rectangular block, the numeric gate ID appears under the symbol.

Simulation Behavior
 I0 : out

--- : ---

 ? : 0

The TIE0 primitive provides a constant zero output.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

259

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Verilog Netlist Usage
 _TIE0 u1 ([inN,]... out);

See Also

• ATPG Modeling Summary

TIE1 Primitive

   

Description

The TIE1 primitive has one output on the right side and zero or more optional inputs on the
left side. The symbol can appear as both a small oval with the letters T1 inside and as a
rectangular block. For a rectangular block, the numeric gate ID appears under the symbol.

Simulation Behavior
 I0 : out

--- : ---

 ? : 1

The TIE1 primitive provides a constant high output.

Verilog Netlist Usage
 _TIE1 u1 ([inN,]... out);

See Also

• ATPG Modeling Summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

260

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

TIEX Primitive

   

Description

The TIEX primitive has one output on the right side and zero or more optional inputs on
the left side. The symbol can appear as both a small oval with the letters TX inside and
as a rectangular block. For a rectangular block, the numeric gate ID appears under the
symbol.

Note that while the TIEX gate provides a constant X value in simulation behavior, it can
be treated differently for purposes of analysis. The TIEX gate is considered to be capable
of either a 0 or 1 value and it might show up as producing a 0 or 1 in certain kinds of
analyses, including analyses of certain types of design rule violations.

Simulation Behavior
 I0 : out

--- : ---

 ? : X

The TIEX primitive provides a constant X output.

Verilog Netlist Usage
 _TIEX u1 ([inN,]... out);

See Also

• ATPG Modeling Summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

261

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

TIEZ Primitive

   

Description

The TIEZ primitive has one output on the right side and zero or more optional inputs on
the left side. The symbol can appear as both a small oval with the letters TZ inside and
as a rectangular block. For a rectangular block, the numeric gate ID appears under the
symbol.

Simulation Behavior
 I0 : out

--- : ---

 ? : Z

The TIEZ primitive provides a constant Z output.

Verilog Netlist Usage
 _TIEZ u1 ([inN,]... out);

See Also

• ATPG Modeling Summary

TSD Primitive (tristate Device)

   

Description

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

262

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

The TSD primitive has one control input on its top side, one data input on its left side and
one output on its right side. The control or data inputs can be inverted, in which case they
are drawn with an inversion bubble. The numeric gate ID appears under the symbol.

Simulation Behavior
 C in : out

--- --- : ---

 0 ? : Z

 1 0 : 0

 1 1 : 1

 1 X : X

 1 Z : X

 X ? : X

The TSD primitive provides as the output its data input value when the control input is 1, a
Z value when its control input is 0, and X for all other combinations.

A Z input is treated as an X.

Verilog Netlist Usage
 _TSD u1 (control, in, out);

or

 bufif1 u1 (out, in, control);

See Also

• ATPG Modeling Summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

263

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

WIRE Primitive

   

Description

The WIRE primitive has two or more inputs on its left side, and a single output on its right
side. The inputs are identified starting with the topmost as input 0, then 1, and so forth. A
gate ID appears below the symbol.

Input connections cannot be inverted.

Simulation Behavior
 I0 I1 : out

--- --- : ---

 0 0 : 0

 1 1 : 1

 0 1 : X

 1 0 : X

 X ? : X

 ? X : X

The WIRE primitive represents a net resolution function for multiple driver nets when
the drivers are non-tristatable. If all inputs are the same, then the output is that value.
Otherwise, the output is X.

An input of Z is treated as an X.

Verilog Netlist Usage
_WIRE u1 (in1, in2, [inN,]... out);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

264

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

or

buf u1 (in1, out);
buf u2 (in2, out);

See Also

• ATPG Modeling Summary

XNOR Primitive (Exclusive NOR)

   

Description

The XNOR primitive has two or more inputs on the left side and one output on the right
side. Any input can be inverted, in which case it is shown with an inversion bubble. The
numeric gate ID appears under the symbol.

Simulation Behavior
 I0 I1 : out

--- --- : ---

 0 0 : 1

 0 1 : 0

 1 0 : 0

 1 1 : 1

 X ? : X

 ? X : X

The XNOR primitive provides as the output the inverted XOR function of its inputs. When
an odd number of inputs are 1 and no inputs are X then the output is 0. When an even
number of inputs are 1 and no inputs are X, then the output is 1. If any input is X or Z, the
output is X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

265

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

Verilog Netlist Usage
 _XNOR u1 (in0, in1, [inN,]... out);

or

 xnor u1 (out, in0, in1 [,inN,]...);

See Also

• ATPG Modeling Summary

XOR Primitive (Exclusive OR)

   

Description

The XOR primitive has two or more inputs on the left side and one output on the right
side. Any input might be inverted, in which case it is shown with an inversion bubble. The
numeric gate ID appears under the symbol.

Simulation Behavior
 I0 I1 : out

--- --- : ---

 0 0 : 0

 0 1 : 1

 1 0 : 1

 1 1 : 0

 X ? : X

 ? X : X

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

266

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: ATPG Modeling
ATPG Simulation Primitives

Feedback

The XOR primitive provides as the output the XOR function of its inputs. When an odd
number of inputs are 1 and no inputs are X then the output is 1. When and even number of
inputs are 1 and no inputs are X, then the output is 0. If any input is X or Z, the output is X.

Verilog Netlist Usage
 _XOR u1 (in0, in1, [inN,]... out);

or

 xor u1 (out, in0, in1 [,inN,]...);

See Also

• ATPG Modeling Summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

267

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5
Command Interface

TestMAX ATPG provides an interactive command interface in the TestMAX ATPG GUI,
and menus and buttons in the TestMAX ATPG GUI. The command interface includes a
command language that you can use to execute command sequences in batch mode.

Online Help is available on commands, error messages, design flows, and many other
TestMAX ATPG topics.

The following sections describe the components of the TestMAX ATPG command
interface:

• TestMAX ATPG GUI

• Command Entry

• Transcript Window

• Interacting with the TestMAX ATPG GUI

• Using Online Help

TestMAX ATPG GUI
Figure 1 shows the main window of the TestMAX ATPG graphical user interface (GUI).
The major components in this window are (from top to bottom): the menu bar, the quick
access buttons, the command toolbar, the graphical schematic viewer (GSV) toolbar and
window, the transcript window, the command-line text field, and the status bar.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

268

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
TestMAX ATPG GUI

Feedback

Figure 11 TestMAX ATPG GUI Main Window

   

The GSV window is not displayed when you start TestMAX ATPG. It first appears when
you execute a command that requests a schematic display. For more information on the
GSV window, see Using the Graphical Schematic Viewer.

The status bar, located at the very bottom of the main window, contains the STOP button
and displays the state of TestMAX ATPG (Kernel Busy/Ready), pin/block reference
data, Pin Data details, red/green signal indicating the kernel busy/ready status, and the
command mode indicator. For more information, see Command Mode Indicator.

See Also

• Using the Graphical Schematic Viewer

• Using the Hierarchy Browser

• Using the Simulation Waveform Viewer

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

269

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Command Entry

Feedback

Command Entry
The main window provides three ways to interactively enter commands:

• Select from pull-down menus at the top of the main window.

• Use the command buttons in the command toolbar or the graphical schematic viewer
(GSV) toolbar.

• Type commands in the command-line window.

The pull-down menus and command buttons let you specify the command options in
dialog boxes. The command-line window uses a command-line-based entry method.

The following sections describe how to perform command entry:

• Menu Bar

• Command Toolbar and GSV Toolbar

• Command-Line Window

• Commands From a Command File

• Command Logging

Menu Bar
The menu bar consists of a set of pull-down menus you use to select a required action.
These menus provide the most comprehensive set of command selections.

The following figure shows the menu bar.

Figure 12 Menu Bar

   

Command Toolbar and GSV Toolbar
The command toolbar is a collection of buttons you use to run TestMAX ATPG commands.
These buttons provide a fast and convenient alternative to using the pull-down menus
or command-line window. Similarly, the GSV toolbar provides a fast way to control the
contents of the GSV window.

The following figure shows the command toolbar and GSV toolbar.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

270

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Command Entry

Feedback

Figure 13 Command Toolbar and GSV Toolbar

   

By default, the command toolbar is displayed at the top of the main window, just below the
menu bar. The GSV toolbar is displayed on the left side of the GSV window. Both toolbars
are “dockable” — that is, you can move and “dock” them to any four sides of the GSV
window, or use them as free-standing windows.

To move the toolbar, position the pointer on the border of the toolbar (outside any of the
buttons), press and hold the mouse button, drag the toolbar to the required location, and
release the mouse button.

Command-Line Window
The command-line window is located between the transcript window and the status bar.
The following components comprise the command-line window:

• Command Mode Indicator

• Command-Line Entry Field

• Command Continuation

• Command History

• Stop Button

The following figure shows the command-line window.

Figure 14 Command-Line Window

   

Command Mode Indicator
The command mode indicator, located to the left of the status bar, displays either BUILD-
T>, DRC-T>, or TEST-T>, depending on the operating mode currently enabled.

To change the command mode, use the Build, DRC, and Test buttons, located a the far
right. The buttons are dimmed if you cannot change to that mode in the current context. To
change to one of these modes, click the corresponding button. If an attempt to change the
current mode fails, the command-line window remains unchanged and an error message
appears in the transcript window.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

271

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Command Entry

Feedback

Command-Line Entry Field
You type TestMAX ATPG commands in the command-line text field at the bottom of the
screen. To enter a command, click in the text field, type the command, and either click
Submit or press Enter. After it has been entered, the command is echoed to the transcript,
stored in the command history, and sent to TestMAX ATPG for execution.

You can use the editing features Cut (Control-x), Copy (Control-c), and Paste (Control-v)
in the command-line text field. If the command is too long for the text field, the text field
automatically scrolls so that you can continue to see the end of the command entry.

The command line supports multiple commands. You can enter more than one command
on the command line by separating commands with a semicolon.

You can enter two exclamation characters (!!) to repeat the last command. Entering !!xyz
repeats the most recent command that begins with the string xyz.

You can use the arrow keys to queue the command line. If you are in Tcl mode, TestMAX
ATPG includes automatic command completion feature. This feature also applies to
directory and file name completion in both native mode and Tcl mode.

Command Continuation
To continue a long command line over multiple lines, place at least one space followed by
a backslash character (\) at the end of each line.

The following example shows the add_atpg_primitives command usage in Tcl mode.
This command defines an ATPG primitive connected to multiple pins. Note the use of curly
brackets in Tcl mode for specifying lists. Each pin path name is presented on a separate
line using the backslash character. All five lines are treated as a single command.

Command continuation across multiple lines (Tcl mode)
BUILD-T> add_atpg_primitives spec_atpg_prim1 equiv \
{ /BLASTER/MAIN/CPU/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U16/in2 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U13/in0 }

The following example shows the same command example in native mode.

Command continuation across multiple lines (native mode)
BUILD> add atpg primitives spec_atpg_prim1 equiv \
/BLASTER/MAIN/CPU/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U16/in2 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U13/in0

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

272

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Command Entry

Feedback

Command History
The command history contains commands you have entered at the command line. To run
a previous command, use the arrow keys to highlight the required command, and then
press Enter.

Another way to view a list of recent commands is to use the report_commands -history
command.

Stop Button
The Stop button is located to the right of the status bar. If TestMAX ATPG is idle, the Stop
button is dimmed. If TestMAX ATPG is busy processing a command (and the command
mode indicator displays <Busy>), the button is active and is labeled "Stop." Click this
button to halt processing of the current command. TestMAX ATPG might take several
seconds to halt the activity.

You can interrupt a multicore ATPG process by clicking the Stop button. At this point, the
master process sends an abort signal to the slave processes and waits for the slaves to
finish any ongoing interval tasks. If this takes an extended period of time, you can click
the Stop button twice; this action causes the master process to send a kill signal to the
slaves, and the prompt will immediately return. Note that the clicking the Stop button
twice will terminate all slave processes without saving any data gathered since the last
communication with the master. For more information on multicore ATPG, see Running
Multicore ATPG.

Commands From a Command File
You can submit a list of commands as a file and have TestMAX ATPG execute those
commands in batch mode. In Tcl mode, any line starting with # is treated as a comment
and is ignored. In native mode, any line starting with a double-slash (//) is ignored.

Although a command file can have any legal file name, for easy identification, you might
want to use the standard extension .cmd (for example, specfile .cmd).

To run a command file, click the Cmd File button in the command toolbar, or enter the
following in the command-line window:

> source filename

Command files can be nested. In other words, a command file can contain a source
command that invokes another command file.

For an example of a command file, see Using Command Files.

The history list shows only the source filename command, not the commands executed in
the command file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

273

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Transcript Window

Feedback

Command Logging
Commands that you enter through menus, buttons, and the command-line window can
be logged to a file along with all information reported to the transcript. By default, the
command log contains the same information as the saved transcript. In addition, the
command log contains comments from any command files that were used.

To turn on command logging (also called message logging), click the Set Msg button in the
command toolbar to open the Set Messages dialog box, or type the following command:

> set_messages log spec_logfile.log

If the log file already exists, an error message is displayed unless you add the optional
-replace or -append options, as follows:

> set_messages log spec_logfile.log -replace
> set_messages log spec_logfile.log -append

If you intend to use the log file as an executable command file, use the
-leading_comment option of the set_messages command. In this case, TestMAX ATPG
writes out the comment lines starting with either a pound sign(#) in Tcl mode, or a double
slash in Native mode, so that those lines are ignored when you use the log file as a
command file.

Transcript Window
The transcript window is a read-only, scrollable window that displays the session
transcript, including text produced by TestMAX ATPG and commands entered in the
command line and from the GUI. The transcript provides a record of all activities carried
out in the TestMAX ATPG session.

The following sections describe the transcript window:

• Setting the Keyboard Focus

• Using the Transcript Text

• Selecting Text in the Transcript

• Copying Text From the Transcript

• Finding Commands and Messages in the Transcript

• Saving or Printing the Transcript

• Clearing the Transcript Window

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

274

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Transcript Window

Feedback

Figure 15 Transcript Window

   

Setting the Keyboard Focus
Setting the keyboard focus in the transcript window allows you to use keyboard shortcuts
and some keypad keys in the transcript window. You set the keyboard focus by clicking
anywhere in the transcript window. A blinking vertical-bar cursor appears in the text where
you have set the focus.

Using the Transcript Text
The transcript window has the editing features Copy, Find, Find Next, Save, Print, and
Clear. If the cursor is in the transcript window, you can use keyboard shortcuts for these
editing features. Otherwise, open the transcript window pop-up menu by clicking anywhere
in the transcript window with the right mouse button.

You can look at any part of the entire transcript by using the horizontal and vertical scroll
bars. Notice that if you scroll up, you will not be able to see new text being added to the
bottom of the transcript.

If the cursor is in the transcript window, you can use the following keypad keys:

• Up / Down arrow -- Moves the cursor up or down one line.

• Left / Right arrow -- Moves the cursor left or right one character position.

• Page Up / Page Down -- Scrolls the transcript up or down one page. A “page” is the
amount of text that can be displayed in the transcript window at once.

• Home / End -- Moves the cursor to the beginning or end of the current line.

• Control-Page Up / Control-Page Down -- Moves the cursor to the top or bottom of the
current transcript page.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

275

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Transcript Window

Feedback

• Control-Home -- Moves the cursor to the beginning of the first line in the transcript.

• Control-End -- Moves the cursor to the end of the last line in the transcript.

Selecting Text in the Transcript
To select part or all of the text in the transcript window, press the left mouse button at the
beginning of the required text, drag to the end of the required text, and release the mouse
button. The selected text is highlighted.

Copying Text From the Transcript
You can copy selected text from the transcript window to the Clipboard. Use the keyboard
shortcut Control-c, or choose Copy from the pop-up menu that appears when you press
the right mouse button. The Copy command is disabled if no text has been selected.

Finding Commands and Messages in the Transcript
To find commands and messages in the transcript window, right-click inside the Transcript
window, and then click the box or boxes that reference the type of search you want to
perform (that is, Wrap Search, Search Commands, Search Error Messages, Search
Informational Messages). Click “Find Next” to find the next occurrence of a command or
message in the transcript after the current cursor position or “Find Previous” to find the
previous occurrence of a command or message.

The following figure shows how to find text in the transcript.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

276

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Transcript Window

Feedback

Figure 16 Finding Text in the Transcript

   

Saving or Printing the Transcript
To save selected text from the transcript window, select the text you want to save, then
right-click anywhere in the Transcript window, and choose “Save Selection As...” in the
pop-up dialog. To save the entire contents of the Transcript, right-click in the Transcript
window, and choose “Save Contents As...” To print the transcript, use the keyboard
shortcut Control-p.

Clearing the Transcript Window
To clear the transcript window, choose Edit> Clear All. If the cursor is in the transcript
window, you can use the keyboard shortcut Control-Delete. This removes all of the
existing text from the window.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

277

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Interacting with the TestMAX ATPG GUI

Feedback

Interacting with the TestMAX ATPG GUI
The following sections provide an overview on interacting with the TestMAX ATPG GUI:

• Using Keys in the Command Line

• Using the Graphical Schematic Viewer

• Using the Transcript Window

• Saving Preferences

Using Keys in the Command Line
Ctrl-V - Pastes the current copy buffer into the command input.

Ctrl-X - Cuts selected text in the paste buffer.

Using the Graphical Schematic Viewer
Note: If you try one of the keys or mouse actions listed below and nothing happens, make
sure you click in the graphical schematic window.

Left click - Selects graphic objects of gates or nets. To select an object, click it. TestMAX
ATPG deselects existing selections and selects the object you clicked. To deselect the
object, click it a second time. To deselect all selections, click over an area with no objects.

Shift-Left click - Adds to the existing selection set. This is identical to clicking the left
mouse button except selected items remain selected even when you click new objects.

Ctrl-Left click - Toggles selected items. To select an object and add it to the selected set,
click it. To remove the object from the selected set, click the object (already selected).

Delete - Hides all currently selected objects.

Insert - Shows all currently selected objects.

Ctrl-right click over net diamond - Provides a shortcut to the Unconnected Fanout
list. Normally left-clicking a net diamond draws the next connection. If there are many
connections exist or if you want a specific connection, select it using the Unconnected
Fanout list.

Ctrl-right click over gate - Updates the contents of the Block Info window if it is
open.

Block Info on Top - After the Block Info window is open, it moves to the back of all the
windows when you do anything in the TestMAX ATPG main window. To keep the Block

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

278

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Interacting with the TestMAX ATPG GUI

Feedback

Info window always on top, select the option in the Edit > Environment dialog under the
Info Viewer tab.

Arrow Keys - The arrow keys scroll the graphical window by one grid. One grid is the
distance between two pins on a gate.

Shift-Arrow Keys - Moves your view into the GSV by 1/2 window.

Ctrl-Arrow Keys - Moves your view into the GSV by 1 window.

Page Down - Moves your view into the GSV by one full window.

Page Up - Moves your view into the GSV by one full window.

End - Moves your view into the GSV to the far right.

Home - Moves your view into the GSV to the far left.

Ctrl-F - Performs a ZOOM FULL.

Ctrl-B - Initiates a ZOOM BY BOX. This changes the cursor and allows you to draw a box
to zoom into.

Using the Transcript Window
Note: If you try one of the keys or mouse actions listed below and nothing happens, make
sure you click in the transcript window.

F3 - Starts a Find Next operation in the transcript.

Left mouse button - Selects text when you left-click at the beginning of the text range,
hold, and drag the cursor to the end of the range and release. TestMAX ATPG displays the
selected text in reverse highlight. If you drag the cursor outside of the transcript window,
the window automatically scrolls.

Ctrl-S - Displays the Save Text dialog and to save either the selected text or all text.

Ctrl-P - Displays the Print menu to print the transcript.

Ctrl-Delete - Clears the transcript window.

Arrow Keys - Move the cursor one character position in the direction selected (up, down,
left, right). If necessary, scrolls the window.

Page Up, Page Down - The Page Up key scrolls the transcript up by one page, and the
Page Down key scrolls the transcript down by one page. A page is the number of lines that
can be displayed in the current window.

Home, End - The Home key moves the cursor to the beginning of the current line and
scrolls to the left if necessary. The End key moves the cursor to the end of the current line.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

279

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

Ctrl-Home, Ctrl-End - Scrolls the transcript window to the beginning of the first line in
the transcript, or the end of the last line in the transcript, respectively.

Saving Preferences
TestMAX ATPG enables you to save these GUI preferences so that the settings persist the
next time you invoke TestMAX ATPG.

When you invoke the TestMAX ATPG GUI, it reads some of the default GSV preferences
from the tmax.rc file. The TestMAX ATPG GUI has a Preferences dialog to change the
default settings to control the appearance and behavior of the GUI. These default settings
control the size of main window, window geometry, application font, size, GSV preferences
and other preferences. If you change the appearance and behavior of the GUI using
the Preferences dialog, TestMAX ATPG saves your changes in the $(HOME)/.config/
Synopsys/tmaxgui.conf file before it exits. The next time you invoke TestMAX ATPG, it
does the following:

1. Reads the default preferences from the tmax.rc file.

2. Reads the preferences from the $(HOME)/.config/Synopsys/tmaxgui.conf file.
For the preferences that are listed in the tmax.rc file,the $(HOME)/.config/Synopsys/
tmaxgui.conf file has precedence over the tmax.rc file. For all other GUI preferences,
TestMAX ATPG uses the values from the tmaxgui.rc file to define the appearance and
behavior of the GUI.

Using Online Help
TestMAX ATPG provides Online Help in the following forms:

• Browser-Based Online Help on commands, design flows, error messages, design
rules, fault classes, and many other topics.

• Text-Only Help on TestMAX ATPG commands, displayed in the transcript window. In
Tcl mode, enter the command name, followed by the -help option. In non-Tcl (native)
mode, use the help command in the command-line window.

Browser-Based Online Help
You can view detailed help on a wide range of TestMAX ATPG topics by using browser-
based Online Help. This section describes the following topics related to Online Help:

• Setting Up Online Help in Linux

• Launching Online Help

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

280

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

• Installing and Running Stand-Alone Online Help in Windows

• How to Browse, View, and Copy Scripts

Setting Up Online Help in Linux
Note the following when configuring Online Help in Linux:

• If you are starting Online Help for the first time, and you have an existing Netscape
profile, Mozilla will initially try to convert your profile. In this case, select "Do Not
Convert."

• To set up a default browser for Help, do the following:

1. If you want to use Firefox, specify the following:

alias Firefox '</usr/bin>/firefox'

(where </usr/bin> is a path on your network)

2. If you want to use Mozilla, specify the following:

alias mozilla '</usr/bin/>mozilla'

3. Specify the following environment variable to use Firefox as your default browser for
running Online Help:

setenv USER_HELP_BROWSER /usr/bin/firefox

• Your browser's preferences for page setup (ie: open page-links in a new window, most
recent viewed window, or new tab/window), can affect the display of popup windows in
Online Help. It is recommended that you use the browser's default preference settings
for page setup.

Launching Online Help
You can launch TestMAX ATPG Help by doing any of the following:

Selecting the GUI Help Menu

From the menu bar in the GUI, choose Help > Table of Contents, or select a particular
topic to open (that is, Command Summary, Getting Started, Fault Classes, and so forth.).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

281

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

Figure 17 Accessing Help Through the GUI Menu Bar

   

Entering the man Command in GUI Text Field

In the command-line text field of the GUI, use the following syntax to open a topic related
to either a specific commad (set_drc) or a message (that is, M401):

> man command | message_id

See the following figure for an example.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

282

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

Figure 18 Opening a Specific Topic in TestMAX ATPG Help From the Command-line Text
Field

   

Right-Clicking On a Command Or Message

Right-click a particular command or message in the console window, then select Help
Topic. The Help topic for the command on message will appear. See Figure 3 for an
example.

Figure 19 Right-Clicking on a Message (that is, S30) to Bring Up Online Help

   

Click the Help Button in Dialog Box

Click the Help button within a dialog box to bring up a Help topic that describes the active
dialog box. See Figure 4.

Figure 20 Accessing Help From a Dialog Box

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

283

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

Installing and Running Stand-Alone Online Help in Windows
There are several ways you can run a stand-alone version of TestMAX ATPG Online Help
in Windows:

• In the first method (advised), you download a .zip file from a SolvNet article and unzip
the file to your desktop.

• You can also copy a .tar file containing TestMAX ATPG Online Help from the product
installation tree and extract the file on your desktop

• Your third option is to download a Microsoft Help (CHM) version of TestMAX ATPG
Online Help from a SolvNet article.

How to Download a .zip file and Install TestMAX ATPG Online Help

1. Go to the following URL:

https://solvnetplus.synopsys.com/s/article/How-to-Set-Up-Browser-Based-TetraMAX-
Online-Help-in-Windows-1576148274956

2. In the SolvNet article that appears (How to Set Up Browser-Based TestMAX ATPG
Online Help in Windows), click on the tmax_olh.zip link.

   

3. Save the tmax_olh.zip file to a local directory.

4. Extract the .zip file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

284

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com/s/article/How-to-Set-Up-Browser-Based-TetraMAX-Online-Help-in-Windows-1576148274956
https://solvnetplus.synopsys.com/s/article/How-to-Set-Up-Browser-Based-TetraMAX-Online-Help-in-Windows-1576148274956

Chapter 5: Command Interface
Using Online Help

Feedback

5. Create a shortcut to TestMAX ATPG Help from the Default.htm file in the top level of
the extracted directory. (To do this, right-click on the Default.htm file and select "Create
Shortcut" from the menu.)

6. Drag and drop the shortcut icon to your desktop.

How to use a .tar file from the Product Installation and Install TestMAX ATPG Online Help

1. Copy the tmax_olh.tar file from the following location in the TestMAX ATPG installation
directory to a Windows machine:

$SYNOPSYS_install_path/doc/test/tmax_olh.tar

2. Extract the contents of the tmax_olh.tar file.

3. To create a shortcut for TestMAX ATPG Online Help, follow steps 5 and 6 in the
previous section, "How to Download a .zip file and install TestMAX ATPG Online Help.

How to Download and install a Microsoft Help (CHM) version of TestMAX ATPG Online
Help

1. Go to the following URL:

https://solvnet.synopsys.com/retrieve/1466979.html

2. In the SolvNet article that appears (TestMAX ATPG Help File in CHM Format), click the
"TestMAX ATPG Online Help CHM File" link.

   

3. Save the file to a local directory.

Important: Do not run the .chm file from a network location. It will not work.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

285

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/1466979.html

Chapter 5: Command Interface
Using Online Help

Feedback

4. Double-click the executable tmax_olh.chm file.

TestMAX ATPG Online launches as a stand-alone CHM application.

How to Browse, View, and Copy Scripts
There are several ways you can access and copy scripts from TestMAX ATPG Online
Help:

• The "Scripts" button at the bottom of the home page

• The "Scripts" menu at the top over every topic

• The "Scripts" chapter of the PDF TestMAX ATPG User Guide.

To use the Scripts button at the bottom of the home page:

1. Hover your mouse over the Scripts button.

A list of scripts appears in a popup window.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

286

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

   

2. Hover your mouse and browse through various scripts in the scroll-down list.

The script associated with each hovered list item appears in a popup window on the
right side of the list.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

287

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

   

3. Move your mouse into the script popup window. You can manually select and copy
the script or use the "Copy Script" button at the bottom of the window to automatically
select the entire script and copy it to your clipboard.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

288

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

   

4. Move your mouse anywhere outside the popup window to close it.

Text-Only Help
To access text-only help on a command in Tcl mode, enter the name of the command,
followed by the -help option of the command-line window. In non-Tcl (native) mode, use
the help command, followed by the name of the command.

A Tcl mode text-only help example is as follows:

BUILD-T> set_workspace_sizes -help
Usage: set_workspace_sizes
[-connectors] (maximum number of fanout connections supported)
[-decisions] (maximum active decisions)
[-drc_buffer_size] (maximum DRC buffer size)
[-line] (maximum line length)
[-string] (maximum string length)
[-command_line] (command line length)
[-command_words] (command line words)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

289

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Command Interface
Using Online Help

Feedback

A native mode text-only help example is as follows:

BUILD> help set workspace sizes
Set WOrkspace Sizes [-Atpg_gates d]
[-CONnectors d] [-Decisions d] [-DRC_buffer_size d] [-Line d]
[-String d] [-COMMAND_Line d] [-COMMAND_Words d]

For a list of available command help topics, type the following command in the command-
line window:

BUILD-T> report_commands -all
add_atpg_constraints add_atpg_primitives
add_capture_masks add_cell_constraints
add_clocks add_display_proc
add_delay_paths add_display_gates
add_distributed_processors add_equivalent_nofaults
add_faults add_net_connections
add_nofaults add_pi_constraints
...

For a list of available options associated with a command, type the name of the command,
followed by a dash and the TAB key:

BUILD-T> report_buses -
all clock keepers noverbose verbose
behavior contention max pull weak
bidis gate_id names summary zstate

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

290

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6
Using the Graphical Schematic Viewer

The graphical schematic viewer (GSV) displays design information in schematic form for
review and analysis. It selectively displays a portion of the design related to a test design
rule violation, a particular fault, or some other design-for-test (DFT) condition. You use the
GSV to find out how to correct violations and debug the design.

The following sections describe how to use the GSV for interactive analysis and correction
of test design rule checking (DRC) violations and test pattern generation problems:

• Getting Started With the GSV

• Displaying Pin Data

• Analyzing a Feedback Path

• Checking Controllability and Observability

• Analyzing DRC Violations in the GSV

• Analyzing Buses

• Analyzing ATPG Problems

• Printing a Schematic to a File

Getting Started With the GSV
The following sections describe how to get started using the GSV:

• Using the SHOW Button to Start the GSV

• Starting the GSV From a DRC Violation or Specific Fault

• Navigating, Selecting, Hiding, and Finding Data

• Expanding the Display From Net Connections

• Hiding Buffers and Inverters in the GSV Schematic

• ATPG Model Primitives

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

291

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

• Displaying Symbols in Primitive or Design View

• Displaying Instance Path Names

Using the SHOW Button to Start the GSV
The following steps describe how to start the GSV and display a particular part of the
design:

1. Click the SHOW button.

The SHOW menu appears, which lets you choose what to show: a named object,
trace, scan path, and so on.

2. To display a named object, select Named.

The Show Block dialog box appears.

3. In the Block ID/PinPath Name text field, enter a primitive ID, instance, or pin path name
to the object to display. (If you do not know what instance or pin names are available,
enter 0; this is the primitive ID of the first primary input port to the top level.)

For information on the design’s port names and hierarchy, review the list of top-level
ports using the report_primitives -ports command.

4. Click the Add button.

Your entry is added to the list box.

5. Repeat steps 3 and 4 to add all the parts of the design that you want to view.

6. Click OK

The following figure shows the TestMAX ATPG GUI main window split by the movable
divider. The top window shows a GSV schematic containing the specified objects. The
bottom window contains the transcript.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

292

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Figure 21 GSV in the TestMAX ATPG GUI Main Window

   

Starting the GSV From a DRC Violation or Specific Fault
You can start the GSV and view a specific DRC violation by using the Analyze dialog box,
as shown in the following steps:

1. Click the ANALYZE button in the GSV toolbar.

The Analyze dialog box appears as shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

293

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Figure 22 Analyze and Fill Faults Dialog Boxes

   

2. Click the Faults tab if it is not already active.

3. Select the Pin Pathname option, if it is not already selected.

4. Click the Fill button.

The Fill Faults dialog box opens.

5. Using the Class field, select the class of faults that you would like to see listed, such as
“NO: not-observed.” You can also specify the range of faults within that class that are to
be listed.

6. Click OK to fill in the list box in the Analyze window, as shown in the following figure.

7. From the list, select the specific fault you would like displayed, such as “0 /core/
CTL_2/U351/X”.

The fields at the top of the dialog box are filled in automatically from your selection.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

294

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

8. Click OK.

The Analyze dialog box closes and the GSV displays the logic associated with the
selected fault location.

The following figure shows the schematic displayed for a selected fault. The title at the top
of the GSV window indicates the fault location displayed and appears on any printouts of
the GSV.

Figure 23 GSV Window With a Fault Displayed

   

The command-line equivalent to the Analyze dialog box is the analyze_faults command.
This command and the resulting report appear in the transcript window, as shown in the
following example.

Transcript of Not-Observed Analysis
TEST-T> analyze_faults /core/CTL_2/U351/X -stuck 0 -display

Fault analysis performed for /core/CTL_2/U351/X stuck at 0 (output of AND
 gate 178).
Current fault classification = NO (not-observed).

Connection data: to=CLKPO,MASTER from=CLOCK
Fault site control to 1 was successful (data placed in parallel pattern
 0).
Observe_pt=any test generation was unsuccessful due to abort.
Observe_pt=181(AND) test generation was successful (data placed in
 parallel pattern 1).
Observe_pt=273(NAND) test generation was successful (data placed in
 parallel pattern 2).
Observe_pt=309(NAND) test generation was successful (data placed in
 parallel pattern 3).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

295

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Observe_pt=391(TSD) test generation was successful (data placed in
 parallel pattern 4).
Observe_pt=395(BUS) test generation was successful (data placed in
 parallel pattern 5).
Observe_pt=55(PIO) test generation was unsuccessful due to
 atpg_untestable.
Warning: 1 patterns rejected due to 16 bus preclock contentions
 (ID=394, pat1=0). (M181)
The gate_report data is now set to "pattern:5".

The details of this type of report are described in the Analyzing a NO Fault section.

See Also

• Performing Design Rule Checking

• Fault Lists and Faults

Navigating, Selecting, Hiding, and Finding Data
Within the GSV, you can navigate to different locations and views, select objects, hide
objects, and find specific data for various objects.

The following sections describe each of these actions:

• Navigating Within the GSV

• Selecting Objects in the GSV Schematic

• Hiding Objects in the GSV Schematic

• Using the Block ID Window

Navigating Within the GSV
To navigate within the GSV window, use the horizontal or vertical slider; the arrow keys on
the keyboard; and the ZM IN, ZM OUT, ZM RESET, ZM FULL, and ZM BOX buttons.

To zoom in to a specific area, click the ZM BOX button and then drag a box around the
area to be magnified.

Selecting Objects in the GSV Schematic
To select an object, click it. The selected object color changes to red. The net or instance
name of the selected object appears in the lower status bar, as shown in the following
figure.

To deselect the object, click it again. To select more than one object, hold down the Shift
key and click each object.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

296

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Figure 24 Selected Object Name

   

Hiding Objects in the GSV Schematic
The following steps describe how to hide an object in the GSV:

1. Select the object by clicking it.

2. Click the HIDE button.

The HIDE menu appears.

3. Choose Selected.

The selected object is hidden. Alternatively, you can choose Named to hide a named
object, or All to hide all objects. You can also press the Delete key to hide selected
objects.

Using the Block ID Window
You can find out the instance name, parent module, and connection data for any displayed
object using the Block ID window. The following steps show you how to open the Block ID
window:

1. Click the object of interest; the object color changes to red.

2. With the right mouse button, click the object again.

A menu appears.

3. With the left mouse button, click the Display Gate Info option of the menu.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

297

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

The Block ID window appears with information about the selected object.

4. To display information for other objects, with the Block ID window still open, click each
object with the right mouse button while holding down the Control key.

Expanding the Display From Net Connections
In the schematic display, net connections to undisplayed nets appear with one of two
termination symbols, as shown in the following figure:

• The diamond symbol represents a unidirectional net connection

• The bow tie symbol represents a bidirectional net connection

Figure 25 Net Expansion Symbols: Diamond and Bow Tie

   

To expand the display from a specific connection, click the diamond or bow tie that
represents the connection of interest. The schematic expands to include the next gate
or component forward or backward from the selected connection. Each click adds one
component to the display. If a net has multiple additional components, you can click
repeatedly and display more components until the diamond or bow tie no longer appears.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

298

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

The following steps show an example of the results obtained by clicking the diamond and
bow tie connection points:

1. Click the diamond.

   

2. Click the boxtie on gate 17454.

   

3. Click three times on diamond on gate 17454.

   

The following steps describe how to traverse a specific route from output pin to input pin
without displaying all the fanout connections:

1. Right-click the net diamond.

2. From the pop-up menu, select Show Unconnected Fanout.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

299

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

The Unconnected Fanout dialog box appears, which lists all of the paths from the net
that are not currently shown in the schematic.

3. Select from the list the path you want to traverse.

4. Click OK. The GSV adds the selected path to the GSV display.

For information about the add_net_connections command, see the man pages.

Hiding Buffers and Inverters in the GSV Schematic
When you display a design at the primitive level, you can save display space by removing
the buffer and inverter gates and instead display them as double slashes and bubbles.

The following steps describe how to hide buffer and inverter gates:

1. Click the SETUP button on the GSV toolbar.

The GSV Setup dialog box appears. The Hierarchy selection lets you specify whether
to display primitives or design components. (For a discussion of primitives, see ATPG
Model Primitives.)

2. Select the BUF/INVs check box in the Hide section.

3. Click OK.

TestMAX ATPG redraws the schematic without the usual buffer and inverter symbols.

As you redraw items in the schematic, the buffers and inverters are displayed as double
slashes and bubbles, as shown in the following figure. Double slashes across the net
represent a hidden gate with no logic inversion; double slashes around a bubble represent
a hidden gate with logic inversion.

When you look at schematics that contain hidden gates, be aware of any hidden gates that
invert logic.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

300

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Figure 26 Schematic With Buffers and Inverters Hidden

   

ATPG Model Primitives
This section describes the set of TestMAX ATPG primitives that are used in GSV displays
when Primitive is selected in the GSV Setup dialog box. If Design is selected, see
Displaying Symbols in Primitive or Design View.

The primitives include the following:

• Tied Pins

• Primary Inputs and Outputs

• Basic Gate Primitives

• Additional Visual Characteristics

• RAM and ROM Primitives

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

301

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Tied Pins
A pin can be tied to 0, 1, X, or Z and can be represented in one of the following two ways:

• By an oval containing the label T0, T1, TX, or TZ connected to the pin. For example,
in the following figure, the DFF on the left has two of its input pins connected to ovals
labeled TX, indicating that the two pins are tied to X (unknown).

• By a separate connection to a TIE primitive. For example, in the following figure, the
DFF on the right has two of its input pins connected to the TIE0 primitive, indicating
that the two pins are tied to 0.

Figure 27 GSV Representation of Tied Pins

   

Primary Inputs and Outputs
Primary (top-level) inputs and outputs are identified in the following ways:

• Primary inputs are identified with the symbol shown for gates 67 and 250 in the
following figure. Primary input ports always appear at the left of the schematic, and the
symbol contains the port label (for example, iihclk and test_se).

• Primary outputs are identified with the symbol shown for gate 94018 in the following
figure. Primary outputs always appear at the right of the schematic, and the symbol
contains the port label (for example, cpu_clk).

• Primary bidirectional ports are identified with the symbol shown for gate 305 in the
following figure. Primary bidirectional ports can appear anywhere in the schematic, and
the symbol contains the port label (for example, owe_). The two bidirectional triangular
wedges on bidirectional nets distinguish them from unidirectional nets.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

302

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Figure 28 Primary I/O and Bidirectional Port Symbols

   

Basic Gate Primitives
The following figure shows representative symbols for many of the more commonly used
TestMAX ATPG primitives. The combinational gates AND, OR, NOR, XOR, and XNOR are
shown with two inputs, but can have any number of inputs. For a complete list, refer to the
Online Help reference topic “ATPG Simulation Primitives.”

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

303

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

Figure 29 Some Basic Gate Primitives

   

Additional Visual Characteristics
Some additional visual characteristics of ATPG primitives are described as follows:

• Merged inverters: Inverters can be merged into the drawn symbol to make the
schematic more compact. For example, in the preceding figure, the AND gate (ID
40449) shows an inversion bubble on the A input, indicating that an inverter that
preceded this pin has been merged into the AND gate.

• Merged resistors: Resistors can be merged into the drawn symbol to show a gate that
has a weak output drive strength. For example, in the preceding figure, the BUS gate
(ID 47310) shows a resistor on one of its input pins, indicating a resistive input.

• Pin Name labels: Some pins are labeled with pin names, and some are not. A pin
name on a primitive indicates that the pin maps directly to the identical pin on the
defining module in the library cell. For example, in the preceding figure, the TSD or
three-state device (ID 14461) shows pins labeled A, E, and Z, meaning that those
pins are all directly mapped to the pins of the defining module. However, the DFF (ID
82517) shows only pin CP labeled, meaning that CP is mapped directly to the defining
module’s pin called CP, but the unnamed pins are connected to other TestMAX ATPG

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

304

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

primitives. A single module can be represented by several TestMAX ATPG primitives;
in that case, the labels do not all appear on the same TestMAX ATPG primitive.

• Pin order: The order of pins on the TSD, DLAT, DFF, and MUX primitives is significant.
Refer to the preceding figure; pins are displayed in the following order, starting at the
top:

◦ For the DLAT (level-sensitive latch) primitive: asynchronous set, asynchronous
reset, active-high enable, and data inputs.

◦ For the DFF (edge-triggered flip-flop) primitive: asynchronous set, asynchronous
reset, positive triggered clock, and data inputs.

◦ When the display mode is set to Primitive, you can control the appearance of DFF/
DLAT symbols in the Environment dialog box (Edit > Environment). In the dialog
box, click the Viewer tab and set the DFF/DLAT option to Mode 1, Mode 2, or Mode
3. For details, see Displaying Symbols in Primitive or Design View on and DFF
Primitive.

RAM and ROM Primitives
For readability, instead of a single rectangle with numerous pins, a RAM or ROM block
is represented as a collection of the special primitives shown in the following figure. The
example represents a simple 256x4 RAM with a single write port and a single read port,
each with its own address and control pins. Other RAMs can have multiple read and
write ports. Although the RAM and ROM primitives are shown with specific bit-widths
(for example, ADRBUS has eight bits and DATABUS has four bits), all bit-widths are
supported, as required by the design.

Figure 4: RAM and ROM Primitives

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

305

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Getting Started With the GSV

Feedback

The RAM and ROM primitives are described as follows:

• ADRBUS: Merges the eight individual address lines at the left into the single 8-bit
address bus at the right. In this example, the write port uses a separate address from
the read port.

• DATABUS: Merges the four individual data write lines at the left into the single 4-bit
data bus at the right.

• MEMORY: The core of the RAM or ROM; holds the stored contents. Starting from the
top left, pins are as follows: an active-high set; an active-high reset (both tied to 0 in the
example); a single data write port consisting of a write clock (wclk); a write enable (tied
to 1); the write port address bus (8 bits); and the write port data bus (4 bits). A memory
block can have multiple read and write ports; a memory without a write port represents
a ROM. The module where the ROM is defined must give a path name to a memory
initialization file.

• RPORT: Provides a single read port. It has a read clock or read enable pin (tied to 1 in
the example), an 8-bit address bus input, and a 4-bit data bus input from the memory
core. Its output is a 4-bit data bus.

• MOUT: Splits a single bit from the 4-bit RPORT data bus.

See Also

• Creating Custom ATPG Models

Displaying Symbols in Primitive or Design View
You can choose to display a schematic using the TestMAX ATPG primitives (Primitive
view) or using the higher-level symbols that represent the library cells (Design view).

To specify the type of view, in the GSV Setup dialog box, select either Primitive or Design
in the Hierarchy box and click OK. Figure 1 shows two different views of a design.

Figure 30 Comparison of Primitive and Design Views

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

306

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

Note that the schematic labeled Primitive View uses TestMAX ATPG primitives; the
schematic labeled Design View uses cells in the technology library.

Displaying Instance Path Names
You can display the instance path name above each instance in the schematic, as
described in the following steps:

1. Select Edit > Environment in the menu bar.

The Environment dialog box appears.

2. In the Environment dialog box, click the Viewer tab.

3. Select the Display Instance Names check box.

4. Click OK.

See Also

• Masking Scan Cell Inputs and Outputs

Displaying Pin Data
You can display various types of pin data on the schematic to help you analyze DRC
problems or view logic states for specific patterns, constrained and blocked values, or
simulation results. For example, you might want to see the ripple effects of pins tied to 0 or
1, identify all nets that are part of a clock distribution, or see logic values on nets resulting
from a STIL shift procedure.

The data values displayed are generated either by DRC or by ATPG. Data values
generated by DRC correspond to the simulation values used by DRC in simulating the
STIL protocol to check conformance to the test rules. Data values generated by ATPG are
the actual logic values resulting from a specific ATPG pattern.

When you analyze a rule violation or a fault, TestMAX ATPG automatically selects and
displays the appropriate type of pin data. You can also manually select the type of pin
data to be displayed by using the SETUP button in the GSV toolbar, or you can use the
set_pindata command at the command line.

The following sections describe how to display pin data:

• Using the Setup Dialog Box to Display Pin Data

• Pin Data Types

• Displaying Clock Cone Data

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

307

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

• Displaying Clock Off Data

• Displaying Constrain Values

• Displaying Load Data

• Displaying Shift Data

• Displaying Test Setup Data

• Displaying Pattern Data

• Displaying Tie Data

Using the Setup Dialog Box to Display Pin Data
The following steps describe how to display pin data on the schematic using the Setup
dialog box:

1. With a schematic displayed in the GSV (for example, as shown in the following figure),
click the SETUP button on the GSV toolbar.

The Setup dialog box opens.

2. Using the Pin Data Type pull-down menu, select the type of pin data you want to
display.

3. Click OK.

TestMAX ATPG redraws the schematic using the new pin data type.

Figure 31 GSV Display With Pin Data Type Set to Tie Data

   

To set the pin data display mode from the command line, use the set_pindata command.
For example:

TEST-T> set_pindata -clock_cone CLK

For complete syntax and option descriptions, see Online Help for the set_pindata
command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

308

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

Pin Data Types
The following table lists each pin data type, a description of the data displayed in the GSV,
and its typical use. You can find additional related information in the description of the
set_pindata command in Online Help.

Table 2 Pin Data Types

Pin Data
Type

Data Displayed Typical Use

Clock
Cone

Cone of influence and effect cones for the
selected clock

Debugging clock (C) violations

Clock On Simulated values when all clocks are held in on
state

Debugging clock (C) violations

Clock Off Simulated values when all clocks are held in off
state

Debugging clock (C) violations

Constrai
n Value

Simulated values that result from tied circuitry
and ATPG constraints

Analysis of the effects of constrained
signals

Debug
Sim Data

Imported external simulator values Debugging golden simulation vector
mismatches

Error
Data

Simulated values associated with the current
DRC error

Analysis of DRC violations with
severity of error

Fault
Data

Current fault codes Analysis of fault coverage (for
advanced users of fault simulation)

Fault Sim
Results

Good machine and faulty machine values for a
selected fault

Displaying results of Basic-Scan fault
simulation (for advanced users of fault
simulation)

Full-Seq
SCOAP
Data

SCOAP controllability and observability
measures using Full-Sequential ATPG

Identification of logic that is difficult to
test with Full-Sequential ATPG

Full-Seq
TG Data

Full-Sequential test generator logic values,
showing the sequence of logic values used to
achieve justification

Analysis of logic controllability using
Full-Sequential ATPG

Good
Sim
Results

The good machine value for the selected ATPG
pattern

Displaying ATPG pattern values

Load Simulated values for the load_unload procedure Debugging problems in a STIL
load_unload macro

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

309

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

Table 2 Pin Data Types (Continued)

Pin Data
Type

Data Displayed Typical Use

Master
Observe

Simulated values for the master_observe
procedure

Debugging problems in a STIL
master_observe procedure

Pattern Simulated values for a selected pattern Fault analysis; displays ATPG
generated values

SCOAP
Data

SCOAP controllability and observability
measures

Identification of logic that is difficult to
test

Sequenti
al Sim
Data

Currently stored sequential simulation data Displaying results of sequential fault
simulation (for advanced users of fault
simulation)

Shadow
Observe

Simulated values for the shadow_observe
procedure

Debugging problems in a STIL
shadow_observe procedure

Shift Simulated values for the
Shift
procedure

Debugging DRC T (scan chain tracing)
violations

Stability
Patterns

Simulated values for the l
oad_unload
,
Shift
, and
capture
procedures

Analysis of classification of nonscan
cells

Test
Setup

Simulated values for the test_setup macro Debugging problems in a STIL
test_setup macro

Tie Data Simulated values that result from tied circuitry Analysis of the effects of tied signals

Displaying Clock Cone Data
To display clock cone data, select Clock Cone as the Pin Data type in the GSV Setup
dialog box and click OK. The schematic is redrawn as shown in the following figure. This
example shows the clock cones and effect cones of the TCK clock port.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

310

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

Figure 32 GSV Display: Pin Data Type Set to Clock Cone

   

Note the following:

• Nets labeled “C” are in the clock’s clock cone. A clock cone is an area of influence that
begins at a single point, spreads outward as it passes through combinational gates,
and terminates at a clock input to a sequential gate.

• Nets labeled “E” are in the clock’s effect cone. An effect cone begins at the output
of the sequential gate affected by the clock, spreads outward as it passes through
combinational gates, and also terminates at a sequential gate.

• Nets labeled “CE” are in both the clock and effect cones because of a feedback path
through a common gate that allows the effect cone to merge with the clock cone.

• Nets labeled “N” are in neither the clock nor effect cones.

Displaying Clock Off Data
To display clock off data, select Clock Off as the Pin Data type in the GSV Setup dialog
box and click OK. The schematic is redrawn as shown in the following figure.

Figure 33 GSV Display: Pin Data Type Set to Clock Off

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

311

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

In the preceding figure, nets that are part of a clock distribution are shown with the logic
values they have when the clocks are at their defined off states. Nets not affected by
clocks are shown with Xs.

In this design, the clock ports are CLK and RSTB and their nets have values of 0. The 0
value from the CLK net is propagated to the input of gate 10, the output of gate 10, and
the CK input of gate 59 (the DFF). The 0 value of RSTB is propagated to the RB input of
the same DFF, gate 59. Notice that the RB pin has an inversion bubble; this is an active-
low reset. When the clocks are off, there is a logic 0 value on this pin, which results in a C1
violation (unstable scan cells when clocks off).

The solution to the problem detected here is to delete the clock RSTB and redefine it with
the opposite polarity. Then, execute run_drc again and verify that this particular DRC
violation is no longer reported.

Displaying Constrain Values
To display constrain values, select Constrain Value as the Pin Data type in the GSV Setup
dialog box and click OK. The following figure shows a schematic displaying the constrain
values.

Figure 34 GSV Display: Pin Data Type Set to Constrain Value

   

Constrain values are shown as three pairs of characters in the format T/B1, C/B2, S/B3:

• T is the pin’s value that is a result of tied circuitry, if any exists. An “X” indicates that
there is no value due to tied logic.

• B1 indicates whether faults are blocked on the pin because of the tied value “T.” A
value of “B” indicates that the fault is blocked; a dash (-) indicates that the fault is not
blocked.

• C is the constant value on the pin that results from constrained circuitry during Basic-
Scan ATPG, if any. A tilde (~) preceding the character indicates values that cannot be
achieved. For example, ~1 means that a value of 1 cannot be achieved, so the value is
either 0 or X. An “X” indicates that there is no constant value due to constraints during
Basic-Scan ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

312

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

• B2 indicates whether faults are blocked on the pin because of the constrained value
“C.” A value of “B” indicates that the fault is blocked; a dash (-) indicates that the fault is
not blocked.

• S is similar to C, except that it is the constant value on the pin that results from
constrained circuitry during sequential ATPG.

• B3 is similar to B2, except that it indicates whether faults are blocked on the pin
because of the constrained value “S.”

Displaying Load Data
To display logic values during the load_unload procedure, select Load as the Pin Data
type in the GSV Setup dialog box and click OK. The following figure shows a schematic
displaying the load data.

Figure 35 GSV Display: Pin Data Type Set to Load

   

The logic values are shown in the format “AAA{ }SBB”:

• AAA is one or more logic states associated with test cycles defined at the beginning of
the load_unload procedure.

For each test cycle defined before the Shift procedure within the load_unload
procedure, AAA has only one logic state if there were no events during that cycle.

For example, if three test cycles within the load_unload procedure precede the Shift
procedure and an input port is forced to a 1 in the first cycle, the input port might show
logic values 111{ }1. If, however, the port is pulsed and an active-low pulse is applied
in the third test cycle, the port would show logic values 11101{ }1. In this case, the third
test cycle is expanded into three time events and produces the third, fourth, and fifth
characters, --101{ }-.

Curly braces { } represent application of the Shift procedure as many times as needed
to shift the longest scan chain. For single-bit shift chains, the actual data simulated for
the shift pattern is used rather than the { } placeholder.

• S represents the final logic value at the end of the Shift procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

313

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

• BB represents the logic values from cycles in the load_unload procedure that occur
after the Shift procedure. TestMAX ATPG determines the logic values for multibit shift
chains as follows:

◦ It places all constrained primary inputs at their constrained states.

◦ It simulates all test cycles within the load_unload procedure before the Shift
procedure, in the order that they occur.

◦ It sets to X all other input ports and scan inputs that are not constrained or explicitly
set.

◦ It pulses the shift clock repeatedly until the circuit comes to a stable state.

◦ It simulates all test cycles that are defined within the load_unload procedure that
occur after the Shift procedure.

If no test cycles in the load_unload procedure occur after the Shift procedure, BB is an
empty string. Otherwise, the string displayed for BB contains characters: one character for
each test cycle that can be represented with a single time event, and multiple characters
for any test cycles that require multiple time events. This is similar to how a single cycle in
A is expanded into three characters when the port is pulsed; see the preceding discussion
of AAA.

Displaying Shift Data
To display logic values during the Shift procedure, select Shift as the Pin Data type in the
GSV Setup dialog box and click OK. The schematic is redrawn as shown in the following
figure.

In the following figure, the pins show logic values that result from simulating the Shift
procedure. The CLK port shows a simulation sequence of 010, and during the same three
time periods, the RSTB pin is 111 and the SCAN pin is 111.

Figure 36 GSV Display: Pin Data Type Set to Shift

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

314

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

These are all appropriate values for the STIL Shift procedure shown in the following
example:

Shift
V { _so = #; _si = #; INC = 0; CLK = P; RSTB = 1; SCAN = 1; }
}

Displaying Test Setup Data
To display logic values simulated during the test_setup macro, select Test Setup as the
Pin Data type in the GSV Setup dialog box and click OK. An example schematic with Test
Setup data is shown in the following figure.

Figure 37 GSV Display: Pin Data Type Set to Test Setup

   

By default, only a single logic value is shown, which corresponds to the final logic value
at the exit of the test_setup macro. To show all logic values of the test_setup macro, you
must change a DRC setting using the set_drc command, then rerun the DRC analysis as
follows:

TEST-T> drc
DRC-T> set_drc -store_setup
DRC-T> run_drc

Displaying Pattern Data
You can use the GSV to display logic values for a specific ATPG pattern within the last 32
patterns processed. The GSV can also show the values for all 32 patterns simultaneously.

To display logic values for a specific pattern:

1. Display some design gates in the schematic window.

2. Click the SETUP button in the GSV toolbar.

3. In the Setup dialog box, set the Pin Data type to Pattern.

4. In the Pattern No. text box, choose the specific pattern number to be displayed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

315

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Displaying Pin Data

Feedback

5. Click OK.

The logic values that result from the selected ATPG pattern are displayed on the nets
of the schematic, as shown in the following figure.

Figure 38 GSV Display: Pin Data Type Set to a Pattern Number

   

The logic values shown with an arrow, as in 0->1, show the pre-clock state on the left and
the post-clock state on the right. A logic state shown as a single character represents the
pre-clock state. For a clock pin, a single character represents the clock-on state.

To display logic values for all patterns, choose All Patterns in the GSV Setup dialog box
and click OK. The following figure shows all 32 patterns on the pins. You read the values
from left to right. The leftmost character is the logic value resulting from pattern 0, and the
rightmost character is the logic value resulting from pattern 31.

Figure 39 GSV Display: Pin Data Type Set to Pattern All

   

To examine a pattern that is not in the final 32 patterns processed, choose Good Sim
Results in the GSV Setup dialog box and click OK.

For an additional method of viewing the logic values from a specific pattern, see “Running
Logic Simulation ." By simulating a fault on an output port, you can display the logic values
for any pattern.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

316

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing a Feedback Path

Feedback

Displaying Tie Data
To display tie data, select Tie Data as the Pin Data type in the GSV Setup dialog box and
click OK. The schematic is redrawn as shown in the following figure.

Figure 40 Displaying Tie Pin Data in the GSV

   

In the preceding figure, logic values are shown on nets affected by pins tied to 0 or 1.
Thus, the output of gate 14 is shown with logic value 1, because its input is tied to 1. The
tied value of 1 is propagated to the inputs of gates 52 and 21. Nets not affected by tied
values are shown with Xs.

Analyzing a Feedback Path
You can use the GSV to review combinational feedback loops in the design. The following
example shows the use of the report feedback paths command to obtain a summary of all
combinational feedback paths and details about a specified feedback path. The five gates
involved in this feedback path example are identified by their instance path names (under
“id#”) and gate IDs.

Report Feedback Paths Transcript
TEST-T> report_feedback_paths -all
id# #gates #sources sensitization_status
--- ------ -------- --------------------
0 2 1 pass
1 10 1 pass
2 10 1 pass
3 10 1 pass
4 10 1 pass
5 10 1 pass
6 5 1 pass
7 10 1 pass
8 8 1 pass

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

317

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Checking Controllability and Observability

Feedback

TEST-T> report_feedback_paths 6 -verbose
id# #gates #sources sensitization_status
--- ------ -------- --------------------
6 5 1 pass
BUF /amd2910/register/U70 (2894), cell=CMOA02
INV /amd2910/register/sub_23/U11 (2895), cell=CMIN20
NAND /amd2910/register/U86 (2896), cell=CMND30
BUF /amd2910/register/U70 (2897), cell=CMOA02
NAND /amd2910/register/U70/M1 (2898), cell=OAI211_UDP_1

To view a particular feedback path in the GSV, click the SHOW button, select Feedback
Path, and specify the feedback path in the Show Feedback Path dialog box. The following
figure shows the resulting schematic display for feedback path number 6 in the preceding
example.

Figure 41 GSV Display: A Feedback Path

   

Checking Controllability and Observability
You can use the Run Justification dialog box or the run_justification command, along
with the GSV’s ability to display pattern data, to determine if:

• a single internal point is controllable and observable

• a single internal point is controllable and observable within existing ATPG constraints

• multiple points can be set to required states simultaneously

You specify one or more internal pin states to achieve. TestMAX ATPG attempts to find a
pattern that achieves the specified logic states. If a pattern can be found, it is placed in the
internal pattern buffer, and you can write it out or display it in the schematic by running the
Pattern pin display format in the Setup dialog box.

By default, the run_justification command uses Basic-Scan ATPG; or if you have
enabled Fast-Sequential ATPG with the set_atpg -capture_cycles command, it uses
Fast-Sequential ATPG. If you want justification performed with Full-Sequential ATPG, use
the -full_sequential option of the run_justification command, or enable the Full
Sequential option of the Run Justification dialog box.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

318

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Checking Controllability and Observability

Feedback

Using the Run Justification Dialog Box
To specify pin states using the Run Justification dialog box:

1. From the menu bar, choose Run > Run Justification. The Run Justification dialog box
appears.

2. In the Gate ID/Pin path name text field, type the gate ID number of a gate whose state
you want to specify or the pin path name of the pin you want to specify.

3. In the Value field, use the drop-down menu to choose the value you want to specify for
that gate or pin (0, 1, or Z).

4. Click Add.

The value and gate ID are added to the list in the dialog box.

5. Repeat steps 2, 3, and 4 for each gate or pin that you want to specify. When you are
finished, click OK.

The Run Justification dialog box closes. TestMAX ATPG attempts the justification and
reports the results.

Using the run_justification Command
The following example shows the use of the run_justification command to request
that gate ID 330 be set to 1 while gate ID 146 is simultaneously set to 0. The message
indicates that the operation was successful and that the pattern is stored as pattern 0,
available for pattern display.

Using the run_justification Command
TEST-T> run_justification -set 330 1 -set 146 0 -store

Successful justification: pattern values available in pattern 0.

The following figure shows a schematic that displays the data for pattern number 0 in the
preceding example. Gate 146 is at logic 0 state and gate 330 is at logic 1, as requested.
Justification was successful, and TestMAX ATPG was able to create a pattern to satisfy
the list of set points.

Figure 42 GSV Display: Logic Values From Run Justification

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

319

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing DRC Violations in the GSV

Feedback

See Also

• Analyzing the Cause of Low Test Coverage

Analyzing DRC Violations in the GSV
To analyze DRC violations in the GSV:

1. Run DRC. For details, see Starting Test DRC.

2. Click the ANALYZE button in the command toolbar of the GSV.

3. Click the Rules tab and select a violation from the displayed list or enter a specific
violation occurrence number in the Rule Violation field.

4. Click OK.

5. Determine the cause of the violation and correct it. For details, see Output from the
run_drc Command.

6. Run DRC again using the Run DRC Dialog Box.

7. List the violations of the same rule, verify the absence of the violation you just
corrected, and examine the remaining violations. (Sometimes, correcting a violation
corrects others as well. But it also might create new violations.)

8. Return to Step 2 and repeat the same process until all violations of the rule have been
corrected.

The following topics show how to troubleshoot some typical DRC violations:

• Troubleshooting a Scan Chain Blockage

• Troubleshooting a Bidirectional Contention Problem

Troubleshooting a Scan Chain Blockage
An S1 rule violation is referred to as a scan chain blockage and is a common DRC
violation. The S1 violation occurs when DRC cannot successfully trace the scan chain
because a signal somewhere in the circuit is in an incorrect state and is blocking the scan
chain.

The following example shows the transcript message for violation S1-13.

S1-13 Violation Message
Error: Chain c16 blocked at DFF gate /spec_asic/alu/bits/AD_DATIN/
ff_reg (18985)
after tracing 3 cells. (S1-13)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

320

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing DRC Violations in the GSV

Feedback

The following steps show you how to view the violation:

1. Click the ANALYZE button on the GSV toolbar. The Analyze dialog box opens.

2. Click the Rules tab if it is not already active.

3. Type S1-13 in the Rule Violation box.

4. Click OK.

The schematic in the following figure displays the violation. The pin data type has been
automatically set to Shift, and the shift data is displayed. The schematic shows the
gate identified in the S1-13 violation message and the gates feeding its second pin (the
reset pin).

Figure 43 GSV Display: DRC Violation S1-13

   

The following steps show you how to find the signal blocking the scan chain at gate 18985:

1. Check the clock and asynchronous pins, starting with the DFF clock pin (H02); it has a
010 simulated state from the shift procedure, which is correct.

2. Check the DFF reset pin (H05); it has an XXX value, which is unacceptable. For a
successful shift, H05 must be held inactive.

3. Trace the XXX value back from the H05 pin. The source is the primary input NRES.

The NRES input has an unknown value, either because it was not declared as a clock (as
it should have been because of its asynchronous reset capability) or because the STIL
load_unload procedure does not force NRES to an off state. You should investigate these
possibilities and correct the problem, then execute the run_drc command and examine
the new list of violations.

After correcting the NRES input problem and executing the run_drc command, you select
violation S1-9 from the list of remaining S1 violations. As before, you display the violation
using the GSV. The following figure shows the resulting schematic with Shift pin data
displayed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

321

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing DRC Violations in the GSV

Feedback

Figure 44 GSV Display: DRC Violation S1-9

   

In the preceding figure, although the NRES input is now correctly defined as a clock with
an off state of 1, there is a problem with the reset pin, pin H05, on gate 19766 (DFF).
Tracing the XXX values back as in the previous example, you find that the source is the
primary input TEST. In this case, TEST was not defined as a constrained port in the STIL
file.

To correct the problem, you need to edit the STIL file to define TEST as a primary input
constrained to a logic 1, make entries in the STIL procedures for load_unload and
test_setup to initialize this primary input, and execute run_drc again.

The number of DRC violations decreases with each iteration, but there are still S1
violations. You select another violation and display it in the GSV as shown in the following
figure.

Figure 45 GSV Display: Another S1 Violation

   

This time, the problem is associated with the bus device, which is a gate inserted by
TestMAX ATPG during ATPG design building to resolve multidriver nets. Both potential
sources for the bus inputs appear to be driving, and both have values of X. One of the
sources that has an X value is the MD[3] bidirectional port; you can correct this by driving
the port to a Z state. You edit the STIL file to add the declaration MD[3] = Z to one of the
V{..} vectors at the start of the load_unload procedure (see STIL Procedure Files).

After you make this correction, you will need to execute the run_drc command again and
find no further S1 violations.

Troubleshooting a Bidirectional Contention Problem
Bidirectional contention issues on ports and internal pins are checked by the Z rules.
In Example 1, you use the report_rules command to get a listing of Z rules that have
failed. This particular report shows 108 Z4 failures and 24 Z9 failures. Suppose you decide
to troubleshoot the Z4 failures. You use the report_violations command and get a

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

322

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing DRC Violations in the GSV

Feedback

list of five violations, as shown in the following example. From those, you select the Z4-1
violation to troubleshoot first.

report_rules Listing of Violation Messages
TEST-T> report_rules -fail
rule severity #fails description
---- -------- ------ ---------------------------------
S19 warning 201 nonscan cell disturb
C2 warning 201 unstable nonscan DFF when clocks off
C17 warning 17 clock connected to PO
C19 warning 1 clock connected to non-contention-free BUS
Z4 warning 108 bus contention in test procedure
Z9 warning 24 bidi bus driver enable affected by scan cell
TEST-T> report_violations z4 -max 5
Warning: Bus contention on /spec_asic/L030 (17373)
occurred at time 0 of test_setup procedure. (Z4-1)
Warning: Bus contention on /spec_asic/L032 (17374)
occurred at time 0 of test_setup procedure. (Z4-2)
Warning: Bus contention on /spec_asic/L034 (17375)
occurred at time 0 of test_setup procedure. (Z4-3)
Warning: Bus contention on /spec_asic//L036 (17376)
occurred at time 0 of test_setup procedure. (Z4-4)
Warning: Bus contention on /spec_asic/L038 (17377)
occurred at time 0 of test_setup procedure. (Z4-5)

According to the violation error message in the preceding example, the problem is bus
contention at time 0 of the test_setup macro. You display the violation using the GSV, as
shown in the following figure. The schematic shows the test_setup data.

Figure 46 GSV Display: DRC Violation Z4-1

   

The schematic display shows a bidirectional port, IO[0], which is at an X state. In addition,
BUS has both inputs driven at X; at least one should be a Z value. Tracing back from BUS,
you find a three-state driver TSD (gate 17300) whose enable and data values are both X.
There appear to be numerous potential causes of the contention.

The violation message indicates that the violation occurred at time 0 of the test_setup
macro. Therefore, you examine the test_setup macro in the STIL procedure file and find
that the IO[0] port has not been explicitly set to the Z state. You edit the test_setup macro
in the STIL file to add lines that set IO[0] and all the other bidirectional ports to Z.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

323

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing Buses

Feedback

After eliminating the bus contention, you execute run_drc and find no Z4 violations.
However, Z9 violations are still reported. You select Z9-1 for analysis. The pin data is
changed to Constrain Value, and the schematic display of the Z9 violation appears as
shown in the following figure.

Figure 47 GSV Display: DRC Violation Z9-1

   

The Z9-1 violation indicates that the control line to a three-state enable gate is affected by
the contents of a scan chain cell. Thus, if a scan chain is loaded with a known value and
then a capture clock or reset strobe is applied, the state of the scan cell probably changes
and therefore the three-state driver control changes. Depending on the states of the other
drivers on this multidriver net, the result might be a driver contention.

You can deal with this violation in one of the following ways:

1. Accept the potential contention, especially if the only other driver of the net is the top-
level bidirectional port. In this case, you can set the Z9 rule to ignore for future runs.

2. Alter the design to provide additional controls on the three-state enable. In test mode
you might block the path from the scan cell or redirect the control to some top-level port
by means of a MUX.

3. Adjust the contention checking to monitor bus contention both before and after clock
events. TestMAX ATPG then discards patterns that result in contention and tries new
patterns in an attempt to find a pattern to detect faults without causing contention. To
set bus contention checking, you enter the following command:

SETUP> set_contention bus -capture

Analyzing Buses
During the DRC process, TestMAX ATPG analyzes bus and wire gates to determine if they
can be in contention.

All bus and wire gates are analyzed to determine if two or more drivers can drive different
states at the same time. Bus gates are also analyzed to determine whether they can
be placed at a Z state. Drivers that have weak drive outputs are not considered for
contention.

This analysis is performed before a DRC analysis of the defined STIL procedures. The
data from the analysis is used to prevent issuing false contention violations for the STIL
procedures.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

324

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing Buses

Feedback

The following sections describe how to analyze buses:

• BUS Contention Status

• Understanding the Contention Checking Report

• Reducing Aborted Bus and Wire Gates

• Causes of Bus Contention

BUS Contention Status
Based on the results of DRC contention analysis, a BUS or wire gate is assigned one of
the following contention status types:

• Pass: Indicates that the BUS or wire gate can never be in contention. These gates do
not have to be checked further.

• Fail: Indicates that the BUS or wire gate can be in contention. These gates must be
monitored by TestMAX ATPG during ATPG to avoid patterns with contention.

• Abort: Indicates that the analysis for determining a pass/fail classification was aborted.
Because these gates were not identified as “pass,” they must be monitored during
ATPG.

• Bidi: Indicates a BUS gate that has an external bidirectional connection; any internal
drivers are not capable of contention. TestMAX ATPG can avoid contention by
controlling the bidirectional ports.

In addition to a contention status, BUS gates undergo an additional analysis to determine
whether the driver can achieve a Z state. This produces a Z-state status for each pass,
fail, abort, or bidirectional gate.

See Also

• Contention Analysis

Understanding the Contention Checking Report
After the contention check is complete, TestMAX ATPG displays a report similar to the
following example. This report identifies the number of bus and wire gates and the number
of gates that were placed into each contention and Z-state category.

DRC Report for Contention Checking
SETUP> run_drc spec_stil_file.spf
--
Begin scan design rule checking...
--

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

325

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing Buses

Feedback

Begin reading test protocol file spec_stil_file.spf...
End parsing STIL file spec_stil_file.spf with 0 errors.
Test protocol file reading completed, CPU time=0.05 sec.
#
Begin Bus/Wire contention ability checking...
Bus summary: #bus_gates=577, #bidi=128, #weak=0, #pull=0, keepers=0
Contention status: #pass=257, #bidi=31, #fail=289, #abort=2,
 not_analyzed=0
Z-state status : #pass=160, #bidi=128, #fail=286, #abort=3,
 not_analyzed=0
Warning: Rule Z1 (bus contention ability check) failed 289 times.
Warning: Rule Z2 (Z-state ability check) failed 289 times.
Bus/Wire contention ability checking completed, CPU time=7.19 sec.

The “Bus summary” line in the report provides the following information:

• #bus_gates: the total number of bus gates in the circuit

• #bidi: the number of bus gates with an external bidirectional port

• #weak: the number of bus gates that have only weak inputs

• #pull: the number of bus gates that have both strong and weak inputs

• #keepers: the number of bus gates connected to a bus keeper

Reducing Aborted Bus and Wire Gates
Bus gates associated with aborted contention checking are still checked for contention
during ATPG. If contention checking is aborted for some gates, you should increase the
effort used to classify as pass, fail, or bidirectional, rather than abort. You can do this
using the Analyze Buses dialog box, or you can use the set_atpg -abort_limit and
analyze_buses commands on the command line, as shown in the following example.

Using set_atpg -abort_limit and analyze_buses
TEST-T> report_buses -summary
Bus summary: #bus_gates=577, #bidi=128, #weak=0, #pull=0,
#keepers=0
Contention status: #pass=257, #bidi=31, #fail=89, #abort=200,
#not_analyzed=0
Z-state status : #pass=160, #bidi=128, #fail=231, #abort=58,
#not_analyzed=0
TEST-T> set_atpg -abort 50
TEST-T> analyze_buses -all -update
Bus Contention results: #pass=257, #bidi=31, #fail=289, #abort=0,
CPU time=0.00
TEST-T> analyze_buses -zstate -all -update
Bus Zstate ability results: #pass=160, #bidi=128, #fail=289,
#abort=0, CPU
time=0.80

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

326

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing Buses

Feedback

TEST-T> report_buses -summary
Bus summary: #bus_gates=577, #bidi=128, #weak=0, #pull=0,
#keepers=0
Contention status: #pass=257, #bidi=31, #fail=289, #abort=0,
#not_analyzed=0
Z-state status : #pass=160, #bidi=128, #fail=289, #abort=0,
#not_analyzed=0
Learned behavior : none

Using the Analyze Buses Dialog Box
To reduce the number of aborted bus and wire gates:

1. From the menu bar, choose Buses > Analyze Buses.

The Analyze Buses dialog box appears.

2. In the Gate ID text field, choose -All.

3. In the Analysis Type text field, choose Prevention.

4. Enable the Update Status option.

5. Click OK.

Using the set_atpg and analyze_buses Commands
To reduce the number of aborted bus and wire gates from the command, use the
set_atpg -abort_limit and analyze_buses commands.

Causes of Bus Contention
After attempting to eliminate bus or wire gates originally classified as aborted, you might
want to review some of the bus or wire gates that were classified as failing. To review
these gates, view a violation ID from the Z1 or Z2 class. The Z1 class deals with buses
that can potentially be in contention, and the Z2 class deals with buses that can potentially
be floating.

The following figure shows the GSV display of a Z1 violation and the logic that contributes
to the three-state driver control. In this case, a pattern was found to cause contention on
the bus device, gate 19162. The first two input pins of the bus device are conflicting non-
Z values. The remaining two inputs are X. If a conflict is found, TestMAX ATPG does not
fill in the details of the remaining inputs. The source of the potential contention is inherent
in the design; with the test_se port at 0, the TSD driver enables are controlled by the
contents of the two independent DFF devices on the left. Although there might not be any
problem during normal design operation, contention is almost certain to occur under the
influence of random patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

327

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing ATPG Problems

Feedback

Figure 48 GSV Display: DRC Violation Z1

   

You can deal with the Z1 and Z2 violations in one of the following ways:

• Ignore the warnings, with the following consequences:

1. Contention will probably occur during pattern generation, and TestMAX ATPG will
discard those patterns that result in contention, possibly increasing the runtime.

2. The resulting test coverage could be reduced. TestMAX ATPG might be forced to
discard patterns that would otherwise detect certain faults.

3. Floating conditions will probably occur. Although floating conditions might have
very little impact on ATPG patterns, internal Z states quickly become X states after
passing through a gate, leading to an increased propagation of Xs throughout the
design. These Xs eventually propagate to observe points and must be masked off,
thus potentially increasing the demands on tester mask resources.

• Modify the design to attempt to eliminate potential contention or, in the case of the Z2
violation, a potential floating internal net. You accomplish this by using DFT logic that
ensures that one and only one driver is on at all times, even when the logic is initialized
to a random state of 1s and 0s.

Analyzing ATPG Problems
The following steps show you how to analyze ATPG problems that appear as fault sites
classified as untestable:

1. View the fault list by opening the Analyze dialog box and clicking the Faults tab. You
can also use the report_faults command or write a fault list.

2. Select a specific fault class and fault location from the fault list.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

328

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing ATPG Problems

Feedback

3. Display the fault in the GSV using the Analyze dialog box, or use the analyze_faults
command.

4. View the schematic and transcript to determine the cause of the problem.

The following examples demonstrate the process of analyzing ATPG problems:

• Analyzing an AN Fault

• Analyzing a UB Fault

• Analyzing a NO Fault

Analyzing an AN Fault
This example shows how to perform an analysis on an AN (ATPG untestable–not
detected) fault identified as follows:

/amd2910/stack/U948/D1

The following example shows a transcript of an analyze_faults command for this fault.
TestMAX ATPG analyzes the fault, draws its location in the GSV, generates one or more
patterns, and places them in the internal pattern buffer. You can examine these patterns to
determine the controllability and observability issues encountered in classifying the fault.

Transcript of analyze_faults Results for an AN Fault
TEST-T> analyze_faults /amd2910/stack/U948/D1 -stuck 0 -display
--
Fault analysis performed for /amd2910/stack/U948/D1 stuck at 0
(input 0 of BUF gate 608).
Current fault classification = AN (atpg_untestable-not_det).
--
Connection data: to=TLA
Fault site control to 1 was successful (data placed in parallel pattern
 0).
Observe_pt=any test generation was unsuccessful due to atpg_untestable.
Observe_pt=815(MUX) test generation was successful (data placed in
 parallel pattern 1).
Observe_pt=824(AND) test generation was successful (data placed in
 parallel pattern 2).
Observe_pt=832(OR) test generation was successful (data placed in
 parallel pattern 3).
Observe_pt=3077(DLAT) test generation was unsuccessful due to
 atpg_untestable.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

329

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing ATPG Problems

Feedback

The following figure shows the GSV schematic display of the untestable fault location.
From the schematic and the messages in the preceding example, you can make the
following conclusions:

• The fault site was controllable; it could be set to 1. Therefore, controllability is not the
reason the fault is untestable.

• Attempts to observe the fault at gates 815, 824, and 832 were successful; therefore,
observability at these gates is not the reason the fault is untestable.

• Attempts to observe the fault at gate 3077 (DLAT) were unsuccessful, so observability
at this gate could be the reason the fault is untestable. The DLAT is not in a scan chain
and is not in transparent mode with this particular pattern (CK pin = X), so the fault
cannot be propagated to an observe site.

Figure 49 GSV Display: An AN Fault

   

The source of the problem seems to be an observability blockage at the DLAT device.
You could now explore whether you can place the DLAT in a transparent state using
the run_justification command, following the method described in “Checking
Controllability and Observability."

Analyzing a UB Fault
This example shows how to analyze a UB (undetectable-blocked) fault using the Analyze
dialog box:

1. Click the ANALYZE button in the GSV toolbar.

The Analyze dialog box opens.

2. Click the Faults tab.

3. Click Pin Pathname if it is not already selected.

4. Click the Fill button.

5. In the Fill Faults dialog box, select “UB: undetectable-blocked” as the Class type.

6. Enter 100 in the Last field.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

330

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Analyzing ATPG Problems

Feedback

7. Click OK in the Fill Faults dialog box.

In the Analyze dialog box, the first 100 UB faults appear in the scrolling window under
the Faults tab. Scroll through the list and select a fault to analyze.

8. Click OK.

TestMAX ATPG analyzes the fault selected and displays in the transcript window the
equivalent analyze_faults command and the results of the analysis, as shown in the
following example.

Transcript of analyze_faults Results for a UB Fault
TEST-T> analyze_faults /JTAG_IR/U51/H02 -stuck 0 -display
--
Fault analysis performed for /JTAG_IR/U51/H02 stuck at 0 \
(input 1 of OR gate 18268).
Current fault classification = UB \
(undetectable-blocked).

Fault is blocked from detection due to tied values.
Blockage point is gate /MAIN/JTAG_IR/U51 (18268).
Source of blockage is gate /MAIN/U354 (143).

The following figure shows the graphical representation of the section of the design
associated with the fault.

Figure 50 GSV Display: A UB Fault

   

The fault analysis message provides information similar to that in the schematic display. A
stuck-at-0 fault at pin H02 of gate 18268 cannot be detected because the input to pin H01
of this OR gate comes from a tied-to-0 source.

Notice that the schematic contains the fault site as well as the gates involved with the
source of the blockage. In addition, the pin data type has been set to Constrain Data and
the constraint information is displayed directly on the schematic. For an interpretation of
constrain values, see “Displaying Constrain Values."

In the example in the preceding figure, TestMAX ATPG has analyzed a stuck-at-0 fault on
the H02 pin in the schematic. The transcript shows that this fault is UB, that the blockage
point is gate 18268, and that the source of the blockage is gate 143.

You review the GSV display in the preceding figure to gain some additional insight. Gate
143 is a tie-off cell that ties the H01 input of gate 18268 to 0, forcing the output of gate
18268 to a logic 1 and blocking the propagation of faults from pin H02.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

331

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Printing a Schematic to a File

Feedback

Analyzing a NO Fault
The following figure shows the schematic for an NO (not-observed) fault class.

Figure 51 GSV Display: A NO Fault

   

The fault report in the following example states that the fault site is controllable but not
observable. A pattern that controlled the fault site to 0 to detect a stuck-at-1 fault was
placed in the internal pattern buffer as pattern 0, but was later rejected because the
pattern failed bus contention checks.

analyze_faults Report for a NO Fault
TEST-T> analyze_faults /U317/H02 -stuck 1 -display
--
Fault analysis performed for /U317/H02 stuck at 1 (output of OR gate
 17233).
Current fault classification = NO (not-observed).
--
Connection data: to=REGPO,MASTER,TS_ENABLE
Fault site control to 0 was successful (data placed in parallel pattern
 0).
Observe_pt=any test generation was unsuccessful due to abort.
Observe_pt=17381(TSD) test generation was unsuccessful due to
 atpg_untestable.
Warning: 1 pattern rejected due to 32 bus contentions (ID=17373, pat1=0).
 (M181)

The fault report mentions two observe points. The first, “any test generation,” was
unsuccessful because an abort limit was reached. The second observe point at gate
17381 was unsuccessful because of ATPG-untestable conditions at that gate. The first
observe point might succeed if you increase the abort limit and try again.

Printing a Schematic to a File
You can use the gsv_print command to create a grayscale PostScript file, which
captures the schematic displayed in the graphical schematic viewer (GSV):

gsv_print -file file -banner string Y

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

332

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Using the Graphical Schematic Viewer
Printing a Schematic to a File

Feedback

You can add the gsv_print command to your TestMAX ATPG scripts and automatically
capture schematic output. The computing host must have PostScript drivers installed
(usually with lpr/lp). You can enclose the arguments in double quotation marks (" ").

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

333

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

7
Using the Hierarchy Browser

The Hierarchy Browser displays a design’s basic hierarchy and enables graphical analysis
of coverage issues. It is launched as a standalone window that sits on top of the TestMAX
ATPG GUI main window.

Before you start using the Hierarchy Browser, you should familiarize yourself with the
graphical schematic viewer (GSV). See Using the Graphical Schematic Viewer for more
information.

The Hierarchy Browser does not display layout data. It is intended to supplement the GSV
so you can analyze graphical test coverage information while browsing through a design’s
hierarchy.

The following topics describe how to use the Hierarchy Browser:

• Launching the Hierarchy Browser

• Basic Components of the Hierarchy Browser

• Performing Fault Coverage Analysis

• Exiting the Hierarchy Browser

Launching the Hierarchy Browser
To launch the Hierarchy Browser, you first need to begin the ATPG flow and start the
TestMAX ATPG GUI, as described in the following steps:

1. Follow the initial test pattern generation steps described in ATPG Design Flow.

2. Launch the TestMAX ATPG GUI. For details, see Controlling TestMAX ATPG
Processes.

3. After the DRC process is completed, start the Hierarchy Browser by clicking the
Hierarchy Browser button in the TestMAX ATPG GUI, as shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

334

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Launching the Hierarchy Browser

Feedback

Figure 52 Hierarchy Browser Button in the TestMAX ATPG GUI

   

The Hierarchy Browser appears as a new window, as shown in the following figure.

Figure 53 Initial Display of the Hierarchy Browser

   

See Also

• Exiting the Hierarchy Browser

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

335

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

Basic Components of the Hierarchy Browser
The Hierarchy Browser is comprised of the following main components:

• Hierarchy Pane — Located in the top left portion of the browser, this area displays an
expandable view of the design hierarchy and test coverage data.

• Instance Pane — Located in the bottom left portion of the browser, this area displays
test coverage data associated with the module selected in the Hierarchy pane.

• Lib Cell/Tree Map Pane — Located in the right portion of the browser, this area toggles
between library cell data and a graphical display of all submodules associated with the
selected instance in the Hierarchy pane.

Using the Hierarchy Pane
The Hierarchy pane displays the overall design hierarchy, including the number of
instances, the test coverage, the number of faults, and the main fault types. It also controls
the data displayed in the Instance pane and Lib cell/Tree map pane.

Using the Hierarchy pane, you can expand and collapse the hierarchical display of a
design’s submodules and view the associated test coverage information.

The following steps describe how to display coverage data in the Hierarchy pane:

1. Click the

+

symbol next to the top instance name.

The design hierarchy expands, and the submodules and related test coverage
information for the top instance name are displayed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

336

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

   

2. Continue to expand the hierarchy, as needed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

337

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

   

3. Move the slider bar, located at the bottom of the pane, to view coverage details and
fault information associated with the instance names in the left column.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

338

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

339

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

4. Find data for a particular instance using the Find text field.

   

Viewing Data in the Instance Pane
The Instance pane displays coverage data for the instance selected in the Hierarchy pane,
as shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

340

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

Figure 54 Displaying Information in the Instance Pane

   

You can expand the display of information for a fault type in the Instance pane by clicking
the

+

symbol next to a fault class, as shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

341

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

Figure 55 Expanding the Display of Data for the DT Fault Class

   

Copying an Instance Name
You can copy the full instance name from anywhere in the Hierarchy Browser and paste it
in the Find text field, or use it for reference purposes in other applications.

To copy an instance name:

• Right-click on an instance name anywhere in the Hierarchy Browser, and select Copy
Instance Name.

Figure 56 Copying An Instance Name

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

342

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

Viewing Data in the Lib Cells/Tree Map Pane
The Lib cells/Tree map pane toggles between two tabs:

• Lib cells — Displays module names, primitives, faults, test coverage, and fault class
data for library cells, which include all non-hierarchical cells in a selected module. An
example is shown in Figure 57.

• Tree map — Displays a design’s hierarchical graphical test coverage. An example is
shown in Figure 58.

Figure 57 Display of Library Cell Information

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

343

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Basic Components of the Hierarchy Browser

Feedback

Figure 58 Tree Map View

   

As shown in preceding figure, the data displayed in the Tree map is color-coded according
to the test coverage. Dark green indicates the maximum coverage, light green is slightly
lower coverage, yellow is minimal coverage, and dark red is coverage below the minimum
threshold.

When you hold your pointer over a particular instance, a po-pup window will display
detailed coverage information for that instance.

Additional details on using the Tree map are provided in the following section, Performing
Fault Coverage Analysis.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

344

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Performing Fault Coverage Analysis
You can access and adjust the display of a variety of interactive test coverage data in the
Hierarchical Browser. The following sections show you how to display various types of
data that helps you perform fault coverage analysis:

• Understanding the Types of Coverage Data

• Expanding the Design Hierarchy

• Viewing Library Cell Data

• Adjusting the Threshold Slider Bar

• Identifying Fault Causes

• Displaying Instance Information in the GSV

Understanding the Types of Coverage Data
You can view coverage data in the Tree map based on the overall test coverage, the fault
distribution, or the fault class distribution. Fault classes include the DT (detected), PT
(possibly detected), UD (undetectable), AU (ATPG untestable), and ND (not detected)
classes.

As shown in the following figure, you use the drop-down menu to select the type of
coverage data you want to display.

Figure 59 Selecting the Type of Coverage in the Tree Map

   

The formula to calculate the Test Coverage displayed in the Hierarchy Browser is as
follows:

<displayed area> = (DT + PT_CREDIT * PT) / Faults

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

345

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

The formulas to calculate the various categories of coverage data provided by the
Hierarchy Browser are as follows:

• Fault Distribution: <displayed area> = <number of (DT+PT+AU+ND) faults >

• DT Fault Distribution: <displayed area> = <number of DT faults>

• PT Fault Distribution: <displayed area> = <number of PT faults>

• UD Fault Distribution: <displayed area> = <number of UD faults>

• AU Fault Distribution: <displayed area> = <number of AU faults>

• ND Fault Distribution: <displayed area> = <number of ND faults>

See Also

• Fault Categories and Classes

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

346

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Expanding the Design Hierarchy
When the Hierarchy Browser is initially invoked, the Tree map displays only the top-level
instance in the design. The following steps show you how to expand the display of the
design hierarchy:

1. Right-click your mouse in the Tree map, then select Expand to expand the display of
one level of the design hierarchy.

Figure 60 Expanding the Design Hierarchy

   

After selecting Expand, the next level of hierarchy is displayed in the Tree map, as
shown in the following figure.

The Hierarchy Browser is not a layout viewer. The size of each graphically represented
instance is based on the number of primitives for that instance in proportion to the
other instances. In the following figure, the largest displayed instance is I_ORCA_TOP.
Below that instance are four smaller instances. The pointer at the bottom of the window
is highlighting the DFTC_ORCA_U instance. Also note that the data in the Hierarchy
pane, in the upper left portion of the window, expands to coincide with the Tree map
view.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

347

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Figure 61 Display of First Level of Hierarchy

   

2. You can continue to expand the design hierarchy one level at a time by right-clicking
and selecting Expand, or by selecting Expand All to expand the entire design hierarchy.
The following figure shows the full display of a design’s hierarchy.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

348

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Figure 62 Display of a Design’s Full Hierarchy

   

3. You can further focus the display of data for a particular instance by clicking on the
instance in the Tree map or in the Hierarchy pane, as shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

349

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Figure 4: Focusing the Tree Map Display on a Single Instance

Figure 63 Focusing the Tree Map Display on a Single Instance

   

4. To collapse the display of the design hierarchy, right-click anywhere in the Tree map
and select Collapse or Collapse All.

Viewing Library Cell Data
You can view a graphical representation of library cells associated with a particular
instance by clicking the Show lib cells check box in the Tree map. Figure 1 shows how
selecting this check box affects the display of data in an example instance.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

350

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Figure 64 How Selecting the Show Lib Cells Box Affects the Tree Map Display

   

Adjusting the Threshold Slider Bar
The threshold slider bar is located at the bottom of the Tree map. You can use this bar
to change the threshold for the color spectrum display of fault coverage. By default, the
threshold is set to 0% coverage, which means that any instances with 0% coverage is
displayed in red.

To change the threshold, either move the slider bar or enter a different value in the
threshold text field. Figure 1 shows the comparative effect of moving the threshold slider
bar.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

351

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Figure 65 Effect of Moving Threshold from A (0%) to B (12%) to C (41%)

   

Identifying Fault Causes
The Hierarchy Browser enables you to identify causes of various faults. The four basic
fault causes are as follows:

• Constrain Values

• Constrain Value Blockage

• Connected to <value>

• Connected from <value>

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

352

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

The following steps show you how to identify fault causes for a specific fault class in a
specific instance:

1. In the drop-down menu located the top of the Tree map, select the type of coverage
you want to display. For example, select UD Fault Distribution.

Figure 66 Drop-Down Menu

   

2. If required, click the Show lib cells check box to view all the cells in the instance.

3. Expand the display of the design’s hierarchy, as needed.

4. Click an instance of interest in the Tree map or select an instance in the Hierarchy
pane.

The Instance pane displays the name of the selected instance and its related coverage
data, as shown in Figure 2.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

353

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

Figure 67 Display of Coverage Information for Selected Instance in Instance Pane

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

354

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Performing Fault Coverage Analysis

Feedback

5. Expand the display of the fault class of interest in the Instance pane. Figure 3 shows
the expansion of the UD fault class and display of the related fault causes.

Figure 68 Display of Fault Class and Related Fault Causes

   

Displaying Instance Information in the GSV
You can select an instance name anywhere in the Hierarchy Browser and display it in the
graphical schematic viewer (GSV).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

355

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Exiting the Hierarchy Browser

Feedback

To display a selected instance from the Hierarchy Browser in the GSV:

• Right-click an instance name in the Hierarchy Browser, and select Display in
schematic, as shown in the following figure.

Figure 69 Selecting an Instance Name

   

The selected instance will display in the GSV, as shown in the following figure.

Figure 70 Display of Selected Instance in GSV

   

Exiting the Hierarchy Browser
To exit the Hierarchy Browser, click the Close Browser button in the TestMAX ATPG GUI.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

356

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using the Hierarchy Browser
Exiting the Hierarchy Browser

Feedback

Figure 71 Exiting the Hierarchy Browser

   

See Also

• Launching the Hierarchy Browser

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

357

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

8
Using the Simulation Waveform Viewer

You can use the TestMAX ATPG Simulation Waveform Viewer (SWV) to debug internal,
external, and imported functional pattern mismatches by displaying the failing simulation
values and TestMAX ATPG simulated values of the test_setup procedure.

The following topics describe how to use the SWV:

• Getting Started With the SWV

• Understanding the SWV Color Codes

• Supported Pin Data Types and Definitions

• Invoking the SWV

• Using the SWV Interface

Getting Started With the SWV
Before you start using the Simulation Waveform Viewer (SWV), you should familiarize
yourself with the graphical schematic viewer (GSV). For more information, see Using the
GSV for Review and Analysis.

The GSV graphically displays design information in schematic form for review and
analysis. It selectively displays a portion of the design related to a test design rule violation
so that you can debug a test setup, and or debug internal, external pattern mismatches.
You use the GSV to find out how to correct violations and debug the design.

The SWV is intended to add a third level of dimension to DRC debugging. The following
methods are currently used with DRC:

• Create or parse the STL procedure file, edit the STL procedure file, and rerun DRC

• Use the GSV to identify and resolve shift errors, and also to view test_setup

• Use the SWV when you want to view large amounts of net instance data in the GSV,
such as large test_setup (item 2 above) or run_simulation data

Note that the SWV is only a viewer. Its primary purpose is to enhance what you see in the
GSV.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

358

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Understanding the SWV Color Codes

Feedback

In the GSV, you can view simulation values (or pin data values) on the nets of the design.
By default, these values are 10 data bits, although this is user-configurable. Simulation
values displayed in the GSV are a subset of values, followed by an ellipsis. You can
change this display by changing the default setting, or by moving the data display within
the GSV cone of logic. This data synchronizes with the SWV.

When the simulation string becomes more than 20 characters, the space required to
display such a long string makes the GSV display impractical. In the SWV, the simulation
strings do not need to be displayed in full, because you can look up the transition in
the waveforms. When tracing between the GSV cone of logic, the SWV is dynamically
updated with the data from the GSV. When you select and move your pointer, the SWV
highlights the corresponding bit in the GSV. You can change the default display of
simulation values using the following command:

set_environment viewer -max_pindata_length d

Understanding the SWV Color Codes
The SWV uses the following color codes:

• Red — Insertion line

• Pink — Cursor measurement

• White — Pattern marker

• Green — Load signal

• Yellow — Capture signal

Figure 1: SWV Colors

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

359

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Supported Pin Data Types and Definitions

Feedback

   

Supported Pin Data Types and Definitions
The following pin data types are supported by the Simulation Waveform Viewer (SWV):

• Test Setup (test_setup) — Displays simulated values for the test_setup macro
displaying debugging problems in a STIL test_setup macro.

• Debug Sim Data (debug_sim_data) — Displays imported external simulator values
used for debugging golden simulation vector mismatches

• Sequential Sim Data (seq_sim_data) — Displays currently stored sequential simulation
data used for displaying results of sequential fault simulation (for advanced users of
fault simulation)

Note that the SWV does not support all pin data types upon initialization; it supports only
test_setup, debug_sim_data, and sequential_sim_data. Several other pin data types are
supported after starting the SWV in one of the initial three pin data types. You can choose
test_setup after SWV is opened, and then change to any pin data type, such as shift.

The following figure shows the TestMAX ATPG pin data type setup menu.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

360

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Supported Pin Data Types and Definitions

Feedback

Figure 72 Setting the Pin Data Type

   

Two of the pin data types require data to be stored internally in TestMAX ATPG.

By default, only a single logic value is shown, which corresponds to the final logic value
at the exit of the test_setup macro. To show all logic values of the test_setup macro, you
must change the DRC setting using the set_drc command, then rerun the DRC analysis
as follows:

TEST-T> drc
DRC-T> set_drc -store_setup
DRC-T> run_drc

The test_setup pin data type requires the set_drc -store command.

Sequential simulation data typically comes from functional patterns. This type of data is
stored in the external pattern buffer. When the simulation type in the Run Simulation dialog
box is set to Full Sequential, you can select a range of patterns to be stored.

After the simulation is completed, you can display selected data from this range of patterns
using the pin data type seq_sim_data, as shown in the following example:

TEST-T> set_simulation -data 85 89
TEST-T> run_simulation -sequential

The seq_sim_data pin data type requires the output of the set_simulation -data
command.

See Also

• Defining the test_setup Macro

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

361

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Invoking the SWV

Feedback

Invoking the SWV
You can specify commands, select buttons, or use your right mouse button to open menus
that cause TestMAX ATPG to launch the SWV either directly from the GSV or without the
GSV.

The following figure shows the SWV menu that appears when you right-click after
selecting the nets and or gates. You can add signals, gates, and nets to the waveform
using this menu.

Figure 73 Opening the SWV Using Your Right Mouse Button

   

The following figure shows the three ways to invoke the SWV from the GSV.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

362

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

Figure 74 Three Ways to Open the SWV

   

Using the SWV Interface
The following topics describe the basic features of the SWV interface:

• Understanding the SWV Layout

• Manipulating Signals

• Identifying Signal Types in the Graphical Pane

• Using the Time Scales

• Using the Marker Header Area

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

363

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

• Using the SWV With the GSV

• Using the SWV Without the GSV

• SWV Inputs and Outputs

• Analyzing Violations

Understanding the SWV Layout
The layout of the SWV is shown in Figure 1.

Figure 75 SWV Layout

   

Note that the SWV contains a scrollable list view (the Signal List pane) and a
corresponding graphical pane (the Graphical pane). The Signal List pane contains two
columns: the first column is the Signal Group tree view with the signal/bus names, and the
second column is the value according to the reference cursor.

The Graphical pane consists of equivalent rows of signal in graphical drawing. Also,
the reference cursor and marker can be manipulated in the Graphic pane to perform
measurement between events. There are two timescales (upper and lower). The upper
timescale denote the current view port time range and the lower timescale represent the
global (full) time range with data.

Refreshing the View
To refresh the view (similar to the GSV), click the Refresh button or select Edit > Refresh
View.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

364

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

Manipulating Signals
The following sections show you how to manipulate signals:

• Using the Signal List Pane

• Adding Signals

• Deleting Signals

• Inserting Signals

Using the Signal List Pane
You can manipulate signals using the Signal List pane, which is located on the left side of
the SWV. This pane is organized into the following three-level tree view:

• The root node is the group name

• The second level is the signal or bused signal name

• The third level is the individual bit of the bused signal (if applicable)

Signals are grouped together according to the target to which it is added to. New groups
can be created with a signal dropped to the (default) new group tree node.

Signal groups provide a logical way to organize your signals. For example, you can
keep all input signals in one group and output signals in another group. You can expand
or collapse the signal list by clicking the + sign to the left of the group name. The sign
changes to - when you expand it.

You can edit group names, but you cannot edit signal names. The SWV enables you only
to view the design; you cannot edit or make any changes to the design.

Adding Signals
You can add any number of signals to the SWV base at the current insertion point. By
default, the insertion point is to create a new signal group. After a signal is added, the
insertion point is advanced to the most recently visited group.

To add a signal, middle-click the signal from the waveform to select it. The red insertion
line appears around the signal. Then drag it to the required group.

To add a range of signals, press Shift and click the signals to select the range. A red
rubber band box appears around the range. Then drag the box into a group.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

365

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

Deleting Signals
To delete a signal, or multiple signals, and groups, select the signal (s) to be deleted, and
press the Delete button or choose Edit > Delete Selected. To delete multiple signals or
groups, choose Edit > Delete All. Figure 1 shows the Edit menu.

Figure 76 Selecting Delete All in the Edit Menu

   

Inserting Signals
An insertion point is denoted by a red line. There might be times when you need to copy or
duplicate a signal (shift + left-click) and move it to other groups. To do this, you can drag
the insertion point into the required group.

The target of the insertion point can be specified to be a “New Group” or any group that
already exists.

When an insertion point is applied to a group, the signal is added to the bottom of the list.
When the insertion point is at a particular position, the signal is added below the position
of the insertion point in the signal list view. If the insertion point is in the new group item
view, it creates a new group. If the insertion point is in the list view, it just adds the signal to
the group.

Figure 77 shows an empty waveform table, and Figure 78 illustrates signal insertion.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

366

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

Figure 77 Empty Waveform Table

   

Figure 78 Inserting Signals

   

Identifying Signal Types in the Graphical Pane
Most signals contain events, and each event change is represented by a transition in
the drawing. The viewer signals are classified into scalar type. A scalar signal carries a
single bit transition between the values 0, 1, Z, X. A signal band is divided into vertical
subsections to draw the values. A line drawn at the bottom of a signal band refers to event

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

367

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

0, while a line drawn on the top of the band refers to event 1. A Z value is drawn in the
middle of the band and a filled band denotes an unknown X value.

When a vector contains an X value, it is drawn in the red event (default) color. When the
vector contains some Z value, it is drawn in yellow. When all values of the transition vector
are unknown, a filled red rectangle is used, and if all are Z, a horizontal yellow line is
drawn in the middle of the signal band.

Using the Time Scales
The SWV displays two types of time scales:

• Upper Time Scale

This area displays the current viewing time range in x10ps. You can drag markers or
cursors visible in the upper time scale to other locations in the view. In addition, you
can perform zoom operations in the upper time scale area by clicking your left mouse
button and horizontally dragging to specify a horizontal zoom area. When you release
the left mouse button, the current view refreshes with the zoomed in view in the current
wave list. You won't need to further adjust the vertical alignment. When in full zoom
view, the upper time scale will display the same value and range as the lower time
scale.

• Lower Time Scale

This area shows the full time range the data occupies. You can control zoom operation
using your left mouse button, which causes an adjustment in the current view time
range. The width of the scroll thumb in the horizontal scroll bar shows the approximate
view area in proportion to the full data time range. Reference and marker cursors are
shown in the lower timescale for easy identification of marked location and to maintain
the context for navigation.

Using the Marker Header Area
The SWV provides two reference pointers: C1 and C2. These pointers are drawn in
magenta, whereas other marker cursors are in white. A marker identifier (a circle) in the
marker header area is used for marker selection by the pointer.

The graphical pane shows a graphical representation of equivalent rows of signals. You
can manipulate the reference cursors and markers in the graphical pane to measure
between events (as shown in the following figure).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

368

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

Figure 79 Reference Pointers

   

The following sections show you how to use the marker header area:

• Adding and Deleting Pointers

• Moving a Marker Pointer

• Measuring Between Two Pointers

Adding and Deleting Pointers
To add the default reference pointer C1 or C2, you can drag the C1 pointer to the clicked
location, or you can use the middle mouse button to drag the C2 reference pointer.

You can delete all markers by first selecting the markers, and then choosing the Delete
Selected command (or the Delete This Marker command if you selected only one marker).

Moving a Marker Pointer
There are two methods you can use to move a marker pointer:

• Drag the marker identifier (a circle) in the marker header area to the new location. This
method is limited to relocating the marker identifier to a region in the current viewable
time range (See Figure 2).

• Drag the left marker, then click to release it.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

369

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

Figure 80 Moving a Marker Cursor

   

Measuring Between Two Pointers
As shown in Figure 79, you can use any pointer as a reference point for measurement.
The other pointer value will change according to the currently selected reference cursor.

Using the SWV With the GSV
The primary component of the TestMAX ATPG GUI is the graphical schematic viewer
(GSV), which displays annotated simulation values during DRC (for details see Using the
Graphical Schematic Viewer). You can expand the GSV to ease DRC debugging. Patterns
are displayed in a logic cone view: that is, logic from each design derived by tracing back
from a pair of matched points. Logic cones appear when there are DRC warnings and
error messages.

The following steps show you how to launch the SWV window from a selected logic cone
view:

1. Select View > Waveform View > Setup.

2. Select “Pin Data Type” as “Test Setup."

3. Click your right mouse button and select Add to Waveform > All GSV Gates.

The simulation waveform is initialized with pattern data associated with the cone view from
which it was created during DRC. There is a one-to-one correspondence between GSV

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

370

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

and SWV when a DRC violation is used. If the GSV is closed, its corresponding waveform
view is not closed. If the SWV is closed, its corresponding GSV is not closed, and the
pattern annotations on it are not cleared.

Figure 81 Using the SWV With the GSV

   

The data values displayed are generated either by DRC or by ATPG. Data values
generated by DRC correspond to the simulation values used by DRC in simulating the
STIL test_setup protocol to check conformance to the test protocol. Data values generated
by ATPG are the actual logic values resulting from a specific ATPG pattern.

When you analyze a rule violation or a fault, TestMAX ATPG automatically selects and
displays the appropriate type of pin data in the GSV. You can also manually select the type
of pin data to be displayed by using the SETUP button in the GSV toolbar, or you can use
the set_pindata command on the command line.

The SWV can use only the pin data types listed in the Supported Pin Data Types and
Definitions section. Figure 2 shows an error caused when you do not select a valid pin
data type that is supported by the SWV.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

371

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

Figure 82 Example of Selecting an Invalid Pin Data Type

   

Using the SWV Without the GSV
You might need to launch the SWV without the GSV when you have failing external
patterns (read externally into TestMAX ATPG) and you want to see the patterns for an
overall evaluation of how TestMAX ATPG interprets them. You can view the values of
gates and nodes of a design for a particular pattern, or you can just view a waveform if you
are already familiar with the circuit nets and nodes and you are running iterative loops in
TestMAX ATPG.

The following examples show some sample flows using the SWV. Enter these commands
in a command file.

Example Flow
set_pindata -test_setup # test_setup is one of the many pin_data_types
add_display_gates -all # this invokes the GSV containing the gates of
interest.
set_pindata -test_setup # test_setup is one of the many
pin_data_types required for SWV
add_waveform_signals < > # this invokes the SWV containing the
waveforms for the gates of interest. The user might know the
gates from a previous run in the GSV.

Example 2
set_simulation –data {85 89} # specify the values to store by
patterns start/end run_simulation
run_simulation –sequential # execute a sequential simulation
set_pindata -seq_sim_data # required for SWV

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

372

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Using the Simulation Waveform Viewer
Using the SWV Interface

Feedback

add_waveform_signals <> # this invokes the SWV containing the
waveforms for the I/Os of the patterns 85 through 89

Example 3
set_patterns -external patterns.stil
analyze_simulation_data pats1.vcd -fast 1
add_display_gates < >
set_pindata -debug_sim_data # should be the default setting

SWV Inputs and Outputs
The SWV has two input flows:

• The streaming pin_pathname | gate_id from the GSV to the SWV

• Streaming the externally read pattern data to the SWV displaying all I/Os

The output includes messages, warnings, and errors.

Analyzing Violations
The various TestMAX ATPG error messages related to the SWV are described as follows:

Error: No pin data type is selected

You cannot select any nets or gates because the pin_data types require data
to be stored internally to TestMAX ATPG using the set_drc -store_setup or
the set_simulation -data command. See the Supported Pin Data Types and
Definitions section.

Error: Invalid argument "TOP_template_DW_tap_inst/U34/QN". <M1>

This message means that a gate was selected and added to the SWV but the
QN pin is not valid or not used due to no net attached.

TOP_template_DW_tap_inst/U10_1/CP (Gate 41) is already in wavefor llist as
TOP_template_DW_tap_inst/U34/CP.

This message appears when you select two gates that have the same clock,
and add them to the SWV. The GSV picks one name and displays a message
that the other pin has the same name.

/U1_out (Gate 5) is already in waveform list as U1/Z

This message appears when you select two gates that have the same clock and
add them to the SWV. The GSV picks one name and displays a message that
the other pin has the same name.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

373

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

9
Using Tcl With TestMAX ATPG

The following sections describe how to use the TestMAX ATPG Tcl command interface:

• Converting TestMAX ATPG Command Files to Tcl Mode

• Converting a Collection to a List in Tcl Mode

• Tcl Syntax and TestMAX ATPG Commands

• Redirecting Output in Tcl Mode

• Using Command Aliases in Tcl Mode

• Interrupting Tcl Commands

• Using Command Files in Tcl Mode

• An Introduction to the TestMAX ATPG Tcl API

For a general guide on how to use Tcl with Synopsys tools, see Using Tcl With Synopsys
Tools, available through SolvNet at the following URL:

https://solvnet.synopsys.com/dow_retrieve/latest/tclug/tclug.html

In Tcl Mode, it is possible to use Tcl API commands to access, and then manipulate
TestMAX ATPG data. For a complete description, see “An Introduction to the TestMAX
ATPG Tcl API” in TestMAX ATPG Online Help.

Converting TestMAX ATPG Command Files to Tcl Mode
You can use the native2tcl.pl translation script to convert existing native mode
TestMAX ATPG command files to Tcl mode TestMAX ATPG command files. This script is
in the installation tree at the following location:

$SYNOPSYS/auxx/syn/tmax/native2tcl.pl

Two database files are provided with the tmax_cmd.perl script: tmax_cmd.grm and
tmax_cmd.db.

Usage:

native2tcl.pl [-t ext] [- | -r dir]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

374

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/dow_retrieve/latest/tclug/tclug.html

Chapter 9: Using Tcl With TestMAX ATPG
Converting a Collection to a List in Tcl Mode

Feedback

Argument Description

[-t ext] Identifies the file extension to assign the converted files; for example, TCL.

[- | -r
dir]

Accepts input from STDIN or from the specified directory path.

For example, assuming that the native mode script to be converted is located under /
user/TMAX, the command-line entry would appear as follows:

native2tcl.pl -t .TCL -r /user/TMAX

Converting a Collection to a List in Tcl Mode
TestMAX ATPG Tcl API netlist query commands, such as get_clocks and get_ports,
return a collection of design objects, but not a Tcl list of named objects. You can use the
get_object_name procedure to convert a collection to a Tcl list. For example, you can
convert a collection of ports to a list of port names.

You can define the get_object_name procedure using the following command:

source [getenv SYNOPSYS]/auxx/syn/tmax/get_object_name.tcl

After the get_object_name procedure is sourced within the Tcl environment, it is available
for use with various TestMAX ATPG collections. An example is as follows:

TEST-T> set coll [get_ports test_si*]
{test_si1 test_si2 test_si3 test_si4 test_si5 test_si6 test_si7}
TEST-T> echo $coll
_sel2

TEST-T> set tcllist [get_object_name $coll]
test_si1 test_si2 test_si3 test_si4 test_si5 test_si6 test_si7

Tcl Syntax and TestMAX ATPG Commands
The TestMAX ATPG user interface is based on Tcl version 8.4. Using Tcl, you can extend
the TestMAX ATPG command language by writing reusable procedures.

The Tcl language has a straightforward syntax. Every Tcl script is viewed as a series of
commands, separated by a new-line character or semicolon. Each command consists of a
command name and a series of arguments.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

375

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Tcl Syntax and TestMAX ATPG Commands

Feedback

There are two types of TestMAX ATPG commands:

• Application commands

• Built-in commands

Each type is described in the following sections. Other aspects of Tcl version 8.4 are also
described.

If you need more information about the Tcl language, consult books on the subject in the
engineering section of your local bookstore or library.

The following sections describe Tcl syntax and TestMAX ATPG Commands:

• Specifying Lists in Tcl Mode

• Abbreviating Commands and Options in Tcl Mode

• Using Tcl Special Characters

• Using the Result of a Tcl Command

• Using Built-In Tcl Commands

• TestMAX ATPG Extensions and Restrictions in Tcl Mode

Specifying Lists in Tcl Mode
In Tcl mode, you can specify lists in commands within curly braces ({ }), or within
brackets ([]) if preceded by the list keyword.

In the following example, curly braces are used in the add_pi_constraints command to
specify a list of ports:

DRC-T> add_pi_constraints 1 {TEST_MODE TICK CLK}
DRC-T> report_pi_constraints
port_name constrain_value
---------- ---------------
/TEST_MODE 1
/TICK 1
/CLK 1

Alternatively, you can specify a list of ports in the add_pi_constraints command using
the keyword list and brackets:

DRC-T> add_pi_constraints 1 [list TEST_MODE TICK CLK]
DRC-T> report_pi_constraints
port_name constrain_value
---------- ---------------
/TEST_MODE 1
/TICK 1
/CLK 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

376

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Tcl Syntax and TestMAX ATPG Commands

Feedback

In Tcl mode, a list format is required when multiple arguments follow an option. For
example:

set_build -instance_modify {specbuffer TIEX}

Tcl Mode and Backslashes
In Tcl mode, a backslash character (\) specified at the end of a line represents a line
continuation. Any single backslash specified in the middle of a word escapes the character
following it. The following examples show how to overcome this situation when you want to
specify a backslash within a Tcl list:

Use a double-backslash, for example:

add_clocks 0 {\\A[0] \\B[0]}

Use two levels of curly braces, for example:

add_clocks 0 {{\A[0]} {\B[0]}}

As an alternative, you can remove backslashes entirely. In this case, TestMAX ATPG
commands automatically match specified identifiers that have no backslashes to identifiers
in the database that have backslashes.

The following examples show various methods for specifying escaped names for a list
argument:

add_faults {{\abccdef/hij/U1/A}}
add_faults {\\abccdef/hij/U1/A}
add_faults {abccdef/hij/U1/A}
add_faults [list {\abccdef/hij/U1/A}]
add_faults [list \\abccdef/hij/U1/A]
add_faults [list abccdef/hij/U1/A]

Using Positional Arguments
Positional arguments must be specified within a Tcl list using curly braces. For example:

run_simulation -pin { ucore/freg/u540 01 }

However, if multiple specifications of the same argument are required, you must use a
separate set of lists, as shown in the following example:

run_simulation -pin { ucore/freg/u540 0 } –pin { ucore/alu/u27 1 }

Abbreviating Commands and Options in Tcl Mode
Application commands are specific to TestMAX ATPG. You can abbreviate application
command names and options to the shortest unambiguous (unique) string. For
example, you can abbreviate the add_pi_constraints command to add_pi_c or the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

377

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Tcl Syntax and TestMAX ATPG Commands

Feedback

report_faults command option -collapsed to -co. Conversely, you cannot abbreviate
most built-in commands.

Command abbreviation is meant as an interactive convenience. You should not use
command or option abbreviations in script files, however, because script files are then
susceptible to command changes in subsequent versions of the application. Such changes
can make abbreviations ambiguous.

The variable sh_command_abbrev_mode determines where and whether command
abbreviation is enabled. Although the default is Anywhere, in the site setup file for the
application, you can set this variable to Command-Line-Only . To disable abbreviation, set
sh_command_abbrev_mode to None.

If you enter an ambiguous command, TestMAX ATPG attempts to help you find the correct
command.

For example, the following command is ambiguous:

> report_scan_c
Error: ambiguous command ‘report_scan_c’ matched 2 commands:
(report_scan_cells, report_scan_chains) (CMD-006).

TestMAX ATPG lists up to three of the ambiguous commands in its error message. To list
all the commands that match the ambiguous abbreviation, use the help function with a
wildcard pattern. For example,

> help report_scan_c_*
report_scan_cells # Reports scan cell information for selected scan
 cells
report_scan_chains # Reports scan chain information.

Using Tcl Special Characters
The characters listed in Table 1 have special meaning for Tcl in certain contexts.

Table 3 Special Characters

Character Description

$ Dereferences a variable.

() Used for grouping expressions.

[] Denotes a nested command.

\ Used for escape quoting.

"" Denotes weak quoting. Nested commands and variable substitutions still
occur.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

378

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Tcl Syntax and TestMAX ATPG Commands

Feedback

Table 3 Special Characters (Continued)

Character Description

{ } Denotes rigid quoting. There are no substitutions.

; Ends a command.

Begins a comment.

Using the Result of a Tcl Command
TestMAX ATPG commands return a result, which is interpreted by other commands as
strings, Boolean values, integers, and so forth. With nested commands, the result can be
used as

• A conditional statement in a control structure

• An argument to a procedure

• A value to which a variable is set

The following example uses a result:

if {[expr $a + 11] <= $b} {
echo "Done"
return $b
}

Using Built-In Tcl Commands
Most built-in commands are intrinsic to Tcl. Their arguments do not necessarily conform to
the TestMAX ATPG argument syntax. For example, many Tcl commands have options that
do not begin with a dash, but do have a value argument.

For example, the Tcl string command has a compare option that you use as follows:

string compare string1 string2

A log file of the TestMAX ATPG session can be created using the set_messages -log
<file> command, as with native mode. However, some Tcl built-in commands might
not be able to write to the log file. For example, the puts command cannot write to the
TestMAX ATPG log file; use the echo command instead.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

379

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Redirecting Output in Tcl Mode

Feedback

TestMAX ATPG Extensions and Restrictions in Tcl Mode
Generally, TestMAX ATPG implements all the Tcl built-in commands. However, TestMAX
ATPG adds semantics to some Tcl built-in commands and imposes restrictions on some
elements of the language. The differences are as follows:

• The Tcl rename command is limited to procedures you have created.

• The Tcl load command is not supported.

• You cannot create a command called unknown.

• The auto exec feature found in tclsh is not supported. However, autoload is supported.

• The Tcl source command has additional options: -echo and -verbose, which are non-
standard to Tcl.

• The history command has additional options, -h and -r, nonstandard to Tcl, and the
form history <n>. For example, history 5 lists the last five commands.

• The TestMAX ATPG command processor processes words that look like bus (array)
notation (words that have square brackets, such as a[0]), so that Tcl does not try to
execute the index as a nested command. Without this processing, you would need to
rigidly quote such array references, as in {a[0]}.

• Always use braces ({ }) around all control structures and procedure argument lists.
For example, quote the if condition as follows:

if {! ($a > 2) } { echo "hello world" }

Redirecting Output in Tcl Mode
You can direct the output of a command, procedure, or a script to a specified file using the
redirect command or by using the traditional UNIX redirection operators (> and >>)

The UNIX style redirection operators cannot be used with built-in commands. You must
use the redirect command when using built-in commands.

You can use either of the following two commands to redirect command output to a file:

redirect temp.out {report_nets n56}
report_nets n56 > temp.out

You can use either of the following two commands to append command output to a file:

redirect -append temp.out {report_nets n56}
report_nets n56 >> temp.out

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

380

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Redirecting Output in Tcl Mode

Feedback

The Tcl built-in command puts does not respond to redirection of any kind. Instead, use
the TestMAX ATPG command echo, which responds to redirection.

The following sections describe in detail how to redirect output:

• Using the redirect Command in Tcl Mode

• Getting the Result of Redirected Tcl Commands

• Using Redirection Operators in Tcl Mode

Using the redirect Command in Tcl Mode
In an interactive session, the result of a redirected command that does not generate a Tcl
error is an empty string, as shown in the following example:

> redirect -append temp.out { history -h }
> set value [redirect blk.out {plus 12 34}]
> echo "Value is <$value>"
Value is <>

Screen output from a redirected command occurs only when there is an error, as shown in
the following example:

> redirect t.out { report_commands -history 5.0 }
Error: Errors detected during redirect
Use error_info for more info. (CMD-013)

This command had a syntax error because 5.0 is not an integer. The error is in the redirect
file.

> exec cat t.out
Error: value '5.0' for option '-history' not of type
'integer'
(CMD-009)

The redirect command is more flexible than traditional UNIX redirection operators. The
UNIX style redirect operators > and >> are not part of Tcl and cannot be used with built-in
commands. You must use the redirect command with built-in commands.

For example, you can redirect expr $a > 0 only with the following command:

redirect file {expr $a > 0}

With redirect you can redirect multiple commands or an entire script. As a simple
example, you can redirect multiple echo commands:

redirect e.out {
 echo -n "Hello"
 echo "world"
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

381

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Using Command Aliases in Tcl Mode

Feedback

Getting the Result of Redirected Tcl Commands
Although the result of a successful redirect command is an empty string, you can get and
use the result of the command you redirected. You do this by constructing a set command
in which you set a variable to the result of your command, and then redirecting the set
command. The variable holds the result of your command. You can then use that variable
in a conditional expression.

An example is as follows:

redirect p.out {
 set rnet [catch {read_netlist h4c.lib }]
}
if {$rnet == 1} {
 echo "read_netlist failed! Returning..."
 return
}

Using Redirection Operators in Tcl Mode
Because Tcl is a command-driven language, traditional operators usually have no special
meaning unless a particular command (such as expr) imposes some meaning. TestMAX
ATPG commands respond to > and >> but, unlike UNIX, TestMAX ATPG treats the > and
>> as arguments to the command. Therefore, you must use white space to separate these
arguments from the command and the redirected file name, as shown in the following
example:

echo $spec_variable >> file.out; # Right
echo $spec_variable>>file.out; # Wrong!

Keep in mind that the result of a command that does not generate a Tcl error is an empty
string. To use the result of commands you are redirecting, you must use the redirect
command.

The UNIX style redirect operators > and >> are not part of Tcl and cannot be used with
built-in commands. You must use the redirect command with built-in commands.

Using Command Aliases in Tcl Mode
You can use aliases to create short forms for the commands you commonly use. For
example, the following command duplicates the function of the dc_shell include command
when using TestMAX ATPG:

> alias include "source -echo -verbose"

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

382

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Interrupting Tcl Commands

Feedback

After creating the alias in the previous example, you can use it by entering the following
command:

> include commands.cmd

When you use aliases, keep the following points in mind:

• TestMAX ATPG recognizes an alias only when it is the first word of a command.

• An alias definition takes effect immediately, but only lasts until you exit the TestMAX
ATPG session.

• You cannot use an existing command name as an alias name; however, aliases can
refer to other aliases.

• Aliases cannot be syntax checked. They look like undefined procedures.

Interrupting Tcl Commands
If you enter the wrong options for a command or enter the wrong command, you can
usually interrupt command processing by pressing Control-c.

The time the command takes to respond to an interrupt (to stop what it is doing and return
to the prompt) depends on the size of the design and the function of the command being
interrupted.

Some commands might take awhile before responding to an interrupt request, but
TestMAX ATPG commands will eventually respond to the interruption.

If TestMAX ATPG is processing a command file (see Using Command Files), and you
interrupt one of the file’s commands, script processing is interrupted and TestMAX ATPG
does not process any more commands in the file.

If you press Control-c three times before a command responds to your interrupt, TestMAX
ATPG is interrupted and exits with the following message:

Information: Process terminated by interrupt.

There are a few exceptions to this behavior, which are documented with the applicable
commands.

Using Command Files in Tcl Mode
You can use the source command to execute scripts in TestMAX ATPG. A script file, also
called a command file, is a sequence of commands in a text file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

383

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
Using Command Files in Tcl Mode

Feedback

The syntax is as follows:

> source [-echo] [-verbose] cmd_file_name

By default, the source command executes the specified command file without showing
the commands or the system response to the commands. The -echo option causes each
command in the file to be displayed as it is executed. The -verbose option causes the
system response to each command to be displayed.

Within a command file you can execute any TestMAX ATPG command. The file can be
simple ASCII or gzip compressed.

The following sections describe how to use command files:

• Adding Comments

• Controlling Command Processing When Errors Occur

• Using a Setup Command File

Adding Comments
You can add block comments to command files by beginning comment lines with the
pound sign(#).

Add inline comments using a semicolon to end the command, followed by the pound sign
to begin the comment, as shown in the following example:

#
Set the new string
#
set newstr "New"; # This is a comment.

Controlling Command Processing When Errors Occur
By default, when a syntax or semantic error occurs while executing a command in
a command file, TestMAX ATPG discontinues processing the file. There are two
variables you can use to change the default behavior: sh_continue_on_error and
sh_script_stop_severity.

To force TestMAX ATPG to continue processing the command file no matter what,
set sh_continue_on_error to true. This is usually not recommended, because the
remainder of the file might not perform as expected if a command fails due to syntax or
semantic errors (for example, an invalid option).

The sh_script_stop_severity variable has no effect if the sh_continue_on_error
variable is set to true.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

384

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
An Introduction to the TestMAX ATPG Tcl API

Feedback

To get TestMAX ATPG to stop the command file when certain kinds of messages are
issued, use the sh_script_stop_severity variable. This is set to none by default. Set
it to E to get the file to stop on any message with error severity. Set it to W to get the file to
stop on any message with warning severity.

Using a Setup Command File
You can use a command file as a setup file so that TestMAX ATPG will automatically
execute it at startup. The default setup file is located in the following directory:

$SYNOPSYS_TMAX/admin/setup/tmaxtcl.rc

To use a setup command file in the Tcl interface, you must name it either .tmaxtclrc or
tmaxtcl.rc, and place it in the directory where TestMAX ATPG was started or in your
home directory.

An Introduction to the TestMAX ATPG Tcl API
The Tcl Application Programming Interface (API) creates a script to manipulate TestMAX
ATPG data. Most TestMAX ATPG data is stored in an internal data structure. This data is
updated after the execution of the commands that manipulate it. For example, diagnostics
fault candidates are stored in a data structure updated at the end of each run_diagnosis
command. To access this data, you use a set of Tcl API commands.

For a list of all TestMAX ATPG-specific API commands, see tcl_api_commands in
TestMAX ATPG Online Help.

Retrieving Information
Tcl API commands enable you to retrieve information for a specific object. The Tcl API
includes several classes of objects, for example: class cell, class pattern, and class fault
candidate. To retrieve information on these objects, you use a set of Tcl commands that
begin with the "get_" prefix.

When data is available, a query of a class returns a collection (which is different as a Tcl
list) of objects. If the data is unavailable, the query return is empty.

If you have a large design, a query of a collection of all cells in the design could take
excessive time. You can avoid this by using matching expressions to filter the objects that
are returned for each "get_" command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

385

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Using Tcl With TestMAX ATPG
An Introduction to the TestMAX ATPG Tcl API

Feedback

Using the -filter Option
Some commands have a -filter option. This option filters a command query based on
specified attributes. The -filter option accepts only wildcards for filtering and not the
regular expression syntax. Note that you cannot use the -filter and -regexp options at
the same time.

Examples of the -filter option are as follows:

• To get a collection of all diagnostics fault candidates with the pinpath attribute
containing the letter "A," specify the following:

TEST-T> set candid_col [get_candidate -filter "pinpath=~*A*"]
• You can specify complex filter expressions using && of || operators. For example:

TEST-T> set cell_col [get_cells -filter “chain_name == c0 &&
 scan_position== 2”]

Using the -regexp Option
You can also use the -regexp to filter a command query. This option applies only to the
object type name. For example, if you use the -regexp option to get cells, the pattern will
only match the cell name.

Examples of the -regexp option are as follows:

TEST-T> set cell_col [get_cells {[A-U]28} -regexp]
TEST-T> set cell_obj [get_cells {U28} -regexp]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

386

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

10
Design Netlists and Library Models

TestMAX ATPG builds a netlist that is optimized for ATPG.

The Preparing a Netlist, Reading a Netlist, and Reading Library Models sections provide
specific information on how to specify netlists and library models. The following sections
provide additional information on reading and processing design netlists and library
models:

• Netlist Format Requirements

• About Reading a Netlist

• Using Wildcards to Read Netlists

• About Reading Library Models

• Controlling Case-Sensitivity

• Setting Parameters for Learning

• About Building the ATPG Model

• Processes That Occur When Building the ATPG Model

• Flattening Optimization for Hierarchical Designs

• Identifying Missing Modules

• Removing Unused Logic

• Using Black Box and Empty Box Models

• Handling Duplicate Module Definitions

• Creating Custom ATPG Models

• Condensing ATPG Libraries

• Assertions

• Memory Modeling

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

387

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Netlist Format Requirements

Feedback

Netlist Format Requirements
TestMAX ATPG can read netlists in Electronic Design Interchange Format (EDIF), Verilog,
and VHDL formats. It can read non-encrypted as well as Synenc-encrypted netlists. Some
minimal preprocessing might be necessary to make the netlist compatible with TestMAX
ATPG.

The following sections describe the netlist requirements for TestMAX ATPG:

• EDIF Netlist Requirements

• Verilog Netlist Requirements

• VHDL Netlist Requirements

EDIF Netlist Requirements
To ensure EDIF netlists are compatible with TestMAX ATPG, you must review all power
and ground logic connections. The following sections describe how to handle these
situations:

• Logic 1/0 Using Global Nets

• Logic 1/0 by Special Library Cell

Logic 1/0 Using Global Nets
In EDIF, a design can reference two or more global nets, which represent the tie to logic 1
or logic 0 connections. Because there is no driver for these nets, TestMAX ATPG issues
warnings, such as “floating internal net,” as it analyzes the design.

If your design uses this global net approach and you are using Synopsys tools to create
your netlist, set the EDIF environment variables as shown in Example 1 before writing the
EDIF netlist. The global net names used in the example are logic0 and logic1, but you can
use any legal net names.

Example 1: EDIF Variable Settings for Global Logic 1/0 Nets

edifout_netlist_only = true
edifout_power_and_ground_representation = net
edifout_ground_net_name = "logic0"
edifout_power_net_name = "logic1"
write options

Logic 1/0 by Special Library Cell
The EDIF library can contain special tie_to_low and tie_to_high cells. Every logic
connection to power or ground is then connected by a net to one of these cells. If your
design uses this library cell approach, you must define an ATPG model for each cell to

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

388

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Netlist Format Requirements

Feedback

supply the proper function of TIE1 or TIE0; otherwise, the missing model definition is
translated to a TIEX primitive, and the logic 1/0 connections are all tied to X instead of to
the required logic value.

If you do not yet have models describing the logic functions of the special cells, you might
have to add some module definitions to your library. Normally, your ASIC vendor provides
these; if not, see Example 2, which shows a Verilog module description for modules called
POWER and GROUND. You can use this module description by changing the name of the
module to match the library cell names referenced by your EDIF design netlist.

Example 2: ATPG Model Definition for Logic 1/0 Library Cells

module POWER (pin);
output pin;
_TIE1(pin);
endmodule
module GROUND (pin);
output pin;
_TIE0(pin);
endmodule

To provide an ATPG functional model for each EDIF cell description, place the module
definition in a separate file to be referenced during the process flow when it is time to read
in library definitions.

Verilog Netlist Requirements
Verilog netlist style, syntax, and instance and net naming conventions vary greatly. Use the
following guidelines to ensure that your Verilog netlist is compatible with TestMAX ATPG:

• Do not use a period (.) within the name of any net, instance, pin, port, or module
without enclosing it with the standard Verilog backslash mechanism.

• Verify that your Verilog modules are structural and not behavioral, except for modules
used to define ATPG RAM/ROM functions.

• Verilog is case-sensitive, although many tools ignore case and treat “specNet” and
“specnet” as the same item.

• If you are using Synopsys tools to create your Verilog netlist, review the
define_name_rules command to find options for adjusting the naming conventions
used in your design.

ATPG Modeling Primitive Summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

389

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
About Reading a Netlist

Feedback

VHDL Netlist Requirements
The following guidelines apply when using a VHDL netlist with TestMAX ATPG:

• VHDL designs must be completely structural in nature.

• Bits and vectors must only use std_logic types. Other types, such as SIGNED, are not
supported.

• Conversion functions are not supported.

About Reading a Netlist
TestMAX ATPG automatically determines the format of a referenced netlist. It reads the
file in hierarchical order, starting with the library leaf cells and ending with the top-level
module.

The netlist data passed into ATPG must contain structural design constructs. These
constructs are instances of modules comprised of leaf-level Boolean and sequential logic
primitives. A design is defined and fault-graded based on these Boolean and sequential
elements.

TestMAX ATPG supports limited use of complex logical expressions within the design
environment. All extracted design structures must be thoroughly reviewed. For optimal
performance, make sure that minimal design constructs represent the design. For
example, passing in design libraries containing unused or redundant elements directly
impact overall netlist processing.

Netlists should not contain power and ground connections since they cannot be used in
the test operation. The power and ground information cause large and often bidirectional
networks that directly affect netlist processing in both runtime and memory requirements.
This assumes the networks are consumed without exceeding TestMAX ATPG processing
limitations.

There are several different options you can use when reading a netlist:

• By default, TestMAX ATPG treats Verilog netlists as case-sensitive, and EDIF and
VHDL netlists as case-insensitive. You can override the default using the -sensitive
or -insensitive option of the read_netlist command or by selecting Sensitive or
Insensitive in the "Case sensitivity" drop-down menu of the Read Netlist dialog box in
the TestMAX ATPG GUI.

• TestMAX ATPG issues a warning if a module is defined more than one time and uses
the module definition from the last loaded netlist. You can you can identify a module
as a master module and it will not be replaced if TestMAX ATPG encounters a module
with the same name. Use the set_netlist -redefined_module command to change
the module definition to the first or last module.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

390

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Wildcards to Read Netlists

Feedback

• Use the -define option of the read_netlist command to define any variable function
or expression. This option is equivalent to the 'define Verilog statement.

• Use the -delete option of the read_netlist command to delete any netlists currently
stored in memory.

• The set_commands noabort command prevents TestMAX ATPG from terminating if it
encounters an error when reading multiple netlists.

For more information, see Reading a Netlist.

Using Wildcards to Read Netlists
If your library cells are stored in multiple individual files, you can read them all using
wildcards. TestMAX ATPG supports the asterisk (*) to match occurrences of any
character, and the question mark (?) to match any single character.

To read in all files in the directory speclib that have the extension .v, use the following
read_netlist command:

BUILD-T> read_netlist speclib/*.v

To read in all files in speclib, enter the following command:

BUILD-T> read_netlist speclib/*

To read in all files that begin with DF and end with .udp, in all subdirectories in speclib
that end in _lib, enter the following command:

BUILD-T> read_netlist speclib/*_lib/DF*.udp

To read in all files that begin with DFF, end in .V, and have any two characters in between,
enter the following command:

BUILD-T> read_netlist DFF??.V

You can also use wildcards in the Read Netlist dialog box. Use the Browse button to select
any file from the directory of interest and click OK. Then replace the file name with an
asterisk.

When you use wildcards, you might find it convenient to use the following options:

• Verbose: Produces a message for each file rather than the default message for the
sum of all files.

• Abort on error: Determines whether TestMAX ATPG stops reading files when it
encounters an error with an individual file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

391

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
About Reading Library Models

Feedback

About Reading Library Models
TestMAX ATPG creates ATPG models based on the functional portion of Verilog simulation
models. These models include user-defined primitives (UDPs), which are essential for
describing particular library cells. Behavioral models are not recognized.

TestMAX ATPG recognizes the following Verilog language attributes:

`define
`ifdef
`include
`celldefine
`suppress_faults
`enable_portfaults

You must read in all library models referenced by your design. You can read in one model
at a time, or you can read in the entire library with a single command. If your design
already contains a module that has the same name as one of the library modules, when
you read in the library, the library model overwrites your module.

See Also

• Reading Library Models

• Reading a Netlist

Controlling Case-Sensitivity
Netlist formats differ in whether or not the instance, pin, net, and module names are
case-sensitive. When TestMAX ATPG reads a netlist, it chooses case-sensitive or case-
insensitive based on the type of netlist by default as follows:

• Verilog Netlists: case-sensitive

• EDIF Netlists: case-insensitive

• VHDL Netlists: case-insensitive

You can override the defaults by using the -sensitive or -insensitive option of
the read_netlist command. For example, to read in all files ending in .V in directory
speclib, using case-insensitive rules, use the following command:

BUILD-T> read_netlist speclib/*.V -insensitive

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

392

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Setting Parameters for Learning

Feedback

Setting Parameters for Learning
When TestMAX ATPG builds an ATPG model, it also performs a circuit learning process to
determine information useful for performing simulation and test generation.

This learning process performs the following tasks:

• Identifies feedback paths

• Orders gates and feedback networks by rank

• Identifies easiest-to-control input and easiest-to-observe fanout for all gates

• Identifies equivalence relationships between gates

• Identifies the potential functional behavior of circuit fragments

• Identifies tied value gates and fault blockages that result from tied gates

• Identifies tied gates and blockages that result from gates whose inputs come from a
common or equivalent source

• Identifies equivalent DFF and DLAT devices (those with identical inputs)

• Identifies implication relationships between gates

Learned Behavior Types
During the learning process, each gate is assigned a learned behavior. The possible types
of learned behavior are as follows:

Blocked - A gate whose fault effects are blocked from detection by tied circuitry.

Common Input - A gate that has a common source for two or more of its inputs.

Common Tied Input - A gate that is equivalent to a tied gate due to some logical
relationship between its inputs. For example, an XOR gate with both inputs attached to the
same net is equivalent to a tied-to-0; or an AND gate with a net and its inverted value as
inputs will also be equivalent to a tied-to-0.

Constrained - A gate with an input constraint resulting in an output that can never achieve
a 0, 1, or Z, or some combinations of these logic values.

Constrained Blocked - A gate whose fault effects are blocked from detection by
constraints.

Equivalence - Two gates whose outputs are equivalent or complementary to each other at
all times. For example, a NAND and an AND gate with the same input connections always
have opposite values on their outputs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

393

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Setting Parameters for Learning

Feedback

Implications - Two gates whose behavior has been learned to have an implied relationship,
such as "gate A at value J implies gate B at value K".

Inverted Inputs - A gate that has an inverted input function. In other words, an inverter has
been merged into the input of an otherwise standard gate such as AND, NAND, OR, or
NOR.

Learn BUF - A gate whose function is equivalent to a BUF, such as an AND gate with its
inputs tied together.

Learn INV - A gate whose function is equivalent to an INV, such as a NAND gate with its
inputs tied together.

Learn Tied Gate - A gate whose function is equivalent to a tied 0/1/Z/X gate.

Tied - Any gate learned to be always tied to 0/1/Z/X.

Weak - Any gate with a WEAK input. This is generally a BUS device.

You can view most learned data for a given gate by setting the -verbose option for the

set_pindata command and running the report_primitives command for the selected
gate.

Controlling the ATPG Learning Algorithm
You can control the ATPG learning algorithms using the set_learning command or the
Run Build Model dialog box.

The following example uses the set_learning command to specify the ATPG
equivalence algorithm for learning:

BUILD-T> set_learning -atpg_equivalence
To use the Run Build Model dialog box to control the learning algorithms:

1. From the command toolbar, click the Build button.

The Run Build Model dialog box appears.

2. Select or enter the appropriate options in the Set Learning section. For descriptions of
these controls, see the description of the set_learning command in TestMAX ATPG
Help.

3. Click OK.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

394

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
About Building the ATPG Model

Feedback

About Building the ATPG Model
To build the ATPG model, TestMAX ATPG compiles a set of netlist and library models into
a single in-memory image. For more information on reading netlists and library models,
see Reading a Netlist and Reading a Library Model.

When you build an ATPG model of a hierarchical design, TestMAX ATPG flattens the
hierarchy to make a single-level, in-memory model of the design. Several different
optimization methods are used to reduce the number of gates and simplify the design.
You can control many of these processes using the set_build command, as described in
Controlling the Build Process.

During the process of building a model, TestMAX ATPG also performs a circuit learning
process to determine information useful for performing simulation and test generation. The
parameters you can set for this learning process are described in Setting Parameters for
Learning.

You can specify several parameters that control and optimize the process of building an
ATPG model, including:

• Add a buffer gate between any latch or flip-flop gate directly connected to another latch
or flip-flop gate

• Specify and remove modules designated as black boxes, empty boxes, design library
cells

• Preserve pin names of models that would normally be flattened

• Add pulldown and pullup drivers and bus keepers to BUS gates

• Keep or delete unused gates

• Specify an alternate hierarchical delimiter

• Modify or replace selected instances

• Define certain input signals in the top-level module as bidirectional signals

• Limit the number of fanouts for gates

• Specify various model flattening optimization algorithms

• Specify how net connections affect the flattened ATPG model

• Specify parameters for modeling undriven bidirectional nets

For details on these options, see the description of the set_build command in TestMAX
ATPG Help.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

395

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Processes That Occur When Building the ATPG Model

Feedback

The following figure shows the process for building the ATPG model:

Figure 83 Building the ATPG Design Model

   

See Also

• Building the ATPG Model

Processes That Occur When Building the ATPG Model
During the execution of the run_build_model command, the following processes occur:

• The targeted top module for build, usually the top module, is used to form an
in-memory image. Each instance in the top level is replaced by the gate-level
representation of that instance; this process is repeated recursively until all hierarchical
instantiations have been replaced by references to ATPG simulation primitives.

• Special ATPG simulation primitives are inserted for inputs, outputs, and bidirectional
ports.

• Special ATPG simulation primitives are inserted to resolve BUS and WIRE
nets. Unused gates are deleted based on the last setting of the set_build
-delete_unused_gates command.

• Each primitive is assigned a unique ID number.

• Some BUF devices are inserted at top-level ports that have direct connections to
sequential devices. No fault sites are added by these buffers.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

396

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Flattening Optimization for Hierarchical Designs

Feedback

• Various design and module-level rule checks (the “B” series) are performed to
determine the following:

◦ Missing module definitions

◦ Floating nets internal to modules

◦ Module ports defined as bidirectional with no internal drivers (These could have
been input ports.)

◦ Module ports defined as outputs with no internal drivers (These possibly should
have been inputs.)

◦ Module input ports that are not connected to any gates within the module (These
might be extraneous ports.)

◦ Instances that have undriven input pins (These might be floating-gate inputs.)

• TIE0, TIE1, TIEZ, and TIEX primitives are inserted into the design where appropriate
as a result of determining floating inputs or pins tied to a constant logic level.

• Statistics on the number of ATPG simulation primitives as well as the types of ATPG
primitives are collected.

The following example shows an example transcript of the run_build_model command.

Transcript of run_build_model Command Output
BUILD-T> run_build_model asic_top
--
Begin build model for topcut = asic_top ...
--
Warning: Rule B7 (undriven module output pin) failed 178 times.
Warning: Rule B8 (unconnected module input pin) failed 923 times.
Warning: Rule B10 (unconnected module internal net) failed 32 times.
Warning: Rule B13 (undriven instance pin) failed 2 times.
End build model: #primitives=101071, CPU_time=3.00 sec,
Memory=34529279
--

Flattening Optimization for Hierarchical Designs
When you build a model of a hierarchical design (using the run_build_model command),
TestMAX ATPG flattens the hierarchy to make a single-level, in-memory model of the
design. Several different optimization methods are used to reduce the number of gates
and simplify the design. Some of these methods are always performed, while others are
enabled or disabled with the set_build command.

TestMAX ATPG can perform 16 different types of optimization. Each optimization method
is described, including the user commands for enabling or disabling the method, where

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

397

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Flattening Optimization for Hierarchical Designs

Feedback

applicable. The default configuration (either enabled or disabled) is marked with an
asterisk in each such description.

1. BUF elimination

Always enabled; no user control

During the flattening process, buffers are eliminated wherever this is possible without
eliminating any fault sites.

2. INV elimination

Always enabled; no user control

During the flattening process, inverters are eliminated wherever this is possible without
eliminating any fault sites.

3. Switches(SW) as BUFs or BUFZs

Always enabled; no user control

During the flattening process, each SW primitive found that has its control gate held
constantly on is replaced with a BUFZ device; or if the propagation of a Z value is not
needed, it is replaced with a BUF device. These BUF/BUFZ device can be removed later
by the BUF elimination method (#1 above). This optimization can cause fault sites to be
dropped. If this happens, the dropped faults are reported as B22 violations.

4. DLATs as BUFs

Always enabled; no user control

During the flattening process, for each DLAT primitive found that has its gate/clock input
held on and its set and reset lines held off so that the latch is always transparent, the
DLAT is replaced with a BUF device. This optimization can cause fault sites to be dropped.
If this happens, the dropped faults are reported as B22 violations.

5. DFFs as DLATs

Always enabled; no user control

During the flattening process, each DFF primitive found that has its clock permanently off,
but able to use its asynchronous set or reset input, is replaced with a latch device.

6. Unused Gates

To enable: set_build -delete_unused_gates (default)

To disable: set_build -nodelete_unused_gates
An unused gate is one which has no output connections to other gates, including black
box or empty box gates. When this optimization method is enabled, unused gates are

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

398

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Flattening Optimization for Hierarchical Designs

Feedback

removed during the flattening process. It is possible for fault sites to be dropped as these
gates are removed.

7. TIE propagation

To enable: set_build -merge tied_gates_with_pin_loss
To disable: set_build -merge notied_gates_with_pin_loss (default)

TIE propagation optimization identifies nets and pins tied high or low and attempts
to propagate this constant value through logic to reduce the number of gates. When
disabled, TIE propagation is still performed, but only where it does not cause testable fault
sites to be dropped. When enabled, TIE propagation occurs even where it causes testable
fault sites to be dropped. If any fault sites are dropped, they are reported in a summary
message; for example:

There were 38240 primitives and 6318 faultable pins removed during model
 optimizations

8. Cascaded Gates

To enable: set_build -merge cascaded_gates_with_pin_loss
To disable: set_build -merge noscascaded_gates_with_pin_loss (default)

Cascaded gate optimization is performed by identifying two gates in series that can be
logically merged into a single gate. An example of this is two 2-input AND gates in series,
which can be replaced by a single 3-input AND gate. When disabled, cascaded gate
optimization is still performed, but only where it does not cause fault sites to be dropped.
When enabled, cascade optimization is performed even where it causes fault sites to be
dropped. If any fault sites are dropped, they are reported as B22 violations.

9. Bus Keepers

To enable: set_build -merge Bus_keepers (default)

To disable: set build -merge NOBus_keepers
Bus keeper recognition is performed by searching for small, constantly enabled
combinational loops with a weak driver. This recognition considers paths including BUF
and INV, as well as SW and TSD devices used to form bus keepers that hold only one
state. After identified, these loops are replaced with BUSK ATPG primitives. When
enabled, bus keeper optimization can result in the dropping of faults sites. If any fault sites
are dropped, they are reported as B22 violations.

10. Feedback Paths

To enable: set_build -merge feedback_paths (default)

To disable: set_build -merge nofeedback_paths

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

399

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Flattening Optimization for Hierarchical Designs

Feedback

Feedback path optimization is done by searching for combinational loops that do not
perform any testable function. One of example is a loop involving a BUS with a weak
driver and at least one strong, non-three-state driver. The loop through the weak driver
can be removed. Another example is a three-state net where all the potential drivers come
from top-level primary inputs (strong drivers) and the feedback path is again through a
weak driver. Elimination of these feedback paths can cause fault sites to be dropped. If
this happens, the dropped faults are reported as B22 violations.

11. MUX Recognition

To enable: set_build -merge mux_from_gates
To enable: set_build -merge muxpins_from_gates (default)

To enable: set_build -merge muxx_from_gates
To disable: set_build -merge nomux_from_gates
The MUX recognition optimization method is done by searching for discrete gates that can
be combined to create MUX behavior. The most common form is two 2-input AND gates
followed by an OR gate. Additional variants are also recognized, such as pass-transistor
MUXes. There are three variations of this optimization method:

Mux_from_gates - When enabled, discrete-gate forms of MUX behavior are replaced with
TestMAX ATPG MUX primitives. During this optimization, it is possible that fault sites is
dropped. If any fault sites are dropped, they are reported as B22 violations.

Muxpins_from_gates - When enabled, discrete-gate forms of MUXes are replaced, but
only if no fault sites are dropped as a result.

Muxx_from_gates - When enabled, discrete-gate forms of MUXes are replaced, but only if
no fault sites are dropped as a result, and only for "optimistic MUX" behavior. Gates which
form the "pessimistic MUX" behavior are left unchanged.

An "optimistic MUX" produces an output equal to the data inputs when the select line is
X and both inputs are identical. The "pessimistic MUX" produces an output of X when
the select line is X, even when the data inputs are identical. The TestMAX ATPG MUX
primitive implements the "optimistic MUX" behavior.

12. XOR/XNOR Recognition

To enable: set_build -merge Xor_from_gates
To enable: set_build -merge XORPins_from_gates (default)

To disable: set_build -merge NOXor_from_gates

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

400

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Flattening Optimization for Hierarchical Designs

Feedback

XOR/XNOR recognition optimization is done by searching for discrete gates that form
either the XOR or XNOR function. There are two variations of this optimization:

Xor_from_gates - When enabled, discrete-gate forms of XOR/XNOR are replaced with
TestMAX ATPG XOR/XNOR primitives. This optimization can cause fault sites to be
dropped. If this occurs, the dropped fault sites are reported as B22 violations.

Xorpins_from_gates - When enabled, discrete-gate forms of XOR/XNOR are replaced
with TestMAX ATPG XOR/XNOR primitives, but only where no fault sites are dropped as a
result.

13. Equivalent DLAT/DFF

To enable: set_build -merge equivalent_dlat_dff (default)

To enable: set_build -merge equivalent_initialized_dlat_dff
To disable: set_build -merge noequivalent_dlat_dff
This optimization method identifies equivalent DLAT and DFF devices, and merges the
equivalent functions into a single device. The equivalent_initialized_dlat_dff setting,
if enabled, will assume the devices are initialized to their steady state values before
determining if they can be merged into a single device. Two DLAT or two DFF devices are
equivalent if they share common input connections, including all clock, set, reset, and data
inputs. The outputs of the two devices can be identical or complementary to each other.
This optimization method replaces one equivalent device with a BUF or INV connected to
the output of the other equivalent device. During this process, fault sites might be dropped,
in which case they are reported as B22 violations.

14. DLAT pairs as DFF

To enable: set_build -merge flipflop_from_dlat (default)

To enable: set_build -merge flipflop_cell_from_dlat
To disable: set_build -merge noflipflop_from_dlat
This optimization method finds each pair of D-latches that operate together as a D flip-
flop, and replaces them with a DFF primitive. This occurs when two DLAT devices are
connected serially from the Q output of one to the D input of the other, share common set,
reset, and complementary clocks from the same source. When this optimization occurs,
the two DLAT devices are replaced with a DFF primitive, possibly causing fault sites to be
dropped. If any fault sites are dropped, they are reported as B22 violations.

flipflop_cell_from_dlat- When enabled, merging master-slave latches into a flip-flop
is limited to those latch pairs that are part of the same design-level cell. This option should
be used by TestMAX DFT and when necessary to avoid pin loss due to merging latches to
flip-flops.

15. WIRE and BUS gates

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

401

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Flattening Optimization for Hierarchical Designs

Feedback

To enable: set_build -merge Wire_to_buffer (default)

To disable: set_build -merge NOWire_to_buffer
This optimization identifies and optimizes WIRE and BUS gates having common-source
inputs with buffer gates. Such WIRE and BUS gates are like those found common in
clock and scan-enable repowering networks. The buffer gates thus created can be further
removed by other optimizations. This optimization can result in faultable pin losses;
however, the lost faults are untestable anyway. In many designs, this optimization results
in fewer primitives in the final model, particularly fewer WIRE gates; in many cases the
number of WIRE gates is reduced to 0, which also results in faster DRC. The default is
-wire_to_buffer (optimization is enabled).

16 Tied inputs and MUX gates

To enable: set_build -merge Global_tie_propagate (default)

To disable: set_build -merge NOGlobal_tie_propagate
This optimization identifies and optimizes global tie 0/1 value propagations and replaces
certain [N]AND, [N]OR and MUX gates with buffers/inverters or eliminates them
completely. The analysis ensures that all faults eliminated are either undetectable-
redundant (UR) or equivalent to other faults that are preserved. The memory and CPU
time required by the flattening process are not measurably affected by this analysis.

This optimizations might change the reported test coverage, because:

• Eliminated UR faults could have been classified as ATPG-untestable (AU).

• Eliminated equivalent faults might change equivalence classes size and affect
uncollapsed coverage.

The following optimizations are performed during analysis:

• [N]AND, [N]OR gate with controlling tied inputs (T0/T1): replaced with T0/T1 if no
output fault and no faults on the tied inputs. All faults lost are classified UR.

• [N]AND, [N]OR gate with non-controlling tied inputs (T1/T0): replaced with buffer/
inverter if only one input is not tied. Faults lost are either classified UR or equivalent to
the corresponding output fault.

• MUX gate with tied select input: replaced with buffer/inverter from selected data input if
no fault on the select input or data lines cannot have complementary values. All faults
lost are classified UR.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

402

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Flattening Optimization for Hierarchical Designs

Feedback

• MUX gate with data inputs driven by common gate, with same inversion: replaced with
buffer/inverter from a data input if no faults on data inputs. All faults lost are classified
UR.

• MUX gate with data inputs driven by T0/T1: replaced with buffer/inverter from select
line. Faults lost are either classified UR or equivalent to the corresponding output fault.

Disabling this optimization could be desirable in the following cases:

• If pins targeted by an add_net_connections command or by reading in external fault
files are eliminated by the new analysis.

• If design-level viewing is limited because instances of interest have been "flattened-
down" (these are tracked by B22 violations).

The current value of all optimization settings can be reviewed by using the
report_settings build command. An example of a report is as follows:

 BUILD> report settings build
 build = add_buffer=yes, delete_unused_gates=yes, fault_boundary=lowest,
 hierarchal_delimiter='/', pin_assign=256, undriven_bidi=PIO,
 net_connections_change_netlist=yes,
 merge: bus_keepers=yes
 cascaded_gate_with_pin_loss=no
 equivalent_dlat_dff=on
 feedback_paths=yes
 flipflop_from_dlat=on
 mux_from_gates=pin-preserve
 tied_gates_with_pin_loss=no
 global_tie_propagate=yes
 wire_to_buffer=yes
 xor_from_gates=pin-preserve

During the flattening process, gate optimization details are reported if expert-level
messages have been enabled with the set_messages -level expert command. In
addition, a summary of optimization results is available at any time after the build process
is completed by using the report_summaries optimizations command, as shown in the
following example.

 TEST> report_summaries optimizations
 Optimizations Report

 optimization #occurrences #primitives #pins #modules
 type eliminated lost optimized

 unused gates 15905 15905 2552 133
 tied gates 0 42 0 0
 buffers 44152 44152 0 313
 inverters 10601 10601 0 100
 cascaded gates 529 529 0 2
 SWs as BUFs 42 0 0 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

403

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Identifying Missing Modules

Feedback

 DLATs as BUFs 0 0 0 0
 MUXs 3261 16242 8 19
 XORs 0 0 0 0
 equiv. DLAT/DFF 1831 0 0 8
 DLATs as DFFs 0 0 0 0
 DFFs as DLATs 0 0 0 0
 BUS keepers 60 0 0 1
 feedback paths 18 36 18 1

 total 76399 87507 2638 322

If, during the optimization process, faults sites are eliminated as gates are removed, those
faults sites are identified as B22 violations. Use the report_violations b22 command
to get a detailed list of fault sites removed during optimization or the report_rules b22
command to get a summary count.

Identifying Missing Modules
If your design references undefined modules, TestMAX ATPG sends you error messages
during execution of the run_build_model command. To identify all currently referenced
undefined modules, you can use the Netlist > Report Modules menu command, or you can
enter the report_modules -undefined command at the command line, for example:

BUILD-T> report_modules -undefined

An example of such a report is shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

404

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Identifying Missing Modules

Feedback

Figure 84 Report Modules Window Listing Undefined Modules

   

In the report, the columns for the total number of pins, input pins, output pins, I/O pins, and
number of instances all contain 0. Because the corresponding modules are undefined,
this information is unknown. In the “refs(def’d)” column, the first number indicates the
number of times the module is referenced by the design, and (N) indicates that the module
has not yet been defined.

For additional variations of the report_modules command, see TestMAX ATPG Online
Help.

Any undefined module referenced by the design causes a B5 rule violation when you
attempt to use the run_build_model command. The default severity of rule B5 is error, so
the build process stops.

If you set the B5 rule severity to warning, TestMAX ATPG automatically inserts a black
box model for each missing module when you build the design. In a black box model,
the inputs are terminated and the outputs are tied to X. For more information, see “Using
Black Box and Empty Box Models.”

To change the B5 rule severity to warning, use the following command:

BUILD-T> set_rules B5 warning

With this severity setting, when you use the run_build_model command, missing
modules do not cause the build process to stop. Instead, TestMAX ATPG converts

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

405

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Removing Unused Logic

Feedback

each missing module into a black box. After this process, use the report_violations
command to view an explicit list of the missing modules:

DRC-T> report_violations B5

Leaving the B5 rule severity set to warning might cause you to miss true missing module
errors later. To be safe, you should set the rule severity back to error. Before you do this,
use the set_build command to explicitly declare the black box modules in the design, as
explained in the next section. Then you can set the B5 rule severity back to error and still
build your design successfully.

Removing Unused Logic
Designs can contain unused logic for several reasons:

• Existing modules are reused and some sections of the original module are not used in
the new design.

• Synthesis optimization has not yet been performed to remove unused logic.

• Gates are created as a side effect to support timing checks in the defining modules.

The following example shows a module definition for a scan D flip-flop with asynchronous
reset. Because of timing check side effects, the module contains extra gates, with instance
names timing_check_1, timing_check_2, and so on. These gates form outputs that are
referenced exclusively in the specify section. This is a common technique for developing
logic terms used in timing checks, such as setup and hold.

Example Module With Extra Logic
module sdffr (Q, D, CLK, SDI, SE, RN);
 input D, CLK, SDI, SE, RN;
 output Q;
 reg notify;
 // input mux
 not mux_u1 (ckb, CLK);
 and mux_u2 (n1, ckb, D);
 and mux_u3 (n2, CLK, SDI);
 or mux_u4 (data, n1, n2);
 // D-flop
 DFF_UDP dff (Q, data, CLK, RN,
 notify);
 // timing checks
 not timing_check_1 (seb, SE);
 and timing_check_2 (rn_and_SE,
 RN, SE);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

406

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Removing Unused Logic

Feedback

 and timing_check_3 (rn_and_seb,
 RN, seb);
 specify
 if (RN &&
 !SE) (posedge CLK => (Q +: D)) = (1, 1);
 if (RN &&
 SE) (posedge CLK => (Q +: SDI)) = (1, 1);
 (negedge RN =>
 (Q +: 1'b0)) = (1, 1);
 $setup (D, posedge
 CLK &&& rn_and_seb, 0, notify);
 $hold (posedge
 CLK,D &&& rn_and_seb, 0, notify);
 $setup (SDI,
 posedge CLK &&& rn_and_SE, 0, notify);
 $hold (posedge
 CLK,SDI &&& rn_and_SE, 0, notify);
 $setup (SE, posedge
 CLK &&& RN, 0, notify);
 $hold (posedge
 CLK,SE &&& RN, 0, notify);
 endspecify
endmodule

When this module is converted into a gate-level representation, the timing check gates
in the internal module representation are retained. The output of the report_modules
-verbose command for module sdffr in the following example shows each primitive in
the TestMAX ATPG model, with the timing check gates present.

Example 2: Module Report Showing Unused Gates

BUILD-T> report_modules sdffr -verbose

 pins
module
 name
 tot(i/ o/ io) inst refs(def'd) used
---------------------------- --------------- ----
 ----------- ----
sdffr
 6(5/ 1/ 0) 8 0
 (Y) 1

 Inputs : D () CLK () SDI () SE ()
 RN ()
 Outputs : Q ()
 mux_u1 : not conn=(O:ckb I:CLK)
 mux_u2 : and conn=(O:n1 I:ckb I:D)
 mux_u3 : and conn=(O:n2 I:CLK I:SDI)
 mux_u4 : or conn=(O:data I:n1 I:n2)
 dff : DFF_UDP conn=(O:Q I:data I:CLK
 I:RN

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

407

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Removing Unused Logic

Feedback

 I:notify)
 timing_check_1: not conn=(O:seb I:SE
)
 timing_check_2: and conn=(
 O:rn_and_SE I:RN I:SE)
 timing_check_3: and conn=(
 O:rn_and_seb I:RN I:seb
)

By default, TestMAX ATPG deletes unused gates when it builds the design. To specify
whether unused gates are to be deleted or kept, choose Netlist > Set Build Options, which
displays the Set Build dialog box. Notice that, in this case, the “Delete unused gates”
box is checked, meaning that the deletion of unused gates is selected. To keep the extra
gates, deselect the “Delete unused gates” box.

The following figure shows the GSV display of the schematic created when the “Delete
unused gates” option is selected. The extra gates do not appear in the schematic.

Figure 85 Design Schematic With Delete Unused Gates On

   

To keep the extra gates, deselect the “Delete unused gates” option of the Set Build dialog
box. The following figure shows the resulting schematic. The design retains the three extra
timing check gates logically as two additional primitives with unused output pins. These
extra gates can produce extra fault-site locations, increasing the total number of faults in
the design and therefore increasing the processing time. Any faults on these gates are
categorized as UU (undetectable, unused). Although these UU faults do not lower the test
coverage, they still cause an increase in memory usage and processing time.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

408

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

Figure 86 Design Schematic With Delete Unused Gates Off

   

If you want to change the “Delete unused gates” setting, you must do so before executing
the run_build_model command on your design. If you build your design and then change
the setting, you must return to build mode and rerun the run_build_model command.

You can also change the unused gate deletion setting by using the set_build command
with the -delete_unused_gates or -nodelete_unused_gates option. The following
command overrides the default and keeps unused gates:

BUILD-T> set_build -nodelete_unused_gates

Using Black Box and Empty Box Models
You might prefer not to perform ATPG on some blocks in a design – referred to as black
boxesor empty boxes.

You can declare any block in the design to be a black box or an empty box, including
phase-locked loop block, an analog block, a block that is bypassed during test, or a block
that is tested separately, such as a RAM block.

The following sections describe how to use of black box and empty box models:

• Declaring Black Boxes and Empty Boxes

• Behavior of RAM Black Boxes

See Also

• Binary Image Files

• Excluding Vectors from Simulation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

409

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

Declaring Black Boxes and Empty Boxes
You can declare black box or any empty box by using one of the following commands:

set_build -black_box module_name
set_build -empty_box module_name

If you declare a block to be a black box, TestMAX ATPG ignores the contents of the block
when you build the model with the run_build_model command. Instead, it terminates
the block inputs and connects TIEX primitives to the outputs. Thus, the block outputs are
unknown (X) for ATPG.

An empty box is the same as a black box, except that the outputs are connected to
TIEZ rather than TIEX primitives. Thus, the block outputs are assumed to be in the high-
impedance (Z) state for ATPG.

The black box model is the usual and more conservative model for any block that is to be
removed from consideration for ATPG. In certain cases, however, this model can cause
contention, thereby preventing patterns from being generated for logic outside of the black
box. In these cases, the empty box model is a better choice.

For example, suppose that you have two RAM blocks called A and B, both with three-state
outputs. The block outputs are tied together and connected to a pullup resistor, as shown
in the following figure. If the enabling logic is working properly, no more than one RAM is
enabled at any given time, thus preventing contention at the outputs.

Figure 1: RAM Blocks Modeled As Empty Boxes

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

410

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

If you declare blocks A and B to be black boxes, their outputs are unknown (X), resulting
in a contention condition that could prevent pattern generation for logic downstream from
the outputs. However, if you are sure that both block A and block B is disabled during test,
you can declare these two blocks to be empty boxes. In that case, their outputs is Z, and
the pullup will pull the output node to 1 for ATPG.

Be careful when you use an empty box declaration. The pattern generator cannot
determine whether the outputs are really in the Z state during test. If they are not really in
the Z state, the generated patterns might result in contention at the empty box outputs.

You can build your own black box and empty box models if you prefer to do so. Here is an
example of a model that works just like a black box declaration:

module BLACK (i1,i2, o1, o2, bidi1, bidi2);
input i1, i2;
output o1, o2;
inout bidi1, bidi2;
_TIEX (i1, i2, o1); // terminate inputs & drive
output
_TIEX (o2);
_TIEX (bidi1);
_TIEX (bidi2);
endmodule

Here is an example of a model that works just like an empty box declaration:

module EMPTY (i1,i2, o1, o2, bidi1, bidi2);
input i1, i2;
output o1, o2;
inout bidi1, bidi2;
_TIEZ (i1, i2, o1);
_TIEZ (o2);
_TIEZ (bidi1);
_TIEZ (bidi2);
endmodule

Note that an empty box is not the same as a model without any internal components or
connections, such as the following example:

module NO_GOOD (i1,i2, o1, o2, bidi1, bidi2);
input i1, i2;
output o1, o2;
inout bidi1, bidi2;
endmodule

If you use such a model, TestMAX ATPG interprets it literally, resulting in multiple
design rule violations (unconnected module inputs and undriven module outputs). The
unconnected inputs are considered “unused,” so the gates that drive these inputs might
be removed by the ATPG optimization algorithm, thus affecting the gate count and fault
list. Each unconnected output triggers a design rule violation and is connected to a TIEZ
primitive, which becomes an X on most downstream gate inputs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

411

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

To avoid these problems, create a model like one of the earlier examples, or use the
set_build command to declare the block to be a black box or empty box.

Behavior of RAM Black Boxes
When the behavior of your RAM black box is not what you expected, you should consider
how the memory itself was modeled. The following six cases revolve around how the
memory module is or is not in the netlist, and how TestMAX ATPG treats that memory
device. Additionally, pros and cons are provided for each case.

Case 1
Netlist Contains: No module definition for memory

TestMAX ATPG Session: Defines memory as an EMPTY BOX

In this case, because you do not have a module definition for the RAM, use the set_build
-empty_box specRAM command to tell TestMAX ATPG to treat the module as an empty
box.

Pros: No modeling required.

Cons: If the memory has an output enable that is not held off, then this model is not
accurate. TestMAX ATPG will have a false environment where it sees no contention but
there could really be contention occurring.

Case 2
Netlist Contains: No module definition for memory

TestMAX ATPG Session: Defines memory as a BLACK BOX

In this case, because you do not have a module definition for the RAM, use the set_build
-black_box specRAM command to instruct TestMAX ATPG to treat the module as a black
box.

Pros: No modeling required.

Cons: If multiple black box or empty box devices are connected together, then TestMAX
ATPG might not be able to determine if a pin is an input or an output. An output pin that
is mistakenly considered an input means a TIEX that might have exposed a contention
problem will go unnoticed.

Case 3
Netlist Contains: Null module definition for memory

TestMAX ATPG Session: Defines memory as an EMPTY BOX

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

412

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

In this case, you take the memory module port definition from your simulation model and
delete the behavioral or gate level description, leaving only the input/output definition list.
This is known as a "null" module, because it has no gates within it. You then optionally use
the set_build -empty_box specRAM command to explicitly document that this module
is an empty box. The set_build -empty_box command in this particular case is actually
not needed, but it is good practice to record in the log file that the model is intentionally
and explicitly to be an empty box. Without this, someone reviewing your work at a later
time would have to know what was in the RAM ATPG model definition to know what type
of model was chosen.

Pros: Modeling takes just a few minutes if you already have a simulation model.

There is no ambiguity within TestMAX ATPG as to which pins are inputs or outputs as in
Case 2.

Cons: If the memory has an output enable that is not held off, then this model is not
accurate. TestMAX ATPG will have a false environment where it sees no contention, but
there could really be contention occurring.

Here's an example null module:

module specRAM (read, write, cs, oe,
data_in, data_out, read_addr, write_addr);
input read, write, cs, oe;
input [7:0] data_in;
input [3:0] read_addr;
input [3:0] write_addr;
output [7:0] data_out;
// all core gates deleted to form NULL module
endmodule

Null module definitions generate numerous Nxx warnings about unconnected inputs.
These can be eliminated by adding a TIEZ gate and connecting all input pins to this gate
so that they are terminated and connecting the output to a dumspec net.

Case 4
Netlist Contains: Null module definition

TestMAX ATPG Session: Defines memory as a BLACK BOX

In this case, you create a null module as in Case 3, but you use the set_build
-black_box specRAM command to instruct TestMAX ATPG that the outputs of the module
should be connected to TIEX drivers. The set_build command is not optional for this
case, or you would have an empty box instead of a black box.

Pros: Modeling takes just a few minutes if you already have a simulation model.

There is no ambiguity within TestMAX ATPG as to which pins are inputs or outputs as in
Case 2.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

413

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

There is no danger of creating a false environment where potential contention is masked
by the model as in Cases 1, 2, or 3.

Cons: If the RAM has tristate outputs considered constantly TIEX, then an overly
pessimistic environment is created. When a design has multiple RAMs whose outputs
are tied together, this pessimistic model will produce contention that cannot be avoided.
Depending on the contention settings chosen for ATPG pattern generation, TestMAX
ATPG might discard all the patterns produced.

Case 5
Output enable modeling

In this case, you start with a null module definition and add only enough gates to properly
model the tristate output of the device. This is usually a few AND/OR gates and BUFIF
gates enabled by some sort of chip select or output enable.

Pros: Modeling effort is light to medium. Most models can be created in less than half an
hour with experience.

There is no ambiguity within TestMAX ATPG as to which pins are inputs or outputs as in
Case 2.

There is no danger of creating a false environment where potential contention is masked
by the model as in Cases 1, 2, or 3.

There is no danger of an overly pessimistic output that introduces contention problems as
in Case 4.

Cons: Although this model solves most problems, it does not let the TestMAX ATPG
generate patterns that would use the RAM to control and observe circuitry around the
RAM, thereby leaving faults in the "shadow" of the RAM undetected.

The following example is a memory module with OEN modeling:

module specRAM (read, write, cs, oe,
data_in, data_out, read_addr, write_addr);
input read, write, cs, oe;
input [7:0] data_in;
input [3:0] read_addr;
input [3:0] write_addr;
output [7:0] data_out;
and u1 (OEN, cs, oe); // form output enable
buf u2 (TX, 1'bx);
bufif1 do_0 (data_out[0], TX, OEN);
bufif1 do_1 (data_out[1], TX, OEN);
bufif1 do_2 (data_out[2], TX, OEN);
bufif1 do_3 (data_out[3], TX, OEN);
bufif1 do_4 (data_out[4], TX, OEN);
bufif1 do_5 (data_out[5], TX, OEN);
bufif1 do_6 (data_out[6], TX, OEN);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

414

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

bufif1 do_7 (data_out[7], TX, OEN);
endmodule

Case 6
Full functional modeling

In this case, you create a functional RAM model for ATPG using the limited Verilog syntax
supported by TestMAX ATPG.

Pros: Eliminates all problems of Cases 1 through 5.

Cons: Most time consuming. Can be as quick as an hour or if multiple days to construct,
test, and verify an ATPG model for a memory.

The following example shows a memory module with full functional modeling (see Memory
Modeling for additional examples):

//
// --- level sensitive RAM with active high chip select, read,
// write, and output enable controls.
//
module specRAM (read, write, cs, oe,
data_in, data_out, read_addr, write_addr);
input read, write, cs, oe;
input [7:0] data_in;
input [3:0] read_addr;
input [3:0] write_addr;
output [7:0] data_out;
reg [7:0] memory [0:15];
reg [7:0] DO_reg, data_out;
event WRITE_OP;
and u1 (REN, cs, read); // form read enable
and u2 (WEN, cs, write); // form write enable
and u3 (OEN, cs, oe); // form output enable
always @ (WEN or write_addr or data_in) if (WEN) begin
memory[write_addr] = data_in;
#0; ->WRITE_OP;
end
always @ (REN or read_addr or WRITE_OP)
if (REN) DO_reg = memory[read_addr];
always @ (OEN or DO_reg)
if (OEN) data_out = DO_reg;
else data_out = 8'bZZZZZZZZ;
endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

415

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Using Black Box and Empty Box Models

Feedback

Troubleshooting Unexplained Behavior
You should double-check the following specific items when you see unexplained behavior
from your RAM block box are described next:

1. Did you follow the guidelines in the previous cases in terms of how the memory
module was (or was not) defined in the netlist, as well as what command was issued in
TestMAX ATPG?

2. Was the set_build -black_box command used properly? That is, in particular, the
target of this command must be the module name of the RAM, and not a particular
instance of the RAM; for example:

set_build -black_box spec_ram1024x8 # spec_RAM1 is the module name

If you're still not sure, consider the commands:

report on as yet undefined modules; # A black box showing up in
 the rightmost column of this report # indicates that the module is
 recognized as a black box: report_modules -undefined

OR

report on what TestMAX ATPG thinks are memories: report_memory -all
 -verbose

If you have properly performed steps 1 and 2 listed earlier, but are still seeing unexplained
behavior, determine if your RAM has bidirectional (inout, tristate) ports. If this is the case,
then perform the following steps:

1. Determine why you've opted for a black box instead of an empty box. The black box
model uses TIEX to drive outputs, whereas the empty box model uses TIEZ. When
RAM or ROM devices have inout/tristate ports used as outputs, they drive “Z” (not “X”)
when disabled. Therefore, an empty box model would be more appropriate here.

2. If you determine that a black box is still required for a RAM having inout ports used as
outputs, then you have some choices to make because there is no way that TestMAX
ATPG can determine whether a particular inout should be an “in” or an “out” given only
the null module declaration in the netlist:

• Make a TestMAX ATPG model for the black box RAM using TIEX ATPG primitives
inside the model to force the inout ports to TIEX, and read this in as yet another
source file (for example, spec_RAM1_BBmodel.v, which will in essence redefine the
module spec_RAM1 to now have these TIEX primitives on its inout ports). The RAM
inouts will now act as outputs driving out 'X' values. The TestMAX ATPG graphical
schematic viewer (GSV) will show you only the TIEXs representing the RAM at this
point, not the RAM itself.

• Make a TestMAX ATPG mode similar to the previous example, but instead of
placing TIEX ATPG primitives in the model, use actual tristate driver ATPG models

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

416

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Handling Duplicate Module Definitions

Feedback

(TSD) to drive the inout ports being used as outputs. Also, tie the TSD enable and
input pins to TIEX primitives, and the result is not only a RAM whose inout ports
now drive out “X”, but also a RAM that is visible in the GSV.

Handling Duplicate Module Definitions
You can read a module definition more than one time. By default, TestMAX ATPG uses
the most recently read module definition and issues an N5 rule violation warning for any
subsequent module definitions that have the same name.

You can change this default behavior so that the first module defined is always kept, using
the -redefined_module option of the set_netlist command. Alternatively, you can
choose Netlist > Set Netlist Options and use the Set Netlist dialog box or click the Netlist
button on the command toolbar and use the Read Netlist dialog box.

If you are certain that there are no module name conflicts, you can change the severity of
rule N5 from warning to error:

BUILD-T> set_rules n5 error

With a severity setting of error, the process stops when TestMAX ATPG encounters the
error, thus preventing redefinition of an existing module by another module with the same
name.

When you use the read_netlist command, you can use the -master_modules option to
mark all modules defined by the file being read as “master modules.” A master module is
not replaced when other modules with the same name are encountered. This mechanism
can be useful for reading specific modules that are intended as module replacements,
independent of the reading order. Note that a master module can be replaced by a module
with the same name if the -master_modules switch is again used.

Creating Custom ATPG Models
You can create custom models specifically for ATPG use by constructing a Verilog
gate-level representation of the logic function using a combination of Verilog primitives,
TestMAX ATPG primitives, and other defined modules. For a list of TestMAX ATPG
primitives, see “ATPG Modeling Primitives Summary” in TestMAX ATPG Online Help.

Use only Verilog primitives or instances of other Verilog modules when possible. Because
Verilog understands these devices, you can simulate these modules to validate that they
function as expected.

The following example uses TestMAX ATPG primitives to model the test mode of a
particular device. The model provides a constant 1 on the output lock, and a constant 0 on
the outputs ref_out, div2, and div4 when test is asserted. Otherwise, these outputs are
X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

417

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Creating Custom ATPG Models

Feedback

Custom ATPG Model Using ATPG Primitives
module phase_lock1 (test, ref_in, delayed_in, ref_out, div2, div4, lock);
input test, ref_in, delayed_in;
output ref_out, div2, div4, lock;
wire xval;

_TIEX u1 (delayed_in, xval);
_MUX u2 (test, ref_in, 1'b0, ref_out);
_MUX u3 (test, xval, 1'b0, div2);
_MUX u4 (test, xval, 1'b0, div4);
_MUX u5 (test, xval, 1'b1, lock);
endmodule

The following example uses Verilog primitives to implement the same functions.

Custom ATPG Model Using Verilog Primitives
module mux (sel,d0,d1, out);
input d0,d1,sel;
output out;
wire n1,n2,n3;
not u1 (selb, sel);
and u2 (n2, d1,sel);
and u3 (n3, d0,selb);
or u4 (out, n1,n2);
endmodule
module phase_lock2 (test, ref_in, delayed_in, \
ref_out, div2, div4, lock);
input test, ref_in, delayed_in;
output ref_out, div2, div4, lock;
wire xval;

buf u1 (xval, 1'bx);
mux u2 (test, ref_in, 1'b0, ref_out);
mux u3 (test, xval, 1'b0, div2);
mux u4 (test, xval, 1'b0, div4);
mux u5 (test, xval, 1'b1, lock);
endmodule

The following example shows a custom ATPG model of a D flip-flop with a rising-edge
clock, asynchronous active-high set, asynchronous active-low resetn, and scan input
sdi enabled when scan is asserted. The flip-flop has true and complementary outputs q
and qn, and an output sdo, a buffered replica of output q used for scan.

Custom ATPG Model of a D Flip-Flop
module DFWSRB (clk, data, sdi, scan, set, resetn, q, qn, sdo);
input clk, data, sdi, scan, set, resetn;
output q, qn, sdo; wire din;
_MUX u1 (scan, data, sdi, din);
_DFF u2 (set, !resetn, clock, din, q);
_INV u3 (q, qb);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

418

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Condensing ATPG Libraries

Feedback

_BUF u3 (q, sdo);
endmodule

Condensing ATPG Libraries
TestMAX ATPG attempts to condense each module’s functionality in a netlist into a gate-
level representation using TestMAX ATPG simulation primitives. This condensation task
can be considerable and can produce some warning messages, which are typically
unimportant and can be ignored.

You can create a file that has already been condensed into TestMAX ATPG description
form. Creating a condensed form of the library modules has the following benefits:

• Space economy. The modules are stripped of timing and other non-ATPG related
information. In addition, the file can be created in compressed form.

• No error or warning messages. The modules are preprocessed and written using either
ATPG modeling primitives or simple netlists instantiating other modules.

• Faster module reading. The modules require less time during analysis and are
processed faster.

• Information protection. The file can be created in a compressed binary form that is
unreadable by any other tool and partially protects the library information within. When
you read in the library and write it out again, you see only a stripped-down functional
gate version of the original module; no timing or other information remains.

The transcript in the following example illustrates the creation of a condensed library file,
which is a two-step process:

1. Read in all required modules.

In the following example, 1,436 modules are initially found in 1,430 separate files. The
read process took 21.5 seconds and reported 16 warnings.

2. Write out the modules as a single file in your choice of formats.

In the example, the modules are written out as a single GZIP compressed file.

Example 1: Creating a Condensed Library File

BUILD-T> read_netlist lib/*.v
 Begin reading netlists (lib/*.v)...
 Warning: Rule N12 (invalid UDP entry) failed 8 times.
 Warning: Rule N13 (X_DETECTOR found) failed 8 times.
 End reading netlists: #files=1430, #errors=0, #modules=1436,
#lines=157516,
 CPU_time=21.5 sec

BUILD-T> write_netlist parts_lib.gz -compress gzip

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

419

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Assertions

Feedback

 End writing Verilog netlist, CPU_time = 1.13 sec, \
 File_size = 47571

BUILD-T> read_netlist parts_lib.gz -delete
 Warning: All netlist and library module data are now deleted. (M41)
 Begin reading netlist (parts.lib)...
 End parsing Verilog file parts.lib with 0 errors;
 End reading netlist: #modules=1436, #lines=18929, CPU_time=0.84 sec

The next read_netlist command processed the data in less than 1 second and
produced the same 1,436 modules, this time without rule violation warnings.

Assertions
Assertions are user-defined library modeling checks that reduce or eliminate VCS
simulation failures for library cells. These failures generally come from the modeling
limitations of memories, PLLs, power controllers, and other behavioral Verilog models.

To prevent VCS simulation failures, TestMAX ATPG performs a DRC simulation
specifically to verify that all assertions in instantiated cell instances are met during either
the shift or capture operations or both. If an assertion is not met during DRC, TestMAX
ATPG issues a DRC rule violation, such as A1, A2, or A3.

The following topics describe how to implement assertions and descriptions of each
assertion:

• Implementing Assertions

• Using Assertions with PLLs and Memories

• Assertion Descriptions

• Limitations

Implementing Assertions
Assertions are defined on the input signals of select library models in the Verilog library.
For example, you can configure TestMAX ATPG DRC to check that signals are held at 0,
1, and either 0 or 1 but not X during shift and/or capture operations.

The following example shows how to define two assertions : tmax_shift_assert_0 SD
and tmax_capture_assert_0 SD. The first assertion sets a check on the SD input signal
of all A1_256X8 instances to remain at 0 during the shift operation. The second assertion
sets a check on the SD input signal of all A1_256X8 instances to remain at 0 during the
capture operation.

`celldefine

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

420

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Assertions

Feedback

`define read_write new

module A1_256X8 (Q, CLK, CEN, WEN, A, D, EMA, SD, PUDELAY_SD);
 parameter BITS = 8;
 parameter word_depth = 256;
 parameter addr_width = 8;
 output [BITS-1:0] Q;
 input CLK;
 input CEN;
 input WEN;
 input [addr_width-1:0] A;
 input [BITS-1:0] D;
 input [2:0] EMA;
 input SD;
 output PUDELAY_SD;

 reg [BITS-1:0] mem [word_depth-1:0];
 reg [BITS-1:0] Q;

 and u0 (read_en, !CEN);
 and u1 (write_en, !WEN, !CEN);

 `tmax_shift_assert_0 SD
 `tmax_capture_assert_0 SD

 buf ub_SD (b_SD, SD);
 buf ub_PUDELAY_SD (PUDELAY_SD, b_SD);

 always @ (posedge CLK)
 if (write_en)
 mem[A] = D;
 always @ (posedge CLK)
 if (read_en)
 Q = mem[A];

endmodule
 `undef read_write
 `endcelldefine

A violated assertion causes a DRC A rule violation. For example, if the

`tmax_shift_assert_0 SD assertion fails during DRC, the following rule violation is
displayed:

A1: Assert 0 during shift on Gate XYZ failed (A1-1)

For a complete list of all DRC A rule violations, see Category A – Assertion Rules.

If you do not apply a proper constraint or design change to avoid an assertion failure prior
to ATPG, the outputs of all instances where the assertion is violated are masked. For
example, a RAM with a failing assertion causes it to generate Xs during ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

421

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Assertions

Feedback

Note: Downgrading an error to a warning affects the behavior of ATPG and propagates an
X from the output of the cell.

Using Assertions with PLLs and Memories
TestMAX ATPG cannot directly read and interpret behavioral models. Instead, the tool
makes certain assumptions that do not always match a VCS simulation. For example,
the output of a PLL must always be a free-running clock. However, a PLL produces an
unstable clock anytime its configuration inputs change during test. If these signals change
because of a design error, the error may not be discovered until late in the design process.

To formally express the intended PLL behavior, you can use the

`tmax_shift_assert_stable and `tmax_capture_assert_stable assertions to set
particular library cell to remain stable throughout the shift or capture operations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

422

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Assertions

Feedback

 

Clock

Initialized flip-flops

Configured to
be stable

TetraMAX assumes a
constant, free-running clock

In reality, a PLL produces
an unstable clock when
config inputs change

Assertions check that
signals remain stable

Scan flip-flops lose initialization
if config inputs change

PLL ~

`tmax_shift_assert_stable LTY
`tmax_capture_assert_stable NTR

DRC Error messages issued
if assertions are violated

A3: Assert Stable on Gate NTR
failed during capture (A3-2).

A3: Assert Stable on Gate LTY
failed during shift (A3-1).

 

Memories also require special handling. You can use a mux to model the bypass behavior
of a memory. If a mux switches during shift, TestMAX ATPG always ignores it. A memory
model can potentially invalidate the memory by replacing all content with X values. In
this case, you can use an assertion to ensure that the bypass is constant during shift, as
shown in the following example and figure.

`tmax_capture_assert_0 bypass

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

423

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Assertions

Feedback

 

Block1
Block2

Block3Memory

bypass=0

data

address

bypass=0 during capture  

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

424

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Assertions

Feedback

The following figure shows correct and incorrect implementations of memories for using
assertions:

 

Memory Memory

Correct Incorrect

Calibration
Signals

Scan flip-flops

Assertions

 

Assertion Descriptions
Assertions can apply to either shift or capture operations, or both.

You can also specify assertions that check an X value from driving any instance of a cell
during a shift or capture operation.

Shift assertions are described in the following table:

Assertion Description

`tmax_shift
_assert_0
lib_cell

Each instance of the specified library cell is checked to always be set to 0 during
shift.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

425

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Assertions

Feedback

Assertion Description

`tmax_shift
_assert_1
lib_cell

Each instance of the specified library cell is checked to always be set to 1 during
shift.

`tmax_shift
_assert_sta
ble
lib_cell

Each instance of the specified library cell is checked to always be set to either 0 or
1 throughout shift. The value must be the same for all patterns. If this assertion is
used with the
`tmax_capture_assert_stable
assertion, the stability value must be the same for both shift and capture across all
patterns

`tmax_shift
_assert_not
X lib_cell

Each instance of the specified library cell is checked so that it cannot be driven by
an X value throughout shift

Capture assertions are described in the following table:

Assertion Description

`tmax_captur
e_assert_0
lib_cell

Each instance of the specified library cell is checked to always be set to 0 during
capture.

`tmax_captur
e_assert_1
lib_cell

Each instance of the specified library cell is checked to always be set to 1 during
capture.

`tmax_captur
e_assert_sta
ble lib_cell

Each instance of the specified library cell is checked to always be set to either 0 or
1 throughout capture. The value must be the same for all patterns. If this assertion
is used with the
`tmax_shift_assert_stable
assertion, the stability value must be the same for both shift and capture across all
patterns.

`tmax_captur
e_assert_not
X lib_cell

Each instance of the specified library cell is checked so that it cannot be driven by
an X value throughout capture.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

426

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Memory Modeling

Feedback

The following table describes the shift and capture stable assertion:

Asserti
on

Description

`tmax_
assert
_stabl
e
libCel
l

Each instance of the specified library cell is checked so that it must always be set to
either 0 or 1 throughout shift and capture. The value must be the same for all patterns,
and the stability value must be the same for both shift and capture across all patterns.

Limitations
The following limitations apply to assertions:

• Image files are not supported

• You cannot apply assertion directives on single bit of BUS ports

• Conditional assertions are not supported for IDDQ testing patterns or mixed shift
assertion (SA) patterns that state that only two-clock patterns are tested and not basic
SA patterns.

Memory Modeling
You can define RAM and ROM models using a simple Verilog behavioral description. The
following sections describe memory modeling:

• Memory Model Functions

• Basic Memory Modeling Template

• Initializing RAM and ROM Contents

• Improving Test Coverage for RAMs

Memory Model Functions
Memory models can have the following functions:

• Multiple read and write ports

• Common or separate address bus

• Common or separate data bus

• Edge-sensitive or level-sensitive read and write controls

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

427

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Memory Modeling

Feedback

• One qualifier on the write control

• One qualifier on the read control

• A read off state that can hold or return data to 0/1/X/Z

• Asynchronous set and reset capability

• Memory initialization files

You create a ROM by defining a RAM that has an initialization file and no write port.

Write ports cannot simultaneously be both level-sensitive and edge-sensitive. However,
the read ports can be mixed edge-sensitive and level-sensitive, and can be different from
the write ports.

TestMAX ATPG uses a limited Verilog behavioral syntax to define RAM and ROM models
for ATPG use. In concept, this is equivalent to defining some simple RAM/ROM functional
models.

For detailed information on RAM and ROM modeling, see the “TestMAX ATPG Memory
Modeling” topic in the Online Help. The topics covered in Online Help include defining
write ports and read ports, read off behavior, memory address range, multiple read/write
ports, contention behavior, memory initialization, and memory model debugging.

Basic Memory Modeling Template
The following example is a basic template for a 16-word by 8-bit RAM that can be applied
to a ROM.

Basic Memory Modeling Template
module spec_ATPG_RAM (read, write, data_in, data_out,
read_addr,write_addr);
 input read, write;
 input [7:0] data_in; // 8 bit data width
 input [3:0] read_addr; // 16 words
 input [3:0] write_addr; // 16 words
 output [7:0] data_out; // 8 bit data width
 reg [7:0] data_out; // output holding register
 reg [7:0] memory [0:15] ; // memory storage

 event WRITE_OP; // declare event for write-through
 ...memory port definitions...
endmodule

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

428

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Memory Modeling

Feedback

The template consists of a Verilog module definition in which you make the following
definitions:

• The inputs and outputs (in any order and with any legal port name)

• The output holding register, “data_out” in this example

• The memory storage array, “memory” in this example

This basic structure changes very little from RAM to RAM. The port list might vary for more
complicated RAMs or ROMs with multiple ports, but the template is essentially the same.
Note that the ATPG modeling of RAMs requires that bused ports be used.

Initializing RAM and ROM Contents
If a RAM is to be initialized, you must provide the vectors that initialize it.

If your design contains ROMs, you must initialize the ROM image by loading data into it
from a memory initialization file. You create a default initialization file and reference it in the
ROM’s module definition.

If you want to use a different memory initialization file for a specific instance, use the
read_memory_file command to refer to the new memory initialization file. In TestMAX
ATPG, ROMs and RAMs are identical in all respects except that the ROM does not have
write data ports. Thus, the following discussion about ROMs also applies to RAMs.

The Memory Initialization File
ROM memory is initialized by a hexadecimal or binary ASCII file called a memory
initialization file. The following example shows a sample hexadecimal memory initialization
file.

Memory Initialization File
// 16x16 memory file in hex
0002
0004
0008
0010
0020
0040
0080
0100
0200
0400
0800
1000
2000
4000
8000

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

429

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Memory Modeling

Feedback

For additional examples of Memory Initialization Files, see the “TestMAX ATPG Memory
Modeling” topic in Online Help.

Default Initialization
To establish the default memory initialization file, specify its file name in the module
definition of the ROM. The following example defines a Verilog module for a ROM that has
16 words of 16 data bits.

16x16 ROM Model
module rom16x16 (ren, a, dout);
parameter addrbits = 4;
parameter addrmax = 15;
parameter databits = 16;
input ren;
input [addrbits-1:0] a;
output [databits-1:0] dout;
reg [databits-1:0] specmem [0:addrmax];
reg [databits-1:0] dout ;
initial $readmemh("rom_init.dat", specmem);
always @ ren if (ren) dout <= specmem[a] ;
endmodule

The initial $readmemh statement in this example indicates that the data in the
rom_init.dat file is used to initialize the memory core specmem. The $readmemh()
function is for hexadecimal data; there is a similar function, $readmemb(), for binary data.

Verilog defines the order in which data is loaded into the specmem core. This order is
based on how you define the specmem index, as follows:

• The format specmem[0:15] indicates that the first data word in the file is to be loaded
into address 0 and the last data word into address 15.

• The format specmem[15:0] indicates that the first data word in the file is to be loaded
into address 15 and the last data word into address 0.

In the following example, the following line indicates that the first data word is loaded into
address 0 and the last data word is loaded into the address specified by addrmax:

reg [databits-1:0] specmem [0:addrmax];

Instance-Specific Initialization
If you use more than one ROM instance in your design, you might not want to initialize all
the ROMs from the same memory initialization file.

For each specific ROM instance, you can override the memory initialization file
specification in the module definition using the Read Memory File dialog box, or you can
enter the read_memory_file command at the command line.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

430

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Memory Modeling

Feedback

1. To use the Read Memory File dialog box to override the memory initialization file
specification in the module definition for a specific ROM instance, perform the following
steps:

2. From the menu bar, choose the Primitives > Read Memory File. The Read Memory File
dialog box appears.

3. Enter the instance and then enter or browse to the memory initialization file.

For more information about the controls in this dialog box, see Online Help for the
read_memory_file command.

4. Click OK.

You can also override the memory initialization file specification in the module definition
using the read_memory_file command. For example:

DRC-T> read_memory_file i007/u1/mem/rom1/rom_core i007.d3 -hex

The following example indicates that the instance /TOP/BLK1/rom1/rom_core is to be
initialized using the hexadecimal file U1_ROM1.dat.

DRC-T> read_memory_file /BLK1/rom1/rom_core U1_ROM1.dat -hex

In responding to the read_memory_file command, TestMAX ATPG always loads the first
word in the data file into memory address 0, the second word into address 1, and so on,
regardless of how the memory index is defined in the Verilog module.

Improving Test Coverage for RAMs
Test patterns for RAMs intrinsically require more clock cycles than most other types
of tests. Also, a RAM usually requires the justification of considerably more values (all
address bus bits, data bus bits, and enable signals) than most combinational gates.
In addition, the behavior of RAMs is more complex than the behavior of other circuit
elements, which may increase the difficulty of getting tests for these faults.

TestMAX ATPG minimizes the complexity of memory test generation by separating the
various memory operations into different scan chain loads. For example, if a test for a
RAM fault involves two write operations and one read operation, TestMAX ATPG will
generally do the following:

1. Scan chain load 1

2. Write operation 1

3. Scan chain load 2

4. Write operation 2

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

431

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Design Netlists and Library Models
Memory Modeling

Feedback

5. Scan chain load 3

6. Read operation

A RAM must be load stable to make use of multiple scan chain loads. This means all RAM
operations must be disabled during the scan chain load-unload procedure. You can do
this by gating the RAM clock with the scan-enable signal or by turning off the RAM enable
signals (including Chip Select, if such a signal exists) during the scan chain load. A load-
stable RAM enables TestMAX ATPG to maximize its efficiency when generating tests for
RAM faults, however the tool still cannot generate tests for all RAM faults.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

432

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

11
STIL Procedures

The STIL language describes scan-shifting protocol, test procedures, and ATPG signal,
timing, and data information. STIL procedures provide information TestMAX ATPG uses as
a basis to perform design rule checking (DRC).

You can provide a set of STIL procedures to TestMAX ATPG through a file, called
STIL procedure file (SPF). You can use an existing SPF written by a tool, such as DFT
Compiler, or you can create a new SPF. TestMAX ATPG supports a subset of STIL syntax
for input to describe scan chains, clocks, constrained ports, and pattern/response data as
part of the STL procedure file definitions. If you use an existing SPF, make sure it meets
the parameters recognized by TestMAX ATPG, as described in STIL Language Support.

If you create an SPF, you can initially define the minimum information needed by TestMAX
ATPG to run DRC. If you are using the TestMAX ATPG GUI, you can provide this
information via the QuickSTIL tab in the DRC dialog box.

The following sections describe the guidelines for using STIL procedures:

• STIL Procedure File Guidelines

• Creating a New STIL Procedure File

• Defining STIL Procedures

• Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller

• Specifying Internal Clocking Procedures

• JTAG/TAP Controller Variations for the load_unload Procedure

• Multiple Scan Groups

• DFTMAX Compression with Serializer

STIL Procedure File Guidelines
TestMAX ATPG can read and write a properly formatted SPF. Any STIL files written by
TestMAX ATPG contain an expanded form of the minimum information and may also
contain pattern and response data produced by the ATPG process. After an SPF is
generated for a design, TestMAX ATPG can read it again at a later time to recover the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

433

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
STIL Procedure File Guidelines

Feedback

clock, constraint, and chain data, and the pattern and response data, or both. You can
also use several TestMAX ATPG commands to supplement or provide the same or similar
information as STIL procedures.

The following general guidelines, tips, and shortcuts help you efficiently and accurate work
with STL procedure files:

• To save time and avoid typing errors, use the write_drc_file command to create the
STIL template. The more information that you provide to TestMAX ATPG before the
write_drc_file command, the more TestMAX ATPG will provide in the template. If
possible, build your design model and define all clock and constrained inputs before
you create the STIL template.

• STIL keywords are case-sensitive. All keywords start with an uppercase character, and
many contain more than one uppercase character.

• Use SignalGroups to define groups of ports so that you can easily assign values and
timing.

• At the beginning of the load_unload procedure, always place the ports declared as
clocks in their off states.

• Except for the test_setup and Shift procedures, every procedure should include
initializing all clocks to their off state and all PI constraints and PI equivalences to their
proper values at the beginning of the procedure.

• If you have constrained ports or bidirectional ports, define a test_setup macro and
initialize the ports.

• A test_setup procedure must initialize all clocks to their off states, and all PI
constraints and PI equivalences to their proper values by the end of the procedure.
Note that it is not necessary to stop Reference clocks, including what TestMAX DFT
refers to as ATE clocks. All other clocks still must be stopped.

• Bidirectional ports should be forced to Z within a test_setup macro and forced to Z at
the beginning of the load_unload procedure.

• For non-JTAG designs, it is usually not necessary to apply a reset to the design within
a test_setup macro.

• When defining pulsed ports, define the 0/1/Z mapping for cycles when the clock is
inactive, as in the following example:

CLOCK { 01Z { '0ns' D/U/Z; } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

434

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Creating a New STIL Procedure File

Feedback

Creating a New STIL Procedure File
To create a new STIL procedure file , you first need to define the primary input (PI)
constraints, clocks, and scan chain information using a series of TestMAX ATPG
commands. You can then use the write_drc_file command to create a STIL template
file, and edit this file to define the required STIL procedures and port timing.

The following sections describe how to create an STL procedure file with no prior input:

• Declaring Primary Input Constraints

• Declaring Clocks

• Declaring Scan Chains and Scan Enables

• Writing the SPF Template

Figure 1 Flow for Creating an Initial STL Procedure File With No Prior Input

   

See Also

• Defining STIL Procedures

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

435

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Creating a New STIL Procedure File

Feedback

Declaring Primary Input Constraints
In most design-for-test (DFT) scenarios, a design shifts into ATPG mode based on the top-
level ports. The success of the ATPG algorithm usually requires that these ports are held
to a constant state.

You can use STIL procedures to force a constrained port to a state other than the
requested constrained value for a limited number of tester cycles, and then return the port
to its constrained value. For example, you might want to hold a global reset port to an off
state for general ATPG patterns, but then allow it to be asserted to initialize the design (for
more information, see Defining the test_setup Macro).

You can declare a port using the Add PI Constraints dialog box in the TestMAX ATPG
GUI, the add_pi_constraints command, or by defining it in the STL procedure file. For
more information on using the STL procedure file to define PI constraints, see Defining
Constrained Primary Inputs.

The following sections show you how to use TestMAX ATPG to declare primary input
constraints:

• Using the Add PI Constraints Dialog Box

• Using the add_pi_constraints Command

A port that enables a test mode for a design is different from the scan_enable port and
other ports that change state during the shift and capture operations.

Using the Add PI Constraints Dialog Box
To use the Add PI Constraints dialog box to declare a PI constraint:

1. From the menu bar, choose Constraints > PI Constraints > Add PI Constraints.

The Add PI Constraints dialog box appears.

2. In the Port Name field, enter the name of the port you want to constrain. To select from
a list of ports, click the down-arrow button at the end of the Port Name field.

In this case, a port named TEST_MODE must be held to a constant state of logic 1 for
all patterns generated by the ATPG algorithm.

3. From the Value list, choose the value to which you want to constrain the port.

4. Click Add.

The dialog box remains open so that you can add more constraints if needed.

5. Click OK.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

436

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Creating a New STIL Procedure File

Feedback

Using the add_pi_constraints Command
You can use the add_pi_constraints command to declare a PI constraint. For example:

DRC-T> add_pi_constraints 1 TEST_MODE

Declaring Clocks
You can declare a port as a clock only if the port affects the state of flip-flops and latches
or controls RAM/ROM read or write ports. You declare a clock in terms of its natural off
state. An active-high clock has an off state of 0, and an active-low clock has an off state of
1.

You can declare a clock in the TestMAX ATPG GUI using the Add Clocks dialog box,
the Edit Clocks dialog box, or the DRC dialog box. You can also use the add_clocks
command to declare a clock, or edit the timing block in the STL procedure file. For more
information on declaring clocks in the timing block of the STL procedure file, see Defining
Basic Signal Timing.

The following sections show you how to declare clocks:

• Using the Edit Clocks Dialog Box

• Using the add_clocks Command

• Asynchronous Set and Reset Ports

Using the Edit Clocks Dialog Box
To declare clocks using the Edit Clocks dialog box:

1. From the menu bar, choose Scan > Clocks > Edit Clocks.

The Edit Clocks dialog box appears.

2. To declare a clock, select the port name from the Port Name list, specify the off state
(0 or 1), and specify whether the clock is used for scan shifting. Clock signals used for
asynchronous set/reset or RAM/ROM control are not used for scan shifting and are not
pulsed during shift procedures.

3. If you want to specify the test cycle period, leading edge time, trailing edge time, and
measure time of the clock, fill in the corresponding fields (Period, T1, T2, and Measure)
and set the time units (ns or ps). In the absence of explicit timing specifications, the
defaults are: Period=100, T1=50, T2=70, Measure=40, and Unit=ns.

The same period, measure time, and units apply to all clocks in the system, but each
clock can have its own leading and trailing edge times (T1 and T2). A measure time
less than T1 implies a preclock measure protocol, whereas a measure time greater
than T2 implies an end-of-cycle measure protocol.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

437

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Creating a New STIL Procedure File

Feedback

4. Click Add.

The clock declaration is added to the list box.

5. Repeat steps 2 to 4 for each clock input in the design. You can also remove, copy, or
modify an existing clock definition.

6. Click OK to implement the changes you have made in the dialog box.

Using the add_clocks Command
You can also declare clocks, and define the test cycle period and timing parameters by
using the add_clocks command. For example:

DRC-T> add_clocks 0 CLK1 -timing 200 50 80 40 -unit ns -shift

Asynchronous Set and Reset Ports
By default, latches and flip-flops whose set and reset lines are not off when all clocks are
at their off state are treated as unstable cells. Because they are unstable, their output
values are unknown and they cannot be used during test pattern generation.

One way to make these elements stable is to declare their asynchronous set/reset input
signals to be clocks. During ATPG, TestMAX ATPG holds these inputs inactive while other
clocks are being used. However, test coverage surrounding the elements might still be
limited.

To have these latches and flip-flops treated as stable cells without declaring their set/reset
inputs to be clocks, use the set_drc -allow_unstable_set_resets command. See.
Cells With Asynchronous Set/Reset Inputs for details.

Declaring Scan Chains and Scan Enables
You can use the DRC dialog box in the TestMAX ATPG GUI or enter a command at the
command line to declare the scan chains and scan enable inputs. You can also declare
scan chains in the STIL Procedure file, as described in Defining Scan Chains.

The following sections describe how to declare scan chains and scan enables in TestMAX
ATPG:

• Using the DRC Dialog Box

• Declaring Scan Chains at the Command Line

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

438

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Creating a New STIL Procedure File

Feedback

Using the DRC Dialog Box
To use the DRC dialog box to declare scan chains:

1. Click the DRC button in the command toolbar at the top of the TestMAX ATPG main
window.

The DRC dialog box appears.

2. Click the Quick STIL tab if it is not already selected. Under the tab, select the Scan
Chains/Scan Enables view if it is not already selected.

If you select the Clocks view, the Edit Clocks dialog box appears, as described in
Declaring Clocks.

3. To specify a scan chain, enter a name for the scan chain in the Name field. Specify the
Scan In and Scan Out ports by selecting the port names from the pull-down lists.

4. Click Add.

The scan chain definition is added to the list.

5. To define a scan enable input, select the port name from the Port Name pull-down list.
In the Value field, specify the port value during scan shifting.

6. Click Add.

The scan enable port definition is added to the list.

7. When you finish running the scan chain and scan enable information, click OK.

Declaring Scan Chains at the Command Line
You can use the following commands to declare, report, and remove scan chains and scan
enables at the command line:

• add_scan_chains

• add_scan_enables

• report_scan_chains

• report_scan_enables

• remove_scan_chains

• remove_scan_enables

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

439

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Creating a New STIL Procedure File

Feedback

Writing the SPF Template
You can create an SPF template file after executing the run_build_model command. This
template includes all clocks, PI equivalences, PI constraints, or scan chain information you
have previously specified.

To create an SPF template from the TestMAX ATPG GUI:

1. Click the DRC button in the command toolbar at the top of the TestMAX ATPG GUI
main window.

The DRC dialog box appears.

2. Click the Write tab in the DRC dialog box.

3. In the Name field, enter the name of the STIL procedure file you want to create.

4. Click the Write button.

The following example shows how to create a STIL template using the write_drc_file
command:

write_drc_file template.spf

Example SPF Template File
The following example shows an STL procedure file template file created from the
write_drc_file command:

 STIL 1.0 {
 Extension Design P2011;
 }
 Header {
 Title " TestMAX ATPG 2010.06-i000622_173054 STIL output";
 Date "Wed Dec 31 17:21:05 2011";
 History { }
 }
 Signals {
 CLK In; RSTB In; SDI2 In; SDI1 In; INC In; SCAN In; HACKIN In; si4
 In;
 six In; D0 InOut; D1 InOut; D2 InOut; D3 InOut; SDO2 Out; COUT Out;
 HACKOUT Out; so4 Out; sox Out;
 }
 SignalGroups {
 _pi = 'D0 + D1 + D2 + D3 + CLK + RSTB + SDI2 + SDI1 + INC +
 SCAN + HACKIN + si4 + six';
 _default_Clk1_Timing_ = 'RSTB';
 _io = 'D0 + D1 + D2 + D3' { WFCMap 0X->0; WFCMap 1X->1; WFCMap
 ZX->Z; WFCMap NX->N; }
 _po = 'SDO2 + COUT + D0 + D1 + D2 + D3 + HACKOUT + so4 + sox';
 _default_In_Timing_ = 'D0 + D1 + D2 + D3 + CLK + RSTB + SDI2 +
 SDI1 + INC + SCAN + HACKIN + si4 + six';

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

440

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Creating a New STIL Procedure File

Feedback

 _default_Out_Timing_ = 'SDO2 + COUT + D0 + D1 + D2 + D3 + HACKOUT
 + so4 + sox';
 _default_Clk0_Timing_ = 'CLK';
 }
 ScanStructures {
 # Uncomment and modify the following to suit your design
 # ScanChain chain_name { ScanIn chain_input_name; ScanOut
 chain_output_name; }
 }
 Timing {
 WaveformTable _default_WFT_ {
 Period '100ns';
 Waveforms {
 _default_In_Timing_ { 0 { '0ns' D; } }
 _default_In_Timing_ { 1 { '0ns' U; } }
 _default_In_Timing_ { Z { '0ns' Z; } }
 _default_In_Timing_ { N { '0ns' N; } }
 _default_Clk0_Timing_ { P { '0ns' D; '50ns' U; '80ns' D; } }
 _default_Clk1_Timing_ { P { '0ns' U; '50ns' D; '80ns' U; } }
 _default_Out_Timing_ { X { '0ns' X; } }
 _default_Out_Timing_ { H { '0ns' X; '40ns' H; } }
 _default_Out_Timing_ { T { '0ns' X; '40ns' T; } }
 _default_Out_Timing_ { L { '0ns' X; '40ns' L; } }
 }
 }
 }
 PatternBurst _burst_ { PatList {
 pattern {
 }
 }}
 PatternExec {
 PatternBurst _burst_;
 }
 Procedures {
 capture_CLK {
 W _default_WFT_;
 forcePI: V { _pi=\r13 # ; _po=\j \r9 X ; }
 measurePO: V { _po=\r9 # ; }
 pulse: V { CLK=P; _po=\j \r9 X ; }
 }
 capture_RSTB {
 W _default_WFT_;
 forcePI: V { _pi=\r13 # ; _po=\j \r9 X ; }
 measurePO: V { _po=\r9 # ; }
 pulse: V { RSTB=P; _po=\j \r9 X ; }
 }
 capture {
 W _default_WFT_;
 forcePI: V { _pi=\r13 # ; _po=\j \r9 X ; }
 measurePO: V { _po=\r9 # ; }
 }

 # Uncomment and modify the following to suit your design

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

441

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 # PRE_CLOCK_MEASURE Procedures {
 # load_unload {
 # W _default_WFT_;
 # C { test_so=X; test_si=0; test_si2=0; test_so2=X; clk=0; tclk=0;
 reset=1; test_se=1; }
 # Shift { W _default_WFT_;
 # V { _si=#; _so=#; CLK = P; }
 # }
 # }
 # TMAX GENERATED POST_CLOCK_MEASURE (Closer to DFTCompiler Procedures {
 # load_unload {
 # W _default_WFT_;
 # C { test_si=0; test_si2=0; clk=0; tclk=0; reset=1; test_se=1; }
 # V { _so=#; }
 # Shift { W _default_WFT_;
 # V { _si=#; _so=#; clk=P; }
 # }
 }
 MacroDefs {
 test_setup {
 W _default_WFT_;
 V { CLK=0; RSTB=1; }
 }
 }

Defining STIL Procedures
There are a variety of STIL procedures you can specify in the SPF, including the
load_unload, shift, and test_setup procedures, and capture, system capture, generic
capture, and sequential capture procedures. You can also define signal timing and signal
groups, scan chains, primary input parameters, PO masks, and many other parameters.
Some of these settings can be specified using TestMAX ATPG commands.

If you don't have an existing SPF, see Creating a New STIL Procedure File.

The following sections describe how to define STIL procedures:

• Defining Scan Chains

• Defining the load_unload Procedure

• Defining the test_setup Procedure

• Predefined Signal Groups in STIL

• Defining Basic Signal Timing

• Defining Capture Procedures in STIL

• Defining Constrained Primary Inputs

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

442

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

• Defining Equivalent Primary Inputs

• Defining PO Masks

• Defining System Capture Procedures

• Creating Generic Capture Procedures

• Defining Sequential Capture Procedures

• Defining Reflective I/O Capture Procedures

• Using the master_observe Procedure

• Using the shadow_observe Procedure

• Using the delay_capture_start Procedure

• Using the delay_capture_end Procedure

• Using the test_end Procedure

• Scan Padding Behavior

• Using the Condition Statement in STIL

• Excluding Vectors From Simulation

• Defining Internal Clocks for PLL Support

• Specifying an On-Chip Clock Controller Inserted by DFT Compiler

Note that STIL keywords are case-sensitive. When you enter a keyword in an STL
procedure file, ensure that you use uppercase and lowercase letters correctly (for
example, ScanStructures, ScanChain, ScanIn, ScanOut). Incorrect case is a common
cause of syntax errors.

Throughout the STIL examples in the following sections, text strings are sometimes
enclosed in quotation marks. The general rule in STIL procedure files is that quotation
marks are optional unless the text string contains parentheses “()”, braces “[]”, or spaces.

Defining Scan Chains
You define scan chains in the ScanStructures block of the STL procedure file. In the
following example, the text in bold type illustrates four scan chains. The labels "c1", "c2",
and so forth., are the symbolic names assigned to the scan chains. The STIL specification
indicates a length, but this item is optional for TestMAX ATPG input.

The following example also represents the minimum STL procedure file needed by
TestMAX ATPG as it defines the scan chains, the load_unload procedure, and the Shift
procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

443

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 STIL;

ScanStructures { ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; } ScanChain "c3" { ScanIn
 DIN; ScanOut YABX; } ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut
 XYZ; } } Procedures { "load_unload" { V { CLOCK = 0; RESETB
 = 1; SCAN_ENABLE = 1; } Shift { V { _si=####;
 _so=####; CLOCK=P;} } } }

Defining the load_unload Procedure
The load_unload procedure describes how to place a design into a state in which the scan
chains can be loaded and unloaded. This typically involves asserting a SCAN_ENABLE
port, or other control line, and placing bidirectionals into a Z state. Standard DRC rules
also require that ports defined as clocks must be placed in their off states at the start of the
scan chain load/unload process if they are not initialized to an off state in the test_setup
procedure.

The load_unload procedure is required by TestMAX ATPG. If you define the scan enable
information before you write the STIL file, TestMAX ATPG automatically creates the
load_unload procedure.

The scan chain length is required in standard STIL syntax, but is optional for STIL input
files used by TestMAX ATPG. When writing a STIL pattern file, TestMAX ATPG determines
the scan chain lengths and defines the correct length of each scan chain while writing
STIL output.

The following example shows the syntax used to define scan chains. This example
consists of the STIL header followed by the ScanStructures keyword and four scan
chains. In this example, the scan chains are named c1 through c4. The Procedures
section defines a procedure called load_unload , which consists of one test cycle (a "V
{...}" vector statement). In the test cycle, the CLOCK and RESETB clocks are set to their off
states and the SCAN_ENABLE port is driven high to enable the scan chain shift paths.

Example 1: Defining Scan Chain Loading and Unloading in the STL procedure file

STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE=1; }
 }
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

444

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

See Also

• JTAG/TAP Controller Variations for the load_unload Procedure

Controlling Bidirectional Ports
During scan chain shifting defined by the load_unload procedure, the control logic for
bidirectional ports sometimes operates at random states. This condition causes Z class
DRC violations. You can prevent these violations by doing the following:

• Place a Z value on the bidirectional port, which turns off the ATE tester drive

• Enable a top-level control port, applied only for test mode, to globally disable all
bidirectional drivers

Example 1 illustrates a design with a top-level bidirectional control port called
BIDI_DISABLE (shown in bold). This example uses the SignalGroups section to define an
ordered grouping of ports referenced by the label bidi_ports, thus facilitating assignment
to multiple ports.

Example 1 Controlling Bidirectional Ports in the STL Procedure File

STIL;
SignalGroups {
 bidi_ports = '"D[0]" + "D[1]" + "D[2]" + "D[3]" + "D[4]" + "D[5]" +
 "D[6]"
 + "D[7]" + "D[8]" + "D[9]" + "D[10]" + "D[11]" + "D[12]"
 + "D[13]" + "D[14]" + "D[15]";
}
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V {
 CLOCK=0; RESETB=1; SCAN_ENABLE = 1;
 BIDI_DISABLE = 1;
 bidi_ports = ZZZZ ZZZZ ZZZZ ZZZZ;
 }
 V {}
 V { bidi_ports = \r4 1010 ; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}
MacroDefs {
 test_setup {

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

445

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
 BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

You can use both the load_unload procedure and the test_setup procedure for
bidirectional control. The control mechanisms for the load_unload procedure are as
follows:

• You can add the following lines to the first test cycle:

BIDI_DISABLE = 1; bidi_ports = ZZZZ ZZZZ ZZZZ ZZZZ;

Setting the BIDI_DISABLE port to 1 disables all bidirectional drivers in the design.
Assigning Z states to the bidi_ports ensures that the ATE tester does not try to drive
the bidirectional ports.

• You can also use an empty test cycle:

V{}

The empty braces indicate that no signals are changing. This provides a cycle of
delay between turning off bidirectional drivers with BIDI_DISABLE=1 and forcing
the bidirectional ports as inputs in the third cycle. This is not usually necessary, but
illustrates one technique for adding delay using an empty test cycle.

• A third test cycle:

V{ bidi_ports = \r4 1010 ; }
In this case, the bidi_ports are driven to a non-Z state so that they do not float while
the drivers are disabled. The \r4 syntax indicates that the following string is to be
repeated four times. In other words, the pattern applied to the bidi_ports group is
1010101010101010.

In the test_setup procedure, the following line can be added to the first test cycle:

 BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ;

In this case, the BIDI_DISABLE port is forced high and the bidi_ports are set to a Z state.

Defining the Shift Procedure
The Shift procedure specifies how to shift the scan chains. It is placed within the
load_unload procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

446

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Shift is a recognized keyword to the STIL language and is not enclosed in quotation
marks. The "_si" and "_so" names are predefined symbolic names used by TestMAX
ATPG to represent the list of scan inputs and scan outputs. "CLOCK" is the name of a
clock port that affects scan chains. More than one clock port is often required.

The bold text shown in Example 1 defines the Shift procedure.

Example 1: STL procedure file: Defining the Scan Chain Shift Procedure

STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}

The Shift procedure consists of a test cycle (V) in which the scan inputs _si are set
from the next available stimulus data (#); the scan outputs _so are measured from the
next available expected data (#); and the port CLOCK is pulsed (P). There are four #
symbols, one for each scan chain defined.

When the load_unload procedure is applied, the Shift procedure is applied repeatedly as
required to shift as many bits as are in the longest scan chain.

A test cycle is added after the Shift procedure to ensure that the clocks and
asynchronous reset/set ports are at their off states. This is an optional cycle if all
procedures start out by ensuring that the clocks and asynchronous set/reset ports are at
the off state.

The _si and _so grouping names are expected by TestMAX ATPG. They refer to the scan
inputs and scan outputs. The STIL file output generated by TestMAX ATPG completely
describes the port names and ordering contained in the groupings _si and _so; you do
not have to enter this information.

Defining the test_setup Procedure
The test_setup procedure defines all initialization sequences that a design needs for test
mode or to ensure that the device is in a known state.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

447

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

In Example 1, the test_setup procedure is highlighted in bold text. This example procedure
consists of three test cycles:

• The first cycle sets the inputs TEST_MODE, PLL_TEST_MODE, and PLL_RESET to 1

• The second cycle changes PLL_RESET to 0

• The third cycle returns PLL_RESET to 1.

Example 1: Defining the test_setup Macro in the STL procedure file

STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}
MacroDefs {
 test_setup {
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

If you need to initialize a port to X in the test_setup procedure, use the "N" STIL
assignment character. An “X” character indicates that an output measure is performed and
the result is masked.

You can use the test_setup procedure to perform several other tasks, including:

• Place a device in ATPG test mode

• Place clocks in their off states

• Initialize constrained ports

• Initialize bidirectional ports to Z

• Initialize JTAG TAP controllers

• Implement Loop statements (see the "Loop Statements" section).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

448

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Using Loop Statements
You can use loops in test_setup procedures, however you should limit their usage. If you
use too many loops:

• The size of the test_setup procedure dramatically increases

• The time to simulate the clock pulses dramatically increases

You should represent only the necessary events required to initialize the device for ATPG
efforts in the test_setup procedure. Loops that represent device test (for example, one
million vectors to lock a PLL clock at test) are not appropriate or necessary in the ATPG
environment when a PLL clock is a black box.

Vectors can be extracted before the Loop and after the Loop, and the Loop count
decremented as appropriate for each extracted vector.

Each extracted vector must contain the exact same sequence of clocks as specified in
the vector inside the Loop statement. Empty vectors (no events) may appear between
the vectors that contain clock pulses — but it is critical that any vector that contains a
signal assignment, match in order with the signal assignments for the vector inside the
Loop. Otherwise, this extracted vector will not be recognized as consistent with the internal
vector, and the extracted vector will not be "re-rolled" into the Loop count, causing DRC
analysis errors.

The only supported contents of a Loop in a *setup procedure are C {} condition
statements, V {} vectors, or WaveformTable "W" statements.

Example 1:

MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 C { "all_inputs" = NNN; "all_outputs" = \r6 X; }
 Loop 10 { V { "s_in"=0; "clk"=P; } }
 }}

Example 2:

MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 V { "CK"=0; }
 Loop 4 { V { "s_in"=0; "clk"=P; } }
}

Loops in STIL may contain other references (for example, calls to other macros and
procedures). These constructs are not supported within the setup environment.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

449

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Predefined Signal Groups in STIL
A SignalGroup is a method in STIL that describes a list of pins using a symbolic label. You
can use symbolic labels to reference a large number of pins without excessive typing.

TestMAX ATPG accepts the following predefined SignalGroups:

• _in = input pins

_out = output pins

_io = bidirectional pins

_pi = inputs + bidirectional pins

_po = outputs + bidirectional pins

_si = scan chain inputs

_so = scan chain outputs

If your STIL DRC description defines a symbolic group with the same name as the
predefined TestMAX ATPG groups, your definition supersedes the predefined definition.

Defining Basic Signal Timing
You can define clocks and other pulsed ports, such as asynchronous sets and resets, in
the STL procedure file. This is an alternative method to using the Edit Clocks dialog box in
the TestMAX ATPG GUI or the add_clocks command (for more information, see Declaring
Clocks.

You do not need to define signal timing to perform DRC or to generate patterns. However,
timing definition is necessary for writing patterns that require meaningful timing. If you do
not explicitly define the signal timing, TestMAX ATPG uses a set of default values.

You should avoid editing signal timing values in ATPG-generated pattern files because it
causes simulation mismatches or ATE mismatches. Make sure you define signal timing in
the STL procedure file and run DRC with the same STL procedure file before generating
hand-off patterns with ATPG.

Example 1: STL procedure file: Defining Timing

1. STIL;
2. UserKeywords PinConstraints;
3. PinConstraints { "TEST_MODE" 1; "PLL_TEST_MODE" 1; }
4. SignalGroups {
5. bidi_ports '"D[0]" + "D[1]" + "D[2]" + "D[3]" +
 "D[4]" + "D[5]" + "D[6]" +"D[7]" + "D[8]" + "D[9]" + "D[10]" + "D[11]" +
 "D[12]" + "D[13]" + "D[14]" + "D[15]" ‘;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

450

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

6. input_grp1 'SCAN_ENABLE + BIDI_DISABLE + TEST_MODE +
 PLL_TEST_MODE' ;
7. input_grp2 'SDI1 + SDI2 + DIN + "IRQ[4]"' ;
8. in_ports 'input_grp1 + input_grp2';
9. out_ports 'SDO2 + D1 + YABX + XYZ';
10. }
11. Timing {
12. WaveformTable "BROADSIDE_TIMING" {
13. Period '1000ns';
14. Waveforms {
15. CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } } // clock
16. CLOCK { 01Z { '0ns' D/U/Z; } }
17. RESETB { P { '0ns' U; '400ns' D; '800ns' U; } } /
 / async reset
18. RESETB { 01Z { '0ns' D/U/Z; } }
19. input_grp1 { 01Z { '0ns' D/U/Z; } }
20. input_grp2 { 01Z { '10ns' D/U/Z; } }
 // outputs are to be measured at t=350
21. out_ports { HLTX { '0ns' X; '350ns' H/L/T/X; } }
 // bidirectional ports as inputs are forced at t=20
22. bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
23. // bidirectional ports as outputs are measured at t=350
24. bidi_ports { X { '0ns' X; } }
25. bidi_ports { HLT { '0ns' X; '350ns' H/L/T; } }
26. }
27. } // end BROADSIDE_TIMING
28. WaveformTable "SHIFT_TIMING" {
29. Period '200ns';
30. Waveforms {
31. CLOCK { P { '0ns' D; '100ns' U; '150ns' D; } }
32. CLOCK { 01Z { '0ns' D/U/Z; } }
33. RESETB { P { '0ns' U; '20ns' D; '180ns' U; } }
34. RESETB { 01Z { '0ns' D/U/Z; } }
35. in_ports { 01Z { '0ns' D/U/Z; } }
36. out_ports { X { '0ns' X; } }
37. out_ports { HLT { '0ns' X; '150ns' H/L/T; } }
38. bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
39. bidi_ports { X { '0ns' X; } }
40. bidi_ports { HLT { '0ns' X; '100ns' H/L/T; } }
41. }
42. } // end SHIFT_TIMING
43. }
44. ScanStructures {
45. ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
46. ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
47. ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
48. ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
49. } // end scan structures
59. Procedures {
51. "load_unload" {
52. W "BROADSIDE_TIMING" ;
53. V {CLOCK=0; RESETB=1; SCAN_ENABLE=1; BIDI_DISABLE=1;
 bidi_ports = \r16 Z;}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

451

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

54. V {}
55. V { bidi_ports = \r4 1010 ; }
56. Shift {
57. W "SHIFT_TIMING" ;
58. V { _si=####; _so=####; CLOCK=P;}
59. }
59. W "BROADSIDE_TIMING" ;
60. V { CLOCK=0; RESETB=1; SCAN_ENABLE=0;}
61. } // end load_unload
62. } //end procedures
63. MacroDef {
64. "test_setup" {
65. W "BROADSIDE_TIMING" ;
66. V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
67. BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
68. V {PLL_RESET = 0; }
69. V {PLL_RESET = 1; }
70. } // end test_setup
71. } //end procedures

Lines were added for the following purposes:

• Lines 6–9: Defines some additional signal groups so that timing for all inputs or outputs
can be defined in just a few lines, instead of explicitly naming each port and its timing.

• Lines 12–27: This is a waveform table with a period of 1000 ns that defines the timing
to be used during nonshift cycles.

• Lines 28–42: This is another waveform table, with a period of 200 ns, that defines the
timing to be used during shift cycles.

• Line 52: Addition of the W statement ensures that the BROADSIDE_TIMING is used
for V cycles during the load_unload procedure.

• Line 57: Addition of the W statement ensures that the SHIFT_TIMING is used during
application of scan chain shifting.

• Line 65: Causes the test_setup macro to use BROADSIDE_TIMING.

Defining Pulsed Ports
You can define pulsed ports for clocks and asynchronous sets and resets using the Add
Clocks dialog box in the TestMAX ATPG GUI, the add_clocks command, or by specifying
an optional section in the STL procedure file.

The bold text in Example 1 defines two pulsed ports, CLOCK and RESETBin the STL
procedure file. This specificationadds a Timing{..} section and a WaveformTable
definition with the special-purpose name recognized by TestMAX ATPG, _default_WFT_.

Example 1: STL procedure file: Defining Pulsed Ports

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

452

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

STIL;

Timing {
 WaveformTable "_default_WFT_" {
 Period '100ns';
 Waveforms {
 CLOCK { P { '0ns' D; '50ns' U; '80ns' D; } }
 CLOCK { 01Z { '0ns' D/U/Z; } }
 RESETB { P { '0ns' U; '10ns' D; '90ns' U; } }
 RESETB { 01Z { '0ns' D/U/Z; } }
 }
 }
}
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V {
 CLOCK=0; RESETB=1; SCAN_ENABLE = 1;
 BIDI_DISABLE = 1;
 bidi_ports = ZZZZ ZZZZ ZZZZ ZZZZ;
 }
 V {}
 V { bidi_ports = \r4 1010 ; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}
MacroDefs {
 test_setup {
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
 BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

This timing definition has the following features:

• The period of the test cycle is 100 ns.

• The following line defines the port CLOCK as a positive-going pulse that starts each
cycle at a low value (D = force down), transitions up (U = force up) at an offset of 50 ns
into the cycle, then transitions down at an offset of 80 ns:

CLOCK { P { '0ns' D; '50ns' U; '80ns' D; } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

453

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

• The next line indicates that for test cycles in which the CLOCK port has a constant value,
the change to that value occurs at an offset of 0 ns into the test cycle:

CLOCK { 01Z { '0ns' D/U/Z; } }
• The following lines define the port RESETB as a negative-going pulse:

RESETB { P { '0ns' U; '10ns' D; '90ns' U; } } RESETB { 01Z { '0ns'
 D/U/Z; } }

Note that RESETB is defined nearly identically to CLOCK, with two exceptions:

◦ First, it starts each pulse cycle in the U (force up) position, transitions to D (force
down), and then to U again.

◦ Second, the timing is slightly different, with the first transition at an offset of 10 ns
into the cycle and the last transition at an offset of 90 ns.

Selecting Strobed or Windowed Measures in STIL
Some testers and vendors prefer a windowed measure for selecting timing in STIL. For
this approach, the outputs are compared continuously for a window of time against the
expected values instead of at a single time.

STIL supports the definition of windowed measures by using some slightly different syntax
involving lowercase Waveform Events. The first following example illustrates strobed
comparisons that occur at an offset of 450ns into each cycle.

 Timing {
 WaveformTable "STROBED_COMPARE" {
 Period '1000ns';
 Waveforms {
 clocks { P { '0ns' D; '500ns' U; '600ns' D; } }
 input_ports { 01Z { '0ns' D/U/Z; } }
 out_ports { X { '0ns' X; '450ns' X; } }
 out_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 }
 }
}

This second example uses a windowed comparison for the group "out_ports" that
compares the outputs between the offsets of 450 nS and 490 nS into each test cycle.
Notice how the standard STIL WaveformChars of "H/L/T" have been replaced by
lowercase STIL Waveform Events of "h", "l", "t". This indicates to TestMAX ATPG that
windowed measures are required.

 Timing {
 WaveformTable "WINDOW_COMPARE" {

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

454

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 Period '1000ns';
 Waveforms {
 clocks { P { '0ns' D; '500ns' U; '600ns' D; } }
 input_ports { 01Z { '0ns' D/U/Z; } }
 out_ports { X { '0ns' X; } }
 out_ports { HLT { '0ns' X; '450ns' h/l/t; '490ns' X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 }
 }
}

TestMAX ATPG supports the definition of windowed measure in the STIL timing block and
if STIL or WGL output patterns are written, then this timing definition is carried into the
output patterns. However, when writing Verilog or VHDL patterns, the patterns will contain
a strobed measure and the call for a windowed measure is not supported and is ignored.

Supporting Clock ON Patterns in STIL
The default patterns generated by TestMAX ATPG use a preclock measure. Certain types
of faults on combinational paths involving clock pins and primary outputs require a different
style of pattern, called a "Clock ON" pattern, where the measure is performed during the
interval in which the clock is asserted. This difference is shown graphically below and
these types of faults in the design are signaled by the presence of C17 DRC violations.

   

TestMAX ATPG does not generate this additional style of patterns by default, because it
is not supported by all testers. Your target tester must either support multiple waveform
timings and dynamically switching between them on a pattern by pattern basis, or
you must be willing to create patterns that contain clock-on measure and preclock
measure and write them into separate pattern blocks before use (the -type option of the
write_patterns command is handy for this).

• The first step necessary to support the generation of Clock-On patterns is to edit your
DRC file and to create a unique timing definition to be used for the clock-on measure
patterns. This is usually accomplished by copying the existing or default waveform
timing and adjusting the measure time of outputs to occur within the time interval where
the clock is asserted.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

455

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

• After creating a unique waveform timing definition modify or create the non-clocking
capture procedure named "capture" and have it reference the clock-on waveform
timing.

• Next enable the generation of clock-on measure patterns by use of the
-allow_clockon_measures option of the set_atpg command.

• Finally, use the modified DRC file in your run_drc command.

When the ATPG algorithm generates patterns, it will reference the defined waveform
timing of the non-clocking capture procedure for any patterns created that require the
clock-on measure. These patterns have a recognizable label when reported with the
-types option of the report_patterns command.

It is also possible for the ATPG algorithm to create regular patterns that do not require a
clock. If this occurs, these patterns will also reference the defined timing of the "capture"
procedure. Usually only a few patterns are generated for any particular design that do
not require a clock be used. These patterns should work but can increase the amount
of dynamic timing switches in your tester. If this is a concern, then explore the -clock
-one_hot option of the set_drc command as a way to inhibit the generation of non-
clocking patterns.

The following example defines a unique timing set for use by the clock-on patterns. The
timing of CLOCK_ON is identical to PRE_CLOCK, except that the measure time has been
moved from 40ns (preclock) to 60ns (clock asserted).

:
:
Timing {
 WaveformTable "PRE_CLOCK" {
 Period '100ns';
 Waveforms {
 clocks { P { '0ns' D; '50ns' U; '80ns' D; } }
 clocks { 01Z { '0ns' D/U/Z; } }
 _in { 01ZN { '0ns' X; '40ns' L/H/T/X; } }
 _out { LHZX { '0ns' X; '40ns' L/H/T/X; } }
 _io { LHZX { '0ns' X; '40ns' L/H/T/X; } }
 _io { 01ZN { '0ns' D/U/Z/N; } }
 }
 }
 WaveformTable "CLOCK_ON" {
 Period '100ns';
 Waveforms {
 clocks { P { '0ns' D; '50ns' U; '80ns' D; } }
 clocks { 01Z { '0ns' D/U/Z; } }
 _in { 01ZN { '0ns' D/U/Z/N; } }
 _out { LHZX { '0ns' X; '60ns' L/H/T/X; } }
 _io { LHZX { '0ns' X; '60ns' L/H/T/X; } }
 _io { 01ZN { '0ns' D/U/Z/N; } }
 }
 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

456

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

}
 :
 :
 capture_CLK {
 W PRE_CLOCK;
 V { _pi=\r13 # ; _po=\j \r9 X ; }
 V { _po=\r9 # ; }
 V { CLK=P; _po=\j \r9 X ; }
 }

 capture {
 W CLOCK_ON; // reference the alternate timing definition
 V { _pi=\r13 # ; _po=\j \r9 X ; }
 V { _po=\r9 # ; }
 }
 :
 :\line

Defining the End-of-Cycle Measure
The preferred ATPG cycle has the measure point coming before any clock events in the
cycle. However, an end-of-cycle measure is possible with a few minor adjustments to the
STL procedure file.

The STL procedure file in the following example illustrates the two changes that allow
TestMAX ATPG to accommodate an end-of-cycle measure:

• The timing of the measure points defined in the Waveforms section is adjusted to occur
after any clock pulses.

• A measure scan out ("_so"=####) is placed within the load_unload procedure and
before the Shift procedure.

In addition, the capture procedures must be either the default of three cycles or a two-
cycle procedure where the force/measure events occur in the first cycle and the clock
pulse occurs in the second.

Example 1: End-of-Cycle Measure

Timing {
 WaveformTable "BROADSIDE_TIMING" {
 Period '1000ns';
 Waveforms {
 measures { X { '0ns' X; } }
 CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } }
 CLOCK { 01Z { '0ns' D/U/Z; } }
 RESETB { P { '0ns' U; '400ns' D; '800ns' U; } }
 RESETB { 01Z { '0ns' D/U/Z; } }
 input_grp1 { 01Z { '0ns' D/U/Z; } }
 input_grp2 { 01Z { '10ns' D/U/Z; } }
 bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

457

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 measures { HLT { '0ns' X; '950ns' H/L/T; } }
 }
 }
 WaveformTable "SHIFT_TIMING" {
 Period '200ns';
 Waveforms {
 measures { X { '0ns' X; } }
 CLOCK { P { '0ns' D; '100ns' U; '150ns' D; } }
 CLOCK { 01Z { '0ns' D/U/Z; } }
 RESETB { P { '0ns' U; '20ns' D; '180ns' U; } }
 RESETB { 01Z { '0ns' D/U/Z; } }
 in_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
 measures { HLT { '0ns' X; '190ns' H/L/T; } }
 }
 }
}
 ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 W "BROADSIDE_TIMING" ;
 V {CLOCK=0; RESETB=1; SCAN_ENABLE=1;
 BIDI_DISABLE=1; bidi_ports = \r16 Z;}
 V { "_so" = #### ; }
 V { bidi_ports = \r4 1010 ; }
 Shift {
 W "SHIFT_TIMING" ;
 V { _si=####; _so=####; CLOCK=P;}
 }
}

Defining Capture Procedures in STIL
Capture procedures offer the flexibility to control the timing of the force primary inputs
and bidis, measure primary outputs and bidis, and, optionally, a capture operation with a
functional (nonscan) clock. These three events must be in the order shown, and can be
arranged in three, two, or one tester cycles (Vectors). Different capture procedures are
used for each capture clock, as well as a non-clock capture procedure.

Note:
Each port can only be forced one time among all vectors in the capture
procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

458

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

The following examples are from a design with CLK and RSTB defined as clock ports. The
"capture_CLK" procedure illustrates forcing PI's, measuring PO's, and pulsing the clock in
the same cycle. The "capture_RSTB" illustrates using two cycles.

 "capture_CLK" {
 W "_default_WFT_";
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; "CLK"=P; }
 }

 "capture_RSTB" {
 W "_default_WFT_";
 "force_and_measure": V { "_pi"=\r 12 # ; "_po"=\r 8 #; }
 "pulse": V { "RSTB"=P; }
 }

 "capture" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r 12 # ; }
 "measurePO": V { "_po"=\r 8 #; }
 }

The default algorithm for combinational ATPG produces an event order of: force inputs,
measure outputs, pulse clocks (optional). If you should need to produce an end-of-cycle
measure or postclock measure instead of this preclock measure, you will need to use a
specific 2-cycle capture procedure with the following event order: cycle 1 {force inputs,
measure outputs}, cycle 2 {pulse clocks}. You will also need to adjust the defined timing on
the ports. An example of this style follows:

 "capture_CLK" {
 W "spec_timing_set";
 V { "_pi"=\r 12 # ; "_po"=\r 8 #;}
 V { "_po"=\r 8 X ; CLK=P; }
 }

TestMAX ATPG defaults to the first WaveformTable encountered in the file if it is not
specified in the sequential_capture procedure (if present) or defined in a capture
procedure in the DRC file. This WaveformTable can be, but does not need to be named
"_default_WFT_". In other words, if your STL procedure file had two waveform tables, say
"_first_WFT_" followed later by "_default_WFT_", and you did not list your capture clocks
in the STL procedure file, then TestMAX ATPG would use "_first_WFT" for waveform
timing information.

Limiting Clock Usage
You might need to limit the clocks used by the ATPG algorithm during the capture
procedures. For example, sometimes only the TCK clock should be used or the TAP

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

459

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

controller state machine will get out of step. If you need to restrict usage of defined clocks
to a single clock, use the -clock option of the set_drc command:

DRC-T> set_drc -clock TCK

This option restricts the ATPG algorithm to use only the specified clock for capture.

Defining Constrained Primary Inputs
You can use the STIL Procedure file to define constraints on ports. This is an alternative
method to using the add_pi_constraints command or the Constraints menu in the
TestMAX ATPG GUI.

The following example is a fragment of a STIL file in which the "F{...}" or Fixed construct
is used to define a fixed port condition. The STIL specification defines that this Fixed
relationship persists only within the procedure in which it occurs. A TestMAX ATPG PI
constraint applies to every capture procedure. Because of this difference, you should
repeat the Fixed relationship in every capture procedure. If you don't, TestMAX ATPG
issues V12 warnings and continues as if the missing Fixed statements are present.

TestMAX ATPG does not support use of the "F{...}" statement in the test_setup or
load_unload/shift or other procedures. You must explicitly set any ports you want held at
fixed values in these procedures. In the following example, the ports TEST_MODE and
PLL_TEST_MODE are explicitly set in both the load_unload procedure and the test_setup
procedure.

STIL;

ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}

Procedures {
 "load_unload" {
 V {
 CLOCK = 0; RESETB = 1;
 SCAN_ENABLE = 1;
 TEST_MODE=1; PLL_TEST_MODE=0;
 }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
 "capture_CLOCK" {
 F { TEST_MODE=1; PLL_TEST_MODE=0; } V { "_pi"=\r 12 # ; "_po"=\r
 8 #; "CLOCK"=P; }
 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

460

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 "capture_RESETB" {
 F { TEST_MODE=1; PLL_TEST_MODE=0; } V { "_pi"=\r 12 # ; "_po"=\r
 8 #; "RESETB"=P; }
 }
 "capture" {
 F { TEST_MODE=1; PLL_TEST_MODE=0; } V { "_pi"=\r 12 # ; "_po"=\r
 8 #; }
 }
}

MacroDefs {
 test_setup {
 V { TEST_MODE=1; PLL_TEST_MODE=0; CLOCK=0; }
 }
}

Defining Equivalent Primary Inputs
Primary inputs that need to be held at the same values or at complementary values can
be defined in the STL procedure file as an alternative to using the add_pi_equivalences
command. Example 1 shows how to define equivalent primary inputs in the STL procedure
file.

Example 1: STL procedure file: Defining Equivalent Ports

Procedures {
 "capture" {
 W "_default_WFT_";
 E "ck1" "ck2";
 C { "all_inputs"=\r30 N; "all_outputs"=\r30 X ; }}
 V { "_pi"=\r35 # ; "_po"=\r30 # ; }}
 }
 "capture_ck1" {
 W "_default_WFT_";
 E "ck1" "ck2";
 C { "all_inputs"=\r30 N; "all_outputs"=\r30 X ; }
 "measurePO": V { "_pi"=\r35 # ; "_po"=\r30 # ; }
 C { "InOut1"=X; "PA1"=X; "DOA"=X; "NA1"=X; "NA2"=X; }
 "pulse": V { "ck1"=P; }
 }
 "load_unload" {

Defining PO Masks
You can use the STIL Procedure file to define masks on output port measures. The
following example shows a fragment from a STIL file in which the "F{...}" or Fixed construct
is used to define a masked output condition by setting the expect value to X. This Fixed

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

461

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

relationship definition persists only within the procedure in which it occurs, so it must be
repeated in all capture procedures to properly define a PO Mask to TestMAX ATPG.

TestMAX ATPG does not support use of the "F{...}" statement in the test_setup or
load_unload/shift or other procedures.

The "F{...}" statement is also used for defining PI Constraints.

STIL;

ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}

Procedures {
 "load_unload" {
 V {
 CLOCK = 0; RESETB = 1;
 SCAN_ENABLE = 1;
 TEST_MODE=1;
 }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
 "capture_CLOCK" {
 F { YOUT = X; } V { "_pi"=\r 12 # ; "_po"=\r 8 #; "CLOCK"=P; }
 }
 "capture_RESETB" {
 F { YOUT = X; } V { "_pi"=\r 12 # ; "_po"=\r 8 #; "RESETB"=P; }
 }
 "capture" {
 F { YOUT = X; } V { "_pi"=\r 12 # ; "_po"=\r 8 #; }
 }
}

MacroDefs {
 test_setup {
 V { TEST_MODE=1; PLL_TEST_MODE=0; CLOCK=0; }
 }
}

Defining System Capture Procedures
TestMAX ATPG uses a default capture procedure that defines how a declared clock port
is pulsed for a system (nonscan) test cycle. This procedure uses the naming convention
capture_clockname (where clockname is the clock port name).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

462

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

The default system capture procedure usually contains three test cycles that perform the
following tasks:

1. Force inputs

2. Measure outputs

3. Pulse the clock/set/reset port (optional)

If you defined ports named CLOCK and RESETB to be clocks using the write_drc_file
command, the output file contains default capture procedures similar to those shown in
Example 1.

Example 1: Default Capture Procedures

"capture_CLOCK" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r10 # ; }
 "measurePO": V { "_po"=######; }
 "pulse": V { "CLOCK"=P; }
}
"capture_RESETB" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r10 # ; }
 "measurePO": V { "_po"=######; }
"pulse": V { "RESETB"=P; }
}
"capture" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r10 # ; }
 "measurePO": V { "_po"=######; }
}

If you want to use non-default timing or sequencing, copy the definitions for the capture
procedures from the default output template into the Procedures section of your STL
procedure file and edit the procedures.

TestMAX ATPG defaults to the first WaveformTable it encounters in the file if a
WaveformTable is not specified in the sequential_capture procedure when present
or defined in a capture procedure in the DRC file. This WaveformTable can named,
for example, “_default_WFT_”. If your STL procedure file has two waveform tables,
“_first_WFT_” and “_default_WFT_”, and you do not list your capture clocks in the STL
procedure file, TestMAX ATPG uses “_first_WFT” for waveform timing information.

The bold text in Example 2 shows some typical modifications to the capture procedure
files. In this case, the three cycles are merged into a single cycle and the non-default
timing is specified using the BROADSIDE_TIMING statement.

Example 2: Modified Capture Procedure Examples

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

463

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Procedures {
 "load_unload" {
 W "BROADSIDE_TIMING" ;
 V {CLOCK=0; RESETB=1; SCAN_ENABLE=1;
 BIDI_DISABLE=1; bidi_ports = \r16 Z;}
 V {}
 V { bidi_ports = \r4 1010 ; }
 Shift {
 W "SHIFT_TIMING" ;
 V { _si=####; _so=####; CLOCK=P;}
 }
 W "BROADSIDE_TIMING" ;
}
"capture_CLOCK" {
 W "BROADSIDE_TIMING";
 V { "_pi"=\r10 # ; "_po"=######; "CLOCK"=P; }
}
"capture_RESETB" {
 W "BROADSIDE_TIMING";
 V { "_pi"=\r10 # ; "_po"=######; "RESETB"=P; }
}
"capture" {
 W "BROADSIDE_TIMING";
 V { "_pi"=\r10 # ; "_po"=######; }
 }
}
MacroDefs {
 "test_setup" {
 W "BROADSIDE_TIMING" ;
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
 BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

Creating Generic Capture Procedures
This section describes how to write a set of single-cycle generic capture procedures.
These procedures include: multiclock_capture(), allclock_capture(),
allclock_launch(), and allclock_launch_capture().

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

464

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Generic capture procedures offer the following advantages:

• A single cycle capture procedure is efficient because it matches the event ordering
(force PI, measure PO, pulse clock) in TestMAX ATPG without any manual
modifications.

• Stuck-at and at-speed ATPG can use a single common protocol file.

• The stuck-at _default_WFT_ WaveformTable is used as a template for modifying the
timing of the at-speed WaveformTables.

The following topics describe how to create generic capture procedures:

• Generating Generic Capture Procedures

• Controlling Multiple Clock Capture

• Using Allclock Procedures

• Using load_unload for Last Shift-Launch Transition

• Example Post-Scan Protocol

• Generic Capture Procedures Limitations

See Also

• Defining a Sequential Capture Procedure

• Defining a System Capture Procedure

Generating Generic Capture Procedures
Generic capture procedures are generated by default when you specify the
write_drc_file command (the -generic_captures option of the write_drc_file
command is on by default). This command overrides the default-generated procedures
(capture_clockname - except for an explicitly defined clocked capture procedure from a
prior run_drc command. An unclocked capture procedure is not written. Also, the default
timing is compatible with single-cycle capture procedures (a Z event is produced by default
for the measure events H, L, T, and X, at time zero) when this option is used.

WaveformTables
If the default timing is defined, only one WaveformTable is generated in the output
file, and all procedures will reference that same timing. If you want to create multiple
WaveformTables ("_launch_WFT_", "_capture_WFT_", and "_launch_capture_WFT_"),
use the set_faults -model transition command or the set_faults -model
path_delay command before the write_drc_file command. These command specify
that the data should be generated to cover this mode of operation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

465

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Note the following requirements and scenarios:

• You must use generic capture procedures for Internal/External Clocking.

• Capture procedures using the internal clocks must use _multiclock_capture_WFT_
procedures, which is appropriate because the PLL pulse trains are internally
generated independently of the external timing. The timings that should be changed
to get at-speed transition fault testing on the external clocks are in the _allclock_
WaveformTables (launch_WFT, capture_WFT, launch_capture_WFT). Be careful not to
change the Period or the timings of the Reference Clocks or else the PLLs might lose
lock. Only change the rise and fall times of the external clocks. (For more information,
see the “Creating Generic Capture Procedures” section in the TestMAX DFT User
Guide.)

• A two-clock transition fault test consists of a launch cycle using
_allclock_launch_WFT_ followed by a capture cycle using
_allclock_capture_WFT_. The active clock edges of these two cycles should
be moved close to each other. Make sure that the clock leading edge comes after
the all_outputs strobe times, and adjust those times (for all values: L, H, T and X)
in the _allclock_capture_WFT_ if necessary. The remaining Waveform Table,
_allclock_launch_capture_WFT, is only used when launch and capture are caused
by opposite edges of the same clock. Here, the only important timing is from the clock
leading edge to the same clock's trailing edge. In practice, this only happens in Full-
Sequential ATPG. and in most cases it can be ignored.

Generating QuickSTIL File Flows
There are three scenarios to carefully consider when generating a QuickSTIL file flows:

• Running stuck-at STIL procedure file generation with no generic captures creates a
set of default generic captures which use the default WaveformTables. All the generic
captures are defined — not just the multiclock WaveformTables. But the allclock_*
WaveformTables are defined at this time.

• Running transition STIL procedure file generation with no generic captures creates
generic captures using all of the transition WaveformTables. All the generic captures
are defined — not just the multiclock WaveformTables. But the allclock_*
WaveformTables are defined at this time. You are responsible to update the timing
needed for the at-speed timing WaveformTables.

• Running transition STIL procedure file generation with generic captures already
present (for example, from a stuck-at flow), will not change or update the generic
captures or WaveformTables already present in the original STL procedure file. If you

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

466

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

want transition timing and full WaveformTables in your STL procedure file, you need to
one of the following:

◦ Edit and copy the “_default_wft_” multiple times, and change them to the
transition WaveformTables and timing needed for their design.

◦ Rerun DRC with the deletion of the allclock_* procedures, and regenerate default
timing in transition mode for these procedures.

For an example that compares the different techniques, see the following figures. Note that
the blue font follows the default WaveformTables, while the green font follows the at-speed
WaveformTables.

Figure 87 Comparing Generic Captures Flows (Part 1)

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

467

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Figure 88 Comparing Generic Captures Flows (Part 2)

   

Controlling Multiple Clock Capture
You can control multiple clock capture by specifying a single general capture procedure,
called multiclock_capture, in an STIL procedure file. This procedure enables you
to map all capture behaviors irrespective of the number of clocks present, to use this
procedure. In addition to supporting capture operations that contain multiple clocks, this
procedure also eliminates the need to manually define a full set of clock-specific capture
procedures or allow them to be defined by default.

There are several different methods associated with specifying multiple clock capture:

• Multiple Clock Capture for a Single Vector

• Multiple Clock Capture for Multiple Vectors

• Using Multiple Capture Procedures

Multiple Clock Capture for a Single Vector
The following example shows how to specify multiclock_capture for a single vector,
which is the simplest form of this procedure:

Procedures {
 "multiclock_capture" {
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_po"=\r9 # ; "_pi"=\r11 # ; }
 }
}

Note that the single vector form does not require an explicit parameter to support the
clock pulses because the clocks are always listed in the _pi arguments, and also in the
_po arguments for any clocks that are bidirectional. It is strongly recommended that you
specify an initial Condition statement to set the _po states to an X in this procedure. A

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

468

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

default should be present in this procedure because not all calls from the Pattern data
provide explicit output states.

As is the case with all capture procedures, the single-vector form of multiclock_capture
requires the timing in the WaveformTable to follow the TestMAX ATPG event order for
captures. This means that all input transitions must occur first, all output measures must
occur next, and all clock pulses must be defined as the last event.

Multiple Clock Capture for Multiple Vectors
As with standard capture procedures, the multiclock_capture procedure can consist
of multiple vectors. In this case, you need to specify an additional argument to hold the
variable clock-pulse information, as shown in the following example:

Procedures {
 "multiclock_capture" { // 2-cycle
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_pi"=\r11 # ; "_po"=\r9 # ; }
 C { "_po"=\r9 X ; }
 V {"_clks"= ###; }
}
 "multiclock_capture" { // 3-cycle
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_pi"=\r11 # ; }
 V { "_po"=\r9 # ; }
 C { "_po"=\r9 X ; }
 V {"_clks"= ###; }
 }
}

Using Multiple Capture Procedures
Figure 3 shows how the multiclock_capture procedure is used when other capture()
or capture_clk() procedures are defined.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

469

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Figure 89 Using Multiple Capture Procedures

   

Using Allclock Procedures
Allclock procedures directly replace specifically named WaveformTables (WFTs) by
designating launch, capture, and launch_capture-specific timing parameters. This
approach replaces an inline vector and WFT switch with a procedure call.

You can specify a set of allclock procedures for use in specific contexts in which a
sequence of capture events supports a launch and capture operation. These sequences
are generated in system clock-launched transition tests. Full-sequential patterns use
inline vectors and not procedure calls. This is because the full-sequential operation has
dependencies on the sequential_capture definition, which affects how capture operations
will occur. Because inline vectors are used, transition and path delay timing is controlled
by using fixed WaveformTable names (and not the allclock capture procedures) for full-
sequential patterns.

Last-shift-launch contexts do not identify the launch or the capture operation. This means
a last-shift-launch uses a standard capture procedure designation and does not reference
allclock procedures even if they are present.

Standard capture procedure designation apply the multiclock_capture procedure in
this situation if it is present (based on the presence of other capture procedures as
diagrammed in Figure 11-4), and you may define the timing of the transition capture
operation from this procedure. The timing of the launch operation is defined by the last
vector of the load_unload procedure for a last-shift-launch context.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

470

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

TestMAX ATPG supports the following allclock procedures:

• allclock_capture() — Applies to tagged capture operations in launch/capture
contexts only.

• allclock_launch() — Applies to tagged launch operations in launch/capture contexts
only

• allclock_launch_capture() — Applies to tagged launch-capture operations only.

Specifying a Typical Allclock Procedure
By default, an allclock procedure applies to a single vector, although it doesn’t have to
carry the redundant clock parameter. An allclock procedure may reference any WFT for
each operation. See the following example allclock_capture() procedure:

Procedures {
 "allclock_capture" {
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_po"=\r9 # ; "_pi"=\r11 # ; }
 }
}

Interaction of the Allclock and Multiple Clock Procedures
A defined multiclock_capture() procedure is always used for any capture operation
that is not controlled by another defined procedure. This means that if an allclock
procedure is not defined, the multiclock_capture procedure is applied in its place.

Interaction of Allclock Procedures and Named Waveform Tables
If an allclock procedure is defined, a named WFT is not applied on inline vectors even if
it is defined. This is because allclock procedures always replace the generation of inline
vectors in pattern data, and WFT names are supported only when inline vectors are
generated.

It is strongly recommended that you define a sufficient set of allclock procedures for a
particular context, even if the procedures are identical. This preserves pattern operation
information that might otherwise be difficult to identify.

Using load_unload for Last Shift-Launch Transition
The load_unload procedure supports passing the pi data into the first vector of the
load_unload operation. This means load_unload supports last shift-launch transition tests,
presents the leading PI states at the time of the last shift operation (the launch), and
supports transitioning those states.

Because of this implementation, it is important to provide sufficient information as part of
the load_unload definition to permit standalone operation of the load_unload procedure.
It is important to consider that the load_unload procedure is also used to validate scan

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

471

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

chain tracing. Required states on inputs necessary to support scan chain tracing must be
provided to this routine even if these signals are subsequently presented as parameterized
values to the procedure, as shown in the following example:

Procedures {
 “load_unload” {
 W “_default_WFT_”;
 C { “test_se”=1; } // required for scan chain tracing
 V { “_pi”=\r34 #; }
 Shift {
 V { “_ck”=\r3 P; “_si”=\r8 #; “_so”=\r8 #; }
 }
 }
}

Example Post-Scan Protocol
The following example shows a post-scan protocol containing generic capture procedures:

Procedures {
 "multiclock_capture" {
 W "_default_WFT_";
 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}
 "allclock_capture" {
 W "_default_WFT_";
 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}
 "allclock_launch" {
 W "_default_WFT_";
 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}
 "allclock_launch_capture" {
 W "_default_WFT_";

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

472

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}
 "load_unload" {
 W "_default_WFT_";
 C {
 "all_inputs" = NN0011NN1; // moved scan enable here
 "all_outputs" = XXXX;
 }
 "Internal_scan_pre_shift" : V { "_pi" = \r9 #; }
 Shift {
 V {
 "_clk" = PP11;
 "_si" = ##;
 "_so" = ##;
 }
 }
 }
}

Generic Capture Procedures Limitations
Note the following limitations related to generic capture procedures:

• WGL patterns are not supported if the multiclock_capture is multiple cycle or the clock
(_clk) parameter is used; in this case, the WGL will not contain the clock pulses. WGL
pattern format is only supported with single-cycle multiclock_captures that do not use a
"clock" parameter (_clk).

• WGL, VHDL, and legacy Verilog formats do not support 3-cycle generic capture
procedures.

• Using the TestMAX DFT flow, the timing from the _default_WFT_ waveform
table is copied to the allclock waveform tables (launch_WFT, capture_WFT,
launch_capture_WFT). You will need to modify these multiple identical copies of this
information with the correct timing before running at-speed ATPG.

• TestMAX ATPG transition-delay ATPG using the command set_delay
-launch_cycle last_shift is not supported with the allclock capture procedures,
only system_clock launch is supported.

• MUXclock is not supported (D, E, P waveforms).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

473

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Defining Sequential Capture Procedures
A sequential capture procedure lets you customize the capture clock sequence applied
to the device during Full-Sequential ATPG. For example, you can define the clocking
sequence for a two-phase latch design, where CLKP1 is followed by CLKP2. Using a
sequential capture procedure is optional, and it only affects Full-Sequential ATPG. For
more information on ATPG modes, see ATPG Modes.

With Full-Sequential ATPG and a sequential capture procedure, the relationships between
clocks, tester cycles, and capture procedures can be more flexible and more complex.
Using Basic-Scan ATPG results in one clock per cycle, one clock per capture procedure,
and one capture procedure per TestMAX ATPG pattern. Using Full-Sequential ATPG and
a sequential capture procedure, a cycle can be defined with one or more clocks, a capture
procedure can be defined with any number of cycles, and an ATPG pattern can contain
multiple capture procedures.

A sequential capture procedure can pulse multiple clocks, define clocks that overlap, and
specify both optional and required clock pulses. A very long or complex sequential capture
procedure is more computationally intensive than a simple one, which can affect the Full-
Sequential ATPG runtime.

The following sections describe how to define sequential capture procedures:

• Using Default Capture Procedures

• Using a Sequential Capture Procedure

• Sequential Capture Procedure Syntax

Using Default Capture Procedures
By default, all ATPG modes use the same capture_clockname procedures described in
Defining System Capture Procedures. The Full-Sequential algorithm assumes the same
order of events for each vector as the other algorithms. Under these default conditions,
the Full-Sequential algorithm uses a fixed capture cycle consisting of three time frames, in
which the tester does the following:

1. Loads scan cells, changes inputs, and measures outputs (optional)

2. Applies a leading clock edge

3. Applies a trailing clock edge, and optionally unloads scan cells

The Full-Sequential ATPG algorithm can choose any one of the available capture
procedures for each vector, including the one that does not pulse any clocks. The
algorithm can produce patterns using any sequence of these capture procedures to detect
faults.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

474

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Using a Sequential Capture Procedure
To use a sequential capture procedure, add the sequential_capture procedure to the
STIL file, then set the -clock -seq_capture option of the set_drc command, as shown
in the following example:

DRC-T> set_drc -clock -seq_capture

Using this command option causes the Full-Sequential ATPG algorithm to use only the
sequential capture procedure and to ignore the capture_clockname procedures defined
by the STIL file or the add_clocks command. This option has no effect on the Basic-
Scan and Fast-Sequential algorithms. Sequential Capture Procedure in STIL for more
information.

Sequential Capture Procedure Syntax
A sequential capture procedure can be composed of one or more vectors. You can specify
each vector using any of the following events:

• Force PI (must occur before clock pulses; required for the first vector)

• Measure PO (might occur before, during, or after clock pulses)

• Clock pulse (no more than one per clock input)

Each vector corresponds to a tester cycle. Be sure to consider any hardware limitations of
the test equipment when you write the sequential capture procedure.

You can specify an optional clock pulse, which means that the clock is not required to be
pulsed in every sequence. The Full-Sequential ATPG algorithm determines when to use or
not use the clock. To define such a clock pulse, use the following statement:

V {"clock_name"=#;}

You can specify a required (mandatory) clock pulse, which means that the clock must
be pulsed in every capture sequence. To define such a clock pulse, use the following
statement:

V {"clock_name"=P;}

The following example shows a sequential capture procedure:

"sequential_capture"
W "_default_WFT_";
F {"test_mode"= 1; }
V {"_pi"= \r48 #; "_po"= \r12 X ; }
V {"CLK1"= P; CLK2= #; }
V {"CLK3"= P; }
V {"_po"= \r12 #; }
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

475

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

A sequential capture procedure can contain multiple tester cycles by supporting one or
more vectors (multiple V statements), but there can be only one WaveformTable reference
(W statement).

The procedure can have one force PI event per input per vector. Each force PI event
must occur before any clock pulse events in that cycle. All inputs must be forced in the
first vector of the sequential capture procedure; each input holds its state in subsequent
vectors unless there is an optional change caused by another force PI event.

The procedure can have one required (=P) or optional (=#) clock pulse event per clock
input per vector. Nonequivalent clocks can be pulsed at different times, and these clock
pulses can overlap or not overlap.

The procedure can have one measure PO event per output per vector, which can occur
anywhere in the cycle. However, no input or clock pulse events can be specified between
the earliest and latest output measurements. The procedure also supports equivalence
relationships and input constraints (E and F statements).

Sequential ATPG and simulation can model input changes only in the first time frame of
each cycle. TestMAX ATPG adds more time frames only as necessary to model discrete
clock pulse events. It strobes outputs in no more than one of the existing time frames for
each cycle.

Defining Reflective I/O Capture Procedures
A few ASIC vendors have special requirements for the application of the tester patterns
when the design contains bidirectional pins. These vendors require the design to contain
a global disable control, available in ATPG test mode, which is used to turn off all potential
bidirectional drivers. Further, the following sequence is required during the application of
nonshift clocking and nonclocking capture procedures:

1. Force primary inputs with bidirectional ports enabled

2. Measure values on outputs as well as bidirectional ports

3. Disable bidirectional drivers

4. Use tester to force bidirectional ports with values measured in step 2

5. (Optional) Apply clock pulse

You identify which TestMAX ATPG port acts as the global bidirectional control using the
-bidi_control_pin option of the set_drc command. For example, to indicate that the
value 0 on the port BIDI_EN disables all bidirectional drives, enter the following command:

DRC-T> set_drc -bidi_control_pin 0 BIDI_EN

To define the corresponding reflective I/O capture procedures, you use % characters
instead of # as data placeholders. In Example 1, each capture procedure measures

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

476

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

primary outputs with the string %%%%%% instead of the string ######. A few cycles later, the
string %%% appears in an assignment of the symbolic group "_io", which is shorthand for
the bidirectional ports.

The number of ports in the "_po" symbolic list is usually larger than the set of bidirectional
ports referenced by "_io", so it is common for the %%%%%% string for "_po" to be longer than
the string for the "_io" reference where the reflected data is reapplied. TestMAX ATPG
understands the correspondence required for proper pattern data.

Example 1: Capture Procedures With Reflective I/O Syntax

"capture_CLOCK" {
 W "_default_WFT_"; // force PI, measure PO, BIDI_EN=1
 V { "_pi"=\r10 # ; "_po"=%%%%%% ; } // disable bidis, mask PO
 measures
 V { BIDI_EN=0; "_po"=XXXXXX; } // reflect bidis, pulse CLOCK
 V { "_io"=%%% ; CLOCK=P; }

}
capture_RESETB {
 W "_default_WFT_"; // force PI, measure PO, BIDI_EN=1
 V { "_pi"=\r10 # ; "_po"=%%%%%% ; } // disable bidis, mask
PO measures
 V { BIDI_EN=0; "_po"=XXXXXX; } // reflect bidis, pulse RESETB
 V { "_io"=%%% ; RESETB=P; }
}
capture {
 W "_default_WFT_";
 V { "_pi"=\r10 # ; "_po"=###### ; } // force PI, measure PO
 V { "_po"=XXXXX; } // mask measures
 V { } // pad procedure to 3 cycles
}

Using the master_observe Procedure
Use the master_observe procedure if the design has separate master-slave clocks to
capture data into scan cells, as shown in the following figure. In system (nonscan) mode,
after applying the capture_clockname procedure corresponding to the master clock, you
must apply the slave clock to propagate the data value captured from the master latches
to the slave latches. In the master_observe procedure, you describe how to pulse the
slave clock and thereby observe the master.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

477

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Figure 90 Master-Slave Scan Chain

   

The following example shows a master_observe procedure that uses two tester cycles. In
the first cycle, all clocks are off except for the slave clock, which is pulsed. In the second
cycle, the slave clock is returned to its off state.

Example master_observe Procedure
Procedures {
 "load_unload" {
 W "BROADSIDE_TIMING"
 V { MCLK=0; SCLK=0; RESETB=1; SCAN_ENABLE=1; BIDI_DISABLE=1;}
 V { bidi_ports = \r16 Z ;}
 Shift {
 W "SHIFT_TIMING";

 V { _si=##; _so=##; MCLK=P; SCLK=0;}
 V { MCLK=0; SCLK=P;}
 }
 V { SCLK=0;}
 }
 master_observe {

 W "BROADSIDE_TIMING";
 V { MCLK=0; SCLK=P; RESETB=1; }
 V { SCLK=0;}
 }
}

Using the shadow_observe Procedure
You use a shadow_observe procedure when a design has shadow registers and each
shadow register output is observable at the scan cell to which it is a shadow. The following
figure shows two shadow registers, S1 and S2, which are shadows of R1 and R2,
respectively. Shadow S1 has a combinational path back to its scan cell (R1) and would
benefit from the definition of a shadow_observe procedure. Shadow S2 does not have a
path back to R2 and would not benefit from a shadow_observe procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

478

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Figure 91 A Shadow Register

   

The following example shows a shadow_observe procedure that corresponds to the
preceding figure. The first cycle places all clocks at off states and sets up the path from S1
back to R1 by setting SCAN=0 and SOBS=1. The second cycle pulses the CLK port, and the
third cycle turns off CLK and returns SOBS to zero.

Example shadow_observe Procedure
Procedures {
load_unload {
V { CLK=0; RSTB=1; SCAN=1;}
Shift { V { _si=##; _so=##; CLK=P;} }
V { CLK=0;}
}
shadow_observe {
V { CLK=0; RSTB=1; SCAN=0; SOBS=1; }
V { CLK=P;}
V { CLK=0; SOBS=0;}
}
}

Using the delay_capture_start Procedure
You can use the delay_capture_start procedure to specify a wait period at the start of a
capture operation. TestMAX ATPG inserts calls to this procedure in the patterns at the
end of each shift to establish the presence of the delay before the start of the capture
operation. The first PI state present in the capture operation is asserted in this procedure,
otherwise the transition time of slow-propagating signals will not occur before other
capture events.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

479

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

There are several different methods you can use to specify the parameters of this delay:

• Specify the number of vectors contained in the delay_capture_start procedure

• Control the period of the WaveformTable referenced by this procedure

• Control the number of times to insert this procedure at the end of shift using the
-use_delay_capture_start option of the write_patterns command

The delay_capture_start procedure has several format requirements to operate as a
simple wait statement. The default form of this procedure is as follows:

"delay_capture_start" {
W "_default_timing_";
C { "_po"=\rn X; }
V { "_pi"=\rm #; }
}
Note the following:

• This procedure must contain a Condition statement that sets the _po to X at the start
of the procedure. This ensures that any potential measure contexts at the end of the
last operation are reset.

• This procedure must contain a call to the _pi group, with a parameter assignment of
values, to ensure that the _pi states are applied at the start of the capture through this
wait operation. No other signal assignment should be made in the V statement, as this
will cause unpredictable results when the STIL patterns are used.

• The default form of this procedure calls the current default WaveformTable defined
in the flow, and contains a single Vector statement. If this procedure is not defined
in the incoming STIL procedure file, this default form is generated with the first use
of the -use_delay_capture_start option of the write_patterns command. In
this situation, this procedure is present in the Procedure block for all subsequent
write_patterns or write_drc_file commands, although it will only be applied in the
patterns if -use_delay_capture_start is specified.

• When the pattern set is written for transition patterns, the set_delay -nopi_changes
command inserts one leading delay cycle in the delay_capture_start operation and
uses the multiclock_capture procedure to set the PI states into all transition capture
operations. Therefore, the pattern set will already have one delayed capture start event
present. The delay_capture_start procedure calls are be inserted after the number of
requested delays exceed the number already present in the pattern data. If you require
additional delays beyond those already present in the patterns, you need to set the
delay_capture_start calls to a number greater than 1.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

480

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

• If you define the delay_capture_start procedure in your STIL procedure file, it is present
or defined in all subsequent STIL and WGL patterns that are written out.

• If the delay_capture_start procedure is not defined in the STIL procedure file, then
the first time that write_patterns -use_delay_capture_start is specified, it is
created and defined in all STIL patterns that are written out. After it is created from the
write_patterns -use_delay_capture_start command, this procedure will function
just as if it were specified in the STL procedure file. However, it will not be called in
the patterns unless the write_patterns -use_delay_capture_start command is
specified.

• The delay_capture_start procedure calls are eliminated when patterns are
read back into TestMAX ATPG. Each write_patterns command must use the
-use_delay_capture_start option in order for this procedure present. While
this procedure is not present on the internal pattern data, the presence of these
function calls, and the generated vectors due to these procedures, are still counted
during the pattern read-back operation. This allows cycle-based diagnostic flows
to function with no changes. When the patterns are rewritten, you must set the
-use_delay_capture_start option properly for every pattern write operation.

• If On-Chip Clock (OCC) controllers are used, they may be triggered by the transition
of the scan-enable signal at the beginning of the first delay_capture_start procedure.
In this case, the internal clocks will pulse following the OCC controller latency, so their
clock pulses may occur during the delay_capture_start procedures.

Using the delay_capture_end Procedure
You can use the delay_capture_end procedure to specify a wait period at the end of a
capture operation. You will need to insert calls to this procedure in the patterns at the end
of each capture to establish the presence of the delay before the start of the next LOAD
operation.

There are several ways you can specify the parameters of this delay:

• Specify the number of vectors contained in the delay_capture_end procedure

• Control the period of the WaveformTable referenced by this procedure

• Control the number of times to insert this procedure at the end of capture by using the
-use_delay_capture_end option of the write_patterns command.

The delay_capture_end procedure has several format requirements that enable it to
operate as a simple wait statement. The default form of this procedure is as follows:

"delay_capture_end" {
 W "_default_timing_";
 C { "_po"=\rn X; }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

481

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 V{ "_pi"=\rm #; }
 }

Note the following:

• If you define the delay_capture_end procedure in your STIL procedure file, it is
present or defined in all subsequent STIL and WGL patterns that are written out.

• If the delay_capture_end procedure is not defined in the STIL procedure file, then
the first time that write_patterns -use_delay_capture_end is specified, it is
created and defined in all STIL patterns that are written out. After it is created from the
write_patterns -use_delay_capture_end command, this procedure will function
just as if it were specified in the STL procedure file. However, it will not be called in
the patterns unless the write_patterns -use_delay_capture_end command is
specified.

• The delay_capture_end procedure calls are eliminated when patterns are
read back into TestMAX ATPG. Each write_patterns command must use the
-use_delay_capture_end option in order for this procedure present. While this
procedure is not present on the internal pattern data, the PRESENCE of these
function calls, and the generated vectors due to these procedures, are still counted
during the pattern read-back operation. This allows cycle-based diagnostic flows
to function with no changes. When the patterns are rewritten, you must set the
-use_delay_capture_end option properly for every pattern write operation.

Using the test_end Procedure
You can define the test_end procedure or macro in the Procedures or MacroDefs
sections of the STIL procedure file so that it is called at the end of every pattern block that
is written out. This procedure must contain only signal drive assignments; measures are
not supported.

When you define the test_end procedure or macro, TestMAX ATPG places it at the end
of STIL and WGL-formatted patterns only. When STIL or WGL patterns are read back, this
procedure is removed. It will not be included in the internal pattern data. If patterns are
rewritten, then the test_end procedure must be present in the STIL procedure file to place
(or replace) it at the end of any new patterns.

MacroDefs
{ "test_setup"

{ W "_default_WFT_"; V \{ "CLK"=P; }
V { "CLK"=0; } }
"test_end"

{ W "_default_WFT_"; V \{ "CLK"=0; "D1"=1; }
V { "CLK"=0; "D1"=0; } } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

482

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Scan Padding Behavior
When scan chains are of unequal lengths and shifted in parallel, the shorter scan data
must be padded or extended during the time after the short chain is exhausted but the shift
procedure (or pattern operation) continues to complete the shifting of the longest chain.

Some TestMAX ATPG output formats allow you to control the padding state from
command-line options. For example, the combination of the set wgl -pad and write
patterns -pad_character commands control padding values for WGL files.

The STIL environment defines the padding values directly from the procedure definitions.
For instance, for the load_unload procedure, the last assigned state, even if it was not
applied in a Vector (it might have only been defined in a Condition statement) before the
Shift block or first statement that contains an assignment of '#' to a scan signal, is the
value used to pad that signal. If the scan signals are not assigned values before the Shift
block, then when the load_unload procedure is written out, the inputs are assigned '0'
and the outputs assigned 'X'. These defaults are sufficient for most environments, but
sometimes additional data is specified in the procedure that might affect the padding
behavior. When this occurs, it might become necessary to assign explicit values to signals
in order for the STIL file to have the expected behavior.

Several DRC messages might be generated when STIL padding issues are detected in
the patterns. These messages are all warnings, because consistency of the STIL data
might not be a concern if your flow uses a different format. These warnings are either V12
(unexpected item) or V14 (missing state) messages. All of these messages contain the
text "STIL scan pad", to indicate they are being generated for STIL scan padding issues.

Certain design situations (for instance, reusing scan signals on multiple scanchains
and making use of scan groups) limits the ability of these messages to detect all error
conditions. Assigning an X to the scan outputs before the Shift block will define a correct
test program, and is the most direct path to fixing padding problems.

TestMAX ATPG tri-state checks might require that bidirectional scan outputs be assigned
a Z WaveformCharacter, to trace a scan chain properly. This Z value enforces that the
bidirectional output values are visible during the shift operation. However, during the scan
operation it is likely that an X WaveformCharacter would be preferable, especially for
padding. The Z reference is not wrong, but it is a "drive" waveform being assigned to a
bidirectional being used as an output. Some environments might not like to see this drive
value on a scan output. One way to define an X for pad operation is to place this X in a
Condition statement before the first assignment to a '#'. For example:

 V { so1=Z; ... }
 C { so1=X; }
 Shift { V { so1=# ...

The DRC messages are generated only when a potential violation is detected. This will
only happen for scan chains that are shorter than the longest chain in the shift operation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

483

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

These checks will not occur on the longest chain in the design, even if the values assigned
to the scan signals of that chain are incorrect, because the longest chain will not be
padded.

These messages are not generated during the STL procedure file checks, because at
this point there is not sufficient analysis of the scan chains to accomplish this checking.
Therefore, these DRC messages are generated later in the process. These messages
are V warnings but are not generated with the STL procedure file read, so be aware
that additional V messages might be generated after the STL procedure file read has
completed.

The specific messages, and how to address each, are explained as follows:

• V12, Scan output [name] is assigned a drive [state] before Shift; used
as STIL scan pad
In this circumstance, a signal identified as a scan output, has been assigned a value
commonly associated with an input signal. The [state] value is one of 0, 1, or N.

In most circumstances this is easily fixed by adding a C {} statement before the Shift
block, and assigning the bidirectional scan output to an X value (or other preferred
state). This was shown in the previous example.

• V14, Scan input [name] has no assignment before Shift, output [name]
is [state]; missing STIL scan pad [input_state]
This warning is generated when a scan-output is assigned a known state, either H or L,
before the Shift block, but the scan-input is not specified. The fix is to either assign the
scan-output to an X before the Shift block (as done above), or to assign the appropriate
input drive value (0 or 1) to the scan-input. Be aware that the appropriate value is a
function of the parity of the scan chain, as discussed in the next message.

Note that this warning occurs only when scan outputs have been specified, but scan-
inputs have not been assigned. The reverse condition, when scan-inputs are specified
but scan-outputs have not been specified, is not a problem because the default
handling of scan-outputs will place an X on the outputs, making the environment
insensitive to input states.

• V14, Scan output [name] is assigned [state] before Shift, input [name]
is [state]; wrong STIL scan pad
V14, Scan input [name] is assigned [state] before Shift, output [name]
is [state]; wrong STIL scan pad
These two warnings indicate the same condition, it just depends on the order of the
signals in the design as to which you will see. These warnings are generated when
both the scan-input and scan-output signals are assigned known values, but the
scan data (and the parity of the scan chain) will cause this data to fail at test. In this
circumstance, either the scan-input state must be changed, or the scan-output state,

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

484

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

(but, obviously, not both) or the scan-output can be assigned an X value before the
Shift.

DRC checks STIL padding to validate special conditions around bidirectional signals
used as scan outputs.

• V14, Scan output bidi (signal) has no assignment before Shift; Z added
for scan padding
During pattern write (of STIL data), the Z assignment is added to these signals,
correcting the situation. You can always override the correction (and eliminate the V14)
by specifying an assignment to this scan signal before the first # in the load_unload
operation.

Using the Condition Statement in STIL
You can use the Condition statement, C{...}, to define force or measure values for defaults,
without immediately resulting in an action. The conditioned values are deferred from being
applied until a vector statement, V{...}, is encountered.

The WaveformTable used to translate the conditions is the waveform in effect at the
time of the next Vector statement, not the waveform in effect at the time of the Condition
statement.

Multiple Condition statements can be defined between vector statements. The last state
defined in a Condition or vector statement for each pin is the state applied to that pin on
the vector statement.

A vector statement defining a value to be applied to a pin will override any value defined in
any preceding Condition statements.

Condition statements are useful when setup information is available; however, if this
setup is applied as a vector, then the subsequent data becomes difficult to align. A typical
situation in which to use a Condition statement is to enable the scan clocks preceding
a Shift operation. Condition statements are also useful at the end of a macro to set up
information for the return. Note that Condition statements would not be useful at the end
of procedures because procedures return to the state before the procedure call and any
condition information would be discarded.

 STIL;

 ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
 }

 Procedures {

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

485

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 "load_unload" {
 C { CLOCK = 1; RESETB = 1; SCAN_ENABELE = 1;
 Shift {
 V { _si=####; _so=####; CLOCK=P; } // pulse shift clock
 }
 }
 }

 MacroDefs {
 test_setup {
 V { TEST_MODE = 1; CLOCK = 0; RESETB = 1; }
 }
 }

Excluding Vectors From Simulation
Passing a large number of loops through DRC negatively affects the performance of
TestMAX ATPG. You can use the DontSimulate statement in the test_setup procedure of
the STL procedure file to eliminate loops with large count values and reduce activity, such
as clock pulses, in the vectors of the loop.

The following sections describe how to use the DontSimulate statement:

• Using the DontSimulate Statement for Loops and Reference Clocks

• Syntax and Example for Excluding Vectors

Using the DontSimulate Statement for Loops and Reference
Clocks
The DontSimulate statement identifies a PLL initialization or synchronization block of
vectors for exclusion from DRC simulation. Because most PLL models are black boxes
in TestMAX ATPG, DRC results are not affected when clock pulses associated with these
models are bypassed.

DRC procedures often require excessive memory resources when expanding the events
of a loop. Also, the test_setup procedure causes excessive runtime when processing
loop events, even though they do not affect the simulation. If the number of events in
the test_setup procedure exceeds a 32-bit time value, the memory and runtime of all
subsequent TestMAX ATPG operations are affected.

The DontSimulate statement prevents the insertion of loop events into TestMAX ATPG
operations, while preserving the loops throughout the flow. This includes writing the loops
in the patterns even though the loop events bypassed other TestMAX ATPG operations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

486

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

In addition to loops, the DontSimulate statement applies to the following clocks:

• Reference clocks that are not identified as free-running clocks (because they affect
other logic in the design).

• Reference clocks with a large number of pulsed vectors during setup. These pulses are
not necessary for DRC because they are only driving the black box PLL logic.

You must make sure that any other logic driven by a reference clock uses all the
necessary pulses.

Syntax and Example for Excluding Vectors
To exclude vectors from simulation:

1. Add the UserKeywords DontSimulate construct before the appropriate MacroDefs
block in the STL procedure file. The syntax for this statement is as follows:

UserKeywords DontSimulate;
2. Add the DontSimulate ATPGDRC construct before the appropriate Loop statement in

the STL procedure file. The syntax for this construct is as follows:

DontSimulate ATPGDRC;
The following example from an STL procedure file shows a typical implementation for
excluding vectors from simulation:

UserKeywords DontSimulate;
MacroDefs {
“pll_setup” {
DontSimulate ATPGDRC;
Loop 1000 {V {clock1=P;}}
}
“test_setup” {
W “_default_WFT_”;
C {“all_inputs”= …; “all_outputs” = …;}
...
Macro “pll_setup”;
}
}

See Also

• Using Internal Clocking Procedures

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

487

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Defining Internal Clocks for PLL Support
TestMAX ATPG supports two methods for defining internal clocks for PLL support:

• From the command line using the add_clocks command

• From an optional ClockStructures block of a STIL procedure file .

The following is an example defining two internal clocks for PLL support by entering
commands from the command line.

 add_clocks 0 intclk3 -intclk -pll_source pllclk3 \
 -cycle { 0 clock_chain/cell[3]/Q 1 \
 1 clock_chain/cell[4]/Q 1 }
 add_clocks 0 intclk1 -intclk -pll_source pllclk3 \
 -cycle { 0 clock_chain/cell[1]/Q 1 clock_chain/cell[0]/Q 0 \
 clock_chain/cell[2]/Q 1 clock_chain/cell[0]/Q 0 }

In the preceding example:

• intclk3 as an internal clock with offstate 0; its PLL source is pllclk3; intclk3 is pulsed in
cycle 0 when cell 3 of chain clock_chain is 1, and is pulsed in cycle 1 when cell 4 of
chain clock_chain is 1.

• intclk1 as an internal clock with offstate 0; its PLL source is pllclk3; intclk1 is pulsed in
cycle 0 when cell 1 of chain clock_chain is 1 and cell 0 is 0, and is pulsed in cycle 1
when cell 2 of chain clock_chain is 1 and cell 0 is 0.

The following is an example showing the corresponding definitions is a STL procedure file
ClockStructures block.

 Signals { "refclk1" In; "refclk2" In;
 "pllclk1" Pseudo; "pllclk2" Pseudo; "pllclk3" Pseudo;
 "intclk1" Pseudo; "intclk2" Pseudo; "intclk3" Pseudo;
 }
 SignalGroups { "all_inputs" = '... + "refclk1" + "refclk2" + ... ‘ }
 Timing {
 WaveformTable "_default_WFT_" {
 Period '100ns';
 Waveforms {
 "all_inputs" { 01ZN { '0ns' D/U/Z/N; } }
 "refclk1" { P { '0ns' D; '45ns' U; '55ns' D; } }
 "refclk2" { P { '0ns' D; '45ns' U; '55ns' D; } }
 }
 }
 }

 UserKeywords ClockStructures;
 ClockStructures {
 PLLStructures specpll {
 PLLCycles 2;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

488

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

 Clocks {
 "refclk1" Reference; "refclk2" Reference;
 "pllclk1" PLL { Offstate 0 ; }
 "pllclk2" PLL { Offstate 0 ; }
 "pllclk3" PLL { Offstate 1 ; }
 "intclk1" Internal { Offstate 0; PLLSource "pllclk3";
 Cycle 0 "clock_chain/cell[0]/Q" 0;
 Cycle 0 "clock_chain/cell[1]/Q" 1;
 Cycle 1 "clock_chain/cell[0]/Q" 0;
 Cycle 1 "clock_chain/cell[2]/Q" 1;
 }
 "intclk3" Internal { Offstate 0; PLLSource "pllclk3";
 Cycle 0 "clock_chain/cell[3]/Q" 1;
 Cycle 1 "clock_chain/cell[4]/Q" 1;
 }
 }
 }
 }

The following is a template for a generic STL procedure file ClockStructures block.

 UserKeywords ClockStructures;
 ClockStructures {
 (PLLStructures struct_name {
 (PLLCycles integer ;)
 (RefCycles integer ;)
 (Clocks {
 (sig_name <Reference | PLL| Internal> ;)*
 (sig_name <Reference | PLL| Internal> {
 (Offstate <0|1> ;)
 (PLLSource sig_name ;)
 (Cycle integer {AlwaysOn| AlwaysOff} ;)*
 (Cycle integer {net_or_pin_name <0|1>}+ ;)*
 })*
 })*
 })*
 }

Where:

PLLCycles specifies the number of PLL clock cycles supported per load. This block
is required if Cycle constructs are used. The PLLCycles block must precede all Cycle
constructs.

RefCycles specifies the minimum number of system cycles each pattern must have.

Clocks defines the clocks in the PLLStructures block. The sig_name construct identifies
the clock name and type. A type is required and must be one of the values shown.
The Offstate construct is syntactically optional, but semantically required for all but
reference clocks, and must be 0 or 1 (the offstate for reference clocks is derived from a

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

489

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Waveformtable). The PLLSource construct is used for internal clocks and identifies the
corresponding PLL clock source. The Cycle construct is used for internal clocks and
identifies the corresponding control nets and their values.

Specifying an On-Chip Clock Controller Inserted by DFT Compiler
This section describes the process for specifying an OCC controller inserted by the
insert_dft command in TestMAX DFT. For information on signal requirements, see the
"On-Chip Clocking Support" chapter in the TestMAX DFT User Guide.

The following commands are used for specifying a default OCC controller inserted by DFT
Compiler (Note: For user-defined OCC controllers, the commands are similar but will differ
if the OCC controller is controlled differently):

• add_scan_chains ...

• add_scan_enables 1 test_se
TestMAX DFT uses the default pin name test_se, if a name is not provided.

• add_pi_constraints 1 test_mode
TestMAX DFT uses the default pin name test_mode, if a name is not provided.

• add_pi_constraints 0 {test_se pll_reset pll_bypass}
TestMAX DFT uses the default pin names test_se, pll_reset, and pll_bypass if
the pin names are not provided.

• set_drc -num_pll_cycles

• add_clocks 0 {port_names} -shift -timing {period LE TE measure_time}
Use this command to specify external clocks that are controllable by ATPG.

• add_clocks 0 {port_names} -shift -refclock -timing {period LE TE
measure_time}

Use this command to specify ATE and reference clocks with the same period as the
shift clock.

• add_clocks 0 {port_names} -refclock -ref_timing {period LE TE }
Use this command to specify reference clocks with different periods than the shift
clock.

• add_clocks 0 {pin_names} -pllclock
Use this command to specify the PLL clocks.

• add_clocks 0 pin_name -intclock -pll_source node_name -cycle ...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

490

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Defining STIL Procedures

Feedback

Use this command to specify the internal clock and the PLL source clock.

• write_drc_file file_name
In addition to using these commands, you will need to make the following changes from
the output STIL procedure file created by the write_drc_file command to the final
protocol file:

1. Copy and paste the entire WaveformTable (WFT) "_default_WFT_" { ... } block four
times.

2. Rename new WFT blocks as follows:

"_multiclock_capture_WFT_"
"_allclock_capture_WFT_"
"_allclock_launch_WFT_"
"_allclock_launch_capture_WFT_"

3. Change the WFT for each procedure (except load_unload) as follows:

"multiclock_capture" { W "_multiclock_capture_WFT_";
"allclock_capture" { W "_allclock_capture_WFT_";
"allclock_launch" { W "_allclock_launch_WFT_";
"allclock_launch_capture" { W "_allclock_launch_capture_WFT_";

4. In load_unload, add the following just before Shift loop, and specify only the ATE clocks
and reference clocks with the same period:

V { "clkate"=P; "clkref0"=P; }
5. In test_setup, copy the V statement and do the following:

• Change the polarity of the PLL reset constraint in the first V statement (the PLL
reset is the same port identified as pll_reset in the previous command list).

• Change 0 to P for all the ATE clocks and synchronous reference clocks in both V
statements (these are exactly the same clocks specified in Step 4).

6. Change the timing of the WFTs as required. This can be done in an editor, or you
can specify another TestMAX ATPG run and use the update_wft and update_clock
commands.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

491

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller

Feedback

Specifying Synchronized Multi Frequency Internal Clocks for an
OCC Controller

You can use the ClockTiming block to implement synchronized internal clocks at one or
multiple frequencies in an OCC Controller. The ClockTiming block is placed in the top
level of the ClockStructures block that already describes other aspects of the internal
clocks.

The following sections show you how to specify synchronized internal clocks at one or
multiple frequencies in an OCC Controller:

• ClockTiming Block Syntax

• Timing and Clock Pulse Overlapping

• Controlling Latency for the PLLStructures Block

• ClockTiming Block Selection

• ClockTiming Block Example

For more information on this feature, see the Using Synchronized Multi Frequency Internal
Clocks section.

ClockTiming Block Syntax
The syntax and location of the ClockTiming block is as follows, with instance-specific
input in italics, optional input in [squarebrackets] and mutually-exclusive choices separated
by a | pipe symbol:

ClockStructures [name] {
 PLLStructures name {
// The contents of the PLLStructures block are unchanged,
// except for the addition of the optional Latency statement.
 }
 [PLLStructures name2 {
// Multiple PLLStructures blocks are possible, and have a specific
 meaning.
// See the section PLLStructures Block and Latency.
 }]
 ClockTiming name {
 SynchronizedClocks name {
 Clock name { Location "internal_clock_signal"; Period
 'time';
 [Waveform 'rise' 'fall';]}
 [Clock name2 { Location "internal_clock_signal2"; Period
 'time2';
 [Waveform 'rise2' 'fall2';]}]
// Multiple Clocks can be defined within a SynchronizedClocks block.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

492

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller

Feedback

// These Clocks are considered to be synchronized to each other.
// Note that each clock’s Location value is used, not its name.
 [MultiCyclePath number [Start|End] {
 [From clocklocation;]
 [To clocklocation2;]
 }]
// As many MultiCyclePath blocks as needed might be defined.
// All clocks inside them must be in the current SynchonizedClocks group.
 }
 [SynchronizedClocks name2 {
// Multiple SynchronizedClocks blocks can be defined within a ClockTiming
 block
// These SynchronizedClocks are considered to be asynchronous to each
 other
// The Clocks defined in each SynchronizedClocks group must be different.
 }]
 }
[ClockTiming name2 {
// Multiple ClockTiming blocks can be defined, but only one is used.
// The Clocks must be defined again in each ClockTiming block.
// See the ClockTiming Block Selection section.
 }]
}

Note the following:

• The ClockTiming name is arbitrary and is only used by the set_drc
-internal_clock_timing option. See ClockTiming Block Selection for details.

• The SynchronizedClocks name and Clock name are arbitrary.

• The Location argument must be identical to the name of the internal clock source
defined in one of the PLLStructures blocks (see the previous example).

• The Period and Waveform times are either ns or ps. If they are defined as ps but the
rest of the STL procedure file is in ns, they are converted to ns and the fractional part
truncated. For example, 1900 ps is converted to 1 ns.

Timing and Clock Pulse Overlapping
The Waveform values and MultiCyclePath blocks are optional, and ATPG can
use different clocks safely for launch and capture without them. However, different
frequency clock pulses are not allowed to overlap if they are missing. Figure 1 illustrates
synchronized clocking without overlapping pulses.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

493

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller

Feedback

Figure 92 Non-Overlapping Synchronized Internal Clock Pulses

   

The criteria for allowing synchronized clocks of different frequencies to have overlapping
pulses, which in turn allows single-cycle transition fault testing from the slower to the faster
clock domain, are as follows:

• The Waveform values must be specified for both clocks.

• A MultiCyclePath 1 block must be specified from the slower clock to the faster clock.

• For non-integer Period ratios, a MultiCyclePath 1 block is needed for both directions.

Figure 2 illustrates synchronized clocking with overlapping pulses from the slower clock
to the faster clock. For the other direction, from faster clock to slower clock, there is no
difference between the overlapping and non-overlapping cases.

Figure 93 Overlapping Synchronized Internal Clock Pulses

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

494

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller

Feedback

TestMAX ATPG generates and simulates patterns with both edges of the first clock pulse
preceding either edge of the second clock pulse. Clock pulse overlapping can change this
timing relationship. If this situation also changes the behavior of the circuit when simulated
on a timing simulator, then the patterns will mismatch. This will occur when trailing-edge or
mixed-edge clocking is used, and paths exist from the fast clock to the trailing-edge of the
slow clock. If these paths exist, TestMAX ATPG will prevent overlapping of the clock pair.

Controlling Latency for the PLLStructures Block
The number of PLLStructures blocks that are specified affects clock latency, which in
turn affects the required length of the clock chain. Latency can be controlled using the
following top-level statement in the PLLStructures block:

Latency number;

The default latency is 5. This number refers to the number of pulses of the PLLClock
that must pulse before the first internal clock pulse is issued by the OCC controller.
This number is important when clocks from the same SynchronizedClocks group are
defined as internal clocks in more than one PLLStructures block. In this case, each
PLLStructures block is interpreted as being a separate OCC controller with its own
latency.

If there is more than one clock in a PLLStructures block, the latency is in terms of the
fastest clock defined in that PLLStructures block. (Thus, the same Latency number might
mean very different latency times in different PLLStructures blocks.) The latency time for
each clock should be an integer multiple of its period. For example, if a PLLStructures
block contains synchronized clocks of 10 ns and 20 ns periods, and the latency is allowed
to default to 5, then the latency time is 5 * 10 ns which is not a multiple of the 20 ns clock’s
period. The 20 ns clock gets a C40 violation and is flagged as restricted.

The latency number is not used if the clocks for each SynchronizedClocks group are
defined in a single PLLStructures group. In that case, it can be set to 0.

ClockTiming Block Selection
By default, the last ClockTiming block to be defined in an STL procedure file is used. To
use a specific block in a case where multiple ClockTiming blocks have been defined, use
the following set_drc command:

set_drc –internal_clock_timing name

To ignore all ClockTiming blocks and return to legacy non-synchronized internal clocks
behavior, use the following setting:

set_drc –nointernal_clock_timing

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

495

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller

Feedback

ClockTiming Block Example
The following ClockStructures block defines three synchronized clocks in one group:

ClockStructures Internal_scan {
 PLLStructures "TOTO" {
 PLLCycles 6;
 Latency 4;
 Clocks {
 "clkate" Reference;
 "dut/CLKX4" PLL {
 OffState 0;
 }
 "TOTO/U2/Z" Internal {
 OffState 0;
 PLLSource "dut/CLKX4";
 Cycle 0 "snps_clk_chain_0/U_shftreg_0/ff_38/q_reg/Q"
 1;
//Note that the rest of the clock chain goes here.
 }
 "dut/CLKX2" PLL {
 OffState 0;
 }
 "TOTO/U5/Z" Internal {
 OffState 0;
 PLLSource "dut/CLKX2";
 Cycle 0 "snps_clk_chain_0/U_shftreg_0/ff_19/q_reg/Q"
 1;

//The rest of the clock chain goes here.

 }
 "dut/CLKX1" PLL {
 OffState 0;
 }
 "TOTO/U8/Z" Internal {
 OffState 0;
 PLLSource "dut/CLKX1";
 Cycle 0 "snps_clk_chain_0/U_shftreg_0/ff_0/q_reg/Q"
 1;

//The rest of the clock chain goes here.

 }
 }
 }
 ClockTiming CTiming_2 {
 SynchronizedClocks group0 {
 Clock CLKX4 { Location "TOTO/U2/Z"; Period '10ns'; }
 Clock CLKX2 { Location "TOTO/U5/Z"; Period '20ns'; }
 Clock CLKX1 { Location "TOTO/U8/Z"; Period '40ns'; }
 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

496

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Internal Clocking Procedures

Feedback

 }
 ClockTiming CTiming_1 {
 SynchronizedClocks group0 {
 Clock CLKX4 { Location "TOTO/U2/Z"; Period '10ns';
 Waveform '0ns' '5ns'; }
 Clock CLKX2 { Location "TOTO/U5/Z"; Period '30ns';
 Waveform '0ns' '15ns'; }
 MultiCyclePath 1 { From "TOTO/U5/Z"; To "TOTO/U2/Z"; }
 }
 SynchronizedClocks group1 {
 Clock CLKX1 { Location "TOTO/U8/Z"; Period '40ns'; }
 }
 }
}

This example shows two ClockTiming blocks. The one labeled CTtiming_1 is the default
because it is the last one to be defined.

In the first ClockTiming block, the three clocks can be used as a single synchronization
group. However, clock pulse overlapping is not possible because there are no Waveform
statements.

In the second ClockTiming block, the same three clocks are defined but in a different
relationship. The first two clocks are in one SynchronizedClocks group and, because
their Waveforms and a MultiCyclePath 1 relationship is defined, clock pulse overlapping
can be done. The third clock is defined separately, so it is considered to be asynchronous
to the others. For this purpose, it could also have been omitted since any clock that is not
assigned to a SynchronizedClocks group is considered to be asynchronous to all other
clocks.

Note that when ClockTiming blocks are used, the lengths of the clock chains might be
different for different internal clocks. (This is still an error when there is no ClockTiming
block.)

Specifying Internal Clocking Procedures
Internal clocking procedures are comprised of combinations of internal clock pulses.

The following sections describe the syntax for specifying internal clocking procedures in
the STIL procedures file (SPF):

• ClockConstraints and ClockTiming Block Syntax

• Specifying the Clock Instruction Register

• Specifying External Clocks

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

497

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Internal Clocking Procedures

Feedback

• Example 1

• Example 2

For more information on using internal clocking procedures in the ATPG flow, see the
Using Internal Clocking Procedures section.

ClockConstraints and ClockTiming Block Syntax
You can use either the ClockConstraints block or the ClockTiming block in the top
level of the ClockStructures block to specify internal clocking procedures. However,
you cannot combine the ClockConstraints and ClockTiming blocks. External clocks
specified in the ClockStructures block must be specified as separate entities in the SPF.

The following syntax is used for specifying internal clocking procedures:

ClockStructures (name) {
 (ClockController name { // alias of PLLStructures - either may be used
 (PLLCycles number;)
 (MinSysCycles number;) // equivalent to set_atpg
 –min_ateclock_cycles
 (Clocks {
 (location <External|Internal|PLL> {
 (OffState <0|1>;)
 (Name name;)
 …
 })*
 (name <External|Internal|PLL> {
 (OffState <0|1>;)
 (Location location (location)+;)
 …
 })*
 })*
 …
 (InstructionRegister name {(signame;)+})*
 })*
 (ClockTiming (name){ … })*
 (ClockConstraints (name){
 (UnspecifiedClockValue <Off|On|0|1>;)
 (ClockingProcedure name {
 (UnspecifiedClockValue <Off|On|0|1>;)
 (clk=<0|1|P>+;)* // Clock assignments
 (clkIR=<0|1>+;)* // Corresponding Clock Instruction
 // Register assignments
 })*
 })*
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

498

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Internal Clocking Procedures

Feedback

Note the following when specifying internal clocking procedures:

• The MinSysCycles keyword specifies the number of external ATE cycles required for
the clock controller to return to its initial state after being enabled. This statement works
for any type of on-chip clocking. It specifies the minimum number of ATE cycles of the
capture operation. Extra cycles are appended to the end of the capture sequence if
necessary. This keyword can be used instead of set_atpg -min_ateclock_cycles
command, which has the same behavior in both cases.

• You can define external clocks in the Clocks block. You can also define aliases
between the location of the clock (which must be the pin pathname to its driving cell)
and a name that can be used in the constraint definitions. A clock name can be defined
with multiple locations, which allows multiple clocks to be defined with one statement in
the constraint definitions.

• The InstructionRegister block is a construct in the ClockController block. It
consists of a sequence of locations that must be set externally to control the specifics
of a clocking sequence. The InstructionRegister is associated with the controller
− not with individual clocks. The InstructionRegister construct subsumes the clock
chains as specified by using the Cycle statements. When constraints are used, the
Cycle statements are ignored if present.

• Only one ClockTiming or ClockConstraints block can be used at the
same time. If a ClockTiming block exists, you must specify the set_drc –
nointernal_clock_timing command to use internal clocking procedures.

• The ClockConstraints block describes a set of clock constraints. The
ClockingProcedure block describes a set of clock pulse sequences intended to be
used jointly. The ClockingProcedure specifications satisfies the ClockConstraints
specifications.

• A ClockingProcedure block consists of two types of assignments:

◦ The first set of assignments correspond to the clocks, which constitute the actual
clock constraints:

clk=<0|1|P|-+;
In this case, clk is the name of an internal clock, as defined in the
ClockController block. The nth bit at the end of the line is the constrained
assignment to the clock in the nth capture time frame of the pattern in which it is
used. The clock-off value (from the Clocks definition) indicates no pulse; the P
value indicates a pulse. The non clock-off value is synonymous to P.

◦ The second set of assignments are for the InstructionRegister contents. These
assignments specify the externally assignable values required to realize the clock
assignments. In this case, the nth bit at the end of the line is the value used to

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

499

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Internal Clocking Procedures

Feedback

set the nth bit of the InstructionRegister in the same order that the bits were
defined in the ClockController block.

The components of the clock controller hardware must be apparent to validate that
the specified assignments to the InstructionRegister contents actually cause
the expected clock pulses. This typically requires functional validation techniques
and is beyond the scope of test DRC. Therefore, functional validation is your
responsibility. As a last resort, a full timing simulation of the generated patterns
should detect any issue.

• The UnspecifiedClockValue statement defines the behavior of clocks that are
not defined in a particular ClockingProcedure block. An UnspecifiedClockValue
statement outside of all of the ClockingProcedure blocks globally specifies the
behavior of all unspecified clocks. However, an UnspecifiedClockValue statement
inside a ClockingProcedure block overrides the global value for that block only. The
values that can be specified are Off (the clocks do not pulse), On (the clocks do pulse),
0 or 1. The default is that the clocks are unspecified. Incomplete clocking procedures
are not recognized, so either the On or Off value should be used or all clock values
should be specified.

Specifying the Clock Instruction Register
The InstructionRegister block can comprise any of the following defined signals:

• Outputs of scan cells

• Primary inputs

• Outputs of nonscan cells

You can define a combination of any of these signals. Nonscan cells in the clock
instruction register must be constant-value C0 or C1 cells and are not allowed to change
during the test.

You can apply the add_cell_constraints or add_pi_constraints command to the
clock instruction register members if you want to limit the number of usable clocking
procedures.

Specifying External Clocks
External clocks are clocks that are controlled from top-level design ports. They are
generally incompatible with internal clocking. When internal clocking procedures are used,
unspecified external clocks should be disabled using the add_pi_constraints command.

External clocks can be specified inside internal clocking procedures. Although they
are already defined as clocks elsewhere in the STL procedure file, they must be

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

500

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Internal Clocking Procedures

Feedback

redefined in the Clocks block of the ClockController block if they are specified in the
ClockConstraints block.

The external clocks are defined just like other clocks in the ClockingProcedure blocks.
The external clock pulses can be used to control the pulsing of internal clock pulse and are
considered as part of the clock instruction register.

You can define the external clocks in a way that they do not affect the internal clocking
and are allowed to pulse. In this case, you should define multiple ClockingProcedure
blocks. These blocks are identical except for the external clock definitions. As a result, the
external clocks are not part of the conditioning to specify the pulses of the internal clocks.

Example 1
ClockStructures {
 ClockController controller1 {
 PLLCycles 2;
 Clocks {
// All clocks are defined by their instance/pin names as usual.
// The Cycle statements are not needed, so they can be omitted.
 "U1/U2/U_CLK_A_CNTL/Y" Internal {OffState 0;}
 "U1/U2/U_CLK_B_CNTL/Y" Internal {OffState 0;}
 "U1/U2/U_CLK_C_CNTL/Y" Internal {OffState 0;}
// The next two clocks are equivalent inside the clocking procedures.
 “ClkDE” Internal {
 Offstate 0;
 Location “U1/U2/U_CLK_D_CNTL/Y” “U1/U2/U_CLK_E_CNTL/Y”;
 }
 }
 InstructionRegister CLKIR {
 "U1/U3/U_CLK_REG/clk_reg_2_/Q";
 "U1/U3/U_CLK_REG/clk_reg_1_/Q";
 "U1/U3/U_CLK_REG/clk_reg_0_/Q";
 }
 }
 ClockConstraints constraints1 {
 UnspecifiedClockValue Off;
 ClockingProcedure one { // A launches, B captures, C & DE default
 (off)
// Clocks are still defined by their instance/pin names.
 "U1/U2/U_CLK_A_CNTL/Y"=P0;
 "U1/U2/U_CLK_B_CNTL/Y"=0P;
 CLKIR=001;
 }
 ClockingProcedure three { // B & C both launch & capture, A & DE
 are off
 UnspecifiedClockValue On;
 "U1/U2/U_CLK_A_CNTL/Y"=00;
 “ClkDE”=00;
 CLKIR=010;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

501

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Specifying Internal Clocking Procedures

Feedback

 }
 ClockingProcedure four { // DE launches & captures, C also captures
 “ClkDE”=PP;
 "U1/U2/U_CLK_C_CNTL/Y"=0P;
 CLKIR=100;
 }
 ClockingProcedure ClockOff { // All clocks off to prevent a C37
 error
 "U1/U2/U_CLK_A_CNTL/Y"=00;
 "U1/U2/U_CLK_B_CNTL/Y"=00;
 "U1/U2/U_CLK_C_CNTL/Y"=00;
 CLKIR=011;
 }
// These are all that are defined, so no other clock pulse combinations
// or CLKIR values are allowed in the ATPG patterns.
 }
}

Example 2
ClockStructures Internal_scan {
 ClockController "PLL_STRUCT_0" {
 PLLCycles 2;
 Clocks {
 "dutm/clk1" Internal { OffState 0; }
 "dutm/clk2" Internal { OffState 0; }
 "clkref" Reference;
// “clkext0” is used to control clocking
 "clkext0" External;
// “clkext1” is allowed to pulse in some procedures
 "clkext1" External;
 }
 InstructionRegister CLKIR {
 "dutc1/FF_0_reg/Q";
 "dutc1/FF_1_reg/Q";
 }
 }
 ClockConstraints constraints1 {
// Force external clocks off when they’re unspecified
 UnspecifiedClockValue Off;
 ClockingProcedure intraU1 {
 "dutm/clk1"=PP;
 "dutm/clk2"=00;
 CLKIR=11;
 "clkext0"=00;
 }
 ClockingProcedure extraU1 {
 "dutm/clk1"=PP;
 "dutm/clk2"=P0;
 CLKIR=11;
 "clkext0"=P0;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

502

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
JTAG/TAP Controller Variations for the load_unload Procedure

Feedback

 }
 ClockingProcedure intraU0 {
 "dutm/clk1"=00;
 "dutm/clk2"=PP;
 CLKIR=01;
 "clkext1"=PP;
 }
 ClockingProcedure ClockOff {
 "dutm/clk1"=00;
 "dutm/clk2"=00;
 CLKIR=00;
 }
 }
}

See Also

• Using Internal Clocking Procedures

JTAG/TAP Controller Variations for the load_unload Procedure
The load_unload procedure defines how to place the design into a state in which the scan
chains can be loaded and unloaded. This typically involves asserting a scan-enable input
or other control line and possibly placing bidirectional ports into the Z state. Standard DRC
rules also require that ports defined as clocks be placed in their off states at the start of the
scan chain load/unload process.

In designs that use the test access port (TAP) controller to set up internal scan chain
access or boundary scan access, it is very common to need to perform the very last scan
shift with the test mode select (TMS) port asserted. This is accomplished by placing as
many scan chain force and measure events outside of the Shift procedure as necessary.
Usually only one final force/measure event is needed.

The bold text in the following example shows one additional scan chain force and measure
placed outside of the Shift procedure. For a scan chain length of N, TestMAX ATPG
performs N-1 shifts using the vector inside the Shift procedure, and the final shift using
the vector which follows, where TMS=1.

JTAG/TAP Controller Adjustments to load_unload
Procedures {
 "load_unload" {
 V { TMS=0; TCK=0; CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; TCK=P;}
 }
 V { TMS=1; _si=####; _so=####; TCK=P;}
 }
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

503

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Multiple Scan Groups

Feedback

Multiple Scan Groups
You should set up TestMAX ATPG for multiple scan-group support if your design has
multiple scan chains that cannot be accessed simultaneously (for example, they share the
same I/O pins). TestMAX ATPG supports designs that have multiple scan groups by using
IEEE Std. 1450.1 extensions to STIL.

If you have a design with multiple scan groups that must be accessed in serial, not in
parallel, during the load_unload process, perform the following steps.

1. Define multiple ScanStructure blocks.

Each ScanStructure block defines one scan chain group. Use a unique label for each
scan chain group. In the following example, the ScanStructure labels are g1, g2, g3,
and g4. TestMAX ATPG also requires each ScanChain label to be unique across all
scan chain definitions.

2. Add ScanStructure statements to the load_unload procedure.

Within the load_unload procedure, add the ScanStructure statement ahead of any
scan input or scan output references. The ScanStructure statement identifies the
scan group label that is active for any lines that follow.

3. Reference scan inputs and outputs with symbolic labels.

Within the load_unload and Shift procedures, reference the appropriate set of scan
inputs and scan outputs with symbolic labels: _si1, _so1, _si2, _so2, and so on.

TestMAX ATPG associates these symbolic labels with the scan inputs and scan outputs
of the appropriate scan group. You are not required to use the _so prefix on scan output
symbolic labels, but if you use the _so prefix, you must also use the _si prefix on symbolic
labels for the scan input.

If STIL patterns are written out from this data, then each scan signal in each Shift Vector
needs a unique symbolic label. A V14 warning is generated when this constraint is not
followed, identifying the signal that needs a unique symbolic label. In most other situations,
all scan signals can be referenced with a single symbolic label, such as Shift { V
{ _si=##; _so=##; ...}}.

If you are using named ScanStructure blocks, they must to be specified as part of the
PatternBurst block. However, if STIL patterns are written out, then each scan signal
used across more than one scan group will require a separate symbolic label to associate
scan data with this specific scan block. The example shown in the JTAG/TAP Controller
Variations for the load_unload Procedure section does not follow this constraint (and
would generate V14 warnings which can be ignored if STIL patterns are not generated),
however, the following example (with only one scan chain per Shift) does. The following
example demonstrates a multiple scan chain per Shift implemented with this restriction.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

504

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Multiple Scan Groups

Feedback

When symbolic labels must be associated with individual scan signals, it is necessary
to define a SignalGroups block to establish these associations and define the symbolic
labels. The following example identifies the necessary SignalGroup definitions that must
be part of this context.

Four Scan Groups Structured for STIL Pattern Generation
STIL 1.0;
SignalGroups {
_si11="SDI[1]" {ScanIn;} _si12="SDI[2]" {ScanIn;}
 _si13="SDI[3]" {ScanIn;}
_so11="SDO[1]" {ScanOut;} _so12="SDO[2]" {ScanOut;}
 _so13="SDO[3]" {ScanOut;}
_si21="SDI[1]" {ScanIn;} _si22="SDI[2]" {ScanIn;}
 _si23="SDI[3]" {ScanIn;}
_so21="SDO[1]" {ScanOut;} _so22="SDO[2]" {ScanOut;}
 _so23="SDO[3]" {ScanOut;}
_si31="SDI[1]" {ScanIn;} _si32="SDI[2]" {ScanIn;}
 _si33="SDI[3]" {ScanIn;}
_so31="SDO[1]" {ScanOut;} _so32="SDO[2]" {ScanOut;}
 _so33="SDO[3]" {ScanOut;}
_si41="SDI[1]" {ScanIn;} _si42="SDI[2]" {ScanIn;}
 _si43="SDI[3]" {ScanIn;}
_so41="SDO[1]" {ScanOut;} _so42="SDO[2]" {ScanOut;}
 _so43="SDO[3]" {ScanOut;}
}

PatternBurst "_burst_"{
 ScanStructures g1;ScanStructures g2;ScanStructures g3; ScanStructures
 g4;
 PatList {"_pattern_"{
}}

ScanStructures g1 {
 ScanChain g1_0 { ScanIn "SDI[1]"; ScanOut "SDO[1]"; }
 ScanChain g1_1 { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain g1_2 { ScanIn "SDI[3]"; ScanOut "SDO[3]"; }
 }

 ScanStructures g2 {
 ScanChain g2_0 { ScanIn "SDI[2]"; ScanOut "SDO[1]"; }
 ScanChain g2_1 { ScanIn "SDI[3]"; ScanOut "SDO[2]"; }
 ScanChain g2_2 { ScanIn "SDI[1]"; ScanOut "SDO[3]"; }
 }

 ScanStructures g4 {
 ScanChain g4_0 { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain g4_1 { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain g4_2 { ScanIn "SDI[1]"; ScanOut "SDO[3]"; }
 }

 ScanStructures g3 {

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

505

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Multiple Scan Groups

Feedback

 ScanChain g3_0 { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain g3_1 { ScanIn "SDI[1]"; ScanOut "SDO[2]"; }
 ScanChain g3_2 { ScanIn "SDI[2]"; ScanOut "SDO[3]"; }
 }

Procedures {
 load_unload {

 V { mclk=0; clk=0; rst=1; scan_en=1; inc=0; }
 V { mode=0; }
 V { chain_sel = 0; mclk=P; }
 V { }

 ScanStructures g1;
 "single_shift0:" V { _si11=#; _si12=#; _si13=#; _so11=#; _so12=#;
 _so13=#; clk=P; mclk=0; }
 Shift { ScanStructures g1; V { _si11=#; _si12=#; _si13=#; _so11=#;
 _so12=#; _so13=#; clk=P;} }

 ScanStructures g4;
 Shift { V { _si41=#; _si42=#; _si43=#; _so41=#; _so42=#; _so43=#;
 clk=P; mclk=0; } }
 V { clk=0; mclk=0; mode=1; }
 "single_shift1:" V { _si11=#; _si12=#; _si13=#; _so11=#; _so12=#;
 _so13=#; clk=P; }
 V { chain_sel = 0; mclk=P; clk=0; }
 V { chain_sel = 1; }
 V { mclk=0; }

 ScanStructures g2;
 Shift { V { _si21=#; _si22=#; _si23=#; _so21=#; _so22=#; _so23=#;
 clk=P; } }
 "single_shift2:" V { _si21=#; _si22=#; _si23=#; _so21=#; _so22=#;
 _so23=#; clk=P; }
 V { chain_sel = 1; mclk=P; clk=0; }

 ScanStructures g3;
 V { chain_sel = 0; mclk=P; }
 Shift { V { _si31=#; _si32=#; _si33=#; _so31=#; _so32=#; _so33=#;
 clk=P; mclk=0; } }
 V { clk=0; }
 V { chain_sel = 1; mclk=P; }
 V { }

 }
}
MacroDefs {
"test_setup" {

 V { "mclk"=0; "clk"=0; "rst"=1; scan_en=0; inc=0; mode=1; }
 }
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

506

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Multiple Scan Groups

Feedback

The preceding example identifies the necessary expansion to the symbolic references,
to support proper STIL pattern generation of a design containing scan groups that are
sequentially shifted. This example shows,

• The SignalGroups definitions necessary to support association of the individual
signals in the load_unload procedure.

• The use of the symbolic references in the load_unload procedure to reference
individual scan signals.

• The presence of pre-shift and post-shift vectors that also consume scan data. Look
for the labels single_shift0, single_shift1, and single_shift2 in the preceding
example.

It is a DFT requirement that the scan cells of one scan group not be disturbed during the
scan shifting of other scan groups. You must consider this restriction when you plan to use
multiple scan groups.

The following example illustrates syntax for a design with four different groups of scan
chains that must be accessed serially during the load_unload process.

Four Scan-Chain Groups Loaded Serially
ScanStructures g1 {
 ScanChain g1_0 { ScanIn "SDI[1]"; ScanOut "SDO[1]"; }
 ScanChain g1_1 { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain g1_2 { ScanIn "SDI[3]"; ScanOut "yama"; }
}
ScanStructures g2 {
 // STIL allows same chain name in another group,
 // but TMAX does not
 ScanChain GROUP2_0 { ScanIn "SDI[2]"; ScanOut "data23"; }
 ScanChain GROUP2_1 { ScanIn "SDI[3]"; ScanOut "SDO[2]"; }
 }
ScanStructures g4 {
 ScanChain "g4_0" { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain "g4_1" { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain "g4_2" { ScanIn "SDI[1]"; ScanOut "SDO[3]"; }
}
ScanStructures g3 {
 ScanChain g3_0 { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain g3_1 { ScanIn "SDI[1]"; ScanOut "SDO[2]"; }
 ScanChain g3_2 { ScanIn "SDI[2]"; ScanOut "SDO[3]"; }
 }
Procedures {
 load_unload {
 V { mclk=0; clk=0; rst=1; scan_en=1; inc=0; }
 V { mode=0; }
 ScanStructures g1;
 V { chain_sel = 0; mclk=P; }
 V { chain_sel = 0; mclk=P; }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

507

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Multiple Scan Groups

Feedback

 Shift {
 V { _si1=###; _so1=###; clk=P; mclk=0; }
 }
 ScanStructures g2;
 V { chain_sel = 0; mclk=P; clk=0; }
 V { chain_sel = 1; mclk=P; }
 V { mclk=0; }
 Shift {
 V { _si2=##; _so2=##; clk=P; }
 }
 ScanStructures g3;
 V { chain_sel = 1; mclk=P; clk=0; }
 V { chain_sel = 0; mclk=P; }
 Shift {
 V { _si3=###; _so3=###; clk=P; mclk=0; }
 }
 ScanStructures g4;
 V { clk=0; }
 V { chain_sel = 1; mclk=P; }
 V { chain_sel = 1; mclk=P; }
 Shift {
 V { _si4=###; _so4=###; clk=P; mclk=0; }
}
 V { clk=0; mclk=0; mode=1; }
 }
}

The design for the multiple scan group protocol in the preceding example has the following
elements:

• Four scan chain groups. Three groups have three scan chains and the fourth has two.
A simple MUX control selects the active scan group by marching a 2-bit code into the
chain_sel port using the mclk clock.

• The load_unload procedure begins with two V{...} statements to place the design into
a shift mode.

• The first ScanStructures statement makes group g1 active for the lines that follow.

• A Shift{...} procedure uses the symbolic label _si1. This symbolic label is
associated with the scan input pins defined in the ScanStructures g1 block.

• Following the first scan group are three additional sequences of ScanStructures,
followed by V{...} statements that select the appropriate chain group, and a
Shift{...} procedure.

As you saw in the preceding example, a simple MUX control accomplished the sharing of
similar I/O pins across four scan groups. But some boundary-scan designs that need to
support multiple scan chains can have more complicated control sequences. For example,
it is not uncommon to require the final shift of the TAP-controlled scan chain to be done
outside of the Shift procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

508

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Multiple Scan Groups

Feedback

The concepts and rules for supporting multiple scan groups are the same for a design with
boundary scan as for a design without boundary scan.

The following example shows a more complicated sequence for a design with three scan
groups of one scan chain each. In this design, to load an instruction that accesses each
internal scan chain through its test data in (TDI) and test data out (TDO) pins, the TAP
controller must be stepped through each of its various states.

Design With Three Scan Groups
STIL 1.0;
ScanStructures A { ScanChain "A1" { ScanIn "tdi"; ScanOut "tdo"; } }
ScanStructures B { ScanChain "B1" { ScanIn "tdi"; ScanOut "tdo"; } }
ScanStructures C { ScanChain "C1" { ScanIn "tdi"; ScanOut "tdo"; } }
//
// Instructions to enable scanning of each of the previous 3 groups:
//
// Group Tap instruction
// --------------------- ---------
// 1 SCAN_MODULE_A 7'b00011
// 2 SCAN_MODULE_B 7'b00101
// 3 SCAN_MODULE_C 7'b00111
//
Procedures {
 load_unload {

 V { clock=0; test_enab=1; scan_enab=1; _io=Z ;
 tms=0; tck=0; resetN=1; TBC=0; }
 ScanStructures A;
 V { tms=1; tdi=0; tck=P; clock=0; } // move to SELECT-DR
 V { tms=1; tdi=0; tck=P; }// move to SELECT-IR
 V { tms=0; tdi=0; tck=P; }// move to CAPTURE-IR
 V { tms=0; tdi=0; tck=P; }// move to SHIFT-IR
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=1xxxx
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=11xxx
 V { tms=0; tdi=0; tck=P; }// shift IR, inst=011xx
 V { tms=0; tdi=0; tck=P; }// shift IR, inst=0011x
 V { tms=1; tdi=0; tck=P; }// shift IR, inst=00011, mv to
 EXIT1-IR
 V { tms=1; tdi=0; tck=P; }// move to UPDATE-IR
 V { tms=0; tdi=0; tck=P; }// move to IDLE
 V { tms=0; tdi=0; tck=0; }// clocks off
 Shift { V { _si1=# ; _so1=# ; clock=P; } }
 ScanStructures B;
 V { tms=1; tdi=0; tck=P; clock=0; }// move to SELECT-DR
 V { tms=1; tdi=0; tck=P; }// move to SELECT-IR
 V { tms=0; tdi=0; tck=P; }// move to CAPTURE-IR
 V { tms=0; tdi=0; tck=P; }// move to SHIFT-IR
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=00101
 V { tms=0; tdi=0; tck=P; }// shift IR
 V { tms=0; tdi=1; tck=P; }// shift IR
 V { tms=0; tdi=0; tck=P; }// shift IR

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

509

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
Multiple Scan Groups

Feedback

 V { tms=1; tdi=0; tck=P; }// shift IR, move to EXIT1-IR
 V { tms=1; tdi=0; tck=P; }// move to UPDATE-IR
 V { tms=0; tdi=0; tck=P; }// move to IDLE
 V { tms=0; tdi=0; tck=0; }// clocks off
 Shift { V { _si2=# ; _so2=# ; clock=P; } }
 ScanStructures C;
 V { tms=1; tdi=0; tck=P; clock=0; }// move to SELECT-DR
 V { tms=1; tdi=0; tck=P; }// move to SELECT-IR
 V { tms=0; tdi=0; tck=P; }// move to CAPTURE-IR
 V { tms=0; tdi=0; tck=P; }// move to SHIFT-IR
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=00111
 V { tms=0; tdi=1; tck=P; }// shift IR
 V { tms=0; tdi=1; tck=P; }// shift IR
 V { tms=0; tdi=0; tck=P; }// shift IR
 V { tms=1; tdi=0; tck=P; }// shift IR, move to EXIT1-IR
 V { tms=1; tdi=0; tck=P; }// move to UPDATE-IR
 V { tms=0; tdi=0; tck=P; }// move to IDLE
 V { tms=0; tdi=0; tck=0; }// clocks off
 Shift {
 V { _si3=# ; _so3=# ; clock=P; }
 }
 V { tms=1; tdi=#; tck=#; }// move to EXIT1-DR
 V { tms=1; tdi=0; tck=0; }// move to UPDATE-DR
 V { tms=1; tdi=0; tck=0; }// move to SELECT-DR
 V { tms=0; tdi=0; tck=0; }// move to CAPTURE-DR
 } // end load_unload
 capture_tck {
 V { _pi=# ; _po=# ; tck=P; }
}
 capture_clock {
 V { _pi=# ; _po=#; clock=P; }
}
 capture_resetN {
 V { _pi=# ; _po=# ; resetN=P; }
}
 capture {
 V { _pi=# ; _po=# ; }
}
}
MacroDefs {
 test_setup {
 V { _io=Z ; tms=1; tdi=0; tck=0; resetN=1; test_enab=1;
 scan_enab=0; clock=0; TBC=0; }
 V { tms=1; tdi=0; tck=0; resetN=P; clock=0; } // move to RESET
 V { tms=1; tdi=0; tck=P; resetN=1; clock=P; }// stay in RESET
 V { tms=0; tdi=0; tck=P; resetN=1; clock=P; }// move to IDLE
 V { tms=0; tdi=0; tck=0; } // clocks off
 } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

510

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: STIL Procedures
DFTMAX Compression with Serializer

Feedback

DFTMAX Compression with Serializer
The DFTMAX compression scan architecture creates by default a combinational
connection between the input and output of the compressor/decompressor (“CODEC”) to
the top-level ports or pins. To improve the ATPG quality of results (QOR) for designs or
blocks with a limited number of top-level ports, DFTMAX compression also supports an
optional serial connection between the CODEC and the top-level ports, called "serializer."

You should refer to the "DFTMAX with Serializer" chapter in the DFTMAX Compression
User Guide to see an example STIL procedure file specifically used with serializer. This
chapter includes a description of the SerializerStructures statement, which is specific
to serializer.

Also note that the report_serializers command in TestMAX ATPG generates a report
containing data for the specified serializers.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

511

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

12
Design Rule Checking

The DRC process verifies that the physical layout of a design satisfies a series of
parameters or rules required by semiconductor manufactures. By performing DRC, you
can verify that a design will function properly when it is fabricated.

You can refer to Performing Test Design Rule Checking for a basic guide on how to specify
basic DRC settings, run DRC, and review DRC results.

The following sections describe the various settings you make when performing DRC:

• Understanding the DRC Process

• Contention Analysis

• Scan Chain Tracing

• Clock Grouping

• Declaring Equivalent and Differential Input Ports

• Cells With Asynchronous Set/Reset Inputs

• Masking Input and Output Ports

• Masking Scan Cell Inputs and Outputs

• Previewing Potential Scan Cells

• Transparent Latches

• Shadow Register Analysis

• Feedback Paths Analysis

• Procedure Simulation

• Changing the Design Rule Severity

• Understanding the DRC Summary Report

• Binary Image Files

• Save/Restore in TEST Mode

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

512

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Understanding the DRC Process

Feedback

Understanding the DRC Process
When performing design rule checking, TestMAX ATPG takes the following actions:

1. Reads the STIL procedures to gather information and to check for syntax and
consistency errors. For more information, see STIL Procedures.

2. Performs contention ability checks on buses and wired logic. This step identifies
drivers that could potentially be placed in a conflicting state and cause internal device
contention. For more information, see Contention Analysis.

3. Simulates the test procedures in the STL procedure file to determine whether
certain conditions have been met involving the state of clocks and the sequencing of
procedural events.

4. Simulates each scan chain under the direction of the defined test procedures, to
guarantee that the scan path is operational and complies with all scan chain rules. For
more information, see Scan Chain Tracing.

5. Analyzes all clocks and clocked devices against the ATPG rules for clock usage. For
more information, see C Rules.

6. Analyzes all nonscan devices, including latches, RAMs, ROMs, and bus keepers (S
Rules). Nonscan devices that hold state are identified and used for ATPG purposes.
Latches that can be made transparent are identified, and latches that cannot be made
transparent are replaced with TIEX logic.

7. Analyzes the multi driver nets identified in step 2 as potentially causing conflict to
determine which drivers actually cause conflict.

8. Performs some additional circuit learning that depends on the results of the previous
steps. After identifying scan, nonscan, transparent and nontransparent devices, and
sequential devices at a constant state, TestMAX ATPG propagates the effects of PI
constraints, ATPG constraints, and TIEX effects throughout the design.

9. Produces a summary report listing the types and totals of DRC violations encountered.
For more information, see Understanding the DRC Summary Report.

Contention Analysis
Three-state circuitry is characterized by its ability to use the high impedance state (Z
state). The supported gate types that model the logical behavior of three-state circuitry and
use the Z state include the BUS, BUSK, TSD, SW, PI, PO, PIO, and TIEZ gates.

Most three-state activity occurs on a BUS gate, which is primarily used to resolve the net
value from a net with multiple drivers. A BUS gate can have bidirectional connections to

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

513

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Contention Analysis

Feedback

external pins (PIO) or bus keepers (BUSK). All inputs and bidirectional connections are
either strong or weak.

A contention condition occurs when a BUS gate has two strong drivers of opposing values.
This condition can damage the chip, so extensive contention checking is required to
prevent its occurrence.

The following sections describe contention checking:

• BUS Contention Ability Checking

• BUS Z State Ability Checking

• Contention Prevention Checking

• Simulation Contention Detection

• ATPG Contention Prevention

• Post-Capture Contention Checking

BUS Contention Ability Checking
During DRC, the Z1 rule checks BUS gates with circuitry that could potentially cause BUS
contention. This check eliminates false contention reporting when multiple inputs to a
BUS are at X. The BUS contention ability analysis searches for two strong three-state
drivers on a BUS gate that can simultaneously have their enable lines active. Unless the
-nomultiple_on option of the set_contention command is set for contention checking,
the data lines must be at different values to fail the check. After BUS contention ability
checking is performed, a summary message shows the number of buses falling into each
of the following contention ability categories:

• Pass - The BUS gate cannot satisfy contention conditions and can be ignored for
contention checking.

• Bidi - The BUS has an external bidirectional connection. Except for this connection, it
passes contention ability checking. To control contention, it need only be controlled by
the value placed on the bidirectional port.

• Fail - The BUS is capable of contention and must be checked and controlled.

• Abort - Contention ability checking of the BUS was aborted. It is uncertain whether the
BUS is capable of contention, so it must be checked and controlled.

The BUS contention ability analysis is performed only when required. If the analysis was
previously performed and nothing has changed that could affect the results for a BUS, it is
not checked again.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

514

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Contention Analysis

Feedback

BUS Z State Ability Checking
During DRC, the Z2 rule identifies BUSes with circuitry that could potentially cause a Z
state. This check attempts to satisfy the conditions necessary to justify a Z state on a BUS
gate. After this check is performed, a summary message shows the number of BUSes
falling into each Z state ability category:

• Pass - The BUS gate cannot satisfy Z-state conditions.

• Bidi - The BUS has an external bidirectional connection. Except for this connection, it
passes Z-state checking.

• Fail - The BUS is capable of holding a Z state.

• Abort - Z-state ability checking of the BUS was aborted. It is uncertain whether the BUS
is capable of holding a Z state.

The BUS Z state ability analysis is performed only when required. If the analysis was
previously performed and nothing has changed that could affect the results for a BUS, it is
not checked again.

Contention Prevention Checking
For BUSes that fail or abort the Z1 rule, an ATPG analysis is performed by the Z7 rule to
determine if it is possible to simultaneously satisfy the conditions necessary to prevent
contention on these buses. A Z7 failure indicates that ATPG is unlikely to be successful in
avoiding bus contention. See the description of the Z7 rule in TestMAX ATPG Help for a
complete description of how to properly analyze a Z7 failure.

Simulation Contention Detection
BUS gates that fail contention ability checking during simulation are checked to determine
if there are in a potential contention condition. A violation of BUS contention during
fault simulation causes the pattern to be rejected and disallowed any detection credit. A
message is issued for each simulation pass indicating the number of patterns rejected
due to contention and the site of the first contention. You can turn off contention checking
during simulation using the nobus option of the set_contention command.

ATPG Contention Prevention
BUS gates that fail contention ability checking during test generation are forced to satisfy
a contention-free state. If the process of satisfying contention prevention causes an
abort condition, a special message reports the number of faults per simulation pass
(32 patterns) that were aborted due to this condition. You can turn off ATPG contention
prevention using the -noatpg switch of the set_contention command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

515

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Scan Chain Tracing

Feedback

Post-Capture Contention Checking
Normal scan-based simulation only considers the effect of values loaded into scan
cells and not the effect of values that can be captured. If the enable lines of three-state
drivers of bus gates that are not contention-free are connected to scan cells, it is possible
for these BUS gates to go into contention after the capture clock, even if they were
contention-free before the capture clock. These conditions are checked by the Z9 and Z10
rules.

You can configure the simulation process to simulate the captured values using the
-capture option of the set_contention command. As a result, the simulation checks for
contention that could occur at capture time, and rejects and reports patterns that fail the
contention check.

Scan Chain Tracing
When performing scan chain tracing, TestMAX ATPG takes the following actions:

1. Initializes constrained ports to their constrained states.

2. Simulates the events in the test_setup macro.

3. Simulates the events in the load_unload procedure.

4. Simulates the events in the Shift procedure, and monitors the elements in the scan
chain to ensure that the scan data path is valid, the scan cells are clocked, and any
asynchronous set/clear pins are stable in their off positions.

To see a verbose report on the scan chain tracing, execute the following command:

BUILD-T> set_drc -trace

The default is to not show the verbose tracing of scan chains.

See Also

• Performing Scan Chain Diagnosis

Clock Grouping
TestMAX ATPG applies dynamic clocking grouping by default. This enables basic scan
ATPG to simultaneously pulse clocks and detect clocks that can be serially pulsed during
the same capture cycle. Clocks with a small amount of sequential effects can also be
detected and grouped. In this case, TestMAX ATPG sets up the pattern generation
environment to avoid generating vectors that would fail simulation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

516

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Clock Grouping

Feedback

Clock grouping can potentially reduce pattern count since ungrouped clocks require
separate scan loads and patterns to test faults in each clock domain for basic-scan
patterns. Grouped clocks can be pulsed in a single pattern. The clocks pulsed for a given
vector are selected dynamically during pattern generation, maximizing the fault detection
and minimizing the pattern count.

In addition to dynamic clocking, TestMAX ATPG can use disturbed clocking to group
some clocks with a limited number of cells containing sequential effects. In this case,
even if there are sequential effects, grouping these clock can further reduce pattern count.
TestMAX ATPG then masks any disturbed cells to avoid sequential effects. Potential
disturbed grouping is done during DRC analysis.

During the DRC process, TestMAX ATPG automatically performs clock grouping analysis
and reports the results in the transcript. All PI equivalences are removed, except for
differential inputs.

The following sections describe how to work with clock groups:

• Reducing the Pattern Count Through Clock Grouping

• Clock Grouping Analysis

• Generating a Clock Group Report

• Clock Grouping Limitations

Reducing the Pattern Count Through Clock Grouping
When you generate combinational vectors in basic-scan ATPG, TestMAX ATPG normally
uses only one clock pulse per pattern. However, it is sometimes possible to pulse several
clocks in the same vector, which enables you to observe more logic and reduces the need
for additional patterns.

If your design has two independent clocks (for example, when you pulse one clock, no
logic driven by the other clock is affected), then you need two patterns to exercise the logic
in the two clock domains. However, because the clocks are independent, you can pulse
them at the same time, which saves one test vector. When you use static parallel clock
grouping, the grouped clocks must always be pulsed together. None of the clocks in the
group are pulsed alone.

Dynamic clock grouping selects the clocks pulsed for a given vector during pattern
generation, which maximizes the fault detection and minimizes the pattern count.

The disturbed clocking scheme allows TestMAX ATPG to group some clocks with a limited
number of cells having sequential effects. In this case, even if there are sequential effects,
it can be useful to group those clocks to further reduce pattern count. TestMAX ATPG
cannot use the disturbed cells. To manually group clocks, use the add_pi_equivalences

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

517

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Clock Grouping

Feedback

command. After you have defined a group, any clock that belongs to this group cannot be
pulsed alone.

To use clock grouping to reduce the pattern count:

1. Read your netlist and library model files, and build your design in TestMAX ATPG. For
details, see Setting Up and Building the ATPG Model.

2. Choose your criteria for clock grouping. The set_drc command has several
options that affect clock grouping, including the -allow_unstable_set_resets,
the -blockage_aware_clock_grouping, the -clock -dynamic, the
-disturb_clock_grouping, and the -dynamic_clock_equivalencing options.

3. Run DRC. For details, see Performing Test Design Rule Checking.

DRC performs an analysis for clock grouping. For details, see Clock Grouping
Analysis.

4. Generate the basic-scan test vectors, for example:

run_atpg -auto_compression

Clock Grouping Analysis
During the DRC process, clock grouping analysis is automatically performed and the
results are reported in the transcript, as shown in the following example:

 Clocks C1 (8) and C2 (13) were identified as potentially
groupable.
 Clocks C1 (8) and C3 (17) were identified as potentially
groupable.
 Clocks C1 (8) and C4 (19) were identified as potentially
groupable.
 Clocks C1 (8) and W4 (20) were identified as potentially groupable.
 Clocks C2 (13) and C3 (17) were identified as potentially groupable.
 Clocks C2 (13) and C4 (19) were identified as potentially groupable.
 Clocks C2 (13) and W4 (20) were identified as potentially groupable.
 Clocks C3 (17) and C4 (19) were identified as potentially groupable.
 Clocks C3 (17) and W4 (20) were identified as potentially groupable.
 Clock grouping analysis completed, #clock_groups_identified=9

The lines in the example indicate that clock 'C1', with gate ID 8, can be grouped with
clocks 'C2', 'C3', 'C4', and 'W4'.

In addition, clock 'C2' is groupable with {C3,C4,W4} and 'C3' is groupable with {C4,W4}.

Clock grouping might be affected by the order in which the clock list is processed. It is
suggested that if you define clocks using add clocks commands, that you define the
clock with the highest fanout first, and all asynchronous set/resets last.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

518

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Clock Grouping

Feedback

The clock grouping algorithm considers clocks as groupable if all of the following
conditions are true:

• The clocks do not connect to a common clock-off stable state element.

• There are no level sensitive (LS) or trailing edge (TE) ports where one clock is
connected to the clock or write port input and the other clock has a clock-effect
connection to the port data input with any of the following conditions:

◦ LS/LE connection

◦ TE connection

where the off-time of the first clock occurs later than the off-time of the other clock.

• There are no LE ports where one clock is connected to the clock or write port input
and the other clock has a clock-effect connection to the port data input with any of the
following condition:

◦ LS/LE connection

where the on-time of the first clock occurs later than the on-time of the other clock.

There are no LS or TE ports where one clock is connected to the clock or write port
input and the other clock has a clock-effect connection to the port clock/write input with
any of the following conditions:

◦ LS/LE connection

◦ TE connection

where the off-time of the first clock occurs later than the off-time of the other clock.

There are no LE ports where one clock is connected to the clock or write port input and
the other clock has a clock-effect connection to the port clock or write input with any of
the following condition:

◦ LS/LE connection

where the on-time of the first clock occurs later than the on-time of the other clock.

If the design has two state elements A and B such that:

◦ The output of A is connected to the input of B.

◦ A and B are clocked by different clocks that have nearly identical timing

Then, the two clocks have a parallel grouping relationship only if the capture edge
of clock B occurs at or before the capture edge of clock A minus the skew value.
Otherwise, the clocks are ungrouped, or have a disturbed grouping. The default for
the skew is 1 time unit, which eliminates clocks with exactly the same timing from
being grouped in this type of design connectivity.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

519

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Clock Grouping

Feedback

Note that the unstable state elements (including transparent latches) are ignored for this
clock grouping analysis.

The clock grouping analysis is always performed at the end of the clock rules checking
during DRC with all grouped clocks reported in the transcript.

Generating a Clock Group Report
To report results of clock grouping analysis, use the following command:

report_clocks -matrix -verbose

The -matrix option of the report_clocks command displays a matrix of clock pairs that
can be grouped together. In the clock matrix, each row indicates the potential grouping
relationships of a candidate clock with all of the other candidate clocks.

For example:

id# clock_name type 0 1
 2 3 4 5 6
 7 8 9

0
 clk C ---
 --A --A --A --A --A --A --A --A ---
1 iopclk11
 C B-- --- --A BPA BPA BPA BPA BPA BPA
 B--
2 iopclk12
 C B-- B-- --- --A BPA BPA BPA BPA BPA
 B--
3 iopclk21
 C B-- BPA B-- --- --A BPA BPA BPA BPA
 B--
4 iopclk22
 C B-- BPA BPA B-- --- BPA BPA BPA BPA
 B--
5 iopclk31
 C B-- BPA BPA BPA BPA --- --A BPA BPA
 B--
6 iopclk32
 C B-- BPA BPA BPA BPA B-- --- BPA BPA
 B--
7 iopclk41
 C B-- BPA BPA BPA BPA BPA BPA --- --A
 B--
8 iopclk42
 C B-- BPA BPA BPA BPA BPA BPA B-- ---
 B--
9 tx_intf1_clk C --- --A --A --A
 --A --A --A --A

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

520

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Declaring Equivalent and Differential Input Ports

Feedback

 --A ---
10 tx_intf2_clk C --- --A BPA --A ---
 --A BPA --A
 BPA B--
11 tx_intf3_clk C --- --A BPA --A BPA
 --A --- --A
 BPA B--
12 tx_intf4_clk C -D- BPA BPA --A BPA
 --A BPA --A
 --- BP-
13
 por R ---
 --A --A --A --A --A --A --A --A --A
14 rst
 SR --- --- --- --- --- --- --- --- --- ---
id1 id2
 C1 #masks C2 masked gates

Clock Grouping Limitations
Clock grouping has the following limitations:

• Dynamic and disturbed clocking are not used by Full-Sequential ATPG.

• Disturbed clocking can result in a slightly lower test coverage because of disturbed cell
masking.

Declaring Equivalent and Differential Input Ports
You can declare two primary input ports to be equivalent or differential. During ATPG,
equivalent ports are always driven with the same values and differential ports are always
driven with complementary values.

You can use the Add PI Equivalences dialog box to make this kind of declaration, or you
can enter the add_pi_equivalences command at the command line.

The following sections describe how to declare equivalent and differential input ports:

• Using the Add PI Equivalences Dialog Box

• Using the add_pi_equivalences Command

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

521

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Declaring Equivalent and Differential Input Ports

Feedback

Using the Add PI Equivalences Dialog Box
The following steps describe how to use the Add PI Equivalences dialog box to make two
primary input ports to be equivalent or differential:

1. From the menu bar, choose Constraints > PI Equivalences > Add PI Equivalences. The
Add PI Equivalences dialog box appears.

2. Select the ports and logic relationships.

For additional information about the available options, see the description of the
add_pi_equivalences command in TestMAX ATPG Help.

3. Click OK.

Using the add_pi_equivalences Command
You can also declare equivalent or differential input ports by using the
add_pi_equivalences command, as shown in the following example:

DRC-T> add_pi_equivalences ENA_P -inv ENA_N

For the complete syntax and option descriptions, see the description of the
add_pi_equivalences command in TestMAX ATPG Help..

In the following example, the first line defines the two input ports spec_port1 and
spec_port2 as equivalent; the second line defines that the following ports should be
constrained to be at an inverted value relative to the first port in the list.

DRC-T> add_pi_equivalences {spec_port1 spec_port2}
DRC-T> add_pi_equivalences spec_port1 -invert spec_port2

When differential inputs are also clocks, you must first define each port as a clock and
then define the equivalence relationship, as in the following example:

DRC-T> add_clocks 0 clock_pos
DRC-T> add_clocks 1 clock_neg
DRC-T> add_pi_equivalences clock_pos -differential clock_neg

The third line defines them as differential. This is similar in function to the -invert
option with two differences. The first difference is that only two pins are accepted. The
second difference is that pins declared as having a -differential relationship that are
also clocks retain that relationship when clock grouping is enabled. A differential clock
relationship formed with the -invert option is sometimes ignored by clock grouping. Pins
declared as having a differential relationship are driven to opposite values by generated
patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

522

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Cells With Asynchronous Set/Reset Inputs

Feedback

See Also

• Understanding Flattening Optimization

Cells With Asynchronous Set/Reset Inputs
You can use the set_drc command to specify the treatment of latches and flip-flops
whose set and reset lines are not off when all clocks are at their off state. By default, these
latches and flip-flops are treated as unstable cells, which prevents them from being used
during test pattern generation.

To have these latches and flip-flops treated as stable cells, use the set_drc
-allow_unstable_set_resets command. Then the ATPG algorithm can use the cells
with unstable set/reset inputs to improve test coverage. In that case, it is not necessary to
define the set/reset inputs as clocks.

In certain cases, the -remove_false_clocks option of the set_drc command
automatically invokes the “allow unstable set/reset” behavior. When a primary input
port has been defined as a clock and a DRC analysis determines that the port cannot
capture data into a sequential device, the input port is determined to be a “false clock.” In
the default DRC configuration, the result is a C4 violation. However, using the set_drc
-remove_false_clocks command causes automatic removal of the clock declaration for
each false clock, instead of a C4 violation.

If a primary input port declared to be a clock is connected to the set/reset inputs of
sequential gates, and also to the D inputs of other sequential gates, it is considered
a false clock. As a result, the algorithm removes the clock declaration for that
port and then enables unstable set/reset cells, just like executing the set_drc
-allow_unstable_set_resets command.

The -allow_unstable_set_resets option can be useful if a scan-enable signal is used
to disable the set/reset inputs of scan cells during load. Using this option means that the
scan-enable signal does not have to be defined as a clock, which can greatly improve test
coverage.

See Also

• Declaring Clocks

• Power Aware Testing with Asynchronous Primary Inputs

Masking Input and Output Ports
You can mask an input port or output port to isolate it from the design during debugging.
For example, if a lower-level module you are testing appears to have full controllability and

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

523

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Masking Scan Cell Inputs and Outputs

Feedback

observability of all of its input and output ports in standalone configuration but loses this
control when placed in the higher-level module, you might want to mask those inputs and
outputs that are not controllable or observable.

You mask an input port by defining a primary input constraint in which the input port
is held to an X value. You can define the constraint by using the Add PI Constraints
dialog box (see the “Declaring Primary Input Constraints” section) or by using the
add_pi_constraints command:

DRC-T> add_pi_constraints X port_name

You mask an output port by listing it in the Add PO Masks dialog box (opened by choosing
Constraints > PO Masks > Add PO Masks menu command) or by using the add_po_masks
command:

DRC-T> add_po_masks port_name

Masking Scan Cell Inputs and Outputs
TestMAX ATPG supports a number of scan cell controls. You can define these controls by
using the Add Cell Constraints dialog box, or you can enter the add_cell_constraints
command at the command line.

The following sections describe how to mask scan cell inputs and outputs:

• Specifying Cell Constraints Locations and Scan Cell Controls

• Using the Add Cell Constraints Dialog Box

• Using the add_cell_constraints Command

Specifying Cell Constraints Locations and Scan Cell Controls
You specify the location of the cell constraint using either of the following techniques:

• Use the name of the scan chain and the bit position, with bit 0 as the bit closest to the
scan chain output

• Use an instance path name to the scan chain element

You can use any of the following five scan cell controls:

• 0 –The scan cell is always loaded with a 0 during the scan chain load.

• 1 –The scan cell is always loaded with a 1.

• X –The scan cell is always loaded with an X.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

524

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Previewing Potential Scan Cells

Feedback

• OX – No restrictions exist on the loaded value, but any data captured by the regular
system clock is considered to be observed as X. That is, the scan cell can be loaded to
control logic connected to its outputs, but its data input is always considered X.

• XX –The load is always X, and the observe is always X.

The loading of a scan cell with an X value for the X or XX cell constraint provides an X for
simulation. However, on a device tester, the X is translated into a 0 or a 1 because you
cannot drive an X on a tester.

Using the Add Cell Constraints Dialog Box
The following steps describe how to use the Add Cell Constraints dialog box to define
scan cell controls:

1. From the menu bar, choose Constraints > Cell Constraints > Add Cell Constraints. The
Add Cell Constraints dialog box appears.

2. Specify the location of the cell constraint by entering the name of a scan chain or
instance.

3. Enter a bit position for the scan chain and scan cell control values for the scan chain
and instance.

For additional information about the available options, see description of the
add_cell_constraints command in TestMAX ATPG Help.

4. Click OK.

Using the add_cell_constraints Command
You can also define scan cell controls using the add_cell_constraints command, as
shown in the following example:

DRC-T> add_cell_constraints 0 /TOP/U1/sifter/reg42

For the complete syntax and option descriptions, see the description of the
add_cell_constraints command in TestMAX ATPG Help.

Previewing Potential Scan Cells
You can preview the effect on your design of changing flip-flops and latches from nonscan
elements to scan elements in scan chains without actually changing your design. To do
this, you place one or more nonscan sequential devices in a virtual scan chain. TestMAX
ATPG treats the virtual scan chain as a true scan chain. Remember to set up the clocks,
and when you run ATPG, you see the potential effect on test coverage.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

525

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Previewing Potential Scan Cells

Feedback

Sequential devices in the Set Scan Ability list must meet all DRC rule checks for
scan chain elements. Some of the devices might fail DRC because of uncontrolled
asynchronous set/reset connections. (TestMAX ATPG converts the devices into a scan
chain but does not change set/reset pins.)

The following sections describe how to preview potential scan cells:

• Scan Cell Types

• Using the set_scan_ability Command

• Using the Set Scan Ability Dialog Box

Scan Cell Types
Scan cells are the independent units that can be used as control and observe points in
scan-based fault simulation and test generation. Each scan cell contains one or more
state gates (latches or flip-flops). Each scan cell gate is assigned a "type" according to its
behavior in the scan cell. All combinations of inversion parity between scan cell gates of a
scan cell are supported.

All scan cell gates of a scan cell are controllable, but they have a fixed relationship to one
another that depends on the inversion parity. They must have values that are consistent
with this relationship. The loading of the scan chain that contains the scan cells provides
the control ability.

Similarly, the unloading of the scan chain that contains the scan cells provides observe
ability. However, only the scan cell gate at the output of the scan cell can be observed
by unloading the scan chain. To observe any other scan cell gate requires an additional
step to transfer its value to the scan cell output gate before unload. Test procedures are
predefined in the test protocol file that perform this process. Each procedure is called
either the master_observe procedure or the shadow_observe procedure.

Note the following scan cell types:

• Master - The master gate is an independently clocked state gate that captures shift
data from outside the scan cell on the active edge of the shift clock. Every scan cell
must contain one and only one master gate, which is considered the primary gate of
the scan cell.

• Slave - A slave gate is an independently clocked state gate that captures its shift data
from another member of the scan cell. This is an optional gate of the scan cell and is
used most often in the LSSD (Level-Sensitive Scan Design) architecture. When a slave
exists in a scan cell, it is the output gate and is the default observable gate of the scan
cell. The observation of the master gate requires a master_observe procedure. There
is no requirement that the slave gate be in the same parent library cell as the master

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

526

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Previewing Potential Scan Cells

Feedback

gate. This relationship is determined by physical connectivity and clock event ordering
during shift, and not placement in any particular library cell.

• Shadow - A shadow gate is not in the scan chain path, but is capable of attaining
its associated scan cell value during the scan chain load process. This can be
accomplished during the shift procedure or from a separate clocking that occurs after
the shift process in the load operation. Normally, shadow gates are used only as
control points. The identification of shadow gates can be suppressed by selecting the
-noshadows option of the set_drc command.

• Parallel Shadow - Obtains its value in parallel with the master scan cells during the
Shift procedure.. Its input and the input of the master gate have a common source.
The identification of parallel shadows can be suppressed by selecting either the
-noshadows or the -serial_shadows_only option of the set_drc command.

• Serial Shadow - Obtains its value during the post-amble sequence after the Shift
procedure. The identification of parallel shadows can be suppressed by selecting the
-noshadows option of the set_drc command.

• Dslave - A dslave (dependent slave) gate is a dependently clocked state gate that
captures its shift data from another member of the scan cell (source). Dependent
clocking means that its captured shift value is the same value as its source for the
capturing clock pulse. It is distinguished from a slave in that it can never hold a value
different from its source after the capturing clock is applied. A dslave is not considered
an observe point. Lockup Latches in scan chains are identified as dslave devices.

• Observable Shadow - An observable shadow is a shadow gate which has an ability to
also transfer its captured value to the output of its associated scan cell. This requires
using a shadow_observe procedure that has been defined in the test protocol file.

• Scan TLA - A scan TLA(scan transparent latch) is a state element in the scan chain
path that participates in the shift process but does not have an ability to hold its scan
cell value when all clocks are off. It is treated as a transparent latch for scan-based
simulation and test generation and gets no control or observe credit.

Identifying Scan Cells
Scan cells are identified and assigned as scan cell gates during the DRC process. Starting
from the scan chain output ports, a backtrace is performed through a sensitized path,
considering the simulated values that result from the application of the shift procedure.
State gates in the traced path are placed into scan cells. The amount of circuitry traced
through a single application of the shift procedure determines the boundaries of the scan
cells.

After tracing is complete, the remaining nonscan state gates are analyzed to determine
whether they have attained a value that is a direct function of a single scan cell. Those
gates that have this condition are added to the scan cell gate list of the associated scan
cell and are called shadows.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

527

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Previewing Potential Scan Cells

Feedback

Reporting Scan Cells
To get a report on the scan cells in the design, use the report_scan_cells command.
The report_primitives command also displays scan cell information for all reported
scan cell gates.

Scan Cell Inversion Data
When you obtain scan cell data with the report_scan_cells command, the inversion
information for scan cell gates is presented as a set of two characters, where "N"
indicates no inversion and "I" indicates inversion. The first character shows the inversion
relationship of the scan cell gate to the scan chain input, and the second character shows
the inversion relationship of the scan cell gate to the scan chain output. The possible
combinations are:

• NN - No inversion.

• NI - The scan cell gate is inverted relative to the scan chain output.

• IN - The scan cell gate is inverted relative to the scan chain input.

• II - The scan cell gate is inverted relative to both scan chain output and input.

If you use the -pin option of report_scan_cells to display information on scan cell
pins, the inversion information for each scan cell input and output is presented as a single
character. For an input port, this character indicates the inversion relationship between the
scan cell input pin and the scan chain input. For an output port, this character indicates the
inversion relationship between the scan cell output pin and the scan chain output.

Using the set_scan_ability Command
You can also place nonscan sequential devices in a virtual scan chain using the

set_scan_ability command, as shown in the following example:

DRC-T> set_scan_ability on core/host/status

For the complete syntax and option descriptions, see the description of the
set_scan_ability command in TestMAX ATPG Help.

The following example adds four devices to the virtual scan chains:

DRC-T> set_scan_ability on /top/U1/U2/reg1
DRC-T> set_scan_ability on /top/U1/U2/reg2
DRC-T> set_scan_ability on /top/U1/U2/reg3
DRC-T> set_scan_ability on /top/U1/U2/reg4

When you use a list format in the set_scan_ability command, you might not be able to
write patterns because the patterns include the virtual scan chain. Any patterns that are

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

528

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Transparent Latches

Feedback

written will fail simulation unless the design is modified to convert the virtual scan chain
into a real scan chain.

Note that the set_scan_ability command is not compatible with any type of scan
compression. DRC will fail if the STIL procedure file contains a CompressorStructures
block.

Using the Set Scan Ability Dialog Box
You can place the nonscan devices in a virtual scan chain by listing them in the Set Scan
Ability dialog box. The following steps describe how to use the Set Scan Ability dialog box
to list the nonscan devices in a virtual scan chain:

1. From the menu bar, choose Scan > Set Scan Ability. The Set Scan Ability dialog box
appears.

2. Select the method and add DLAT/DFF gates from the list.

For more information about the controls in this dialog box, see Online Help for the
set_scan_ability command.

3. Click OK.

Transparent Latches
A transparent latch is a latch in which the enable line can be asserted so that data passes
through it without activating any of the design’s defined clocks. During the rule checking
process, TestMAX ATPG automatically determines the location of all latches in the design
and checks to see whether the latches can be made transparent. For ATPG, you must be
able to disconnect the latch control from any clock ports.

When latches are transparent, it is easier for TestMAX ATPG to detect faults around those
latches. When latches are not transparent, you might need to use a Full-Sequential ATPG
run to get good fault coverage around those latches.

Shadow Register Analysis
A shadow register is not in the scan chain, but is loaded when its master register in the
scan chain is loaded, by the same clock or by a separate clock. A shadow register is
considered a control point but not an observe point. During the DRC analysis, TestMAX
ATPG searches for nonscan cells that can be considered shadow registers.

If the shadow register’s state can be observed at the shadow’s master, TestMAX
ATPG classifies the register as an observable shadow. This usually requires defining a
shadow_observe procedure in the STL procedure file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

529

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Feedback Paths Analysis

Feedback

The default is to search for shadow registers. You can disable the default by executing the
following command:

BUILD-T> set_drc -noshadow

Feedback Paths Analysis
During initial processing, TestMAX ATPG identifies feedback paths within the design and
assigns each path a unique feedback path ID.

During DRC, TestMAX ATPG analyzes the feedback paths to ensure that the loop of logic
gates can be broken at some combinational gate within the loop. If the logic loop does not
have a blocking point, simulations performed during ATPG will oscillate without resolving
to a final value. If DRC analysis cannot find a set of inputs and scan chain load values that
can break the loop and still maintain any other constraints in effect, TestMAX ATPG issues
an X1 rule violation.

See Also

• Analyzing a Feedback Path

Procedure Simulation
In addition to the test_setup, load_unload, and Shift procedures, there are other
procedures in the STL procedure file or implied by the definition of clock ports. TestMAX
ATPG simulates all of these procedures as part of the design rule checking process to
guarantee that they accomplish their intended purposes. For details on the running the
various procedures, see STIL Procedure Files.

Changing the Design Rule Severity
Each design rule is assigned a severity level that determines the action taken if a rule
violation occurs. A design rule violation has possible four severity levels:

• Ignore - The rule is not checked and no messages are issued.

• Warning - Violation of the rule produces a warning message, and the current process
continues.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

530

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Changing the Design Rule Severity

Feedback

• Error - Violation of the rule produces an error message, and the current processing
step is terminated. Before continuing, you must either correct the problem or change
the rule severity level.

• Fatal - Violation of the rule produces an error message, and the current processing
step is terminated. the severity level cannot be changed. Before continuing, you must
correct the problem.

You can change the rule severity level by using the Set Rules dialog box, or by running the
set_rules command from the command line.

You can determine the severity level setting of a particular rule and the number of
violations that have occurred by selecting Rules > Report Rules in the TestMAX ATPG GUI
or by running the report_rules command.

Using the Set Rules Dialog Box
To change the rule severity by using the Set Rules dialog box:

1. From the menu bar in the TestMAX ATPG GUI, choose Rules > Set Rule Options. The
Set Rules dialog box appears.

2. Enter a rule ID and select a severity level.

For additional information about the available options, see the description of the
set_rules command in TestMAX ATPG Help.

3. Click OK.

Using the set_rules Command
You can change the rule severity level of any rule (except those that are Fatal) by using
the set_rules command, as shown in the following example:

BUILD-T> set_rules B5 warning

When running DRC (before ATPG) on circuits which include blocks that have both default
and high X-tolerant architectures, specify the following command:

set_rules R22 warning

This will downgrade a check done for fully X-tolerant designs built by DFTMAX
compression which were built with blocks that include both default X-tolerant architectures
and high X-tolerant architecture.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

531

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Understanding the DRC Summary Report

Feedback

Understanding the DRC Summary Report
The run_drc command performs design rule checking (DRC), and produces a DRC
summary report, as shown in the following example:

 DRC> run_drc top.spf

 Begin scan design rule checking...

 Begin reading test protocol file top.spf...
 End parsing STIL file slo_gin.spf with 0 errors.
 Test protocol file reading completed, CPU time=0.08 sec.

 Begin Bus/Wire contention ability checking...
 Bus summary: #bus_gates=40, #bidi=40, #weak=0, #pull=0, #keepers=0
 Contention status: #pass=0, #bidi=40, #fail=0, #abort=0,
 #not_analyzed=0
 Z-state status : #pass=0, #bidi=40, #fail=0, #abort=0,
 #not_analyzed=0
 Bus/Wire contention ability checking completed, CPU time=0.04 sec.
 --
 Begin simulating test protocol procedures...
 Nonscan cell constant value results: #constant0 = 4, #constant1 = 7
 Nonscan cell load value results : #load0 = 4, #load1 = 7
 Warning: Rule Z4 (bus contention in test procedure) was violated 12
 times.
 Test protocol simulation completed, CPU time=0.15 sec.

 Begin scan chain operation checking...
 Chain c1 successfully traced with 31 scan_cells.
 Chain c2 successfully traced with 31 scan_cells.
 Chain c3 successfully traced with 31 scan_cells.
 Chain c4 successfully traced with 31 scan_cells.
 Chain c5 successfully traced with 31 scan_cells.
 : : : : : : :
 Chain c44 successfully traced with 30 scan_cells.
 Chain c45 successfully traced with 30 scan_cells.
 Chain c46 successfully traced with 30 scan_cells.
 Scan chain operation checking completed, CPU time=0.47 sec.
 --
 Begin clock rules checking...
 Warning: Rule C17 (clock connected to PO) was violated 16 times.
 Warning: Rule C19 (clock connected to non-contention-free BUS) was
 violated 1 times.
 Clock rules checking completed, CPU time=0.15 sec.
 --
 Begin nonscan rules checking...
 Nonscan cell summary: #DFF=201 #DLAT=0 tla_usage_type=none
 Nonscan behavior: #C0=4 #C1=7 #LE=11 #TE=179
 Nonscan rules checking completed, CPU time=0.04 sec.
 --
 Begin DRC dependent learning...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

532

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Understanding the DRC Summary Report

Feedback

 DRC dependent learning completed, CPU time=1.01 sec.
 --
 Begin contention prevention rules checking...
 26 scan cells are connected to bidirectional BUS gates.
 Warning: Rule Z9 (bidi bus driver enable affected by scan cell) was
 violated 24 times.
 Contention prevention checking completed, CPU time=0.03 sec.

 DRC Summary Report
 --
 Warning: Rule C17 (clock connected to PO) was violated 16 times.
 Warning: Rule C19 (clock connected to non-contention-free BUS) was
 violated 1 times.
 Warning: Rule Z4 (bus contention in test procedure) was violated 12
 times.
 Warning: Rule Z9 (bidi bus driver enable affected by scan cell) was
 violated 24 times.
 There were 54 violations that occurred during DRC process.
 Design rules checking was successful, total CPU time=2.27 sec.

scan design rule checking

This indicates the beginning of the scan design rule checking process.

reading test protocol file

The first message indicates the beginning of the reading of the test protocol file.
The second message indicates the parsing of the file was successful with no
errors. The last message indicates the process is completed and the CPU time
in seconds that was used for the process.

Bus/Wire contention ability checking

The first message indicates the beginning of the bus and wire contention
checking rules.

The second message summarizes the types of bus gates that are used in the
circuit. This includes the total number of bus gates, the number of bidirectional
bus gates, the number of weak bus gates (only weak drivers), the number if pull
bus gates (a mixture of strong and weak drivers), and the number of bus gates
which have a bus keeper.

The next message gives a summary of contention ability status of the bus gates
after the analysis is completed. This includes the number of buses which pass
(proven contention free), are bidirectional (contention free except for the bidi
input), fail (proven contention sensitive), and abort (aborted during analysis).

The next message gives a summary of Z-state ability status of the bus gates
after the analysis is completed. This includes the number of buses which pass

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

533

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Understanding the DRC Summary Report

Feedback

(proven incapable of attaining a Z state), are bidirectional, fail (proven capable of
attaining a Z state), and abort (aborted during analysis).

The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

simulating test protocol procedures

The first message indicates the beginning of the simulation of the test protocol
procedures. The results of the simulation is used to first determine state
elements that have a constant state behavior and those that attain a set value
after the scan chain load.

The second message in the example indicate 4 state elements have a constant
0 behavior and 7 state elements have a constant 1 behavior.

The third message indicate 4 state elements are set to 0 and 7 state elements
are set to 1 at the end of the scan chain load. During simulation, certain rules
are checked. In this case, the rule checking for bus contention during the test
procedures was violated 12 times and a warning message is given.

The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

scan chain operation checking

The first message indicates the beginning of the scan chain operation checking.
The results of the previous simulation are used to verify the operation of the
scan chains and identify the associated scan cells. As each scan chain is
successfully verified, a message is given indicating its completion with its name
and length. The last message indicates the process is completed and the CPU
time in seconds that was used for the process.

clock rules checking

The first message indicates the beginning of the clock rules checking. During
this process many clock rules are checked and messages are given when
violations occur. In this case, two messages are given indicating there were 16
violations of rule C16 and 1 violation of rule C19. The last message indicates
the process is completed and the CPU time in seconds that was used for the
process.

nonscan rules checking

The first message indicates the beginning of the nonscan rules checking. The
objective of this checking is to determine the appropriate behavior for all non
scan state elements.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

534

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Understanding the DRC Summary Report

Feedback

The second message gives a summary of the nonscan state elements. This
includes the nonscan DFFs, nonscan DLATs, and the transparent latch usage. In
this case, there are no transparent latches.

The next message gives a summary of the calculated nonscan behaviors. This
includes C0 (constant 0), C1(constant 1), LE (edge sensitive state elements that
capture on the leading edge of a pulse on the clock pin), and TE (edge sensitive
state elements that capture on the trailing edge of a pulse on the clock pin).

The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

DRC dependent learning

The first message indicates the beginning of the DRC dependent learning
process. Using the behaviors learned during DRC, analyses are performed
to determine control ability, observe ability, constraint effects, and blockages
due to constraint effects for all gates in the circuit. The last message indicates
the process is completed and the CPU time in seconds that was used for the
process.

contention prevention rules checking

The first message indicates the beginning of the contention prevention rules
checking.

The second message indicates that there were 26 scan cells which had
connectivity to bidirectional bus gates. This normally indicates a potential
problem that will cause some rule violations.

The next message indicates the rule violations that was the result of that
connectivity.

The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

DRC Summary Report

The first message indicates the beginning of the summary report. For each
rule that had at least one violation, a summary message for that rule is given
indicating the number of times it was violated.

The next message indicates the total number of rule violations that occurred
during the DRC process.

The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

535

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Binary Image Files

Feedback

Binary Image Files
A binary image file is a data file that stores design information in an efficient and
proprietary format for reading by TestMAX ATPG. It contains a flattened version of the
design, along with some selected TestMAX ATPG settings.

Using an image file provides several key benefits:

• Simplifies file management

Because an image file stores all netlist, library, and STL procedure file details in a
single file, it is easy to archive and share design data.

• Avoids repetitive tasks

When TestMAX ATPG reads an image file, you do not need to repeat the entire build
and DRC phases, since this data is already stored in the file. This results in significant
time savings when using large designs.

• Restricts command usage

You can create secure image files that allow only a restricted set of commands. These
commands are stored in the encrypted image file. You can also control whether
schematic viewing is allowed.

When a secure image file is read, the TestMAX ATPG session switches to a secure
state in which only the allowed commands can be executed. If you specify a disallowed
command, TestMAX ATPG does not execute it and issues a warning message.

• Provides intellectual property protection

TestMAX ATPG can obfuscate instance, net, and module names when creating a
binary image. This provides an additional level of security by hiding design context.

• Stores context-sensitive design data

An image file stores different types of design information, depending on what mode is
active when you create it:

◦ When the Test mode is active, both build and DRC data is stored in the image file.

◦ When the DRC mode is active, only the build data is stored in the image file.

Creating and Reading Image Files
You use the write_image command to create an image file and the read_image
command to read it.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

536

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Binary Image Files

Feedback

You can also create and read secure image files. This functionality is implemented through
the following commands:

• set_commands [-secure command | -all>]
[-nosecure <command | -all>]

• report_commands [-secure]

• write_image file_name [-password string] [-schematic_view]

• read_image file_name [-password string]
Note that TestMAX ATPG can obfuscate instance, net and module names. This provides
an additional level of security by hiding design context. The names are changed to the
following format (where "###" is an integer number of any length):

• Instance names use the format u###

• Net names use the format n###

• Module names use the format m###
The -garble option of the write_image command modifies the names in the output
image. You can send this secure image to a third party with controlled data access.
You can also translate the modified instance and net names back to the original names
using the -ungarble option of the report_nets command and the report_instances
command, if the original design database or the unmodified image file is accessible.

After TestMAX ATPG reads the image, it remains in the same mode in which the image
was created (DRC or Test). An image file does not create an identical session as when
it was originally created. Some settings and data, such as net names and intermediate
levels of hierarchy, are not in the image file. Thus, TestMAX ATPG can only operate in
primitive view and not design view

You can use the report_settings -all -command_report command to view the stored
settings.

For details on how create non-secure and secure image files, see the following sections:

• Creating a Non-Secure Image File

• Creating a Secure Image File

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

537

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Binary Image Files

Feedback

Creating a Non-Secure Image File
To create a non-secure image file:

1. Read the netlist file, as shown in the following example:

read_netlist top.v
2. Read the library models.

read_netlist spec_lib.v -library
3. Create the design model.

run_build_model spec_chip
4. Perform design rule checking.

run_drc spec_chip.spf
5. Write the image file.

write_image spec_chip_post_drc.img -violations -replace
To read the image during a subsequent run, use the read_image command, as shown in
the following example:

read_image spec_chip_post_drc.img

Creating a Secure Image File
You can use a combination of set_commands and write_image commands to create a
secure image file.

When using a secure image file, the following neutral commands are always allowed:
exit, alias, unalias, help, source, c, and pwd.

To create a secure image file:

1. Read the netlist file, as shown in the following example:

read_netlist top.v
2. Read the library models.

read_netlist spec_lib.v -library
3. Create the design model.

run_build_model spec_chip
4. Perform design rule checking.

run_drc spec_chip.spf

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

538

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Binary Image Files

Feedback

5. Use the set_commands command to specify all commands you want to allow in the
secure image. For example:

set_commands -secure add_equivalent_nofaults set_commands -secure
 add_nofaults set_commands -secure source set_commands -secure
 help set_commands -secure read_faults set_commands -secure
 read_nofaults set_commands -secure remove_nofaults set_commands
 -secure report_licenses set_commands -secure report_nofaults
 set_commands -secure report_patterns set_commands -secure
 report_version set_commands -secure set_simulation set_commands
 -secure run_diagnosis set_commands -secure run_simulation
 set_commands -secure set_patterns set_commands -secure set_diagnosis

6. Use the write_image command to create the secure image. For example:

write_image image_enc.gz -password top_secret \ -schematic_view
 -replace -garble

7. Generate the ATPG patterns.

run_atpg -auto
8. Write the ATPG patterns to a binary file.

write_patterns pat.bin -format binary
To read the secure image:

1. Force TestMAX ATPG to BUILD mode, as shown in the following example:

build -force
2. Read the image.

read_image image_enc.gz -password top_secret
3. Read the binary pattern format.

set_patterns -external pat.bin
4. Create the STIL/WGL patterns to be used with garbled image.

write_patterns pat_garbled.wgl -format wgl -external write_patterns
 pat_garbled.stil -format stil -external

To translate a garbled name back to the original name:

1. Read the original design database, as shown in the following example:

read_netlist specnetlist.v
2. Create the design mode.

run_build_model ...
3. Perform design rule checking.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

539

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Design Rule Checking
Save/Restore in TEST Mode

Feedback

run_drc ...
4. Supply the garbled name as argument to get ungarbled name in output.

report_instances u43259 -ungarble

Save/Restore in TEST Mode
You can use the save/restore feature to reduce the time needed to read the netlists,
build the design, and run the design rule checker (DRC) for subsequent ATPG runs. This
feature is implemented through the write_image and read_image commands.

After a successful DRC run, use the write_image command while in TEST mode to save
the in-memory TestMAX ATPG database (gates) to a file. You can optionally save the
DRC violations for the C, D, L, S, X, and Z rules with the -violations option. When you
later decide to do more runs, issue a read_image command to read the database file and
proceed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

540

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

13
Optimizing ATPG

TestMAX ATPG enables you to set some of the basic ATPG parameters, as described in
Running ATPG. You can further optimize the ATPG process by specifying other settings,
such as ATPG constraints and test points, limiting the number of patterns and aborted
decisions, applying pattern masking, and running multicore ATPG.

The following sections describe the various settings you can make to optimize ATPG:

• Optimizing Basic Scan Patterns

• Using ATPG Constraints

• Using the Random Decision Option

• Obtaining Target Test Coverage Using Fewer Patterns

• Maximizing Test Coverage Using Fewer Patterns

• Improving Test Coverage With Test Points

• Limiting the Number of Patterns

• Limiting the Number of Aborted Decisions

• Using ATPG Checkpoint Files

• Creating Test Patterns for Diagnosing Scan Chain Failures

• Performing Scan Chain Diagnosis

• Creating End-of-Cycle Measures in ATPG Patterns

• Deleting Top-Level Ports From Output Patterns

• Detecting Faults Multiple Times Using N-Detect

• WGL Pattern Generation Options

• Running Multicore ATPG

• Running Logic Simulation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

541

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Optimizing Basic Scan Patterns

Feedback

• Data Volume and Test Application Time Reduction Calculations

• Pattern Porting

Optimizing Basic Scan Patterns
You can use the -optimize_patterns option of the run_atpg command to produce a
compact set of patterns with high test coverage. This option enables you to use a single
run_atpg command instead of iterating multiple run_atpg commands and manually
adjusting various parameters.

When the -optimize_patterns option is set, TestMAX ATPG monitors the ATPG process
and dynamically adjusts the internal algorithms to generate a compact pattern set. The
trade-off is a longer runtime. All manually specified run_atpg settings, such as abort
limits, minimum detects, and merge limits, are ignored during this operation. However,
these settings are restored after pattern optimization is completed.

Note that the -optimize_patterns option generates two-clock ATPG patterns as basic
scan patterns. But they are stored, read, and simulated as fast-sequential patterns. As a
result, a fault simulation that uses two-clock ATPG patterns usually takes longer than the
original ATPG run.

The -optimize_patterns option of the run_atpg command will work with the
-chain_test, -coverage, and -patterns options of the set_atpg command. This option
also works with all power aware options of the set_atpg command. However, the power
aware options might impact the effectiveness of the pattern optimization process.

The -optimize_patterns option is useful during a final TestMAX ATPG run when you
want to optimize the pattern count. It generates a lower number of patterns and produces
similar test coverage compared to a single run_atpg -auto_compression command. You
cannot use the -optimize_patterns option with any additional run_atpg options.

You should use the run_atpg -auto_compression command for general pattern
generation purposes, such as initial test coverage estimates, writing patterns for
verification, analyzing the effects of various options, and obtaining good test coverage and
pattern count without increased runtimes. For details on using the -auto_compression
option, see Using Automatic Mode to Generate Optimized Patterns.

Note the following limitations when using the -optimize_patterns option:

• Multiple run_atpg commands are supported, but pattern optimization can only be
specified one time.

• A learned recipe is not saved.

• Fast-Sequential and Full-Sequential ATPG modes are not supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

542

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Using ATPG Constraints

Feedback

• Be aware that unlike the run_atpg -auto_compression command, specifying
set_atpg -capture_cycle number will not enable Fast-Sequential ATPG during the
pattern optimization process. To run Fast-Sequential top-off ATPG, it must be done as
an extra step. For example:

run_atpg –optimize_patterns
set_atpg –capture 4
run_atpg -auto fast_sequential

• Only stuck-at and transition fault models are supported.

• Distributed APTG is not supported.

Using ATPG Constraints
You can use ATPG constraints to define internal constraints that must be satisfied during
ATPG pattern generation and DRC.

The following sections show several examples of how to apply ATPG constraints:

• Adding ATPG Constraints to Block a Timing-Sensitive Path

• Defining, Reporting, and Removing No Detection Credit Cells

• Using ATPG Constraints to Control ATPG Assertions

Adding ATPG Constraints to Block a Timing-Sensitive Path
In this example, a combinational gate is buried within the design hierarchy. Under random
conditions, a timing-sensitive path causes generated ATPG patterns to fail simulation. Your
analysis concludes that if you could hold two of the pins of a four-input NAND gate at a
high value, you could block the use of this timing-sensitive path.

The instance path name of the NAND gate is asic_top/BRL/regbank2/u1, and the input
pins you want to control are A and C.

You can add the required constraints using either the TestMAX ATPG GUI or the
add_atpg_constraints command.

To add constraints using the TestMAX ATPG GUI:

1. Select Constraints > ATPG Constraints > Add ATPG Constraints.

The Add ATPG Constraints dialog box appears.

2. For each constraint, specify a constraint name, the constraint site, and value.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

543

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Using ATPG Constraints

Feedback

3. You can apply the constraint to a single site or to selected pins of all instances of a
module.

4. Click OK.

Defining, Reporting, and Removing No Detection Credit Cells
You can use the -no_detection_credit option of the add_atpg_constraints command
to define cells that you don't want credited as faults but can still be used for good machine
values. Note that this feature is available only in TestMAX ATPG.

You can also report these cells and remove them, as shown in the following examples.

The following example shows a file, round23q.list, containing a list of no detection credit
cells:

// initial test
de_encrypt/round_reg_2_/Q
de_encrypt/round_reg_3_/Q

This file is read by the -no_detection_credit option of the add_atpg_constraints
command, as shown in the following example:

TEST-T> add_atpg_constraints -no_detection_credit round23q.list
2 no_detection_credit_cells were successfully read in.

You can also report these cells using the -no_detection option of the
report_atpg_constraints command, as shown in the following example:

TEST-T> report_atpg_constraints -no_detection_credit
No_detection_credit_cells list: #no_detection_credit_cells=2
1: gate_id=8564, instance=de_encrypt/round_reg_3_ (chain=120, position=3)
2: gate_id=8570, instance=de_encrypt/round_reg_2_ (chain=120, position=4)

To remove no detection credit cells, use the -no_detection_credit option of the
remove_atpg_constraints command, as shown in the following example:

TEST-T> remove_atpg_constraints -no_detection_credit
The -no_detection_credit option changes the fault status of the no detection credit
cells from AU (ATPG Untestable) to NC (Not Controlled), and can be used in the DRC and
TEST modes.

Using ATPG Constraints to Control ATPG Assertions
In this example, a library module, FIFO, has two control inputs: push and pop. Under
normal operation, the control logic for push and pop ensures that both inputs are never
asserted at the same time. However, under the random conditions of ATPG, this control is
not guaranteed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

544

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Using ATPG Constraints

Feedback

To ensure that push and pop are never asserted at the same time, you can define an
ATPG constraint at the module level by adding a temporary gate to facilitate the ATPG
constraint. You can then define the actual constraint.

In this case, you want a logic function with a single output that can be monitored to assure
that the push and pop pins are at the required logic states.

You can use the TestMAX ATPG GUI or the add_atpg_primitives command to define
an ATPG primitive to implement this logic function and apply the ATPG constraints to the
push and pop inputs. You can then use the add_atpg_constraints command to apply an
ATPG constraint to the newly created primitive.

The following example flow uses the TestMAX ATPG GUI to define an ATPG primitive and
apply the ATPG constraints to the applicable inputs:

1. Select Constraints > ATPG Primitives > Add ATPG Primitives.

The Add ATPG Primitives dialog box appears.

2. In the Type list, select the SEL01 ATPG primitive. (For a list of all available ATPG
primitives, see the description of the add_atpg_primitives command.)

The SEL01 function produces a 1 as its output if all inputs are 0 or if only one input is 1
and the other inputs are 0. For the example two-input implementation, SEL01 produces
a 0 only if both inputs are 1.

3. In the ATPG Primitive Name field, type the name you want to give this primitive.

4. In the Module field, type the name of the module for the primitive.

5. In the Input Constraints field, enter the inputs that are to be constrained (in this case,
push and pop). Click Add after each entry. The inputs are added to the list in the Input
Constraints window.

6. Click OK.

The following example shows how to add the primitive using the add_atpg_primitives
command:

DRC-T> add_atpg_primitives FIFO_CTRL sel01 -module FIFO push pop
The new gate, FIFO_CTRL, is added to the module FIFO and uses the module-level pins
named push and pop as input to the SEL01 function. The output pin of the function is
referenced by the name FIFO_CTRL.

If necessary, you can add more primitives and cascade the logic to build more complex
logic functions.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

545

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Using the Random Decision Option

Feedback

To apply a constraint to the output of the newly added primitive, use the
add_atpg_constraints command, as shown in the following example:

DRC-T> add_atpg_constraints spec_LABEL 1 -module FIFO FIFO_CTRL
This command defines a constraint, referenced by spec_LABEL, that holds the output
FIFO_CTRL to a 1 value. The SEL01 function cannot have an output of 1 if both of its inputs
are 1, so this constraint ensures that the push and pop pins are never asserted at the
same time.

Using the Random Decision Option
You can use the Random Decision check box in the Run ATPG dialog box to specify how
TestMAX ATPG makes the initial choice for any algorithm decision concerning ATPG
pattern generation. By default, Random Decision is off and the initial choice is made based
on controllability criteria. Checking Random Decision for ATPG pattern compression can
result in a smaller number of patterns.

The following set_atpg command is equivalent to checking the Random Decision check
box:

TEST-T> set_atpg -decision random

See Also

• Specifying General ATPG Settings

Obtaining Target Test Coverage Using Fewer Patterns
To obtain a target test coverage value while minimizing the number of patterns, follow
the procedure for obtaining maximum test coverage and set the coverage percentage
(-coverage option) to a number between 1 and 99 that represents your target test
coverage.

TestMAX ATPG creates patterns in groups of 32 and checks this limit at each 32-pattern
boundary, so the patterns generated might exceed the target test coverage.

Review the transcript. If you find that your target is met with the first few patterns of the
last group of 32 and you do not want to include all of the last group of patterns, use the
write_patterns -last command to truncate the patterns written as output at the point at
which the target was met.

The target coverage is affected by your use of the set_faults -report command. If
fault reporting is set to collapsed, the target percentage is in collapsed fault numbers. If
fault reporting is set to uncollapsed, the target percentage is in uncollapsed numbers. The
test coverage obtained through the uncollapsed fault list is usually higher and within a

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

546

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Maximizing Test Coverage Using Fewer Patterns

Feedback

few percentage points of the test coverage obtained through the collapsed fault list (note,
however, test coverage can slightly more with the fault report set to collapsed compared
to the test coverage with fault coverage set to uncollapsed). To be conservative, set fault
reporting to collapsed before you generate patterns for a specific target coverage. When
you have finished, display the test coverage using the uncollapsed fault list numbers.
Often, the actual test coverage achieved is higher than your target.

Maximizing Test Coverage Using Fewer Patterns
To obtain the maximum test coverage while minimizing the number of patterns:

1. Obtain an estimate of test coverage using the Quick Test Coverage technique.
For details, see Quickly Estimating Test Coverage. If you are not satisfied with the
estimate, determine the cause of the problem and obtain satisfactory test coverage
before you attempt to achieve minimum patterns.

2. Set the abort limit to 100–300.

3. Set the merge effort to High.

4. Execute run_atpg -auto_compression.

5. Examine the results. If there are still too many NC or NO faults remaining, increase the
Abort Limit by a factor of 2 and execute run_atpg again.

Improving Test Coverage With Test Points
You can improve TestMAX ATPG test coverage by adding control and observation points
to specific areas with known low controllability and observability. TestMAX ATPG then
generates additional patterns for faults that are controlled or fed into these points. This
process is particularly useful if you want to achieve very high test coverage targets —
usually in the 99 percent range.

You can use TestMAX ATPG to further improve test coverage by performing an analysis to
determine the optimal placement of test points.

The following sections describe how to improve test coverage with test points:

• Test Points Analysis Options

• Running the Test Points Analysis Flow

• Limitation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

547

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Improving Test Coverage With Test Points

Feedback

Test Points Analysis Options
You can use the analyze_test_points command to select a particular type of analysis:

analyze_test_points –target <pattern_reduction | testability |
 fault_class>

The analysis options are described as follows:

• pattern_reduction — Uses static analysis with SCOAP (Sandia Controllability and
Observability Analysis Program) numbers to target reduced pattern size with observe
points (does not require prior ATPG).

• testability — Uses iterative static analysis with random patterns to target improved
test coverage with control and observe points (does not require prior ATPG).

• fault_class — Uses dynamic analysis with fault cone topology to target improved
test coverage with observe points for fault classes (requires initial ATPG for analysis of
fault cones).

Running the Test Points Analysis Flow
The following steps describe the flow for running test-point insertion:

1. Run the run_atpg –auto command or use any other method for generating patterns.

If you do not perform ATPG before running the analyze_test_points command, all
undetected faults are analyzed, which might result in very long runtimes.

2. Run the analyze_test_points command to generate a list of test points. For
example:

analyze_test_points -target fault_class -test_points_file tp_file_a
You can run the analyze_test_points -target testability or the
analyze_test_points -target pattern_reduction commands before or after
ATPG to obtain a list of test points. A previous ATPG run is only required when you use
the -target fault_class option with the analyze_test_points command.

3. Use the run_atpg –auto command to launch another ATPG run. TestMAX ATPG
estimates the test coverage improvement by reading in the generated test points file.
For example:

run_atpg –auto –observe_file tp_file_a

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

548

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Limiting the Number of Patterns

Feedback

Note: The total number of faults reported after running ATPG will not include the faults
from the additional test points.

4. Use TestMAX DFT to insert the test points by reading in the file generated by the
analyze_test_points command, then rerun TestMAX ATPG on the new netlist to
generate the final ATPG patterns and coverage.

Limitation
Note the following limitation associated with test points analysis:

• If you have a LSSD design, you can use the analyze_test_points command in
TestMAX ATPG. However, TestMAX DFT does not support the insertion of observe and
control test points on this style of scan. In this case, a TESTXG-61 message is issued
in TestMAX DFT.

Limiting the Number of Patterns
By default, the number of ATPG patterns TestMAX ATPG produces is limited only by
the RAM and disk space of your computer or workstation. You can specify a limit on the
number of patterns by entering an integer value in the Max Patterns field of the Run ATPG
dialog box, or by issuing a command similar to the following example:

TEST-T> set_atpg -patterns 1234
If there is a pattern limit in effect, you can turn it off by running the value 0 as the pattern
limit.

Limiting the Number of Aborted Decisions
The search for a pattern by the ATPG algorithm involves making a decision and certain
assumptions, setting inputs and scan chain values, and determining whether controllability
and observability can be attained. When an assumption is proved false or some restriction
or blockage is encountered, the algorithm backs up, remakes the decision, and proceeds
until the abort limit is reached or a pattern is found to detect the fault.

To control the level of effort used in searching for a pattern to detect a specific fault, use
the -abort_limit option of the set_atpg command or enter a number in the Abort Limit
field of the Run ATPG dialog box. The default limit is 10. Higher numbers indicate higher
levels of effort.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

549

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Using ATPG Checkpoint Files

Feedback

The default of 10 has been found to return reasonable results for most designs. Some
possible reasons for adjusting the abort limit are,

• You want a quick estimate of total coverage (see Quickly Estimating Test Coverage.

• You find that after performing pattern generation, you have ND (not detected) faults
remaining. See Analyzing the Cause of Low Test Coverage.

• You have aborted buses reported during design rule checking (DRC). See Analyzing
Buses.

• You are using a high compression effort and you want to generate enough patterns to
ensure that the CPU time spent merging patterns is worthwhile.

Using ATPG Checkpoint Files
You can use ATPG checkpoint files to retain generated fault lists and patterns in case of a
crash.

If you specify the -checkpoint option of the set_atpg command, fault lists and patterns
are periodically saved to files at a specified checkpoint interval during ATPG pattern
generation.

The following example saves faults to the chkp_fault checkpoint file and patterns to the
chk_patt file at intervals of 3600 CPU seconds:

set_atpg -checkpoint { 3600.00 chkp_fault chkp_patt }

The following steps describe how to recover faults and patterns from checkpoint files after
a crash:

1. Invoke TestMAX ATPG or TestMAX ATPG again.

2. Run the build command and DRC, and specify the ATPG settings to the same state
before you started the run_atpg command in the original run.

3. Use the read_faults command to read the faults saved in the fault checkpoint file.
These faults replace all faults added from the add_faults commands and any other
commands associated with adding faults in the original run. The following example
reads in the chkp_fault file and retains the fault codes:

read_faults chkp_fault -force_retain_code
4. Read the patterns saved in the pattern checkpoint file and transfer them to the internal

pattern buffer, as shown in the following example:

set_patterns -external chkp_patt run_simulation -store set_patterns
 -internal

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

550

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Creating Test Patterns for Diagnosing Scan Chain Failures

Feedback

5. Start the run_atpg command using the same command options that you used in the
original run.

6. Include all post-ATPG commands in the run script so the ATPG process can finish as
intended.

Creating Test Patterns for Diagnosing Scan Chain Failures
By default, the run_atpg command creates an initial pattern, called a chain test, to test
scan cells, scan clocking, and scan enable signals. This pattern does not pulse capture
clocks or asynchronous set and reset signals. It only loads and unloads the repeating
pattern of 0 and 1 signals. If the chain test pattern fails, TestMAX ATPG assumes that all
failures are caused by scan chain defects.

If your design uses DFTMAX compression with high X-tolerance, you can use the

-xtol_chain_diagnosis option of the set_atpg command to create additional patterns
that improve the identification of failing scan chains, failing scan cells, and multiple chain
defects. When you specify the -xtol_chain_diagnosis option, the run_atpg command
creates two additional sets of patterns:

• X-tolerant chain tests (also known as augmented chain test patterns)

• X-tolerant capture patterns

After generating these additional pattern sets, the run_atpg command continues
generating normal capture patterns and targets the remaining undetected faults.

Figure 1 shows the components of the final generated pattern set when the

-xtol_chain_diganosis option is enabled.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

551

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Creating Test Patterns for Diagnosing Scan Chain Failures

Feedback

Figure 94 Pattern Set Generated Using the -xtol_chain_diganosis Option

   

The following sections explain the process for generating test patterns for diagnosing scan
chain failures:

• Understanding DFTMAX Unload Modes and Chain Diagnosis Patterns

• Generating Pattern Sets

For more information on DFTMAX high X-tolerance scan compression, see the "Managing
X Values in Scan Compression" chapter in the DFTMAX User Guide.

Understanding DFTMAX Unload Modes and Chain Diagnosis
Patterns
The X-tolerant chain tests and X-tolerant capture patterns use additional unload modes
from the high X-tolerance DFTMAX architecture. These modes dynamically configure the
compressor so each internal scan chain is observed on no more than one scan output pin
of the device under test. These modes are classified as either N:1 or 1:1 modes.

The N:1 modes observe multiple internal scan chains on each scan output pin. The 1:1
modes observe a single internal scan chain on each scan output pin, which is optimal
for mapping tester failures back to a failing scan cell. Each 1:1 mode can observe only
a subset of all internal scan chains, inversely proportional to the compression ratio. As a

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

552

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Creating Test Patterns for Diagnosing Scan Chain Failures

Feedback

result, TestMAX ATPG implements several 1:1 modes so it can directly observe all internal
scan chains. You can use the

report_compressors -unload command to report the number of unload modes and list
the 1:1 modes.

The X-tolerant chain tests use the 1:1 X-tolerant modes to observe individual chains.
Each 1:1 mode is enabled for 20 shift cycles, and each X-tolerant chain test pattern has
an additional padding pattern. To calculate the number of X tolerant chain test patterns,
multiply the compression ratio by 20 and divide by the number of shift cycles. You should
double this number to account for padding patterns. For example, a design with 32 scan
I/Os, 1600 internal chains, and a maximum chain length of 250 requires 8 (=2*1600*20/
(32*250)) additional patterns.

The X-tolerant capture patterns use all available N:1 or 1:1 X-tolerant modes. These
patterns pulse capture clocks and target primary and secondary faults similar to patterns
produced from standard ATPG. However, X-tolerant capture patterns are optimized to
improve the diagnosis of failing scan cells, while standard ATPG maximizes the number
of faults detected per pattern. When you specify the -xtol_chain_diagnosis low option
of the set_atpg command, 32 capture patterns and 32 padding patterns are generated
that use only N:1 X-tolerant modes. These modes provide a limited improvement for
identifying failing scan cells. When the high option is specified, TestMAX ATPG generates
10 capture patterns for each available 1:1 X-tolerant mode. Specifying the high option
creates additional patterns which provide a significant improvement for diagnosing chain
defects.

Generating Pattern Sets
To generate pattern sets for diagnosing scan chain failures, specify the

-xtol_chain_diagnosis option of the set_atpg command, followed by the run_atpg
command.

The following example creates a single pattern set for both accurate diagnosis of scan
chain defects and high manufacturing test coverage:

TEST-T> set_atpg -xtol_chain_diagnosis high
TEST-T> run_atpg –auto

You might need two separate patterns sets: one for accurate diagnosis of scan chain
defects and another for high manufacturing test coverage. You can use the

run_atpg -only_chain_diagnosis command to terminate ATPG after generating the X-
tolerant chain tests and capture patterns. The following example shows how to generate a
separate pattern set for diagnosis of chain defects. This pattern set includes an additional
100 standard ATPG patterns to further improve diagnosis resolution.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

553

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Performing Scan Chain Diagnosis

Feedback

TEST-T> set_atpg -xtol_chain_diagnosis high
TEST-T> run_atpg -only_chain_diagnosis –auto
TEST-T> set_atpg -xtol_chain_diagnosis off
TEST-T> set_atpg -patterns [expr [sizeof_collection \
 [get_patterns -all]] + 100]
TEST-T> run_atpg –auto

See Also

• Performing Scan Chain Diagnosis

• Preparing for ATPG

Performing Scan Chain Diagnosis
Functional logic diagnostics assumes that scan data is properly loaded and unloaded. If
patterns show failures during the chain test, a chain defect is interfering with the loading
and unloading processes. TestMAX ATPG scan chain diagnostics isolates the defects that
affect scan chain shifting.

You can use both standard scan patterns and DFTMAX patterns for scan chain
diagnostics. If you are testing an X-tolerant design, TestMAX ATPG can generate
additional chain test patterns that use the X-tolerant modes to directly observe a group of
chains at the scan outputs. For more information on this process, see the Creating Test
Patterns for Diagnosing Scan Chain Failures section.

The following sections explain how to perform scan chain diagnostics:

• Running Scan Chain Diagnosis

• Understanding the Scan Chain Diagnosis Report

• Diagnosing Defects Related to Power Issues

Running Scan Chain Diagnosis
Chain diagnostics are enabled by default, and can be disabled using the set_diagnosis
-noauto command. For optimal accuracy, you should use failure data from ten or more
patterns. Always provide TestMAX ATPG with as many failures as possible, including
failures that occur when running the chain test pattern. The following example shows how
to set up and run scan chain diagnosis:

set_patterns -external pat.stil

set_diagnosis -auto

run_diagnosis fail.log

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

554

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Performing Scan Chain Diagnosis

Feedback

Understanding the Scan Chain Diagnosis Report
Scan chain diagnosis identifies several types of defects that affect shifting, including slow
clock signals that cause a hold time violation and reset lines stuck at an active value.

The output diagnosis report identifies the location of stuck-at, slow-to-rise, slow-to-fall,
fast-to-rise or fast-to-fall faults. The latter two fault types address hold time problems that
affect the scan chain shift operation.

To isolate the location of the defect, TestMAX ATPG scan chain diagnosis analyzes the
control and observability of scan cells. For example, assume that a stuck-at fault prevents
scan cell A from shifting to scan cell B. In this case, scan cell A, and all cells located
before it, drive valid values to functional logic. These cells appear as tied cells when they
are unloaded, and are therefore unobservable. Scan cell B, and all cells that follow it, drive
invalid values to functional logic, but they might capture observable valid values.

The diagnosis report includes a set of possible defect locations (chain, cell position, and
instance name). It also includes a match percentage score that indicates the confidence of
each location. This score is a percentage that measures the degree to which a failure on
the tester matches a simulated chain defect at that location. The predicted type of defect is
also included in the diagnosis report. For example:

fail.log scan chain diagnosis results: #failing_patterns=79
--
defect type=fast-to-rise
match=100% chain=c0 position=178 master=CORE/c_rg0 (46)
match=100% chain=c0 position=179 master=CORE/c_rg2 (57)
match= 98% chain=c0 position=180 master=CORE/c_rg6 (54)
The example report indicates that a fast-to-rise defect is likely the cause of the failures. It
also identifies the three scan cell locations that have an output with the physical defect.
Some chain test patterns do not fail on the tester, even though the failures appear to
be related to a chain defect. Also, the tester might not collect all failures for the chain
test patterns. In both cases, scan chain diagnostics cannot analyze or locate the defect
location. To address these situations, use the -assume_chain_defect option of the
run_diagnosis command to specify a defect location and force TestMAX ATPG to obtain
the scores.

Diagnosing Defects Related to Power Issues
TestMAX ATPG can also improve the characterization and diagnosis of chain defects
related to power issues. To screen failures based on switching activity, TestMAX ATPG
uses the quiet chain test patterns instead of regular chain test patterns. Specify the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

555

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Creating End-of-Cycle Measures in ATPG Patterns

Feedback

-quiet_chain_test option of the set_atpg command to enable the run_atpg command
to generate quiet chain test patterns.

For more information, see the Applying Quiet Test Patterns section.

Creating End-of-Cycle Measures in ATPG Patterns
The TestMAX ATPG combinational ATPG algorithm is based on a preclock measure of
scan outputs and regular design outputs. This preclock measure requires a fundamental
event order within a tester cycle of:

• Force inputs

• Measure outputs

• Pulse capture clocks (optional)

This preclock measure has been chosen because it enables superior ATPG pattern
generation performance without compromising on pattern count or tester cycle count.

Many ASIC vendors and users prefer to have patterns with an event order using postclock
or End-of-Cycle measures. A postclock measure seems to be a more comfortable form
because it matches the event order of most functional patterns and is perhaps easier to
debug.

Many ASIC vendors claim that they can only accept postclock measure format. It is rare to
find an ASIC tester which does not support the preclock measure. More often than not it is
a software translation limitation rather than a tester limitation. The fundamental event order
for a postclock measure cycle is:

1. Force inputs

2. Pulse capture clocks (optional)

3. Measure outputs

The TestMAX ATPG combinational ATPG algorithm will not produce this postclock form
of patterns. However, the postclock style of patterns can be created using some post
processing techniques applied during the write_patterns command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

556

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Creating End-of-Cycle Measures in ATPG Patterns

Feedback

Drawbacks of Using End-of-Cycle Measures
Here are some drawbacks of creating End-of-Cycle style ATPG patterns:

• The internal pattern format is in preclock format and attempting to compare internal
patterns to an external form in STIL, Verilog, VHDL, and so forth. is more difficult.

• At least one additional tester cycle is needed for every ATPG pattern. This additional
cycle is placed in the load_unload procedure and performs a scan chain pre-measure
before the Shift procedure.

• Capture Clock procedures cannot be condensed into a single tester cycle and must be
defined with a minimum of 2 tester cycles. The first cycle performs a force PI, measure
PO, and the second cycle performs an optional clock pulse.

In general terms, the cost of implementing the End-of-Cycle measure is two additional
tester cycles for every ATPG pattern generated. There is no increase or decrease to
overall test coverage or the number of ATPG patterns produced by choosing End-of-Cycle
measures over preclock measure. This can or cannot be significant, depending upon your
budget for test cycles or tester time.

Requirements Needed to Produce End-of-Cycle Measures
To create End-of-Cycle style ATPG patterns with the write_patterns command the
following setup steps are required:

1. The DRC procedure file must contain a timing definition block and the time at which
outputs and scan outputs are measured must be defined to occur at the end of a test
cycle, after any potential clock pulses.

2. All capture procedures must be defined using two or more test cycles and the event
order must be:

cycle 1: force PI's, measure PO's cycle 2: mask PO's, pulse clocks
3. The load_unload procedure must pre-measure the first scan chain output before the

first scan shift is performed.

In this case, you are still measuring outputs before a clock. You do not change the
fundamental event order which must continue to be: 1) force PI's, 2) measure PO's, 3)
pulse clocks; make sure that relative to a single tester cycle timing, the measures occur
after any clock pulses. For example, if you define tester timing for a 100nS period in which
PI's are forced at offset zero, a clock is pulsed from 50 to 70ns and outputs are measured
at 99ns, then your "capture_XXX" procedures produce a 2-cycle timing of:

 time action cycle
 ---- ------------------------------- -----
 000 force PI's 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

557

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Deleting Top-Level Ports From Output Patterns

Feedback

 050 assert clock (but inhibited) 1
 070 remove clock 1
 099 measure PO's 1
 100 force PI's (no change needed) 2
 150 assert clock 2
 170 remove clock 2
 199 measure PO's (masked) 2

The fundamental event order is still that of the preclock timing under which the ATPG
patterns are generated but the per cycle timing is such that measures are performed at the
end of a tester cycle.

See Also

• End-of-Cycle Measures and Load_Unload

• End-of-Cycle Measures and Timing

• End-of-Cycle Measures and Capture Procedures

Deleting Top-Level Ports From Output Patterns
Some netlist formats include nonlogic top-level ports (for example, power and ground).
ATPG patterns that include power and ground can create problems with simulation. You
can eliminate these and other unwanted top-level ports from the generated patterns using
the add_net_connections command.

The following example removes the top-level input ports pwr1, pwr2, and pwr3 from the
generated patterns:

BUILD-T> add_net_connections pwr1 pwr2 pwr3 -remove

This command modifies only the in-memory image of the design. These changes do not
appear in the output from the write_netlist command.

Detecting Faults Multiple Times Using N-Detect
The N-detect functionality detects faults a specified number (n) of times during ATPG. The
default is one fault detection. During fault simulation, the fault is kept in the active list until
it is detected n times. Detecting faults with multiple patterns identifies defects that cannot
be modeled with standard fault models. Examples include transistor stuck-open or cell-
level faults.

The N-detect capability is implemented with -ndetects option of the run_atpg,
run_fault_sim, and report_faults commands.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

558

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

Note the following:

• The N-detect capability increases the pattern size, memory consumption, and runtime.

• All fault models are supported, except the IDDQ and path delay fault models.

• Multicore ATPG, distributed processing, full-sequential ATPG, and fault simulation are
not supported.

• N-detect ATPG should be used with the set_atpg -decision random command to
increase the probability of detecting the faults in different ways. TestMAX ATPG does
not guarantee that each fault is detected in different ways.

See Also

• Distributed ATPG Limitations

WGL Pattern Generation Options
The following sections explain the various WGL pattern generation options:

• Creating LSI-Compatible WGL Patterns

• Creating NEC-Compatible WGL Patterns

• WGL Scan Chain Padding

• WGL Scan Chain Definitions

• Macro Usage in WGL

• Grouping Bidirectional Port Data in WGL

• Controlling Port Data Order in WGL

• Specifying Windowed Measures in WGL

• Delayed Input Force Timing and Force Prior in WGL

• Balancing Vector and Scan Statements in WGL

• Mapping Bidirectional Ports Within Vector Statements in WGL

• Mapping Bidirectional Ports Within Scan Statements in WGL

• Adjusting Pattern Data for Serial Versus Parallel Interpretation in WGL

• Selecting Scan Chain Inversion Reference in WGL

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

559

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

• Effect of CELLDEFINE in WGL

• Ambiguity of the Master Cell in WGL

Creating LSI-Compatible WGL Patterns
To produce LSI-compatible WGL output you need to use the set_drc, set_buses,
set_simulation, and set_wgl commands, as shown in the following example:

set_drc -nomulti_captures_per_load
set_buses -external_z x

set_simulation -xclock_gives_xout

set_rules c13 error

set_rules z4 error

set_wgl -nolast_scan

set_wgl -scan_map keep

set_wgl -pre_measured

set_wgl -inversion_reference master

set_wgl -chain_list shift

set_wgl -nomacro -nopad -nogroup_bidis

set_wgl -bidi_map { 0x 0-
1x 1- xx x- z0 -0 z1 -1 zx -x zz -z }

Note the following:

• Scan shifts must use a single tester cycle. For more information, see "Defining the Shift
Procedure."

• Scan Chain names defined in the STIL procedure file must not contain spaces or other
white space. For example, use "chain_1" instead of "chain 1".

• You must define the end-of-cycle timing, as follows:

1. The timing block must define the end-of-cycle measure. For more information, see
"Creating End-of-Cycle Measures in ATPG Patterns."

2. The load_unload procedure must use pre-measure scan outputs. For more
information, see "Defining the load_unload Procedure."

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

560

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

• You can use the ReflectIO protocol. However, unless all bidirectional pins are fully
controlled, you should avoid this protocol since it can create patterns which fail in
simulation and might contain contention when all BIDI pins are not controlled.

For a design with bidirectional ports, the ReflectIO protocol causes each capture_XXX
procedure to use the reflectIO style of syntax. For example, you can define all clocks
and then issue the set_drc -bidi_control_pin command followed by a write_drc
command to create a template STIL procedure file. Then modify the capture_XXX
procedures to appear similar to the following 3-cycle protocol:

capture_CLK { W _default_WFT_; V { _pi=\r15 # ; _po=\j \r44 % ; } #
 force PI, TN=1 V { TN=0; _io=\r32 Z ; _po=\j \r44 X ; } # disable
 bidis V { _io=\m \r32 % ; CLK=P; } # reflect bidis, pulse CLK }

• All capture_XXX procedures for clocks must have the same number of tester cycles,
V{...} constructs. If you use a three cycle capture for 'CLK', then you must also use
a three-cycle capture for 'RST', 'CLK2', and so forth. This includes the non-clocking
capture procedure named capture.

• Use a test_setup procedure to initialize all input pins to a known value in the first test
cycle. Initialize bidirectional pins to Z.

• If inputs are applied with a delay on the tester, then the Timing block of the STIL DRC
procedure file should include a "ForcePrior" or "P" character at time offset zero of each
cycle before applying the required value within that cycle. This generates a V6 warning
during DRC which will have to be ignored. There is an example of ForcePrior at the
end of topic: Controlling Pin Timing in STIL

• You can use only one timing block.

• Use the -order_pins option of the write_patterns command when writing WGL
patterns.

• Do not use the -measure_forced_bidis option of the write_patterns command
when writing WGL patterns

• Contact LSI for the latest advice and application notes concerning the use of TestMAX
ATPG.

See Also

• End-of-Cycle Measures and Load_Unload

• End-of-Cycle Measures and Timing

• End-of-Cycle Measures and Capture Procedures

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

561

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

Creating NEC-Compatible WGL Patterns
To produce NEC-compatible WGL output, you need to use both the set_simulation and
set_wgl commands, as shown in the following example:

set_simulation -strong_bidi_fill
set_wgl -nomacro
set_wgl -nopad
set_wgl -notester_ready
set_wgl -inversion_reference master

set_wgl -scan_map dash

set_wgl -bidi_map { 0x 0-
 1x 1- xx x- z0 -0
 z1 -1
 zx -x zz -z -x -- z- -- }

Note the following:

• Scan shifts must use a single tester cycle. For more information, see Defining the Shift
Procedure.

• You must define the end-of-cycle timing, as follows:

1. The timing block must define the end-of-cycle measure. For more information, see
Creating End-of-Cycle Measures in ATPG Pattterns.

2. The load_unload procedure must use pre-measure scan outputs. For more
information, see Defining the load_unload Procedure.

3. The clock capture procedures must use the two-cycle end-of-cycle measure format.
For more information, see Defining Capture Procedures in STIL.

• You must explicitly initialize bidirectional ports to non-Z values in the load_unload
procedure.

Use the test_setup procedure to eliminate uninitialized ports at T=0. For more
information, see Defining the test_setup Procedure.

Use the test_setup procedure to eliminate floating ports at T=0.

Do not use the -measure_forced_bidis option of the write_patterns command
when writing WGL patterns.

Use the WGL to ALB to Verilog translation path. Other paths, such as WGL to ALB to
CPT, have not been validated to work.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

562

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

See Also

• End-of-Cycle Measures and Load_Unload

• End-of-Cycle Measures and Timing

• End-of-Cycle Measures and Capture Procedures

WGL Scan Chain Padding
When a design has more than one scan chain and the scan chains are not all the same
length then you have the option of causing the WGL patterns to be written so that all scan
load and unload data is the same length (set_wgl -pad) or is only the length of the scan
chain (set_wgl -nopad). The default is not to pad, and this is preferred by most vendors.

When padding is enabled, the pad value can be any one of 0, 1, or X and you select
which by the -pad_character option of the write_patterns command when the WGL
patterns are written. The default when padding is enabled, is to pad with a zero. Note,
however, that when padding is enabled and a particular pad character is chosen that this
will have no effect on the padding used for the chain test patterns. The padding for chain
test patterns is always the continuation of the repeating string 0011.

The first example shows a portion of the WGL SCANSTATE block for a design with three
scan chains of length 2, 3, and 8 bits where padding is disabled.

 # scan chain padding disabled
 scanstate
 c1L0 := c1G(11);
 c2L1 := c2G(011);
 c3L2 := c3G(00110011);
 c1E3 := c1G(00);
 c2E4 := c2G(100);
 c3E5 := c3G(11001100);

The second example shows the same data with scan chain padding enabled and a pad
character of X used so that it is easier to see where the padding occurs. For scan load
strings the padding occurs on the left (first shifted in) for all shorter chains. For scan
unload strings the padding occurs on the right (last shifted out).

 # scan chain padding enabled with pad = X
 scanstate
 c1L0 := c1G(XXXXXX11);
 c2L1 := c2G(XXXXX011);
 c3L2 := c3G(00110011);
 c1E3 := c1G(00XXXXXX);
 c2E4 := c2G(100XXXXX);
 c3E5 := c3G(11001100);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

563

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

WGL Scan Chain Definitions
By convention, the scanchain block in WGL defines the instances in the physical
sequence of each scan chain, starting at the scan input, and traversing to the scan output.
The number of instances in the scan chain matches the number of bits called for in the
scanstate block for loading or observing from the scan chain.

On some designs, generally those with JTAG used during ATPG, the final scan chain shift
is done outside of the scan loop. This translates into the "scan()" vector being shortened
by one bit and an additional vector() or more being added to the procedure to handle
the final shift outside of the scan statement. Now most WGL translators require that the
number of bits defined in the scanchain block match the physical length of the scan chain.
However, a few require that the number of bits match the length of data to be loaded by
the "scan()" statements. The-chain_list option controls how the scan chain is listed in
the scanchain block. The default is all which causes all instances in the scan chain to be
included in the defining list. Optionally specifying shift causes the list to match only those
bits loaded by the "scan()" statements.

The first examples shows the default scanchain block for a design with two scan chains of
5 and 4 bits.

 # set_wgl -chain_list all
 scanchain
 chain1 ["si1", "A4", !, "A3", "A2", "A1", "A0", "so1"];
 chain2 ["si2", "B3", "B2", "B1", "B0", !, "so2"];
 end

The second example shows the same scanchain block when the final shift of the scan
chain is done outside of the Shift procedure and a selection of -chain_list shift is used. The
final instance in each scan chain "A1", and "B1" have been omitted from the scan chain
definitions.

 # set_wgl -chain_list shift
 scanchain
 chain1 ["si1", "A4", !, "A3", "A2", "A1", "so1"];
 chain2 ["si2", "B3", "B2", "B1", !, "so2"];
 end

Macro Usage in WGL
WGL supports the definition of macros. Macros can be used to represent commonly
repeated sequences and the use of macros can lead to more compact WGL pattern files.
TestMAX ATPG will write WGL using macros if the set_wgl -macro option has been used.
Most vendors do not support macros as this requires a more complex WGL reader and so
the TestMAX ATPG default is not to use macros.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

564

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

When macros are enabled, TestMAX ATPG adds various macro definitions to the WGL
pattern file. The following example is a macro for a capture procedure for the port CLK.
There will generally be a macro for each procedure in the DRC file.

 # an example macro definition
 macro capture_CLK (SDI3_I, SDO1_I, D0_I, D2_I, CLK, RSTB, SDI,
 INC, SCAN_9, SDI3_O, SDO1_O, D0_O, D2_O, P, SDO, CO)
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I @CLK @RSTB @SDI
 @INC @SCAN_9 X X X X XX XX X];
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I @CLK @RSTB @SDI
 @INC @SCAN_9 @SDI3_O @SDO1_O @D0_O @D2_O @P
 @SDO @CO];
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I 1 @RSTB @SDI
 @INC @SCAN_9 X X X X XX XX X];
 endmacro

The first following example shows a segment from a WGL PATTERN block which does not
use macros and the second example is the same information using macros.

 # example patterns without macros
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I, "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O, "SDO1":O,
 "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]", "CO")
 { test_setup }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 0 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];

 { scan_test }
 { pattern 0 }
 { load_unload }
 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U0], output [c2:c2U1], output [c3:c3U2],
 input [c1:c1L0], input [c2:c2L1], input [c3:c3L2];
 { capture_RSTB }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 1 X X X X X X X X X];
 vector(tp1) := [- Z - - 0 0 0 0 0 1 Z 0 Z Z Z 0 1 0 0];

 { pattern 1 }
 { load_unload }
 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U3], output [c2:c2U4], output [c3:c3U5],
 input [c1:c1L3], input
 [c2:c2L4], input [c3:c3L5];
 { capture_CLK }
 vector(tp1) := [Z Z 0 Z 0 1 1 1 0 0 X X X X X X X X X];
 vector(tp1) := [- - 0 - 0 1 1 1 0 0 Z Z X Z Z 0 1 0 1];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

565

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 vector(tp1) := [Z Z 0 Z 1 1 1 1 0 0 X X X X X X X X X];

 { pattern 2 }
 { load_unload }
 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U6], output [c2:c2U7], output [c3:c3U8],
 input [c1:c1L6], input
 [c2:c2L7], input [c3:c3L8];
 capture_RSTB }
 vector(tp1) := [Z Z Z Z 0 1 1 1 1 1 X X X X X X X X X];
 vector(tp1) := [- Z Z Z 0 0 1 1 1 1 Z 0 1 0 Z 0 0 0 0];

 # example patterns using macros
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I, "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O, "SDO1":O,
 "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]", "CO")
 { test_setup }
 test_setup

 { scan_test }
 { pattern 0 }
 load_unload(c1U0, c2U1, c3U2, c1L0, c2L1, c3L2)
 capture_RSTB(-, Z, -, -, 0, 1, 00, 0, 1, Z, 0, Z, Z, Z0, 10, 0)

 { pattern 1 }
 load_unload(c1U3, c2U4, c3U5, c1L3, c2L4, c3L5)
 capture_CLK(-, -, 0, -, 0, 1, 11, 0, 0, Z, Z, X, Z, Z0, 10, 1)

 { pattern 2 }
 load_unload(c1U6, c2U7, c3U8, c1L6, c2L7, c3L8)
 capture_RSTB(-, Z, Z, Z, 0, 1, 11, 1, 1, Z, 0, 1, 0, Z0, 00, 0)

Grouping Bidirectional Port Data in WGL
In WGL patterns a bidirectional port appears as two characters, one for the force input
value and another for the measure output value. These two characters can appear side by
side (grouped), or in independent locations within the data (split columns). The set_wgl
-group_bidis command causes the two characters to appears as a single column of
two characters, with the first representing the input action and the second representing
the output action. The default is to present the bidirectional port data as two separate
columns.

The first following example uses grouped bidis and in this example there are four
bidirectional ports which appear as the first four columns of each vector()statement. The
characters "ZX" indicate a force of Z (no force) and a measure of X (mask measure).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

566

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 # example patterns using grouped bidis
 pattern group_ALL ("SDI3", "SDO1", "D0", "D2", "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "P[0]",
 "P[1]", "SDO[2]", "SDO[3]", "CO")
 { test_setup }
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 0 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX ZX 0 0 0 0 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 0 0 0 X X X X X];

In the second following example split bidis are used. Notice that the pattern data no longer
has any two character columns. The port order list now lists each bidirectional port twice
and follows each by either :Ior :O to indicate direction. The two parts of the bidirectional
port data do not appear as adjacent data in the vector, they can appear at any position.

 #example patterns using split bidis
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I,
 "CLK", "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O,
 "SDO1":O, "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]",
 "CO")
 { test_setup }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 0 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];

Controlling Port Data Order in WGL
The default pin data order of the WGL pattern data follows the order in which the ports are
defined in the design's top module. By changing the order of the ports in the top module
you can affect the order of the WGL data.

There is also the -order_pins option of the write_patterns command. Use of this
option causes the ports to occur in the order: inputs, bidis, and outputs. Within each
grouping the port data order matches the order the ports are defined in the design's top
module.

For a top-level design with port order:

 module TOP (I1,B1,O1,O2,O4,O3,B3,B2,I3,I2);

the following two examples illustrate the difference in data order.

 # default port order using grouped bidis
 pattern group_ALL ("I1", "B1", "O1", "O2", "O4", "O3", "B3",
 "B2", "I3", "I2")
 { test_setup }
 vector(tp1) := [0 ZX X X X X ZX ZX 0 0];
 vector(tp1) := [0 ZX 1 1 1 1 ZX ZX 0 0];
 vector(tp1) := [1 0X 1 1 1 1 0X 0X 1 1];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

567

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 # port order using ORDER_PINS option
 pattern group_ALL ("I1", "I3", "I2", "B1", "B3", "B2", "O1",
 "O2", "O4", "O3")
 { test_setup }
 vector(tp1) := [0 0 0 ZX ZX ZX X X X X];
 vector(tp1) := [0 0 0 ZX ZX ZX 1 1 1 1];
 vector(tp1) := [1 1 1 0X 0X 0X 1 1 1 1];

Specifying Windowed Measures in WGL
The default WGL patterns written will define timing which performs a strobed measure
(single time measure) when outputs are to be measured. If your tester supports window
measure (measure over a continuous range of time) and you would like to have a
windowed measure, this type of measure can be created. This time you do not use any
set_wgl options, but instead make edits to the Timing block of the DRC procedure file.
Note that these edits must be made before performing the run_drc command and before
generating ATPG patterns.

The following example illustrates a window measure for the symbolic group out_ports
defined elsewhere in the DRC file. The STIL language specifies that the uppercase
{H,L,T,X} characters indicate a strobed measure, and the lowercase characters {h,l,t,x}
call for a window measure. In this specific example the ports associated with the symbolic
group out_portsis continuously measured for high/low/tristate values between an
offset of 450 nS and 490 nS from the beginning of the tester cycle. The '490ns' x; text
specifies the window measure is turned off at this time and is text which is not needed for
a strobed measure.

 Timing {
 WaveformTable "WINDOW_COMPARE" {
 Period '1000ns';
 Waveforms {
 clocks { P { '0ns' D; '500ns' U; '600ns' D; } }
 input_ports { 01Z { '0ns' D/U/Z; } }
 out_ports { X { '0ns' X; } }
 out_ports { HLT { '0ns' X; '450ns' h/l/t; '490ns' X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 }
 }
 }

Delayed Input Force Timing and Force Prior in WGL
It is a common requirement when running the pattern timing to require that one or more
pins have their inputs applied at some delayed offset from the beginning of the tester

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

568

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

cycle. This is another adjustment that is made in the Timing block of the DRC file
rather than with a set_wgl command. In the following example the symbolic pin group
input_grp2 has its pattern data applied at an offset of 5ns into the tester cycle.

What is the value on the pins of group input_grp2 from the start of the cycle to offset 5ns?
The answer is that the value is undefined unless you specify some value in the timing
block such as 0, 1, X, or perhaps Z. What if you just want the port to continue the value
from the previous tester cycle? In WGL as well as STIL there is a "Force Prior" concept
which indicates the value is to be whatever was previously assigned.

To cause the WGL output to call for a Force Prior, edit the Timingblock of the DRC file
before performing a run_drc command and before generating any ATPG patterns and
add the "P" character to the beginning of the timing definition for those inputs which
are applied after a delay. Note that this use of the "P" waveform character will produce
a V6 warning which you can ignore. In the following example, the symbolic pin group
input_grp2calls for the Force Prior value.

 WaveformTable "FORCE_PRIOR_EXAMPLE" {
 Period '1000ns';
 Waveforms {
 CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } }
 CLOCK { 01ZN { '0ns' D/U/Z/X; } }
 RESETB { P { '0ns' U; '400ns' D; '800ns' U; } }
 RESETB { 01ZN { '0ns' D/U/Z/X; } }
 input_grp1 { 01ZN { '0ns' D/U/Z/X; } }
 input_grp2 { 0 { '0ns' P; '5ns' D; } }
 input_grp2 { 1 { '0ns' P; '5ns' U; } }
 input_grp2 { Z { '0ns' P; '5ns' Z; } }
 out_ports { HLTX { '0ns' X; '490ns' H/L/T/X; } }
 bidi_ports { 01ZN { '0ns' Z; '20ns' D/U/Z/X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { HLT { '0ns' X; '490ns' H/L/T; } }
 }
 } # end FORCE_PRIOR_EXAMPLE

Balancing Vector and Scan Statements in WGL
By default, the last event in the WGL pattern file is a scan chain unload to observe the
measure values of the final capture clock. This corresponds to a scan() statement in
the WGL file. Some vendors require that the final event in the WGL pattern file be a
vector()statement to ensure that clocks are off and to provide a symmetric order where
the scan statements are always followed by an identical number of vector statements. You
can cause the final events in the WGL file to be vector statements by using the set_wgl
-nolast_scanoption to change the default behavior.

The first following example shows the default final pattern where the last event is a scan()
statement. The second example shows the effect of using -nolast_scan.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

569

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 #example made with -last_scan
 { pattern 26 }
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U78], output [c2:c2U79], output [c3:c3U80],
 input [c1:c1L78], input [c2:c2L79], input [c3:c3L80];
 { capture
 vector(tp1) := [-Z -0 -0 -1 0 1 1 1 1 1 Z 1 0 0 0];
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U81], output [c2:c2U82], output [c3:c3U83],
 input [c1:c1L81], input [c2:c2L82], input [c3:c3L83];
 end

 #example made with -nolast_scan
 { pattern 26 }
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U78], output [c2:c2U79], output [c3:c3U80],
 input [c1:c1L78], input [c2:c2L79], input [c3:c3L80];
 { capture_CLK }
 vector(tp1) := [-Z -0 -0 -1 0 1 1 1 1 1 Z 1 0 0 0];
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U81], output [c2:c2U82], output [c3:c3U83],
 input [c1:c1L81], input [c2:c2L82], input [c3:c3L83];
 { nocapture }
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 end

Mapping Bidirectional Ports Within Vector Statements in WGL
You've seen an example earlier of how TestMAX ATPG supports creating WGL patterns
with bidirectional port data represented as either a single column of two characters
(grouped) or as two columns of single characters (non-grouped or split). In addition to
this choice in grouping there is also the ability to change or map the characters used. Not
every vendor agrees on what the WGL character representation should be for bidirectional

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

570

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

port data so TestMAX ATPG has been designed to provide flexibility by use of the set_wgl
-bidi_map option.

The syntax for this option is: set_wgl -bidi_map <from> <to>
There are 9 mappings that can be adjusted: 3 for which the bidirectional port is an input,
4 for which the bidirectional port is an output, and 2 for when the bidirectional port is a
scan input or scan output. This argument can be repeated on the same command line or
across multiple commands to specify more than one mapping. If the same from designator
is repeated then the later one will replace the earlier ones.

The from designator is a two-character string the represents the TestMAX ATPG internal
data. The to designator is a two-character string that specifies the characters which will
appear in the WGL pattern output in place of this internal representation.

 Definition of TestMAX ATPG Internal Representation = "from"

 from
 ====
 0x : force 0, no measure
 1x : force 1, no measure
 xx : force unknown, no measure

 z0 : no force, measure 0
 z1 : no force, measure 1
 zx : no force, no measure
 zz : no force, measure Z

 -x : bidi is in scan input mode
 z- : bidi is in scan output mode

The preceding table defines all the legal combinations available for the from portion of the
mapping option. Any other combination is illegal. The to designator is also made up of
characters 0/1/x/z/- but the mapping is checked to ensure that you are not destroying the
intent of the data or masking measures that would affect the test coverage reported. As an
example of a mapping the following table represents a commonly requested map in which
one of the bidirectional characters is always a dash:

 A common mapping

 from : to
 ==== : ==
 0x : 0- # force 0, no measure
 1x : 1- # force 1, no measure
 xx : x- # force unknown, no measure
 z0 : -0 # force Z, measure 0
 z1 : -1 # force Z, measure 1
 zx : -x # force Z, no measure
 zz : -z # force Z, measure Z
 -x : -- # bidi is a scan input

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

571

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 z- : -- # bidi is a scan output

With the exception of the {zz,-z} mapping above, this table represents the default
mapping.

The set_wgl command which would implement the previous table is:

BUILD> set_wgl -bidi_map { 0x 0- 1x 1- xx x- z0 -0 \
 z1 -1 zx -x zz -z x -- z-
 -- }

Note in the previous example that you can specify the -bidi_map option only one time,
and the parameters must be in a list structure. Alternatively, you can repeat the entire
command line for each entry, as shown in the following example:

set_wgl -bidi_map {0x 0-}
set_wgl -bidi_map {1x 1-}
set_wgl -bidi_map {xx x- }
set_wgl -bidi_map {z0 -0 }
set_wgl -bidi_map {z1 -1}
set_wgl -bidi_map {zx -x}
set_wgl -bidi_map {zz -z}
set_wgl -bidi_map {x --}
set_wgl -bidi_map {z- --}
Note: Not all mappings are allowed. For example, you cannot map the dash for scan input
or scan output to any other character. Also, you can map "zz" to "-z", but you cannot map
"zz" to "z-". because of the loss of measure and to unambiguously read back in the WGL
which is written out. The "zz"->-z" mapping still indicates a measure must be performed
but a "zz"->z-" mapping could be confused with a "zx"->z-" mapping which generally is
interpreted to mean there is no force and no measure.

Note: The ability to use some bidi mappings is affected by whether the tester can measure
Z values or not. If the tester can measure Z values then the default setting of set_buses
-external_z Z should be used and the WGL patterns can contain both ZZ and ZX data
(no force, measure Z and no force, no measure). If the tester cannot measure Z values
or you want to generate patterns for which no Z-measure is needed you would set the
set_buses -external_z X option before generating patterns. This would result in WGL
patterns with "ZX" data for bidirectional pins but no "ZZ". If "ZZ" does not appear in the
WGL you can define a bidi map of "ZX"->Z-" or "ZX"->-Z" which you could not do if the Z
measure were enabled and "ZZ" were possibly present.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

572

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

Note: Most vendors do not support a simultaneous force and measure on the same port in
the same cycle. With that in mind you should not use the -measure_forced_bidis option
of the write_patterns command as this allows for a simultaneous force and measure
whenever possible.

To report the current bidirectional map settings use the report_settings wgl command.
The output is similar to the following example and the mapping will appear as a series of
(from,to) settings.

 wgl = macro_usage=off, nopad=on, scan_map=dash
 group_bidis=off, inversion_reference=master, tester_ready=on
 bidi_map=(Z0,-0)(Z1,-1)(0X,0-)(1X,1-)(XX,X-)(ZX,-X)(ZZ,-Z)(Z-,--)

As an example of how the vector() statement data changes for bidirectional ports the
first following example shows some pattern data with four bidirectional pins (grouped as
single column of two characters each) where the mapping is identical to the TestMAX
ATPG internal representation. The second example uses a common mapping in which the
bidirectional character pair always has one character represented as a dash.

 An example where the mapping matches TestMAX ATPG internal
 representation.

 { pattern 1 }
 { load_unload }
 vector(tp1) := [0X 1X XX ZX 0 1 X X 0 0 X X X X X];
 vector(tp1) := [0X 1X XX ZX 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0X 1X XX ZX 1 1 - X 0 1 X X X - X],
 output [c1:c1U0], input [c1:c1L1]];
 { capture_CLK }
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 1 0 1 X X X X X];
 vector(tp1) := [Z0 Z1 ZX ZZ 0 1 0 1 0 1 Z 0 0 1 0];
 vector(tp1) := [ZX ZX ZX ZX 1 1 0 1 0 1 X X X X X];

 { pattern 2 }
 { load_unload }
 vector(tp1) := [ZX ZX ZX 0X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX 0X 0 1 X X 0 1 X X X X X];
 scan(tp1) := [ZX ZX ZX 0X 1 1 - X 0 1 X X X - X],
 output [c1:c1U1], input [c1:c1L2]];
 { capture_CLK }
 vector(tp1) := [0X 0X 0X 0X 0 1 1 1 1 0 X X X X X];
 vector(tp1) := [0X 1X Z0 ZZ 0 1 1 1 1 0 Z 0 1 0 0];
 vector(tp1) := [0X 1X ZX ZX 1 1 1 1 1 0 X X X X X];

 The same patterns after defining a mapping of:
 (0x,0-)(1x,1-),(xx,x-),(z0,-0),(z1,-1),(zx,-x),(zz,-z)

 { pattern 1 }
 { load_unload }
 vector(tp1) := [0- 1- X- Z- 0 1 X X 0 0 X X X X X];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

573

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 vector(tp1) := [0- 1- X- Z- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0- 1- X- Z- 1 1 - X 0 1 X X X - X],
 output [c1:c1U0], input [c1:c1L1]];
 { capture_CLK }
 vector(tp1) := [-X -X -X -X 0 1 0 1 0 1 X X X X X];
 vector(tp1) := [-0 -1 -X -Z 0 1 0 1 0 1 Z 0 0 1 0];
 vector(tp1) := [-X -X -X -X 1 1 0 1 0 1 X X X X X];

 { pattern 2 }
 { load_unload }
 vector(tp1) := [-X -X -X 0- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X 0- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-X -X -X 0- 1 1 - X 0 1 X X X - X],
 output [c1:c1U1], input [c1:c1L2]];
 { capture_CLK }
 vector(tp1) := [0- 0- 0- 0- 0 1 1 1 1 0 X X X X X];
 vector(tp1) := [0- 1- -0 -Z 0 1 1 1 1 0 Z 0 1 0 0];
 vector(tp1) := [0- 1- -X -X 1 1 1 1 1 0 X X X X X];

Mapping Bidirectional Ports Within Scan Statements in WGL
The vector() statements in WGL correspond to the application of tester cycles. The scan()
statements correspond to the serial loading and unloading of scan chains. The various
vendor rules for character mapping of the vector() statements cannot be the same as for
the scan() statement and so TestMAX ATPG supports the set_wgl -scan_map option to
allow somewhat independent control of characters in the scan() statement. The available
choices for scan mapping are: dash, bidi, keep, and none. The default is dash.

The following examples show some of the variations of -scan_map. The patterns are for a
design with three scan chains and the first bidirectional port is a scan input and the second
bidirectional port is a scan output.

For a setting of dash, every scan input and output position in the scan() statement
contains a dash, and all bidirectional ports acting as a scan input or output contain a
double dash.

 # set_wgl -scan_map dash

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],

For a setting of bidi, every scan input and output position in the scan() statement
contains a dash, and any bidirectional port acting as a scan input or output follows the
mapping defined by the -bidi_map options. For the following example, assume a BIDI
mapping of (-x,--) for scan inputs, and (z-,z-) for scan outputs.

 # set_wgl -scan_map bidi -bidi_map {-x --} -bidi_map {z- z- }

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

574

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 scan(tp1) := [-- Z- X- X- 1 1 - - 0 1 X X - - X],

For a setting of keep, every scan input and output position in the scan() statement
keeps the same characters as from the previous vector() statement in the load_unload
procedure, including any scan inputs or outputs on bidirectional ports. It is important that
the load_unload procedure have at least one vector() statement before the Shift procedure
in order for a selection of keep to work properly.

 # set_wgl -scan_map keep

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0- -X X- X- 1 1 X X 0 1 X X X X X],

For a setting of none, every scan input and output position in the scan() statement
contains a dash, and any bidirectional port acting as a scan input or output uses the
TestMAX ATPG internal representation of "-X" for input and "Z-" for output.

 # set_wgl -scan_map none

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-X Z- X- X- 1 1 - - 0 1 X X - - X],

Adjusting Pattern Data for Serial Versus Parallel Interpretation in
WGL
The scan load data in the WGL patterns can be represented in two different ways,
depending upon the reference point required by your WGL pattern translation tool.
The set_wgl -tester_readysetting selects a data format that is ready to serially
shift into the device without further processing for scan cell inversions. The -set_wgl
-notester_ready option selects a data format that is ready to parallel load directly into
the scan cells without further processing for inversions.

In the following figure, if you desire to have all devices A,B,C, and D loaded with 1's
after a scan load, and your WGL translation application expects the data in parallel
(-notester_ready) format, then the WGL scan data must be written as all 1's. However,
if your WGL translation application expects the data in serial format (-tester_ready), then
the WGL scan data must be adjusted for internal inversions that it passes through before
being shifted into place. As you can see, the data is not the same: "1111" vs. "0110".
So it is very important to know which data format your WGL translation application is
expecting. The parallel format is the more popular, so if you do not know you should try the
-notester_ready option first.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

575

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

   

Note that both the serial and parallel load formats are sensitive to the referencing scheme
for determining inversion if the final WGL translator is doing a parallel-form to serial form
translation or a serial-form to parallel-form translation.

One additional variant of WGL output is needed if the WGL is to be interpreted for a
parallel simulation and the end-of-cycle protocol is used. This end of cycle protocol results
in a scan output pre-measure before beginning the "scan()" statement for the balance of
the scan load/unload. The expected scan output vector needs to be shifted by the single
bit of the pre-measure. To accomplish this, use the -pre_measured option instead of the
-notester_ready option.

Selecting Scan Chain Inversion Reference in WGL
The scanchain block of the WGL pattern file defines each scan chain in physical order
from input port to output port. When an inversion exists between positions in the scan
order, and exclamation mark "!" is inserted to indicate an inversion of the data has
occurred between the two positions. This inversion information is crucial for the correct
translation of the scan chain load and unload data by the WGL-to-simulator or WGL-to-
tester tools supported by your vendor.

More than one interpretation of the reference scheme for calculating inversions
exists and so TestMAX ATPG offers options of master, cell, and omit for the set_wgl
-inversion_reference command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

576

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

   

The previous diagram can provide some insight into the two different referencing schemes
for inversion markers. When TestMAX ATPG calculates the inversion markers for a setting
of master the reference point begins at the scan input pin, and then looks at whether the
data is inverted from that point to the actual sequential simulation primitive functioning as
the "master cell" where the value is stored. This is often a Verilog UDP level underneath
the vendor's library cell. For a library cell with only one sequential element there is only
one answer but for a library cell with two or more sequential elements, the answer might
be ambiguous. As shown in the diagram, for an inversion reference of master there are
inversions between the scan input and U1, between U1 and U2, and between U2 and U3.
The corresponding WGL scanchain definition is shown in the following example.

 # set_wgl -inversion_reference master

 scanchain
 c1 ["si", !, "U1/R", !, "U2/R", !, "U3/R", "so"];
 end

When TestMAX ATPG calculates the inversion markers for a setting of cell it begins at
the scan in pin and then determines whether an inversion of the data occurs relative to
the scan input pin of each library cell. This reference is used by some WGL translators
in forming the FORCE/RELEASE statements needed for a parallel Verilog simulation.
The location of the inversion markers is unambiguous and not affected by which cell
is classified as the "master" cell by TestMAX ATPG during DRC. Using an inversion
reference of cell and the preceding diagram, there is an inversion only between the scan
input of cell U1 and the scan input of U2. The corresponding WGL scanchain definition is
shown in the following example:

 # set_wgl -inversion_reference cell

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

577

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 scanchain
 c1 ["si", "U1/R", !, "U2/R", "U3/R", "so"];
 end

Sometimes, no matter which inversion reference you select the external WGL translator
seems to come up with patterns that mismatch in simulation. If the simulation environment
serially processes scan load information, then there is one more inversion reference that
might be of use and that is the omitoption. This option leaves out all inversion markers. By
combing both the -inversion_reference omit and -tester_ready options, TestMAX
ATPG produces scan load/unload data that is preprocessed for inversions and is ready
to shift into the device unchanged, and omits the inversion markers so the external WGL
translator is mydesignled into thinking that no data adjustments for inversion are needed.
The corresponding WGL scanchain data when omit is used is shown in the following
example:

 # set_wgl -inversion_reference omit

 scanchain
 c1 ["si", "U1/R", "U2/R", "U3/R", "so"];
 end

Effect of CELLDEFINE in WGL
The previous examples showed the effect of different choices of inversion reference on
the placement of the inversion markers "!" in the scanchain definition block. Another item
which affects the scanchain block is the presence or absence of the `celldefine compiler
directive in the definition of the library model. Consider the following two examples:

 # Verilog library module without celldefine
 module SDFF (Q, CLK, SE, D, SI);
 input CLK, SE, D, SI;
 output Q;
 uMUX M (di, SE, D, SI);
 uDFFQ R (Q , CLK, di);
 endmodule

 # WGL scanchain shows instance "R"
 scanchain
 c1 ["si", "U1/R", !, "U2/R", "U3/R", "so"];
 end

 # Verilog library module with celldefine
 `celldefine
 module SDFF (Q, CLK, SE, D, SI);
 input CLK, SE, D, SI;
 output Q;
 uMUX M (di, SE, D, SI);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

578

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
WGL Pattern Generation Options

Feedback

 uDFFQ R (Q, CLK, di);
 endmodule
 `endcelldefine

 # scanchain instances have no "R"
 scanchain
 c1 ["si", "U1", !, "U2", "U3", "so"];
 end

In the first example the Verilog module definition was not defined inside a `celldefine/
`endcelldefine pair. The resulting WGL scanchain definition shows instance pathnames
that include the R of the uDFFQ device.

In the second example the Verilog module definition was within a `celldefine/`endcelldefine
pair. The resulting WGL scanchain definition does not include the instance references
beneath the SDFF module.

Note: Reading a netlist with the -library option has the same effect as enclosing the
module with `celldefine/`endcelldefine pair and is yet another way to affect the WGL
output.

Ambiguity of the Master Cell in WGL
The diagram below provides one simple example of the potential for ambiguity when
using an inversion reference of master. In this example some DFF functions are created
with a library cell using two latches. TestMAX ATPG defines the "master" based on which
sequential device in a scan chain shifts first due to the leading edge of the defined shift
clocks. So with the CLK port defined as active high, the "master" becomes the second
LATCH in U1 and U3, with U2 acting as a lockup latch. If the polarity of CLK is reversed,
then the first latch in U1 is classified as the master and the lockup latch is classified as the
master for cell U3! Both polarities of CLK generates ATPG patterns but most likely only
one resulting WGL inversion set is correct.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

579

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Multicore ATPG

Feedback

   

Running Multicore ATPG
Multicore ATPG is used to parallelize and improve ATPG runtime by leveraging the
resources provided by multicore machines. Multicore ATPG launches multiple slaves
to parallelize ATPG work on a single host. You can specify the number of processes to
launch, based on the number of CPUs and the available memory on the machine.

The following sections describe multicore ATPG:

• Comparing Multicore ATPG and Distributed ATPG

• Invoking Multicore ATPG

• Typical Multicore ATPG Run

• Multicore Interrupt Handling

• Understanding the Processes Summary Report

• Multicore Limitations

For more information, see Running Distributed ATPG.

Comparing Multicore ATPG and Distributed ATPG
Multicore ATPG is different than distributed ATPG, which is described in Running
Distributed ATPG. Distributed ATPG launches multiple slave processes on a computer
farm or on several standalone hosts. The slave processes read an image file and execute
a fixed command script. ATPG distributed technology does not differentiate between
multiple CPUs and separate workstations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

580

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Multicore ATPG

Feedback

When compared to ATPG distributed technology, multicore ATPG has several advantages:

• It is easier to use. You simply need to specify the number of slaves to use. There is no
need to set up the environment for slaves, and no need to debug network or computer
farm issues. Also, it is not necessary for the master to write a binary image file or for
the slaves to read it.

• It is more efficient in using compute resources. Multicore ATPG shares netlist
information among slaves and the master. This means the overall memory usage is
much lower than the total memory usage of distributed ATPG.

• It reduces communication overhead by running all involved processes on one machine.
It also improves the efficiency of parallelism by sharing more information among
processes. This often results in better QoR compared to distributed ATPG.

Although multicore ATPG offers better memory utilization (<50 percent increase per core)
compared to distributed ATPG (~100 percent increase per slave), the entire memory must
reside on a single machine.

Multicore ATPG and distributed ATPG provide similar efficiency in reducing ATPG runtime.
The runtime improvement from multicore processing is limited by the number of cores and
CPUs on a single host. With distributed ATPG, however, runtime continues to improve as
more hosts are added across the network.

Invoking Multicore ATPG
Multicore ATPG is activated using the following set_atpg command:

set_atpg -num_processes < number | max >

The number specification refers to the number of slave processes that are used in ATPG.
If max is specified, then TestMAX ATPG computes the maximum number of processes
available in the host, based on number of CPUs. If TestMAX ATPG detects that the host
has only one CPU, then single-process ATPG is performed instead of multicore ATPG with
only one slave.

To turn off multicore ATPG, specify set_atpg -num_processes 0.

Do not specify more processes than the number of CPUs available on the host.
You should also consider whether there is other CPU-intensive processes running
simultaneously on the host when running the number of processes. If too many processes
are specified, performance will degrade and might be worse than single-process ATPG.
On some platforms, TestMAX ATPG cannot compute the number of CPUs available and
will issue an error if max is specified.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

581

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Multicore ATPG

Feedback

Typical Multicore ATPG Run
Perform DRC and enter TEST mode
run_drc top_level.spf
select the fault model and create the
fault list
set_faults -model transition
Other ATPG settings here
...
Use two cores during run_atpg
set_atpg -num_processes 2
run_atpg -auto
Continue with other commands after run_atpg
...
// Multicore Usage - Farm Multi-Host (LSF)
bsub -R "span[hosts=1]" -n 4 \
tmax_multicore_batch.csh
// Ensure all slots are reserved on a single host
// 4 slots are allocated for ATPG run
read_netlist Libs/*.v -delete -library -noabort
run_build_model top_level
run_drc top_level.spf
set_faults -model stuck
...
add_faults -all
set_atpg -num_processes 4
// Multicore Usage - Farm Multi-Host (GRID)
qsub -l cputype=amd64,\
mem_free=16G,mem_avail=16G,\
cpus_used=4,model=AMD2800 \
tmax_multicore_batch.csh
// 4 slots are allocated for ATPG run
read_netlist Libs/*.v -delete -library -noabort
run_build_model top_level
run_drc top_level.spf
set_faults -model stuck…
add_faults -all
set_atpg -num_processes 4

Multicore Interrupt Handling
To interrupt the multicore ATPG process, use “Control-c” in the same manner as halting
a single process. If a slave crashes or is killed, the master and remaining slaves will
continue to run. This behavior is consistent with the default behavior of distributed ATPG.

If the master crashes or is killed, the slaves will also halt. In this case, there are no
ongoing processes, dangling files, or memory leakage.

You can also interrupt the multicore ATPG process from the TestMAX ATPG GUI by
clicking the Stop button. At this point, the master process sends an abort signal to the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

582

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Multicore ATPG

Feedback

slave processes and waits for the slaves to finish any ongoing interval tasks. If this takes
an extended period of time, you can click the Stop button twice. This action causes the
master process to send a kill signal to the slaves, and the prompt immediately returns.
Note that clicking the Stop button twice terminates all slave processes without saving any
data gathered since the last communication with the master. For more information on the
Stop button, see Command Entry.

Understanding the Processes Summary Report
Memory consumption needs to be measured to tune the global data structure to improve
the scalability of multicore architecture. Legacy memory reports are not sufficient because
they do not deal with issues related to “copy-on-modification.” To facilitate collecting
performance data, a summary report of multicore ATPG is printed at the end of ATPG
when the -level expert option is specified with the set_messages command. The
summary report appears as shown in the following example.

Processes Summary Report
Processes Summary Report

Process Patterns Time(s) Memory(MB)
----------- ---------- ----------- ---------------------------------
ID pid Internal CPU Wall Shared Private
 Total Pattern

0 7611 1231 0.53 35.00 67.78 30.54
 98.32 5.27
1 7612 626 35.68 35.00 64.87 22.31
 87.18 0.00
2 7613 605 35.50 35.00 64.71 22.47
 87.18 0.00
Total 1231 71.71 35.00 67.78 75.32
 143.10 5.27
--

The report in the preceding example contains one row for each process. The first process
with an ID of “0” is the master process. The child processes have IDs of 1, 2, 3, and so
forth. The last row is the sum for each measurement across all processes.

The “pid” is the process ID of that process. The “Patterns” are the total number of patterns
stored by the master or the number of patterns generated by the slave in this particular
ATPG session. The “Time(s)” includes CPU time and wall time.

The “Memory” measurements are obtained by parsing the system-generated file /proc/
pid/smaps. The file contains memory mapping information created by the OS while the
process still exists. The /proc/pid/ directory cannot be found after the process terminates.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

583

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Logic Simulation

Feedback

The tool parses this file at the proper time to gather memory information for the reporting
at the end of parallel ATPG.

The “Memory” measurement includes “Shared”, “Private”, “Total” and “Pattern”. “Shared”
means all processes share the same copy of the memory. “Private” means the process
stores local changes in the memory. The “Total” is the sum of “Shared” and “Private”. The
“Pattern” refers to memories allocated for storing patterns. The total memory consumption
of the entire system is the “Total” item in the row “Total,” which is the sum of total shared
memory (the maximum of shared memories for each process) and the total private
memory (the sum of all private memory for all processes). Although the memory for
patterns is listed separately, it is part of the master private memory.

The memory section of the summary report is only available on Linux and AMD64
platforms. No other platform gives “shared” or “private” memory information in a copy-on-
write context. On other formats, the memory reports gives all “0s” for items other than the
pattern memory.

Multicore Limitations
The following ATPG features are not supported by multicore ATPG:

• Streaming Pattern Validation

• Distributed ATPG

• The -per_cycle option of the report_power command is not recognized.

Running Logic Simulation
Using TestMAX ATPG, you can run logic simulation and use the graphical schematic
viewer (GSV) to view the logic simulation results.

For combinational and sequential patterns, you can perform the following tasks:

• Perform logic simulation using either the internal or external pattern set.

• Check simulated against expected values from the patterns.

• Perform simulation in the presence of a single failure point to determine the patterns
that would show differences.

• View the effect of any single point of failure for any single pattern.

For combinational patterns, you can also view the logic simulation value from any single
pattern in the most recent 32 patterns in the simulation buffer.

For sequential patterns, you can also save the logic simulation value from any range of
patterns and view this data.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

584

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Logic Simulation

Feedback

The following sections describe how to run logic simulation:

• Comparing Simulated and Expected Values

• Patterns in the Simulation Buffer

• Sequential Simulation Data

• Single-Point Failure Simulation

• GSV Display of a Single-Point Failure

In addition to standard logic simulation, you can also improve simulation runtime by
launching multiple slaves to parallelize fault and logic simulation to work on a single host.
This process is described in Running Multicore Simulation.

Comparing Simulated and Expected Values
You can compare the simulation results against the expected values contained in the
patterns during logic simulation. To do this, use the Compare option of the Run Simulation
dialog box, or the -nocompare option of the run_simulation command. For more
information, see “Performing Good Machine Simulation”.

The following example shows a transcript of a simulation run that had no comparison
errors; 139 patterns were simulated with zero failures.

Example 1 Simulation With No Comparison Errors

TEST-T> run_simulation
Begin good simulation of 139 internal patterns.
Simulation completed:
#patterns=139, #fail_pats=0(0),
#failing_meas=0(0), CPU time=4.61
The following example shows a transcript of a simulation run with comparison errors. In
this report, the first column is the pattern number, and the second column is the output
port or scan chain output. The third column is present if the port is a scan chain output and
contains the number of scan chain shifts that occurred to the point where the error was
detected. The last column, shown in parentheses, is the simulated/expected data.

Example 2 Simulation With Comparison Errors

TEST-T> run_simulation
Begin simulation of 139 internal patterns.
1 /o_sdo2 23 (exp=0, got=1)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

585

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Logic Simulation

Feedback

4 /o_sdo2 23 (exp=1, got=0)
6 /o_sdo2 23 (exp=1, got=0)
7 /o_sdo2 23 (exp=1, got=0)
8 /o_sdo2 23 (exp=0, got=1)
: : : :
123 /o_sdo2 23 (exp=0, got=1)
124 /o_sdo2 23 (exp=1, got=0)
129 /o_sdo2 23 (exp=1, got=0)
132 /o_sdo2 23 (exp=1, got=0)
Simulation completed: #patterns=139, #fail_pats=41(0),
#failing_meas=41(0), CPU time=4.97

Patterns in the Simulation Buffer
During ATPG, TestMAX ATPG processes potential patterns in groups of 32 using an
internal buffer called the Simulation Buffer. Immediately after completion of ATPG, you can
select any of the last 32 patterns processed and display the resulting logic values on the
pins of objects in the GSV window. You can use the Setup dialog box to select pattern data
and provide an integer between 0 and 31 for the pattern number.

Alternatively, you can execute the following commands:

TEST-T> set_pindata pattern NN
TEST-T> refresh schematic
For an example, see “Displaying Pattern Data”.

Sequential Simulation Data
Sequential simulation data is typically from functional patterns. This type of data is stored
in the external pattern buffer. When the simulation type in the Run Simulation dialog box is
set to Full Sequential, you can select a range of patterns to be stored. After the simulation
is completed, you can display selected data from this range of patterns using the pin data
type “sequential sim data.”

For example, with gates drawn in the schematic window, execution of the following
commands generates the display shown in the following example.

TEST-T> set_simulation -data 85 89

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

586

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Running Logic Simulation

Feedback

TEST-T> run_simulation -sequential
The pin data in the display shows the sequential simulation data values from the five
patterns; each pattern has a dash (–) as a separator. Some patterns result in a single
simulation event value and other patterns result in three values.

Figure 95 Sequential Simulation Data for Five Patterns

   

Single-Point Failure Simulation
You can simulate any single point of failure for any single pattern by checking the Insert
Fault box in the Run Simulation dialog box and running the error site and stuck-at value, or
by using a command such as the following:

TEST-T> run_simulation -max_fails 0 amd2910/ incr/U42/A 1

The following example shows the result of executing this command. TestMAX ATPG
reports the signature of the failing data to the transcript as a sequence of pattern numbers
and output ports with differences between the expected data and the simulated failure.

Example 3 Signature of a Simulated Failure

TEST-T> run_simulation -max_fails 0 /amd2910/ incr/U42/A 1
Begin simulation of 139 internal patterns with pin /amd2910/ incr/
U42/A stuck at 1.
85 /o_sdo2 23 (0/1)
94 /o_sdo2 23 (0/1)
Simulation completed: #patterns=139, #fail_pats=2(0),
#failing_meas=2(0), CPU time=2.02

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

587

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Data Volume and Test Application Time Reduction Calculations

Feedback

GSV Display of a Single-Point Failure
You can display simulation results for a single-point failure in the GSV. To do so, click the
SETUP button on the GSV toolbar to display the Setup dialog box.

To view the difference between the good machine and faulty machine simulation for a
specific pattern,

1. In the Setup dialog box, under Pin Data, choose Fault Sim Results.

2. Click the Set Parameters button. The Fault Sim Results Parameters dialog box
appears.

3. Enter the pin path name or gate ID of the fault site, the stuck-at-0 or stuck-at-1 fault
type, and the pattern number that is to be simulated in the presence of the fault.

4. Click OK to close the Fault Sim Results Parameters dialog box.

5. Click OK again to close the Setup dialog box.

The GSV displays the fault simulation results, as shown in the following figure.

Figure 96 Fault Simulation Results Displayed Graphically

   

In the preceding figure, pin A of gate 1216 is the site of the simulated stuck-at-1 fault. The
output pin X shows 0/1, where the 0 is the good machine response and the 1 is the faulty
machine response.

You can trace the effect of the faulty machine throughout the design by locating logic
values separated by a forward slash (/), representing the good/bad machine response at
that pin.

Data Volume and Test Application Time Reduction Calculations
The equations for calculating data volume and test application time reduction for running
TestMAX ATPG on compressed scan designs are as follows:

Test Data Volume Reduction =
(Scan Test Data Volume)/
(Scan Compression Test Data Volume)
Test Application Time Reduction =

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

588

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Data Volume and Test Application Time Reduction Calculations

Feedback

(scan mode test application time)/
(ScanCompression_mode test application time)

These calculations are explained in the following sections:

• Test Data Volume Calculations

• Test Application Time Calculations

Test Data Volume Calculations
The following information is stored on the tester in each test cycle:

• Forced value on input (signal or clock waveform)

• Value expected on output (strobed output)

• Whether output value should be strobed or not (output mask)

On every output, there are two bits of information per cycle. In the following two equations,
this accounts for the factor of three in the scan-test-data-volume equation and the factor
of two in the scan-compression-test-data-volume equation. The compression calculation
is written differently because it accounts for the number of inputs and outputs to the
compression logic.

You can use the following formulas to expand the test data volume reduction equation:

Scan Test Data Volume =
3*(length of the longest Scan mode scan chain)*
(number of scan chains in Scan mode)*
(number of Scan mode patterns)
Scan Compression Test Data Volume =
(length of longest ScanCompression_mode scan chain)*
(number of scan_in + 2*(number of scan_out))*
(number of patterns)

The test data volume might not match the memory used by the tester because each
ATE uses the test data volume differently. However, the tester can optimize the memory
content. It can allocate memory differently, depending on the brand or version of the tester
and the channels and cycles used. In such cases, the factors 2 and 3 in the scan-test-
data-volume and scan-compression-test-data volume formulas, respectively, might not
match the data in the tester memory.

The following ratio indicates the test data volume reduction that can be achieved:

Test Data Volume Reduction =
(Scan Test Data Volume)/
(Scan Compression Test Data Volume)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

589

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Pattern Porting

Feedback

The test data volume reduction value calculated with this formula is just an estimate of the
improvements you can get by using compression.

Test Application Time Calculations
The test application time reduction is an estimate for the improvements you can achieve
by using compression. You can determine this reduction by taking the ratio of scan versus
scan-compression test-application time.

The test-application-time-reduction equation can be expanded by using the following
formulas:

Scan Test Application Time =
(longest chain in Scan mode)*
(number of patterns in Scan mode)
Scan Compression Test Application Time =
(longest scan chain in ScanCompression_mode)*
(number of patterns in ScanCompression_mode)

The test application time reduction that can be achieved as follows:

Test Application Time Reduction =
(scan mode test application time)/
(scanCompression_mode test application time)

If you expand this equation, using the previous test application time equations for scan
and scan compression, you get the following:

Test Application Time Reduction =
((longest chain in Scan mode)*
(number of patterns in Scan mode))/
((longest scan chain in ScanCompression_mode)*
(number of patterns in ScanCompression_mode))

See Also

• Distributed ATPG Limitations

Pattern Porting
You can use the stilgen utility to port patterns for code at the top level of a design. To use
pattern porting, you must make several adjustments when performing core-level DFTMAX
insertion (as described in this topic).

For a description of the syntax for the stilgen utility and its configuration files, see stilgen
Utility and Configuration Files.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

590

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Pattern Porting

Feedback

The following sections describes the flow and requirements for porting patterns:

• Pattern Porting Flow

• Core-Level DFTMAX Insertion

• Core-Level TestMAX ATPG Generation

• Top-Level Requirements

• Pattern Generation Requirements at Core Level

• Top-Level Pattern Simulation

Pattern Porting Flow
The following diagram describes the flow used for porting patterns, including top-level
pattern validation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

591

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Pattern Porting

Feedback

   

Core-Level DFTMAX Insertion
Note the following:

• Pattern porting of cores with DFTMAX and DFTMAX Ultra is supported.

• OCC controllers and scan-data pipelining are supported at the core-level.

Core-Level TestMAX ATPG Generation
ScanCompression mode and Internal_scan patterns can be ported to the top level during
TestMAX ATPG generation. Before generating the patterns, make sure that all inputs

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

592

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Optimizing ATPG
Pattern Porting

Feedback

(except for clocks, resets, test-modes, scan-enable, and OCC signals) are constrained to
X and outputs are masked using the following commands:

add_pi_contraints X {list of all inputs}
add_po_masks –all

To write patterns in STIL format for pattern merging, make sure you use the
write_patterns command options shown in the following example:

write_patterns my_patterns_serial.stil -format stil –replace

If the top-level scan-enable wrp_shift signal is shared by the core-level scan-enable
wrp_shift pin, then the scan-enable wrp_shift pin should be constrained to its off-state in all
core-level TestMAX ATPG scripts for pattern generation.

Core-level patterns produced by TestMAX ATPG should pass VCS simulation.

Top-Level Requirements
Make sure the following top-level requirements are met:

• All the core-level test ports, clocks, resets, PLL/OCC signals, and test setup signals
must be fully controllable from the top-level ports and have correspondence between
core and top-level test ports.

• All the core-level scan clocks must be dedicated at the top level and cannot be shared.
Only the OCC ate_clock can be shared.

• OCC insertion and pipeline insertion are not supported at the top level.

Pattern Generation Requirements at Core Level
• For DFTMAX and DFTMAX Ultra-wrapped cores, the longest length of a compressed

scan chain (compressor length) should be uniform across all cores. For DFTMAX Ultra-
wrapped cores, if the compressor length is not uniform across cores, use the following
commands for the cores with a shorter compressor length:

set_patterns -external core.stil update_streaming_patterns -max_shifts
 $MAX_LENGTH write_patterns core_up.stil -format stil –external

Make sure that $MAX_LENGTH is the maximum compressor length.

Top-Level Pattern Simulation
At the top level, only MAXTestbench patterns can be used to validate both
ScanCompression_mode and Internal_scan mode patterns. The ported patterns can also
be in read in TestMAX ATPG and validated using the run_simulation command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

593

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

14
Fault Lists and Faults

TestMAX ATPG puts faults into various fault classes, each of which are organized into
categories.

The following topics describe the fault classes and explain how TestMAX ATPG calculates
test coverage statistics:

• Working with Fault Lists

• Fault Categories and Classes

• Fault Summary Reports

• Using Clock Domain-Based Faults

Working with Fault Lists
TestMAX ATPG maintains a list of potential faults for a design, along with the
categorization of each fault. A fault list is contained in an ASCII file that can be read and
written using the read_faults and write_faults commands.

The following topics describe how to work with fault lists:

• Using Fault List Files

• Collapsed and Uncollapsed Fault Lists

• Random Fault Sampling

• Fault Dictionary

As shown in the following example, a fault list contains one fault entry per line. Each entry
consists of three items separated by one or more spaces. The first item indicates the
stuck-at value (sa0 or sa1), the second item is the two-character fault class code, and the
third item is the pin path name to the fault site. Any additional text on the line is treated as
a comment.

If the fault list contains equivalent faults, then the equivalent faults must immediately
follow the primary fault on subsequent lines. Instead of a class code, an equivalent fault is
indicated by a fault class code of “--”.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

594

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Working with Fault Lists

Feedback

Example 1: Typical Fault List Showing Equivalent Faults

// entire lines can be commented
sa0 DI /CLK ; comments here
sa1 DI /CLK
sa1 DI /RSTB
sa0 DS /RSTB
sa1 AN /i22/mux2/A
sa1 UT /i22/reg2/lat1/SB
sa0 UR /i22/mux0/MUX2_UDP_1/A
sa0 -- /i22/mux0/A # equivalent to UR fault above it
sa0 DS /i22/reg1/MX1/D
sa0 -- /i22/mux1/X
sa0 -- /i22/mux1/MUX2_UDP_1/Q
sa1 DI /i22/reg2/r/CK
sa0 DI /i22/reg2/r/CK
sa1 DI /i22/reg2/r/RB
sa0 AP /i22/out0/EN
sa1 AP /i22/out0/EN

Note the following:

• TestMAX ATPG ignores blank lines and lines that start with a double slash and a space
(//).

• You can control whether the fault list contains equivalent faults or primary faults
by using the -report option of the set_faults command or the -collapsed or
-uncollapsed option of the write_faults command.

See Also

• Persistent Fault Model Operations

Using Fault List Files
You can use fault list files to manipulate your fault list in the following ways:

• Add faults from a file, while ignoring any fault classes specified

• Add faults from a file, while retaining any fault classes specified

• Delete faults specified by a fault list file

• Add nofaults (sites where no faults are to be placed) specified by a fault list file

To access fault list files, you use the read_faults and read_nofaults commands, which
have the following syntax:

read_faults file_name [-retain_code] [-add | -delete]
read_nofaults file_name

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

595

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Working with Fault Lists

Feedback

The -retain_code option retains the fault class code but behaves differently depending
on whether the faults in the file are new or replacements for existing faults:

• New Faults

For any new fault locations encountered in the input file, if the fault code is DS or
DI, the new fault is added to the fault list as DS or DI, respectively. For all other fault
codes, TestMAX ATPG determines whether the fault location can be classified as UU,
UT, UB, DI, or AN. If the fault location is determined to be one of these fault classes,
the new fault is added to the fault list and the fault code is changed to the determined
fault class. If the fault location was not found to be one of these special classes, the
new fault is added with the fault code as specified in the input file.

• Existing Faults

For any fault locations provided in the input file that are already in the internal fault
list, the fault code from the input file replaces the fault code in the internal fault list.
TestMAX ATPG does not perform any additional analysis.

Collapsed and Uncollapsed Fault Lists
To improve performance, most ATPG tools collapse all equivalent faults and process only
the collapsed set. For example, the stuck-at faults on the input pin of a BUF device are
considered equivalent to the stuck-at faults on the output pin of the same device. The
collapsed fault list contains only the faults at one of these pins, called the primary fault site.
The other pin is then considered the equivalent fault site. For a given list of equivalent fault
sites, the one chosen to be the primary fault site is purely random and not predictable.

You can generate a fault summary report using either the collapsed or uncollapsed list
using the -report option of the set_faults command.

Example 1: Collapsed and Uncollapsed Fault Summary Reports

TEST-T> set_faults -report collapsed

 TEST-T> report_faults -summary

Collapsed Fault Summary Report

 fault class code #faults

 ------------------------------ ---- ---------

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

596

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Working with Fault Lists

Feedback

 Detected DT 120665

 Possibly detected PT 3749

 Undetectable UD 1374

 ATPG untestable AU 6957

 Not detected ND 6452

 total faults 139197

 test coverage 88.91%

 TEST-T> set_faults -report uncollapsed

 TEST-T> report_faults -summary

 Uncollapsed Fault Summary Report

 fault class code #faults

 ------------------------------ ---- ---------

 Detected DT 144415

 Possibly detected PT 4003

 Undetectable UD 1516

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

597

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Working with Fault Lists

Feedback

 ATPG untestable AU 8961

 Not detected ND 7607

 total faults 166502

 test coverage 88.74%

Random Fault Sampling
Using a sample of faults rather than all possible faults can reduce the total runtime for
large designs. You can create a random sample of faults using the -retain_sample
percentage option of the remove_faults command.

The percentage argument of the -retain_sample option indicates a probability of
retaining each individual fault and does not indicate an exact percentage of all faults to
be retained. For example, if percentage = 40, for a fault population of 10,000, TestMAX
ATPG does not retain exactly 4,000 faults. Instead, it processes each fault in the fault list
and retains or discards each fault according to the specified probability. For large fault
populations, the exact percentage of faults kept is close to 40 percent, but for smaller fault
populations, the actual percentage might be a little bit more or less than what is requested,
because of the granularity of the sample.

For example, the following sequence requests retaining a 25 percent sample of faults in
block_A and block_B and a 50 percent sample of faults in block_C.

TEST-T> add_faults /spec_asic/block_A
TEST-T> add_faults /spec_asic/block_B
TEST-T> remove_faults -retain_sample 50
TEST-T> add_faults /spec_asic/block_C
TEST-T> remove_faults -retain_sample 50
You can combine the -retain_sample option with the capabilities of defining faults and
nofaults from a fault list file for flexibility in selecting fault placement.

As an alternative to the remove_faults command, you can choose Faults > Remove
Faults to access the Remove Faults dialog box.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

598

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Categories and Classes

Feedback

Fault Dictionary
In some products, a “fault dictionary” is used to translate a fault location into a pattern that
tests that location, and to translate a pattern number into a list of faults detected by that
pattern.

TestMAX ATPG does not produce a traditional fault dictionary. Instead, it supports a
diagnostics mode that translates tester failure data into the design-specific fault location
identified by the failure data. For more information, see Diagnosing Manufacturing Test
Failures.

Fault Categories and Classes
Faults are assigned to classes corresponding to their current fault detection or
detectability status. A two-character code is used to specify a fault class. Fault classes
are hierarchically defined: low-level fault classes can be grouped together to form a higher
level fault classes. Faults are only assigned the low fault classes but the high level fault
classes are used for reporting. The fault class hierarchy for all fault classes is as follows:

Fault Class Hierarchy
DT - Detected

DR - Detected Robustly

DS - Detected by Simulation

DI - Detected by Implication

D2 - Detected clock fault with loadable nonscan cell faulty value of 0 and 1

TP - Transition partially detected

PT - Possibly Detected

AP - ATPG Untestable Possibly Detected

NP - Not analyzed, Possibly Detected

P0 - Detected clock fault and loadable nonscan cell faulty value is 0

P1 - Detected clock fault and loadable nonscan cell faulty value is 1

UD - Undetectable

UU - Undetectable Unused

UO - Undetectable Unobservable

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

599

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Categories and Classes

Feedback

UT - Undetectable Tied

UB - Undetectable Blocked

UR - Undetectable Redundant

AU - ATPG Untestable

AN - ATPG Untestable Not-Detected

AX - ATPG Untestable Timing Exceptions

AE - ATPG Untestable

ND - Not Detected

NC - Not Controlled

NO - Not Observed

DT (Detected) = DR + DS + DI + D2 + TP
The "detected" fault class is comprised of faults which have been identified as "hard"
detected. A hard detection guarantees a detectable difference between the expected value
and the fault effect value. The detection identification can be performed by simulation or
implication analysis.

• DR (Detected Robustly)

DR faults are hard detected by the fault simulator using weak non-robust (WNR),
robust (ROB), or hazard-free robust (HFR) testing criteria to mark path delay faults.
During ATPG, at least one pattern that caused the fault to be placed in this class is
retained. This classification applies only to Path Delay ATPG.

• DS (Detected by Simulation)

DS faults are hard detected by explicit simulation of patterns. During ATPG, at least
one pattern that caused the fault to be placed in this class is retained.

• DI (Detected by Implication)

DI faults are detected by an implication analysis. Faults are immediately placed into
this fault class when they are added to the fault list. These faults include the following:

◦ Faults on pins in the scan chain path are detected due to the application of a scan
chain functional test

◦ Faults on ungated circuitry that connect to the shift clock line of scan cells

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

600

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Categories and Classes

Feedback

◦ Control circuitry of clock-gating cells that connect to the shift clock line of scan cells

◦ Faults on ungated circuitry that connect to the set/reset lines of scan cells and
cause the set/reset to be active

Note: A scan chain path that is multiply sensitized receives no credit.

Note: Nonscan DLAT/DFF Enable/Clock pin stuck-at faults are marked as DI at the end
of run_atpg if they have not been marked already as DS. This is done only if data pins
are marked as DS for both sa0 & sa1. This is because if the data input pins sa0 & sa1
faults are both detected by simulation, ATPG can assume that the enable/clock pins
must function correctly, and thus sa faults that force clock off should be detected by
implication if not detected by simulation. For latch, s-a-(off value) should be DI; for DFF,
both sa0 & sa1 on clock should be DI.

• D2

A fault is classified as D2 if a clock fault is detected and the loadable nonscan cell
faulty value is set to both 0 and 1. Note that the loadable nonscan cells feature must be
active.

• TP (Transition Partially-Detected)

TP faults are detected with a slack that exceeds the minimum slack by more than value
specified by the -max_delta_per_fault option of the set_delay command. A TP
fault can continue to be simulated with the intention of getting a better test for the fault.

PT (Possibly Detected) = AP + NP + P0 + P1
• AP (ATPG Untestable, Possibly Detected)

AP faults are possibly detected faults. A faulty machine response will simulate an "X"
rather than a 1 or 0. Analysis has determined that the fault cannot be detected with the
current ATPG constraints and restrictions so the fault is removed from the active fault
list and no further patterns for detecting this fault is attempted.

• NP (Not Analyzed, Possibly Detected)

NP faults are identical to AP faults except that either analysis was not completed or
could not prove that the fault would always simulate as an X. It is still possible that a
different pattern could detect the fault and it's classification could become DS, until then
it's classification remains NP and it remains in the active fault list

• P0

A fault is classified as P0 fault if a clock fault is detected and the loadable nonscan cell
faulty value is set to 0. This classification applies only if the loadable nonscan cells
feature is active.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

601

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Categories and Classes

Feedback

P1

A clock fault is classified as P1 if a clock fault is detected and the loadable nonscan cell
faulty value is set to 1. Note that the loadable nonscan cells feature must be active.

UD (Undetectable) = UU + UO + UT + UB + UR
The "undetectable" fault classes include faults which cannot be detected (either hard
or possible) under any conditions. When calculating test coverage, these faults are not
considered because they have no logical effect on the circuit behavior and cannot cause
failures.

• UU (Undetectable Unused)

UU faults are located on circuitry with no connectivity to an externally observable
point. During the creation of the simulation model, the default is to remove this unused
circuitry which results in these faults not existing. To expose these faults, you need to
select the -nodelete_unused_gate option of the set build command. Faults are
immediately placed into this fault class when they are added to the fault list.

• UO (Undetectable Unobservable)

UO faults are similar to UU faults, except they are located on unused gates with fanout
(that is, gates connected to other unused gates). Faults on unused gates without fanout
are identified as UU faults.

• UT (Undetectable Tied)

A UT fault is located on a pin that is tied to a value that is the same as the fault value.
Faults are immediately placed into this fault class when they are added to the fault list.

• UB (Undetectable Blocked)

A UB fault is located on circuitry that is blocked from propagating to an observable
point due to tied logic. Faults are immediately placed into this fault class when they are
added to the fault list.

• UR (Undetectable Redundant)

URs fault are undetectable (using both hard detection and possible detection). Test
generation fault analysis is performed when adding faults, during pattern-by-pattern
test generation (as a result of the run_atpg command), and as a dedicated analysis of
local or global redundancies (also as a result of run_atpg). When adding faults (using
the add_faults command), an analysis is performed to identify and remove from the
active list those faults which can easily be shown to be AU or UR. A simple form of
ATPG is used during this analysis. Fault grading can never place a fault in this class.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

602

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Categories and Classes

Feedback

AU (ATPG Untestable) = AN
"ATPG Untestable" faults include faults which can neither be hard detected under the
current ATPG conditions nor proved redundant. When calculating test coverage, these
faults are considered the same as untested faults because they have the potential to
cause failures.

• AN (ATPG Untestable, Not Detected)

AN faults have not been possibly detected and an analysis was performed to prove
it cannot be detected under current ATPG conditions. The analysis also failed
the redundancy check. Faults can immediately be placed in this class if they are
inconsistent with the pre-calculated constrained value information. Others can require
test generation analysis. After they are placed in this class, they are removed from
the active fault list and not given any further opportunity to become possible detected.
Primary reasons for faults in this classification include:

◦ Fault untestable due to a constraint which is in effect.

◦ Fault requires sequential patterns for detection.

◦ Fault can only be possible detected.

◦ Fault requires using an unresolvable Z state for detection.

• AX (ATPG Untestable, Timing Exceptions)

For each fault affected by SDC (Synopsys Design Constraints) timing exceptions, if
all the gates in both the backward and forward logic cones are part of the same timing
exception simulation path, then the fault is marked AU and is assigned an AX subclass.
This analysis finds the effects of setup exceptions, so it does not affect exceptions that
are applied only to hold time.

To enable this type of analysis, use the set_atpg
-timing_exceptions_au_analysis command. To configure separate reporting of
these faults, use the set_faults -summary verbose command.

Note that AX analysis is applied only for transition delay faults. The commands used for
AX analysis are accepted for other fault models, but the results will not show any AX
faults.

AE (ATPG Untestable) = AE
• AE stands for ATPG Untestable, Low Power. This category is a sub-category of AU

(ATPG Untestable) faults.

• A fault is classified as AE, in the presence of one or more sequential compressors,
when the number of reseeds or the number of shifts that require care bits do not

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

603

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Categories and Classes

Feedback

confirm to the ATPG budget provided by the user. A fault is marked as an AE when it is
tried as a primary fault and the tool cannot obtain a test with a shift power that is lesser
that the ATPG budget provided.

ND (Not Detected) = NC + NO
An ND fault indicates that test generation has not yet been able to create a pattern that
controls or observes the fault. For these faults, it is possible that increasing the ATPG
effort with the set_atpg -abort_limit command will result in these faults becoming
some other classification.

• NC (Not Controlled)

The NC fault class indicates that no pattern was yet found that would control the fault
site to the state necessary for fault detection. This is the initial default class for all
faults.

• NO (Not Observed)

The NO fault class indicates that, although the fault site is controllable, that no pattern
has yet been found to observe the fault so that credit can be given for detection.

__

Note:
In case of using the set_build -delete_unused_gates command, faults that
are blocked for observe are classified as UB faults. On the other hand, when
using the set_build -nodelete_unused_gates command, the same faults
are classified as AN faults.

The following image shows a simple example of a NAND gate that connects to a MUX with
tied select line that prevents the observe of the output of the NAND gate:

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

604

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Summary Reports

Feedback

The following image shows the usage of the set_build -nodelete_unused_gates
command:

Fault Summary Reports
The following sections describe the various types of summary reports:

• Fault Summary Report Examples

• Test Coverage

• Fault Coverage

• ATPG Effectiveness

Fault Summary Report Examples
By default, TestMAX ATPG displays fault summary reports using the five categories of fault
classes, as shown in the following example.

Fault Summary Report: Test Coverage

Uncollapsed Fault Summary Report

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

605

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Summary Reports

Feedback

fault class code #faults

------------------------------ ---- ---------

Detected DT 144361

Possibly detected PT 4102

Undetectable UD 1516

ATPG untestable AU 8828

Not detected ND 7695

total faults 166502

test coverage 88.74%

For a detailed breakdown of fault classes, use the -summary verbose option of the
set_faults command:

TEST-T> set_faults -summary verbose
The following example shows a verbose fault summary report, which includes the fault
classes in addition to the fault categories.

Verbose Fault Summary Report

Uncollapsed Fault Summary Report

fault class code #faults

------------------------------ ---- ---------

Detected DT 144415

 detected_by_simulation DS (117083)

 detected_by_implication DI (27332)

Possibly detected PT 4003

 atpg_untestable-pos_detected AP (403)

 not_analyzed-pos_detected NP (3600)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

606

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Summary Reports

Feedback

Undetectable UD 1516

 undetectable-unused UU (4)

 undetectable-tied UT (565)

 undetectable-blocked UB (469)

 undetectable-redundant UR (478)

ATPG untestable AU 8961

 atpg_untestable-not_detected AN (8961)

Not detected ND 7607

 not-controlled NC (503)

 not-observed NO (7104)

total faults 166502

test coverage 88.74%

The test coverage figure at the bottom of the report provides a quantitative measure of
the test pattern quality. You can optionally choose to see a report of the fault coverage or
ATPG effectiveness instead.

The three possible quality measures are defined as follows:

• Test coverage = detected faults / detectable faults

• Fault coverage = detected faults / all faults

• ATPG effectiveness = ATPG-resolvable faults / all faults

Test Coverage
Test coverage gives the most meaningful measure of test pattern quality and is the default
coverage reported in the fault summary report. Test coverage is defined as the percentage
of detected faults out of detectable faults, as follows:

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

607

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Summary Reports

Feedback

PT_credit is initially 50 percent and AU_credit is initially 0. You can change the settings for
PT_credit or AU_credit using the set_faults command.

By default, the fault summary report shows the test coverage, as in Fault Summary
Report: Fault Coverage and Fault Summary Report: ATPG Effectiveness.

Fault Coverage
Fault coverage is defined as the percentage of detected faults out of all faults, as follows:

   

Fault coverage gives no credit for undetectable faults; PT_credit is initially 50 percent.

To display fault coverage in addition to test coverage with the fault summary report, use
the -fault_coverage option of the set_faults command.

The following example shows a fault summary report that includes the fault coverage.

Fault Summary Report: Fault Coverage
TEST-T> set_faults -fault_coverage
TEST-T> report_faults -summary

Uncollapsed Fault Summary Report

fault class code #faults

------------------------------ ---- ---------

Detected DT 144361

Possibly detected PT 4102

Undetectable UD 1516

ATPG untestable AU 8828

Not detected ND 7695

total faults 166502

test coverage 88.74%

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

608

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Fault Summary Reports

Feedback

fault coverage 87.93%

ATPG Effectiveness
ATPG effectiveness is defined as the percentage of ATPG-resolvable faults out of the total
faults, as follows:

   

In addition to faults that are detected, full credit is given for faults that are proven to be
untestable by ATPG. PT_credit is initially 50 percent.

To display ATPG effectiveness with the fault summary report, use the
-atpg_effectiveness option of the set_faults command. The following example
shows a fault summary report that includes the ATPG effectiveness.

Fault Summary Report: ATPG Effectiveness

TEST-T> set_faults -atpg_effectiveness
TEST-T> report_faults -summary

Uncollapsed Fault Summary Report

fault class code #faults

------------------------------ ---- ---------

Detected DT 144361

Possibly detected PT 4102

Undetectable UD 1516

ATPG untestable AU 8828

Not detected ND 7695

total faults 166502

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

609

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Using Clock Domain-Based Faults

Feedback

test coverage 88.74%

fault coverage 87.93%

ATPG effectiveness 94.30%

See Also

• Direct Fault Crediting

Using Clock Domain-Based Faults
TestMAX ATPG includes a set of command options that enable you to report fault
coverage for transition or stuck-at faults on a per-clock domain basis. You can also add
or remove faults for particular clock domains so that ATPG or fault simulation targets only
those clock domains that are of interest.

Note the following when using this feature:

• TestMAX ATPG distinguishes faults captured by a clock and launched by a clock:

◦ Faults are considered to be captured by a clock when they feed a logic cone that
enters the data input of a flip-flop clocked by that clock.

◦ Faults are considered to be launched by a clock when they are fed by a logic cone
starting from the output of a flip-flop clocked by that clock.

◦ The clock, set, and reset inputs of flip-flops are not considered when determining
capture; faults leading to them are captured by the NO_CLOCK domain.

• Faults within the logic core of more than one clock are not considered to belong to
either domain. Instead, they are put into a separate category called MULTIPLE. Thus,
the clock domain faulting is called exclusive because each clock domain excludes the
effects of other clocks.

• Faults given the status Detected by Implication (DI) are detected by the scan
chain load/unload sequence. This sequence uses shift constraints which can differ
dramatically from the capture constraints that are used to calculate launch and capture
clocks for reporting faults by clock domain. This often results in DI faults being reported
as captured by the NO_CLOCK domain if the shift path is blocked by the capture
constraints. If shift-only clocks are used, this can result in DI faults being both launched
and captured by the NO_CLOCK domain.

• Faults that can be launched by one clock and PI/PIO, or that can be captured by one
clock and PO/PIO, are not considered MULTIPLE faults. These faults are added,

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

610

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Using Clock Domain-Based Faults

Feedback

removed, or reported when only the one clock is specified as the launch or capture
clock, and they are considered exclusive faults.

• When the special domains PI, PO or NO_CLOCK are specified, the only faults added
are those launched or captured exclusively by the specified domain, unless shared
faults are also specified. These domains are treated in a more restricted way because
they generally cannot be used to test transition delay faults, so the ability to add them
is included mainly for the sake of completeness.

When adding faults launched and captured by specific clocks and also other clocks, as
many as four commands might be required. For example:

• The add_faults -launch A -capture B command adds faults launched exclusively
by A and captured exclusively by B.

• The add_faults -launch A -capture B -shared command adds faults launched by
A and another clock and captured by B and another clock.

• The add_faults -launch A -capture B -shared_launch command adds faults
launched by A and another clock and captured exclusively by B.

• The add_faults -launch A -capture B -shared_capture command adds faults
launched exclusively by A and captured by B and another clock.

The following table list all the commands and command options associated with reporting
clock domain-based faults.

Table 4 Commands and Options Used for Reporting Clock Domain-Based Faults

Command Description

add_faults
-launch
launch_clock

Specifies the launch clock of the faults to be added. You can use this switch
independently, or in conjunction with the -capture switch.

add_faults
-capture
clock_name

Specifies the capture clock of the faults to be added. You can use this switch
independently, or in conjunction with the -launch switch .

add_faults
-exclusive

Specifies that only the faults that are driven and captured exclusively (using a
single launch and a single capture) are to be added. Faults exclusively driven
by PI or observed by PO are also added.

add_faults
-shared

Specifies that only the faults that are launched or captured by multiple
clocks should be added. This excludes all PI and PO faults described in the
add_faults options described previously.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

611

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Using Clock Domain-Based Faults

Feedback

Table 4 Commands and Options Used for Reporting Clock Domain-Based Faults
(Continued)

Command Description

add_faults
-shared_launch

Specifies that faults launched by the specified clock and other clocks are
added. An error is reported if you specify this switch without also using the
-launch
option.

add_faults
-shared_capture

Specifies that faults captured by the specified clock and other clocks are
added. An error is reported if you use this switch without also using the
-capture
option.

add_faults
-inter_clock_dom
ain

Adds only exclusive faults that are driven and captured by different clock
domains.

add_faults
-intra_clock_dom
ain

Adds only exclusive faults that are driven and captured by the same clock
domains.

remove_faults
-launch
clock_name

Specifies the launch clock of the faults to be removed. You can use this
switch independently, or in conjunction with the -capture switch (described
later).

remove_faults
-capture
clock_name

Specifies the capture clock of the faults to be removed. You can use this
switch independently, or in conjunction with the -launch switch (described
previously).

remove_faults
-exclusive

Specifies that only the faults that are driven and captured exclusively (using
a single launch and a single capture) are to be removed. Faults exclusively
driven by PI or observed by PO are also removed.

remove_faults
-shared

Specifies that only the faults that are launched or captured by multiple clocks
should be removed. This excludes all PI and PO faults (described in the
remove_faults options previously).

remove_faults
-
inter_clock_doma
in

Removes only exclusive faults that are driven and captured by different clock
domains.

remove_faults
-
intra_clock_doma
in

Removes only exclusive faults that are driven and captured by the same clock
domains.

report_faults
-per_clock_domai
n

All specified faults are reported with extra information for their launch and
capture clocks. Note that all clocks are reported, even for "shared" or
"multiple" categories.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

612

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Using Clock Domain-Based Faults

Feedback

Table 4 Commands and Options Used for Reporting Clock Domain-Based Faults
(Continued)

Command Description

report_summaries
faults
-per_clock_domai
n

Specifies that the clock report should be divided on a per clock domain basis
as shown in the following example. All shared faults are reported as one
category.

report_summaries
faults -launch
clock_name

Specifies the launch clock of the faults to be reported on. This switch can be
used independently, or in conjunction with the -capture switch.

report_summaries
faults -capture
clock_name

Specifies the capture clock of the faults to be reported on. This switch can
be used independently or in conjunction with the -launch switch (described
previously.

report_summaries
faults
-exclusive

Excludes the multiple launch and capture section from the report.

report_summaries
faults -shared

Reports only the section relating to multiple launch and capture clocks.

report_summaries
faults
-inter_clock_dom
ain

Reports on only the exclusive faults that are driven and captured by different
clock domains.

report_summaries
faults
-intra_clock_dom
ain

Reports on only the exclusive faults that are driven and captured by the same
clock domains.

Using Signals That Conflict With Reserved Keywords
The MULTIPLE, NO_CLOCK, PI, and PO names are reserved keywords when you use the
-launch and -capture options. If a clock signal uses one of these names, the clock
signal always takes priority when these options are used.

For example, if a clock is named MULTIPLE, then the command add_faults -launch
MULTIPLE adds faults launched exclusively by the clock named MULTIPLE. In this
case, if you want to add faults launched by multiple clocks, you can use the command
add_faults -launch multiple. This command works as expected because the
reserved names can be all uppercase or all lowercase; however, the actual clock names
are case-sensitive.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

613

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Fault Lists and Faults
Using Clock Domain-Based Faults

Feedback

Finding Particular Untested Faults Per Clock Domain
If you specify the report_summaries faults -per_clock command, TestMAX ATPG
provides only aggregate results. To find individual faults, specify the report_faults
-per_clock_domain command, then use UNIX editing commands to manipulate the faults
of interest.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

614

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

15
Fault Simulation

Fault simulation determines the test coverage obtained by an externally generated test
pattern. To perform fault simulation, you use functional test patterns that were developed
to test the design and have been previously simulated in a logic simulator to verify
correctness. The functional test patterns should contain the expected values, unless you
are using the Extended Value Change Dump (VCD) format. The expected values tell
TestMAX ATPG when and what to measure.

The following topics describe fault simulation:

• Supported Fault Models

• Fault Simulation Design Flow

• Preparing Functional Test Patterns for Fault Simulation

• Preparing Your Design for Fault Simulation

• Reading Functional Test Patterns

• Initializing the Fault List

• Performing Good Machine Simulation

• Performing Fault Simulation

• Combining ATPG and Functional Test Patterns

• Running Multicore Simulation

• Per-Cycle Pattern Masking

Supported Fault Models
TestMAX ATPG supports test pattern generation for the following fault models:

• Stuck-At

The stuck-at fault model is the standard model for test pattern generation. This model
assumes that a circuit defect behaves as a node stuck at either 0 or 1. The test pattern
generator attempts to propagate the effects of these faults to the primary outputs and

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

615

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Fault Simulation Design Flow

Feedback

scan cells of the device, where they can be observed at a device output or captured
in a scan chain. For more information on stuck-at faults, see "Understanding Fault
Models"

• Transition

The transition delay fault model is used to generate test patterns to detect single-
node slow-to-rise and slow-to-fall faults. For this model, TestMAX ATPG launches a
logical transition upon completion of a scan load operation and uses a capture clock
procedure to observe the transition results. This feature is licensed separately. For
more information, see "Transition-Delay Fault ATPG.”

• Path Delay

The path delay fault model tests and characterizes critical timing paths in a design.
Path delay fault tests exercise the critical paths at-speed (the full operating speed of
the chip) to detect whether the path is too slow because of manufacturing defects or
variations. For more information, see "Path Delay Fault and Hold Time Testing.”

• IDDQ

The IDDQ fault model assumes that a circuit defect causes excessive current drain
due to an internal short circuit from a node to ground or to a power supply. For this
model, TestMAX ATPG does not attempt to observe the logical results at the device
outputs. Instead, it tries to toggle as many nodes as possible into both states while
avoiding conditions that violate quiescence, so that defects can be detected by the
excessive current drain that they cause. For more information, see "Quiesence Test
Pattern Generation."

Fault Simulation Design Flow
The fault simulation design flow prepares functional test patterns for fault simulation, reads
the test patterns, initializes the fault list, performs good machine simulation, performs fault
simulation, and reviews the test coverage.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

616

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Fault Simulation Design Flow

Feedback

Figure 97 Fault Simulation Design Flow

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

617

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Preparing Functional Test Patterns for Fault Simulation

Feedback

Preparing Functional Test Patterns for Fault Simulation
The ATPG and fault simulation algorithms emphasize speed and efficiency over the ability
to use or simulate gate timing delays. There are corresponding limitations on functional
test patterns. The requirements for test patterns are described in the following sections:

• Pattern Compliance with ATE

• Checking Patterns for Timing Insensitivity

Pattern Compliance with ATE
Because the functional test patterns are used by ATE, you must verify that the patterns
comply with requirements of ATE. Each brand and model of ATE has its own list of
restrictions. The following general list of characteristics is usually acceptable:

• The input stimuli, clocks, and expected response outputs can be divided into a
sequence of identical tester cycles.

• Each tester cycle is associated with a timing set. There are a fixed number of timing
sets.

• The test cycle defines the state values to be applied as inputs and measured as
outputs, and the associated timing set defines the cycle period and the timing offsets
within the cycle when inputs are applied, clocks are pulsed, and outputs are sampled.

• The functional patterns are regular, with the timing of input changes and clock pulse
locations constant from one cycle to the next.

• The functional pattern set maps into four or fewer timing sets.

Every ATE has its own set of rules for timing restrictions, including the following examples:

• Minimum and maximum test cycle period

• Minimum and maximum pulse width

• Proximity of a pulsed signal to the beginning or end of a cycle

• Proximity of two signal changes to one another

• Accuracy and placement of measure strobes

• Placement accuracy of input transitions

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

618

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Preparing Functional Test Patterns for Fault Simulation

Feedback

Checking Patterns for Timing Insensitivity
Functional test patterns must be timing insensitive within each test cycle. The design can
have no race conditions that depend on gate delays that must be resolved on nets that
reach a sequential device, a RAM or ROM, or a primary output port.

To check for timing insensitivity:

1. Simulate the design in a logic simulator without timing and use a unit-delay or zero-
delay timing mode.

2. If the simulation passes, simulate it again with all timing events expanded in time by
five or ten times.

If the functional test patterns pass under these conditions, they can be considered timing
insensitive.

Timing Sensitivity
The following examples cause timing sensitivity:

• A pulse generator: An edge transition of an input port results in a pulse on an output
port or at the data capture input of an internal register. This pulsed value occurs at a
specific delay from the input event and, unless the output is measured at the correct
time or the internal register is clocked at the correct time, the pulsed value is lost. This
type of design fails simulation in the absence of actual timing.

You can correct this situation in one of two ways:

◦ Hold the triggering port fixed to a constant value in the functional patterns.

◦ Add some shunting circuitry (enabled in some sort of test mode) that blocks the
internal propagation of the pulsed value.

• Timing-critical measurements: An input port event at offset 0 ns turns on an output
driver in 100 nanoseconds (ns), but the patterns are set to measure a Z value at 90 ns
before the driver is turned on. Although this measurement is correct in the real device,
TestMAX ATPG uses only unit delays and reports a simulation mismatch.

You can correct this situation by measuring at 110 ns and changing the expected data
to the appropriate non-Z value.

• Multiple active clocks or asynchronous set/reset ports in the same cycle: With careful
attention to timing, correct use of clock trees, and good analysis tools, you can design
blocks of logic with intermixed clock zones that operate correctly with functional
patterns when more than one clock is active. However, because TestMAX ATPG
uses zero delay and not gate timing, simulating designs that contain more than one
active clock can result in the erroneous identification of internal race conditions and
subsequent elimination of functional test patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

619

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Preparing Your Design for Fault Simulation

Feedback

◦ Use master-slave clocking in your design.

◦ Use resynchronization latches between clock domains.

◦ Arrange your test patterns so that in any one cycle you have only one active clock.

Preparing Your Design for Fault Simulation
The process for preparing your design for fault simulation is generally the same as
preparing for the ATPG design flow:

• Preprocessing the Netlist

• Reading the Design and Libraries

• Building the ATPG Design Model

• Declaring Clocks

• Running DRC

Preprocessing the Netlist
If necessary, preprocess the netlist for compatibility with TestMAX ATPG. For more
information, see Netlist Requirements.

Reading the Design and Libraries
As with ATPG, for TestMAX ATPG fault simulation you first invoke TestMAX ATPG, read in
the design netlist, and read in the library models. For details, see Reading the Netlist and
Reading Library Models.

Note the following example command sequence:

% tmax

BUILD-T> read_netlist spec_asic.v

BUILD-T> read_netlist spec_lib/*.v -noabort

Building the ATPG Design Model
To build the ATPG design model for fault simulation, you use the same run_build_model
command as for ATPG. For fault simulation, enter the following command:

BUILD-T> run_build_model top_module_name

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

620

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Preparing Your Design for Fault Simulation

Feedback

Example 1 run_build_model Transcript

BUILD-T> run_build_model spec_asic
--

Begin build model for topcut = spec_asic ...

--

End build model: #primitives=101004, CPU_time=13.90 sec,

Memory=34702381

--

Begin learning analyses...

End learning analyses, total learning CPU time=33.02

Declaring Clocks
Although the nonscan functional stimuli provide all inputs, you might want to declare
clocks so that TestMAX ATPG can perform its clock-related DRC checks. Declaring clocks
is optional. Some clock violations found during run_drc can affect the simulator and it
might be necessary to remove add clocks commands.

If certain ports in the functional stimuli are operated in pulsed fashion within a cycle, you
might want to provide this information to TestMAX ATPG by declaring these ports to be
clocks.

A typical command sequence for declaring a clock is shown in the following example:

DRC-T> add_clocks 0 CLK
DRC-T> add_clocks 1 RESETB

Running DRC
Running DRC with nonscan functional test patterns tends to be simpler than running DRC
for ATPG, because the additional check for scan chains and other ATPG-only checks do
not need to be performed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

621

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Preparing Your Design for Fault Simulation

Feedback

DRC for Nonscan Operation
For nonscan operation, if you have defined a clock, you do not need to specify an STL
procedure file unless it is necessary for defining port timing. To run DRC without a file,
enter the following commands:

DRC-T> set_drc -nofile
DRC-T> run_drc
To run DRC with a file, enter the following command:

DRC-T> run_drc filename
Note the following:

• If you encounter DRC violations that apply to ATPG but are not relevant to the fault
grading of nonscan functional patterns, adjust the DRC rule severity by using the
set_rules rule_id warning command, and then execute the run_drc command
again.

• In some cases, external functional VCDe patterns are not always compliant with
TestMAX ATPG behaviors -- particularly when the clocks are active at the same time
that PIs change state. The basic rule is to define clocks in DRC if there are no C-rule
violations in the design. If there are C violations, consider passing all signals as inputs
and not defining any signals as clocks.

Example 2 shows a transcript of run_drc for a nonscan operation.

Example 2 Running DRC for Nonscan Operation

DRC-T> set_drc -nofile
DRC-T> run_drc
--

Begin scan design rule checking...

--

Begin Bus/Wire contention ability checking...

Bus summary: #bus_gates=4, #bidi=4, #weak=0, #pull=0, #keepers=0

 Contention status: #pass=0, #bidi=4, #fail=0, #abort=0,

#not_analyzed=0

 Z-state status : #pass=0, #bidi=4, #fail=0, #abort=0,

#not_analyzed=0

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

622

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Preparing Your Design for Fault Simulation

Feedback

Bus/Wire contention ability checking completed, CPU time=0.02 sec.

--

Begin simulating test protocol procedures...

Test protocol simulation completed, CPU time=0.00 sec.

--

Begin scan chain operation checking...

Scan chain operation checking completed, CPU time=0.00 sec.

--

Begin clock rules checking...

Warning: Rule C3 (no latch transparency when clocks off) failed 5 times.

Clock rules checking completed, CPU time=0.02 sec.

--

Begin nonscan rules checking...

Warning: Rule S23 (unobservable potential TLA) failed 5 times.

Nonscan cell summary: #DFF=0 #DLAT=10 tla_usage_type=none

Nonscan behavior: #CX=5 #LS=5

Nonscan rules checking completed, CPU time=0.03 sec.

--

Begin contention prevention rules checking...

Contention prevention checking completed, CPU time=0.00 sec.

Begin DRC dependent learning...

DRC dependent learning completed, CPU time=0.00 sec.

--

DRC Summary Report

--

Warning: Rule S23 (unobservable potential TLA) failed 5 times.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

623

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Reading Functional Test Patterns

Feedback

Warning: Rule C3 (no latch transparency when clocks off) failed 5 times.

There were 10 violations that occurred during DRC process.

Design rules checking was successful, total CPU time=0.21 sec.

--

DRC for Scan Operation
For scan operation, the STL procedure file you specify should contain, at a minimum, the
scan chain definitions, the waveform timing definitions, and the load_unload and Shift
procedure definitions. You can define clocks, primary inputs constraints, and primary input
equivalences on the command line or within the STL procedure file, or you can use a
combination of both.

To run DRC with a STIL procedure file, enter the following command:

DRC-T> run_drc filename

Reading Functional Test Patterns
You can read functional test patterns using the Set Patterns dialog box, or by running the
set_patterns command at the command line.

If you are reading external patterns in VCDE format, you need to specify the trigger
conditions for measurement. In the Set Patterns dialog box, use the Strobe Position option
and related options; or in the set_patterns command, use the -strobe option.

The following sections describe how to read functional test patterns:

• Using the Set Patterns Dialog Box

• Using the set_patterns Command

• Specifying Strobes for VCDE Pattern Input

Using the Set Patterns Dialog Box
To read in the functional test patterns using the Set Patterns dialog box:

1. From the menu bar, choose Patterns > Set Pattern Options. The Set Patterns dialog
box appears.

2. Click External.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

624

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Reading Functional Test Patterns

Feedback

3. In the Pattern File Name text field, enter the name of the pattern file, or locate it using
the Browse button.

4. Click OK.

Using the set_patterns Command
The following example shows how to read functional test patterns using the set_patterns
command:

TEST-T> set_patterns -external data.vcde -strobe rising CLK \
 -strobe offset 50 ns
TestMAX ATPG automatically determines the type of patterns being read and whether they
are in standard or GZIP format, and handles all variations automatically.

The following example transcript show output from the set_patterns external
command:

TEST-T> set_patterns ext patterns.v
End parsing Verilog file patterns.v with 0 errors;

End reading 41 patterns, CPU_time = 0.02 sec, Memory = 2952

For examples of functional patterns, see Pattern Input.

Specifying Strobes for VCDE Pattern Input
Functional patterns in VCDE format do not contain measure information. Therefore,
when you read in VCDE patterns with the Set Patterns dialog box or the set_patterns
command, you need to specify the trigger conditions for measuring expected values. You
can specify strobes that occur at a fixed periodic interval, or you can specify strobe trigger
conditions based upon events occurring at a specified primary input port, output port, or
bidirectional port.

In the Set Patterns dialog box, when you select External as the pattern source, the Strobe
Position option and related options are displayed. These options apply to reading VCDE
patterns only. The set of options changes according to the Strobe Position setting.

The Strobe Position can be set to any one of the following states:

• None: This option is not supported for VCDE input.

• Period: Strobes occur at a fixed periodic interval, starting in each cycle at the offset
value specified in the Offset field.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

625

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Reading Functional Test Patterns

Feedback

• Event: A strobe is triggered by any event occurring on the port specified in the Port
Name field. Any event at that port causes a strobe, including a transition with no level
change such as 1 to 1 or 0 to 0.

• Rising: A strobe is triggered by each transition to 1 on the port specified in the Port
Name field. Any transition to 1 causes a strobe, including 0 to 1, 1 to 1, X to 1, or Z to
1.

• Falling: A strobe is triggered by each transition to 0 on the port specified in the Port
Name field. Any transition to 0 causes a strobe, including 1 to 0, 0 to 0, X to 0, or Z to
0.

For the Event, Rising, and Falling strobe modes, you can specify an offset value in the
Offset field. By default, the offset is 0, which causes the strobe to occur just before the
trigger event. In other words, the measure occurs just before processing of the VCDE data
change that is the trigger event.

To make the strobe occur at a specific time after the trigger event, specify a positive offset
value. Negative offsets for strobes are not supported.

Each period and offset setting must be a positive integer or zero. You specify the time
units in the Unit fields: seconds, milliseconds, microseconds, nanoseconds, picoseconds,
or femtoseconds.

To specify the strobes using the command-line interface, use the -strobe option of the
set_patterns command. For details on the command syntax, see the online help for the
set_patterns command.

The following figure shows some timing diagrams with the strobe points resulting from
various strobe specification settings.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

626

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Initializing the Fault List

Feedback

Figure 98 VCDE Strobe Specification Examples

   

Each timing diagram shows the primary I/O signals A, B, and C. The vertical dashed lines
represent the strobe times. In the first example, the strobes are periodic and independent
of the data stream. In the second and third example, the strobes are based on port A and
port C, respectively.

Initializing the Fault List
The following sections show you how to initialize a fault list:

• Using the Add Faults Dialog Box

• Using the add_faults Command

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

627

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Performing Good Machine Simulation

Feedback

Using the Add Faults Dialog Box
To initialize the fault list using the Add Faults dialog box,

1. From the Faults menu, choose Add Faults. The Add Faults dialog box appears.

For descriptions of these controls, see Online Help for the add_faults command.

2. To add all potential faults (the most common usage), click All.

3. Click OK.

Using the add_faults Command
You can also initialize the fault list for all faults using the add_faults command:

TEST-T> add_faults -all
You can also define fault lists by reading faults or nofaults from a file or by defining specific
hierarchical blocks for adding or removing faults:

TEST-T> read_faults saved_faults_file
TEST-T> read_faults saved_faults_file -retain
The double-read sequence shown in this example is necessary to restore the exact fault
codes saved to the file.

In addition, you can read in a fault list generated by the TestMAX ATPG patterns and
thereby determine the cumulative fault grade for a combination of ATPG and functional
test patterns. For details, see Setting Up the Fault List and Combining ATPG and
Functional Test Patterns.

Performing Good Machine Simulation
You should perform a good machine simulation using the functional patterns before
running a fault simulation, to compare the TestMAX ATPG simulation responses to the
expected responses found in the patterns. If the good machine simulation reports errors,
there is little value in proceeding to run fault simulation.

As part of setting up the good machine simulation, refer to contention checking as
described in Choosing Settings for Contention Checking.

The following sections show you how to set up other good machine simulation parameters:

• Using the Run Simulation Dialog Box

• Using the set_simulation and run_simulation Commands

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

628

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Performing Fault Simulation

Feedback

Using the Run Simulation Dialog Box
To set up the good machine simulation parameters using the Run Simulation dialog box,

1. Click the Simulation button in the command toolbar at the top of the TestMAX ATPG
main window. The Run Simulation dialog box appears.

For descriptions of these controls, see the online help for the run_simulation
command.

2. Select required options.

3. Click Set to set the simulation options, or click Run to set the options and begin the
good machine simulation.

Using the set_simulation and run_simulation Commands
To set up the fault simulator from the command line, use a combination of the
set_simulation command and appropriate options of the run_simulation command:

DRC-T> set_simulation -measure pat -oscillation 20 2 -verbose
TEST-T> run_simulation -sequential
For the complete syntax and option descriptions, see Online Help for each command.

The following example shows a transcript of a simulation run that has no mismatches
between the simulated and expected data. For an example with simulation mismatches,
see Comparing Simulated and Expected Values.

Example 1 Good Machine Simulation Transcript

TEST-T> run_simulation -sequential
Begin sequential simulation of 36 external patterns.

Simulation completed: #patterns=36/102, #fail_pats=0(0),

#failing_meas=0(0)

Performing Fault Simulation
After performing a good machine simulation to verify that the functional patterns and
expected data agree, you can perform a fault grading or fault simulation of those patterns.
Performing fault simulation includes setting up the fault simulator, running the fault
simulator, and reviewing the results.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

629

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Performing Fault Simulation

Feedback

The following sections describe how to run fault simulation:

• Using the Run Fault Simulation Dialog Box

• Using the run_fault_sim Command

• Writing the Fault List

The set_simulation command described in the Performing Good Machine Simulation
section sets the environment for fault simulation as well as for good machine simulation.
Many of the options in the Run Simulation dialog box are also included in the Run Fault
Simulation dialog box.

Using the Run Fault Simulation Dialog Box
To set up fault simulation parameters using the Run Fault Simulation dialog box,

1. Click the Fault Sim button in the command toolbar at the top of the TestMAX ATPG
main window. The Run Fault Simulation dialog box appears.

For descriptions of these controls, see Online Help for the run_fault_sim command.

2. Select required options.

3. Click Set to close the dialog box and set the simulation options, or click Run to set the
options and begin the faulty machine simulation.

Using the run_fault_sim Command
You can also set up fault simulation parameters using the run_fault_sim command:

TEST-T> run_fault_sim -sequential
The following example shows a typical transcript of a fault simulation run is shown in
Example 1.

TEST-T> run_fault_sim -sequential
--

Begin sequential fault simulation of 4540 faults on 36 external patterns.

--

#faults pass #faults cum. #faults test process

simulated detect/total detect/active coverage CPU time

--------- ------------- ------------- -------- --------

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

630

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Combining ATPG and Functional Test Patterns

Feedback

1675 550 1675 550 3990 13.57% 3.72

3326 669 1651 1219 3321 29.36% 7.41

4540 390 1214 1609 2931 40.22% 11.13

Fault simulation completed: #faults_simulated=4540,test_coverage=40.22%

You review test coverage in the same way as for ATPG. For details, see Reviewing Test
Coverage .

The following command generates a summary of fault simulation.

TEST-T> report_summaries

Writing the Fault List
You write fault lists for fault simulation in the same way as you do for the ATPG flow. The
following write_faults command writes (saves) a fault list.

TEST-T> write_faults file.dat -all -uncollapsed -rep

Combining ATPG and Functional Test Patterns
If your design supports scan-based ATPG, you can create ATPG test patterns and
functional test patterns. Combining ATPG patterns with functional test patterns can often
produce a more thorough and more complete set of test patterns than using either method
alone.

If your design allows both ATPG and functional testing, you can combine the resulting test
patterns. The following sections describe the various methods for combining test patterns:

• Creating Independent Functional and ATPG Patterns

• Creating ATPG Patterns After Functional Patterns

• Creating Functional Patterns After ATPG Patterns

• Using TestMAX ATPG with Z01X

Creating Independent Functional and ATPG Patterns
If you do not want to combine the effects of functional test patterns and ATPG patterns,
you can create them independently. The functional test patterns are fault-graded in an
appropriate tool, and you obtain a test coverage value for the ATPG patterns that you
create using TestMAX ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

631

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Combining ATPG and Functional Test Patterns

Feedback

To determine the test coverage overlap, you must perform a detailed comparison of
the fault lists from both methods. You should expect overlap. In fact, you might prefer
redundancy.

Creating ATPG Patterns After Functional Patterns
If complete functional patterns are to be part of the test flow, use a combined approach
with ATPG patterns following functional patterns. The goal of ATPG is to create patterns to
test faults not tested by the functional patterns.

The following steps show a typical flow:

1. Use TestMAX ATPG to fault-grade the functional patterns.

2. Review the resulting test coverage.

3. Write the uncollapsed fault list resulting from the fault simulation.

4. Use TestMAX ATPG to create ATPG patterns for the fault list you created in step 3.

Example 1 shows a command file that implements this flow.

Example 1 Creating ATPG Patterns After Functional Patterns

#

--- ATPG follows Fault Grade flow

#

read_netlist spec_design.v -del # read netlist

read_netlist spec_lib.v # read library modules

run_build_model # form in-memory design image

add_clocks 0 CLK # define clock

add_clocks 1 RESETB # define async reset

run_drc # DRC without a procedure file

set_patterns -external b010.vin # read in external patterns

set_simulation -measure pat # set up for fault sim

run_simulation -sequential # perform good machine simulation

add_faults -all # add all faults

run_fault_sim -sequential # perform fault grade

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

632

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Combining ATPG and Functional Test Patterns

Feedback

report_summaries # report results

write_faults pass1.flt -all -uncol -rep # save fault list

#

--- switch to SCAN-based ATPG for more patterns

#

drc -force # return to DRC mode

set_patterns -delete # clear out external patterns

set_patterns -internal # switch to int pattern generation

run_drc spec_design.spf # define scan chains and procedures

read_faults pass1.flt -retain # start with fault list from pass1

set_atpg -abort 20 -merge high # setup for ATPG

run_atpg # create ATPG patterns

report_summaries # report coverage results

write_patterns pat.v -form verilog -replace # save patterns

write_faults pass2.flt -all -uncollapsed -rep # save cumulative fault

list

Creating Functional Patterns After ATPG Patterns
Use a combined approach with functional patterns following ATPG patterns if you want to
minimize the effort of creating functional test patterns. On a full-scan design, the ATPG
patterns achieve a very high coverage and the functional patterns can be created to test
for faults that are untestable with ATPG methods.

The following steps show a typical flow:

1. Use TestMAX ATPG to create ATPG patterns.

2. Review the resulting test coverage.

3. Save the uncollapsed fault list resulting from ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

633

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Combining ATPG and Functional Test Patterns

Feedback

4. Save the collapsed fault list of the nondetected faults, which are the faults in the ND,
AU, and PT categories. For an explanation of these categories, see Fault Categories
and Classes.

5. Use the nondetected fault list to guide your construction of functional patterns to test for
the remaining faults.

6. When the functional patterns are ready, fault-grade them using the uncollapsed fault list
from the ATPG (generated in step 3 above) as the initial fault list.

Example 2 shows a command file sequence that illustrates this flow.

Example 2 Creating Functional Patterns After ATPG Patterns

#

--- ATPG before Fault Grade

#

read_netlist spec_design.v -del # read netlist

read_netlist spec_lib.v # read library modules

run_build_model # form in-memory design image

add_clocks 0 CLK # define clock

add_clocks 1 RESETB # define async reset

add_pi_constraints 1 TEST # define constraints

run_drc spec_design.spf # define scan chains and procedures

add_faults -all # seed faults everywhere

run_atpg -auto_compression # create ATPG patterns

write_patterns pat.v -form verilog -replace # save patterns

write_faults pass1.flt -all -uncollapsed -rep # save cumulative

fault list

#

--- switch to Fault Grade mode

#

drc -force # clocks will still be defined

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

634

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Combining ATPG and Functional Test Patterns

Feedback

remove_pi_constraints -all # don't constrain when using ext patterns

set_drc -nofile

run_drc # switch to test mode

set_patterns -external b010.vin # read in external patterns

set_simulation -measure pat # set up for fault sim

run_simulation -sequential # perform good machine simulation

read_faults pass1.flt # seed the fault list

read_faults pass1.flt -retain # start with fault list from ATPG

run_fault_sim -sequential # perform fault grade

report_summaries # report results

write_faults pass2.flt -all -uncollapsed -replace # save fault list

Using TestMAX ATPG with Z01X
You can improve ATPG coverage by using TestMAX ATPG and the Z01XTM functional
simulator to create a combined set of ATPG and functional patterns. Z01X accepts most
fault types, including stuck-at, transition, IDDQ, and bridging faults.

To use the general TestMAX ATPG-Z01X flow, you create a post-ATPG fault list in
TestMAX ATPG and import it into Z01X. Based on the fault list, Z01X creates a set of
functional patterns that are combined with the ATPG patterns created from TestMAX ATPG
and used by the tester.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

635

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Combining ATPG and Functional Test Patterns

Feedback

Figure 99 General TestMAX ATPG-Z01X Fault Simulation Flow

   

To create a list of stuck-at faults for Z01X, use the write_faults command, as shown in
the following example:

TEST-T> write_faults ud.au_tcl-test.flt -class {UD AU ND} \
 -replace

Transition Fault Flow
The process for using transition faults in Z01X involves some additional steps that specify
clock domain information:

1. Use TestMAX ATPG to generate one fault list per clock domain.

You can use the following command to create a report containing clock domain
information:

report_faults -all -per_clock_domain > flt_pr_ck_dmn.txt
2. Define the clock frequency for each clock domain when the individual fault lists are

imported by Z01X.

3. Run a fault simulation for each fault list.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

636

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Running Multicore Simulation

Feedback

4. Merge each run.

For cross-clock domain faults, make sure to include the faults in both domains, and
fault-simulate each clock domain starting with the slowest clock and progressing to the
fastest clock.

Figure 100 Transition Fault Flow in Z01X

   

For complete details on using Z01X, see the Z01X Simulator Manufacturing Assurance
User Guide.

Running Multicore Simulation
Multicore simulation is a methodology that enables you to improve simulation runtime by
launching multiple slaves to parallelize fault and logic simulation to work on a single host.
You can specify the number of processes to launch based on the number of CPUs and
available memory on the machine.

Multicore simulation provides similar runtime reductions and works the same way as the
multicore ATPG architecture described in Running Multicore ATPG.

The following topics describe how to use multicore simulation and analyze its
performance:

• Invoking Multicore Simulation

• Interrupt Handling

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

637

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Running Multicore Simulation

Feedback

• Processes Summary Report

• Resimulating ATPG Patterns

• Limitations

Invoking Multicore Simulation
Multicore simulation is activated by the following set_simulation command:

 set_simulation –num_processes <
 number
 | max>

The number specification refers to the number of slave processes used during simulation.
If max is specified, then TestMAX ATPG computes the maximum number of processes
available in the host, based on number of CPUs. If TestMAX ATPG detects that the host
has only one CPU, then single-process simulation is performed instead of multicore
simulation with only one slave. Note that you should not specify more processes than the
number of CPUs available on the host. You should also consider whether there are other
CPU-intensive processes running simultaneously on the host when running the number
of processes. If too many processes are specified, performance will degrade and might
be worse than single-process simulation. On some platforms, TestMAX ATPG cannot
compute the number of CPUs available and will issue an error if max is specified.

Interrupt Handling
To interrupt the multicore simulation process, use Control-c ; in the same manner as a
single process. If a slave ends or is killed, the master and remaining slaves will continue to
run.

If the master ends or is killed, the slaves will also halt. In this case, there are no ongoing
zombie processes, dangling files, or memory leakage.

Processes Summary Report
Memory consumption needs to be measured to tune the global data structure to improve
the scalability of multicore architecture. Legacy memory reports are not sufficient because
they do not deal with issues related to copy-on-modification. ; To facilitate collecting
performance data, a summary report of multicore simulation is printed automatically
at the end of the simulation process when the -level expert option is used with the
set_messages command. The summary report appears as shown in Example 1.

Example 1 Example Processes Summary Report

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

638

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Running Multicore Simulation

Feedback

 Processes Summary Report

--

 Process Patterns Time(s) Memory(MB)

----------- ---------- --------------- -------------------------

ID pid Internal CPU Elapsed Shared Private Total Pattern

--

 0 7611 1231 0.53 35.00 67.78 30.54 98.32 5.27

 1 7612 626 35.68 35.00 64.87 22.31 87.18 0.00

 2 7613 605 35.50 35.00 64.71 22.47 87.18 0.00

 Total 1231 71.71 35.00 67.78 75.32 143.10 5.27

The report in Example 1 contains one row for each process. The first process with an ID
of 0 ; is the master process. The child processes have IDs of 1, 2, 3, and so forth. The last
row is the sum for each measurement across all processes.

The pid ; column lists the process IDs. The Patterns ; are the total number of patterns
stored by the master or the number of patterns generated by the slave in this particular
simulation session. The columns listed under Time(s) ; include CPU time and wall time.

The Memory ; measurements are obtained by parsing the system-generated file /proc/
pid/smaps. The file contains memory mapping information created by the OS while the
process still exists. The /proc/pid/ directory cannot be found after the process terminates.
The tool parses this file at the proper time to gather memory information for the reporting
at the end of parallel simulation.

The Memory ; measurement includes Shared, ; Private, ; Total, ; and Pattern. ; The
Shared ; column refers to all processes that share the same copy of the memory. The
Private ; column refers to the process stores local changes in the memory. The Total ;
column is the sum of Shared ; and Private. ; The Pattern ; column refers to memories
allocated for storing patterns. The total memory consumption of the entire system is the
Total ; item in the row Total, ; which is the sum of total shared memory (maximum
of shared memories for each process) and the total private memory (sum of all private
memory for all processes). Although the memory for patterns is listed separately, it is part
of the master private memory.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

639

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Running Multicore Simulation

Feedback

Due to a lack of OS support, the Memory section of the summary report is only available
on Linux and AMD64 platforms. No other platform gives shared or private memory
information in a copy-on-write context. On other formats, the memory reports all 0 ;s for
items other than the pattern memory.

Note: The report in Example 1 is printed only when the set_messages command is set to
-expert. Otherwise, a default summary report, similar to the following example, is printed
out:

End parallel ATPG: Elapsed time=35.00 sec, Memory=143.10MB.

 Processes Summary Report

Resimulating ATPG Patterns
You can resimulate ATPG patterns to mask out the observe values for any mismatched
patterns verified with run_simulation command. This feature is enabled when both
multicore ATPG and ATPG pattern re-simulation are enabled, as shown in the following
example:

set_atpg -resim_atpg fault_sim

set_atpg -num_processes 2

run_atpg –auto

The command output is similar to single-process ATPG pattern simulation with mismatch
masking messages. The process summary report is automatically printed out at the end of
ATPG, logic simulation, and fault simulation; this report is similar to the process summary
report for the corresponding standalone commands.

Limitations
There are several run_fault_sim and run_simulation command options that are not
supported by multicore simulation.

The unsupported run_fault_sim options are as follows:

• -detected_pattern_storage — This option stores the first detection pattern for each
fault. In multicore fault simulation, the patterns are not simulated in the order of the
pattern number occurrence.

• -distributed — This option is used to launch distributed fault simulation only. It
cannot be used in conjunction with multicore fault simulation.

• -nodrop_faults

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

640

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Per-Cycle Pattern Masking

Feedback

The unsupported run_simulation options are as follows:

• -sequential

• -sequential_update

• -update

See Also

• Running Multicore ATPG

Per-Cycle Pattern Masking
A common practice for test engineers is to replace 0s and 1s with Xs in scan patterns on
the tester. The goal, in this case, is to mask specific measures that mismatch on the tester.

The per-cycle pattern masking feature enables you to use a masks file to identify the
measures to mask out. Then, masked patterns can be written out, and, optionally, test
coverage can be recalculated, or the patterns can be simulated.

The following sections describe per-cycle pattern masking:

• Flow Options

• Masks File

• Running the Flow

• Limitations

Flow Options
There are two flows available for running per-cycle pattern masking: the tester flow and
the simulation flow.

The following steps are for the tester flow:

1. The original patterns are written out from TestMAX ATPG.

2. A few mismatches occur on the tester.

3. The patterns and mismatches are read into TestMAX ATPG.

4. Mismatches are masked in the pattern.

5. Masked patterns are optionally fault simulated again.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

641

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Per-Cycle Pattern Masking

Feedback

6. Masked patterns are written out from TestMAX ATPG.

7. All patterns pass on the tester.

The following steps are for the simulation flow:

1. The original patterns are written out from TestMAX ATPG.

2. Mismatches occur during fault simulation.

3. The patterns and mismatches are read into TestMAX ATPG.

4. Mismatches are masked in the pattern.

5. Masked patterns are optionally fault simulated again.

6. Masked patterns are written out from TestMAX ATPG.

7. All patterns pass during simulation.

Masks File
A masks file contains the measures used to mask in the patterns. It uses the same format
as the failure log file used for diagnostics and can be pattern-based or cycle-based. The
pattern-based format with chain name from parallel STILDPV simulation is also supported.
See “Providing Tester Failure Log Files” for details of the file format.

You can create a masks file as a result of running patterns on a tester. Note that only STIL
or WGL patterns files can be used with a cycle-based format masks file. A binary pattern
file cannot be masked with the cycle-based format masks file.

You can also create the masks file by collecting mismatches that occur during simulation,
in serial or parallel mode, of STIL patterns. See Predefined Verilog Options in the Test
Pattern Validation User Guide for information on the +tmax_diag option that controls this
process.

Running the Flow
The flow consists of first reading the patterns in the external buffer along with the masks
file. This read step will perform the masking of the patterns. You can then write the
updated patterns so you can use them. Finally, you can optionally calculate the new test
coverage with the masked cycles. It is possible to update binary, WGL or serial-STIL
patterns with failures from the parallel simulation of STIL patterns; and then, to write the
parallel STIL masked patterns for simulation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

642

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Per-Cycle Pattern Masking

Feedback

To read the patterns in the external buffer and read in the masks file, use the following
set_patterns command:

set_patterns -external patterns_file -resolve_differences masks_file
For example, the following command reads in the pat.stil patterns file and the
mask.txt masks file, and creates a report that indicates the total number of X measures
added in the external patterns:

set_patterns -external pat.stil -resolve_differences mask.txt
End parsing STIL file pat.stil with 0 errors.
End reading 200 patterns, CPU_time = 33.40 sec, Memory = 5MB
6 X measures were added in the external patterns.
Next, use the write_patterns -external command to write out the new vectors stored
in the external patterns buffer. Then, if you want to calculate the new test coverage, it is
recommended that you fault simulate the new patterns with run_fault_sim.

The flow is shown in the following example:

TEST-T> set_patterns -external pat.stil.gz -resolve_differences mask.txt
TEST-T> write_patterns pat.masked.stil.gz -format STIL \
-compress gzip -external
TEST-T> run_fault_sim
An alternate method for fault simulating the patterns and saving them so they
can run on the tester is to use first run_atpg -resolve_differences and then
write_patterns. In this case, the difference with previous method is that the run_atpg
-resolve_differences command fault grades the external patterns with the added
masks, and, patterns that don’t contribute to the test coverage are removed.

The advantage of using the alternate method is that if a large number of failures are
used during per-cycle pattern masking, it is likely that many patterns run on the tester
are useless and thus removing them will reduce the test time. The drawback is that new
failures could appear because of the patterns suppression. This is why it is recommended
that you perform a check with the run_simulation command after run_atpg -resolve.
If new failures occur, you must mask the patterns another time using set_patterns
-resolve_differences.

An alternate flow is shown in the following example:

TEST-T> set_patterns -external pat.stil.gz -resolv_differences mask.txt
TEST-T> add_faults -all

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

643

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Per-Cycle Pattern Masking

Feedback

TEST-T> run_atpg -resolve_differences
TEST-T> run_simulation
TEST-T> write_patterns pat.masked.stil.gz -format STIL -compress gzip \
-external

You can also use this feature when the patterns are split after ATPG. In this case, make
sure you generate the failures used for masking by using the log of the cycle-based
failures from the tester. Also, the cycle count must be reset from the execution of a
particular split pattern set to the next split pattern set. The flow is shown in following
example:

set_patterns –external <pattern_filename_0_to_mask> -resolve
 <failures_reset_0>
write_patterns …
set_patterns -delete
set_patterns –external <pattern_filename_1_to_mask> -resolve
 <failures_reset_1>
write_patterns …
set_patterns –delete
etc. …

You should specify the set_diagnosis -cycle_offset command when using a cycle-
based failures log file for masking and an offset is applied to the cycle.

For multiple pattern sets, you need to use -split option, as shown in the following
example:

TEST-T> set_patterns -external pat1.stil.gz -resolv_differences mask1.txt
 -split
TEST-T> set_patterns -external pat2.stil.gz -resolv_differences mask2.txt
 -split
TEST-T> set_patterns -external pat3.stil.gz -resolv_differences mask3.txt
 -split
TEST-T> add_faults -all
TEST-T> run_atpg -resolve_differences
TEST-T> run_simulation
TEST-T> write_patterns pat.masked.stil.gz -format STIL -compress gzip \
 -external

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

644

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Fault Simulation
Per-Cycle Pattern Masking

Feedback

Limitations
The following limitations apply to this flow:

• It is not possible to write masked full-sequential patterns in parallel format.

• The binary pattern file cannot be masked with a cycle-based format masks file.

• For patterns with multiple load-unloads with measures on the scanout in each unload,
only the failures for the first unload can be masked.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

645

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

16
On-Chip Clocking Support

On-Chip Clocking (OCC) support is common to all scan ATPG and Adaptive Scan
environments. This implementation is intended for designs that require ATPG in the
presence of PLL and clock controller circuitry.

OCC support includes phase-locked loops, clock shapers, clock dividers and multipliers,
and so forth. In the scan-ATPG environment, scan chain load and unload are controlled
through an ATE clock. However, internal clock signals that reach state elements during
capture are PLL-related.

The following sections describe on-chip clocking support:

• OCC Background

• OCC Definitions, Supported Flows, Supported Patterns

• OCC Limitations

• TestMAX DFT to TestMAX ATPG Flow

• OCC Support in TestMAX ATPG

• OCC-Specific DRC Rules

OCC Background
At-speed testing for deep submicron defects requires not only more complex fault models
for ATPG and fault simulation, like transition faults and path delay faults, but also requires
the accurate application of two high-speed clock pulses to apply the tests for these fault
models. The time delay between these two clock pulses, referred to as the launch clock
and the capture clock, is the effective cycle time at which the circuit is tested.

A key benefit of scan-based at-speed testing is that only the launch clock and capture
clock need to operate at the full frequency of the device under test. Scan shift clocks
and shift data might operate at much slower speed, thus reducing the performance
requirements of the test equipment. However, complex designs often have many different
high frequency clock domains, and the requirement to deliver a precise launch and
capture clock for each of these from the tester can add significant or prohibitive cost on the
test equipment. Furthermore, special tuning is often required to properly control the clock
skew to the device under test.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

646

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Definitions, Supported Flows, Supported Patterns

Feedback

One common alternative for at-speed testing is to leverage existing on-chip clock
generation circuitry. This approach uses the active controller, rather than off-chip clocks
from the tester, to generate the high speed launch and capture clock pulses. This type
of approach generally reduces tester requirements and cost, and can also provide high
speed clock pulses from the same source as the device in its normal operating mode
without additional skews from the test equipment or test fixtures.

To use this approach, additional on-chip controller circuitry is included to control the on-
chip clocks in test mode. The on-chip clock control is then verified, and at-speed test
patterns are generated which apply clocks through proper control sequences to the on-
chip clock circuitry and test mode controls. TestMAX DFT and TestMAX ATPG support a
comprehensive set of features to ensure that:

• The test mode control logic for the OCC operates correctly and has been connected
properly.

• Test mode clocks from the OCC circuitry can be efficiently used by TestMAX ATPG for
at-speed test generation.

• OCC circuitry can operate asynchronously to shift and other clocks from the tester.

OCC Definitions, Supported Flows, Supported Patterns
Note the following definitions as they apply to OCC:

• Reference Clocks — The frequency reference to the PLL. It must be maintained as a
constantly pulsing and free-running oscillator or the circuitry will lose synchronization.

• PLL Clocks — The output of the PLL. A free-running source that also runs at a
constant frequency which might not be the same as the reference clock.

• ATE Clocks — Shifts the scan chain typically slower than a reference clock. You must
manually add this signal (a port) when inserting the OCC. Note that the ATE clock
cannot be a reference clock, and it does not capture.

• Internal Clocks — The OCC is responsible for gating and selecting the PLL clocks and
ATE clocks, and for creating the internal clocks, which satisfy ATPG requirements.

• External Clocks — The primary inputs of a design which clock flip-flops directly through
combinational logic not generated from PLLs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

647

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Limitations

Feedback

OCC is supported in the following flows:

• TestMAX DFT-to-TestMAX ATPG flow (for details, see Chapter 7, “Using On-Chip
Clocking,” in the TestMAX DFT User Guide Vol. 1: Scan)

• Non-TestMAX DFT to TestMAX ATPG Flows:

◦ Basic Scan with On-Chip Clocking

◦ Adaptive Scan with On-Chip Clocking

Note the following pattern support available in OCC:

Format Synchronous Single Pulse Synchronous Multi-Pulse Asynchronous

STIL Yes Yes Yes

STIL99 Yes Yes No

WGL Yes Yes No

Others Yes No No

OCC Limitations
Note the following limitations for OCC support:

• You must use generic capture procedures for internal/external clocking. For more
information, see Creating Generic Capture Procedures.

• You cannot use the OCC from TestMAX DFT with the set_delay -launch_cycle
last_shift command. However, you can use it with the set_delay -launch_cycle
extra_shift command if it is used in combination with pipelined scan enable. In this
case, the scan_en pin must be connected to the non-pipelined scan enable input.

• Multi-cycle paths can only be tested when they are defined in a MultiCyclePath
block for synchronized multi frequency clocking. You must also specify the set_drc
-multiframe_paths command.

• The clock frequency of the PLL generating internal clocks cannot change dynamically
— must be constant (that is, programmable bits must be nonscan and constant during
ATPG).

• Do not use the reference clock as your ATE clock or shift clock.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

648

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Limitations

Feedback

• End-of-cycle measure is not compatible with PLL reference clocks. With PLL reference
clocks defined, ATPG can generate patterns with the following sequence of events:

◦ forcePI

◦ measurePO

◦ pulse reference clocks

When writing such patterns out in STIL (or any other external format), the vector
that contains the measurePO must also pulse reference clocks (by definition
reference clocks must be pulsed in every vector). But the end-of-cycle measure
timing means the order of events is reversed in this vector: pulse reference clocks
measurePO. This is incorrect and the pattern will likely fail on silicon. A new
message has been added that will flag you to correct the timing:

Warning: Reference Clock <ON_time> < measure_time> in waveformtable.
 All PO measures were masked. (M664)

• Clock bits must hold state during capture.

   

• Avoid using reference clock for flip-flops inside the design.

• Programmable PLLs (test_setup is critical and must not become corrupt during the
entire ATPG process).

MacroDefs { "test_setup" { W "_default_WFT_"; C { "all_inputs" = \r26
 N; "all_outputs" = \r8 X; } V { "ateclk" = P; "clk" = P; "pll_reset"
 = 1; } V { "test_mode" = 1; "pll_bypass" = 0; "pll_reset" = 0;
 "test_se" = 0; } } }

The pll_reset must be constrained to stay in a consistent state while shifting data
from the clock chain. The OCC Controller goes through the initialization sequence one
time and returns to a state to be controlled from the clock chain only. Therefore, the
pll_reset must be constrained to stay in a consistent state.

• If the reference clock period is an integer divisor of the test_default_period, then
patterns can be written in the STIL, STIL99 and WGL formats.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

649

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
TestMAX DFT to TestMAX ATPG Flow

Feedback

• If the reference clock is not an integer divisor to the test_default_period, the only
format that can be written in a completely correct way is STIL. Other formats (including
STIL99) cannot include the reference clock pulses and a warning is printed indicating
that these pulses must be added back to the patterns manually.

• Make sure you constrain the scan enable to the off-state in the TestMAX ATPG
command file since it is not specified in the OCC protocol file.

• The tmax2pt.tcl script supports OCC. However, since there is no timing information
for internal clocks in the TestMAX ATPG database, the timing that is written out is
nominal and might not match the design’s actual clock timing.

TestMAX DFT to TestMAX ATPG Flow
This flow automatically writes out the STIL procedure file for TestMAX ATPG and the
Verilog netlist.

For details on this flow, refer to “Using On-Chip Clocking,” in the TestMAX DFT User Guide
Vol. 1: Scan).

The following figure illustrates the basic TestMAX DFT to TestMAX ATPG design flow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

650

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
TestMAX DFT to TestMAX ATPG Flow

Feedback

Figure 101 TestMAX DFT to TestMAX ATPG Flow

   

The basic TestMAX DFT-to-TestMAX ATPG design flow consists of the following steps:

1. Edit your netlist to meet the requirements of TestMAX ATPG (see Netlist
Requirements).

2. Read the netlist (see Reading in the Netlist).

3. Read the library models (see Reading Library Modules)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

651

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
TestMAX DFT to TestMAX ATPG Flow

Feedback

4. Build the ATPG design model (see Building the ATPG Model)

5. Read in the STIL test protocol file, automatically generated by TestMAX DFT (see
Selecting the Pattern Source).

6. Perform DRC and make any necessary corrections (see Performing Test Design Rule
Checking).

To run with PLL active, specify the following command:

run_drc <STIL_file> -patternexec <test_mode>

To run with PLL bypassed, specify the following command:

run_drc <STIL_file> -patternexec <test_mode>_occ_bypass

When using default test modes, use one of the following:

run_drc <scan_STIL_file> -patternexec Internal_scan run_drc
 <scan_STIL_file> -patternexec Internal_scan_occ_bypass run_drc
 <compression_STIL_file> -patternexec ScanCompression_mode run_drc
 <compression_STIL_file> -patternexec ScanCompression_mode_occ_bypass

7. Prepare the design for ATPG by setting up the fault list, and setting the ATPG options
(see Preparing for ATPG).

Depending on the ratio between the _default_WFT_ and the OCC clocks, the
set_atpg -min_ateclock_cycles command might be needed.

The capture sequence for OCC clocks uses the multiclock_capture procedure (if
generic capture procedures are used). There are as many of these as the number of
launch and capture clocks required. The Synopsys OCC controller requires an ATE
clock falling edge to occur after the scan enable has become inactive to start its count,
then emits its first clock to correspond with the sixth following clock coming from the
PLL. If the scan enable becomes active again before all of the pulses required from the
OCC controller are emitted, then the capture pulses are truncated and the patterns will
fail simulation.

When the ratio of the slowest PLL clock period to the ATE clock period is not
high enough to ensure that all OCC clock pulses are emitted, the set_atpg
-min_ateclock_cycles command should be used to add to the number of ATE clock
cycles.

8. Run ATPG (see Running ATPG).

9. Review the test coverage and rerun ATPG if necessary (see Reviewing Test
Coverage).

10. Save the test patterns and fault list (see Writing ATPG Patterns).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

652

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

You should not use any OCC IP that is not created by DFT Compiler with TestMAX
ATPG. If you have this type of IP, you should refer to the “User-Defined Instantiated Clock
Controller and Chain Insertion Flow” section in the TestMAX DFT User Guide.

OCC Support in TestMAX ATPG
OCC support in TestMAX ATPG provides for automated handling of internal clocks in a
generic manner. This automation is enforced by using clock design rules that validate
user-specified clock controller settings.

The following sections describe OCC support in TestMAX ATPG:

• Design Set Up

• OCC Scan ATPG Flow

• Waveform and Capture Cycle Example

• Using Synchronized Multi Frequency Internal Clocks

• Using Internal Clocking Procedures

Design Set Up
When a design contains both internal clocks (commonly driven by PLL sources), and
external (primary input) clocks, the TestMAX ATPG default operation is to use both
clock sources for test generation. In some clock-tracing situations, internal clocks will
take precedence over external sources, however this might not eliminate all ambiguity,
especially when both clock sources are presented to the same internal element.

TestMAX ATPG allows for control of capture clocks that are issued during ATPG on a
per-pattern basis. This gives ATPG the flexibility of deciding what internal clocks that
should be pulsed in a given capture cycle, instead of incurring the overhead of pulsing
all internal clocks every capture cycle. Note that generic capture procedures should be
used exclusively. Also, because the pulse placements of different OCC clocks cannot be
predicted, you should always use the following command:

set_delay -common_launch_capture_clock

If you are using synchronous multi frequency internal clocks, you should not use this
example. Instead, TestMAX ATPG offers a specific flow for designs that use synchronous
multi frequency internal clocks. For details on this process, see Using Synchronized Multi
Frequency Internal Clocks. However, if your design contains asynchronous internal clocks,
then you should use the example cited above.

Black boxes are often the sources of the PLL clocks. When PLL clocks are driven by logic,
DRC might fail because of how these clocks are simulated. Simulation events are driven

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

653

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

on the defined PLL clock source, and these events are used to trace the OCC controller
functionality. Other simulation events that propagate through the logic confuse this DRC
analysis. To prevent this problem, you should replace the instances driving the PLL clocks
with TIEX primitives:

set_build -instance_modify {pll864/U93 TIEX}
set_build -instance_modify {pll923/U45 TIEX}

OCC Scan ATPG Flow
The OCC Scan ATPG flow consists of the following steps:

1. Read the design files (see Reading the Library Modules).

2. Build the design (see Building the ATPG Model).

3. Run DRC with the TestMAX ATPG STIL procedure file created by TestMAX DFT after
scan insertion in presence of PLL circuitry (see Performing Design Rule Checking).

4. Run ATPG (see Running ATPG).

Waveform and Capture Cycle Example
The following figure shows an example of the relationship between various clocks when
the design contains an OCC controller.

Figure 102 Waveform and Capture Cycle Example

   

The refclk must pulse in every vector. This figure also contains information about
pllclk, ateclk, and intclk.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

654

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

Using Synchronized Multi Frequency Internal Clocks
By default, internal clocks derived from an OCC Controller are considered by TestMAX
ATPG to be asynchronous to each other. However, you can specify the timing relationships
of internal clocks, thus improving the test quality. This section describes the process for
implementing synchronized internal clocks at one or multiple frequencies in an OCC
Controller.

It is important to note that this capability requires the PLL clocks to be synchronized in
the design and requires the OCC Controllers to actually synchronize their output pulses.
TestMAX ATPG uses the information provided to it and does not do any checking to
ensure that this reflects the actual circuit design.

The following sections describe how to specify synchronized multi frequency internal
clocks:

• Enabling Internal Clock Synchronization

• Clock Chain Reordering

• Clock Chain Resequencing

• Finding Clock Chain Bit Requirements

• Reporting Clocks

• Reporting Patterns

Enabling Internal Clock Synchronization
To enable internal clock synchronization, specify the ClockTiming block in the STIL
Procedure File . There are several command switches, described later in this section, that
can be used when this feature is enabled.

The ClockTiming block is placed in the top level of the ClockStructures block, which
already describes other aspects of the internal clocks.

For details on how to enable internal clock synchronization in the STL procedure file,
see the Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller
section.

Clock Chain Reordering
The clock chain has one register bit per clock cycle. The value loaded into this register
controls whether the OCC controller allows a clock pulse from the PLL to propagate during
its cycle. ATPG calculates the pattern by ordering the clock pulses, and this initial order
must be re-sequenced to reflect period and latency differences between the clocks.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

655

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

Figure 103 Clock Chains Before Reordering

   

In the preceding figure, note that the order of the clock chain bits is the same as defined in
the Cycle statements of the PLLStructures block, with ATPG frame 0 representing Cycle
0, and so forth.

Clock Chain Resequencing
By default, clock chain resequencing is done to convert the ATPG frame sequence to an
equivalent duration in terms of clock periods. Since different clocks might have different
periods, this might result in very different sequence lengths to cover the same capture time
duration.

Latency is ignored when all clocks pulsed in a capture sequence are defined in the same
PLLStructures block, or when the latency period (that is the latency number times the
minimum clock period within the PLLStructures block) is the same even though the
clocks are in different PLLStructures blocks. In this case, resequencing is based on
period times and whether MultiCyclePath blocks are defined.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

656

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

Figure 104 Clock Chain Resequencing with the Same Latency

   

Note that in the preceding figure, twice as many bits are needed to represent the 2X clock.
For this reason, clock chains are allowed to have different lengths when a ClockTiming
block is used.

Latency must be considered when a capture sequence contains clock pulses of clocks
having different latency periods. In this case, extra padding cycles are added for the clock
with the shorter latency period so that the clock periods coincide at the first ATPG frame.

Figure 105 Clock Chain Resequencing with Different Latencies

   

Note that in the preceding figure, two clocks from different PLLStructures blocks with the
same latency number have different latency periods because of their different frequencies.
This requires an extra padding bit to be added to its clock chain.

When clock overlapping is enabled, either by the MultiCyclePath statement in the STL
procedure file or by the set_drc -fast_multifrequency_capture on command, clock
chain re-sequencing is required to get the final result. For example, in the Latency 0 case,
see the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

657

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

Figure 106 Clock Chain Resequencing When Clock Overlapping is Enabled

   

Finding Clock Chain Bit Requirements
The required clock chain lengths can be calculated and combined with the number
of internal clock pulses that are used, based on the set_atpg -capture_cycles
specification.

You can also determine the clock chain bit requirements using the following command:

set_messages –level expert

After pattern generation, before the summary is printed, the following message will appear:

Warning: 238 clock pulses rejected. Clock 895 has a 6 bit clock chain,
 but needs 13 bits. (M720)

The clock number refers to the clock source, whose instance name can be found using the
report_primitives command. The clock chain length reported is the maximum needed.
If a M720 message is not printed, then the clock chains meet or exceed the required
length.

Reporting Clocks
To report the structure of the synchronized clock groups as they are used by ATPG, use
the command report_clocks intclocks. If any synchronization groups are active, two
extra columns are printed with the headings sync and period. The example STL procedure
file shown in “ClockTiming Block Example” uses ClockTiming CTiming_2, and looks like
the following:

int_clock_inst_name gate_id off source sync period cycle conditions
------------------- ------- --- ------ ---- ------ ----- -----------
TOTO/U2 895 0 20 1 1
 0 1468=1 (0,4)
... one line for each extra pulse condition ...
TOTO/U5 825 0 19 1 2
 0 1487=1 (0,4)
... one line for each extra pulse condition ...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

658

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

TOTO/U8 755 0 18 1 4
 0 1506=1 (0,4)
... one line for each extra pulse condition ...

The sync heading indicates the synchronization group number. The number is arbitrary,
but all internal clocks that are synchronized to each other are in the same synchronization
group.

The period heading indicates the period of the clock in units of the fastest clock in the
same synchronization group. They are normalized to 1 since the actual period is not
used by ATPG, only the relationships between the different periods. Note that each
synchronization group will have a clock with a period of one. This does not mean that their
periods are the same, since the different groups are asynchronous to each other.

To get clock pulse overlapping information, use the report_clocks -capture_matrix
command. The output from this command takes one of two forms. The default form is as
follows:

report_clocks -capture_matrix
 Warning: Requested report contained no entries. (M13)

This means that overlapping is not allowed between any clock pairs. This would be
expected in the example STL procedure file (see “ClockTiming Block Example”) if
set_drc -internal_clock_timing CTiming_2 was used because of the lack of
Waveform and MultiCyclePath statements. The non-default form is as follows:

report_clocks -capture_matrix
id# clock_gate period 0 1
--- -------------- ------ ----- -----
0 895 10.0 10.0 10.0
1 825 30.0 10.0 30.0

This means that clock pulse overlapping is allowed. All numbers in the matrix are the time
between the launch and capture pulses when this pair of clocks is used. In this example,
captures between any pairs of clocks can be made at the minimum of the two clocks’
periods, or in other words, at single-cycle timing.

The timing of the periods and edges of the internal clocks is reported by using the
command report_clocks -intclocks -verbose. For example:

report_clocks -intclocks -verbose
#int_clk_inst_nm gt_id off source sync period LE TE lat cycle
 conditions
#---------------- ---- --- ---- ---- ------ -- -- --- -----

#pll_control_M1/U2 6698 0 138 1 1 0 10
 5 0 13337=1 (0,4)

 1 13336=1 (0,5)

 13 13324=1 (0,17)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

659

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

#pll_control_M2/U2 7347 0 139 1 1 0 10
 5 0 13362=1 (0,4)

 1 13361=1 (0,5)

 13 13349=1 (0,17)
#pll_control_M3/U2 8567 0 187 1 2 5 25
 5 0 13387=1 (0,4)

 1 13386=1 (0,5)

 13 13374=1 (0,17)

Note that the leading/trailing edge information comes from the STL procedure file. Here is
the block that produced the example report:

 SynchronizedClocks M_clocks {
 Clock ICLK1 {Location "pll_controller_M1/U2/Y"; Period '20ns';
Waveform '0ns' '10ns';
}
 Clock ICLK2 {Location "pll_controller_M2/U2/Y"; Period '20ns';
Waveform '0ns' '10ns';
}
 Clock ICLK3 {Location "pll_controller_M3/U2/Y"; Period '40ns';
Waveform '5ns' '25ns';
}
 }

Reporting Patterns
The report_patterns command is useful for finding out the intention of ATPG, but the
report can be too verbose when only the clocking information is required. To get a report
that is tightly focused on the clocking, use the command report_patterns -clocking.
For example:

TEST-T> report_patterns 7 -clocking
 Clocking only:
 Pattern 7 (fast_sequential-parallel_clocking)
 Cycle-based clocking sequence:
 0: TOTO/U2/Z:0100000000
 1: TOTO/U5/Z:1-0-0-0-0-
 Clock Instruction Registers:
 0: 0010000000
 1: 1000000000
 # PLL internal clock pulse: capture_cycle=0, node=TOTO/U5 (191)
 # PLL internal clock pulse: capture_cycle=1, node=TOTO/U2 (242)

The cycle-based clocking sequence field is the test in terms of ATPG frames and the
Clock Instruction Registers field is the clock chain contents after re-sequencing.
A dash is inserted to indicate that the clock operation is determined by a previous value

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

660

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

and its period has not finished yet. It allows columns representing the same time to line up
even though they refer to clocks of different periods.

Using Internal Clocking Procedures
Internal clocking procedures enable you to specify which combinations of internal clock
pulses you want to use and how to generate them.

The following sections describe how to use internal clocking procedures in TestMAX
ATPG:

• Enabling Internal Clocking Procedures

• Performing DRC with Internal Clocking Procedures

• Reporting Clocks

• Performing ATPG with Internal Clocking Procedures

• Grouping Patterns By ClockingProcedure Blocks

• Writing Patterns Grouped by Clocking Procedure

• Reporting Patterns

• Limitations

Enabling Internal Clocking Procedures
To enable internal clocking procedures, you can use either the ClockTiming block or the
ClockConstraints block within the top level of the ClockStructures block.

The ClockTiming block is used for synchronized multi frequency clocks. In many
cases, you can use either the ClockTiming block or ClockConstraints block to describe
synchronized OCC controllers. However, you should first consider using the ClockTiming
block because it provides greater freedom to ATPG and results in fewer patterns for the
same coverage. You should use the ClockConstraints block when the synchronized
OCC controllers are limited to providing a small fixed set of clock waveforms.

Note that you cannot combine the ClockConstraints and ClockTiming blocks.

For complete details on enabling internal clocking procedures in the STL procedure file,
see the Specifying Internal Clocking Procedures section.

Performing DRC with Internal Clocking Procedures
The presence of the ClockConstraints block in the STL procedure file disables some of
the on-chip clocking checks normally performed during DRC. In particular, no checking is
done to ensure that the specified InstructionRegister values cause the required clock
pulses to be generated. In this case, the intention is to support clock controllers whose

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

661

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

behavior cannot be understood through zero-delay gate-level simulation. Clock effects
from the defined clock pin name are simulated to ensure that capture behavior is valid.
Clock-grouping checks are not performed.

You can define more than one named ClockConstraints block, but you can use only one
for any single DRC or ATPG run. You must select the required ClockConstraints block
using the set_drc -clock_constraints command, as shown in the following example:

set_drc –clock_constraints constraints1

If you do not specify the set_drc -clock_constraints command, none of the
ClockConstraints blocks is used.

Timing information is not provided, which means clocks are assumed to be in the order
specified. All clocks that pulse in the same frame are assumed to pulse simultaneously
without disturbing each other. The trailing edges of all clock pulses in the first frame are
assumed to occur before the leading edges of the clocks in the second frame. If these
assumptions are violated in the actual design, timing exceptions must be used to prevent
simulation mismatches.

You can use the set_drc -num_pll_cycles command to specify the sequential depth
of the constraints. Procedures with a small number of frames are padded with clock-
off values. Procedures with a large number of frames are degenerated if all of the extra
frames are at clock-off values; otherwise, they are unusable. This enables the definition of
multiple constraints of different depth in a single Constraints block while ensuring that
only the procedures of the appropriate depth are used. The set_drc -num_pll_cycles
and set_atpg -capture commands must match, but they can differ from the PLLCycles
declaration in the ClockStructures block. The commands specify the sequential depth
to be used in this particular run, while the PLLCycles declaration indicates the maximum
sequential depth supported by the clock controller.

Reporting Clocks
You can use the -constraints option of the report_clocks command to report
information on clocking procedures as they are used by ATPG. To report details for a
given procedure, use the report_clocks -constraints –procedure name command.
To report more detail for all procedures, use the report_clocks -constraints -all
command.

For example,

TEST> report_clocks –constraints -all
 --
 Clock Constraints constraints1:
 Maximum sequential depth: 2
 Defined Clocking Procedures: 3
 Usable Clocking Procedures: 3
 PLL clocks off Procedure: ClockOff

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

662

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

U0to1:
 CLKIR=10010
 dutm/ctrl1/U17/Z=P0
 dutm/ctrl2/U19/Z=0P

U1to0:
 CLKIR=01010
 dutm/ctrl1/U17/Z=0P
 dutm/ctrl2/U19/Z=P0

ClockOff:
 CLKIR=00000
 dutm/ctrl1/U17/Z=00
 dutm/ctrl2/U19/Z=00

When procedures with different frame counts are reported, the shorter procedures are
shown with zeros padded to the left so that all procedures are reported with the same
depth. This does not mean that the procedures should be written this way. ATPG is more
efficient when all procedures are written with as few frames as possible.

Performing ATPG with Internal Clocking Procedures
The internal clocking procedures feature fully supports two-clock optimized ATPG, basic
scan ATPG, and fast-sequential ATPG. Full-sequential ATPG is not supported and no
patterns are generated when internal clocking procedures are defined.

When two-clock optimized ATPG is used, all usable clocking procedures must have two
frames for each clock. When basic scan ATPG is used, all usable clocking procedures
must have one frame for each clock.

As a result of using internal clocking procedures, ATPG can use only a subset of the
available clock pulse sequences. The sequences cannot be used to force ATPG to
generate a pattern that it could not otherwise generate.

When a procedure has multiple clocks and multiple frames, ATPG can only capture
transition or fault effects using clocks that pulse in the last frame. Clocks whose last pulse
is in a preceding frame can only be used to launch transitions or set up conditioning to
detect faults captured by other clocks. Make sure you provide other procedures where
these clocks pulse in the last frame; otherwise, fault coverage is reduced.

Grouping Patterns By ClockingProcedure Blocks
In some situations, you might want to group patterns into sets, each of which uses only
one of the defined ClockingProcedure blocks. To group patterns, specify the following
command before the run_atpg command:

set_atpg –group_clk_constraints { first_pass middle_pass final_pass }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

663

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

The three arguments are specified in terms of percentages of the fault list. These numbers
are specified just one time, but they are applied for each individual clocking procedure.
ATPG categorizes each fault by the clocking procedures that can test it; it considers only
the appropriate subset as it generates tests for each clocking procedure.

The first_pass specification is the percentage of the fault list that is targeted in the first
pass through each clocking procedure. The first pass results in long blocks of patterns with
just one clocking procedure.

The middle_pass specification is the percentage of the fault list that is targeted by
subsequent passes through each clocking procedure. These passes are repeated until the
final_passnumber is reached. The middle passes result in shorter blocks of patterns with
just one clocking procedure.

The final_pass specification is the percentage of the fault list targeted by the final pass
in which any clocking procedure is used. In this pass, there is no guarantee that any two
consecutive patterns share the same clocking procedure.

Forcing a Single Group Per Clocking Procedure
The following example forces a single group for each clocking procedure with no
exceptions:

set_atpg –group_clk_constraints { 100 0 0 }

The drawback of this particular specification is that ATPG efficiency, both in runtime and
in fault detections per pattern, decreases significantly after most of the fault list has been
targeted. All faults that are detectable by the first clocking procedure must be targeted
before moving on to the next clocking procedure, which results in a larger pattern count
than if other arguments are chosen.

Enabling ATPG to Achieve Better Efficiency
You can define a set of numbers that allow ATPG to achieve better efficiency and results in
a lower overall pattern count, as shown in the following example:

set_atpg –group_clk_constraints { 85 5 2 }

This command creates a set of pattern groups by clocking procedure:

ClockingProcedure_1 (0-85%)
ClockingProcedure_2 (0-85%)
…..
ClockingProcedure_N (0-85%)
ClockingProcedure_1 (85-90%)
ClockingProcedure_2 (85-90%)
…..
ClockingProcedure_N (85-90%)
ClockingProcedure_1 (90-95%)
ClockingProcedure_2 (90-95%)
…..

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

664

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC Support in TestMAX ATPG

Feedback

ClockingProcedure_N (90-95%)
ClockingProcedure_1 (95-98%)
ClockingProcedure_2 (95-98%)
…..
ClockingProcedure_N (95-98%)
Mixed ClockingProcedure’s (98-100%)

The drawback to this approach is that the grouping is less strict.

Writing Patterns Grouped by Clocking Procedure
By default, the write_patterns command saves all patterns into a single pattern file.
You can use the write_patterns -occ_load_split command to split patterns into a
separate file for each clocking procedure. This command is compatible with all pattern
formats.

When patterns are grouped using the command set_atpg -group_clk_constraints
{ 100 0 0 }, only one pattern file is saved for each clocking procedure. If clocking
procedures are grouped less strictly, or are not grouped at all, more pattern files are
saved. A new pattern file is saved each time the clocking procedure changes from one
pattern to the next, which can result in a large number of pattern files. Because of this, you
should use the write_patterns -occ_load_split command only in combination with
the set_atpg -group_clk_constraints command.

Reporting Patterns
You can use the report_patterns -clocking command to find out which clocking
procedure is used in each capture cycle. For example,

TEST> report_patterns 7 -clocking
Clocking only:
Pattern 7 (fast_sequential)
Clocking Procedures: U0to1
// PLL internal clock pulse: capture_cycle=0, node=dutm/ctrl1/U17 (64)
// PLL internal clock pulse: capture_cycle=1, node=dutm/ctrl2/U19 (94)

To get a summary of the number of clocking procedures of each type that was used in the
pattern set, specify the report_patterns –clk_summary command:

TEST> report_patterns -all -clk_summary
Pattern Clocking Constraints Summary Report

#Used Clocking Procedures
#U0to1 6
#U1to0 5

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

665

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC-Specific DRC Rules

Feedback

Limitations
The following limitations apply when using internal clocking procedures in TestMAX ATPG:

• TestMAX ATPG DRC does not perform checking to ensure that the specified
InstructionRegister values cause the generation of the required clock pulses.

• TestMAX ATPG DRC does not perform clock-grouping checks, and accepts all clock
pulses specified in the same frame as simultaneous pulses without disturbing each
other.

• TestMAX ATPG assumes that the trailing edges of all clock pulses in one frame occur
before the leading edges of the clocks in the next frame. It is not possible to specify
overlapping clock pulses.

• Full-sequential ATPG is not supported because it can generate bad patterns.

• When a procedure has multiple clocks and multiple frames, TestMAX ATPG can only
capture transition or fault effects using clocks that pulse in the last frame. Clocks with
a last pulse in a preceding frame can only be used to launch transitions or set up
conditioning to detect faults captured by other clocks.

• Only single-load patterns are supported. You do not need to explicitly disable the
generation of multi load patterns because TestMAX ATPG will not attempt to generate
them.

• The grouping performed by the -group_clk_constraints option of the set_atpg
command does not apply to fast sequential patterns. It applies to two-clock-optimized
transition delay patterns and basic scan patterns for stuck-at.

See Also

• Specifying Internal Clocking Procedures

OCC-Specific DRC Rules
Test DRC involves analysis of many aspects of the design. Among other things, DRC
checks the following:

• C28 - Invalid PLL source for internal clock

• C29 - Undefined PLL source for internal clock

• C30 - Scan PLL conditioning affected by nonscancells

• C31 - Scan PLL conditioning not stable during capture

• C34 - Unsensitized path between PLL source and internal clock

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

666

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: On-Chip Clocking Support
OCC-Specific DRC Rules

Feedback

• C35 - Multiple sensitizations between PLL source and internal clock

• C36 - Mistimed sensitizations between PLL source and internal clock

• C37 - Cannot satisfy all internal clocks off for all cycles

• C38 - Bad off-conditioning between PLL source and internal clock

• C39 - Nonlogical clock C connects to scancell

• C40 - Internal clock is restricted

Reference clocks are used only during design rule checking and are non-logical for
pattern generation. PLL clocks are used during scan design rule checking (Category
S – Scan Chain Rules) and clock design rule checking (Category C – Clock Rules).
Pattern generation does not consider PLL clocks. Internal clocks are used for all capture
operations, and normal clock rule checking is applied to these so that TestMAX ATPG can
perform these and other DRC checks, you must provide information about clock ports,
scan chains, and other controls by means of a STIL test protocol file. The STIL file can
be generated from TestMAX DFT, or you can create one manually as described in STIL
Procedure Files.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

667

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

17
TestMAX Diagnosis

The presence of defects in silicon has a direct impact on yield ramp during the
manufacturing process. When a device fails testing, TestMAX Diagnosis can quickly
isolate the cause and location of the failure, and simplify the analysis process.

TestMAX Diagnosis determines the root cause of failures observed during the testing of a
chip. The data obtained from diagnostics identifies cells and scan chains with defects, and
any logic with defects.

Diagnosis is applied to a variety of scenarios, including isolating ATPG pattern simulation
failures, debugging first silicon, product and yield ramp, volume diagnostics, physical
failure analysis, and field returns.

The following sections describe the process for applying TestMAX Diagnosis to
manufacturing test failures:

• Understanding Diagnosis

• Running Diagnosis

• Running the TestMAX Diagnosis Flow

• Writing and Reading Binary Image Files

• Reading Pattern Files

• Failure Data Files

• Class-Based Diagnosis Reporting

• Fault-Based Diagnosis Reporting

• Using a Dictionary for Diagnosis

• Failure Mapping Report for DFTMAX Patterns

• Composite Fault Model Data Report

• Parallel Diagnosis

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

668

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Understanding Diagnosis

Feedback

Understanding Diagnosis
Scan diagnostics assume that there are many ATPG patterns with ATE failures. Since
most faults produce a unique test response signature, diagnostics find the fault which
most closely matches the defect signature from the ATE. This analysis results in the match
score.

A match score reflects how well a reported fault matches the failure log file from the
tester. Each candidate is assigned a score between 0% and 100%. A higher match score
indicates higher confidence that the fault candidate location and behavior is the same as
the defect.

The following figure shows how a match score is computed by mapping a simulated
pattern to the tester failure log.

 

T = Tester S = Simulator F = Fail P = Pass

P

F

F

P

F

F

Tester Results Simulation of a Fault Candidate

TFSF

TESP

TPSF

(predicts)

(nonpredicts)

(mispredicts)

Match Score =
TFSF

TFSF + TFSP + TPSF
X 100%

 

The following figure shows how a ma

Diagnosis Reporting
Diagnosis report the defect location, behavior, and match score for a given fault candidate.

The defect location depends on the provided input:

• When only logical information is provided, instance names, pin names, and connected
nets are reported.

• When additional physical information is provided, the instance and pin location (X/Y) ,
metal layers, and bridge and net polygons are reported.

Defect behavior types include stuck, transition, bridge, open, and cell-aware faults.

A match score reflects how well a reported fault matches the failure log file from the tester.
Three components are computes for the failure of each fault candidate.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

669

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Running Diagnosis

Feedback

Defects are simulated, compared with tester results, and assigned a score based on how
well they match. The best candidates include the match scores. Each candidate includes
the scan cell and the connecting pins.

The following example for chain diagnostics reports a fast-to-rise defect type with a 100%
match score:

sim/fail.log scan chain diagnosis results: #failing_patterns=5
--
defect type=fast-to-rise
match=100% chain=chn0 position=2 master=cntrl0/U3 (17)
--

Note in the example:

• The chain name is chn0

• The position (2) indicates the scan cell location in a given chain (0 is the cell closest to
the scanout pin)

• The master indicates the scan cell instance name (cntrl0/U3)

The following schematic shows the defect.

 

3 2
D

SI

D

SI
QQ

Cntrl0/U3

 

Running Diagnosis
To start the diagnostics process, you can use either the Run Diagnosis dialog box in the
TestMAX ATPG GUI or the specify the run_diagnosis command at the command line.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

670

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Running the TestMAX Diagnosis Flow

Feedback

Using the Run Diagnosis Dialog Box
To start the diagnosis using the Run Diagnosis dialog box, perform the following steps:

1. Click the Diagnosis button in the command toolbar at the top of the TestMAX ATPG
main window. The Run Diagnosis dialog box appears.

2. Fill in the dialog box.

For descriptions of these controls, see TestMAX ATPG Help for the run_diagnosis
(and set_diagnosis) command(s).

3. Click OK.

Using the run_diagnosis Command
You can start the diagnosis at the command line using the run_diagnosis command, as
shown in the following example:

TEST-T> run_diagnosis chipA_failure.dat -display

Running the TestMAX Diagnosis Flow
TestMAX Diagnosis determines the root cause of failures observed during the testing of a
chip. The data obtained from diagnostics identifies cells and scan chains with defects, and
any logic with defects.

Diagnosis is applied to a variety of scenarios, including isolating ATPG pattern simulation
failures, debugging first silicon, product and yield ramp, volume diagnostics, physical
failure analysis, and field returns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

671

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Running the TestMAX Diagnosis Flow

Feedback

 

Gate-Level
Netlist

Run ATPG

Test
Patterns

Library
Simulation

Build the ATPG Model

Build the Image

Run Diagnosis

Defect
Patterns

Failures

 

To run TestMAX Diagnosis

1. Establish the original TestMAX ATPG environment used for creating the patterns,
including reading the design netlist, reading the library model, running DRC, and
running ATPG. For details on preparing for and running ATPG, see the ATPG Design
Flow section.

2. Write the image to a binary file using the write_image command, as shown in the
following example:

write_image image.gz -compress gzip
This is an optional step. You can run diagnosis using the original netlist, library model,
and rerun DRC. However, a binary image file contains all this information in single file
and eliminates the need to rerun the ATPG process before each diagnosis run. For
more information on binary image files, see the Writing and Reading Binary Image
Files section.

3. Connect to the PHDS database (optional)

For more information on creating and validating a PHDS database, see the Creating
and Validating a PHDS Database section.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

672

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Running the TestMAX Diagnosis Flow

Feedback

4. Read in the original patterns used to detect the failure. You can use patterns generated
by the basic-scan and fast-sequential modes, but not the full-Sequential mode. For
more information on using pattern files, see Reading Pattern Files.

5. Obtain the failure data file produced from the ATE. For more information, see Failure
Data Files.

6. Use the set_diagnosis command to specify parameters for the diagnostics run. For
example, you might want to perform scan diagnostics or perform parallel diagnostics.

7. Read the failure data file and start diagnostics using the Run Diagnosis dialog box in
the TestMAX GUI or specify the run_diagnosis command at the command line.

8. Analyze the results in the diagnostics summary report.

TestMAX ATPG determines the cause of the failing patterns and generates the
diagnostics report. By default, TestMAX Diagnosis searches for defects in functional
logic. If pattern 0 is the chain test pattern and it fails, then chain diagnostics is
performed. For more information, see either the Class-Based Diagnosis Reporting
section or the Fault-Based Diagnosis Reporting section.

Note the following:

• The run_diagnosis command uses the TestMAX ATPG threaded simulator for good
machine simulation only. All other diagnostics operations use a single process.

• TestaMAX ATPG simulation is not used for good machine simulation of chain defects. If
a failure log includes failing chain test patterns, TestMAX ATPG simulation is not used.

• You should avoid using patterns generated from TestMAX ATPG with single-process
diagnostics. Otherwise, M266 warning messages, indicating that failures were ignored
due to X measures, might be printed and diagnostics might be less accurate.

• DFTMAX compression is supported for both logic and scan chain diagnosis. Serialized
DFTMAX compression is also supported. Each individual failure is mapped to a scan
cell. To produce a detailed failure mapping report, use the -mapping_report option of
the set_diagnosis command. Always review the mapping report for accuracy.

• If a large set of failures cannot be mapped using DFTMAX patterns, you can create
patterns that bypass the output compressor. For more information on this process, see
the Translating DFTMAX Patterns Into Normal Scan Patterns section.

• By default, a defect is not linked to the type of fault tested. This means, for example,
that any failures collected while running transition patterns could include stuck-at faults.
However, you can use the -delay_type option of the set_diagnosis command to
cause the diagnostics report to include delay defects.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

673

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Writing and Reading Binary Image Files

Feedback

Script Example
Read the image used to generate
the pattern for diagnostics:
read_image Results/design1_img.gz
Use the class-based candidate
organization in the diagnosis report.
set_diagnosis -organization class
set_diagnosis -fault_type all
Multithread settings
set_atpg -num_threads 8
set_simulation -num_threads 8
Set the pattern file, using the
binary pattern set if available, but
only to diagnose pattern-based failure
data. STIL (or WGL) patterns are
required to diagnose cycle-based failure
data, and may be used to diagnose
pattern-based failure data.
set_patterns -external patterns.bin
Perform diagnosis on the failure file
and generate data for Yield Exporer.
Multiple runs using different failure files
with the same pattern may be
run in sequence:
run_diagnosis datalogs/fail1.log
write_ydf results1/design1_diagnosis.ydf -replace
run_diagnosis datalogs/fail2.log
write_ydf results2}/design1_diagnosis.ydf -append
run_diagnosis datalogs/fail3.log
write_ydf results3/design1_diagnosis.ydf -append

Writing and Reading Binary Image Files
A binary image offers many advantages when running diagnosis. It simplifies file
management because you use only a single file that encapsulates the design netlist,
library, and SPF. It is also faster to load, and can be password-protected. You can also
garble the instance names in an image file, if necessary.

Prior to creating an image file, you need to read the design netlist and library model, run
DRC, and run ATPG (see the ATPG Design Flow section for details). You then use the

write_image command to write a binary image that contains the netlist, library, SPF, and
DRC data. During the diagnosis process, you can use the read_image command to read
the image file as many times as necessary without rerunning the ATPG flow.

The following example shows how to write and read a binary image file for diagnosis:

// First time through (ATPG flow)
BUILD> read_netlist top.v

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

674

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Reading Pattern Files

Feedback

BUILD> read_netlist spec_lib.v -library
BUILD> run_build_model spec_chip
DRC> run_drc spec_chip.spf
TEST> write_image spec_image.gz -compress gzip

// For subsequent runs during diagnosis
BUILD> read_image spec_image.gz
For more information on writing and reading secure binary images, see Binary Image
Files.

Reading Pattern Files
The TestMAX Diagnosis process requires either a single pattern file corresponding to the
patterns that were run on the tester when the device failed or an entire set of split patterns
files, including the associated failure files.

The binary pattern format is optimal for diagnosis. STIL or WGL patterns also work,
however if you use these patterns, the fast-sequential patterns might be interpreted as a
full-sequential patterns, and errors are reported.

The following sections describe how to read and use pattern files for diagnostics:

• Reading Patterns

• Reading Multiple Pattern Files

• Translating DFTMAX Compressed Patterns Into Normal Scan Patterns

See Also

• Writing ATPG Patterns

Reading Patterns
TestMAX Diagnosis accepts either basic-scan or fast-sequential ATPG patterns. When
reading patterns into TestMAX ATPG, use binary formats whenever possible.

You can perform a sanity check to verify that the simulation passes with the patterns you
read in by running the run_simulation command before performing diagnostics.

Use the set_patterns command to read a set of patterns, as shown in the following
example:

set_patterns -external patterns.bin

For details on reading patterns, see "Selecting the Pattern Source."

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

675

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Reading Pattern Files

Feedback

See Also

• Using Split Datalogs to Perform Parallel Diagnosis for Split Patterns

Reading Multiple Pattern Files
Some designs require the ATE to run multiple TestMAX ATPG pattern files. Each pattern
file is typically run individually in separate test programs on the tester. When a device fails,
the tester generates one failure log file per TestMAX ATPG pattern file.

TestMAX Diagnosis can read multiple pattern files and multiple failure data files so
you can get a single result from a single diagnosis run. This is supported for DFTMAX
compression.

There can be as many failure log files as there are pattern files. A failure log file is
expected to contain the failures for only the patterns in the corresponding pattern file.
Otherwise, an error is generated.

If there are no failures for any patterns in a particular pattern file, the corresponding failure
log file might not exist. The correspondence between pattern files and failure log files is
specified by a required directive in the failure log file, as explained in the Failure Data Files
section. An error is generated otherwise.

To use multiple patterns files, specify the following set_patterns command:

set_patterns -external file –split_patterns
When split pattern files are read, you can specify multiple failure log files using the

run_diagnosis command.

By default, TestMAX Diagnosis considers that the cycle count recorded in the failures
file in cycle-based format is reset to 1 (or the recorded pattern count is reset to 0 for the
pattern-based format) from the execution of one pattern set to the next set. You can use
the .first_pattern directive to change this behavior if the failures are in the pattern-based
format.

See Also

• Using Split Datalogs to Perform Parallel Diagnosis for Split Patterns

Translating DFTMAX Compressed Patterns Into Normal Scan
Patterns
If your design uses DFTMAX compression, you can perform diagnostics on the patterns
that include compression, or create patterns that bypass the output compression.
Diagnosing patterns in compressor mode could reduce diagnostic resolution due to

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

676

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Reading Pattern Files

Feedback

compressor effects. After a device in compressor mode fails on the tester, if the diagnostic
resolution is not high enough, you can retest it in scan mode. The translated patterns
detect the same defects, but diagnostic resolution is higher because the compressor no
longer affects the unloaded values.

The translation process involves writing out a special netlist-independent version of the
pattern in binary format along with the DFTMAX pattern set. The netlist-independent
pattern file contains a mapping of the scan cells and primary inputs to their ATPG
generated values. This pattern set can be read back into TestMAX ATPG after a design is
put into the reconfigured scan mode by reading the scan mode STL procedure file. When
the patterns are read back, an internal simulation is performed to compute the expected
values to complete the translation process. The internal patterns can then be written out
for the tester to use in scan mode for diagnostics.

Example Flow
To translate DFTMAX compressed patterns to normal scan patterns:

1. Read the design with DFTMAX in compressor mode and write out the netlist-
independent pattern format.

run_build_model ...
read STL procedure file for adaptive scan mode
run_drc scan_compression.spf
run_atpg -auto
write out adaptive scan mode patterns
write_patterns compressed_pat.bin -format binary
write_netlist independent patterns that can be translated
set_patterns -netlist_independent
write_patterns compressed_pat.net_ind.bin

2. Read the design with DFTMAX compression in scan mode. Translate the patterns into
scan mode.

run_build_model ...
read STL procedure file for normal scan mode
run_drc scan.spf
read netlist independent patterns
set_patterns -external compressed_pat.net_ind.bin

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

677

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

optional sanity check to verify that simulation passes
run_simulation
write out translated patterns to be re-run on the tester
write_patterns scan_pat.pats -external -format <any format>
write out translated patterns in binary format for diagnostics
write_patterns scan_pat.bin -external -format binary

Translation Limitations
The following limitations apply when translating DFTMAX compression patterns to normal
scan mode patterns:

• Translation is one-way. You cannot translate scan patterns to compression mode.

• Only basic-scan and fast-sequential patterns are supported .

• Configuration differences between compressor mode and scan mode might result in
slightly different coverage numbers.

For more information, see the DFTMAX User Guide.

Failure Data Files
A failure data (or log) file is an ASCII text file that provides the failure information from
a device necessary to perform diagnostics. This file captures the test results of a failing
device, including failing patterns and failing outputs and scan cells. Most ATE vendors
automatically generate failure data files in a format recognizable by TestMAX ATPG.

When testing a chip, if the value measured by the ATE is different than the expected value
indicated in the patterns file, a failure is recorded in the failure data file. Each recorded
failure includes the vector number, the output port where the mismatch occurs, the cycle
number within the mismatched vector, and optional expected data.

TestMAX ATPG supports either a pattern-based or cycle-based failure data file.

The following sections describe failure data files:

• Pattern-Based Failure Data File

• Cycle-Based Failure Data File

• Failure Data File Extensions

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

678

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

• Adding Header Information to a Failure Data File

• Failure Data File Limitations

Pattern-Based Failure Data File
Each line in a failure data file describes a pattern in which the output values detected by
the test equipment did not match the expected values. An example is as follows:

// Pattern Output Cell
 50 vout 55
 50 abus 57
 58 vout 57
 82 xstrb
 82 vout 57
 82 vout 5
 83 abus 90

The format of each line is as follows:

pattern_num output_port [cell_position] [expected_data]
Where:

pattern_num
The TestMAX ATPG pattern number in which the failure occurred, starting with 0 for the
first pattern.

output_port
The name of the output port at which the failure was detected, or the scan chain name
when the pin name is shared among scan groups.

cell_position
The cell position must be provided if the failure occurred during a scan shift
cycle. The position is the number of tester shift cycles that have occurred since
the start of the scanout process. From this value, TestMAX ATPG determines
the position of the scan chain cell that captured the erroneous data. The cell
position of the scan chain cell closest to the output port is 0, the next one is 1,
and so on; for example:

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

679

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

expected_data
This is an optional parameter that describes the expected value of the
measured failure. The expected value is either 0 or 1. By default, if this
parameter is present, it is checked against the expected data recorded in
the patterns. If this step succeeds, it is a good indicator that the files used for
diagnostics and on the tester are consistent. To change the default, use the
-nocheck_expected_data option of the set_diagnosis command.

To specify the expected data on a primary output during a capture cycle, which is also
used as a scan chain output, you must use the exp= syntax to avoid any ambiguity with
this being a cell position. For example:

103 scan_out3 1 //invalid
103 scan_out3 (exp=1, got=0) //valid
103 scan_out3 exp=1 //valid
Any line in the failure data file that begins with two slash characters is considered a
comment line.

The following example shows another tester data file. In this example, five failing patterns
are reported: pattern numbers 3, 4, 10, 11, and 12.

// pattern 3, port REQRDYO
3 REQRDYO

// pattern 4, port MA[9], scan chain 'c9', 30 shifts
4 MA[9] 30

//pattern 10-12, port NRD, scan chain 'c29', 3 shifts
10 NRD 3
11 NRD 3
12 NRD 3
The -failure_memory_limit option of the set_diagnosis command helps ease the
failure log file truncation task. This option enables you to specify the maximum number of
failures that can be captured by the tester. It also enables TestMAX ATPG to automatically
truncate the patterns considered during diagnosis.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

680

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

Pattern-Based Failure Data File for DFTMAX Serialized Adaptive
Scan
The format for DFTMAX serialized adaptive scan technology is similar to the regular
format except that it includes additional piece of information that identifies the bit of a
serialized bitstream containing the failure (bit_position). The pattern-based format of
the failure data file is as follows:

pat_num output_ports cell_pos bit_pos [expected_data]
Where:

pat_num

The TestMAX ATPG pattern number on which the failure occurred. The first
pattern is 0.

output_ports

The name of the output port on which the failure was detected.

cell_pos

This is the position of the scan chain cell that captured the data that was in error.
The cell position of the scan chain cell closest to the output port is 0, the next
one in is 1, and so on.

bit_pos

For each scan chain shift cycles, the serializer is capturing the parallel output of
the output compressor. Then, this information is serialized and shift out on the
scanout pin. The bit_position is the bit of the serialized bitstream where there is
a failure. The first bit_position is 0 and it corresponds to serializer bit close to the
scan out.

expected_data

This optional parameter is a 0 or 1 depending on the expected value specified
by the pattern. By default, this parameter is checked against the expected data
recorded in the patterns. If this step succeeds, it is a good indicator that the files
used for diagnostics and on the tester are consistent. To change the default, use
the -nocheck_expected_data option of the set_diagnosis command.

Cycle-Based Failure Data File
Most ATE vendors generate failure data directly in the pattern-based failure data file
format. However, some testers do not support this format. For the unsupported testers,
you can use a cycle-based (or vector-based) failure data file format (TestMAX ATPG

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

681

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

patterns contain multiple cycles or vectors). Cycle-based failure log files in TestMAX ATPG
format are easier to generate than pattern-based failure log files.

TestMAX ATPG supports both basic-scan and fast-sequential patterns in STIL or WGL
format. The binary pattern format and the WGL flat format are not supported for cycle-
based failure log file diagnostics.

If the external pattern buffer contains an unsupported pattern format, TestMAX ATPG
displays an error message when you execute the run_diagnosis command with a cycle-
based failure log file.

Cycles (V statements in STIL format or vector statements in WGL format) are counted
when you read patterns using the set_patterns external command. This count
identifies the vectors at pattern boundaries, and the time when shift cycles start within
each pattern. If you or the tester make adjustments that cause the failing cycle/vector
to deviate from the corresponding vectors in the STIL/WGL patterns used for diagnosis
(such as combining multiple STIL/WGL vectors into a single tester cycle), you must make
a corresponding change in the cycle-based failure log to map back to the vectors in the
pattern file.

The following set_diagnosis options are associated with the cycle-based failure log file:

• -cycle_offset integer — You can use this option to adjust the cycle count when
the cycle numbering does not start at 1.

• -show cycles — This option causes the translated pattern-based failure log file to be
reported by the run_diagnosis command.

The following example shows sample output. Comments indicate the failure cycle used to
generate the pattern-based failure. It also shows whether the cycle was a capture or a shift
cycle.

4 po0 # Cycle conversion from cycle 34; fail in capture
4 so 2 # Cycle conversion from cycle 38; fail in shift
The following set of commands show an example flow:

run_drc ...
set_patterns -external pat.stil
set_diagnosis -cycle_offset 1
run_diagnosis fail.log

Cycle-Based Failure Data File Format
A failure data file contains only failed cycles. The format of each line is as follows:

C output_name cycle [expected_value]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

682

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

Where:

C

The first character on the line, indicating that the line specifies tester cycles and not
TestMAX ATPG pattern numbers. It helps you identify the type of failure log file (pattern- or
cycle-based).

output_name
A string that can be a PO or a scan chain name (no output compressor).

cycle
An integer that identifies the cycle in the external pattern set that failed on the
tester. If the first cycle is numbered 0, use the set_diagnosis -cycle_offset
1 command to make an adjustment. TestMAX ATPG expects failures only
in cycles in which measurements occur (for example, during shift or capture
cycles). Invalid failure cycles can provide inaccurate diagnostics results.

expected_value
This optional parameter is a 0 or 1 depending on the expected value specified
by the pattern. By default, this parameter is checked against the expected data
recorded in the patterns. If this step succeeds, it is a good indicator that the files
used for diagnostics and on the tester are consistent. To change the default, use
the -nocheck_expected_data option of the set_diagnosis command.

TestMAX ATPG ignores all other characters in the line, and treats them as comments.

Failure Data File Extensions
The failure data file can contain the directives to specify settings specific to that failure
log file. These directives must be at the top of the failure data file before any failure data.
The directives cannot be abbreviated. Any other line in the failure log file is interpreted as
failure data.

.pattern_file_name string

This directive is required when you are using the split patterns feature. It
specifies the name of the corresponding pattern file to associate the failure log
files to the pattern file. If there are no failures in the patterns corresponding to
a pattern file, this directive is used to make correspondences between pattern
and failure log files. This name is assumed to be just the file name, without the
directory hierarchy.

If the failure log file does not contain this directive, or if the name does not
match, diagnosis is aborted.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

683

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

.attr_file_name string

This directive can be used to set user-defined attributes for a particular failure
log file; you can then access the specified string value using the Tcl API.
For example, the attribute could describe the ATE clock frequency or the
pattern type used for testing the chip. You could then retrieve the string using
the attribute <attr_file_name> returned by the get_diag_files Tcl API
command. If the name of the directive does not match, the diagnosis process is
aborted.

.cycle_offset <d | continue>

This directive adjusts the cycle count when the cycle numbering does not start at
1 for cycle-based failure log files. The d parameter is an integer in tester cycles.
The purpose of continue is for ease of use. The string argument continue
indicates that the cycle count is not reset from the previous pattern set. The
default is to reset the cycle count to 1. This directive only applies to split pattern
diagnosis.

When used, this directive overrides the -cycle_offset option of the

set_diagnosis command for this pair of pattern/failure log files. Normally, the
cycle count is reset to 1 for every pattern set.

.split_pattern_offset d

Specifies the number of offset cycles for each failure log file. This directive is
used for diagnosing cycle-based failures in split patterns. For more information
on using the .split_pattern_offset directive, see the "Split Pattern Diagnosis for
Cycle-Based Failures" topic in TestMAX ATPG Online Help.

.truncate d

All patterns numbered greater than d in this failure log file are ignored. The
pattern numbers begin at 0 for each failure log file. The argument d specifies the
last pattern for which complete failures were captured. It should not exceed the
number of patterns in the corresponding pattern file.

When used, this directive overrides the -truncate option of the

run_diagnosis command.

.incomplete_failures

Ignores patterns in the range beginning with the last failing pattern recorded in
this failure log file, to the last pattern in the corresponding pattern file, unless
there is only one failing pattern in this file.

When used, this directive overrides the -incomplete_failures option of the
set_diagnosis command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

684

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

.failure_memory_limit d

Ignores patterns in the range beginning with the last failing pattern recorded
in this failure log file, to the last pattern in the corresponding pattern file, if the
number of failures in this file is at least d. The argument d is a decimal number
that specifies the number of failures that the tester can capture.

When used, this directive overrides the -failure_memory_limit option of the
set_diagnosis command.

Adding Header Information to a Failure Data File
You can insert a header section into a failure data file to include additional data from the
ATE, such as key-value pairs information, the device name, job name, or truncation status.
This information is passed to the output of the write_ydf command during physical
diagnostics (for more information on physical diagnostics, see Using Physical Data for
Diagnosis).

Not all information in the header section is passed to the Yield Explorer Data Format
(YDF) file used for physical diagnostics. Only data described in a configuration file, called
the header schema file, is retrieved when running diagnostics.

The following sections describe how to insert a header section into a failure data file:

• Creating a Header Section

• Creating a Header Schema File

• Examples

Creating a Header Section
You can place the header section in a failure log file either immediately before or after the
.pattern_file_name directive. All key-value pairs in the header section are associated
with the corresponding pattern file specified by this directive.

To start the header section, specify the .header keyword. To finish the header section, use
the .end_header keyword. Each line in the header section is a key-value pair. A key is a
single word separated by tab or space, and the value can be one or more words excluding
the special symbols tab, “#” and “\\”.

The following example shows a typical header section:

.pattern_file_name patterns.bin

.header
DEVICE TOPDUT1
LOT K382
WAFER 03
DIEX 112
DIEY 124

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

685

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

VDD_CORE 1.32
VDD_PAD 3.3
TEMP 0300
START_T Nov 25 2015 18:40:10
TRUNCATE Y
.end_header
6977 PAD_34 1
6981 PAD_34 1
6985 PAD_34 1
6989 PAD_34 1
…

Note the following:

• After the header information is read by the write_ydf command, it is included in the
DFTCandidates table in the YDF file. Each keyword constitutes a column with entries
specified as strings.

• Only one header section is used for a set of failure log files associated with a single

run_diagnosis command. When split patterns are used, the header section is defined
only one time.

• The header section can be included in any failure log file.

• If duplicate value names are included in the header, the last defined value is used.

• If a custom field in the header matches a standard DFTCandidates Table field, the
custom field is ignored. For example:

TEST-T> set_ydf schema.txt -schema
 -- YDF
 Schema Set Summary

 LOT used as a standard column in DFTCandidate segment ...
 Skipping ... WAFER used as a standard column in DFTCandidate
 segment ... Skipping ... DIEX used as a standard column in
 DftCandidate segment ... Skipping ... DIEY used as a standard
 column in DftCandidate segment ... Skipping ... YDF Schema has
 been set for 6 keywords. CPU_time: 0.00 sec Memory Usage: 0MB

• You can use the set_diagnosis -show key_value_pairs command to print the
values from the header section to the diagnostics report.

Creating a Header Schema File
The header schema file defines the custom columns that are included in the YDF file.
The schema file specifies the keywords and their respective string argument field sizes. If

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

686

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

the size is not specified for a keyword, a default string size of 256 is used. The following
example is a typical schema file:

DEVICE 128
LOT 256
WAFER 128
DIEX 64
DIEY 64
… …
… …
… …

After you create the header schema file, you define it using the -schema option of the
set_ydf command, as shown in the following example:

set_ydf header_schema_file -schema

You need to set the header schema file only once. All successive diagnostics results
appended to the same YDF file adhere to the original specified header schema file. When
performing an append operation on an existing YDF file, TestMAX ATPG retrieves the
header schema from the YDF file and fills in the appropriate values for the keywords from
the failure log file.

However, if you update the diagnosis results for a YDF file to a new file, you must define
a new header schema file using the set_ydf command. If a new schema is not specified,
TestMAX ATPG uses the header schema file specified earlier in the session. If a schema
file is not specified, TestMAX ATPG does not write the custom columns.

The script in Example C: Flow for Handling Custom Columns in the YDF File implements
the custom columns in the YDF file during diagnosis.

If a value name is duplicated in the schema file, an error is issued when the write_ydf
command is executed.

Examples
The examples in this section include the following cases:

• Example A: Header Schema File for Split Pattern Set With Two Pattern Files

• Example B: Header Schema File for Split Pattern Set With Three Pattern Files

• Example C: Flow for Handling Custom Columns in the YDF File

Example A: Header Schema File for Split Pattern Set With Two Pattern Files
In this example, the 15 key-value pairs are defined in the header section and passed to
the write_ydf command using one list of 15 string pairs.

.header
DEVICE 1604
LOT PL924

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

687

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

WAFER 03
DIEX 122
DIEY 122
VDD_CORE 1.32
VDD_PAD 3.3
V2_PAD N/A
TEMP 0300
JOB_NAM 1604_SW
JOB_REV 02
FLOOR_ID AF6E
FLOW_ID EWS1
START_T Nov 25 2015 18:40:10
TRUNCATE Y
.end_header
.pattern_file_name pattern_file1.bin
6977 PAD_34 1
6981 PAD_34 1
6985 PAD_34 1
6989 PAD_34 1
…
.pattern_file_name pattern_file2.bin
7977 PAD_34 1
7981 PAD_34 1
7985 PAD_34 1
7989 PAD_34 1

Example B: Header Schema File for Split Pattern Set With Three Pattern Files
In this example, TestMAX ATPG associates the header with all pattern files:
pattern_file1.bin, pattern_file2.bin, and pattern_file3.bin. The header section associated
with the second file includes eight key values.

.pattern_file_name pattern_file1.bin
6977 PAD_34 1
6981 PAD_34 1
6985 PAD_34 1
6989 PAD_34 1
…
.pattern_file_name pattern_file2.bin
.header
DEVICE 1604
LOT PL924
WAFER 03
DIEX 122
DIEY 122
VDD_CORE 1.32
START_T Nov 25 2015 18:40:10
TRUNCATE Y
.end_header
7977 PAD_34 1
7981 PAD_34 1
7985 PAD_34 1
7989 PAD_34 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

688

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Data Files

Feedback

…..
.pattern_file_name pattern_file3.bin
9977 PAD_34 1
9981 PAD_34 1
9985 PAD_34 1
9989 PAD_34 1
……

Example C: Flow for Handling Custom Columns in the YDF File
TEST-T> set_messages -log example.log -replace
TEST-T> set_command noabort
TEST-T> read_image mydesign.phy.img.gz
TEST-T> set_physical_db -hostname host01 -port_number 9998
TEST-T> set_physical_db -top_design top_specdevice
TEST-T> set_physical_db -device [list "specDevice" "1"]
TEST-T> match_names –verify all
TEST-T> run_drc mydesign_scan.spf
TEST-T> set_patterns -external mydesign_pat.bin
TEST-T> run_diagnosis sample1.ff
TEST-T> set_ydf schema1.sch -schema
TEST-T> set_diagnosis –show key_value_pairs

// A new YDF file is created with the results of last
// diagnostics run (note the -replace option).

TEST-T> write_ydf mydesign-diag1.ydf -replace \
 -device TESTDEVICE -version 1 \
 -candidates -cell -instance_cell \
 -cell_instance_pin_net -net_path \
 -net_contact_position -net_layer
TEST-T> run_diagnosis sample2.ff

// The same YDF file is updated with the results of last
// diagnostics run (note the -append option). The same header schema file
 is used.

TEST-T> write_ydf mydesign-diag1.ydf -append -candidates \
 -cell -instance_cell -cell_instance_pin_net \
 -net_path -net_contact_position -net_layer
TEST-T> run_diagnosis sample3.ff
TEST_T> set_ydf schema2.sch -schema

// A new YDF file is created with the results of last
// diagnostics run (note the -replace option). A new header schema file
 is used.

TEST-T> write_ydf mydesign-diag2.ydf –replace \
 -device TESTDEVICE -version 2 \
 -candidates -cell -instance_cell \
 -cell_instance_pin_net -net_path \
 -net_contact_position -net_layer
TEST-T> run_diagnosis sample4.ff

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

689

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Class-Based Diagnosis Reporting

Feedback

// The same YDF file is updated with the results of last
// diagnostics run (note the -append option). The same header schema file
 is used.

TEST-T> write_ydf mydesign-diag1.ydf -append -candidates \
 -cell -instance_cell -cell_instance_pin_net \
 -net_path -net_contact_position -net_layer
TEST-T> exit

Failure Data File Limitations
The following limitations are associated with failure data files:

• Only STIL and WGL patterns with cycle-based failure data files are supported. Binary
patterns are also supported with pattern-based failure files.

• The -truncate option of the run_diagnosis command is not supported with cycle-
based diagnosis.

• WGL flat patterns are not supported for diagnostics.

Class-Based Diagnosis Reporting
The class-based diagnostics report includes cell, net, subnet, and bridgeable area physical
data, and other information required for physical failure analysis (PFA). You can enable
this report using the following command:

set_diagnosis -organization class

The following sections describe how to configure, create, and read a class-based report:

• Filtering Candidates

• Filtering Bridge Candidates

• Resetting User-Specified Filters

• Reporting Detailed Candidate Information

• Example Flow

• Understanding the Class-Based Diagnosis Report

• Class-Based Cell-Aware Diagnosis

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

690

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Class-Based Diagnosis Reporting

Feedback

Filtering Candidates
You can use the -filter_candidates option of the set_diagnosis command to apply
several different types of filters when generating the class-based report.

If you use the score_distance parameter of the -filter_candidates option, you can
exclude all candidates that are further than the specified percentage distance from the
maximum candidate percentage match score:

set_diagnosis -organization class -filter_candidates \
 {score_distance 10}

The default for the score_distance parameter is 20 percent.

You can also use the min_score parameter to filter candidates with a match score less
than a specified minimum value (the default is 50). In this case, at least one candidate is
reported even it is below the minimum value. You can also use the max_number parameter
to limit the number of candidates reported for each defect. Since candidates are reported
in order of decreasing scores, this effectively specifies to report the top N candidates.

In the following example, all candidates with a match score less than 10 and a score
further than 20 are removed from the diagnostics report:

set_diagnosis -organization class -filter_candidates \
 {min_score 75 max_number 20}

The number of filtered candidates are reported by an M804 message:

Warning: Filtered 2 candidates with match score outside the
 score_distance of 20. (M804)

Filtering Bridge Candidates
An ambiguous bridge is any bridge candidate in which every explained pattern has the
same value on the aggressor node. These bridge candidates are not distinguishable from
a stuck candidate on the victim node. A same-cell bridge is any bridge candidate between
two nodes that are connected to the same library cell. Such bridge candidates are not
distinguishable from bridges inside the cell.

You can use the -filter_bridges option of the set_diagnosis command to remove
bridge candidates exercised by either an ambiguous bridge or any bridge candidates
between two nets connected to the same cell.

To remove bridge candidates with the same value on the aggressor node and that behave
the same as a stuck candidate, use the ambiguous parameter:

set_diagnosis -filter_bridges {ambiguous on}

To remove bridge candidates between two nets connected to the same cell, use the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

691

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Class-Based Diagnosis Reporting

Feedback

same_cell parameter:

set_diagnosis -filter_bridges {same_cell on}

Resetting User-Specified Filters
To reset any filters you specified using the -filter_candidates or -filter_bridges
options, specify the -reset_filters option of the set_diagnosis command:

set_diagnosis -reset_filters

Note that all class-based filters must be specified before the run_diagnosis command to
affect a candidate list reported by the report_defects or write_ydf command.

Reporting Detailed Candidate Information
You can obtain more detailed information about net connectivity and physical locations by
specifying the set_diagnosis -verbose command, or report the same data separately
using the -candidates option of the report_nets command or the report_physical
command. For example, the -candidates option of the report_nets command returns
the following net connectivity information:

TEST-T> report_nets -candidates all
 Candidate 1:
 Net connections:

 I_RISC_CORE/I_ALU/n57 (695)
 O I_RISC_CORE/I_ALU/U108/Z
 I I_RISC_CORE/I_ALU/U90/A2
 I I_RISC_CORE/I_ALU/U82/A2

 Net connections:

 I_RISC_CORE/I_ALU/n111 (889)
 O I_RISC_CORE/I_ALU/U149/ZN
 I I_RISC_CORE/I_ALU/U147/I0

The -candidates option of the report_physical command reports the following physical
data:

TEST-T> report_physical -candidates all
 Candidate 1:
 Physical details:

 ~ METAL3 (619530 622190) (623420 622400) TB

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

692

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Class-Based Diagnosis Reporting

Feedback

To view candidates for all defects or a particular defect after specifying the run_diagnosis
command, use the -defect option of the report_defects command:

TEST-T> report_defects -defect all
 Defect 1:
 #failing_patterns=5
 #observe_points=1
 #simulated_failures=5
 #candidates=1
 bbox=(619530 622190) (623420 622400), area=816900
 Candidate 1:
 class=Bridge
 net1_id=695, net2_id=889
 driver1=I_RISC_CORE/I_ALU/U108, pin=Z
 driver2=I_RISC_CORE/I_ALU/U149, pin=ZN
 layers=METAL3
 bbox=(619530 622190) (623420 622400), area=816900
 behavior=bAND, match_score=100.00% (TFSF=5/TFSP=0/TPSF=0)

You can generate a fault list for high-resolution ATPG using the -faults option of the
report_defects command:

TEST-T> report_defects -faults
 ba0 NC I_RISC_CORE/I_ALU/U108/Z I_RISC_CORE/I_ALU/U149/ZN
 ba0 NC I_RISC_CORE/I_ALU/U149/ZN I_RISC_CORE/I_ALU/U108/Z

Example Flow
A typical class-based diagnostics reporting flow is as follows:

read_image CHIP.img

set_patterns -external pat.bin

set_physical_db -database ./PHDS
set_physical_db -port_number 9998

open_physical_db

set_physical_db -hostname localhost
set_physical_db -device {"TOP" "1"}

set_diagnosis -organization class
set_diagnosis –filter_candidates {min_score 75}

run_diagnosis die123.tmx

report_physical –candidates all
set_ydf –version 1.2

write_ydf die123.ydf -replace

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

693

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Class-Based Diagnosis Reporting

Feedback

close_physical_db

Understanding the Class-Based Diagnosis Report
The class-based diagnostics report includes cell, net, subnet, and bridgeable area physical
data, and information required for physical failure analysis (PFA). This data includes the
defect area and the overall bounding box coordinates.

The header section of the report contains the number of tester failures, tester patterns,
patterns simulated by diagnosis, and identified defects:

Diagnosis Candidate Report

#tester_failures=256 (#ignored=41/#used=215)
#patterns=51, #simulated_patterns=17 (#fail=7/#pass=10)
#defects=1

Each defect is reported, and includes the number of failing patterns, observe points,
simulated failures, and list of one or more candidates:

Defect 1:
 #failing_patterns=7
 #observe_points=65
 #simulated_failures=70 (#unique=68/#potential=2)
 #candidates=2

Each defect candidate is assigned a predefined class which defines the logical location
and physical details of the candidate (shown in red in Figure 1). Classes include
Cellinternal, Bridge, Receiver, Driver, PinPath, and OpenFanout. These classifications
match Yield Explorer classifications.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

694

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Class-Based Diagnosis Reporting

Feedback

Figure 107 Candidates are Assigned Predefined Classes, such as Cellinternal or Bridge

   

A candidate includes a specific set of physical details. For example, the description of a
Receiver class candidate consists of a cell instance and the net or subnet connected to an
input pin of that cell. A Bridge class candidate includes the bridgeable area between two
metal shapes on the same layer.

Candidate 1:
 class=Receiver
 instance=c/iproc/U14417, pin=E, module=AO10LL
 net_id=27094, fanout_id=2
 behavior=sa0, match_score=91.43% (TFSF=64/TFSP=6/TPSF=0)
Candidate 2:
 class=Bridge
 net1_id=12443, net2_id=27094
 driver1=c/iproc/iarc_portxdati_regx12x, pin=QN
 driver2=c/iproc/U6085, pin=Z
 behavior=bAND, match_score=100.00% (TFSF=70/TFSP=0/TPSF=0)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

695

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Class-Based Diagnosis Reporting

Feedback

Note the following:

• A single candidate can have multiple fault associations, and each fault has a particular
type of behavior. For example, a Bridge class candidate may share both bAND and
bDOM behavior between the same net pairs. In this case, each behavior is scored
separately.

• Candidates with different behaviors can be reported in the same defect — as long as
they are associated with a common set of tester failures and they are in separate logic
cones. This means candidates with different behaviors are scored based upon the
same set of tester failures.

• Nets are identified by the primitive ID of the driving gate for candidate classes with a
net, subnet, or net pair. For OpenFanout class candidates, the subnet ID is always
the physical subnet ID, even if the set_diagnosis –show physical_subnet_id
command is specified. For Bridge class candidates, the instance and pin name for both
net drivers are reported.

• If physical data is available from the PHDS database, a physical summary is also
included with each candidate. This summary includes the layers associated with the
candidate and the candidate bounding box and area:

layers=METAL2 bbox=(619320 659710) (619530 660730), area=214200
• A candidate is assigned to the PinPath class if it does not contain physical net data.

Driver candidates with physical net data are assigned a subntet ID of 0, and Receiver
candidates with physical net data on a net with only one receiver pin are assigned a
subnet ID of 1.

Class-Based Cell-Aware Diagnosis
The class-based diagnostics report supports cell-aware diagnostics. Cell-aware behaviors
can be included in Driver, Receiver, CellInternal, and CellAware class candidates.

When cell-aware diagnostics is enabled by the set_diagnosis –fault_type all
command, several behaviors can be reported differently than the fault-based report: ca0,
ca1, ca01, car, caf, carf. These six behaviors correspond to the sa0, sa1, sa01, str, stf, strf
faults, except that their match score is calculated assuming that the defect can be inside
the cell rather than on the pin.

If cell test models have been read using the read_cell_model command, CTM behaviors
will also be scored during diagnosis and any matching candidates will be reported as a
CellAware class candidate with the CTM ID and any equivalent CTM IDs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

696

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

Fault-Based Diagnosis Reporting
In the fault-based diagnostics report, a collapsed fault is a unique candidate. A fault and all
its equivalent faults are considered a single candidate and separate faults are created for
different behaviors.

The fault-based report is created by default when you specify the run_diagnosis
command. If you previously ran class-based reporting (described in the Class-Based
Diagnosis Reporting section), you can revert back to fault-based reporting using the
following command:

set_diagnosis -organization fault

The following example shows a typical fault-based diagnosis report produced by the

run_diagnosis command.

TEST-T> run_diagnosis /project/mars/lander/chipA_failure.dat \
Diagnosis summary for failure file /project/mars/lander/chipA_failure.dat

#failing_pat=4, #failures=5, #defects=2, #faults=3, CPU_time=0.05

Simulated : #failing_pat=4, #passing_pat=35, #failures=5

Fault candidates for defect 1: stuck fault model, #faults=1,

#failing_pat=3,

#passing_pat=36, #failures=3

match=100.00%, #explained patterns: <failing=3, passing=36>

sa1 DS de_d/data3_reg_0_/Q (S003)

sa1 -- de_d/U211/A (SELX2)

--

Fault candidates for defect 2: stuck fault model, #faults=2,

#failing_pat=2,

#passing_pat=37, #failures=2

--

match=100.00%, #explained patterns: <failing=2, passing=37>

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

697

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

sa1 DS de_encrypt/C264/U36/O (L434ND)

sa0 -- de_encrypt/C264/U36/I1 (L434ND)

sa0 -- de_encrypt/C264/U36/I2 (L434ND)

sa0 -- de_encrypt/C264/U28/O (L434ND)

sa1 -- de_encrypt/C264/U26/I2 (L434ND)

match=50.00%, #explained patterns: <failing=1, passing=37>

sa1 DS de_encrypt/C264/U28/I1 (L434ND)

This example shows that the four failing patterns in the failure log file were resolved to two
defects. The first defect came from three failing patterns and was resolved to one fault
location and its fault-equivalent location. The second defect came from two failing patterns
and was resolved to two fault locations. The first fault location has a 100 percent match
score and has four faults-equivalents. The second fault location of the second defect has a
50 percent match score.

The fields in this report are described as follows:

#failing_patterns

Identifies the total number of failing patterns in the failure file. A pattern is
assumed to include both a measure of all POs and an unload of the scan chain.

#failures

Located in the main header, this field identifies the number of failures in the
failure log file. In each defect's header, it shows the number of failures the
candidates in that defect caused.

#defects

Indicates the number of different defects that appear to be causing the failures.

#faults

Indicates the number of collapsed faults. In the main header, it indicates the total
number of faults. In each defect's header, it shows the number of faults in that
defect group.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

698

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

Simulated : #failing_pat=, #passing_pat= #failures

Displays the number of failing and passing patterns that were simulated, and the
number of failures in the simulation.

Fault candidates for defect : <> fault model

The header for each defect displays the fault model used for that defect group.
Then, there is the list all the fault candidates for a given defect. The fault list is
given in the following format:

• First column: fault type. It could be sa0 for stuck-at-0 or sa1 for stuck-at-1.

• Second column: detection technique. It could be: “DS” (detected by
simulation). This is the representative fault. “- -”. This is an equivalent fault.

• Third column: fault location (pin pathname)

• Fourth column: module name of the defective cell.

match=%

Indicates the match score of the set of fault candidates based on how well they
match the defective device response on the tester.

#explained pattern: <failing: , passing:>

Indicates the number of failing and passing patterns that are explained with the
fault candidate.

If logic diagnostics fails to find any candidates, the report appears as shown in the
following example:

#failing_patterns=7, #defects=0, #unexplained_fails=7, CPU=19.56

 Unexplained pattern list:
 3 6 8 12 13 25 67

 No candidate because all failing patterns are unexplained.

By using the -display option of the run_diagnosis command or by checking the Display
Results in Viewer check box in the Run Diagnosis dialog box of the TestMAX ATPG GUI,
you can display the instances and fault locations graphically, as shown in the following
figure. For this schematic, the pin display data format has been set to Fault Data, where
the format is stuck-at-0/stuck-at-1.

Figure 1 Diagnosis Data Displayed Graphically

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

699

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

   

You can identify each defect location by the DS (detected by simulation) code on the
pin corresponding to either a fault site or a fault equivalent. The DS notation marks all
potential fault sources that could cause the same failing data pattern. The notation DS/--
indicates that a stuck-at-0 fault at that point in the design would cause the failure, and the
notation --/DS indicates that a stuck-at-1 at that point in the design would cause the failure.
TestMAX ATPG shows all potential failure sites that would cause the same failure data
patterns.

In this example, the diagnosis by TestMAX ATPG finds two independent areas of failure in
the design. The graphical schematic viewer (GSV) display shows the two corresponding
independent groups of logic. According to the diagnosis, the faulty circuit location for each
failure is displayed along the path.

Verbose Format
When the -verbose option is used for either the set_diagnosis or run_diagnosis
commands, additional information is added to the diagnostics report. An example is as
follows:

#failing_pat=15, #failures=17, #defects=2, #faults=8, CPU_time=0.01
 Simulated : #failing_pat=15, #passing_pat=36, #failures=17
 --
 Fault candidates for defect 1: stuck fault model, #faults=1,
 #failing_pat=14, #passing_pat=37, #failures=14
 Observable points:
 782
 --
 Explained pattern list:
 2 16 20 21 23 25 34 37 38 39 40 45 47 49
 --

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

700

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

 match=100.00%, (TFSF=14/TFSP=0/TPSF=0), #perfect/partial match:
 <failing=14/14, passing=37>
 sa0 DS mic0/pc0/add_247/U41/Z (ND2I)
 sa0 -- mic0/pc0/add_247/U40/B (ENI)

Note the following definitions:

• Observable points — The list of gate IDs in which the failures generated by all fault
candidates from this defect group occurred.

• Explained pattern list — The list of the all patterns which could be explained by
all fault candidates from this defect group. Some fault candidates in the same defect
could explain some patterns and other candidate other patterns. But the list is the union
of all explained patterns.

• TFSF=N1/TFSP=N2/TPSF=N3 — These are the match score components. See

run_diagnosis –rank_fault for more details.

• #perfect/partial match: <failing=N1/N2, passing=N3> — This data indicates
the number of failing patterns that are perfectly or partially explained by the fault
candidate. A perfect match means that the failures observed on the tester are perfectly
matching (without any other failure either in simulation or on the tester). It also
indicates the number of passing patterns that are explained with the fault candidate.

Physical Diagnosis Format
 TEST-T> run_diagnosis fail_56.log
 Setting top-level physical design name to 'RISC_CHIP'
 Check expected data completed: 241 out of 241 failures were checked
 Diagnosis summary for failure file fail_56.log
 #failing_pat=30, #failures=241, #defects=1, #faults=1, CPU_time=1.08
 Simulated : #failing_pat=30, #passing_pat=96, #failures=194

 Defect 1: stuck-at fault model, #faults=1, #failing_pat=30,
 #passing_pat=96, #failures=241
 Observable points:
 1693 1687 1696 1699 1672 1530 1529
 --
 Explained pattern list:
 40 41 47 48 50 51 54 55 58 59 67 69 70 71 72 73 77 78 79 80 85 88
 92 93 94 95 97 98 99 101
 --
 match=100.00%, #explained patterns: <failing=30, passing=96>
 sa01 DS I_RISC_CORE/I_ALU/U14/ZN (inv0d1)
 Pin_data: X=747110 Y=652790, Layer: METAL (38)
 Cell_boundary: L=746115 R=747345 B=650175 T=653865
 Subnet_id=4
 --

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

701

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

 Total Wall Time = 22.97 sec PHDS Query Time = 22.13 sec
 PHDS queries: subnets(added/total)=10/40 bridges(added/total)=28/58

The physical diagnosis report includes the physical location of the failing pin and cell.

Where:

Pin_data:

• X is the horizontal coordinate of one of the vertices of the pin associated with the
location of the fault candidate.

• Y is the vertical coordinate of one of the vertices of the pin associated with the location
of the fault candidate.

• Layer is the physical layer where the pin object is defined.

Cell_boundary:

• L is the horizontal coordinate of the leftmost boundary of the cell identified with the fault
candidate.

• R is the horizontal coordinate of the rightmost boundary of the cell identified with the
fault candidate.

• B is the vertical coordinate of the bottommost boundary of the cell identified with the
fault candidate.

• T is the vertical coordinate of the topmost boundary of the cell identified with the fault
candidate.

Also note that the performance data in the physical diagnosis report is slightly different
than the standard diagnosis report:

• The CPU_time is strictly the time that TestMAX ATPG is active. This time does not
include the PHDS query time. In the previous example, the CPU_time is approximately
1 second, even though the diagnosis run took almost 23 seconds.

• The PHDS diagnosis report includes the wall time and the time it takes to query the
PHDS database during diagnosis.

• The second line in the report displays the number of extracted subnets and the number
of bridge pairs queried in the PHDS database compared to the total number of subnets
and bridging pairs identified during the previous diagnosis run. This data helps you
identify any matching issues between the logical and physical names during diagnosis.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

702

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

• The subnets and bridges extracted during a diagnosis run are displayed as “added”.
The “total” includes subnets and bridges extracted in previous diagnosis runs. For
example, if the next diagnosis run extracts 10 subnets and 22 bridges, the second line
appears as follows:

PHDS queries: subnets(added/total)=10/50 bridges(added/total)=22/80

Scan Chain Diagnosis Format
fail.log scan chain diagnosis results: #failing_patterns=79

 defect type=stuck-at-1

 match=100% (TFSF=500/TFSP=0/TPSF=0) chain=c0 position=178
 master=CORE/c_rg0 (46)

 match=100% (TFSF=500/TFSP=0/TPSF=0) chain=c0 position=179
 master=CORE/c_rg2 (57)

 match= 98% (TFSF=500/TFSP=10/TPSF=0) chain=c0 position=180
 master=CORE/c_rg6 (54)

 CPU=0.26 #sim_patterns=57 #sim_cells=64

#failing_patterns

Indicates the total number of failing patterns in the failure file.

defect type

The predicted type of defect. It could be stuck-at, slow-to-rise, slow-to-fall, fast-
to-rise, or fast-to-fall. The polarity of the reported defect affects the scan output
of the top candidate for each scan chain. It is not necessarily the same for all
scan cells because an inverter might be present in the scan path. The exact
polarity can be retrieved using the Tcl API.

match

A percentage score that measures how well failures seen on the tester match
a simulated chain defect at that location. The components of the match score
(TFSF, TFSP, TPSF) calculation are displayed in the verbose report.

chain

Indicates the chain name where the defect is diagnosed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

703

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Fault-Based Diagnosis Reporting

Feedback

position

Indicates the position in the chain where the defect is diagnosed.

master

Indicates the scan cell instance name of the diagnosed defect.

Next, follow these performance indicators:

CPU

Indicates the CPU time of the chain diagnosis run.

#sim_patterns

Indicates the number of patterns used during the chain diagnosis simulation.

#sim_cells

Indicates the number of cells used during the chain diagnosis simulation.

The chain diagnostics can also appear as follows:

./failures/fail8g16.log scan chain diagnosis results: #failing_patterns=1

 --

 Warning: Insufficient data to locate stuck-at-0 fault in chain 48.

 --

This example reports that the number of failures contained in the failures log file is
sufficient to determine the behavior and the chain name of the fault candidate. But it fails
to accurately locate the failing scan cells. More failures are needed.

The report can also appear as follows:

./failures/fX7.log scan chain diagnosis results: #failing_patterns=1

 --

 Scan chain diagnosis failed to identify any fault candidate.

 --

This example indicates that the scan chain diagnostics failed to find a fault candidate that
match the failures seen on the tester.

/i_p0/E (mx2a3)

 # subnet_id=2

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

704

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Using a Dictionary for Diagnosis

Feedback

Using a Dictionary for Diagnosis
TestMAX ATPG diagnostics normally use a limited set of patterns for fault candidate
ranking. By default, the first 96 passing patterns are used. A diagnostics dictionary
improves diagnostics resolution by targeting and storing an additional set of N detect
patterns for each pin and polarity. You can control the contents of the dictionary by
specifying the maximum number of patterns to use per pin.

The following models and patterns are supported:

• Stuck-at and transition fault models

• Basic scan, two-clock, and fast-sequential patterns

A diagnostics dictionary is written to a binary file, including the patterns, and is extracted
with minimum overhead during the run_fault_sim command process.

The following topics describe how to use a dictionary for diagnostics:

• Example Flow

• Diagnosis Dictionary Commands

• Limitations

The following figure shows a typical flow for generating a diagnostics dictionary. The
output is used for diagnostics.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

705

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Using a Dictionary for Diagnosis

Feedback

Figure 108 Diagnosis Dictionary Creation Flow

 

Read Image

Patterns Design
Image

Faults
Enable

Dictionary
Creation

Fault Simulation

Set Patterns

Add

Write Patterns
and Dictionary

Diagnostics

Patterns &
Dictionary

 

Example Flow
The following example script generates a diagnostics dictionary and uses it in the
diagnostics flow:

Diagnosis Dictionary creation script:

read_image ./design.img
set_patterns -external ./pat.bin
add_faults -all
set_faults -store_dictionary 10
run_fault_sim
write_patterns ./pat+dic.bin -external –replace

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

706

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Using a Dictionary for Diagnosis

Feedback

Diagnosis Dictionary diagnosis script:

read_image ./design.img
set_patterns -external ./pat+dic.bin
Diagnosis will use the Diagnosis Dictionary by default
run_diagnosis ./failure.fail
Runs diagnosis without using the Diagnosis Dictionary
set_diagnosis -nouse_dictionary
run_diagnosis ./failure.fail

Diagnosis Dictionary Commands
The following commands create, delete, enable, or disable a diagnostics dictionary:

• The set_faults -store_dictionary command enables you to create a diagnostics
dictionary during the fault simulation process. For example, the following command
creates a diagnostics dictionary with a maximum of 10 failing patterns per pin:

set_faults -store_dictionary 10
• The set_faults -delete_dictionary command deletes either internal or external

pattern diagnostics dictionaries, or both. The following example deletes both internal
and external pattern diagnostics dictionaries:

set_faults –delete_dictionary both
To delete only an internal diagnostics dictionary, use the internal parameter instead
of both. Or to delete only an external diagnostics dictionary, use the external
parameter.

• The set_patterns -keep_dictionary command retains the current diagnostics
dictionary when reading in an external pattern set, as shown in the following example:

set_patterns -external pat_and_dic.bin -keep_dictionary
• Use the -use_dictionary or -nouse_dictionary options of the set_diagnosis

command to enable or disable the use of a dictionary during diagnostics. The
-use_dictionary option is the default. The following example disables the use of a
dictionary:

set_diagnosis -nouse_dictionary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

707

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Failure Mapping Report for DFTMAX Patterns

Feedback

Limitations
The following limitations applies to creating or using a diagnostics dictionary:

• You cannot write output with split patterns

• When using TestMAX ATPG to generate a dictionary, you must specify the -ndetects
option of the run_fault_sim command. For example:

set_simulation -num_threads 8 set_faults -store_dictionary 8
 run_fault_sim -ndetects 8

Failure Mapping Report for DFTMAX Patterns
When you run diagnostics for DFTMAX patterns, the report includes a section in its header
that displays the mapping of the failures. This report is an intermediate report and is not
intended to be a complete report. It includes only those cases that have a unique choice
during the first phase of DFTMAX failure mapping procedure.

To print a complete mapping report, you have to use the

run_diagnosis -only_report_failures command or the set_diagnosis
-mapping_report command. The format of the later report is explained in “Understanding
the Failure Mapping Report." The format of -only_report_failures is documented in
the description of the run_diagnosis command. You should use this report because it is
short and easy to understand.

The following example shows how this additional section appears in the diagnosis report:

--
 pattern chain pos# output pin_names
 ------- ---------------- ---- -----------------------------------
 9 1 4 test_so1
 test_so2 test_so3
 14 1 3 test_so1
 test_so2 test_so3
 15 1 4 test_so1 test_so2
 test_so3
 48 1 4 test_so1
 test_so2 test_so3
 52 1 4 test_so1
 test_so2 test_so3

 Failure mapping completed: #failing_pats=5, #skipped_pats=0,
 #masked_cycles=0, CPU_time=0.00

This section includes a header which describes the column printed after it. The failures
mapping results are printed next, followed by a failure mapping one line summary.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

708

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Composite Fault Model Data Report

Feedback

The columns are described as follows:

• pattern -- the failing pattern number

• chain -- the failing scan chain

• pos# -- the failing scan shift present in the failures log file

• output pin_names -- the names of the output pins where the failures are observed

The default number of failures reported are 10. You can change this by running the
command set_diagnosis -max_report_failures <N>.

The failure mapping one-line summary shows the number of failing patterns that were
processed (#failing_pats). When failures for a particular cycle could not be mapped
back, the #masked_cycles is incremented. In the previous example, no cycle has been
masked. When too many cycles per pattern are masked, the entire pattern is skipped. This
is indicated by the #skipped_pats. In the previous example, no pattern has been skipped
by the mapping process. When #masked_cycles and #skipped_pats are equal to 0, this
is an indicator that the mapping step of the diagnosis is doing a good job.

When tail pipeline registers are present, the failures log file indicates the scan cell index
which is failing + N, where N is the depth of the tail pipeline register. Then, the column
pos# in the previous report is not the failing scan cells index. To precisely determine
the failing scan cell index, execute the command run_diagnosis <failure_log>
-only_report_failures.

Composite Fault Model Data Report
Composite faults are based on TestMAX ATPG component faults. They are only used in
a diagnosis report to better describe the observed behavior of a defect on the tester. If
this defect behavior is observed, the composite fault model behaviors can be reported
by default. For the ranking flow, TestMAX ATPG diagnostics ranks only component fault
types, unless the set_diagnosis –composite command is specified. The composite fault
types are as follows:

• sa01 — The fault location can behave as a stuck-at 0 on some patterns and a stuck-
at 1 on others. This could be a coupled open defect or a bridge type defect. On nets
with fanout branches, it is possible for this fault type to appear as stuck-at 0 on some
patterns and stuck-at 1 on others. For ranking, this fault model can produce optimistic
scores.

• strf — The fault location can cause a delay on both rising and falling transitions (slow-
to-rise-fall). The traditional fault models of str and stf are unidirectional.

• bAND or bOR — The defect location behaves as a wired-AND or wired-OR type bridge.
Both nodes of the bridging fault are simulated and reported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

709

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Composite Fault Model Data Report

Feedback

• bDOM — The defect location behaves as the victim node of a dominant bridge. Ranking
scores are based on the fault simulation at the fault site for failing and passing patterns.
This might result in optimistic ranking scores since this model always matches the
tester for passing patterns. The scores are optimistic only when the aggressor is
unknown. Only the victim node is reported.

The following example report show how the diagnosis report appears with composite fault
model data:

 #failing_pat=6, #failures=20, #defects=4, #faults=5, CPU_time=0.44

 Simulated : #failing_pat=6, #passing_pat=75 #failures=23

 Fault candidates for defect 1: stuck fault model, #faults=1, #failures=2

 match=100.00%, #explained patterns: <failing=2, passing=72>

 sa01 DS ENC/I_RC/U1569/B (and2c3)

 --

 Fault candidates for defect 2: transition fault model, #faults=1,
 #failures=1

 match=100.00%, #explained patterns: <failing=1, passing=73>

 str DS ENC/I_RC/U1685/Y (inv1a3)

 stf -- ENC/I_RC/U1685/A (inv1a3)

 --

 Fault candidates for defect 3: stuck fault model, #faults=2, #failures=2

 match=100.00%, #explained patterns: <failing=2, passing=72>

 sa0 DS ENC/I_RC/U1697/Y (inv1a3)

 sa1 -- ENC/I_RC/U1697/A (inv1a3)

 sa0 DS ENC/I_RC/U2074/B (ao4f3)

 --

 Fault candidates for defect 4: bridging fault model, #faults=1,
 #failures=1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

710

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Composite Fault Model Data Report

Feedback

 match=33.33%, #explained patterns: <failing=1, passing=71>

bAND DS ENC/I_RC/U1685/Y ENC/I_RC/U1697/Y (inv1a3)

Fault types:

sa01:

Fault location behaves like a sa0 on some patterns, and a sa1 on others. This
could be a coupled open or a bridge type defect.

strf:

Fault location can cause a delay on both rising and falling transitions (slow-to-
rise-fall).

bAND or bOR:

The defect location behaves as a wired AND or wired OR type bridge. Examples
are provided below:

match=100.00%, (TFSF=15/TFSP=0/TPSF=0), #perfect/partial match:
 <failing=15/15, passing=31>
bAND DS mic0/pc0/add_247/U14/Z (ENI) mic0/alu0/U89/Z (ND2I)
--
match=100.00%, (TFSF=24/TFSP=0/TPSF=0), #perfect/partial match:
 <failing=24/24, passing=51>
bOR DS mic0/pc0/add_238/U76/Z (ENI) mic0/alu0/U12/Z (ND2I)

Note that both nodes of the bridge are reported. The library cells are also
provided in parenthesis.

bDOM:

The defect location behaves as the victim node of a dominant bridge.

By default, only the victim node is reported. An example is as follows:

match=100.00%, (TFSF=24/TFSP=0/TPSF=0), #perfect/partial match:
 <failing=24/24, passing=56>
bDOM DS mic0/pc0/add_233/U39/Z (ND2I)
bDOM -- mic0/pc0/add_233/U26/A (AN2I)

However, if the likely bridging pairs or ranking flow is used, then both nodes can
be included in the report. An example is provided below:

match=100.00%, (TFSF=75/TFSP=0/TPSF=0), #perfect/partial match:
 <failing=75/75, passing=92>
bDOM DS mic0/pc0/add_233/U39/Z (ND2I) mic0/alu0/U16/ZN
 (INV2I)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

711

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Parallel Diagnosis

Feedback

Note that the library cells are provided in parenthesis.

The following example shows how stuck-open faults in the diagnosis subnets report:

 #--
 # Defect 1: stuck fault model, #faults=1, #failing_pat=6,
 #passing_pat=14,#failures=35

 #--
 # match=100.00%, #explained patterns: <failing=6, passing=14>

 # sa01 DS top/i_p0/E (mx2a3)

 # subnet_id=2

Parallel Diagnosis
You can diagnose multiple failure logs in parallel in a single TestMAX ATPG session with
a single run_diagnosis command. This approach, called parallel diagnosis, improves
volume diagnostics throughput and is much more memory efficient than invoking multiple
TestMAX ATPG sessions. It is especially useful when processing a large number of failure
files.

The following sections describe how to run parallel diagnosis:

• Specifying Parallel Diagnosis

• Converting Serial Scripts to Parallel Scripts

• Using Split Datalogs to Perform Parallel Diagnosis for Split Patterns

• Diagnosis Log Files

• Parallel Diagnosis Limitations

See Also

• Running Multicore ATPG

Specifying Parallel Diagnosis
To specify parallel diagnostics, use the -num_processes option of the set_diagnosis
command. This option sets the number of cores to use during parallel diagnostics. You
can specify the number of processes to launch based on the number of CPUs and the
available memory on the multicore machine.

The following example configures parallel diagnostics to use four cores:

set_diagnosis -num_processes 4

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

712

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Parallel Diagnosis

Feedback

You can also define a post processing procedure to run concurrently with a parallel
diagnostics run, as shown in the following example:

proc pp {} {
 write_ydf -append my_ydf.ydf
 set datalog [get_attribute [index_collection \
 [get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}
set_diagnosis –post_procedure pp

In the previous example, a procedure called pp specifies the write_ydf command and
several Tcl API commands. This procedure is executed using the -post_procedure
option of the set_diagnosis command.

Note that when you use multiple slave cores, each process writes the same report file.

To disable a post processing procedure, specify the following command:

set_diagnosis -post_procedure none

When parallel diagnostics is enabled, you can specify a list of data logs in the
run_diagnosis command, as shown in the following example:

set_diagnosis -num_processes 4
run_diagnosis [list {datalogs/ff_[1-9].log} \
 {datalogs/ff_[1-9][0-9].log} \
 {datalogs/ff_100.log}]

Note that wildcards are also accepted when specifying data logs, as shown in the following
example:

run_diagnosis datalogs/ff_*.log

Converting Serial Scripts to Parallel Scripts
You can convert an existing serial mode script to a parallel mode script, and then run
parallel diagnostics for any number of cores.

The following example is a script snippet used for volume diagnosis in serial mode:

for {set i 1} {$i <= 100} {incr i} {
 set fail_log datalogs/ff_${i}.log
 run_diagnosis $fail_log
 write_ydf -append my_ydf_file.ydf
 set datalog [get_attribute [index_collection \
 [get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath]\

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

713

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Parallel Diagnosis

Feedback

 $datalog >> candidates.list
 }
}

The following example shows how the script snippet in the previous example appears as a
parallel script that uses four cores:

set_diagnosis –num_processes 4
proc pp {} {
 write_ydf -append my_ydf_file.ydf
 set datalog [get_attribute [index_collection \
 [get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}
set_diagnosis –post_procedure pp
run_diagnosis [list {datalogs/ff_[1-9].log} \
 {datalogs/ff_[1-9][0-9].log} \
 {datalogs/ff_100.log}]

Using Split Datalogs to Perform Parallel Diagnosis for Split
Patterns
You can use split datalogs to perform parallel diagnostics for split patterns.

The following example shows a serial mode script snippet used for diagnostics with split
datalogs:

set_patterns –external p1.bin –split
set_patterns –external p2.bin –split
set_patterns –external p3.bin -split
for {set i 1} {$i <= 100} {incr i} {
 run_diagnosis datalogs/ff_${i}.p1.log \
 –file “datalogs/ff_${i}.p2.log datalogs/ff_${i}.p3.log”
 write_ydf -append my_ydf.ydf
 set datalog [get_attribute [index_collection \
 [get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}

The following example shows how the script snippet in the previous example appears as a
parallel mode script that uses four cores:

set_patterns –external p1.bin –split
set_patterns –external p2.bin –split
set_patterns –external p3.bin -split

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

714

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Parallel Diagnosis

Feedback

set_diagnosis –num_processes 4
proc pp {} {
 write_ydf -append my_ydf.ydf
 set datalog [get_attribute [index_collection \
 [get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}
set_diagnosis –post_procedure pp
run_diagnosis datalogs/ff_*.p1.log \
 –file “datalogs/ff_*.p2.log datalogs/ff_*.p3.log”

See Also

• Reading Multiple Pattern Files

Diagnosis Log Files
When you run parallel diagnosis, the diagnosis log is stored in multiple files; one file is
created for each core. The name of the diagnosis log file is based on the name of the tool
log file specified by the set_messages command and is appended with the core ID.

The following example specifies a log file called diag.log:

set_messages –log diag.log –replace –level expert

When multiple cores are used for parallel diagnostics, a diagnosis log file is created for
each core, as shown in the following example:

diag.log.1
diag.log.2
diag.log.3
diag.log.4

Each datalog file is processed for a different slave core, as specified in the tool log file:

run_diagnosis datalogs/ff_*.log
Perform diagnosis with 100 failure files.
 Starting parallel processing with 4 processes.
 --
 Failure file >> output log
 ------------------------------------ ------------------------
 datalogs/ff_100.log diag.log.1
 datalogs/ff_101.log diag.log.2
 datalogs/ff_102.log diag.log.3
 datalogs/ff_103.log diag.log.4
 datalogs/ff_104.log diag.log.4
 datalogs/ff_105.log diag.log.2
 datalogs/ff_106.log diag.log.3

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

715

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Parallel Diagnosis

Feedback

 datalogs/ff_107.log diag.log.1
 ...
--
 End parallel diagnosis: Elapsed time=14.33 sec, Memory=596.61MB.
 Processes Summary Report
--

In the previous example, the total memory consumed by parallel diagnostics is 596.61MB,
and the total elapsed runtime is 14.33 seconds.

A slave core diagnosis log file is similar to a single core diagnosis log file. The following
example is an excerpt from the diag.log1 file:

==
Performing diagnosis with failure file datalogs/ff_100.log
Diagnosis will use 2 chain test patterns.
Check expected data completed: 196463 out of 196463 failures were checked
Failures for COMPRESSOR patterns
--
pattern chain pos# output pin_names
------- -------- ---- --------------------------
0 41 0 OUT_0 OUT_1 OUT_5
0 41 3 OUT_0 OUT_1 OUT_5
0 41 4 OUT_0 OUT_1 OUT_5
0 41 7 OUT_0 OUT_1 OUT_5
0 41 8 OUT_0 OUT_1 OUT_5
0 41 11 OUT_0 OUT_1 OUT_5
0 41 12 OUT_0 OUT_1 OUT_5
0 41 15 OUT_0 OUT_1 OUT_5
0 41 16 OUT_0 OUT_1 OUT_5
0 41 19 OUT_0 OUT_1 OUT_5

datalogs/ff_100.log scan chain diagnosis results: #failing_patterns=400
--
defect type=stuck-at-1
match=100.00% chain=41 position=214
 master=CORE_U1/vys2/U_L0/U_FONTL/FF_pp1_reg_1_ (FSDX_1)
CPU_time=1.25 #sim_patterns=10 #sim_failures=5001
--
YDF Candidates Schema with 0 entries retrieved. ----------------

Following physical data tables generated for all elements:
- YDF
CPU_time: 0.00 sec
Memory Usage: 0MB
--
Performing diagnosis with failure file datalogs/ff_107.log
Diagnosis will use 2 chain test patterns.
Check expected data completed: 157974 out of 157974 failures were checked
Failures for COMPRESSOR patterns
...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

716

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: TestMAX Diagnosis
Parallel Diagnosis

Feedback

You can specify the -level expert option of the set_messages command to produce
a parallel processing summary report for each core after the run_diagnosis command
process is completed:

Process Patterns Time(s) Memory(MB)
------- -------- ---------------- -----------------------------
ID pid External CPU Elapsed Shared Private Total Pattern
--
0 3449 401 0.09 14.33 296.45 0.14 296.59 1.81
1 3461 0 14.20 14.32 251.91 75.18 327.10 0.00
2 3462 0 8.71 8.80 251.93 70.98 322.91 0.00
3 3463 0 10.66 10.77 251.94 72.02 323.9 0.00
4 3464 0 10.81 10.98 251.96 81.84 333.80 0.00
Total 401 44.47 14.33 296.45 00.17 596.61 1.81
--

In the previous example, the total memory usage for parallel diagnostics is less than
600MB. However, running multiple TestMAX ATPG sessions for the same diagnostics
session requires almost 1.2GB.

Parallel Diagnosis Limitations
The run_diagnosis command issues a warning message if the number of specified
failure data files is less than the number of enabled processes.

Note the following restrictions and limitations:

• If you specify more cores than the number of datalogs to be analyzed, the enhanced
performance provided by parallel diagnostics is compromised because parallelization is
applied to each datalog.

• For small designs you might not see a significant performance improvement, especially
if diagnosis for a single datalog takes only a few seconds.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

717

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

18
Using Physical Data for Diagnosis

Physical diagnostics provides significantly higher defect isolation accuracy and precision
than standard scan diagnostics. When used with the Synopsys Yield Explorer tool,
physical diagnostics improves the effectiveness of volume diagnostics.

To perform physical diagnostics, TestMAX ATPG requires physical data stored in a
physical diagnostics (PHDS) database. TestMAX ATPG then dynamically extracts likely
bridging pairs, subnet information, and layout data to identify diagnostics fault candidates.

The following sections describe how to prepare and use physical data to perform
diagnostics:

• Physical Diagnosis Flow Overview

• Creating and Validating a PHDS Database

• Reading a PHDS Database into TestMAX ATPG

• Name Matching Using a PHDS Database

• Setting Up and Running Physical Diagnosis

• Static Subnet Extraction Using a PHDS Database

• Reporting Physical Subnet ID Data

• Writing Physical Data for Yield Explorer

Physical Diagnosis Flow Overview
You can use Yield Explorer or TestMAX ATPG to create the PHDS database used for
physical diagnostics. After loading the PHDS database into the data access process
(DAP) server or the data access server (DAS), you can use TestMAX ATPG to extract the
physical information and perform diagnostics.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

718

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Physical Diagnosis Flow Overview

Feedback

Figure 109 Flows for Using the PHDS Database for Physical Diagnosis

 

Option #1
Yield Explorer
Setup

Option #2
TestMAX ATPG

Standalone
Setup

LEF/DEF LEF/DEF

YE Loader TestMAX ATPG

TestMAX ATPG

DAP
PHDSPHDSDAS

Data Access
Server

Oracle
Data Access

Process

TestMAX ATPG
Image

Patterns Failures

TestMAX ATPG Diagnostics

Physical Callouts

 

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

719

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Creating and Validating a PHDS Database

Feedback

See Also

• Reading the PHDS Database

Creating and Validating a PHDS Database
To create and validate a PHDS database, you need access to all the LEF/DEF files
relevant to diagnostics within your design. It is possible to extract a physical database
from an incomplete LEF/DEF set, although you can only perform logical diagnostics for
the blocks associated with any missing files. This is expected behavior for memories and
hardened IP.

A technology file (commonly referred to as a "techlef") is required for physical diagnostics.
This file contains a description of the physical properties of the design, such as the metal
layers and the routing grid.

The information in the technology LEF file is sometimes included directly in a set of LEF
files. If you include the string "tech" (case insensitive) in the name of the file (for example,
"technology.lef" or “any.tech.lef.gz”), the file is automatically recognized by TestMAX ATPG
as a technology file. You can also use the set_physical_db –technology_lef_file
command to specify the technology file name.

To create and validate a PHDS database:

1. Specify the locations of the source LEF and DEF directories.

set_physical_db -lef_directory ./lef -def_directory ./def

2. Specify the name of the top-level DEF file.

set_physical_db -top_def_file top_design.def

You can use any name for the top_design.def file.

Specify the location of the output PHDS directory.

set_physical_db -database ./phds

3. Specify the name of the design associated with the LEF/DEF database you are
translating.

set_physical_db -device [list DES 4]

You can specify any name regardless of the actual design name. If you use the
-device option, you can specify the device version (in the example, the device version
is 4).

4. Create and validate the PHDS database.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

720

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Creating and Validating a PHDS Database

Feedback

write_physical_db -replace -verbose

The write_physical_db command creates and validates the specified PHDS
database (the phds directory is used in the example). You must use the -replace
option to overwrite a previously loaded device with same name and version.

After creating a PHDS database, a confirmation message appears, as shown in the
following example:

Writing Physical Database...
LEF input directory : ./lef
DEF input directory : ./def
Top DEF file name : top_design.def
PHDS output directory: ./phds
Device name : DES
Device version : 4
Running PHDS validation...
PHDS validation completed successfully.

Validation Summary Report

Warning: Rule Y18 (DEF Without Corresponding LEF) was violated 2 times.
There were 2 violations that occurred during Validation process.
Running PHDS creation...
PHDS creation completed successfully.
Total_time = 36.76

You can specify the -no_validation option of the set_physical_db command to
create a PHDS database in a separate run without validating it, as shown in the following
example:

set_physical_db -lef_dir ./LEF -def_dir ./DEF
set_physical_db -top_def_file RISC_CHIP.def
set_physical_db -database PHDS_C
set_physical_db -device {"RISC" "1"}
set_physical_db -novalidation
write_physical_db

You can also use the -nocreate_phds option of the set_physical_db command to only
validate the PHDS database in a separate run:

set_physical_db -lef_dir ./LEF -def_dir ./DEF
set_physical_db -top_def_file RISC_CHIP.def
set_physical_db -database PHDS_C
set_physical_db -device {"RISC" "1"}
set_physical_db -nocreate_phds
write_physical_db

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

721

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Reading a PHDS Database into TestMAX ATPG

Feedback

See Also

• Physical Diagnosis Flow Overview

• Reading a PHDS Database

• Setting Up and Running Physical Diagnosis

Reading a PHDS Database into TestMAX ATPG
This section describes how to set up and read a PHDS database for use in TestMAX
ATPG. The initial setup steps for the flow are different depending on whether you use Yield
Explorer or TestMAX ATPG to create a PHDS database. The following figure shows how to
read a PHDS database.

Figure 110 Reading a PHDS Database for Physical Diagnosis

 

PHDS Database
and DAP Server

Link TestMAX ATPG
Image to PHDS
Database

Create PHDS
Database

TestMAX ATPG-Based
PHDS

TestMAX ATPG
ImagePHDS Database

and DAS Server

Yield Explorer-Based
PHDS

Enable
Physical Diagnostics

Link TestMAX ATPG
Image to PHDS
Database

Start DAP
Server Process

 

The following sections describe how to use TestMAX ATPG to read a PHDS database for
physical diagnosis:

• Starting and Stopping the DAP Server Process

• Setting Up a Connection to the PHDS Database

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

722

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Reading a PHDS Database into TestMAX ATPG

Feedback

See Also

• Using TestMAX ATPG to Create a PHDS Database

• Setting Up and Running Physical Diagnosis

Starting and Stopping the DAP Server Process
The DAP (Data Access Process) server process is used to access a PHDS database
created by TestMAX ATPG. You must start this process before you can access and query
a PHDS database created by TestMAX ATPG.

To start the DAP server process:

1. Identify the location of the PHDS database.

set_physical_db -database ./phds
2. Specify any available port on the host in which TestMAX ATPG is currently running.

set_physical_db -port_number 9990
The default, 9998, is used if this command is not specified.

3. Start the data access process.

open_physical_db
When the DAP server process starts, the following message prints:

Starting Data Access Process...
Hostname : ighost101
Port Number : 9990
Physical Database Directory: ./phds
Successfully started Data Access Process.

If the process is already running, you will see the following message:

Starting Data Access Process...
Hostname : ighost101
Port Number : 9990
Physical Database Directory: ./phds
Data Access Process is already running.

To stop the DAP server process, specify the close_physical_db command:

BUILD-T> close_physical_db
Stopping Data Access Process...
Hostname : ighost101
Port Number : 9990
All kernel objects removed. Exiting the process...
Successfully stopped Data Access Process.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

723

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Reading a PHDS Database into TestMAX ATPG

Feedback

The PHDS database created from TestMAX ATPG uses the DAPListener process. To keep
the server process alive, make sure you exit the current TestMAX ATPG session. The
DAPListener process halts if TestMAX ATPG runs in the background. You can perform this
operation from any TestMAX ATPG mode (BUILD, DRC or TEST).

Setting Up a Connection to the PHDS Database
Before performing physical diagnostics, you must establish a connection between the
TestMAX ATPG logical image and the PHDS database. To create this link:

1. Make sure the appropriate design image is loaded in DRC or TEST mode in your
current TestMAX ATPG session.

TEST-T> read_image i044_image.dat
2. Use the set_physical_db command to identify the hostname and port number of the

PHDS server containing the PHDS database.

TEST-T> set_physical_db -hostname ighost101 -port_number 9990
Setting host name ('ighost101') for physical connection. Setting
 port number ('9990') for physical connection. Connecting to physical
 database. Successfully connected to physical database. Available
 Devices: ------------------ DES 1 DES 2 DES 3 DES 4 TST 1

Note the following:

• If the connection is successful, a list of available devices is printed, as shown in the
example.

• You should always specify the port number when connecting to an existing DAP.
The default is not used in this case.

• If you are diagnosing different designs at the same time, make sure you assign a
different port number for each design image.

3. If you are using an Oracle-based PHDS database created by Yield Explorer, you must
include a user name and password to establish a connection.

TEST-T> set_physical_db -hostname ighost101 \ -port_number 9990 -user
 tester -password safe1234 Setting user name ('tester') for physical
 connection. Setting password ('safe1234') for physical connection.
 Setting host name ('ighost101') for physical connection. Setting
 port number ('9990') for physical connection. Connecting to physical
 database. Successfully connected to physical database. Available
 Devices: ------------------ DES 1 DES 2 DES 3 DES 4 TST 1

4. Use the -device option of the set_physical_db command to specify the current
device and version.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

724

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Name Matching Using a PHDS Database

Feedback

TEST-T> set_physical_db -device "DES 4" Connecting to physical
 database. Successfully connected to physical database. Setting device
 name ('DES') and device version ('4') for physical connection.

5. Use the -top_design option of the set_physical_db command to specify the top-
level DEF design name.

TEST-T> set_physical_db -top_design top_def_design_name

Name Matching Using a PHDS Database
TestMAX ATPG diagnostics uses physical information mapped to logical instances to
improve the accuracy and precision of diagnosis callouts. After diagnosis, TestMAX ATPG
writes the physical information for the diagnosis candidates for use in physical failure
analysis. This process can be compromised due to logical pin names mismatching with the
corresponding physical names in the LEF/DEF database.

To resolve instance name conflicts, matching should be performed on the logical names
from the Verilog netlist to the physical names in the LEF/DEF database before running
diagnosis. If the logical names and physical names match, name matching rules will be
created for later use in diagnosis. The following sections describe how to perform name
matching for all instance pins using a PHDS database:

• Name Matching Overview

• Understanding the Name Matching Coverage Report

• Reporting the Name Matching Coverage

• Using Name Matching Results for Diagnosis

Name Matching Overview
For standard physical diagnosis, TestMAX ATPG diagnostics dynamically searches a
PHDS database and matches logical candidate instance names with the corresponding
physical names using existing name matching rules. The name matching feature performs
this name matching process before running diagnosis. You can then create a set of rules
to resolve name mismatches in subsequent diagnosis runs.

To perform name matching, you use both the set_match_names and match_names
commands. The set_match_names command specifies the name matching rules you
want to apply, if any, and the match_names command prints a report of the name matching
coverage.

For example, you can use the match_names command to create an initial name matching
report for a subset of instances. Next, you can use the set_match_names command to

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

725

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Name Matching Using a PHDS Database

Feedback

specify the replacement of a specific instance prefix with another instance prefix from the
flattened logical instance names. You can then perform name matching again to generate
a final report that uses the preferred instance prefix.

The name matching report includes pin-level analysis data, hierarchical mismatch
behavior, and a name match summary.

Understanding the Name Matching Coverage Report
The match_names command creates a name matching report that you can use to analyze
the matching of logical candidate instance names with the corresponding physical names.

The following example shows sample output for the match_names command:

TEST-T> match_names
Setting top level physical design name to 'RISC_CHIP'
 Performing Pin Level Analysis
 Matched 564 of 884 instance pins
 Checking for logical wrapper
 Checking for physical wrapper
 Checking for differences in the lowest hierarchy levels
 Performing Hierarchy Level Analysis
 Module Inst Count Matched Unmatched
 Unmatched Names
 ------------ ------------ ------- --------- --------------
 STACK_TOP 1
 0 1 320

Name Match Summary

Number of instance names matched: 564
Number of mismatches found: 320
Percent Correct = 63.80%
CPU_time: 0.02 sec
Query_time: 2.61 sec
Total_time: 2.62 sec
Memory usage summary: 0MB
--
Closing connection to physical database.

Note the following sections of the sample report:

• Performing Pin Level Analysis — TestMAX ATPG diagnostics attempts to map every
pin in the design to its logical equivalent, and displays the total results.

• Checking for logical and physical wrappers — For the logical and physical wrappers,
TestMAX ATPG diagnostics attempts to find the top-level hierarchies to explain
mismatch behavior.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

726

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Name Matching Using a PHDS Database

Feedback

• Checking for differences in the lowest hierarchy levels — TestMAX ATPG diagnostics
attempts to explain mismatches at the lowest level hierarchies. The module
level results are displayed in descending order relative to the highest number of
unmatched names found. After reviewing this report, you should specify a series of
set_match_names commands to find the correct match for each name.

• Name Match Summary — This section summarizes the name matching results. It
contains the following fields:

◦ Number of instance names matched — indicates the number of logical names for
which an instance can be found.

◦ Number of mismatches found — indicates the number of logical names for which no
match was found.

◦ Percent Correct — indicates the final coverage of the name matching process

You can also use the -auto option of the set_match_names command to perform
automatic name matching to resolve hierarchy conflicts.

Reporting the Name Matching Coverage
TestMAX ATPG diagnostics creates a coverage report that displays the success of the
static name matching process between the logical and physical names. The flow for this
process is as follows:

1. Start TestMAX ATPG.

For details, see Invoking TestMAX ATPG.

2. Read the design image.

read_image design.img.gz
3. Connect to an existing PHDS database.

set_physical_db -hostname host01 -port_number 9998 set_physical_db
 -top_design top_design_name set_physical_db -device [list
 "Device_name" "1"]

4. Use the match_names command to perform name matching for a subset of the
instances.

match_names -sample 1

This command reports name matching for 1% of the logical names.

5. Use the set_match_names command to specify the name matching rules, if needed.

set_match_names -sub_prefix [list "dut/" ""]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

727

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Name Matching Using a PHDS Database

Feedback

Note that the physical names include an extra level of hierarchy (dut/). The

set_match_names command removes this string from the physical names and finds a
match with the logical names.

6. Perform name matching again to get the final report.

match_names -sample 1

Using Name Matching Results for Diagnosis
You can use the name matching flow to identify logical to physical naming conflicts and
create appropriate name matching rules that you can use later in diagnostics. The flow
consists of the following steps:

1. Start TestMAX ATPG.

For details, see Invoking TestMAX ATPG.

2. Read the design image.

read_image design.img.gz
3. Connect to an existing PHDS database.

set_physical_db -hostname host01 -port_number 9998 set_physical_db
 -top_design top_design_name set_physical_db -device [list
 "Device_name" "1"]

4. Use the following command to automatically create the name matching rules (optional).

set_match_names -auto
5. Use the match_names command to perform name matching for all instances:

match_names
6. Use the following command to view the automatically created match name rules

(optional):

report_settings match_names
7. Based on the remaining mismatches, use the set_match_names command to specify

the name matching rules , then rerun the match_names command, as shown in Step
5. .

set_match_names -sub_str [list "dut_0/" "DUT0/"]
8. Restart TestMAX ATPG.

9. Read the design image.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

728

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Setting Up and Running Physical Diagnosis

Feedback

read_image design.mapped.img.gz
10. Connect to an existing PHDS database.

set_physical_db -hostname host01 -port_number 9998 set_physical_db
 -top_design top_design_name set_physical_db -device [list
 "Device_name" "1"]

11. Read the patterns into an external buffer.

set_patterns -external design.pat.bin.gz
12. Define the name matching rules. For example:

set_match_names -sub_prefix {top_i i_core}
13. Run the diagnosis

run_diagnosis design.datalogs

Setting Up and Running Physical Diagnosis
To perform physical diagnostics, you first need to extract the physical data structures
from the PHDS database. You can then perform diagnostics using the run_diagnosis
command.

You can use the set_physical -tolerance command and the set_physical_db
-device command to specify a series of parameters for extracting specific types of data
from the PHDS database.

When extracting bridges, TestMAX ATPG searches and extracts neighbor nets based on a
default distance per layer tolerance. This tolerance is measured from the boundary of the
net, as shown in the following figure.

Figure 111 Net Tolerance for Bridge Extraction

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

729

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Setting Up and Running Physical Diagnosis

Feedback

The tolerance distance is equal to the pitch if this data exists in the technology information.
If not, the default is 1000nm. You can determine the appropriate tolerance by analyzing
technology data, such as pitch distance. To set a tolerance level, use the

-tolerance option of the set_physical command.

Running Physical Diagnosis
The following steps describe how to set the extraction parameters from the PHDS
database, extract physical data, run physical diagnostics, and write the physical data for
Yield Explorer:

1. Use the set_physical_db -device command to query the PHDS database for
technology information, including routing layers and tolerances for each layer.

set_physical_db -device [list "RISC" "1"] Connecting to physical
 database. Successfully connected to physical database. Setting device
 name ('RISC') and device version ('1') for physical connection.
 Retrieving layers and tolerance values for device ('RISC') and device
 version ('1') Layer Tolerance ----- --------- METAL 410 METAL2 410
 METAL3 410 METAL4 515 METAL5 810 METAL6 970

2. If required, use the set_physical -tolerance command to specify a tolerance for
extracting neighbor nets for specific layers. Use the Tcl list syntax to specify each layer
and its tolerance setting, as shown in following example:

set_physical -tolerance [list METAL 50 METAL2 100 METAL3 200 \ METAL4
 300 METAL5 400]

3. Perform physical diagnosis on the PHDS database using the run_diagnosis
command. For example:

run_diagnosis /project/mars/lander/chipA_failure.dat

4. Use the write_ydf command to write the physical data, as shown in the following
example:

write_ydf chipA.ydf –candidate -append
When running physical diagnostics, TestMAX ATPG dynamically retrieves the physical
data based on the instance names. If a match exists, TestMAX ATPG accesses the
physical data. You can also perform match naming using the physical IDs created before
running diagnostics. For more information on this process, see Static Subnet Extraction
Using a PHDS Database.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

730

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Static Subnet Extraction Using a PHDS Database

Feedback

See Also

• Using TestMAX ATPG to Create a PHDS Database

• Reading a PHDS Database

Static Subnet Extraction Using a PHDS Database
You can improve the runtime for physical diagnostics by statically extracting subnet
information from a PHDS database before running diagnostics. The default flow, dynamic
subnet extraction, is performed during diagnostics. Static subnet extraction is only
recommended when you run volume diagnostics on a large number of failing parts.
Otherwise, the additional runtime required for static extraction is greater than the total
reduction in diagnosis runtimes.

The static subnet extraction flow consists of the following steps:

1. Start TestMAX ATPG.

For details, see Starting TestMAX ATPG.

2. Read the logical image.

read_image original.img.gz
3. Connect to an existing PHDS database.

set_physical_db -hostname host01 -port_number 9998 set_physical_db
 -top_design top_design_name set_physical_db -device [list
 "Device_name" "1"]

4. Perform extraction of all subnet information. At the end of the extraction process, all
subnet data is saved in the TestMAX ATPG database.

extract_nets -all

Only driver pins with more than two fanouts are extracted since they are the only pins
with subnets. Subnets from driver pins are extracted in groups of 500 to minimize
server overloading.

5. Report statistics, as needed, for the extracted subnets (optional).

The following example reports statistics for a design in which 286 nets have a subnet:

TEST-T> report_layout -summary Subnets : #nets=286, #subnets=1191,
 max_subnets=51, memory=0MB Subnets_distribution: <10(88.46%)
 <20(98.25%) <30(98.95%) <50(99.65%) <60(100.00%) Receivers_per_net:
 <10(84.62%) <20(97.90%) <30(98.95%) <50(99.65%) <60(100.00%)

6. Write the physical image containing the subnet information.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

731

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Reporting Physical Subnet ID Data

Feedback

write_image new.img.gz -compress gzip -replace
7. Exit TestMAX ATPG.

exit
8. Start TestMAX ATPG.

For details, see "Starting TestMAX ATPG."

9. Read the physical image.

read_image new.img.gz
10. Connect to an existing PHDS database.

set_physical_db -hostname host01 -port_number 9998 set_physical_db
 -top_design top_design_name set_physical_db -device [list
 "Device_name" "1"]

11. Set diagnostics to query only candidate physical information and bridging information.

set_diagnosis -use_phds [list candidates bridges]
12. Perform Diagnosis.

run_diagnosis fail.log
13. Exit TestMAX ATPG.

exit

Reporting Physical Subnet ID Data
You can use TestMAX ATPG diagnostics with a PHDS database to extract the physical
structure of nets in a design. TestMAX ATPG diagnostics uses this subnet data for any net
that has more than two fanouts. When diagnostics is performed using the subnet data, the
open fault candidates localized on a subnet are reported with the physical ID of the subnet
when using the class-based candidate organization.

TestMAX ATPG diagnostics normally uses the PHDS database of the design to extract
the subnet data. TestMAX ATPG reads in the extracted subnet data and maps the
physical subnet to the logical image. If the subnet is an intermediate branch of the net, it is
assigned a logical subnet ID. All branches of the net, including stem branches connected
to the driver and receivers, are assigned a physical subnet ID.

The ability to display this type of information improves the precision of the diagnostics
results because the physical failure analysis (PFA) area encompasses a much smaller
portion of the net.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

732

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Reporting Physical Subnet ID Data

Feedback

Understanding Physical Subnet ID Data
The following figure shows the logical, layout, and layout-aware logical views of the same
net.

   

If a fault is localized in subnet ABC, it can be described by the actual subnet definition,
and the subnet ID is reported in the diagnostics report. However, if a fault is localized in
the metal segments of fanout C, the actual subnet definition is not sufficient. However, the
physical subnet ID can address this situation.

The physical subnet ID begins to count from 0, starting with the driver. This means that all
metal segments that belong to the driver side of the net are assigned the physical subnet
ID of 0. The first fanout metal segments (in this case A), are assigned a physical subnet ID
of 1. The physical subnet ID assignment process continues successively until all portions
of the net, including the subnets, have received an ID.

The subnet definition of the net displayed in Figure 1 is described in the following table.
The left column contains the regular subnet definition. The middle column contains the
logical subnet IDs. The right column displays the physical subnet IDs.

Subnet Definition Logical Subnet Ids Physical Subnet Ids
.net
dut/impl/hier3/U12/E ------------------ 0
dut/impl/hier3/U27/A ------------------ 1
dut/impl/hier3/U21/B ------------------ 2
dut/impl/hier3/U72/C ------------------ 3
dut/impl/hier3/U9/D ------------------ 4
.subnets
1 2 3 1 5
1 2 2 6

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

733

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Writing Physical Data for Yield Explorer

Feedback

Note the following:

• The physical subnet IDs are the same IDs reported in the Yield Explorer data file
(YDF). If a net does not have a subnet definition, the physical subnet ID cannot be
displayed.

• TestMAX ATPG reports the physical subnet ID to match the contents of the YDF.
When using the fault-based candidate organization, this can be enabled with the
set_diagnosis -show physical_subnet_id command. This option is not necessary
with the class-based organization.

• Physical subnet ID data is reported only for nets that have been extracted successfully
and are in the subnet file. This means that nets with only one or two fanouts are not
included. Physical subnet IDs for nets with three or more fanouts that cannot be
extracted are also not reported.

• When the fault candidates are cell inputs, and a physical subnet ID must be reported,
TestMAX ATPG changes the instance name of the cell input to the instance of the cell
which is driving the cell input.

Writing Physical Data for Yield Explorer
After completing the physical diagnostics process, you can write the diagnostics
candidates, and all related physical information, to a Yield Explorer Data Format (YDF) file.
Yield Explorer uses this file for volume diagnostics analysis.

To write physical data for Yield Explorer, specify the write_ydf command after each

run_diagnosis command. The write_ydf command must include the name of the YDF
file. You can specify this command using the -candidates option or without any options.
For example:

run_diagnosis /project/mars/lander/chipA_failure.dat
write_ydf top_chip.ydf -candidates

The write_ydf command prints the physical data for the diagnostics candidates in
all tables in the output YDF file. This data enables Yield Explorer to perform volume
diagnostics analysis. You should use the -replace option if you want to create a new file
to store each diagnostics candidate. You can use the -append option if you want to store
all candidates in a single file. The following example reports the physical data elements for
the diagnostics candidates to a single file:

write_ydf top_chip.ydf –candidates -append

By default, the write_ydf command does not write the chain definition table. To write this
table, which displays chain definition data for the entire database, you must specify the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

734

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Using Physical Data for Diagnosis
Writing Physical Data for Yield Explorer

Feedback

-chain_def option. You only need to write this table one time, as shown in the following
example:

write_ydf top_chip.chain_def.ydf –chain_def

You might prefer to write individual tables to a specific file. If you specify one or more
physical data options, TestMAX ATPG reports only the physical data tables related to the
specified options.

If you specify the following example, TestMAX ATPG reports only the physical data for the
vias and the LEF macro cells in their respective tables:

write_ydf top_chip.ydf -replace -via -cell

See Also

• Using TestMAX ATPG to Create a PHDS Database

• Reading a PHDS Database

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

735

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

19
Power Aware ATPG

A typical ATPG run targets as many faults as possible within a particular pattern. However,
this approach can cause unintended ATE failures for designs containing a large number of
flip-flops that toggle at any given time.

The TestMAX ATPG power aware ATPG feature calculates the fanout of clock-gating
structures and other clock sources during DRC. This approach enables you to specify
capture and shift power budgets for generating power aware ATPG vectors. You can
specify a budget as a percentage of scannable flip-flops and thereby limit the number of
flip-flops that can toggle.

To ensure optimal accuracy, the report_power command uses the TestMAX ATPG
threaded simulator to resimulate previously generated patterns. Consequently, the
set_atpg -calculate_power command is ignored by TestMAX ATPG.

TestMAX ATPG also supports hardware-assisted shift power reduction. This methodology
decreases average shift power and pattern count compared to an ATPG-only approach by
using independently controlled scan chain groups implemented in DFTMAX or DFTMAX
Ultra.

TestMAX ATPG lowers the overall peak and average flip-flop switching by selectively
turning on and off the respective clock-gating cells which control the flip-flops. This
selective switching affects capture for stuck-at testing and launch and capture for transition
fault testing.

Power aware ATPG is not intended to be used for power analysis. TestMAX ATPG
efficiently estimates the relative power of test patterns, which generally correlates well
with actual power consumption. However, this approach is not a precise calculation
of the actual power metrics. Performing a full power analysis during ATPG causes an
unacceptable increase in runtime and is therefore not used for power aware ATPG.

The following sections describe how to prepare for and use power aware ATPG:

• Input Data Requirements

• Setting a Power Budget

• Preparing Your Design

• Running Power Aware ATPG

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

736

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Input Data Requirements

Feedback

• Applying Quiet Chain Test Patterns

• Testing with Asynchronous Primary Inputs

• Power Reporting By Clock Domain

• Setting a Capture Budget for Individual Clocks

• Testing for Partitions

• Retention Cell Testing

• Power Aware ATPG Limitations

Input Data Requirements
The following input data is required to use the power aware ATPG feature within TestMAX
ATPG:

• Netlists

• Library

• STIL procedure file

• Tcl command script containing the build, run_drc, run_atpg and other commands.

Setting a Power Budget
To run power aware ATPG, you need to set a power switching budget using the

-power_budget option of the set_atpg command. You can specify the power switching
budget using either of the following methods:

• Specify the maximum percentage of scannable flip-flops that are budgeted to change
during capture. For example:

set_atpg -power_budget 48
• Specify the min keyword to use the minimum recommended switching budget based

upon the clock-gating analysis. For example:

set_atpg -power_budget min
You can set the power switching budget any time before running the run_atpg command.

For complete information on how to determine the power switching budget, see the
following section, Preparing Your Design.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

737

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Preparing Your Design

Feedback

Preparing Your Design
Power aware ATPG is intended for designs that contain clock-gating cells in the context of
ATPG. You will need to perform an initial analysis of your design to identify all clock-gating
cells and calculate the recommended setting for the set_atpg -power_budget command.

The power analysis performed by TestMAX ATPG uses information from the STL
procedure file and data specified by the add_pi_constraints command. If your design
has a constraint in which the clock-gating cells are always transparent, this power analysis
will not show these clock-gating cells and they are not usable within the context of power
aware ATPG. This means you need to constrain scan-enable ports to their respective off-
state for basic-scan, two-clock, and fast-sequential modes for test pattern generation and
gated-clock (latch) identification.

Also note the following:

• All global signals capable of enabling a large proportion of the clock gating cells must
be disabled.

• All synchronous set and reset signals described as clocks with TestMAX ATPG must be
inactive or constrained to their respective off-state.

Reporting Clock-Gating Cells
After your design successfully passes the DRC process, use the

report_clocks –gating -verbose command to report the clock-gating cells and
calculate the recommended low-power ATPG budget percentage, as shown in the
following example:

report_clocks -gating -verbose
 Clock name: ife_clockdiv2_afe_wrap (0)
 Number of cells directly controlled by the clock: 12077 (22.33%)

 Number of cells controlled by clock through
 a clock gating latch16605 (30.70%)

 Number of cells directly controlled by clock + largest
 clock gating domain: 12097 (22.36%)

 Clock Gating Latch DecoderFrontEnd1/fedcod/dcod_yc/ \
 clk_gate_ramAddr_regx0x/U1 (693893)
 drives 20 (0.04%) scan cells
 ...
 ...
 Minimum Recommended Low-Power ATPG Budget: 22.36% (12097)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

738

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Preparing Your Design

Feedback

You should round-up the recommended low-power ATPG budget percentage to the next
integer value. In the previous example, 22.36 should be rounded up to 23. This value is
specified by the -power_budget option of the set_atpg command using either of the two
methods:

• You can manually specify the budget as shown in the following example:

set_atpg -power_budget 23
• You can specify TestMAX ATPG to automatically use the minimum recommended low-

power ATPG budget, as shown in the following example:

set_atpg -power_budget min

Constraining Clock-Gating Cells for Power Aware ATPG
After the DRC process completes its analysis, a list of clock-gating cells are reported. You
need to constrain these cells to their opposite value so that capture power yields optimal
power budget results.

It is also recommended to do this when using SPC (Shift Power Controller) with
compression if a pattern inflation is seen after enabling SPC.

Begin clock-gating analysis...
7578 ATPG controllable clock-gating cells were found
Setting top_inst/core_1/icg_te_data_reg(id=2620544) to 1 allows 73.75% of
 all scan cells to toggle.
Clock-gating analysis completed, CPU time=0.00 sec.

Begin clock rules checking...
Clocks successfully passed off-state check of scan cells.

In this case you should add a cell constraint of 0 on this cell top_inst/core_1/
icg_te_data_reg since this cell drives over 70 percent of TE pins of the clock_gating
cells and leaving it a 1 would lead to all of these cells having a potential active clock.
Adding a cell constraint to hold this cell inactive will then help ATPG achieve the descried
power budget sooner.

The suggestion is to rerun the DRC step after adding

add_cell_constraints 0 top_inst/core_1/icg_te_data_reg
and then compare pattern count and coverage for when power-aware ATPG is being used
with and without this constraint.

In the following example, DRC reports a set of clock-gating cells:

Scan chain operation checking completed, CPU time=51.51 sec.
--

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

739

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Running Power Aware ATPG

Feedback

Begin clock-gating analysis...
106438 ATPG controllable clock-gating cells were found
Setting top/test/clk_always_0_clock_gate_reg35(id=2599) to 1 allows
 15.54% of all scan cells to toggle.
Setting top/test/clk_always_0_clock_gate_reg28(id=2506) to 1 allows
 19.50% of all scan cells to toggle.
Setting top/test/clk_always_0_clock_gate_reg22(id=2512) to 1 allows
 12.62% of all scan cells to toggle.
Setting top/test/clk_always_0_clock_gate_reg13(id=2521) to 1 allows
 12.61% of all scan cells to toggle.
Clock-gating analysis completed, CPU time=105.17 sec.

Begin clock rules checking...

For capture power to work properly, you need to set the signals in the previous example to
0, as shown in the following example:

add_cell_constraints 0 top/test/clk_always_0_clock_gate_reg35
add_cell_constraints 0 top/test/clk_always_0_clock_gate_reg28
add_cell_constraints 0 top/test/clk_always_0_clock_gate_reg22
add_cell_constraints 0 top/test/clk_always_0_clock_gate_reg13

Setting a Strict Power Budget
Use the -power_effort option of the set_atpg command to generate patterns that do
not exceed the power budget specified for capture. The syntax for this option is as follows:

set_atpg -power_effort <high | low>
The default is low. If you set this option to high, TestMAX ATPG generates patterns that
do not exceed the budget specified by the set_atpg -power_budget command. Note
that over-constraining the power budget might cause longer runtimes and generate fewer
patterns when the -power_effort option is set to high. Because of this, you should not
set power budgets below that recommended by the

report_clocks -gating command.

Running Power Aware ATPG
After preparing your design, as described in the Preparing Your Design section, you
are ready to perform a complete power aware ATPG run and use the report_power
command to report the power data.

The following example script shows the use of the set_atpg and report_power
commands in a typical power aware ATPG flow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

740

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Running Power Aware ATPG

Feedback

   

read_netlist -lib $my_lib.v
read_netlist $my_design.v
run_build $my_design
run_drc $my_drc_file.spf
report_clock -gating
set_atpg -fill adjacent
set_atpg -power_budget 25
add_faults -all
run_atpg -auto
report_power -per_pattern -percentage

The report_power command produces the report shown in the following example:

--
 Power Analysis Summary
--
Number of Scan Cells 75053
Number of Patterns 0-2680
Average Shift Changes: 2400.38 3.20%
Average Capture Changes: 9058.04 12.07%
Maximum Shift Cell Changes: 37510 49.97% (pattern: 0 cycle: 3411)
Maximum Capture Cell Changes: 30742 40.96% (pattern: 1)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

741

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Applying Quiet Chain Test Patterns

Feedback

Applying Quiet Chain Test Patterns
Regular scan chain test patterns apply the 0011 sequence to all scan inputs, which can
lead to power issues and unintended ATE failures. However, a quiet chain test pattern
minimizes switching activity by loading a single scan input with specified pattern data and
loads all other chains with a constant value.

The -quiet_chain_test option of the set_atpg command enables the automatic
generation of quiet chain test patterns when the run_atpg command is executed.

The set_atpg -load_mode command enables the generation of the quiet chain test for a
particular load mode or all load modes. The set_atpg -load_value command configures
the constant value loaded into the quiet chains.

In legacy scan mode, the 0011 sequence, or any other specified pattern data, is
independently applied to each scan chain, while all other scan chains are set to 0. This
means that one pattern loads the 0011 sequence in a single scan chain at a time. To load
N scan chains, where N is the total number of scan chains, TestMAX ATPG generates N
quiet chain test patterns.

In scan compression mode, the 0011 sequence or any other specified pattern data is
independently applied to each scan channel, while all other scan channels are set to
0. The compressor load mode is maintained to a constant value, which is 0. One scan
channel fans to multiple chains due to the input load compressor. Thus, to load the P scan
channels, where P is the total number of load compressor scan inputs, TestMAX ATPG
generates P quiet chain test patterns.

Testing with Asynchronous Primary Inputs
Use the -power_aware_asyncs option of the set_atpg command to test asynchronous
sets and resets from primary inputs on legacy scan designs. Note that this feature is not
implemented for DFTMAX designs.

To use this option, your design must be able to propagate the asynchronous signals to
allow sufficient time for the signals to fit within the given ATE vector.

The following example shows the -power_aware_asyncs option of the power aware ATPG
flow:

…
run_drc
…
set_atpg -power_aware_asyncs
run_atpg -auto
report_power -per_pattern -percentage

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

742

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Reporting By Clock Domain

Feedback

Power Reporting By Clock Domain
You can set the -per_clock_domain option of the report_power command to create
individual capture power reports for each clock. By default, the report_power command
creates a consolidated report for all clock domains.

The following example shows the type of report created using the -per_clock_domain
option.

report_power -percentage -per_pattern -per_clock_domain

--
 Power Analysis: Per Pattern

--

Shift Results:

 Peak

 pattern load cycle shift cycle switching percentage

 0 0 87 344 48.93%

 1 0 35 361 51.35%

 2 0 5 341 48.51%

 3 0 80 351 49.93%

 4 0 11 337 47.94%

 5 0 23 343 48.79%

 6 0 64 340 48.36%

 7 0 75 361 51.35%

 8 0 6 365 51.92%

 9 0 48 348 49.50%

 Average

 pattern average switching percentage

 0 171.51 24.40%

 1 348.91 49.63%

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

743

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Reporting By Clock Domain

Feedback

 2 326.01 46.37%

 3 338.85 48.20%

 4 327.02 46.52%

 5 328.31 46.70%

 6 328.89 46.78%

 7 343.67 48.89%

 8 349.93 49.78%

 9 339.20 48.25%

 Capture Results:

 Peak

 pattern capture cycle switching percentage

 0 0 0 0.00%

 1 2 68 9.67%

 2 1 52 7.40%

 3 1 54 7.68%

 4 1 25 3.56%

 5 1 16 2.28%

 6 1 30 4.27%

 7 1 26 3.70%

 8 1 47 6.69%

 9 1 60 8.53%

 Average

 pattern average switching percentage

 0 0.00 0.00%

 1 41.67 5.93%

 2 27.33 3.89%

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

744

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Reporting By Clock Domain

Feedback

 3 30.33 4.31%

 4 13.33 1.90%

 5 7.00 1.00%

 6 13.00 1.85%

 7 14.00 1.99%

 8 26.00 3.70%

 9 32.67 4.65%

 Capture Results For Clock CLK1:

 Peak

 pattern capture cycle switching percentage

 0 0 0 0.00%

 1 0 0 0.00%

 2 0 0 0.00%

 3 0 0 0.00%

 4 0 0 0.00%

 5 0 0 0.00%

 6 0 0 0.00%

 7 0 0 0.00%

 8 1 19 2.70%

 9 0 0 0.00%

 Average

 pattern average switching percentage

 0 0.00 0.00%

 1 0.00 0.00%

 2 0.00 0.00%

 3 0.00 0.00%

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

745

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Reporting By Clock Domain

Feedback

 4 0.00 0.00%

 5 0.00 0.00%

 6 0.00 0.00%

 7 0.00 0.00%

 8 12.33 1.75%

 9 0.00 0.00%

 Capture Results For Clock CLK2:

 Peak

 pattern capture cycle switching percentage

 0 0 0 0.00%

 1 0 0 0.00%

 2 1 32 4.55%

 3 0 0 0.00%

 4 0 0 0.00%

 5 0 0 0.00%

 6 0 0 0.00%

 7 1 26 3.70%

 8 0 0 0.00%

 9 0 0 0.00%

 Average

 pattern average switching percentage

 0 0.00 0.00%

 1 0.00 0.00%

 2 14.00 1.99%

 3 0.00 0.00%

 4 0.00 0.00%

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

746

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Reporting By Clock Domain

Feedback

 5 0.00 0.00%

 6 0.00 0.00%

 7 14.00 1.99%

 8 0.00 0.00%

 9 0.00 0.00%

 Capture Results For Clock CLK3:

 Peak

 pattern capture cycle switching percentage

 0 0 0 0.00%

 1 1 36 5.12%

 2 0 0 0.00%

 3 1 23 3.27%

 4 1 25 3.56%

 5 1 16 2.28%

 6 1 30 4.27%

 7 0 0 0.00%

 8 0 0 0.00%

 9 1 23 3.27%

 Average

 pattern average switching percentage

 0 0.00 0.00%

 1 22.67 3.22%

 2 0.00 0.00%

 3 13.00 1.85%

 4 13.33 1.90%

 5 7.00 1.00%

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

747

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Reporting By Clock Domain

Feedback

 6 13.00 1.85%

 7 0.00 0.00%

 8 0.00 0.00%

 9 11.33 1.61%

...

...

...

 Power Analysis Summary

 Number of Scan Cells 703

 Number of Patterns 0-9

 Cycles Per Load 88

 Average Shift Switching 320.23 45.55%

 Average Capture Switching 22.00 3.13%

 Peak Shift Switching 365 51.92% (pattern: 8
 cycle: 6)

 Peak Capture Switching 68 9.67% (pattern: 1)

 Peak Capture Switching (CLK1) 19 2.70% (pattern: 8)

 Peak Capture Switching (CLK2) 32 4.55% (pattern: 2)

 Peak Capture Switching (CLK3) 36 5.12% (pattern: 1)

 Peak Capture Switching (CLK4) 0 0.00% (pattern: 0)

 Peak Capture Switching (CLK5) 0 0.00% (pattern: 0)

 Peak Capture Switching (CLK6) 31 4.41% (pattern: 3)

 Peak Capture Switching (CLK7) 37 5.26% (pattern: 9)

 Peak Capture Switching (CLK8) 0 0.00% (pattern: 0)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

748

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Setting a Capture Budget for Individual Clocks

Feedback

 Peak Capture Switching (CLK9) 36 5.12% (pattern: 1)

 Peak Capture Switching (CLK10) 0 0.00% (pattern: 0)

 Peak Capture Switching (CLK11) 28 3.98% (pattern: 8)

 Peak Capture Switching (SETN) 0 0.00% (pattern: 0)

 Peak Capture Switching (RSTN) 0 0.00% (pattern: 0)

Setting a Capture Budget for Individual Clocks
You can use the -power_budget and -domain options of the set_atpg command to set
a capture budget for individual clocks. You must specify the -power_budget option before
the -domain option.

The following example sets a capture budget of 55 for clock1:

set_atpg -power_budget 55 -domain clock1

The next example sets a capture budget of 15 to the clock2 and clock3 clock domains:

set_atpg -power_budget 15 -domain {clock2 clock3}

The next example assigns the minimum recommended capture budget for clock4:

set_atpg -power_budget min -domain clock4

The next example assigns the minimum recommended capture budget for internal clock
domains. These would be the clock names listed by report_clocks -intclocks

As they are set, the tool echos the minimum percentage of capture budget per internal
clock domain:

set_atpg -power_budget min -domain codec/occ11/U2/U3
Setting power budget for clock codec/occ11/U2/U3 to 23%
set_atpg -power_budget min -domain codec/occ12/U2/U3
Setting power budget for clock codec/occ12/U2/U3 to 91%
set_atpg -power_budget min -domain codec/occ13/U2/U3
Setting power budget for clock codec/occ13/U2/U3 to 89%
set_atpg -power_budget min -domain codec/occ14/U2/U3
Setting power budget for clock codec/occ14/U2/U3 to 87%
set_atpg -power_budget min -domain codec/occ15/U2/U3
Setting power budget for clock codec/occ15/U2/U3 to 80%

Note:
It's recommended to use set_atpg -power_budget min -domain name to
get the minimum setting per clock domain as report_clock -gating does not list

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

749

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Setting a Capture Budget for Individual Clocks

Feedback

minimum recommended settings. You can then set the power budget to any
number larger than the reported minimum setting.

After setting a capture budget for the individual clock domains, you can produce a power
report using the -per_clock_domain option of the report_power command, as shown in
the following example:

report_power -per_clock_domain

 Power Analysis Summary

Number of Scan Cells 54093
Number of Patterns 0-64
Cycles Per Load 52
Average Shift Switching 12939.91 23.92%
Average Capture Switching 7867.95 14.55%
Peak Shift Switching 18373 33.97% (pattern: 5
 cycle: 12)
Peak Capture Switching 10880 20.11% (pattern: 11)
Peak Capture Switching (clk1) 9860 18.23% (pattern: 16)
Peak Capture Switching (clk2) 154 0.28% (pattern: 62)
Peak Capture Switching (clk3) 6160 11.39% (pattern: 26)
Peak Capture Switching (clk4) 1389 2.57% (pattern: 23)
report_power -per_clock_domain -percentage -capture
Starting threaded simulation with 8 threads. (M733)

Power Analysis Summary

Number of Scan Cells 261050
Number of Patterns 0-104
Cycles Per Load 301
Average Capture Switching 17961.72 6.88%
Peak Capture Switching 28317 10.85% (pattern: 38)
Peak Capture Switching (codec/occ11/U2/U3) 3323 14.92% (pattern: 14)
Peak Capture Switching (codec/occ12/U2/U3) 2068 46.37% (pattern: 32)
Peak Capture Switching (codec/occ13/U2/U3) 9920 44.63% (pattern: 76)
Peak Capture Switching (codec/occ14/U2/U3) 11192 44.40% (pattern: 9)
Peak Capture Switching (codec/occ15/U2/U3) 2395 56.13% (pattern: 6)
Peak Capture Switching (codec/occ16/U2/U3) 1617 17.24% (pattern: 42)

You can use the following command to set all clocks to use the specified capture budget:

set_atpg -power_budget {min} -domain [get_attribute \
[get_clocks -all] clock_name]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

750

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Testing for Partitions

Feedback

Testing for Partitions
When generating power aware ATPG patterns, you can set the target test coverage,
capture power, and shift power on a per partition basis and get reports on individual
partition contributions to power.

Specifying a Test Coverage Target for Partitions
To specify the test coverage target for specific partitions, use the -coverage option of the
set_atpg command with the -partition option. For example:

set_atpg -coverage 90 -partition {p1 p2}

Specifying Capture Power for Partitions
You can use the -power_budget and -partition options of the set_atpg command
to set capture budgets for different partitions. You must specify the -power_budget
option before the -partition option. Partitions can be created using the add_partition
command and should be defined before using the -partition option with set_atpg. The
-partition option allows you to specify a list of one or more partition names.

The following example sets a capture budget of 20 for partitions p1 and p2:

set_atpg -power_budget 20 -partition {p1 p2}

Specifying Shift Power for Partitions
To set the shift power for specific partitions, use the -shift_controller_peak option of
the set_atpg command with the -partition option. For example:

set_atpg -shift_controller_peak 30 -partition {p1 p2 p3}

Note: If you do not use the -partition option, the specified shift power controller (SPC)
peak is applied to the entire design (global constraint).

Reporting Power Per Partition
After setting capture budgets for the partitions, you can report the shift and capture power
per partition by using the -per_partition option of the report_power command, as
shown in the following example:

report_power -shift -per_partition -percent
report_power -capture -per_partition -percent
report_power -per_partition -percent

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

751

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Testing for Partitions

Feedback

Example
The following example shows how to set the test coverage, shift power, and capture power
for partitions as well as report the power for individual partitions.

read_netlist My_design.v
run_build_model My_Unit

#add partitions
add_partition p1 {A B C}
add_partition p2 {P Q R}
add_partition p3 {X Y Z}

#SPC related constraints and chain name
set_drc -spc_chain SPC
add_pi_constraint 0 SPC_DISABLE
run_drc My_spf.spf

#Set coverage per partition
set_atpg -coverage 95
set_atpg -coverage 95 -partition {p1 p2}
set_atpg -coverage 90 -partition p3

#Set capture power per partition
set_atpg -power_budget 20 -partition p1
set_atpg -power_budget 30 -partition p2
set_atpg -power_budget 25 -partition p3

#set shift power per partition
set_atpg -shift_controller_peak 30
set_atpg -shift_controller_peak 30 -partition {p1 p2 p3}

#Atpg settings
set_faults -model stuck
add_faults -all
run_atpg -auto

#report power per partition
report_power -shift -per_partition -percent
report_power -capture -per_partition -percent
report_power -per_partition -percent

#Report coverage per partition
report_faults -summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

752

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Retention Cell Testing

Feedback

Limitations
Specifying power budgets for partitions has the following limitations:

• Chain test patterns are not supported with SPC and partitions. Chain test patterns
might exceed the per partition SPC budget.

• Chain diagnosis ATPG patterns are not supported with SPC and partitions.

• Setting the shift power to a very small value can lead to coverage drop and/or pattern
inflation.

• Any instance for which a partition is not defined will belong to the default partition. The
power budget for the default partition is 100%.

• The test coverage targeted for partitions must be the same and close to the coverage
targeted for the top level of the design.

Retention Cell Testing
TestMAX ATPG uses the chain_capture procedure to generate tests specifically for
retention cells within scan chains. These chain tests apply only two patterns to retention
cells.

A regular chain test and a retention cell test have different goals. A regular chain test
checks that scan chains shift reliably and that a capture procedure does not corrupt any
values when a capture clock does not pulse. A retention cell chain test purposely corrupts
data and ensures it is restored to its original state.

TestMAX ATPG supports three flows to generate tests for retention cells:

• Pattern generation

This flow uses the chain_capture procedure and full-sequential ATPG to generate
patterns that are fault-simulated by TestMAX ATPG. In most cases, you should use this
flow unless you are limited by machine memory, the chain_capture procedure size, or
your design size.

• Pattern formatting

This flow uses the chain_capture procedure, but it does not generate patterns. Instead,
it formats patterns based on user-provided specifications. Use this flow when memory
capacity limitations prevent you from using a large chain_capture procedure or a
large design for pattern generation. The patterns formatted in this flow cannot be
correctly simulated by TestMAX ATPG because they are not annotated with simulation
information.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

753

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Retention Cell Testing

Feedback

• Pattern formatting by masking non-retention cells

This flow is similar to the pattern formatting flow except you do not explicitly identify
retention cells. Instead, you identify all cells that are not retention cells by masking their
scan-out values. This masking is done for every instance.

The following sections describe how to use TestMAX ATPG to test the unique properties of
retention cells:

• Typical Retention Cell Used for Testing by TestMAX ATPG

• Creating the chain_capture Procedure

• Identifying Retention Cells for Testing

• Pattern Generation for Retention Cells

• Pattern Formatting for Retention Cells

• Pattern Formatting by Masking Non-Retention Cells

• Retention Cell Testing Limitations

Typical Retention Cell Used for Testing by TestMAX ATPG
Scan cells that use SAVE and RESTORE functions are directly addressed by the TestMAX
ATPG retention cell testing flows, as shown in the following example.

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

754

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Retention Cell Testing

Feedback

The behavior of this scan cell is as follows:

• When the SAVE and RESTORE functions are deasserted, the cell behaves as a
normal scan flip-flop.

• When the retention function is required, the SAVE sequence stores the flip-flop value in
the retention latch.

• After power is restored to the flip-flop portion of the cell, the RESTORE function
disables the flip-flop clock and any asynchronous controls. It then loads the value from
the retention latch into the flip-flop.

Creating the chain_capture Procedure
TestMAX ATPG uses a special retention cell chain test to handle retention cell testing. This
chain test works with the chain_capture procedure in the SPF.

A separate SPF is required for a retention cell test and can include only the load_unload
and chain_capture procedures. Do not include any other procedures in this SPF.

TestMAX ATPG initially runs a retention cell chain test using the data specified in the
chain_capture procedure. It then reapplies the test with the same data in reverted order.
For example, if you specify a repeating 0101 sequence for the chain test, TestMAX
ATPG first applies the chain test with a repeating 0101 sequence and reapplies it with a
repeating 1010 sequence.

The chain_capture procedure performs the following tasks:

• Saves the scanned-in values by executing the SAVE sequence on the retention cells.

• Corrupts the scanned-in values by clocking in the opposite value from the scan chain.
A repeating 0101 value specified for the chain test requires one pulse of the shift clock.

• Restores the original scanned-in values by executing the RESTORE sequence on the
retention cells.

The chain_capture procedure is more complex than typical capture procedures, as shown
in the following example:

“chain_capture” {
 F { “test_mode”=1; _po=\r 78 X; }
 V { “scan_enable”=0; “ret_clk”=0; “reset”=0; “clk”=0; }

 // Execute the SAVE sequence.
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }

 // Pulse the capture clock after the data is saved.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

755

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Retention Cell Testing

Feedback

 V { “ret_clk”=0; “clk”=P; }

 // Execute the RESTORE sequence.
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; “clk”=0; }
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; }
}

Identifying Retention Cells for Testing
To identify retention cells for testing, you must include two special notations in the cell
library file: `define retention and `undef retention. The `define retention
notation must be placed before the cell definition. This enables TestMAX ATPG to identify
cells that will retain value after the retention cell test.

The `undef retention notation is placed after the retention cell definition and prevents
identifying the next cell in the cell library as a retention cell.

The following example shows a snippet of a cell model that uses the `define retention
and `undef retention notations:

`define retention
`celldefine
module DFFS_RETENTION (D, CLK, SAVE, RESTORE, SI, SE);
.... <contents of cell model here>
endmodule
`endcelldefine
`undef retention
If you cannot identify retention cells using the 'define retention and 'undef
retention statements, see Pattern Formatting by Masking Non-Retention Cells.

Pattern Generation for Retention Cells
The following steps show how to use the pattern generation flow.

1. Create the SPF and include the chain_capture procedure (see Creating the
chain_capture Procedure).

2. Identify the retention cells in the cell library file (see Identifying Retention Cells for
Testing.).

3. Use the following command sequence to set up and run test DRC:

set_drc -clock -chain_capture run_drc SPF_filename

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

756

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Retention Cell Testing

Feedback

Note the following:

• The -clock option of the set_drc command specifies restrictions on clock usage
for pattern generation; the -chain_capture option sets the DRC process to use the
retention cell chain test.

• The run_drc SPF_filename command runs DRC using the specified SPF.

4. Use the -chain_test option of the set_atpg command to specify the chain test
pattern (the 0101R sequence is recommended), as shown in the following example:

set_atpg -chain_test 0101R

This command helps full-sequential ATPG efficiently generate a test.

5. Specify the run_atpg full_sequential_only command to run ATPG in full-
sequential mode.

run_atpg full_sequential_only

To create retention patterns, TestMAX ATPG performs the following steps:

• Loads the scan chains with the SLEEP signal turned off.

• Runs the chain_capture procedure.

• Unloads the scan chains.

These steps are performed twice. The first run includes the data specified for the
normal scan chain test. The second run includes the same data inverted.

6. Set up and run the fault simulation using the set_simulation and run_fault_sim
commands.

TestMAX ATPG fault-simulates the generated patterns and the patterns are retained
only if they detect faults. All detected faults are categorized as Detected by Simulation
(DS) faults. If the first pattern detects faults but the second pattern does not, only the
first pattern is retained.

Pattern Formatting for Retention Cells
You should use the pattern formatting for retention cells flow only if tool capacity issues
prevent you from using the pattern generation flow (see Pattern Generation for Retention
Cells). Because TestMAX ATPG does not simulate the chain_capture procedure in this
flow, you should validate the patterns using a Verilog simulator.

The following steps shows how to use the pattern formatting flow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

757

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Retention Cell Testing

Feedback

1. Create the SPF and include the chain_capture procedure (see Creating the
chain_capture Procedure).

2. Identify the retention cells in the cell library file (see Identifying Retention Cells for
Testing.).

3. Run test DRC using the following command sequence:

set_drc -clock -retention_test run_drc SPF_filename

The set_drc –clock -retention_test command sets the DRC process to use the
retention cell chain test, and the run_drc SPF_filename command runs DRC using
the specified SPF.

4. Format the patterns for retention testing.

a. Use the -chain_test option of the set_atpg command to specify the chain test
pattern (the 0101R sequence is recommended), as shown in the following example:

set_atpg -chain_test 0101R
b. Specify the run_atpg -only_chain_test command.

run_atpg -only_chain_test

This command writes the chain test into the pattern buffer and calls the
chain_capture procedure. The chain test is performed twice: First with the data
specified for the normal scan chain test and a second time with the same data
inverted.

5. Validate the patterns using a Verilog simulator. This process is required because the
TestMAX ATPG simulators cannot correctly simulate patterns that are not annotated
with simulation information. In this case, the run_simulation and run_fault_sim
commands always report mismatches.

Pattern Formatting by Masking Non-Retention Cells
You might need to use the pattern formatting flow for retention cells, but your cell
library does not identify the retention cells (using the `define retention and 'undef
retention statements). In this case, you can explicitly identify all cells that are not
retention cells by masking their scan-out values. It is crucial to validate these patterns
using a Verilog simulator because TestMAX ATPG does not simulate the chain_capture
procedure and cannot verify if non-retention cells are correctly identified.

The following steps show how to perform pattern formatting by masking non-retention
cells.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

758

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Retention Cell Testing

Feedback

1. Create the SPF and include the chain_capture procedure (see Creating the
chain_capture Procedure).

2. Use the add_cell_constraints command to identify all cells in the cell library that
are not retention cells by masking their scan-out values. This masking is done for every
instance and prevents the patterns from expecting the non-retention cells to restore
their value.

add_cell_constraints ox { cpu0/ifetch0/u04 cpu0/mmu/u43 cpu0/luu/u63
 cpu0/cdu/u167}

Note that the ox constraint indicates that the observed value is always masked or
considered to be X.

3. Run test DRC using the following command sequence:

set_drc -clock -chain_capture run_drc SPF_filename

The set_drc –clock -chain_capture command sets the DRC process to use the
retention cell chain test. In this case, the -chain_capture option is the same as used
for the pattern generation flow. But it executes differently than the pattern formatting
flow when retention cells are identified in the library. The run_drc SPF_filename
command runs DRC using the specified SPF.

4. Format the patterns for retention testing.

Use the -chain_test option of the set_atpg command to specify the chain test
pattern (the 0101R sequence is recommended), as shown in the following example:

set_atpg -chain_test 0101R
5. Specify the run_atpg -only_chain_test command.

run_atpg -only_chain_test

This command writes the chain test into the pattern buffer and calls the chain_capture
procedures. These steps are performed twice: The first run includes the data specified
for the normal scan chain test. The second run includes the same data inverted.

6. Validate the patterns using a Verilog simulator. This process is required because the
TestMAX ATPG simulators cannot correctly simulate patterns that are not annotated
with simulation information. You could run the run_simulation and run_fault_sim
commands, but they would always report mismatches in this case.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

759

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Aware ATPG Limitations

Feedback

Retention Cell Testing Limitations
The following limitations apply to retention cell testing:

• You cannot run retention cell testing using either of the following commands:

◦ run_atpg basic_scan_only

◦ run_atpg fast_sequential_only

• The Procedure section of the SPF used for retention cell testing must contain only
the chain_capture procedure and the load_unload procedure. Incorrect results are
possible if any other capture procedures are included in the Procedure section when
the chain_capture procedure is present.

• You cannot use the run_atpg -auto command if full-sequential test generation is
turned off.

• Retention cell testing is only supported in uncompressed scan mode. If you attempt
to use a compression mode, the run_atpg command will stop and an M870 error is
issued.

Power Aware ATPG Limitations
Note the following limitations related to power aware ATPG:

• Test-mode based clock gating is not supported. Only scan-enable based clock gating is
supported.

• Latch-free clock gating is not supported. Only latch-based clock gating is supported,
which includes cascaded latch-based clock gating structures.

• Only simple clock-gating latches are supported. Combinations of the output of two or
more latches when logically combined with the clock are not supported.

• Full-sequential ATPG is not supported for either the report_power command or Power
Aware ATPG.

• Scan-enable signals must be constrained to the off-state for basic-scan, two-clock,
and fast-sequential for test pattern generation and gated-clock (latch) identification. In
addition, all global signals that are capable of enabling a large proportion of the clock-
gating cells must be disabled.

• Maximum switching overshoots might occur if ATPG requires more flip-flops to change
in excess of the power budget to detect a fault.

• Memories are not supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

760

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Power Aware ATPG
Power Aware ATPG Limitations

Feedback

• Asynchronous set and reset signals must be inactive (in their off state).

• The -domain option of the set_atpg command does not work when specified with the
-calculate_power option of the set_atpg command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

761

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

20
Bridging Fault ATPG

A bridging defect, also known as a short, is a common defect in semiconductor devices.
This defect causes two normally unconnected signal nets in a device to become
electrically connected due to extra material or incorrect etching.

Bridging defects can be detected if one of the nets (the aggressor) causes the other net
(the victim) to take on a faulty value, which can then be propagated to an observable
location. Although there is a strong correlation between stuck-at coverage and bridging
coverage, there is no guarantee that a set of patterns generated to target stuck-at faults
will achieve similar coverage for a set of bridge faults.

The following sections describes the bridging fault model, fault simulation, and dynamic
bridging fault APTG flows:

• Bridging Fault ATPG Flow Overview

• Running the Bridging Fault ATPG Flow

• Detecting Bridging Faults

• Bridging Fault Model Limitations

• Running the Dynamic Bridging Fault ATPG Flow

Bridging Fault ATPG Flow Overview
Bridging fault ATPG and fault simulation is usually run following the completion of place
and route on full-chip designs.

Figure 112 Bridging Fault ATPG Flow

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

762

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Bridging Fault ATPG Flow

Feedback

Two possible ways you can generate bridge pairs are:

• Extract bridging pairs from the layout using an IFA-based scheme

• Use an extracted coupling capacitance report

Third-party capacitance extraction tools can be used to generate coupling capacitance
reports if the node list is in the TestMAX ATPG format.

It is not possible to accurately model fault effects for bridges that involve clock/set/reset
lines and bridges that produce combinational loops. Therefore, you should filter out these
types of bridges.

You can also run the TestMAX ATPG dynamic bridging fault model, which combines two
fault models:

• The static bridging fault model, which observes whether the value on the aggressor
node will override the value on the victim

• The transition fault model, which observes whether the transition at the fault site is too
slow for the rated clock speed

For details on dynamic bridging, see Running the Dynamic Bridging Fault ATPG Flow.

Running the Bridging Fault ATPG Flow
The following figure shows the bridging fault flow in TestMAX ATPG. The typical
commands used in this flow are identified in the subsections that follow.

Figure 113 Bridging Fault Flow in TestMAX ATPG

   

Setup
The following commands are typically used at the beginning of a command file since they
have an effect on subsequent commands:

• set_faults -model bridging – mandatory command for bridging faults.

• set_atpg -optimize_bridge_strengths – determines if TestMAX ATPG optimizes
drive strength on the driving gates of the victim and aggressor nodes.

• set_faults -bridge_input – specifies TestMAX ATPG to accept input pins of
instances as bridge locations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

763

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Bridging Fault ATPG Flow

Feedback

Input Faults
The list of bridging pairs can be supplied in any combination of the following three ways:

• Command file – A set of add_faults commands that can be sourced by a script:
add_faults [-bridge_location <bridge_location1> [bridge_location2>]
[-bridge <0|1|01>] [-aggressor_node <first | second | both>]This
command can be used to add bridging faults.

• Fault list file – Generated by a report_faults or write_faults command and read
by the read_faults command. Only ba0 and ba1 fault types are expected.

• Node file – A list of bridging node pairs: add_faults <-node_file <name>>[-bridge
<0|1|01>] [-aggressor_node <first | second | both>]In its simplest form, the
node file format is a pair of bridge locations per line, separated by a space.

A bridge fault list should not include clocks and asynchronous set or reset signals.
Proper detection status cannot be guaranteed for these faults.

Manipulating the Fault List
The following commands and options are useful for manipulating the fault list:

• add_nofaults – This command can be used to set “no fault” status on victim nodes to
prevent the associated bridging fault from being added to the fault list.

• remove_faults <[-bridge_location <bridge_location1>
<bridge_location2>] | -all | -retain_sample <d> | -class
<fault_class>> [-bridge <0|1|01>] [-clocks][-agressor_node <first |
second | both>] [-non_strength_sensitive]
This command can be used to remove bridging faults.

Examining the Fault List
The following options of the report_faults command can be used to examine
a fault list, both before and after fault ATPG and simulation: [bridge_location1
[bridge_location2]] [-bridge <0|1|01>] [-agressor_node <first | second |
both>] [-bridge_feedback] [-bridge_strong]
The format of the report is in four columns:

• Fault type (ba0 or ba1)

• Fault detection status code

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

764

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Bridging Fault ATPG Flow

Feedback

• Bridge location of the victim node

• Bridge location of the aggressor node

For example:

ba0 NC nodeA nodeB
ba1 NC nodeA nodeB
ba0 NC nodeB nodeA
ba1 NC nodeB nodeA

Fault Simulation
Fault simulation of bridging faults is usually done to determine which bridges are detected
by other existing patterns, such as those generated for stuck-at faults. Typically, many
bridges are detected by patterns targeting other fault models.

For bridging faults with either or both nodes driven by gates with dominant values (AND,
OR, NAND, or NOR), use the run_fault_sim -strong_bridge command to require a
fully optimized detection. When this option is used, the fault is marked as detected only if
the criteria for fully optimized bridging fault detection is met.

Running ATPG
Bridging fault ATPG attempts to set the victim and aggressor bridge locations at opposite
values, while attempting to detect the value of the victim net.

If you plan on issuing a run_atpg -auto_compression command, you first need to create
an explicit fault list by either issuing an add_faults or read_faults command.

If you issue a set_atpg -optimize_bridge_strengths command, ATPG attempts to
generate patterns with fully optimized detections on a best effort basis. This assumes that
the TestMAX ATPG libraries are modeled in a manner that would produce meaningful
strength-based patterns. For example, gates with dominant values should be instantiated
so that the correct transistors are activated or deactivated.

Analysis
After running ATPG or fault simulation, you can use the report_faults and
write_faults commands to analyze fault detection status. You can invoke automated
analysis and schematic display by using the analyze_faults <bridge_location1
bridge_location2 -bridge <0|1>> command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

765

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Detecting Bridging Faults

Feedback

Example Script
The following example shows a script for bridging fault support. This script generates
tests for bridging faults followed by stuck-at faults. You might want to experiment with the
reverse order as well to see which method produces better results.

Script for Bridging Faults
read netlist and libraries, build, run_drc
read_netlist design.v -delete
run_build_model design
run_drc design.spf
bridging faults
set_faults -model bridging
allow instance input pins to be valid victim sites
set_faults -bridge_input
to optimize strengths during atpg
set_atpg -optimize_bridge_strengths
read in fault list
add_faults -node_file nodes.txt
run atpg with merging
set_atpg -merge high
run_atpg -auto_compression
write the bridging patterns out
write_patterns bridge_pat.bin -format binary -replace
now fault simulate bridge patterns with stuck-at faults
this part is intended to reduce the set of patterns by not generating
patterns for stuck-at faults detected by the bridging patterns
remove_faults -all
set_faults -model stuck
add_faults -all
read in bridging pattern
set_patterns -external bridge_pat.bin
fault simulate
run_fault_sim
generate additional stuck-at patterns
set_atpg -merge high
set_patterns -internal
run_atpg -auto_compression

Detecting Bridging Faults
The following sections describe how TestMAX ATPG detects bridging faults:

• Defining Bridging Faults

• Bridge Locations

• Strength-Based Patterns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

766

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Detecting Bridging Faults

Feedback

Defining Bridging Faults
TestMAX ATPG defines a bridging fault by type and a set of two nodes that can be
instance pins or net names. The type is either bridging fault at 0 (ba0) or bridging fault at
1 (ba1), as shown in the following figure). The first node is the victim node and the second
node is the aggressor node.

Figure 114 Bridging Fault Types ba0 and ba1

   

A ba0 bridging fault is considered detected if the stuck-at-0 fault at the victim node is
detected at the same time the fault-free value of the aggressor node is at 0. Similarly,
a ba1 bridging fault is considered detected if the stuck-at-1 fault at the victim node is
detected at the same time the fault-free value of the aggressor node is at 1.

Bridge Locations
The victim and aggressor nodes are specified by bridge location, which can be any of the
following:

• Cell instance input pin

• Cell instance output pin

• Net name

Faults on bidirectional pins are ignored. Input pins can be used only if the set_faults
-bridge_input command is specified.

Although a net can have many names as it traverses the hierarchy of a design, TestMAX
ATPG does not store them all. If you specify a net name as a bridge location that TestMAX
ATPG recognizes (those accepted by the report_primitives command), it is used to
map the fault to the single output pin connected to that net.

Net names are internally translated to an instance pin. This pin path must be a valid stuck-
at fault site. Instances dropped during the build process with a B22 warning message
cannot be used. A warning is given if you specify an invalid bridge location.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

767

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Detecting Bridging Faults

Feedback

Strength-Based Patterns
A bridge defect has complex analog effects due to parameters such as the strength of
the driver, resistance of the bridge, and wire characteristics. Therefore, it is not always
clear when a bridge is detected by the pattern generated considering only logical behavior.
Some researchers have speculated that patterns can be adjusted to improve the odds of
detecting bridging faults. The basic premise is that forcing the aggressor to drive stronger
and the victim to drive weaker increases the chance of the bridge being detected.

Patterns that use this principle can be generated when the victim or aggressor is on
the output pin of a primitive gate having a dominant value (AND, OR, NAND, or NOR).
A more stringent detection criteria can then be imposed. The ATPG process can be
given additional soft constraints to optimize the drive strengths after the normal bridging
fault detection requirements are met. Soft constraints are those that the ATPG process
attempts to meet on a best-effort basis. If the soft constraints are not met, the pattern is
still retained for detection of bridging faults.

With the addition of strength-based patterns, bridge fault detection can be classified into
the following detection types:

• Minimal detection

The minimum condition for the detection of ba0 & ba1 faults

• Fully optimized detection.

A detection in which the conditions specified in Table 1 are met. For maximizing inputs
with a specific value, all inputs of the driving gate must be at the specified value. To
minimize the inputs at a specific value, only one of the driving gate’s inputs must be at
the specified value.

• Partially optimized detection

A detected bridging fault that is neither minimal nor fully optimized.

Figure 115 Strength-Optimized Detection of Bridging Faults

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

768

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Bridging Fault Model Limitations

Feedback

Bridging Fault Model Limitations
Using the bridging fault model has the following limitations:

• No oscillation effects are considered. The aggressor remains at the fault-free value.
Fault effects from a victim in the fanin cone is dropped at the aggressor.

• Full-Sequential ATPG and Full-Sequential fault simulation are not supported.

• Bidirectional pins cannot be faulted.

• Basic-Scan ATPG and fault simulation assumes clocks and asynchronous sets/resets
are at constant values per pattern.

• There is no fault collapsing for bridging faults.

• No detection by implication (DI) credit is given.

• No method for generating bridging node pairs is provided within TestMAX ATPG.

• Net names cannot be used for bridging locations if the read_image command was
used. Only net names given by the report_primitives command are supported.

Running the Dynamic Bridging Fault ATPG Flow
The following sections describe how to run the dynamic bridging fault ATPG flow:

• Dynamic Bridging Fault Model Introduction

• Preparing to Run Dynamic Bridging Fault ATPG

• Fault Simulation

• Running ATPG

• Analyzing Fault Detection

• Example Script

• Limitations

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

769

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Dynamic Bridging Fault ATPG Flow

Feedback

Dynamic Bridging Fault Model Introduction
The TestMAX ATPG dynamic bridging fault model combines two fault models:

• The static bridging fault model, which observes whether the value on the aggressor
node will override the value on the victim

• The transition fault model, which observes whether the transition at the fault site is too
slow for the rated clock speed

Based on the combined usage of these two fault models, the dynamic bridging fault model
can be used to analyze transition effects in the presence of a specified value on a bridge-
aggressor node.

TestMAX ATPG defines two types of dynamic bridging faults:

• Bridge slow-to-rise (bsr) — a slow-to-rise fault exists on the victim node while the
aggressor node is at 0.

• Bridge slow-to-fall (bsf) — a slow-to-fall fault exists on the victim node while the
aggressor node is at 1.

The fault location is the same as that used for (static) bridging faults, except that the cell
instance input pin cannot be faulted. See Bridge Locations for more information.

Note that since a list of dynamic bridging nodes is required to run ATPG, the dynamic
bridging fault model and fault simulation process is usually run after completing place
and route on full-chip designs. Also note that you cannot add all faults using the dynamic
bridging fault model. To add all faults, you will need to explicitly create a fault list before
running ATPG using the -auto option.

Preparing to Run Dynamic Bridging Fault ATPG
To enable dynamic bridging fault ATPG, specify the following command:

set_faults -model dynamic_bridging

The following tasks are required to set up TestMAX ATPG to run dynamic bridging fault
ATPG:

• Specifying a List of Input Faults

• Manipulating the Fault List

• Examining the Fault List

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

770

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Dynamic Bridging Fault ATPG Flow

Feedback

Specifying a List of Input Faults
You can use any combination of the following three files to supply a list of dynamic
bridging pairs (referred to as a fault list):

• Command file — This file, which can be sourced from a script, contains a set of
add_faults commands that specify dynamic bridging pairs. The syntax for using the
add_faults command for this purpose is as follows:

add_faults [-bridge_location bridge_location1 bridge_location2]
[-dynamic_bridge <r|f|rf>] [-dominant_node <first | second | both>]

• Fault list file — This file is generated by either the report_faults command or the
write_faults command and is read by the read_faults command. Note that only
bsr and bsf fault types are valid in this list.

• Node file — This file contains a list of dynamic bridging node pairs, specified in terms of
nodes, using the following syntax for the add_faults command:

add_faults <-node_file name>[-dynamic_bridge <r|f|rf>]
[-dominant_node <first | second | both>]
The format for a node file is to specify a pair of bridge locations on each line, separated
by a space. Additional details are also covered in the “Node File Format for Bridging
Pairs” topic in TestMAX ATPG Online Help.

The command file, fault list file, and node file should not include clocks and asynchronous
set or reset signals, because proper detection status cannot be guaranteed for these
faults.

Manipulating the Fault List
You can use the following commands and options to manipulate the fault list:

• add_nofaults — This command can be used to set a “no fault” status on victim nodes
to prevent the associated dynamic bridging fault from being added to the fault list. The
syntax for this command is as follows:

add_nofaults < instance_name | pin_pathname | -Module name >
• remove_faults — This command can be used to remove dynamic bridging faults. The

syntax for this purpose is as follows:

remove_faults < [-bridge_location bridge_location1
bridge_location2]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

771

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Dynamic Bridging Fault ATPG Flow

Feedback

| -all | -retain_sample <d> > [-dynamic_bridge <r|f|rf>]
[-clocks][-dominant_node <first | second | both>]

Examining the Fault List
The following options from the report_faults command can be used to examine a fault
list, both before and after fault ATPG and simulation:

[bridge_location1 bridge_location2]
[-dynamic_bridge <r|f|rf>]
[-dominant_node <first | second | both>]
The format of the generated report contains the following four columns:

• Column 1: Fault type (bsr or bsf)

• Column 2: Fault detection status code

• Column 3: Dynamic bridge location of the victim node

• Column 4: Dynamic bridge location of the aggressor node

Note the following example report:

bsr NC nodeA nodeB
bsf NC nodeA nodeB
bsr NC nodeB nodeA
bsf NC nodeB nodeA

Fault Simulation
You will need to perform fault simulation on the dynamic bridging faults to determine which
dynamic bridging faults are detected by other existing patterns (such as those generated
for stuck-at faults or transition faults). Typically, a large number of dynamic bridges are
detected by patterns that target other fault models.

To run a fault simulation on the existing patterns, specify the run_fault_sim command.
(You can see how to run this command in the Example Script section.)

Note that fault simulation for dynamic bridging fault does not support Full-Sequential
mode. An error is issued if you attempt to use this mode.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

772

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Dynamic Bridging Fault ATPG Flow

Feedback

Running ATPG
The dynamic bridging fault ATPG process attempts to launch a transition along the
victim while holding the aggressor at a static value. If you plan on issuing a run_atpg
-auto_compression command, you will first need to create an explicit fault list by
specifying either an add_faults or read_faults command.

Dynamic bridging fault ATPG can be run using the following ATPG modes: Basic-scan
(launch on last shift), Two Clocks, and Fast-Sequential. An example of waveforms that
are typically applied in the case of Fast-Sequential launch on system clock is shown in the
following figure. In the presence of a bsr fault, the transition initiated because of the launch
cycle at the victim node is delayed (dashed line) and the capture cycle detects the fault.

Figure 1 Dynamic Bridge Fault Detection Waveforms for Launch on System Clock

   

Note that dynamic bridging fault ATPG does not support Full-Sequential mode. An error is
issued if this is attempted. Also, strength-based pattern generation similar to what exists
for the TestMAX ATPG bridging fault model is not supported.

Analyzing Fault Detection
After running ATPG or fault simulation, you can use the report_faults and
write_faults commands to analyze the fault detection status. You can invoke automated
analysis and schematic display by using the following analyze_faults command options:

analyze_faults <bridge_location1 bridge_location2 –dynamic_bridge <r|f>>

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

773

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Dynamic Bridging Fault ATPG Flow

Feedback

Example Script
The following example shows a script for dynamic bridging fault support. This script
generates tests for dynamic bridging faults, followed by stuck-at faults. You might want to
experiment by reversing the order to see which method produces better results.

read netlist and libraries, build, run_drc
read_netlist design.v -delete
run_build_model design
run_drc design.spf

set fault model to dynamic bridging
set_faults -model dynamic_bridging

read in fault list
add_fault -node_file nodes.txt

run_atpg
run_atpg -auto_compression

write out the bridging patterns
write_patterns dyn_bridge_pat.bin -format binary -replace

fault simulate dynamic bridge patterns with stuck-at faults
this part is intended to reduce the set of patterns
by not generating patterns for stuck-at faults
detected by the dynamic bridging patterns
remove_faults -all
set_faults -model stuck
add_faults -all

read in dynamic bridging pattern
set_patterns -external dyn_bridge_pat.bin

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

774

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Bridging Fault ATPG
Running the Dynamic Bridging Fault ATPG Flow

Feedback

fault simulate
run_fault_sim

generate additional stuck-at patterns
set_patterns -internal
run_atpg -auto_compression

Limitations
The dynamic bridging fault ATPG feature currently has the following limitations:

• Full-Sequential ATPG and Full-Sequential fault simulation are not supported.

• The dominant node effect is based on its fault-free value. There is no ability to consider
feedback effects that result from a dynamic bridge.

• There is no fault collapsing for dynamic bridging faults.

• Strength-based pattern generation is not supported.

• Input and bidirectional pins cannot be faulted.

• Proper detection status cannot be guaranteed for dynamic bridging pairs, including
clocks and asynchronous sets/resets.

• TestMAX ATPG does not provide detection by implication (DI) credit.

• TestMAX ATPG does not provide a method for internally generating dynamic bridging
node pairs.

• Only net names given by the report_primitives command are supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

775

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

21
Cell-Aware Test

Cell-aware test is a methodology for increasing defect coverage, lowering defective parts
per million (DPPM) and improving diagnostics accuracy for emerging process nodes,
FinFETs (multi-gate field-effect transistors), and automotive standards. Cell-Aware is not
supported with the persistent fault model flow.

The following topics explain how to use cell-aware test:

• Cell-Aware Test Flow

• Targeting lnternal Cell Defects

• Cell Test Models

• Generating Cell Test Models

• Running Cell-Aware ATPG

• Running Cell-Aware Simulation

• Cell-Aware Diagnosis

Cell-Aware Test Flow
Cell-aware test is comprised of four primary phases:

• Cell Model Generation

CMGen, Synopsys' cell test model (CM) generation utility, creates a CTM that lists
all the detectable defects for each cell. The CTM guides the TestMAX ATPG and
diagnostics processes on how to target and isolate these defects. This process is
described in more detail in Generating Cell Test Models and the "Running CTMGen"
document.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

776

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://www.synopsys.com/COMPANY/PUBLICATIONS/SYNOPSYSINSIGHT/Pages/Art2-finfet-challenges-ip-IssQ3-12.aspx

Chapter 21: Cell-Aware Test
Cell-Aware Test Flow

Feedback

   

• Pattern Generation

Cell-aware ATPG uses the existing TestMAX ATPG paradigm. All defects become
faults in the fault lists, and both static and dynamic defects are supported. The ATPG
process merges and simulates both primary and secondary faults. This process is
described in Running Cell-Aware ATPG.

   

• Pattern Simulation

This process enables you to produce a failure file and inject internal cell defects for
cell-aware diagnostics. For details, see Running Cell-Aware Simulation.

   

• Diagnosis

Cell-aware diagnostics fits into the existing TestMAX ATPG diagnostics process.
Cell-aware faults are mapped to the cell excitation conditions. Detailed structural

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

777

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Targeting lnternal Cell Defects

Feedback

annotations allow for increased diagnostic resolution. This process is described in
detail in Cell-Aware Diagnosis.

   

The inputs to the characterization process include the following:

• SPICE netlist – The netlist for each cell typically includes extracted parasitics (not a
strict requirement to generate a CTM).

• SPICE library – The library contains all the information needed to run HSPICE
simulations on a cell.

• Liberty file – The .lib file contains timing information about the cell used to accurately
model defect behavior.

Targeting lnternal Cell Defects
Traditional ATPG and TestMAX ATPG cell-aware ATPG are significantly different in their
approaches for targeting physical cell defects.

• Traditional ATPG targets faults between cells that are assigned to the input and output
pins of cell instances. This approach can be effective in most situations, even though
some of these faults originate as physical defects inside cells — referred to as “internal
cell defects.”

However, traditional ATPG does not explicitly target internal cell defects. This is
because as the complexity of a cell increases, the probability also increases that ATPG
will not produce the input combinations required to cover all the defects likely to occur
inside the cell. This observation particularly applies to high fan-in cells and cells that
implement complex Boolean functions.

• TestMAX ATPG cell-aware ATPG explicitly targets internal cell defects during ATPG
and diagnosis to increase defect coverage and improve diagnostics accuracy. It is
particularly effective at testing faults in complex cells.

The example on the left in the following figure is a complex cell using the traditional ATPG
approach, which targets faults between cells that are assigned to the input and output
pins of cell instances. The example on the right is a transistor-level view of same cell and
shows examples of the defects targeted by TestMAX ATPG cell-aware ATPG. In this case,
the defects are targeted inside the cell.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

778

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Targeting lnternal Cell Defects

Feedback

Figure 116 Traditional ATPG Versus TestMAX ATPG Cell-Aware ATPG

   

In TestMAX ATPG cell-aware ATPG, internal cell defects are characterized by
simulating the HSPICE model of the cell under various short and open conditions. This
characterization creates a single file, called a cell test model (CTM), that lists all the
detectable defects for each cell. The CTM guides ATPG and diagnostics on how to target
and isolate these defects.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

779

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Cell Test Models

Feedback

Cell Test Models
Cell test models (CTMs) are the basis for performing cell-aware ATPG. A CTM is a text
file that uses industry-standard YAML format and contains header information, such as the
process corners derived from an HSPICE run.

As shown in the following figure, resistors can be connected to transistors and assigned
values that approximate the behavior of various physical defect types, such as opens on
drains, source-drain shorts, and so forth. If you insert a parameterized resistor into a circuit
netlist and perform a transient analysis, you can compare good behavior versus faulty
behavior at the outputs. The simulations need to be accurate enough to predict faulty
behavior observable as stuck-at-1/0.

Figure 117 Defect Injections

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

780

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Generating Cell Test Models

Feedback

A CTM for a cell in a library includes a list of possible defects that could occur in a cell and
the binary logic levels on the inputs and outputs TestMAX ATPG references to target and
detect each defect. A CTM can also include additional physical information about each
defect, such as the mask layer and cell coordinates, that can be used for TestMAX ATPG
diagnostics. The following figure shows a conceptual representation of a CTM of a cell
with three defects: D0, D1, and D2.

Figure 118 Conceptual Representation of a CTM

   

Generating Cell Test Models
CTMs are generated using a utility called CTMGen, which is provided by TestMAX ATPG.
See the "Running CTMGen" document for details on using this utility.

To prepare for CTM generation, a SPICE testbench is generated and conditions are set
up to inject defects to create faulty netlists. One testbench is used for each defect in the
cell. HSPICE simulations are run on the fault-free and fault-injected netlists. The CTMGen
utility processes the simulation results and generates the CTM. A library compiler compiles
the source model to binary form.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

781

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Running Cell-Aware ATPG

Feedback

Figure 119 CTM Generation Process

   

Running Cell-Aware ATPG
Cell-aware ATPG uses the existing TestMAX ATPG paradigm. All defects become faults in
the fault lists, and both static and dynamic defects are supported. The ATPG process uses
both primary and secondary faults, and merges and fault simulates the faults.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

782

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Running Cell-Aware ATPG

Feedback

Figure 120 Inputs and Outputs for Running Cell-Aware ATPG

 

TestMAX ATPG

Verilog
Library

SPF CTM
Library

Design
 

The following steps show a typical cell-aware ATPG flow:

1. Do one of the following:

• If you have an existing design image, load it using the read_image command:

read_image ./design/leon3mp.img
• If you haven't read in the netlists, compiled the library, and run DRC, specify the

following commands:

◦ read_netlist

◦ run_build_model

◦ run_drc

2. Read in the cell test models.

read_cell_model /path/to/*.CTM
3. Add all faults to the fault list, including the cell-aware faults.

add_faults –all –cell_aware
4. Run ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

783

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Running Cell-Aware ATPG

Feedback

run_atpg -optimize
5. Write the patterns.

write_patterns patterns/ca_patterns.bin

Example Script

 

Read Cell Test Models

Write Test Program

Read Design Image

Add Faults

Run ATPG

 

Read the design image
read_image ./design/leon3mp.img
Read CTMs
read_cell_model ./CTM/*.CTM
Add Faults
add_faults -all -cell_aware
Run ATPG
run_atpg -optimize
Write the patterns
write_patterns \
./patterns/cell_aware_patterns.bin -replace

See Also

• Cell-Aware Diagnosis

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

784

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Running Cell-Aware Simulation

Feedback

Running Cell-Aware Simulation
The simulation phase of cell-aware test enables you to write a failure file and inject an
internal cell defect for simulation.

To run a cell-aware simulation:

1. Do one of the following:

• If you have an existing design image, load it using the read_image command:

read_image ./design/SOPHIA3mp.img
• If you haven't read in the netlists, compiled the library, and run DRC, specify the

following commands:

◦ read_netlist

◦ run_build_model

◦ run_drc

2. Read in the cell test models.

read_cell_model /path/to/*.CTM
3. Read in the patterns you created during ATPG (see Running Cell-Aware ATPG).

set_patterns -external ./patterns/cell_aware_patterns.bin
4. Run a simulation, and include the path and name for the failure file. Optionally, you can

inject an internal cell defect, as shown in the following example:

run_simulation -failure_file [list outfile1 outfile2] \
 -cell_aware_fault instance_name1 D1 –replace

The following script shows the commands used to run a cell-aware simulation.

read_image ./design/SOPHIA3mp.img
set_patterns -external ./patterns/cell_aware_patterns.bin
read_cell_model ./CTM/*.CTM
run_simulation -failure_file ./cell_aware.fail -cell_aware_fault
 "u0_3/p0_c0mmu_dcache0/U2708/Q D1" -replace

See Also

• Running Cell-Aware ATPG

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

785

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Cell-Aware Diagnosis

Feedback

Cell-Aware Diagnosis
Cell-aware diagnostics involves the following steps:

1. Identify the defective cells

Identify any defective cells and their observed behavior. First, use physical information
to rule out defects on nets (such as bridges or open faults). Next, use the values
observed on the cell inputs in the failing and passing patterns to characterize the
defective behavior. This process is briefly described in Generating Cell Test Models
and in more detail in the "Running CTMGen" document.

2. Identify defects within a cell and the cell input values

Use the cell test model (CTM) to map defective behavior to defects modeled within the
simulation, then examine the values applied to the cell inputs and consider the values
in the response table. You can then create a model for the defective cell based on the
observed behavior, and review the cell input values. A description of a cell test model is
described in Cell Test Models. Also see Identifying a Defect Within a Cell for additional
details.

3. Perform Physical Diagnosis

This process is described in Running Cell-Aware Physical Diagnosis.

Figure 121 Typical Cell-Aware Diagnosis Flow

   

See Also

• Using Physical Data for Diagnosis

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

786

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Cell-Aware Diagnosis

Feedback

Identifying a Defect Within a Cell
Cell-aware faults are mapped to the cell excitation conditions in diagnostics. The CTM
contains information that guides diagnostics, including detailed structural and behavioral
annotations that enable increased diagnostic resolution.

A CTM can include both a static-detect (single-cycle) table and a dynamic-detect (two-
cycle) table used for stuck-at and transition delay testing. Each table contains the input
conditions required to target all the specified defects.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

787

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Cell-Aware Diagnosis

Feedback

Figure 122 How Cell-Aware Diagnosis Identifies an Actual Defect

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

788

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Cell-Aware Diagnosis

Feedback

Running Cell-Aware Physical Diagnosis
To run cell-aware diagnostics:

1. Do one of the following:

• If you have an existing design image, load it using the read_image command:

read_image ./design/leon3mp.img
• If you haven't read in the netlists, compiled the library, and run DRC, specify the

following commands:

◦ read_netlist

◦ run_build_model

◦ run_drc

2. Read in the patterns you created during cell-aware ATPG using the set_patterns
command (see Running Cell-Aware ATPG).

set_patterns -external ./patterns/cell_aware_patterns.bin
3. Identify the host name and port number of the PHDS server containing the PHDS

database using the set_physical_db command

set_physical_db -port_number 3967
4. Specify the output directory for the PHDS database using the set_physical_db

command.

set_physical_db -database ./PHDS
5. Start the server process that queries the PHDS database using the open_physical_db

command.

open_physical_db
6. Specify the name of the machine on which to connect to the PHDS database and the

port number.

set_physical_db -hostname localhost -port_number 3967
7. Specify the name and version of your design.

set_physical_db -device [list SOPHIA3MP 0]
8. Read in the cell test models using the read_cell_model command.

read_cell_model /path/to/*.CTM
9. Use the set_diagnosis command to define the diagnostics report type and the fault

types.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

789

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: Cell-Aware Test
Cell-Aware Diagnosis

Feedback

set_diagnosis -organization class -fault_type all
10. Run diagnostics using the failure file created when you ran cell-aware simulation (see

Running Cell-Aware Simulation).

run_diagnosis cell_aware.fail
The following example script runs a cell-aware simulation:

read_image ./design/leon3mp.img
set_patterns -external ./patterns/cell_aware_patterns.bin
set_physical_db -port_number 4057
set_physical_db -database ./PHDS
open_physical_db
set_physical_db -hostname localhost -port_number 4057
set_physical_db -device [list LEON3MP 0]
read_cell_model ./CTM/*.CTM
set_diagnosis -organization class
set_diagnosis -fault_type all
run_diag cell_aware.fail

The following example shows typical output after running cell-aware diagnostics:

Diagnosis summary for failure
 file ./output/failure_logs/failure_log-1.diag
#failing_pat=6, #failures=24, #defects=1, #faults=4, CPU_time=53.05,
 Memory=216M
Simulated : #failing_pat=6, #passing_pat=96, #failures=24
--
Defect 1: stuck fault model, #faults=4, #failing_pat=6, #passing_pat=96,
 #failures=6
--
match=100.00%, #explained patterns: <failing=6, passing=96>
sa1 DS frexlsdc/fr/FRCTL/p0010A1126972/Z (ddd222xss1uhd)
Internal_cell_type (cell_aware) cell_name=ddd222xss1uhd defect_id=D68
--
match=100.00%, #explained patterns: <failing=6, passing=96>
sa0 DS frexlsdc/fr/FRCTL/p0010A1126972/Z (hdoai222xss1uhd)
Internal_cell_type (cell_aware) cell_name=ddd222xss1uhd defect_id=D60
--
match=100.00%, #explained patterns: <failing=6, passing=96>
sa0 DS frexlsdc/fr/FRCTL/p0001A1126970/Z (hdao221xss1ur)
Internal_cell_type (cell_aware) cell_name=ddd221xss1ur defect_id=D503
--
match=100.00%, #explained patterns: <failing=6, passing=96>
sa0 DS frexlsdc/fr/FRCTL/p0001A1126970/Z (ddd221xss1ur)
Internal_cell_type (cell_aware) cell_name=ddd221xss1ur defect_id=D504
--

See Also

• Using Physical Data for Diagnosis

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

790

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

22
Transition Delay Fault ATPG

The transition delay fault model is used to generate test patterns to detect single-node
slow-to-rise and slow-to-fall faults. For this model, TestMAX ATPG launches a logical
transition upon completion of a scan load operation, and a pulse on capture clock
procedure is used to observe the transition results.

The following topics describe how to use the transition delay fault model:

• Using the Transition Delay Fault Model

• Specifying Transition Delay Faults

• Pattern Generation for Transition Delay Faults

• Pattern Formatting for Transition-Delay Faults

• Specifying Timing Exceptions From an SDC File

• Slack-Based Transition Fault Testing

Using the Transition Delay Fault Model
The transition delay fault model is similar to the stuck-at fault model, except that it
attempts to detect slow-to-rise and slow-to-fall nodes, rather than stuck-at-0 and stuck
at-1 nodes. A slow-to-rise fault at a defect means that a transition from 0 to 1 on the
defect does not produce the correct results at the maximum operating speed of the
device. Similarly, a slow-to-fall fault means that a transition from 1 to 0 on a node does not
produce the correct results at the maximum operating speed of the device.

To detect a slow-to-rise or slow-to-fall fault, the APTG process launches a transition with
one clock edge and then captures the effect of that transition with another clock edge. The
amount of time between the launch and capture edges should test the device for correct
behavior at the maximum operating speed.

For details on transition delay fault models, see Transition Delay Fault Models and
Detecting Transition Delay Fault Models.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

791

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

The following sections describe how to use the transition delay fault model:

• Transition Delay Fault ATPG Flow

• Transition Delay Fault ATPG Timing Modes

• STIL Protocol for Transition Faults

• Creating Transition Fault Waveform Tables

• DRC for Transition Faults

• Limitations of Transition Delay Fault ATPG

Transition Delay Fault ATPG Flow
The ATPG process for transition delay faults is similar to the process for stuck-at faults.
Figure 1 shows the typical steps for performing transition-delay fault ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

792

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

Figure 123 Transition Delay Fault Test Flow

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

793

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

Typical Transition Delay Fault ATPG Run

 

SDF Parasitics

SDC

Test
Constraints

Test
Protocol

Pin Slacks Paths

Patterns

ICC II

PrimeTime

TetraMAX

 

// last_shift launch:
read_netlist lib.v -lib
read_netlist test.v
run_build top
set_delay -launch_cycle \
last_shift
set_fault -model transition
set_drc test.spf
read_sdc <FILE_NAME>
set_delay -nopi_changes
set_delay -nopo_measures
add_po_mask -all
set_delay -common_launch_capture_clock
set_delay -allow_multiple_common_clocks
#optional# set_delay -slow_equivalence
#optional# set_delay -nodisturb
add_pi_constraints 0 scan_en

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

794

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

run_drc
run_atpg -auto
write_pattern patp.stil -format stil -parallel
write_pattern pats.stil -format stil -serial
exit
// system_clock launch:
read_netlist lib.v -lib
read_netlist test.v
run_build top
set_delay -launch_cycle system_clock
set_drc test.spf
set_fault -model transition
read_sdc <FILE_NAME>
set_delay -nopi_changes
set_delay -nopo_measures
add_po_mask -all
set_delay -common_launch_capture_clock
set_delay -allow_multiple_common_clocks
#optional# set_delay -slow_equivalence
#optional# set_delay -nodisturb
add_pi_constraints 0 scan_en
run_drc
run_atpg -auto
write_pattern patp.stil -format stil -parallel
write_pattern pats.stil -format stil -serial
exit

Transition Delay Fault ATPG Timing Modes
TestMAX ATPG transition delay fault ATPG supports several ATPG modes for applying
transition-delay tests. You select the required mode with the set_delay -launch_cycle
command. The following modes are supported:

• Launch-On Shift (LOS) — Specified by the last_shift option, TestMAX ATPG
launches a logic value in the last scan load cycle when the scan enable is active, that
is, in scan-shift mode. It exercises target transition faults and then captures new logic
values in a system clock cycle when the scan enable is inactive, that is, in capture
mode. Figure 2 shows the clock and scan enable timing for this mode.

• System Clock — Specified by the system_clockoption (the default ATPG mode for
transition-delay faults), TestMAX ATPG launches a logic value using a normal system
clock. It exercises target transition faults and then captures the new logic values with
a subsequent system clock. Figure 3 shows the clock and scan enable timing for this
mode.

• Launch-On Extra Shift (LOES) — Specified by the extra_shift option, TestMAX
ATPG launches a logic value based on one more shift than launch on shift mode.
This ensures that all clock domains receive their last scan shift before the internally-

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

795

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

controlled capture clock pulse. Unlike launch-on shift mode, launch-on extra shift mode
does not place additional timing requirements on an on-chip clocking controller.

• Any — Specified by the any option, TestMAX ATPG attempts launch-on shift mode
first, and then goes to launch-on capture or launch-on extra shift, depending on the
pipelined SE constraint, or goes to both modes if it’s unconstrained. .

The following sections explain some of the key characteristics of the timing modes:

• Launch-On Shift Mode Versus System Clock Launch Mode

• Launch-On Extra Shift Timing

Launch-On Shift Mode Versus System Clock Launch Mode
One of the major differences between launch-on shift mode and system clock mode is that
for the launch-on shift mode, the scan enable signal must switch between a launch and
capture cycle, which might not be possible depending on the design and cycle time. For
details, see “DRC for Transition Faults”.

Figure 2 and Figure 3 show the clock waveform pertaining to launch on shift mode and
system clock mode for a typical target transition fault that is between registers. If the target
fault is between primary inputs and registers, or if the target fault is between registers and
primary outputs, then you can expect just one clock pulse, either launch or capture, or no
clock pulse.

Figure 124 Last Shift Launch Timing

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

796

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

Figure 125 System Clock Launch Timing

   

Launch-on shift mode generates only basic-scan patterns, using a single capture
procedure between scan load and scan unload.

By default, when using the run_atpg -auto_compress command for the system clock
mode, TestMAX ATPG uses a highly optimized two-clock ATPG process that has some
features of both the basic-scan and fast-sequential engines. The patterns generated by
this process are only two clock cycles long and listed as Fast Sequential patterns in the
TestMAX ATPG pattern summary.

To use system clock mode, fast-sequential ATPG must be enabled before starting the
ATPG process. You enable fast-sequential ATPG and specify its effort level with the
-capture_cycles option of the set_atpg command. For details, see “Using the set_atpg
Command”. The two-clock process, used with the run_atpg -auto_compress command
by default, will automatically set the -capture_cycles option to 2.

If there is a need for more than two capture cycles — for example, if there are memories
in the circuit — you can set the capture cycles to a number larger than 2 before issuing
the run_atpg -auto_compress command. In this case, TestMAX ATPG will first run
the optimized two-clock process for all the faults that can be detected in two capture
cycles and then run fast-sequential ATPG with the larger number of capture cycles for any
remaining undetected faults.

Launch-On Extra Shift Timing
Launch-on extra shift mode provides many advantages of launch-on shift mode without
requiring an exotic on-chip clocking controller. However, a small but significant percentage
of transition faults (which represent valid functional paths) cannot be detected by
launching on either the last shift or an extra shift. When using LOES, you also need to
perform a top-off ATPG run using launch-on capture (LOC).

Because the LOES test application waveforms are similar to those used for LOC, you
can create an SPF for LOES based on the SPF used for LOC. The constraint on the
LOSPipelineEnable signal is the only parameter you need to change. If the pipeline scan

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

797

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

enable logic was created by TestMAX DFT, the LOSPipelineEnable signal type appears in
the dc_shell script, or it defaults to a port named global_pipe_se. This parameter should
be a PI constraint and a scan enable for LOC and LOES; each mode is set to a different
value. To specify the LOSPipelineEnable signal in the SPF, set LOSPipelineEnable in an
F (for Fixed) block in each capture procedure, then add the setting to the first V statement
in the load_unload procedure, and set it to the same value at the end of the test_setup
macro. The LOSPipelineEnable port should be set to its active state (1 by default) for
LOES and to its inactive state for LOC.

The LOSPipelineEnable signal is unconstrained in the SPF written from TestMAX DFT.
Instead of editing the SPF, use the add_pi_constraints command to constrain it to 1 for
LOES or to 0 for LOC.

When a LOS protocol is modified to make a protocol for LOES, you also must change
the load_unload procedure. The LOS load_unload procedure has an extra V statement,
with "_pi" = #; and "_po" = #; values, following the Shift loop; this V statement must be
removed for LOES. You should also carefully check the waveform table usage and launch
procedures since they can be very different for LOS compared to any other application.

The only additional command option used for LOES is the -launch_cycle extra_shift
option of the set_delay command. This option should be set before the run_drc
command. It directs the DRC process to perform different clock matrix checking for the
launch cycle, since no disturbance originates from the functional data inputs of the scan
registers. Instead, the disturbance comes only from the scan inputs. The -launch_cycle
extra_shift option might result in better coverage.

LOES can be run with the set_delay -launch_cycle system_clock command. It is
possible to generate patterns without constraining the LOSPipelineEnable signal so that
the LOES and LOC patterns are intermingled. Both of these should be avoided because
LOES patterns generated in this way uses pessimistic clock disturbances, which results in
more patterns.

Transition delay fault ATPG should be run first with LOES, followed by a second run on the
undetected faults with LOC. In comparative testing, this configuration resulted in higher
coverage with fewer patterns than running ATPG with only LOC. An example of this flow is
as follows:

Typical Flow for Using Launch-On Extra Shift Mode

set_delay –launch_cycle extra_shift
Other delay settings are the same for LOES and LOC
set_delay –common_launch_capture_clock –nopi_changes
add_po_masks -all
run_drc design_with_loes.spf –patternexec Internal_scan
set_faults –model transition
run_atpg –auto
write_patterns design_with_loes.stil –format stil
write_faults design_with_loes.faults –all

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

798

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

drc –force
Prepare to change the LOSPipelineEnable constraint value
remove_pi_constraints –all
set_delay –launch_cycle system_clock
set_delay –common_launch_capture_clock –nopi_changes
add_po_masks -all
run_drc design_with_loc.spf –patternexec Internal_scan
set_faults –model transition
#Use -retain_code so the redundant faults do not need to be identified
 again
read_faults design_with_loes.faults –retain_code
Many faults that are AU for LOES can be detected by LOC
update_faults -reset_au
run_atpg –auto
write_patterns design_with_loc.stil –format stil

Note the following:

• ATPG in LOES mode uses the two-clock optimized ATPG engine. Fast-sequential
patterns, and full-sequential patterns (if enabled), may also be generated. This is the
same as with LOC, but different from LOS, which uses the basic-scan ATPG engine.

• The fault coverage achieved by LOES ATPG changes with scan chain reordering, even
when run in uncompressed scan mode.

• For stuck-at testing, the LOSPipelineEnable port should be constrained to its inactive
state (0 by default) for more efficient pattern generation.

See Also

• Using load_unload for Last Shift-Launch Transition

• Understanding Fault Models

STIL Protocol for Transition Faults
By default, TestMAX ATPG generates a capture procedure consisting of the following
events:

• Force PI

• Measure PO

• Pulse Clock

You can insert a force PI or measure PO event between a launch and capture cycle.
However, this has a negative impact on the overall quality of a transition test because an
extra time delay is added between launch and capture. Therefore, it is recommended that
you use a single-event capture procedure containing only the pulse clock event.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

799

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

If there are scan postamble vectors (vectors that follow the scan shift in the load_unload
procedure) in the STL procedure file, the extra time delay for the postamble is inserted
between the launch and capture cycle in the last_shift mode. The extra time delay
for last_shift negatively impacts the overall quality of the test, but will not affect test
quality for system_clock mode. If such a scan postamble exists in the last_shift or any
mode during the ATPG process (when you execute the run_atpg command), a warning
message is reported (M237).

There can be primary inputs initialized to known values in the scan load and unload
procedure of a STL procedure file. This can cause faults between primary inputs and
registers to be ATPG untestable in the last_shift mode.

For more information, see Creating Generic Capture Procedures.

Creating Transition Fault Waveform Tables
For transition fault delay paths, you can control the clock speed with different waveform
tables: one for the load_unload procedure “_default_WFT_” and one for the capture
procedure “_fast_WFT_” (as shown in the following example).

Timing {
WaveformTable "_default_WFT_" {
Period '100ns';
Waveforms {
"all_inputs" {01Z {'0ns' D/U/Z;}}
"all_bidirectionals" {01XZ {'0ns' D/U/X/Z;}}
"all_bidirectionals" {THL {'0ns' X; '40ns' T/H/L;}}
"all_outputs" {X {'0ns' X;}}
"all_outputs" {HLT {'0ns' X; '40ns' H/L/T;}}
"Pixel_Clk" {P {'0ns' D; '45ns' U; '55ns' D; } }
}
}
WaveformTable "_fast_WFT_" {
Period ’20ns';
Waveforms {
"all_inputs" {01Z {'0ns' D/U/Z;}}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

800

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

"all_bidirectionals" {01XZ {'0ns' D/U/X/Z;}}
"all_bidirectionals" {THL {'0ns' X; '8ns' T/H/L;}}
"all_outputs" {X {'0ns' X;}}
"all_outputs" {HLT {'0ns' X; '8ns' H/L/T;}}
"Pixel_Clk" {P {'0ns' D; '9ns' U; '11ns' D; } }
}
}
}
The following example shows a load_unload procedure defined in the STIL procedure file
for the preceding “_default_WFT_” waveform table:

"load_unload" {
W "_default_WFT_";
Shift { W "_default_WFT_";
V { "BPCICLK"=P; "Pixel_Clk"=P; "Test_mode"=1; "nReset"=1;
"test_sei"=0; "_so"=###; "_si"=###; }
}
}
The following example shows a three-event capture procedure (the default) followed by its
recommended single-event capture procedure for the “_fast_WFT_” waveform table in the
previous example:

"capture_Pixel_Clk" {
W "_default_WFT_";
F { "CSC_test_mode"=0; "Test_mode"=1;}
"forcePI": V { "_pi"=\r587 # ; "_po"=\j \r101 X ; }
"measurePO": V { "_po"=\r101 # ; }
"pulse": V { " Pixel_Clk"=P; "_po"=\j \r101 X ; } }

"capture_Pixel_Clk" {
W "_fast_WFT_";
F { "CSC_test_mode"=0; "Test_mode"=1;}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

801

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Using the Transition Delay Fault Model

Feedback

V { "_pi"=\r587 # ; "_po"=\r101 # ; "Pixel_Clk"=P; } }

Notice that the three pattern events ForcePI, MeasurePO, and PulseClock are in separate
vectors in the first capture procedure, but have been combined into a single vector in the
second capture procedure.

There is another way to do waveform timing for transition fault testing in TestMAX ATPG.
TestMAX ATPG allows the use of special waveform tables for at-speed testing; both
transition fault testing and path delay fault testing. There are separate waveform tables
for the clock cycle in which a transition is launched (_launch_WFT_), for the clock cycle in
which a transition is captured (_capture_WFT_), and for cycles in which a transition is both
launched and captured (_launch_capture_WFT_).

The use in transition fault testing is different from the use in path delay testing. For path
delay testing, these special waveform tables are always used. If they are not present in the
STIL procedure file, they are first created and then used.

The difference for transition faults is that these special waveform tables must be present in
the STIL procedure file to be used; TestMAX ATPG will not create them for transition fault
ATPG.

Several additional options for timing support are available. For information about waveform
tables, see Defining Basic Signal Timing. To get more details about specialized timing
support for both transition and path delay environments, see the following sections:

See Also

• Generating Generic Capture Procedures

• Pattern Formatting for Transition-Delay Faults

DRC for Transition Faults
In the last_shift mode, the scan enable signal must have a transition between launch
and capture. In the system_clock mode, the scan enable signal must be inactive between
launch and capture, so the add_pi_constraints command (or a constraint in the STIL
procedure file) must be used to set the scan enable signal to inactive. Otherwise, you
might get patterns in the system_clock mode with the scan enable signal is switching
between launch and capture. This transition fault ATPG requirement does not normally
apply to stuck-at ATPG.

For at-speed ATPG, the ScanEnable, Set, and Reset signals should not pulse during
capture because they are typically slow signals.

You can use the -clock port_nameoption of the set_drc command to enable a specific
clock and to disable other clocks in a design. This option can be useful for transition-delay
fault ATPG if you want to target only those faults that can be launched and captured from

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

802

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Specifying Transition Delay Faults

Feedback

a specific clock (for example, to prevent skew between different clock domains). However,
this option works only in the last_shift mode. In the system_clock mode, you can use
the add_pi_constraints command to disable the clocks that you do not want to be used.

Limitations of Transition Delay Fault ATPG
The following limitations apply to transition delay fault ATPG:

• For a target fault between a register and an output, only a launch clock is needed to
test. In TestMAX ATPG, an output strobe occurs before a clock pulse (when using
a single-cycle capture procedure). This adds an extra capture cycle without a clock
pulse just to strobe an output, which might negatively affect the overall quality of the
transition-delay fault test. For this type of fault to be tested effectively, an output strobe
after a clock pulse (end of cycle measure) should be used, which is not supported in
the current release.

• For pattern formatting, the FAST_MUXCLOCK (also called MUXClock) technique is not
supported unless you set the options:

◦ set_faults -model_transition

◦ set_delay -launch_type system_clock

◦ set_delay -nopi_changes

◦ add_po_masks -all

◦ set_atpg -capture_cycles > 1
These constraints are necessary to generate patterns appropriate for MUXClock
operation. The FAST_CYCLE technique is not supported in the system_clock mode if
the launch and capture clock are the same.

• The Verilog testbench written out by TestMAX ATPG only supports a single period
value for all cycle operations. This implies that a single waveform table can be taken
into account when writing out the testbench. The delay waveform tables are not
supported with the Verilog testbench. The flow is to write out the STIL vectors and then
use the Verilog DPV PLI with VCS. Refer to the Test Pattern Validation User Guide.

Specifying Transition Delay Faults
To start the transition delay fault ATPG process, you need to select the transition fault
model with the set_faults command. Then you can add faults to the fault list using the
add_faults or read_faults command. You can select all fault sites, a statistical sample
of all fault sites, or individually specified fault sites for the fault list.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

803

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Specifying Transition Delay Faults

Feedback

The following sections show you how to specify transition-delay faults:

• Selecting the Fault Model

• Adding Faults to the Fault List

• Reading a Fault List File

Selecting the Fault Model
You select the transition fault model using the set_faults -model transition
command. You can change the fault model during a TestMAX ATPG session so that
patterns produced with one fault model can be fault-simulated with another fault model. To
do this, you need to remove faults and use the set_patterns external command before
the fault simulation run.

The three available transition-delay fault ATPG modes (last_shift, system_clock, and
any) can be selected by the -launch_cycle option to the set_delay command. The
default is the system_clockmode. This option selection is valid only if the transition model
is selected with the -model transition option. In the any mode, TestMAX ATPG will do
the following:

• Attempt to detect all faults using last_shift mode

• Apply system_clock mode to target faults left undetected by the last_shift mode

Adding Faults to the Fault List
The add_faults command adds stuck-at or transition faults to fault sites in the design.
The faults added to the fault list are targeted for detection during test pattern generation.

To add a specific transition fault to the design, use the pin_pathname -slow option and
specify R, F, or RF to add a slow-to-rise fault, a slow-to-fall fault, or both types of faults,
respectively. To add faults to all potential fault sites in the design, use the -all option.

The following steps show you how to add a statistical sample of all faults to the fault list:

1. Add all possible transition faults.

add_faults -all

2. Remove all but the required percentage of transition faults (10 percent in this example).

remove_faults -retain_sample 10

Reading a Fault List File
To read a list of faults from a file, use the read_faults command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

804

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Pattern Generation for Transition Delay Faults

Feedback

A fault file can be read into TestMAX ATPG and should have the format shown in the
following example. Each node of the design has two associated transition faults: slow-to-
rise (str) and slow-to-fall fault (stf). Attempting to read a fault list containing stuck-at fault
notation (sa1 and sa0) results in an “invalid fault type” error message (M169).

str NC /TOP/EMU_FLK/SYNTOP_GG/NR1/A
stf NC /TOP/EMU_FLK/SYNTOP_GG/U123/Z

Pattern Generation for Transition Delay Faults
The TestMAX ATPG commands for transition fault ATPG are the same as the commands
for stuck-at fault ATPG. You should be aware of how the command options affect the
operation of ATPG for the transition-delay fault model.

The following sections describe the various TestMAX ATPG commands used for transition-
delay fault ATPG:

• Using the set_atpg Command

• Using the set_delay Command

• Using the run_atpg Command

• Pattern Compression for Transition Faults

• Using the report_faults Command

• Using the write_faults Command

Using the set_atpg Command
The set_atpg command sets the parameters that control the ATPG process.

The -merge option is effective in reducing a number of transition patterns in the
last_shift mode.

You can enable Fast-Sequential ATPG by using the command set_atpg
-capture_cycles d, where d is a nonzero value. However, the last_shift mode is
based strictly on the Basic-Scan ATPG engine. Therefore, when you use run_atpg in the
last_shift mode, TestMAX ATPG uses Basic-Scan ATPG only and generates Basic-
Scan patterns, even if Fast-Sequential ATPG has been enabled. No warning or error
message is reported to indicate that Fast-Sequential ATPG has been skipped.

The system_clock mode is based on Fast-Sequential ATPG engine. If Fast-Sequential
ATPG is not enabled when you use run_atpg in the system_clock mode, TestMAX ATPG
reports an error message (M236).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

805

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Pattern Generation for Transition Delay Faults

Feedback

When you enable Fast-Sequential ATPG with the set_atpg -capture_cycles d
command, you must set the effort level d to at least 2 for the system_clock mode. If you
try to set it to 1 in the system_clock mode, the set_atpg command returns an “invalid
argument” error. For full-scan designs, you can set the effort level d to 2. For partial-scan
designs, a number greater than 2 might be necessary to obtain satisfactory test coverage.

Using the set_delay Command
The set_delay command determines whether the primary inputs are allowed to change
between launch and capture.

The default setting is -pi_changes, which allows the primary inputs to change between
launch and capture. With this setting, slow-to-transition primary inputs can cause the
transition test to be invalid.

The -nopi_changes setting causes all primary inputs to be held constant between
launch and capture, thus preventing slow-to-transition primary inputs from affecting the
transition test. This setting is useful only in the system_clock mode. The -nopi_changes
characteristic must be set before you use the run_atpg command.

The -nopi_changes option causes an extra unclocked tester cycle to be added to
each generated transition fault or path delay pattern. The use of a set_drc -clock
-one_hot command might interfere with the addition of this unclocked cycle and is not
recommended for use when the -nopi_changes option is in effect.

The primary outputs can still be measured between launch and capture. To mask all
primary outputs, use the add_po_masks -all command.

Using the run_atpg Command
The run_atpg command starts the ATPG process. The -auto_compression option
should be used.

The -auto_compression option works for transition-delay fault ATPG, but it is not as
effective as it is for stuck-at. Also, when you use the -auto_compression option, you must
enable the appropriate ATPG mode using the -capture_cycles d option of the set_atpg
command for the transition ATPG mode in effect: Basic-Scan ATPG for the last_shift
mode, or Fast-Sequential ATPG for the system_clock or any mode.

The run_atpg command has three additional ATPG options: basic_scan_only,
fast_sequential_only, and full_sequential_only. Under normal conditions, you

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

806

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Pattern Generation for Transition Delay Faults

Feedback

should not attempt to use these options to start transition-delay fault ATPG. If you do so,
be aware of the following cases:

• If you use the Full-Sequential ATPG engine with transition faults, you should be aware
that its behavior is not controlled by set_delay -launch_cycle command options.
If you want to avoid last-shift launch patterns and generate only system-clock launch
patterns with the Full-Sequential engine, you must constrain all scan enable signals to
their inactive values. Conversely, if you want to generate only last-shift launch patterns
and avoid all system-clock launch patterns, you should be aware that there is no way
to guarantee that you will get only last-shift launch patterns with the Full-Sequential
engine. Even those last-shift launch patterns that it might generate will not be identical
in form to those generated by the Basic-Scan ATPG engine.

• The basic_scan_only and fast_sequential_only options work for transition-delay
fault ATPG when used correctly: basic_scan_only for the last_shift mode, or
fast_sequential_only for the system_clock mode. If you use the wrong command
option, no patterns are generated and no warning or error message is reported.

Pattern Compression for Transition Faults
Dynamic pattern compression specified by the set_atpg command works for transition
faults as it does for stuck-at faults.

Using the report_faults Command
The report_faults command provides various types of information on the faults in the
design.

You can use the -slow option to report a specific transition fault.

The fault classes for transition-delay fault ATPG are the same as for stuck-at ATPG. There
are no specific fault classes that apply only to transition-delay faults. The faults classified
as DI (Detected by Implication) before the ATPG process for transition-delay fault ATPG
are the same as for stuck-at ATPG.

The total number of transition faults in a design is the same as the total number of stuck-at
faults.

Using the write_faults Command
The write_faults command writes fault data to an external file. The file can be read
back in later to specify a future fault list.

You can use the -slow option to write out a specific transition fault to a file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

807

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Pattern Formatting for Transition-Delay Faults

Feedback

Pattern Formatting for Transition-Delay Faults
For a transition test to be effective, the time delay between launch and capture should be
an at-speed value, as illustrated in the following figure.

Figure 126 At-Speed Transition Test Timing

   

A fast tester might be able to generate two clock pulses (cycles) at the required at-speed
value without dynamic cycle-time switching or other special timing formatting. For these
testers, TestMAX ATPG can generate ready-for-tester transition patterns.

A slow tester might need dynamic cycle-time switching or a special timing format to
test a transition fault at the required at-speed value. In general, two pattern formatting
techniques are available for slow testers. In TestGen terminology, these two techniques
are called FAST_CYCLE and MUXClock. The following figure illustrates these techniques.

Figure 127 Pattern Formatting Techniques

   

Using the FAST_CYCLE technique, the cycle time is switched dynamically from fast time
to slow time. Using the MUXClock technique, two tester timing generators are logically
ORed to produce two clock pulses in one cycle.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

808

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Pattern Formatting for Transition-Delay Faults

Feedback

The FAST_CYCLE technique is supported for the following cases:

• The last_shift mode is being used. The waveform format of the scan load and scan
unload procedure in a STL procedure file can be different from that of a capture clock
procedure.

• The system_clock mode is being used and the launch clock is different from the
capture clock. In this case, each capture clock procedure can have its own waveform
format.

The FAST_CYCLE operation is supported by defining specific WaveformTables to apply
to the launch and capture vectors. The constructs necessary to support the creation of
these test cycles are the same constructs used for path delay test generation. For more
information, see Creating At-Speed WaveformTables. The constructs presented in that
section are also used to identify the launch and capture timing for transition-delay tests.

The testgen FAST_MUXCLOCK operation is supported by defining TestMAX ATPG
MUXClock constructs. However, to apply MUXClock behavior to transition tests requires
the following set of options to be specified when transition tests are developed:

• set_faults -model_transition

• set_delay -launch_cycle system_clock

• set_delay -nopi_changes

• add_po_masks -all

• set_atpg -capture_cycles > 1
These options will support the creation of patterns that might merge the launch and
capture operations into a single test vector necessary to support MUXClock application.
To create MUXClock-based patterns use the same constructs defined for MUXClock path
delay definitions. For information on these constructs, see Generating Path Delay Tests.

MUXClock Support for Transition Patterns
The following limitations apply to MUXClock support for transition patterns:

• Output pattern files containing MUXClock waveforms are not yet readable in TestMAX
ATPG.

• Bidirectional clocks in a design are not supported in WGL output when MUXClock
definitions are present. STIL output supports bidirectional clocks in the design.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

809

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Specifying Timing Exceptions From an SDC File

Feedback

• MUXclock is not supported with clock_grouping. To disable multiple clocks and
dynamic clocking and use only a single clock for launch and capture, exclude these
commands from your command file:

#set_delay -common_launch_capture_clock
#set_delay -noallow_multiple_common_clocks

• MUXClock is not supported with scan compression designs

Specifying Timing Exceptions From an SDC File
TestMAX ATPG can read timing exceptions directly from a Synopsys Design Constraints
(SDC) file. You can use an SDC file written by PrimeTime or create one independently, but
it must adhere to standard SDC syntax. This section describes the flow associated with
reading an SDC file. Note that this flow is supported only in Tcl mode.

The following sections describe how to specify timing exceptions from an SDC file:

• Reading an SDC File

• Interpreting an SDC File

• How TestMAX ATPG Interprets SDC File Commands

• Controlling Clock Timing, ATPG, and Timing Exceptions for SDC

• Reporting SDC Results

The following limitation applies to SDC support in TestMAX ATPG:

• Multicycle 1 paths cannot be used. In some applications, a set_multicycle_path
command is used for one set of paths, but is followed by another
set_multicycle_path command — with a path_multiplier of 1 on a subset of these
paths. This is used to set that subset back to single-cycle timing. TestMAX ATPG does
not support this usage.

Reading an SDC File
You use the read_sdc command to read in an SDC file. Note that you must be in DRC
mode (after you successfully run the run_build_model command, but before running the
run_drc command) to use the read_sdc command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

810

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Specifying Timing Exceptions From an SDC File

Feedback

Note the following:

• The SDC commands cannot be entered on the command line; they must be specified
in an SDC file and can only be executed via the read_sdc command.

• The input SDC file must contain only SDC commands — not arbitrary PrimeTime
commands. Constraints files comprised of arbitrary PrimeTime commands interspersed
with SDC commands are unreadable. If the SDC file can be read into PrimeTime using
its read_sdc command, then it can be read into TestMAX ATPG. If it must be read into
PrimeTime using the source command, then it cannot be read into TestMAX ATPG.
PrimeTime can write SDC, and this output is valid as SDC input for TestMAX ATPG.

Interpreting an SDC File
To control how TestMAX ATPG interprets an SDC file, you can specify the set_sdc
command. This command will only work if you specify it before the read_sdc command.
As is the case with the read_sdc command, you must be in DRC mode to use the
set_sdc command.

Note that the set_sdc command settings are cumulative; this command might be run
multiple times to prepare for a read_sdc command. If multiple read_sdc commands are
required, you can also specify the set_sdc command before each read_sdc command to
specify its verbosity and instance.

How TestMAX ATPG Interprets SDC File Commands
TestMAX ATPG creates timing exceptions for transition delay testing based on a set of
SDC (Synopsys Design Constraints) file commands. Note that not all SDC commands are
used for this purpose, however they all must be specified in an SDC file.

The following list describes the set of SDC commands that are used by TestMAX ATPG,
and how they are interpreted:

set_false_path -- This command creates a timing exception for a false path according
to the specified from, to, or through points. TestMAX ATPG does not distinguish between
edges; this means, for example, that -rise_from is interpreted the same as -from.

set_multicycle_path -- This command creates a timing exception for a multicycle path
according to the specified from, to, or through points. TestMAX ATPG does not distinguish
between edges. This means, for example, that -rise_from is interpreted the same as
-from. Setup path multipliers of 1 are ignored.

create_clock and create_generated_clock -- For both of these timing exception
commands, the -name argument and the source_objects are used to identify either the
clock or the generated clock sources. Clocks must be traced to specific registers so
there are some support limitations. “Virtual clock” definitions without a source_object

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

811

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Specifying Timing Exceptions From an SDC File

Feedback

are ignored. Multiple clocks that are defined with the same source_objects cannot be
distinguished from each other. Note that clocks defined in the SDC file are only used to
identify timing exceptions and only clocks defined by the TestMAX ATPG add_clocks
command or in the STIL protocol are used for pattern generation.

set_disable_timing -- This command creates a timing exception by disabling timing
arcs between the specified points. TestMAX ATPG does not support library cells in the
object_list.

set_case_analysis -- This command is used to assist in tracing clocks to specific
registers. Only static logic values (0 or 1, not rising or falling) are supported. This
information is used based on the value set by the set_drc -sdc_environment command
(see the “Controlling Clock Tracing” section for details).

set_clock_groups -- This command creates a timing exception that specifies exclusive
or asynchronous clock groups between the specified clocks. It works only if the
-asynchronous switch is used and the -allow_paths switch is not used. All other usages
are ignored.

Controlling Clock Timing, ATPG, and Timing Exceptions for SDC
You can control the following processes related to reading timing exceptions for a
Synopsys design constraints (SDC) file:

• Controlling Clock Timing

You can control clock tracing using the set_sdc -environment command.

• Controlling ATPG Interpretation

In some cases, you might want to treat multicycle paths below a certain number as if
they are single-cycle paths. To do this, use the set_delay –multicycle_length <N>
command.

Based on this option, all set_multicycle_path exceptions with numbers of N or
less are ignored. The default is to treat all multicycle paths of length 2 or greater as
exceptions.

• Controlling Timing Exceptions Simulation for Stuck-at Faults

You can use the set_simulation[-timing_exceptions_for_stuck_at |
-notiming_exceptions_for_stuck_at]command to control timing exceptions
simulation for stuck-at faults. The default is -notiming_exceptions_for_stuck_at.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

812

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Slack-Based Transition Fault Testing

Feedback

Reporting SDC Results
There are several ways you can report SDC results. You can report specific types of
results using the report_sdc command (note that this command can only be run in TEST
mode.

In addition, you can use the report_settingssdc command to report the current settings
specified by the set_sdc command.

A pindata type related to SDC is available. You can control the display of this pindata type
by running the set_pindata –sdc_case_analysis command:

The format of the data is N/M (N is the case analysis setting from the SDC, and M is the
TestMAX ATPG constraint value). Unconstrained values are printed as X. You can also
specify the display of this pindata type directly from the GSV Setup menu.

Slack-Based Transition Fault Testing
As geometries shrink, it is increasingly important to identify small delay defects. Standard
transition fault testing is insufficient for detecting small delay defects because it focuses
only on finding the simplest and shortest paths.

TestMAX ATPG uses a special slack-based mode of transition fault testing to identify small
delay defects. When this mode is activated, TestMAX ATPG generates a specific set of
transition fault tests that systematically identify the longest paths.

Using this testing methodology, you can extract slack data from PrimeTime, read this data
into TestMAX ATPG, and use various TestMAX ATPG commands, command options, and
flows related to testing small delay defects.

TestMAX ATPG uses a single ATPG run to generate tests for both slack-based transition
faults and regular transition faults.

The following sections describe the slack-based transition fault testing process:

• Basic Usage Flow

• Special Elements of Slack-Based Transition Fault Testing

• Limitations

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

813

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Slack-Based Transition Fault Testing

Feedback

Basic Usage Flow
The basic flow for slack-based transition fault testing includes the following steps:

• Extracting Slack Data from PrimeTime

• Utilizing Slack Data in the TestMAX ATPG Flow

• Command Support

Extracting Slack Data from PrimeTime
TestMAX ATPG uses a specific set of timing data extracted from PrimeTime. To obtain this
information, you use the report_global_slack PrimeTime command to extract slack
data for all pins from PrimeTime.

The sequence of commands is shown in the following example:

pt_shell> set timing_save_pin_arrival_and_slack TRUE
pt_shell> update_timing
pt_shell> report_global_slack -max -nosplit > <global_slack_file>
The -max option is used with the report_global_slack command because PrimeTime
considers setup margins to be "max" and hold margins to be "min". In this case, setup
margins are required, so use the -max option to extract the minimum setup slacks.

The output format shown in the following example:

Max_Rise Max_Fall Point
------- -------- --------------------------
4.65 4.40 SE_FMUL10/OP0_L0_reg_23_/Q
* * SE_FMUL10/OP0_L0_reg_23_/SE
-0.82 -0.80 SE_PE0/U16112/A1
A * character is used instead of INFINITY.

Utilizing Slack Data in the TestMAX ATPG Flow
After producing a slack data file, use the read_timing command to read this data into
TestMAX ATPG. Make sure you specify this command after entering DRC or TEST mode
(after a successfully running the run_build_model or run_drc commands).

When TestMAX ATPG reads a slack data file, it uses a set of slack-based transition fault
testing processes to construct a pattern for the target fault. If TestMAX ATPG does not
read the slack file, regular transition-delay ATPG is performed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

814

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Slack-Based Transition Fault Testing

Feedback

How TestMAX ATPG Integrates Slack Data
During ATPG, TestMAX ATPG selects the first available fault from the list of target faults. It
then uses the available slack data for the selected fault, and attempts to construct a delay
test that makes use of the longest available sensitizable path. Secondary target faults for
that same pattern might not have their longest testable path sensitized because some
values were already set in the test for the primary target fault. Faults that are detected
only by fault simulation without being targeted by test generation are not necessarily
be detected along a long path. However, the fault simulator will use the slack data to
determine the size of defect that could be detected at that fault site by the pattern.

For maximum efficiency, ATPG typically targets the easiest solution. This means that
transition faults are more likely detected along the shorter paths or paths with larger slack.
Fault simulation and ATPG increase the efficiency by accounting for transition faults that
are randomly detected by the tests generated for the targeted fault. Those transition faults
detected only by fault simulation represent a large fraction of the detected faults and are
usually detected along paths with slacks that are random with respect to all the paths on
which the faults could be detected.

Command Support
Table 1 lists the key commands available to help validate the flow and pattern content.

Table 5 Key TestMAX ATPG Commands for Slack-Based Transition Fault Testing

Command Description

read_timing
file_name
[-delete]

Reads in minimum slack data in the defined format and optionally deletes
previous data

report_timing
instance_name
|
-all |
-max_gates
number

Reports pin slack data accepted by TestMAX ATPG

set_pindata
slack

Sets the displayed pindata type to show slack data

set_delay
[–noslackdata
_for_atpg |
-slackdata_fo
r_atpg

Turns on and off the slack-based transition fault testing function during ATPG. If
slack data exists, the default is the -slackdata_for_atpg option.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

815

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Slack-Based Transition Fault Testing

Feedback

Table 5 Key TestMAX ATPG Commands for Slack-Based Transition Fault Testing
(Continued)

Command Description

set_delay
[-noslackdata
_for_faultsim
|
-slackdata_fo
r_faultsim]

Turns on and off the slack-based transition fault testing function during fault
simulation. If slack data exists, the default is the -slackdata_for_faultsim
option.

set_delay
–max_tmgn
<float |
defect%>

Defines the cutoff for faults of interest for slack-based transition fault testing
generation. Faults with minimum slacks larger than the -max_tmgn parameter
are targeted by the normal transition fault ATPG algorithm rather than by the
slack-based algorithm.

set_delay
-max_delta_pe
r_fault float

Sets a level between the longest path and the path on which the fault is detected.
Full detection is still credited, and the fault is dropped from further consideration.
The default is zero (full credit is given only when detection is on the minimum
slack path).

report_faults
[–slack tmgn
[integer |
float]

Reports a histogram of faults based on the minimum slack numbers read in
by the read_timing command. This histogram is either fixed in the number
of buckets or fixed in the slack interval between two consecutive buckets. The
fixed number of buckets is specified by an integer and the fixed bucket interval is
specified with a float. The default is an integer of 10.

report_faults
–slack tdet
[integer |
float]

Reports a histogram of faults based on the slack numbers for the detection
path for each fault (detection slacks). This histogram is either fixed in number
of buckets or fixed in the slack interval between two consecutive buckets. The
fixed number of buckets is specified by an integer and the fixed bucket interval is
specified with a float. The default is an integer of 10.

report_faults
–slack delta
[integer |
float]

Reports a histogram of faults based on the difference between detection slacks
and minimum slacks. The reported histogram is either fixed in number of buckets
or fixed in the slack interval between two consecutive buckets. The fixed number
of buckets is specified by an integer and the fixed bucket interval is specified with
a float. The default is an integer of 10.

report_faults
–slack
effectiveness

Reports a measure of the effectiveness of the slack-based transition fault set.
The measure varies from 0 percent (no faults of interest with detection slacks
smaller than the -max_tmgn parameter) to 100 percent (all faults of interest
detected on the minimum-slack path).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

816

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Slack-Based Transition Fault Testing

Feedback

Special Elements of Slack-Based Transition Fault Testing
This section describes some of the unique characteristics related to slack-based transition
fault tests. These special elements are described in the following topics:

• Allowing Variation From the Minimum-Slack Path

• Defining Faults of Interest

• Reporting Faults

Allowing Variation From the Minimum-Slack Path
When creating slack-based transition fault tests, the transition fault test generator targets
the path with the minimum slack for the primary target fault. As with regular transition fault
ATPG, there might be secondary target faults that are targeted following the successful
generation of a test for the primary target fault.

Many faults detected during fault simulation are likely not be targeted faults for the test
generator. You need to decide if you are willing to accept a test that detects a transition
fault, or a test that detects the fault along a path with small slack. To specify the type of
test you are willing to accept, use the set_delay –max_delta_per_fault command.

If you are unwilling to accept a fault unless it has been detected along the path
that has the absolute smallest slack for the fault, you can use a setting of 0 for the
-max_delta_per_fault parameter (the default setting). If you want to accept any test that
comes within 0.5 time units of the minimum slack for the fault, set -max_delta_per_fault
to 0.5. This allows you to control when faults can be dropped from simulation in a slack-
based transition fault ATPG run.

When a fault is detected with a slack that exceeds the minimum slack by more than the
-max_delta_per_fault parameter, the fault goes into a special sub-category of Detected
(DT). This sub-category is called Transition Partially-detected (TP). A fault that has gone
into the TP category might continue to be simulated in hopes of getting a better test for the
fault.

A fault detected with a slack equal to or smaller than the -max_delta_per_fault
parameter is placed in the DS category normally used for detected transition faults. A DS
category fault is always dropped from further simulation.

Specifying the -max_delta_per_fault 0 option likely produces the highest quality test
set. However, this specification also likely produces the longest runtimes and the largest
test sets. The -max_delta_per_fault setting allows you to choose an acceptable trade-
off point for test set quality versus runtime and test set size.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

817

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Slack-Based Transition Fault Testing

Feedback

Defining Faults of Interest
You can specify how small the slack needs to be for TestMAX ATPG to target the fault with
the slack-based transition fault test generation algorithm. If you specify the set_delay
–max_tmgn command, the test generator uses the slack-based algorithm to target only
those faults with a slack smaller than the number specified by the -max_tmgn parameter.
All faults not designated as “faults of interest” are targeted by the normal transition fault
test generation algorithm. All faults are fault-simulated even if they are not designated as
“faults of interest” targeted for test generation.

You can use the report_faults –slack tmgn command to examine the distribution of
slacks to determine a reasonable value of the -max_tmgn option. This command prints
a histogram of the slack values that are read in by the read_timing command. You can
also use the report_faults –slack tmgn command to specify how many categories are
included in this report.

Reporting Faults
Slack-based transition fault tests are applied to paths with a smaller slack than those
typically activated in regular transition fault test generation. The report_faults command
includes several options that facilitate the examination of this data:

• The –slack tdet option prints a histogram that shows the slack of the detection paths.
You can compare this data directly against the output of the –slack tmgn option to see
how close TestMAX ATPG got to the minimum slack paths.

• The –slack delta option clearly shows the slack of the detection paths. The reporting
histogram associated with this option is based on the difference between the slacks for
the detection paths and the minimum slack read from the slack data file. A distribution
heavily skewed toward the zero end of the continuum indicates a highly successful
slack-based transition fault test generation.

• The –slack effectiveness option reports a measure of delay effectiveness based
on how close the slacks for the fault detection paths came to the minimum slacks. If
every fault defined to be of interest is detected on its minimum slack path, the delay
effectiveness measure would be 100 percent. If no faults of interest are detected on
paths that have slack smaller than the -max_tmgn parameter used to define faults of
interest, the delay effectiveness measure is 0 percent.

The output of the report_faults –all command also includes additional fields related
to the slack-based transition fault testing. For more information, see the "Slack-Based
Transition Fault Format" section of the “Understanding the report_faults Output” topic in
TestMAX ATPG Help.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

818

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Transition Delay Fault ATPG
Slack-Based Transition Fault Testing

Feedback

Limitations
The following limitations currently apply to slack-based transition fault testing:

• Engine and Flow Limitations

• ATPG Limitations

• Limitations in Support for Bus Drivers

Engine and Flow Limitations
Last-shift launch, two-clock, and fast-sequential transition fault testing are supported.
There is currently no support for Full-Sequential mode.

ATPG Limitations
There are two limitations for slack-based transition ATPG:

• Second Smallest Slack

If the path with the smallest slack for a given fault is untestable, TestMAX ATPG begins
normal back-tracking in an attempt to find a test along some other path. There is no
guarantee that the second path TestMAX ATPG will try is the path with the second
smallest slack. For now, the only guarantee is that the first path tried is the path with
the smallest slack.

• Test Might End Prematurely at PO

When propagating a fault effect along the minimum-slack propagation path, the
fault effect might propagate to a primary output. If this occurs, and the fault can be
considered detected at the primary output, TestMAX ATPG will stop trying to propagate
the fault effect along the minimum-slack path. This can produce fault detection on a
path with larger slack than required.

In this case, the detection slack is measured accurately and will reflect the detection
along the path with greater slack to the primary output. This is not normally a problem
for transition fault test generation, because the -nopo_measures option is commonly
set for transition faults. If that option is set, then the fault cannot be detected at
a primary output so the propagation along the minimum-slack path will continue
uninterrupted.

Limitations in Support for Bus Drivers
Full slack-based transition fault testing support is not available for BUS drivers. TestMAX
ATPG does not choose the minimum slack path when back-tracing through a bus driver if
that path goes through the enable input. TestMAX ATPG always chooses the path through
the data input to the driver. This limitation applies to test generation only. The detection
slack and the slack delta are accurately reported in all cases.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

819

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

23
Path Delay Fault and Hold Time Testing

The TestMAX ATPG DSMTest option enables you to use path delay fault testing to perform
test generation to detect critical path delay faults. This option generates the most effective
tests possible while providing the highest coverage of critical paths. TestMAX ATPG also
includes features to read, manage, and analyze paths from static timing analysis tools
such as PrimeTime.

Most of the fault models supported by TestMAX ATPG are intended to test maximum
delays (or setup times), whether they are delay-based fault models (transition and
dynamic bridging) or path-based fault models (path delay). Even the static fault models
(stuck-at and bridging) are simulated so that the fault effect appears as a setup violation.
The hold time fault model is different in that it tests minimum delays. In other respects, the
hold time flow is very similar to the path delay ATPG flow

The following sections describe path delay fault and hold time testing:

• Path Delay Fault Theory

• Path Delay Testing Flow

• Obtaining Delay Paths

• Hold Time ATPG Test Flow

• Generating Path Delay Tests

• Handling Untested Paths

Path Delay Fault Theory
The single stuck-at fault model (stuck-at-0 or stuck-at-1) plays an important part in
manufacturing test. However, you can achieve higher quality testing when you target other
fault models, such as the path delay fault model, in addition to the single stuck-at model.

The path delay fault model is useful for testing and characterizing critical timing paths in
your design. Path delay fault tests exercise the critical paths at speed (the full operating
speed of the chip) to detect whether the path is too slow because of manufacturing defects
or variations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

820

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Fault Theory

Feedback

Path delay fault testing targets physical defects that might affect distributed regions
of a chip. For example, incorrect field oxide thicknesses could lead to slower signal
propagation times, which could cause transitions along a critical path to arrive too late. By
comparison, stuck-at, IDDQ, and transition delay faults are generally targeted at single-
point defects.

Path delay faults are tested using the following sequence:

• The first vector initializes the path before applying the launch event, typically a clock
pulse.

• The launch event generates the second vector, which propagates a logic transition
along the entire path.

• A second clock pulse, occurring one at-speed cycle after the launch clock, captures the
resulting transition at the end of the path.

The following sections describe the path delay fault testing theory:

• Path Delay Fault Term Definitions

• Models for Manufacturing Tests

• Models for Characterization Tests

• Testing I/O Paths

• Path Delay Test Patterns

Path Delay Fault Term Definitions
The following table lists the definitions for key terms used in path delay fault testing.

Table 6 Definitions of Terms

Terms Definitions

at-speed
clock

A pair of clock edges applied at the same effective cycle time as the full operating
frequency of the device.

capture
clock
capture
clock edge

The clock used to capture the final value resulting from the second vector at the tail
of the path.

capture
vector

The circuit state for the second of the two delay test vectors.

critical path A path with little or no timing margin.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

821

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Fault Theory

Feedback

Table 6 Definitions of Terms (Continued)

Terms Definitions

delay path A circuit path from a launch node to a capture node through which logic transition is
propagated. A delay path typically starts at either a primary input or a flip-flop output,
and ends at either a primary output or a flip-flop input.

detection,
robust (of a
path delay
fault)

A path delay fault detected by a pattern providing a robust test for the fault.

detection,
non-robust
(of a path
delay fault)

A path delay fault detected by a pattern providing a non-robust test for the fault.

false path A delay path that does not affect the functionality of the circuit, either because it is
impossible to propagate a transition down the path (combinationally false path) or
because the design of the circuit does not make use of transitions down the path
(functionally false path).

launch clock
launch clock
edge

The launch clock is the first clock pulse; the launch clock edge creates the state
transition from the first vector to the second vector.

launch
vector

The launch vector sets up the initial circuit state of the delay test.

off-path
input

An input to a combinational gate that must be sensitized to allow a transition to flow
along the circuit delay path.

on-path
input

An input to a combinational gate along the circuit delay path through which a logic
transition will flow. On-path inputs would typically be listed as nodes in the Path
Delay definition file.

path A series of combinational gates, where the output of one gate feeds the input of the
next stage.

path delay
fault

A circuit path that fails to transition in the required time period between the launch
and capture clocks.

scan clock The clock applied to shift scan chains. Typically, this clock is applied at a frequency
slower than the functional speed.

test,
non-robust

A pair of at-speed vectors that test a path delay fault; fault detection is not
guaranteed, because it depends on other delays in the circuit.

test, robust A pair of at-speed vectors that test a path delay fault independent of other delays or
delay faults in the circuit.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

822

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Fault Theory

Feedback

Models for Manufacturing Tests
Path delay fault ATPG targets individual path delay faults and then simulates each test
generated against the remaining undetected faults in the fault list using both robust and
non-robust path delay fault models suitable for pass/fail manufacturing tests. By default,
TestMAX ATPG uses an auto relaxation scheme that provides both efficient ATPG and the
flexibility of multiple path delay fault models.

The manufacturing test off-path inputs of various gates, for both the on-path input rising
and falling, are shown in the following example:

set_delay -nodiagnostic_propagation (default manufacturing tests)

   

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

823

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Fault Theory

Feedback

Models for Characterization Tests
TestMAX ATPG can also generate single-path sensitization tests that have unambiguous
diagnostic results. Such tests are useful to measure individual path delays on a physical
device for design characterization purposes. With these tests, any failure can be directly
related to a specific path delay fault. You can determine the maximum operating frequency
of each testable critical path by varying the at-speed test cycle time and associating
failures to the paths being tested.

The characterization test off-path inputs of various gates, for both the on-path input rising
and falling, are shown in the following example:

set_delay -diagnostic_propagation (characterization tests)

   

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

824

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Fault Theory

Feedback

Testing I/O Paths
You can also use TestMAX ATPG to generate test patterns that exercise paths from an
input pin to a flip-flop or from a flip-flop to an output pin. Unlike internal paths, physical at-
speed testing of I/O paths generally requires,

• High-speed, high-bandwidth ATE equipment

• A low-skew test fixture

• Very accurate placement of input signal edges

• Very accurate placement of output strobe delays

It is also important to be aware that the electrical environment of the test fixture might differ
significantly from the system in which the device was designed to operate. Consequently,
issues such as poorly terminated transmission lines and output driver simultaneous-
switching current might cause excessive ringing on the input pins and additional delays on
the output pins.

For these reasons, at-speed testing is not recommended for I/O paths unless ATE
expertise exists for general high-speed testing issues and the electrical requirements for
test fixtures are well understood in advance of their design.

Path Delay Test Patterns
All delay paths must start with a state element (DFF, DLAT, or memory) and must end with
an edge-triggered state element (DFF or edge-triggered memory); only combinational
gates can be situated between the starting and ending elements. The source and
destination points must capture on the same edge of the same clock. If the source and
destination points are clocked by different clocks, the clocks must be either synchronized
internal clocks (see Specifying Synchronized Multi Frequency Internal Clocks) or
equivalent external clocks (see the description of the add_pi_equivalences command
in TestMAX ATPG Online Help). If these conditions are not satisfied, the path is declared
ATPG Untestable (fault status AN).

The edge information provided in the path file is only used for the source point of the path.
If the path goes through XOR gates or multiple paths, then the polarity at the destination
point and the path actually taken by the transition might differ from what was specified.

In the fault modeled by the TestMAX ATPG fault simulator, the launching node makes its
transition too early. The captured node is assumed to be on time, and all off-path inputs
are also assumed to be on time. If these assumptions result in a 0/1 difference in the
output, then the fault is detected. See the representations of a path delay test pattern in
the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

825

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Testing Flow

Feedback

Figure 128 Path Delay Test Pattern

   

Path Delay Testing Flow
PrimeTime generates the critical path information you need to input for a path delay ATPG
test run as shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

826

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Testing Flow

Feedback

Figure 129 Path Delay Test Flow

   

TestMAX ATPG supports ATPG and fault simulation for scan-based path delay fault testing
with the following features:

• Reads critical paths reported by PrimeTime

• Supports a comprehensive set of path (P) rules

• Most rule violations can be analyzed and debugged in the GSV

• Clock waveforms in the STL procedure file are checked to ensure they match static
timing analysis conditions

• Identifies combinational false paths and other untestable paths

• Generates a full range of tests supporting both robust and non-robust path delay fault
models

The following figure shows the basic TestMAX ATPG steps and checkpoints to generate
an effective set of path delay tests.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

827

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Path Delay Testing Flow

Feedback

Figure 130 Path Delay Test Generation Flowchart

   

Launch and capture events are pertinent only to transition and path delay fault
environments. If the fault model is set to the default model (stuck), then the launch
and capture events are likely to be dropped. TestMAX ATPG will attempt to maintain
this information when possible, However, because of the variety of flows and the
ability to process patterns generated for one fault model under a different model (for
instance, regrading transition patterns under a stuck model), care must be exercised
if this information needs to be maintained. Before the write_patterns operation is
executed in the file that reads-back the binary patterns, add the set_faults -model
transitioncommand. Then, the launch and capture events will remain across all outputs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

828

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Obtaining Delay Paths

Feedback

Obtaining Delay Paths
TestMAX ATPG requires an input list of critical paths to target for path delay fault
generation. TestMAX ATPG can read an ASCII file containing the critical paths reported by
a static timing analysis tool, such as PrimeTime, or you can specify these paths manually
in an ASCII file.

To obtain a list of critical delay paths, use the write_delay_paths Tcl procedure, which is
part of the pt2tmax.tcl file. This process is described in detail in Importing PrimeTime Path
Lists.

For details on translating timing exceptions, see Specifying Timing Exceptions From an
SDC File.

Hold Time ATPG Test Flow
The TestMAX ATPG DSMTest option enables you to use hold time testing to perform test
generation to detect critical path minimum delays. This option generates the most effective
tests possible while providing the highest coverage of critical paths. TestMAX ATPG also
includes features to read, manage, and analyze paths from static timing analysis tools
such as PrimeTime.

Most of the fault models supported by TestMAX ATPG are intended to test maximum
delays (or setup times), whether they are delay-based fault models (transition and
dynamic bridging) or path-based fault models (path delay). Even the static fault models
(stuck-at and bridging) are simulated so that the fault effect appears as a setup violation.
The hold time fault model is different in that it tests minimum delays. In other respects, the
hold time flow is very similar to the path delay ATPG flow

The hold time fault model is different in that it tests minimum delays. In other respects, the
hold time flow is very similar to the path delay ATPG flow .

The hold time ATPG test flow is the same as the path delay ATPG flow, except that
instead of running the set_faults -model path_delay command, you need to specify
the set_faults -model hold_time command. The hold_time argument specifies
the ATPG and fault simulation commands to use the hold time fault model and must be
specified before you add faults.

The standard hold time ATPG flow includes the following commands:

• run_drc

• set_faults -model hold_time

• add_delay_paths hold_path_file

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

829

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Hold Time ATPG Test Flow

Feedback

• add_faults -all

• run_atpg
You can use normal reporting commands such as report_summaries faults and
report_delay_paths. The fault types are reported as FTF (fast to fall) and FTR (fast to
rise).

In the hold time ATPG test flow, all set_delay commands are ignored because the hold
time path transition is launched and captured in a single clock cycle. Hold time faults are
usually detected by the basic scan pattern type, although fast-sequential ATPG is also
supported. Multiple-clock patterns are generated when the hold time path must be set up
or when its effects are propagated through nonscan elements such as memories.

You can usually reduce the pattern count by first fault-simulating the stuck-at patterns
with the hold time fault model, and then using ATPG to create new patterns to detect the
undetected paths.

All paths must start with a state element (DFF, DLAT, or memory) and must end with an
edge-triggered state element (DFF or edge-triggered memory); only combinational gates
can be situated between the starting and ending elements. The source and destination
points must capture on the same edge of the same clock. If the source and destination
points are clocked by different clocks, the clocks must be either synchronized internal
clocks (see Specifying Synchronized Multi Frequency Internal Clocks) or equivalent
external clocks (see the description of the add_pi_equivalences command in TestMAX
ATPG Online Help). If these conditions are not satisfied, the path is declared ATPG
Untestable (fault status AN).

The edge information provided in the path file is only used for the source point of the path.
If the path goes through XOR gates or multiple paths, then the polarity at the destination
point and the path actually taken by the transition might differ from what was specified.

In the fault modeled by the TestMAX ATPG fault simulator, the launching node makes its
transition too early. The captured node is assumed to be on time, and all off-path inputs
are also assumed to be on time. If these assumptions result in a 0/1 difference in the
output, then the fault is detected. See the representations of a path delay test pattern in
Figure 128 and a hold time test pattern in Figure 131.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

830

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

Figure 131 Hold Time Test Pattern

   

Generating Path Delay Tests
The following sections describe how to generate path delay tests:

• Flow for Generating Path Delay Tests

• Using set_delay Options

• Reading and Reporting Path Lists

• Analyzing Path Rule Violations

• Viewing Delay Paths

• Path Delay ATPG Options

• Internal Loopback and False/Multicycle Paths

• Creating At-Speed WaveformTables

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

831

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

• Maintaining At-Speed Waveform Table Information

• MUXClock Support for Path Delay Patterns

Flow for Generating Path Delay Tests
The following steps show you how to generate a set of path delay tests:

1. Start TestMAX ATPG.

2. Read in the libraries and netlists.

3. Build a circuit model.

4. Run DRC (you can use delay waveform tables in the STL procedure file):

run_drc filename.spf
5. Depending on the ATE functionality, set the delay testing options:

set_delay -nopi_changes
set_delay -nopo_measures

6. Read in the delay paths:

add_delay_paths filename
7. Analyze any P rule errors or warnings.

Use the following command to remove any paths that were read:

remove_delay_paths pathname
8. Display a delay path (optional):

report_delay_paths path_name -display -pindata
9. Add path delay faults:

set_faults -model path_delay
10. Run ATPG:

run_atpg -auto
11. Analyze low path delay coverage (optional):

report_faults -class AU
analyze_faults path_name -slow rise -display -verbose
-fault_simulation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

832

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

12. Write the path delay test patterns:

write_patterns patname.stil -format stil
write_patterns patname.wgl -format wgl

Many of the commands described in this flow have other options that you can use to
adjust TestMAX ATPG to your unique requirements.

Using set_delay Options
After passing DRC, and before reading in a list of critical paths, you can use the
set_delay command to specify any options related to path delay testing.

Note that the launch cycle setting has no effect on full-sequential ATPG. TestMAX
ATPG uses either a last-shift or a system clock for the launch cycle. To prevent last-
shift launch behavior, constrain the scan enable signal to its inactive value using the
add_pi_constraints command.

Reading and Reporting Path Lists
After setting the delay options, you can read delay faults into TestMAX ATPG using the
add_delay_paths command. This command reads in a path delay definition file. You can
remove paths from memory with the remove_delay_paths command. To display paths
in text format, use the report_delay_paths command. By using the -verbose option,
you can include in the report information regarding launch and capture clocks and nodes,
transition direction of faults, fault status, and the vector in which detection took place.

Analyzing Path Rule Violations
You can analyze the P rule violations using the GSV. For example, to view additional
information on P20 violations, enter the following commands:

report_violations P20
analyze_violations P20-3

Viewing Delay Paths
You can use the report_delay_paths path_name -display -pindatacommand
to report delay paths and view them in the GSV. The displayed data includes any path
requirements (transitions and conditions) annotated to the wires of the design or primitive
elements in the path.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

833

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

Path Delay ATPG Options
Fast-sequential ATPG is the default for path delay tests and usually provides adequate
coverage of most testable paths. In some cases, full-sequential ATPG can achieve slightly
higher coverage. The recommended flow is to first generate path delay patterns with fast-
sequential ATPG , then top off with full-sequential patterns, if they provide improvement.
You can enable full-sequential ATPG using the -full_seq_atpg option of the set_atpg
command. The following options can improve vector generation and pattern compression
with full-sequential ATPG:

set_atpg -full_seq_abort_limit seq_max_remade_decs
set_atpg -full_seq_time max_secs_per_fault
set_atpg -full_seq_merge [low | medium | high]
If the fault report printed after ATPG indicates that some faults were aborted (undetected),
you can increase the time limit beyond 10 seconds (the default), and rerun ATPG on the
remaining faults. Raising the merge effort allows TestMAX ATPG to generate fewer vectors
for the same fault coverage. The default is to not merge patterns.

Internal Loopback and False/Multicycle Paths
You can generate transition and path delay tests while ensuring that you will not get tests
that "loopback" through a bidirectional port or tests for false/multicycle paths that begin at
a specific start point. The following six commands implement this capability:

add_slow_bidis port_name | -all>
remove_slow_bidis port_name | -all>
report_slow_bidis
add_slow_cells instance_path | gate_id
remove_slow_cells instance_path | gate_id | -all
report_slow_cells
The add_slow_bidis command modifies the associated BUS primitives to output an
X if any tristate driver (TSD) or switch (SW) primitives are not driving a Z onto the BUS
primitive. The value observed on the primary inout (PIO) primitive continues to be the
resolved value of the BUS primitive before this masking operation. If all TSD and SW
primitives are driving a Z onto the BUS primitive, the BUS behavior is not modified. This
includes the behavior if the PIO primitive is also driving a Z, or if there are weak input
values.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

834

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

An error message is issued if the add_slow_bidis command is specified for a port that is
not an inout or does not exist. The add_slow_bidis -all command issues a message
showing the number of ports modified.

The add_slow_cells command modifies the simulation behavior of DFF or DLAT cells in
two ways:

• For Basic-Scan patterns, the DFF/DLAT gets loaded with an X if the adjacent scan cell
(closer to the scan out) is being loaded with a different value (that is, if the last scan
shift creates a transition on the DFF/DLAT output). The capture and unload behavior of
the DFF/DLAT is not modified. When setting a scan cell value with this attribute, Basic-
Scan ATPG also attempts to set the adjacent scan cell with this same value before
pattern merging, if it has not already been set.

• For Fast-Sequential and Full-Sequential patterns, the DFF/DLAT outputs an X if data
captured by a clock changes the state of the DFF/DLAT, or if a set/reset changes the
state of the DFF/DLAT. The DFF or DLAT continues to output an X until the next load
operation. However, the capture and internal state behavior is not modified and this
internal state value, not an X, is observed by an unload operation. Full-sequential
ATPG will continue to apply the “robust fill” algorithm before random fill. This decreases
the probability that the launch clock creates a transition from scan cells feeding off-path
inputs, including any with this attribute.

Creating At-Speed WaveformTables
Path delay tests are generated during both the fast-sequential and full-sequential test
modes. These tests conform to user constraints through defined clocks and specified
primary input constraints. The timing for these vectors adhere to one of several timing
WaveformTables in the STIL procedure file.

If there are no additional waveform tables in the STL procedure file, then the default timing
(_default_WFT_) is used for all path delay test vectors. However, special timing can be
defined for the launch and capture events in ancillary timing waveform tables. These
tables are as follows:

• _launch_WFT_

• _capture_WFT_

• _launch_capture_WFT_

When using generic capture procedures, the allclock_launch, allclock_capture, and
allclock_launch_capture procedures are used. Each procedure calls a WFT specifically
associated with it.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

835

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

Each table can use different timing definitions for inputs, clocks, and output strobes. The
path delay test vectors can use these timing definitions when applied to the device under
test to detect faults defined in the path definition file.

The following example shows a _capture_WFT_ timing WaveformTable in the context of a
STL procedure file:

Timing {
WaveformTable "_default_WFT_" {
Period ’100ns’;
Waveforms {
"TxClk" { 01Z { ’0ns’ D/U/Z; } }
"TxClk" { P { ’0ns’ D; ’50ns’ U; ’80ns’ D; } }
"_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
"_default_Out_Timing_"{X {’0ns’ X; } }
"_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
}
}
WaveformTable "_capture_WFT_" {
Period ’20ns’;
Waveforms {
"TxClk" { 01Z { ’0ns’ D/U/Z; } }
"TxClk" { P { ’0ns’ D; ’5ns’ U; ’10ns’ D; } }
"_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
"_default_Out_Timing_"{X {’0ns’ X; } }
"_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
}
}
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

836

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

A path delay test cycle uses the same order of events as for other fault models:

• Force primary inputs

• Measure primary outputs (optional)

• Pulse a clock

Given this order of events, one or two test cycles are required to launch and capture a
path delay fault. For most paths, a two-cycle test is generated to apply a launch clock
pulse and a capture clock pulse. However, a full-sequential delay fault requiring a launch
on the rising (leading) edge of a clock and a capture on the falling (trailing) edge of the
same clock generates a one-cycle test that uses the “_launch_capture_WFT_”. For a
delay path fault test that requires a launch in one clock domain and a capture in another
clock domain, two vectors are generated, and thus use “_launch_WFT_” for the launch
vectors, and “_capture_WFT_” for the capturing vector.

If two or more different at-speed frequencies need to be used for different clock domains
within your design, you might consider the following example WaveformTable definition.
This example shows two input clocks with their launch and capture timing defined (see the
following figure).

WaveformTable "_launch_WFT_" {
Period ’40ns’;
Waveforms {
"CLK1" { 01Z { ’0ns’ D/U/Z; } }
"CLK1" { P { ’0ns’ D; ’5ns’ U; ’10ns’ D; } }
"CLK2" { 01Z { ’0ns’ D/U/Z; } }
"CLK2" { P { ’0ns’ D; ’30ns’ U; ’35ns’ D; } }
"_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
"_default_Out_Timing_"{X {’0ns’ X; } }
"_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
}
}
WaveformTable "_capture_WFT_" {
Period ’40ns’;
Waveforms {
"CLK1" { 01Z { ’0ns’ D/U/Z; } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

837

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

"CLK1" { P { ’0ns’ D; ’30ns’ U; ’35ns’ D; } }
"CLK2" { 01Z { ’0ns’ D/U/Z; } }
"CLK2" { P { ’0ns’ D; ’5ns’ U; ’10ns’ D; } }
"_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
"_default_Out_Timing_"{X {’0ns’ X; } }
"_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
}
}

Figure 132 Two Different At-Speed Times

   

Maintaining At-Speed Waveform Table Information
The presence of launch and capture operations is pertinent only under transition and path
delay environments. To ensure this information remains in a pattern set through various
flows, such as importing patterns into TestMAX ATPG (see Selecting the Pattern Source),
specify the appropriate fault model for these patterns. See “Specifying Transition-Delay
Faults” for transition patterns for the appropriate set_faults -model command.

MUXClock Support for Path Delay Patterns
Testing of internal paths in DSMTest requires that the system clock be applied at-speed to
the device under test. MUXClock, a common technique for applying the system clock at-
speed, merges (or multiplexes) two patterns within a single, uniform cycle to create the at-
speed clock. MUXClock is supported only for full-sequential ATPG, so you must use the
set_atpg -full_seq_atpg -nofast_path_delay command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

838

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

For MUXClock vector formatting, two additional clock waveforms D (double) and E (early)
need to be defined for the at-speed test. Definitions of the waveforms used during scan
chain shifting and normal (slow) system cycles are contained in the STIL procedure file.

MUXClock is a single waveform table/timeset construct that eliminates switching
waveform tables between the default path delay waveform tables for launch, capture,
and launch_capture operations and reduces requirements on ATE to support this timing
flexibility.

By overlapping both the launch and capture events in one tester cycle, it is possible for
ATE timing accuracy to be higher than across multiple vectors. Also, it is possible to place
the launch and capture events closer together in a single vector than normally permitted
when separate vectors were required. This feature, however, requires testers to support
flexible double-pulse definitions in STIL, and relies on MUX constructs in WGL that tie
multiple tester channels together to generate a flexible double-pulse waveform.

The following formats are supported by the MUXClock technique:

• WGL (using the WGL ":mux" construct)

• STIL (using multiple pulsed waveforms P, E, and D)

• MUXClock is not supported with clock_grouping

• MUXClock is not supported with scan compression designs

Enabling MUXClock Functionality
The waveform table sections in the STL procedure file need to be modified to support
MUXClock behavior for delay test vectors. The typical waveform table section specifies
values that are applied during the scan shift and normal system tester cycles. Two
additional waveform definitions are required to specify the at-speed clock.

Delay Test Vector Format
The following example shows a WaveformTable section for the MUXClock technique:

Timing {
WaveformTable "_default_WFT_" {
Period '100ns';
Waveforms {
"all_inputs" { 0 { '0ns' D; } }
"all_inputs" { 1 { '0ns' U; } }
"all_inputs" { Z { '0ns' Z; } }
"all_outputs" { X { '0ns' X; } }
"all_outputs" { H { '0ns' X; '40ns' H; } }
"all_outputs" { T { '0ns' X; '40ns' T; } }
"all_outputs" { L { '0ns' X; '40ns' L; } }
"CK" { P { '0ns' D; '75ns' U; '85ns' D; } }
"CK" { D { '0ns' D; '45ns' U; '55ns' D; '75ns' U;
'85ns' D; } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

839

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Generating Path Delay Tests

Feedback

"CK" { E { '0ns' D; '45ns' U; '55ns' D; } }
}
}
}

In the waveform table, all signals identified as clocks in the design must have two
additional waveforms present. These waveforms use the WaveformCharacters D (double-
pulse), and E (early-pulse). This brings the count of pulsed-waveforms for clocks up to 3:
P, D, and E. These pulses have the following requirements:

• The edges of the E pulse must align with the edges of the first D pulse

• The edges of the P definition must align with the edges of the second D pulse

Also, the timing of all pulses, including the E pulse, must occur after the timing of the input
edges and the output measures. In MUXClock mode, all path delay launch and capture
operations are performed in a single cycle (described next); therefore, the timing of all
events must follow the forcePI/measurePO/clock-pulse sequence. Because there is only
one cycle, an option to define multiple cycles does not exist. Visually, the set of waveforms
for an active-high clock to define an MUXClock operation appear similar to that shown in
Figure 2

Figure 133 MUXClock: Active-High Clock Waveforms

   

When MUXClock waveforms have been defined, the WGL output will contain references to
two WGL muxparts for each clock signal in the design. An example of this construct for the
WGL signals and timeplate sections is as follows.

"CK" ["CK_Epulse", "CK_Ppulse"] :mux input;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

840

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Handling Untested Paths

Feedback

-
-
-

timeplate "_default_WFT_" period 100ns
"CK_Ppulse" := input [0ps:D, 75ns:S, 85ns:D];
"CK_Epulse" := input [0ps:D, 45ns:S, 55ns:D];
-
-
-

Limitations of MUXClock Support for Path Delay Patterns
The following limitations apply to MUXClock support for path delay patterns:

• Output pattern files containing MUXClock waveforms are not yet readable in TestMAX
ATPG.

• Bidirectional clocks in a design are not supported in WGL output when MUXClock
definitions are present. STIL output supports bidirectional clocks in the design.

ATPG Requirements to Support MUXClock
For MUXClock to function, the set_delay command options -nopi_changes and
-nopo_measures must be used. In MUXClock mode, there can be no change of PI state
or detectable PO information between the end-of-launch and the start-of-capture: the only
event that can happen in the capture operation is a clock pulse.

Handling Untested Paths
This following sections explain false and untestable paths, and describes how you can
handle them:

• Understanding False Paths

• Understanding Untestable Paths

• Reporting Untestable Paths

• Analyzing Untestable Faults

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

841

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Handling Untested Paths

Feedback

Understanding False Paths
A false path might be caused by a portion of combinational logic that is configured so a
path can never be fully exercised. In other words, the path can never propagate a high-
to-low or low-to-high transition from the startpoint to the endpoint. The following figure
illustrates a false path, ABCD.

Figure 134 False Path Example

   

The transition cannot be propagated to output D because of a blockage created by the
X0 pin driving U2 and subsequently U4. TestMAX ATPG identifies combinationally false
paths when reading paths and classifies the associated path delay fault as undetectable-
redundant (UR). False paths will also be flagged with a P21 rule violation (on-path values
not satisfiable).

Understanding Untestable Paths
TestMAX ATPG DSMTest might prove a path delay fault to be untestable for one of the
following reasons:

• It is a sequentially false path. Such paths cannot be tested in a functional mode,
because logic prevents the required state transitions.

• ATPG constraints or tester limitations might prevent some true paths from being tested.
DSMTest restrictions must adhere to all ATPG constraints.

• Redundant logic (for circuit speed) prevents a single path from being independently
tested. Multiplier arrays are a good example of such circuits.

If there are reconverging paths, you might want to use the
-allow_reconverging_paths option to the set_delay command. The default is
-noallow_reconverging_paths

• Paths that require multiple launch or capture events are not usually supported by
TestMAX ATPG and are declared untestable.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

842

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Handling Untested Paths

Feedback

Multicycle paths can often be tested if the appropriate clock timing is applied

• Other TestMAX ATPG restrictions might cause paths to be declared untestable. These
paths are usually flagged with a P-rule violation.

• Paths through RAMs or ROMs modeled with memory primitives are not supported by
TestMAX ATPG and are declared untestable.

Reporting Untestable Paths
A specific path delay fault might not be testable due to either a path rule violation or a
failure of path delay ATPG to find a test for the path. You can generate a list of P rule
violations using the report_violations P command. For analyzing undetectable and
untestable paths, check the results of rules P19, P20, P21, P22, P23, and P24.

The following example shows how to review untestable paths after ATPG:

TEST-T> report_faults -class AU
str AN path8
str AN path9
To display the delay for a particular path use the following command:

TEST-T> report_delay_paths path_name -verbose -display
Adding the -display option to the command displays the path in the GSV, where you
can annotate ports with delay path data by selecting delay data from the pindata list in the
Setup dialog box or by including the -pindata option.

The following figure shows a path being displayed in the GSV.

Figure 135 Path Display Example

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

843

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Handling Untested Paths

Feedback

Analyzing Untestable Faults
If a fault has been classified as ATPG Untestable, you can use the analyze_faults
path_name -slow r | f command to display the path in the GSV so you can analyze it.
For example, the following figure shows the displayed result of entering

analyze_faults CLK_0 -slow f -display

Figure 136 Analyze Untestable Faults Display

   

TestMAX ATPG performs fault analysis for the specified path. An incremental approach
to test generation is pursued in which the sensitization requirements for the path are
attempted one node at a time, until a path node is added that causes a justification failure
or a test is generated. With the -display option, pattern values for the last successful
justification are shown in the GSV for the specified path.

TestMAX ATPG Commands for Path Delay Fault Testing Example
In this example, the scan enable signal is constrained as in the transition fault testing
using system clock launch. However, this step is not needed if the circuit can support last
shift launch.

This example also uses commands specific to path delay testing such as the following:

• The set_delay -mask_nontarget_paths command, which ensures that TestMAX
ATPG does not generate expected values on multi cycle or false paths

• The set_delay -relative_edge command, which causes TestMAX ATPG to inject
both a slow-to-rise and a slow-to-fall fault for each path when you run the add_faults
-all command

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

844

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: Path Delay Fault and Hold Time Testing
Handling Untested Paths

Feedback

The following example also shows the pattern reporting commands that are unique to path
delay testing:

read_netlist ckt.v

run_build_model test_ckt

set_delay -nopi_changes -nopo_measures # if needed
set_delay -mask_nontarget_paths
set_delay -common_launch_capture_clock # if needed
set_delay -relative_edge # if required

add_capture_masks dff0 # if needed
add_slow_cells dff1 # if needed
add_slow_bidi -all

add_pi_constraints 0 scan_enable

run_drc ckt.spf

add_delay_paths ckt.paths

set_faults -model path
add_faults -all

run_atpg -auto

report_patterns -all -path_delay # if required
report_patterns -all -slack # if required

You can optionally run the following command
analyze_faults path0 -slow r -verbose -display -fault_sim

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

845

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

24
Quiescence Test Pattern Generation

TestMAX ATPG allows you to generate test patterns specifically targeted for quiescence,
or IDDQ, testing. You can also verify IDDQ test patterns and choose IDDQ strobe points in
existing patterns for maximum fault coverage.

The following topics describe the process for IDDQ test pattern generation:

• Why Do IDDQ Testing?

• About IDDQ Pattern Generation

• Fault Models

• DRC Rule Violations

• Generating IDDQ Test Patterns

• Using IDDQ Commands

• IDDQ Bridging

• Design Principles for IDDQ Testability

Why Do IDDQ Testing?
IDDQ testing can detect certain types of circuit faults in CMOS circuits that are difficult or
impossible to detect by other methods. IDDQ testing, when used to supplement standard
functional or scan testing, provides an additional measure of quality assurance against
defective devices.

IDDQ testing detects circuit faults by measuring the amount of current drawn by a CMOS
device in the quiescent state (a value commonly called “IddQ”). If the circuit has been
designed correctly, this amount of current is extremely small. A significant amount of
current indicates the presence of one or more defects in the device.

The following sections describe IDDQ testing in detail:

• CMOS Circuit Characteristics

• IDDQ Testing Methodology

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

846

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Why Do IDDQ Testing?

Feedback

• Types of Defects Detected

• Number of IDDQ Strobes

CMOS Circuit Characteristics
An important characteristic of CMOS circuits is that they draw almost no current in the
quiescent state. “Quiescent” means that the inputs are stable and the circuit is inactive.
System designers sometimes take advantage of this characteristic by having a power
down or sleep mode in which the device stops operating, but retains its internal state and
memory contents, thus conserving battery charge while the device is idle.

The following figure shows a schematic diagram of a typical CMOS inverter. The inverter
has two MOS transistors, one NMOS and the other PMOS. The two transistor gates are
tied together to make the inverter input, and the two drains are tied together to make the
inverter output.

Figure 137 CMOS Inverter Schematic Diagram

   

When the input is low, the upper transistor is on and the lower transistor is off, which pulls
the output up to the supply voltage (VDD). When the input is high, the upper transistor is
off and the lower transistor is on, which pulls the output to ground.

During a logic transition, a significant amount of current can flow while the capacitive
load on the output node is charged up to VDD or discharged to ground. However, in the
quiescent state, the only current that flows is the very small leakage current through the
transistor that is off.

To ensure that no current flows in the quiescent state, every node must be pulled either
low or high, and not allowed to float. For example, if the input of the inverter is allowed
to float, the voltage could drift to an intermediate value, putting both transistors into a
partially on state. This would allow a steady-state current to flow from VDD through the
two transistors to ground.

A logical NAND gate uses multiple PMOS transistors in parallel at the top and multiple
NMOS transistors in series at the bottom, as shown in the following figure. For each
combination of input values, the power supply current is extremely small in the quiescent
state because the path from VDD to ground is blocked by at least one off transistor.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

847

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Why Do IDDQ Testing?

Feedback

Figure 138 CMOS NAND Gate Schematic Diagram

   

IDDQ Testing Methodology
IDDQ testing is different from traditional circuit testing methods such as functional or stuck-
at testing. Instead of looking at the logical behavior of the device, IDDQ testing checks
the integrity of the nodes in the design. It does this by measuring the current drain of the
whole chip at times when the circuit is quiescent. Even a single defective node can easily
cause a measurable amount of excessive current drain. In order to place the circuit into a
known state, the IDDQ test sequence uses ATPG techniques to scan in data, but it does
not scan out any data.

For example, consider the short-to-ground defect shown in the following figure. Depending
on the controllability and observability characteristics of the defective node, this defect
might be detectable as a stuck-at-0 fault using functional or scan testing.

Figure 139 Short-to-Ground Defect

   

With IDDQ testing, this defect can be detected even if the node is not observable. You only
need to maintain the input of the inverter at logic 0, which turns on the upper transistor and
places the output of the inverter at logic 1.

It is normal for current to flow during switching, but after the device has settled for a period
of time, no more current should flow. At this point, an IDDQ strobe detects the excessive
current drain through the upper transistor and the short to ground. The current drain of a

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

848

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Why Do IDDQ Testing?

Feedback

single defect such as this can be orders of magnitude larger than the normal current drain
of the entire device in the quiescent state.

Similarly, an IDDQ strobe can detect a short to VDD. For example, in the inverter circuit
shown in the preceding figure, you only need to maintain the input of the inverter at logic 1,
which turns on the lower transistor and places the output of the inverter at logic 0. After the
device has settled, an IDDQ strobe detects the current drain through the short from VDD
to the node and the lower transistor.

Types of Defects Detected
IDDQ testing can detect many kinds of circuit defects that are difficult or impossible to
detect by functional or stuck-at testing, such as three-state enable nodes, redundant
logic, high-resistance faults, scan chain control/data paths, undetectable faults, possibly
detected faults, ATPG untestable faults, and bridging faults.

For example, consider the defect shown in the following figure, a resistive path to ground.
This node might pass initial stuck-at testing, but fail after burn-in or during actual use by
the customer. IDDQ testing can immediately detect this type of fault due to the excessive
current drain when the node is at logic 1, even if the node is not observable by stuck-at
testing.

IDDQ testing can partially or completely replace costly burn-in testing. Burn-in means
testing the device using functional or scan testing, operating the device for a period of time
under normal conditions, and then running the same tests to find any early failures in the
lifetime of the device. IDDQ testing can detect many burn-in type defects.

IDDQ testing can also detect bridging faults. A bridging fault is a short between two
different functional nodes in the design. An IDDQ strobe detects a fault of this type if one
node is at logic 0 while the other is at logic 1.

Figure 140 Resistive Path to Ground

   

Number of IDDQ Strobes
IDDQ testing can provide very high fault coverage with just a few strobes. The first IDDQ
strobe typically detects half of all short-to-ground and short-to-VDD faults. IDDQ test

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

849

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
About IDDQ Pattern Generation

Feedback

patterns attempt to change or toggle as many nodes as possible in subsequent patterns to
quickly increase fault coverage.

After the circuit nodes are forced to a known state, a certain amount of inactive time is
required to allow the nodes to settle before the IDDQ measurement. The required settling
time depends on the CMOS technology used and the required testing threshold. A tester
time “budget” of 10 or 20 IDDQ strobes is typically allowed for testing each device. This
number of strobes is usually enough to achieve satisfactory fault coverage.

About IDDQ Pattern Generation
The following figure shows the IDDQ testing flow using TestMAX ATPG test-pattern
generation. The ATPG algorithm attempts to sensitize all IDDQ faults and apply IDDQ
strobes to test all such faults. TestMAX ATPG compresses and merges the IDDQ test
patterns, just like ordinary stuck-at patterns.

Figure 141 IDDQ Testing Flow

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

850

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Fault Models

Feedback

While generating IDDQ test patterns, by default TestMAX ATPG avoids any condition that
could cause excessive current drain, such as strong or weak bus contention or floating
buses.

TestMAX ATPG generates an IDDQ test pattern and an IDDQ fault coverage report. It
generates quiescent strobes by using ATPG techniques to avoid all bus contention and
float states in every pattern it generates. The resulting test pattern has an IDDQ strobe for
every ATPG test cycle. In other words, the output is an IDDQ-only test pattern.

After the test pattern has been generated, you can use PowerFault simulation to verify the
test pattern for quiescence at each strobe. The simulation does not need to perform strobe
selection or fault coverage analysis because these tasks are handled by TestMAX ATPG.
Refer to the Test Pattern Validation User Guide for details about PowerFault.

TestMAX ATPG supports IDDQ testing in the following ways:

• It lets you generate test patterns that are targeted for IDDQ testing.

• It adds IDDQ verification and analysis capabilities into your Verilog simulator.

If you use the TestMAX ATPG stuck-at model to generate standard test patterns, you
can then use PowerFault technology to select the best strobe times in the resulting test
patterns.

An alternative approach is to use an existing set of stuck-at ATPG patterns and have the
Verilog/PowerFault simulation select appropriate IDDQ strobe times from those patterns.
This is described in section “Selecting Strobes in TestMAX ATPG Stuck-At Patterns” in the
Test Pattern Validation User Guide

Fault Models
TestMAX ATPG offers a choice of fault models: stuck-at, IDDQ, transition, bridging, and
path delay faults. You specify the IDDQ fault model to generate test patterns specifically
for IDDQ testing.

With an IDDQ fault model, TestMAX ATPG does not attempt to observe the logical
behavior of the device at the outputs. Instead, it tries to toggle as many nodes as possible
into both states while avoiding conditions that violate quiescence. Any node defects can
be detected by the excessive current drain that they cause. In this case, TestMAX ATPG
attempts to sensitize each node in the design, but does not try to propagate faults to the
device outputs.

TestMAX ATPG supports two IDDQ fault models:

• Pseudo-Stuck-At Fault Model (the default)

This fault model considers the functionality of each individual cell. It is similar to the
standard stuck-at ATPG model, except that every cell output is considered observable

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

851

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
DRC Rule Violations

Feedback

by IDDQ testing. The fault site at a gate input requires sensitization and propagation
to an output of the same gate (but not to an output of the device) to be given credit for
IDDQ fault detection. In other words, to be considered detected, a fault must cause an
incorrect value at the output of the cell.

• Toggle Fault Model

This fault model is a simple, net-only model that does not consider gate functionality.
Each fault site only needs to have its state controlled to be given credit for IDDQ fault
detection. The toggle model is less computationally intensive than the pseudo-stuck-at
model, but it is not guaranteed to detect as wide a range of faults inside cells.

DRC Rule Violations
TestMAX ATPG performs a wide range of test design rule checking (DRC) when you use
the run_drc command. Some DRC rule violations indicate that your design might not
be IDDQ testable or not fully modeled for IDDQ quiescence checking, or might require
additional ATPG effort to achieve circuit quiescence. To help avoid DRC violations, follow
the design guidelines in Design Principles for IDDQ Testability.

To view a list of rule violations after you perform design rule checking, use the
report_rules command. The following example shows a typical DRC violation report.

DRC Violation Report

TEST-T> report_rules -fail
rule severity #fails description
---- -------- ------ ---------------------------------
B6 warning 2 undriven module inout pin
B7 warning 178 undriven module output pin
B10 warning 32 unconnected module internal net
B13 warning 2 undriven instance input pin
S23 warning 64 unobservable potential TLA
S29 warning 1 invalid dependent slave operation
C3 warning 32 no latch transparency when clocks off
C6 warning 1 TE port captured data affected by new capture
Z1 warning 289 bus contention ability check
Z2 warning 289 Z-state ability check
Z4 warning 360 bus contention in test procedure

The following table lists TestMAX ATPG design rule violations that warrant investigation if
you plan to generate IDDQ test patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

852

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

Table 7 DRC Rule Violations and IDDQ Significance

Rul
e

Description, severity Significance for IDDQ testing

B5 Undefined module referenced, error Incomplete model; nonquiescent circuitry
could be missing

B7 Undriven module output pin, warning Possible floating net; could be just an unused
net

B9 Undriven module internal net, warning Possible floating net; could be just an unused
net

B1
2

Undriven instance input pin, error Likely to be a floating net

B1
8

Three-state and non-three-state drivers
combined, warning

Might require more ATPG effort to avoid bus
contention

N2 Unsupported construct, warning Incomplete model; nonquiescent circuitry
could be missing

Z1 Bus capable of contention, warning Might require more ATPG effort to avoid bus
contention

Z2 Bus capable of holding Z state, warning Might require more ATPG effort to avoid
floating buses

Z3 Wire capable of contention, error Likely to be a wired-net contention

Z7 Unable to prevent contention for circuit, error ATPG cannot find nonquiescent circuit state

Z8 Unable to prevent contention for bus, warning ATPG cannot avoid bus contention

X1 Sensitizable feedback path, warning Possible circuit oscillation

For more information about TestMAX ATPG design rule checking, see Performing Test
Design Rule Checking.

Generating IDDQ Test Patterns
The following sections describe how to generate IDDQ test patterns:

• IDDQ Test Pattern Generation Flow

• Using the iddq_capture Procedure

• Off-Chip IDDQ Monitor Support

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

853

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

IDDQ Test Pattern Generation Flow
The following steps show you how to generate IDDQ test patterns:

1. Set the fault type to IDDQ with the set_faults command.

2. Select the appropriate IDDQ fault model, either pseudo-stuck-at or toggle model, with
the set_iddq command.

3. Create the fault list with the add_faults or read_faults command.

4. Set the maximum number of IDDQ strobes with the set_atpg -patterns command.

5. Run pattern generation with the run_atpg command.

For example, here is a typical IDDQ ATPG session:

TEST-T> set_faults -model iddq
TEST-T> set_iddq -toggle # pseudo-stuck-at is the default
TEST-T> add_faults -all
TEST-T> set_atpg -patterns 20 # budget of 20 IDDQ strobes
TEST-T> run_atpg -auto_compression
The order of the steps is important. You cannot create the fault list until you have selected
the IDDQ fault model.

After you generate the IDDQ test patterns, you can use PowerFault simulation technology
to verify the patterns for quiescence. For more information, refer to the Test Pattern
Validation User Guide.

If you generate stuck-at patterns and you want to use PowerFault to select IDDQ strobes
from the pattern set, see “Selecting Strobes in TestMAX ATPG Stuck-At Patterns” in the
Test Pattern Validation User Guide.

Using the iddq_capture Procedure
When you create IDDQ patterns, TestMAX ATPG defines a procedure, called
iddq_capture, in the pattern output file. This procedure (shown in the following example)
is used when an IDDQ measure is performed:

"iddq_capture" {
W "_default_WFT_";
F { "testmode"= 1; }
V { "_pi"=\r379 # ; "_po"=\j \r276 X ; }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

854

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

IddqTestPoint;
V { "_po"=\r276 # ; }
}
}
TestMAX ATPG generates the default iddq_capture procedure when IDDQ test patterns
are written and the input STL procedure file does not define an iddq_capture procedure.
If you not define the iddq_capture procedure in the input STL procedure file, make sure
you specify the write_drc_file command after the write_patterns command so the
iddq_capture procedure is preserved in the output STL procedure file.

You should use the new STL procedure file in subsequent runs to provide the same
iddq_capture procedure. Since default flows change in various releases, it is important
to preserve the default behavior for these patterns. When WGL IDDQ patterns are
written, V4 errors will occur if these patterns are read in a context that does not define
the iddq_capture procedure. You can eliminate these problems in subsequent flows by
saving the new STL procedure file with the complete set of procedures.

You can also define customized iddq_capture procedures in the STIL procedure file and
pass them into the flow.

Off-Chip IDDQ Monitor Support
You can transfer information into off-chip IDDQ monitors as part of your IDDQ test data.
Typically, an off-chip IDDQ monitor is an additional hardware unit placed physically
adjacent to the device under test (DUT). The monitor is used to perform current
measurements and typically has extra signals that you use to control when and how IDDQ
measurements are performed.

Off-chip IDDQ monitors require two fundamental constructs to be supported at test. One
construct is to support the definition of additional signals present on the monitors as part
of the test flow. The second construct is the application of specific procedure calls at the
IDDQ measurement points.

The following sections describe how to include off-chip IDDQ monitor signals in your
testing:

• Specifying Additional Signals in the Netlist

• Defining the iddq_capture Procedure to Support Additional Signals

Specifying Additional Signals in the Netlist
Monitor signals are not part of the DUT nor are they part of the tester. They exist adjacent
to the DUT on the loadboard or some location near the DUT for signal measurement

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

855

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

integrity. While not part of the DUT, these signals are required because they must toggle
during IDDQ testing

Define these signals in an additional hierarchical level that conceptually represents the
DUT and off-chip IDDQ monitor as a single unit, as shown in the following figure. The only
requirement in the flow is the presence of the additional monitor signals; a representation
of the monitor itself is not required or expected.

Figure 142 Hierarchical Design With DUT and IDDQ Monitor

   

The following Verilog netlist shows how references to these signals could look, where the
prefix MONITOR_ is used on all the off-chip IDDQ monitor signals for easy identification:

// new top_module of design and MONITOR signals
module AAA_W_QSTAR (MONITOR_MD, MONITOR_CLK, MONITOR_DOUT,
... other design signals ...);
input MONITOR_MD, MONITOR_CLK ;
output MONITOR_DOUT ;
...
AAA DUT (... other design signals ...);
endmodule; // AAA_W_MONITOR

// top design module
module AAA (... other design signals ...);
...

Defining the iddq_capture Procedure to Support Additional
Signals
Using off-chip IDDQ monitors affects how you define the iddq_capture procedure
because the DUT needs to be controlled in particular during the capture operation. You

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

856

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

can expand the iddq_capture template to support operation of the additional IDDQ
monitor pins. The iddq_capture procedure will vary depending on operations present to
manipulate the IDDQ monitor or to return measurement data.

Because the monitor control signals are part of the netlist sent to TestMAX ATPG, these
signals need to be specified as “Fixed” signals in the flow for all other applications; that is,
held at their inactive states except during IDDQ testing.

The following example represents an application where the IDDQ measurement/settling
time is defined in a WaveformTable with minimal functionality, supporting only the
maintenance of the input states during this period. There are no requirements on the
name of this WaveformTable. The prefix MONITOR_ is used on all the off-chip IDDQ monitor
signals for easy identification.

Timing {
WaveformTable "_default_WFT_" {
Period '100ns';
Waveforms {
"_default_In_Timing_" { 0 { '0ns' D; } }
"_default_In_Timing_" { 1 { '0ns' U; } }
"_default_In_Timing_" { Z { '0ns' Z; } }
"_default_In_Timing_" { N { '0ns' N; } }
"_default_Clk0_Timing_" { P { '0ns' D; '50ns' U;
'80ns' D; } }
"_default_Out_Timing_" { X { '0ns' X; } }
"_default_Out_Timing_" { H { '0ns' X; '40ns' H; } }
"_default_Out_Timing_" { T { '0ns' X; '40ns' T; } }
"_default_Out_Timing_" { L { '0ns' X; '40ns' L; } }
}
}
WaveformTable "_IDDQ_MEASUREMENT_WFT_" {
Period '100us';
Waveforms {
"_default_In_Timing_" { 0 { '0us' D; } }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

857

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

"_default_In_Timing_" { 1 { '0us' U; } }
"_default_In_Timing_" { Z { '0us' Z; } }
"_default_In_Timing_" { N { '0us' N; } }
"_default_Out_Timing_" { X { '0us' X; } }
}
}
}
Procedures {
"load_unload" {
W "_default_WFT_";
// establish inactive states on the monitor during
Shift
V {"sdo"=X; "CLK"=0; "MONITOR_MD"=1; "MONITOR_CLK"=0;\
"MONITOR_DOUT"=X; }
Shift { V { "__si"=#; "__so"=#; "CLK"=P; } }
}
"capture*" { // All Capture Routines
Except iddq_capture
// Hold monitor inactive
F { "MONITOR_MD"=1; "MONITOR_CLK"=0; "MONITOR_DOUT"=X;
}
W "_default_WFT_";
V { ... }
}
"iddq_capture" {
W "_default_WFT_";
V { "_pi"=\r15 # ; "_po"=\j \r7 # ; }
IddqTestPoint;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

858

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

W "_IDDQ_MEASUREMENT_WFT_";

V { "MONITOR_MD"=0; "_out"=XXX ; } // Activate monitor
measurement
W "_default_WFT_";
V { "MONITOR_DOUT"=H; } // Detect successful
measurement (pass)
}
} // end Procedures

The following example merges the _po measure operation into the IDDQ measurement
vector. It requires a more complete WaveformTable to support the measure operation on
the outputs but reduces vector count in the iddq_capture procedure by one. Only the
WaveformTable and iddq_capture changes are shown here. The prefix MONITOR_> is
used on all the off-chip IDDQ monitor signals for easy identification.

Timing {
WaveformTable "_IDDQ_MEASUREMENT_WFT_" {
Period '100us';
Waveforms {
"_default_In_Timing_" { 0 { '0us' D; } }
"_default_In_Timing_" { 1 { '0us' U; } }
"_default_In_Timing_" { Z { '0us' Z; } }
"_default_In_Timing_" { N { '0us' N; } }
"_default_Out_Timing_" { X { '0us' X; } }
"_default_Out_Timing_" { H { '0us' X; '98us' H; } }
"_default_Out_Timing_" { T { '0us' X; '98us' T; } }
"_default_Out_Timing_" { L { '0us' X; '98us' L; } }
}
}
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

859

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Generating IDDQ Test Patterns

Feedback

Procedures {
"iddq_capture" {
W "_default_WFT_";
V { "_pi"=\r15 # ; "_out"= XXX ; }
IddqTestPoint;
W "_IDDQ_MEASUREMENT_WFT_";
V { "MONITOR_MD"=0; "_po"=\r7 # ; } // Activate monitor
measurement
W "_default_WFT_";
V { "MONITOR_DOUT"=H; } // Detect successful measurement
(pass)
}
}

The following example maintains the current IDDQ test sequence with the addition of the
extra cycles for the monitor’s operation at the end. While consistent with current IDDQ
constructs, this operation requires the most total cycles per IDDQ test. This construct can
operate with a minimal measure WaveformTable, or a larger WaveformTable, depending
on whether the outputs are masked in the monitor’s measure cycle. Because no state
changes are occurring, these outputs can remain in their previous measured state in the
next two vectors (requiring a more complete WaveformTable), or can be masked (requiring
less definitions in the monitor’s measure WaveformTable). The prefix MONITOR_ is used on
all the off-chip IDDQ monitor signals for easy identification.

Procedures {
"iddq_capture" {
W "_default_WFT_";
V { "_pi"=\r15 # ; "_out"= XXX ; }
IddqTestPoint;
V { "_po"=\r7 # ; }
W "_IDDQ_MEASUREMENT_WFT_";
V { "MONITOR_MD"=0; } // Activate monitor measurement.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

860

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Using IDDQ Commands

Feedback

// Note outputs still tested
W "_default_WFT_";
V { "MONITOR_DOUT"=H; } // Detect successful measurement
(pass)
}
}

Using IDDQ Commands
You can use the set_faults command to set the fault model. If you select the IDDQ fault
model, you can use the set_iddq command to specify the quiescence constraints and
toggle/no-toggle model type. The add_atpg_constraints command lets you set IDDQ-
specific ATPG constraints on nodes in the design.

These commands are described in the following sections:

• Using the set_faults Command

• Using the set_iddq Command

• Using the add_atpg_constraints Command

Using the set_faults Command
To generate IDDQ-only test patterns, use the set_faults -model iddq command. You
can specify the quiescence constraints and toggle/no-toggle model with the set_iddq
command.

To generate standard stuck-at test patterns, use the set_faults -model stuck
command. This is the default model.

For the complete syntax and option descriptions, see the online help for the set_faults
command.

Using the set_iddq Command
The float, strong, weak, and write options of the set_iddq command allow you to
specify the conditions required for quiescence. TestMAX ATPG will not generate a pattern
that fails to meet an enabled restriction.

The assertive option float, strong, weak, or write means that the restriction is enforced.
The restrictions minimize conditions that could cause excessive current drain, such as

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

861

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Using IDDQ Commands

Feedback

strong or weak bus contentions or floating buses. The negative option nofloat, nostrong,
noweak, or nowrite means that the restriction is removed and the condition is allowed. By
default, all the assertive options are in effect and all restrictions are enforced. To allow a
condition for IDDQ test pattern generation, use the appropriate negative option.

By default, the individual restrictions operate in the following manner:

• The float restriction means that every BUS gate must not be at the Z state during an
IDDQ measure.

• The strong restriction means that the IDDQ measure must be contention-free for
strong drivers of BUS gates.

• The weak restriction means that BUS gates with weak inputs must not compete with
other strong or weak BUS inputs during an IDDQ measure.

• The write restriction means that RAMs must not have an active write port during an
IDDQ measure.

The -atpg or -noatpg option determines whether the test generator attempts to satisfy
all the IDDQ constraints during pattern generation (-atpg), or only checks and discards
patterns that fail to meet these constraints after completion of pattern generation (noatpg).
The default setting is -noatpg.

The option toggle or notoggle option selects the type of IDDQ fault model. This selection
is valid only if you have selected the IDDQ fault model with the set_faults -model iddq
command. The default selection is notoggle, which selects the pseudo-stuck-at fault
model. To select the toggle model instead, use the toggle option. These two models are
described in Pseudo-Stuck-At Fault Model.

Using the add_atpg_constraints Command
The add_atpg_constraints command lets you define constraints that apply during the
generation of test patterns. For example, you can use this command to force a particular
internal node to the value 1 at the clock-on time for all test patterns.

In this command, you specify an arbitrary name to identify the constraint, the value of the
constraint (0, 1, or Z), and the place in the design where the constraint is to be applied.
You can optionally specify when the constraint must be satisfied by using the drc or iddq
option.

By default, the constraint must be satisfied only at clock-on time for test pattern
generation. Using the drc option means that the constraint must also be satisfied during
DRC procedures and ATPG analyses.

Using the iddq option means that the constraint only has to be satisfied during IDDQ
measure strobes, and only if the IDDQ fault model has been selected with the set_faults
-model iddq command. An IDDQ measure strobe corresponds to the time in the tester

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

862

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
IDDQ Bridging

Feedback

cycle when outputs are measured, as specified by the WaveformTable block in the
run_drc test protocol file.

IDDQ Bridging
You can use the IDDQ bridging fault model to generate additional patterns and increase
the IDDQ coverage. This fault model, which is specified using the set_faults -model
iddq_bridging command, behaves differently than the regular IDDQ fault model. Regular
IDDQ fault model has two versions of the same model (Toggle or Pseudo-Stuck-At). The
fault model for IDDQ bridging is only of type Toggle. This means that the fault site at a gate
input does not require propagation to an output of the same gate to be given credit for
IDDQ bridging fault detection.

In regular scan mode, unload values are written in the patterns to facilitate load/unload
overlapping by the tester. However, capture is not in effect when using the IDDQ bridge
fault model, and the unload values are exactly the same as the load values.

When the IDDQ bridging fault model is specified, the set_iddq -toggle command is
invalid because only one version of the model is available.

The IDDQ bridging fault model is similar to the bridging fault model except that bridging
faults are directly observed by an IDDQ strobe rather than by propagating the fault effect
to a scan cell. The primary purpose of performing IDDQ bridging fault ATPG is to detect
faults by inserting correct values into the fault nodes. As a result, there are no observation
requirements. For example, to detect the IDDQ bridging fault named ba0 node1 node2,
where the aggressor node is node1 and victim node is node2, APTG sets the node1 logic
value to 0 and the node2 logic value to 1.

The IDDQ bridging fault model uses the same fault codes as the bridging fault model.
The existing add_faults -node_file and -bridge_location options are used to read
net pairs and add the IDDQ bridging faults. The IDDQ bridging measurement criteria
is adjusted by a separate set_iddq command, as is the case with the regular IDDQ
fault model. During ATPG, the detection of one pair of bridges implies the detection of
another pair. This behavior can be controlled using the set_iddq -bridge_equivalence
command.

The flow to generate IDDQ bridging patterns is as follows:

set_fault -model iddq_bridging
optional setting of measurement critera
set_iddq nofloat
add_faults -node pair.txt
run_atpg -auto

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

863

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Design Principles for IDDQ Testability

Feedback

write_patterns iddq_bridging.stil -format stil
Note the following limitations related to IDDQ bridging ATPG:

• The analyze_faults command is not supported when using the IDDQ bridging fault
model.

• The strength-based optimizations used for the regular bridging fault model are not
supported for the IDDQ bridging fault model.

• Full-sequential ATPG does not support the IDDQ bridging fault model.

Design Principles for IDDQ Testability
The following design principles apply to designing your circuits for IDDQ testability:

• I/O Pads

• Buses

• RAMs and Analog Blocks

• Free-Running Oscillators

• Circuit Design

• Power and Ground

• Models With Switch/FET Primitives

• Connections

• IDDQ Design-for-Test Rule Summary

IDDQ testing and PowerFault simulation is more efficient and reliable if you follow these
requirements. For details about PowerFault, see the Test Pattern Validation User Guide.

I/O Pads
Put I/O pads on a separate power rail, if possible. Then you can test the I/O and core logic
separately as described in “Using PowerFault Technology” in the Test Pattern Validation
User Guide.

If I/O pads and core logic share the same power rail, use I/O pads that have controllable
pullups rather than passive pullups. This will allow the pullups to be gated out during IDDQ
testing.

Slew control for I/O pins must be disabled or I/O pins must be put on a separate rail. If I/O
pads and core logic share the same power rail, all DC paths from power to ground (such

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

864

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Design Principles for IDDQ Testability

Feedback

as slew control) must be disabled during IDDQ testing. There are two strategies to achieve
this:

• Use controllable pullups/pulldowns so that they can be gated out during IDDQ testing.
This is the preferred method.

• Drive pads so that pullups/pulldowns not active (for example, drive a pad with a pullup
to VDD). Have the testbench drive pads that have both pullups and pulldowns to VDD
(or to VSS if you are measuring ISSQ).

Buses
Use fully multiplexed bus drivers so that only one driver can be active at a time.
Furthermore, always drive a bus if possible, as described in the “Using PowerFault
Technology” in the Test Pattern Validation User Guide.

If buses cannot always be driven, gate buses at the receivers as described in “Using
PowerFault Technology” in the Test Pattern Validation User Guide.

If buses can’t be driven or gated, use keeper latches. Model keeper latches structurally as
described in “Using PowerFault Technology” in the Test Pattern Validation User Guide.

Avoid internal pullups and pulldowns. If possible, either drive or gate a bus to prevent it
from floating. If pullups and pulldowns must be used, model them structurally as described
in “Using PowerFault Technology” in the Test Pattern Validation User Guide.

Avoid tri1, tri0, wor, and wand wire types. Use pullup/pulldown primitives instead.

RAMs and Analog Blocks
Check your databook to make sure you do not hardwire your RAM into a high-current
state. RAMs and analog blocks that have high-current states require either a sleep mode
or a separate power supply.

If your chip uses a sleep mode for RAM or analog blocks, prevent IDDQ strobing when the
blocks are not in sleep mode by doing one of the following,

• Avoid invoking the strobe_try command when the chip is in a high-current state.

• Use the disallow command to tell PowerFault when RAM or analog blocks are in
high-current states.

If RAM or analog blocks are on a separate power rail and PowerFault reports them as
leaky, use the allow command to have PowerFault ignore them.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

865

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Design Principles for IDDQ Testability

Feedback

Free-Running Oscillators
Avoid free-running oscillators, if possible, because they draw current. If you must use a
free-running oscillator, disable it during IDDQ testing, or put the affected circuitry on a
separate power rail. Use the disallow command to tell PowerFault when the oscillator is
running.

Circuit Design
To prevent current drain through the substrate, connect the bulk node for n-type transistors
to VSS and the bulk node for p-type transistors to VDD.

Avoid degraded voltages. For example, avoid using an NMOS transistor to serve as a
pass gate.

Avoid circuits that put the gate and drain or source nodes of a transistor in the same
transistor group.

Avoid circuits that create control loops among transistor groups. Obviously, control loops
must exist to implement flip-flops and latches, but using certain flip-flop and scan chain
design rules can make bridging faults more testable.

Avoid circuits that use charge sharing or charge retention. Bridging faults within dynamic
(domino) logic cells are difficult to detect with IDDQ testing. Furthermore, the output
voltage of dynamic logic cells might degrade during an IDDQ measurement, causing the
inputs to the following static logic block to float.

Power and Ground
Declare supply0, supply1, tri0, and tri1 nets fed in from the testbench so that they have the
same type in the DUT. For example, if tbench.VDD1 is a supply1 net in the testbench and
it is connected to tbench.dut.vdd1, make sure that tbench.dut.vdd1 is also declared as a
supply1 net.

If you are using Verilog-XL, do not use cell ports for VSS/VDD. Use a local supply0 or
supply1 net, or a 'b0 or 'b1 constant to connect terminals and ports inside cells to VSS/
VDD.

If you are using VCS, connect terminals and ports to supply0 or supply1 nets instead of
using 'b0 or 'b1 constants.

Models With Switch/FET Primitives
Try to limit switch modeling to three-state cells.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

866

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Design Principles for IDDQ Testability

Feedback

Use user-defined primitives (UDPs) or standard logic gates to build models for
multiplexers, flip-flops, and latches.

Avoid tran, tranif0, and tranif1 primitives. Instead, use cmos, nmos, and pmos
primitives.

Avoid having channels of switch primitives in series extend between module scopes.

Do not pass three-state values (Zs) through switches or field effect transistors (FETs). If a
net can take on a three-state value, make the receivers (loads) strength-restoring gates,
not switch primitives.

Connections
Maintain cell-level hierarchy and avoid creating a very large cell containing many Verilog
primitives at the same level. Limit each bottom-level cell to a few hundred primitives at
most. (Most ASIC libraries have only a few primitives per bottom-level cell.)

Do not use continuous assignments to connect nets to nets.

Do not use continuous assignments to implement three-state drivers.

Do not use mismatched drivers to model latches and flip-flops. If possible, use UDPs.

Do not connect registers directly to gate terminals. Connect registers to wires (via
continuous assignments or module ports), and then connect the wires to gate terminals.

All internal buses should have gate loads. Each internal bus should fan out to at least
one gate input, instead of fanning out to only behavioral statements (such as continuous
assignments and event control for always blocks).

PowerFault is most accurate at identifying leaky states when used with gate-level models
and libraries. Avoid using RTL models because they might not contain enough structural
information to allow identification of floating nodes and drive contention.

IDDQ Design-for-Test Rule Summary
The following design-for-test (DFT) rules summarize the design principles for IDDQ
testing:

1. Define an IDDQ test mode signal that does not contend with the scan test mode signal.

2. Use separate power rails for the I/O and core modules.

3. Use fully complementary, fully static CMOS.

4. Use separate power rails for analog and nonstatic CMOS modules.

5. Use separate power rails for unknown or otherwise IDDQ-untestable cores.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

867

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Quiescence Test Pattern Generation
Design Principles for IDDQ Testability

Feedback

6. For RTL modules, specify any known input conditions and sequences that cause
internal contention. Use ATPG constraints or IDDQ allow or disallow statements (or
both).

7. For RTL modules, specify any known input conditions and sequences that cause
internal floating.

8. Use transistors to enable and disable pullups and pulldowns. Disable them with the
IDDQ test mode signal.

9. Using the IDDQ test mode signal, disable three-state and bidirectional outputs that
require pullups or pulldowns.

10. Each internal three-state nets requires one of the following: a bus holder, one-hot
enable logic, or logic to gate off all bits of the bus except for the least significant using
the IDDQ test mode signal.

11. Each compiled SRAM or ROM requires one of the following: 100 percent CMOS
circuitry, a separate power rail, or a defined condition controlled by the IDDQ test mode
signal that guarantees quiescence.

12. Do not allow SRAM and DRAM outputs to go to the Z state unless a bus holder is
present on the output.

13. Each compiled data path cell must either be 100 percent static CMOS or allow
quiescence control with the IDDQ Test Mode signal.

14. Do not allow any unconnected module or cell inputs.

Additional System-on-a-Chip Rules
The following rules apply to system-on-a-chip (SOC) applications:

1. Each core must have a test isolation mode. Each core must not be affected by other
cores or user-defined logic, and must not affect other cores or user-defined logic. Each
core must not be allowed or required to propagate contention or float conditions.

2. All cores and user-defined logic sharing a power rail must be quiescent during the time
each core is being IDDQ-tested.

3. It must be possible to stop the clock. The core must have a bypass clock signal from
the tester (a primary I/O).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

868

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

25
Running Distributed ATPG

TestMAX ATPG distributed ATPG launches multiple slave processes on a computer farm
or on several standalone hosts. The slave processes read an image file and execute a
fixed command script. ATPG distributed technology does not differentiate between multiple
CPUs and separate workstations. Each slave requires as much memory as a single CPU
TestMAX ATPG run. Distributed ATPG offers both scalability and runtime improvement.

The following topics describe how to set up and run distributed ATPG:

• Debugging Name Matching Errors

• Checking Your Environment for Distributed Processing

• Machine Access and Setup for Distributed ATPG

• Preparing to Run Distributed Processing

• Setting Up the Distributed Environment

• Setting Up the Distributed Environment With Load Sharing

• Verifying Your Environment

• Starting Distributed ATPG

• Starting Distributed Fault Simulation

• Debugging Distributed ATPG Issues

• Distributed ATPG Limitations

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

869

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Debugging Name Matching Errors

Feedback

Figure 143 Distributed Processing Flow

 

Select Fault

Run ATPG

Create Fault List

BUILD Mode

Gate-Level
Netlist

Read the
Netlist

Read the
Library Models

Library

Verilog
Simulation

Build the
ATPG Model

DRC Mode

STIL
Procedures Perform Design

Rule Checking

Set Distributed Environment

Model

Run Functional
Vectors

Fault List

Run Fault
Simulation

Functional
Vectors

Vectors
ATPG

Fault List

 

Debugging Name Matching Errors
When you perform physical diagnostics, it is crucial that the instance names match
between the logic netlist and the PHDS (physical design store) database. If mismatches
exist, TestMAX ATPG diagnostics cannot accurately extract the physical data used for
physical diagnostics.

You can use he match_names command to create a report that identifies name
mismatches between the logic and physical databases. The process for creating this name
matching report is described in Performing Name Matching.

Name matching errors typically occur when an instance is missing either in the netlist or in
the PHDS database, or an instance name uses a hierarchy in the netlist different from the
one in the PHDS database.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

870

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Debugging Name Matching Errors

Feedback

The following sections describe how to debug name matching errors:

• Debugging Missing Instances

• Debugging Hierarchical Mismatches

Debugging Missing Instances
A missing instance is the source of a mismatch when a memory module is included in the
logic netlist but its definition is missing in the LEF/DEF database. To identify this problem,
you need to examine one mismatch at a time and search specifically for memory name
mismatches. This process is described in the following steps:

1. Start TestMAX ATPG, read the design image, and connect to an existing PHDS
database, as described in steps 1 through 3 of Performing Name Matching.

2. Specify the match_names -sample -verbose command, and redirect the output to a
file, as shown in the following example:
match_names -verify sample -verbose > match_report.txt

3. Identify all the memory names in the match_names command output report.

4. Specify the report_instances command to determine if the identified instances are
defined in TestMAX ATPG diagnostics. For example:
report_instances I_TOP/RECEIVER/PACKET_CTRL/I_MEM24x16

5. Search the LEF/DEF files for the instances identified in the output report. For example,
you can apply the grep command to all the provided DEF files:
UNIX> grep I_TOP/RECEIVER/PACKET_CTRL/I_MEM24x16 ./DEF/TOP.def

6. If you discover that a memory module (or any other module) in the output file
is not present in the LEF/DEF files, you can use the -exclude option of the
set_match_names command to exclude the module from the matching process. For
example:
set_match_names –exclude DPMEM64x128

Alternatively, you can try to obtain the missing module from the source that originally
provided the LEF/DEF files.

Debugging Hierarchical Mismatches
Hierarchical mismatches are usually caused when a wrapper is used in the logic or
physical version of a design. For example, a physical design might contain an extra level
of hierarchy compared to the logic design, as shown in the following figure.

Figure 1 Example of Hierarchy Difference When Using a Wrapper in a Physical Design

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

871

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Debugging Name Matching Errors

Feedback

   

To fix a hierarchical mismatch issue similar to the example in aforementioned figure, use
the -sub_prefix option of the set_match_names command, as shown in the following
example:

 set_match_names –sub_prefix {I_RISC_CORE WRAPPER/I_RISC_CORE}

It is also possible that the logic design might have an extra level of hierarchy compared to
the physical design, as shown in the following figure.

Figure 2 Example of Hierarchy Difference When Using a Wrapper in a Logical Design

   

To fix a hierarchical mismatch similar to the example shown in the aforementioned
figure, use the -sub_prefix option of the set_match_names command, as shown in the
following example:

set_match_names –sub_prefix {“WRAPPER/” “”}

After identifying and fixing the name mismatches, you can rerun the match_names
command, check for any additional mismatches, and debug them as necessary.

See Also

• Understanding the Name Matching Coverage Report

• Physical Diagnosis Overview

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

872

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Checking Your Environment for Distributed Processing

Feedback

Checking Your Environment for Distributed Processing
Perform the following tasks to make sure you can run ATPG distributed processing:

1. Verify that you can use the UNIX rsh command to log in on each slave machine
without having to supply a password, as shown in the following example:

rsh <machine_name>

See Machine Access and Setup.

2. Verify that each slave machine has an identical search the path to TestMAX ATPG, as
shown in the following example:

rsh <machine_name> which tmax

See Machine Access and Setup.

3. If you are using LSF for launching slaves, find out from your system administrator what
queues or special options you need to use. The machine that you run as master should
be a valid LSF submit host. You can verify that it is an LSF host by trying a sample LSF
job.

/path/to/bsub -q hw-vlsi tmax -shell -version

4. If you are using GRD for launching the slave, ask your system administrator if you need
to use any special project name or queue. The machine that you run as master should
be a valid GRID submit host. You can verify that it is a grid host by trying a sample grid
job.

/path/to/qsub $SYNOPSYS/bin/tmax -shell -version

Machine Access and Setup for Distributed ATPG
Distributed ATPG makes use of the UNIX rsh command to login and launch distributed
processing on slave machines. To setup your system:

1. Make sure that you have network access to each slave machine. You should
successfully perform step 2 described previously, which verifies that you can log in on
each slave machine without having to supply a password.

If you are prompted for a password, create a .rhosts file in your home directory.

Add to that file the names of the slave machines in a list format. This list categorizes
the slave machines as "trusted hosts."

Another technique is to put a single "+" entry (without the quotation marks) in
your .rhosts file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

873

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Preparing to Run Distributed Processing

Feedback

If you are still not able to rsh to a machine after creating a .rhosts file, refer to the
manpage for rsh or talk to your System Administrator or contact your IT group.

Inability to use rsh will result in a M316 error message when you attempt to run
distributed ATPG.

2. Make sure TestMAX ATPG is set up identically on each slave machine. You should
successfully do step 3 above, which verifies that each slave machine accesses
TestMAX ATPG through the same network path. If this is not the case

3. There might be something in your .cshrc file (or equivalent) might be preventing the
machine from locating TestMAX ATPG on the network. This could happen if you have
tty, stty, or interactive statements in your .cshrc file. To debug this, add echo statements
to your .cshrc file to determine where the search fails.

4. If you cannot fix your .cshrc file or you are not setting the path to TestMAX ATPG
through your .cshrc (or equivalent file), you can use the -script option of the
set_distributed command to pass a script for setting up TestMAX ATPG on the
slave. Here's an example csh/sh/tcsh script:

#!/bin/csh -f setenv SYNOPSYS /tools/tmax/V-2003.12 set path
 ($SYNOPSYS/bin $path) tmax $*

The inability to set the search path to TestMAX ATPG on the slave machines causes a
M315 error message when you attempt to run distributed ATPG.

Preparing to Run Distributed Processing
Before running distributed processing, you need to build the design model and run DRC.

Example Script:

BUILD-T> read_netlist Libs/*.v -delete -library -noabort
BUILD-T> run_build_model top_level
DRC-T> set_drc top_level.spf
DRC-T> run_drc
For details, see "Building the ATPG Model" and "Running DRC."

You also need to select the fault model and create the fault list. Note that N-detect ATPG
and fault simulation are not supported for distributed ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

874

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Setting Up the Distributed Environment

Feedback

The following is a summary of the support for distributed ATPG and the various fault
models:

• The stuck-at fault model is supported by basic-scan, fast-sequential, and full-sequential
ATPG

• The path delay fault model is supported by fast-sequential, and full-sequential ATPG

• The transition fault model is supported by basic-scan, fast-sequential, and full-
sequential ATPG

• The IDDQ fault model is supported by basic-scan and fast-sequential ATPG

• The bridging fault model is supported by basic-scan and fast-sequential ATPG

The following example scripts are for selecting fault models for distributed processing:

Example 1:

TEST-T> set_faults -model stuck
TEST-T> add_nofaults top_level/module1/sub_mod
TEST-T> add_faults -all
Example 2:

TEST-T> set_faults -model transition
TEST-T> set_delay -nopi_change -nopo_measure
TEST-T> set_delay -launch last_shift
TEST-T> read_faults specFaultList.flt

Setting Up the Distributed Environment
Defining the working directory is the first step in setting up the environment for distributed
processing. The working directory stores all the files required for exchanging data between
the various machines, including the log files. This directory must be accessible by each
machine involved in the distributed process and they must be able to read from and write
to this directory, as shown in the following example:

TEST-T> set_distributed -work_dir /home/dist/work_dir
The working directory must be specified using an absolute path name starting from the
root of the system. Relative paths are not supported in the current TestMAX ATPG release.
If you do not specify a working directory, the current directory is used as the default work
directory.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

875

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Setting Up the Distributed Environment

Feedback

After you set the working directory, you can populate the distributed processors list; for
example:

TEST-T> add_distributed_processors zelda nalpari
Arch: sparc-64, Users: 22, Load: 2.18 2.14 2.17
Arch: sparc-64, Users: 1, Load: 1.45 1.41 1.40
The following commands help you maintain this list:

• add_distributed_processors

• remove_distributed_processors

• report_distributed_processors
For every machine, you automatically get the type of platform (Architecture), as well as the
number of users currently logged on that machine and the processor load. You can add as
many distributed processes as you want on one machine. However, you should know in
advance the number of processors on that machine in order not to start more distributed
processes than the number of available processors. Even if it is technically possible, the
various processes would have to share time on the processors; thus you will not be able to
take full advantage of the parallelization.

TestMAX ATPG supports heterogeneous machine architectures (sparcOS5, Linux, and
HP-UX). For example,

TEST-T> add_distributed_processors proc1_sparcOS5 proc2_Linux \
proc3_HPUX
You can visualize the current list of machines in the list of distributed processors with the
report_distributed_processors command; for example:

TEST-T> report_distributed_processors
Working directory ==> “/remote/dtg654/atpg/dfs” (32bit)
-------****-------
MACHINE: zelda [ARCH: sparc-64]
MACHINE: nalpari [ARCH: sparc-64]
-------****-------
You get both the name of the machine and its architecture. If you see the same machine
name several times, this means that several distributed processes were launched on this
machine. The working directory is also displayed in the report along with the type of files in
use (32- or 64-bit). This type of file is automatically determined by the master machine. If

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

876

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Setting Up the Distributed Environment With Load Sharing

Feedback

the master machine is a 32-bit machine, then distributed processes will have to be 32-bit
also. If the master is a 64-bit machine, then everything has to follow 64-bit conventions.

You might want to remove some machines from this list (for example because of an
overloaded machine). In this case, you can use the remove_distributed_processors
command; for example:

TEST-T> remove_distributed_processors zelda
TEST-T> report_distributed_processors
Working directory ==> “/remote/atpg/dfs” (32bit)
-------****-------
MACHINE: nalpari [ARCH: sparc-64]
-------****-------
You can use the report_settings distributed command to get a list of the current
timeout and shell settings; for example:

BUILD-T> report_settings distributed
distributed = shell_timeout=30, slave_timeout=100,
print_stats_timeout=30, verbose=-noverbose,
shell=rsh;

Setting Up the Distributed Environment With Load Sharing
TestMAX ATPG supports the load sharing facility (LSF) and GRID network management
tools. When you are using load sharing, jobs are submitted to a queue instead of to
specific machines. The load sharing system manager then decides on which machine the
job is started. This allows you to maximize the usage efficiency of your network.

To populate the distributed processor list, you need to use the
add_distributed_processors command to specify the absolute path to the LSF and
GRID submission executables (bsub), as well as the number of slaves to be spawned
and additional options. For using LSF to launch the slaves, all of these options must be
specified. For using GRID to launch the slaves, all of these options must be specified as
well as the -script option of the set_distributed command. If you do not have any
additional options to pass to bsub, you can pass empty options using -options " ". For
descriptions of these options, see the online help for the add_distributed_processors
command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

877

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Setting Up the Distributed Environment With Load Sharing

Feedback

Note the following example:

BUILD-T> add_distributed_processors \
-lsf /u/tools/LSF/mnt/2.2-glibc2/bin/bsub -nslaves 4 \
-options "-q lb0202"
BUILD-T> report_distributed_processors
Working directory ==> "/remote/dtgnat/Distributed"
(32bit)
-------****-------
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
-------****-------
Notice that instead of getting some distributed processors in the report, you see **lsf**.
This is because no job has been started yet, and thus, no distributed processor has
been assigned to the job. After you issue the run_atpg -distributed command (or
the run_fault_sim -distributed command), four jobs are assigned to four distributed
processors. However, this is transparent to you.

You cannot remove only one distributed processor from the list when you are using
the LSF environment. If you simply want to change the current number of distributed
processors in the pool, you have to issue a new add_distributed_processors
command with the correct value for the -nslaves option. Every time you issue an
add_distributed_processors command under the LSF environment, it overrides the
previous definition of your distributed processor list. Here is an example:

BUILD-T> add_distributed_processors \
-lsf /u/tools/LSF/mnt/2.2-glibc2/bin/bsub -nslaves 3 \
-options "-q lb0202"
BUILD-T> report_distributed_processors
Working directory ==> "/remote/dtgnat/Distributed"
(32bit)
-------****-------

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

878

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Verifying Your Environment

Feedback

MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
-------****-------

Verifying Your Environment
Each time TestMAX ATPG starts a distributed process, it issues the tmax command. As a
consequence, be sure you have the tmax script directly accessible from each distributed
processor machine. Do not alias this script to another name or TestMAX ATPG will not be
able to spawn distributed processes. The safest approach is to have the path to this script
added in your PATH environment variable. For example:

setenv SYNOPSYS /softwares/synopsys/2004.12
set path = ($SYNOPSYS/bin $path)
For a discussion about the use of the SYNOPSYS_TMAX environment variable, see
“Specifying the Location for TestMAX ATPG Installation”.

Remote Shell Considerations
If you are running distributed processing by directly running the host names, TestMAX
ATPG relies on the rsh (remsh for HP platforms) UNIX command to start a process on a
distributed processor machine. This command is very sensitive to the user environment,
so you could experience some problems because of your UNIX environment settings. In
case you get an error message while adding a distributed processor, refer to the message
list at the end of this document to find out the reason and some advice on how to solve the
problem.

You need to have special permissions to start a distributed process with a rsh (or remsh)
command. In a classical UNIX installation, those permissions are given by default,
however your system administrator might have changed them. If you experience any issue
with starting slaves and suspect it is due to this command, enter the following:

rsh distributed_processor_machine "tmax -shell"

If you get an error message, it is related to your local UNIX environment. Contact your
system administrator to solve this issue.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

879

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Starting Distributed ATPG

Feedback

Tuning Your .cshrc File
You should pay special attention to what you put in your .cshrc file. Avoid putting
commands that exercise the following behavior:

• Are interactive with the user (that is, the system asking the user to enter something
from the keyboard). Because you will not have the ability to answer (distributed
processes are transparent to the user), it is likely that the process will halt waiting for
an answer to a question you will never get.

• Require some GUI display. Your DISPLAY environment variable will not point to your
master machine when the rsh (or remsh) command starts a distributed process. As a
consequence, the system will put the task “tty output stopped mode” on the distributed
processor machine, and your master will wait for a process that has quit running.

If you have any trouble using the add_distributed_processors command, you
might want to have a dedicated .cshrc file for running your distributed tasks. A basic
configuration should help you get through these issues.

Checking the Load Sharing Setup
If you are planning to run distributed ATPG with load-sharing software, make sure you
have the following information available to you.

• Path to the load sharing application(bsub for LSF and qsub for GRID)

• Required options (like project name or queue name)

The TestMAX ATPG session for the master must be run on a machine that is a valid
submit host capable of submitting jobs to load sharing software.

Starting Distributed ATPG
Distributed ATPG works in a similar way as distributed fault simulation. You simply have to
add the -distributed switch on the run_atpg command line to trigger a distributed job;
for example:

TEST-T> run_atpg -distributed -auto
The master process sends the fault information to the distributed processors in a collapsed
format. Thus, all reports refer to the collapsed fault list. Note that the reported faults will
not add up: there is a difference between collapsed and non-collapsed faults. The master
only sends active faults.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

880

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Starting Distributed ATPG

Feedback

Each slave contains all the faults. In this case, the fault list is not split; only the ATPG
process is split. The slave log files try to report uncollapsed faults, but since they only
receive collapsed faults information, the number reported is actually collapsed faults.

The following example shows how the master collapse fault list correlates to the slaves
uncollapsed fault list. In this case, 1715195 is the key number of faults that appear in both
reports. Note that even though the slave file reports the faults as uncollapsed, the faults
are actually the collapsed list from the master.

Comparing the Master Collapse Fault List to the Slaves Uncollapsed Fault List

 From master log file:
report_faults -summary -collapse
Collapsed Stuck Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 802240
Possibly detected PT 0
Undetectable UD 34404
ATPG untestable AU 127879
Not detected ND 1715195

total faults 2679718
test coverage 30.33%

run_atpg -auto -dist
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Master: Starting distributed process with 3 slaves ...
Slaves: About to get licenses ...
Slaves: About to restore master's session ...
Master: Removing temporary files ...
Master: Sending 1715195 faults to slaves ...
Master: End sending faults. Time = 14.00 sec.
 From slave log file:
run_atpg -auto

* NOTICE: The following DRC violations were previously *
* encountered. The presence of these violations is an *
* indicator that it is possible that the ATPG patterns *
* created during this process might fail in simulation. *
* *
* Rules: C8 *

ATPG performed for stuck fault model using internal pattern source.

#patterns #patterns #faults #ATPG faults test process
simulated eff/total detect/active red/au/abort coverage CPU time
--------- --------- ------------- ------------ -------- --------
Begin deterministic ATPG: #uncollapsed_faults=1715195, abort_limit=10...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

881

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Starting Distributed ATPG

Feedback

If you have some vectors in the external buffer before starting distributed ATPG, they
are automatically transferred into the internal buffer. The new vectors created during
distributed ATPG are added to this existing set of vectors. After the run is complete, you
will have both the external vectors and the ATPG created vectors in the internal pattern
buffer. If you do not want to merge those sets, you have to clean the external buffer before
starting distributed ATPG by issuing a set_patterns -delete command.

As the following transcript shows, TestMAX ATPG starts the various processes and issues
some informational messages to keep you informed at the beginning of the run. A warning
or error message is issued if TestMAX ATPG cannot proceed. Then, TestMAX ATPG starts
generating the vectors.

run_atpg -auto -distributed
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Master: Starting distributed process with 2 slaves ...
Slaves: About to get licenses ...
Slaves: About to restore master's session ...
Master: Removing temporary files ...
Master: Sending 5918 faults to slaves ...
Master: End sending faults. Time = 1.00 sec.

#patterns #collapsed faults test process
total inactive/active coverage CPU time
--------- ----------------- -------- ----------
Compressor unload adjustment completed:
#patterns_adjusted=241,
#patterns_added=0,
CPU time=1.00 sec.
Uncollapsed Stuck Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 8109
Possibly detected PT 0
Undetectable UD 10
ATPG untestable AU 28
Not detected ND 11

total faults 8158
test coverage 99.52%
fault coverage 99.40%
ATPG effectiveness 99.87%

Pattern Summary Report

#internal patterns 243

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

882

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Starting Distributed ATPG

Feedback

Where:

#patterns total = The total number of patterns generated up to this point.

#collapsed faults inactive = The number of collapsed faults already processed by TestMAX
ATPG.

#collapsed faults active = The number of collapsed faults not yet processed.

process CPU time = The time consumed up to this point.

At the end of the pattern generation process, TestMAX ATPG automatically prints a
summary for the faults and the vectors.

When using the set_atpg -patterns max_patterns command, for some designs that
run quickly, the master sends a signal to stop the slaves. However, because of a network
delay for this signal, the pattern count is already met; therefore the pattern count might
already have exceeded the limit.

Saving Results
The following sample script shows you how to save results:

TEST-T> set_faults -summary verbose
TEST-T> report_faults -summary
TEST-T> report pattern -summary
TEST-T> write_faults final.flt -all -collapsed -compress gzip -replace
TEST-T> write_patterns final_pat.bin.gz \
-format binary -compress gzip -replace
TEST-T> write_patterns final_patv -format verilog_single_file -replace

Distributed Processor Log Files
When you run distributed ATPG or distributed fault simulation, the tool creates a log file
in the work directory for each slave. The name of this log file is derived from the name of
the master log file appending a number to it. For example, if the master log file is defined
with a set_messages log run.log -replace command, a command that indicates you
are running distributed ATPG with four slaves, the log files that are created would be called
“run.log.1," “run.log.2,” “run.log.3,” and “run.log.4.”

The tool creates the slave log files to give you visibility to the activity happening on the
slaves.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

883

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Starting Distributed Fault Simulation

Feedback

Note that if you run distributed ATPG multiple times in the same session, the slave log
files are overwritten by each run. If you want to prevent the slave log files from being
overwritten, you can either save a copy or redefine the work directory by issuing a
set_distributed -work_dir command before starting a new distributed run.

Starting Distributed Fault Simulation
After the functional vectors are read into the TestMAX ATPG external pattern buffer, you
simply need to add the -distributed option to the run_fault_sim command to trigger
the parallelization of the process; for example:

TEST-T> run_fault_sim -distributed
Master: Saving patterns for slaves ...
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Master: Starting distributed process with 2 slaves .
..
Slaves: About to get licenses ...
Slaves: About to restore master's session ...
Slaves: About to read in patterns ...
Master: Removing temporary files ...
Master: Sending 98 faults to slaves ...
Master: End sending faults. Time = 0.00 sec.

#patterns #collapsed faults test process
simulated inactive/active coverage CPU time
--------- ----------------- -------- ----------
Fault simulation completed: #patterns=32
Uncollapsed Path_delay Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 61
detected_by_simulation DS (2)
detected_robustly DR (59)
Possibly detected PT 0
Undetectable UD 0
ATPG untestable AU 33
atpg_untestable-not_detected AN (33)
Not detected ND 4
not-controlled NC (4)

total faults 98
test coverage 62.24%
fault coverage 62.24%
ATPG effectiveness 95.92%

Pattern Summary Report

#internal patterns 0

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

884

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Starting Distributed Fault Simulation

Feedback

#external patterns (pat.bin) 32
#full_sequential patterns 32

Events After Starting A Distributed Run
First, the master machine writes an image of the database in the working directory. This
image is a binary file containing everything the distributed processors need to know to
process the fault simulation. This file can be rather large, because it is based on the size
of your design, so as soon as the database is read by the slaves, it is deleted from the
disk. Next, the distributed processes are started (see the message in the example report
shown in the next section). If something goes wrong at this step (problem with starting the
slave processors), TestMAX ATPG will notify you and stop.

After the distributed machines read the database, they are in the same state as the master
with respect to the information about the design. The fault list is then split among the
various processors and they all start to run concurrently. Whenever a slave processor
finishes its job, it sends some information back to the master machine and then it shuts
down. If any of the slaves unexpectedly dies during the process, the master machine will
detect it and that process stops. An error message is issued to notify you. After every
slave processor finishes, the master machine computes the fault coverage and prints out
the final results.

Interpreting Distributed Fault Simulation Results
The transcript that follows shows the relevant information displayed during distributed fault
simulation.

TEST-T> run_fault_sim -distributed
Master: Saving patterns for slaves ...
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Slaves: About to get licenses ...
Slaves: About to restore master’s session ...
Slaves: About to read in patterns ...
Master: Removing temporary files ...
Master: Sending 98 faults to slaves ...
Master: End sending faults. Time = 0.00 sec.

#patterns #collapsed faults test process
simulated inactive/active coverage CPU time
--------- ----------------- -------- ----------
--------- ----------------- -------- ----------
Fault simulation completed: #patterns=32
Uncollapsed Path_delay Fault Summary Report

fault class code #faults
------------------------------ ---- ---------

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

885

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Debugging Distributed ATPG Issues

Feedback

Detected DT 61
detected_by_simulation DS (2)
detected_robustly DR (59)
Possibly detected PT 0
Undetectable UD 0
ATPG untestable AU 33
atpg_untestable-not_detected AN (33)
Not detected ND 4
not-controlled NC (4)

total faults 98
test coverage 62.24%
fault coverage 62.24%
ATPG effectiveness 95.92%

Pattern Summary Report

#internal patterns 0
#external patterns (pat.bin) 32
#full_sequential patterns 32

Where:

#patterns simulated = The number of patterns simulated

#collapsed faults inactive = The number of faults TestMAX ATPG has already processed

Debugging Distributed ATPG Issues
You might encounter the following issues when setting up to run distributed ATPG:

• If you specify the host directly, verify your environment based on information provided
in "Checking your Environment" above. If you are using the -script option of the
set_distributed command and your command file contains lines similar to this:

set_distributed -script /home/pjaini/datpg_setup

add_distributed_processors yosemite goldengate

Enter something similar to the following:

rsh yosemite /home/pjaini/datpg_setup -shell -version

This should return the proper version of TestMAX ATPG and you should not see any
additional messages.

• For GRID, assume your command entries look like the following to launch the slave
processors:

set distributed processor -script /user/larry/tmax_launch

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

886

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Debugging Distributed ATPG Issues

Feedback

add distributed processor -grd "/hw/tools/grid/qsub" -nslaves 5 -options "-P hw-rush"

Then, in an xterm window, enter:

% /hw/tools/grid/qsub -P hw-rush /user/larry/tmax_launch -version -shell

Check to make sure your GRID has been launched. You should see a message from
GRID indicating your job has been submitted and the TestMAX ATPG version string is
printed wherever your GRID job output would normally appear. The standard output
from a GRID job could be sent to you via email or stored in some file in your home
directory, depending on your GRID settings.

If the job does not launch, find the set of options (that is, project name, queue name,
and so forth) required for launching a GRID job.

• For LSF, assume your command entry looks like the following to launch the slave
processors:

add_distributed_processors -lsf "/path/to/bsub" -nslaves 5 -options "-q bnormal "

Then, in an xterm window, enter:

% /path/to/bsub -q normal tmax -version -shell

Check to make sure your LSF job has been launched. Your indication for this is an
email notifying you that the job has ran and the TestMAX ATPG version string prints
in the output. Note that some LSF setups might mandate the use of certain queues or
project names.

• Debugging a "Master: Couldn't start the daemon ..." message. There are two conditions
where this message could occur:

1. The job was never launched. To check that the job launched, enter the following
when you see the "Master: Spawning the slaves.." message:

For GRID:

qstat -u <username>

For LSF:

bjobs -u <username>

If you do not get an indication that the job is running, check to make sure you can
launch the jobs from xterm window as described above.

2. Jobs were launched, but are not scheduled to be executed yet. If you see that
the jobs have been launched, try increasing the slave setup timeout with a
set_distributed -slave_setup command entry.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

887

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Running Distributed ATPG
Distributed ATPG Limitations

Feedback

A less likely possibility is an error with the read/write image process. Prior to
running distributed ATPG, write out the image file (for example, write_image
save.img -viol), and then read the image in a new TestMAX ATPG session (for
example, read_image save.img). If you get an error message when you read the
image in this new session, contact Synopsys Support with a testcase.

Received "Error: At least one slave died" message. This message indicates that one of
slave processors terminated in the middle of pattern generation. Possible causes are:

◦ a slave machine was rebooted or restarted

◦ a slave process was explicitly killed

◦ a slave process ran out of memory

Distributed ATPG Limitations
The following limitations are associated with distributed ATPG:

• The -analyze_untestable_faults option of the set_atpg command is not
supported.

• N-detect ATPG and fault simulation are not supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

888

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

26
Persistent Fault Model Support

TestMAX ATPG supports a variety of fault models that abstractly represent real-world
defects. Supported models include the stuck-at, transition, path delay, bridging, dynamic
bridging, and IDDQ models. These models are implemented in a serial manner, which
means that only one model is active at any time.

When you change fault models, TestMAX ATPG flushes the current fault list from memory,
along with any internal patterns, and starts again from scratch.

The single-fault model approach is inefficient in terms of pattern count and runtime. A set
of transition patterns, for example, will also detect a certain number of stuck-at faults; but
transition ATPG does not recognize them. Before you run stuck-at ATPG, you can reduce
the stuck-at pattern count by fault-grading the stuck-at fault list against the transition
patterns to prune previously detected faults. The stuck-at pattern reduction can be quite
significant. Conversely, when you generate transition and stuck-at patterns in isolation, you
waste time and patterns generating tests for stuck-at faults that were already detected by
the transition patterns.

Persistent fault model support helps you manage multiple fault model flows easily by
providing an automated way for TestMAX ATPG to perform the following operations:

• Persistent Fault Model Overview

• Persistent Fault Model Operations

• Direct Fault Crediting

• Example Commands Used in Persistent Fault Model Flow

Persistent Fault Model Overview
The persistent fault model flow is enabled by the set_faults
-persistent_fault_models command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

889

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Persistent Fault Model Operations

Feedback

This flow enables the following behaviors:

• The fault list for the active fault model is saved in a cache. When you return to
an inactive fault model, the saved faults are restored. When path delay faults are
preserved, the delay paths are also preserved.

• The report_faults -summary command prints the total number of faults and the test
coverage for each inactive fault model.

• All other fault-oriented commands continue only to affect the active fault model. This
includes, but is not limited to, the following commands: run_atpg, run_fault_sim,
write_faults, read_faults, add_faults, and remove_faults.

• The fault lists are preserved when you switch to DRC mode. You can't interact with the
lists in DRC mode, but they will still be available when you return to TEST mode. ATPG
untestable faults (AU) are automatically reset for any fault list that was in the cache
during DRC mode.

• Faults detected in the transition fault model are credited as equivalent stuck-at detects
without fault simulation. This is activated by the update_faults -direct_credit
command.

See Also

• IDDQ Testing

Persistent Fault Model Operations
The following sections describe the primary processes associated with the persistent fault
model flow:

• Switching Fault Models

• Working With Internal Pattern Sets

• Manipulating Fault Lists

• Reporting Persistent Fault Models

See Also

• Working with Fault Lists

• What Are Fault Models?

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

890

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Persistent Fault Model Operations

Feedback

Switching Fault Models
You can set a different fault model in the persistent fault model flow, even if you have faults
in the active fault model, as shown in the following example:

Example Commands Used for Switching Fault Models
set_faults -persistent_fault_models
set_faults -model transition
add_faults -all
run_atpg -auto
(Transition faults exist)
set_faults -model bridging

In this case, if you do not set the -persistent_fault_models option, TestMAX ATPG will
issue an M106 error.

Working With Internal Pattern Sets
The internal pattern set, and generated patterns in general, are preserved even if the
fault model is changed in the persistent fault model flow. This means you can run fault
simulation with an alternate fault model, as shown in the following example.

Running Fault Simulation With an Alternative Fault Model
set_faults -persistent_fault_models
set_faults -model stuck
add_faults -all
set_faults -model transition
add_faults -all
run_atpg -auto
set_faults -model stuck
(Transition fault patterns are preserved as internal pattern set)
update_faults -direct_credit
run_fault_sim

If you need to change primary input (PI) constraints or the STL procedure file, you still
need to return to DRC mode. After you are in DRC mode, the saved internal pattern set is
deleted.

Manipulating Fault Lists
The following topics explain how to manipulate fault lists:

• Automatically Saving Fault Lists

• Automatically Restoring Fault Lists

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

891

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Persistent Fault Model Operations

Feedback

• Removing Fault Lists

• Adding Faults

Automatically Saving Fault Lists
A fault list is automatically saved in the cache as an inactive fault model when a fault
model is changed or when you go back to DRC mode. The following example shows how
to save fault lists automatically.

Automatically Saving Fault Lists
set_faults -persistent_fault_models
add_pi_constraint 1 mem_bypass
run_drc compression.spf
set_faults -model stuck
add_faults -all
set_faults -model transition
(Stuck-at fault list is saved)
add_faults -all
run_atpg -auto
drc -f
(Transition fault list is saved)
remove_pi_constraints -all
add_pi_constraint 0 mem_bypass
run_drc compression.spf

Automatically Restoring Fault Lists
A fault list is automatically restored from the cache as an active fault model when a fault
model is reactivated or before exiting DRC mode. See the following example.

Automatically Restoring Fault Lists
set_faults -persistent_fault_models
add_pi_const 1 mem_bypass
run_drc compression.spf
set_faults -model stuck
add_faults -all
set_faults -model transition
(Stuck-at fault list is saved)
add_faults -all
run_atpg -auto
drc -f
(Transition fault list is saved)
remove_pi_constraints -all
add_pi_const 0 mem_bypass
run_drc compression.spf
(Transition fault list is restored)
run_atpg -auto
set_faults -model stuck
(Transition fault list is saved)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

892

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Persistent Fault Model Operations

Feedback

(Stuck-at fault list is restored)
update_faults -direct_credit
run_fault_sim

The process of automatically restoring fault lists is equivalent to executing the command
read_faults fault.list -retain_code. Therefore, when you return to DRC mode
and change the STL procedure file, you might see some minor differences in the fault
summaries obtained before DRC.

Removing Fault Lists
There are several different ways to remove fault lists:

• Use the command remove_faults -all to remove a fault list on an active fault model.

• Use the command set_faults -nopersistent_fault_models to delete all inactive
fault lists from the cache.

• When you return to BUILD mode, all fault lists are automatically removed.

Adding Faults
There are some precautions you need to take when adding faults. Even when the
command set_faults -persistent_fault_models is enabled, faults cannot be added
when an internal pattern set is present. The following figure shows the actual situations
that are considered when adding faults.

Figure 144 Process For Adding Faults

   

Note that the processes described in the “Followed by” column always require a fault list.
However, if an internal pattern is present in any process in the “Patterns Generated By”
column, you cannot add faults.

If you try to add faults to a different model when an internal pattern set is present,
TestMAX ATPG will issue an M104 error.

The following example shows an example flow for adding faults.

Typical Flow For Adding Faults

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

893

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Persistent Fault Model Operations

Feedback

set_faults -persistent_fault_models
set_drc compression.spf
run_drc
set_faults -model stuck
add_faults -all
set_faults -model transition
add_faults -all
run_atpg -auto
set_faults -model stuck
(You can't add faults here because internal pattern set is present)
update_faults -direct_credit
run_fault_sim

Reporting Persistent Fault Models
When the persistent fault model flow is enabled and inactive fault models are present,
TestMAX ATPG prints additional information when any of the following conditions exist:

• TestMAX ATPG exits the DRC process

• The ATPG process is completed

• The report_summaries command is executed

The following example shows an example of an Uncollapsed Stuck Fault Summary
Report.

Typical Uncollapsed Stuck Fault Summary Report
Uncollapsed Stuck Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 2000576
detected_by_simulation DS (1610727)
detected_by_implication DI (389849)
Possibly detected PT 0
Undetectable UD 1331
undetectable-unused UU (504)
undetectable-tied UT (491)
undetectable-blocked UB (295)
undetectable-redundant UR (41)
ATPG untestable AU 18985
atpg_untestable-not_detected AN (18985)
Not detected ND 13052
not-controlled NC (565)
not-observed NO (12487)

total faults 2033944
test coverage 98.42%

Inactive Fault Summary Report

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

894

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Direct Fault Crediting

Feedback

fault model total faults test coverage
---------------- ------------ -------------
Transition 1841908 96.46%

This report shows inactive faults list information. These numbers can be changed using
the set_faults -report [-collapsed | -uncollapsed] command.

When you execute direct fault crediting using the update_faults -direct_credit
command, you will see shorter reports that show how many faults are credited to DS, DI
and NP. These faults are also generated by the set_faults -report [-collapsed |
-uncollapsed] command. The following example shows an example report using this
command.

Report Created Using the update_faults -direct_credit Command
update_faults -direct_credit
15597 stuck-at faults were changed to DS from the inactive transition
 fault list.
0 stuck-at faults were changed to DI from the inactive transition fault
 list.
0 stuck-at faults were changed to NP from the inactive transition f
 ault list.

Direct Fault Crediting
The persistent fault model flow supports direct fault crediting. To understand how this
works, consider an example slow-to-rise (STR) transition fault. A pattern that detects this
fault on a particular node must control that node from a 0 to a 1 and observe the result
in a specified amount of time. To detect a stuck-at-0 (SA0) on the same node, only the 1
needs to be observed, and the timing is irrelevant. Thus, any slow-to-rise detection can be
detected as a stuck-at-0 detection without actually simulating the transition patterns.

Direct fault crediting is enabled by running the update_faults -direct_credit
command.

This command automatically reads back the transition fault list if it is in the cache, and it
credits the following fault models:

• Dynamic bridging (victim only) faults to transition delay faults

• Dynamic bridging faults to static bridging faults

• Dynamic bridging (victim only), static bridging (victim only), and transition delay faults
to stuck-at faults

The following example shows a typical direct fault crediting flow.

Typical Direct Fault Crediting Flow

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

895

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Direct Fault Crediting

Feedback

set_faults -persistent_fault_models

set_faults -model bridging
add_faults -node_file nodes.txt

run_atpg -auto

set_faults -model transition

(transition fault patterns are preserved as internal pattern set)

add_faults –all

run_atpg -auto

set_faults -model bridging
update_faults -direct_credit

(Transition fault detections can’t be credited to bridging faults, so
 fault simulation is necessary)
run_fault_sim

The following example shows an example log of applying direct credit with four fault
models.

Applying Direct Credit to Stuck-at Faults
set_faults -model stuck

81568 faults moved to the inactive bridging fault list.

419252 stuck faults moved to the active fault list.

3126 stuck AU faults were reset.

update_faults -direct_credit

112790 stuck faults were changed to DS from the inactive
 dynamic_bridging fault list.
0 stuck faults were changed to DI from the inactive dynamic_bridging
 fault list.

0 stuck faults were changed to NP from the inactive dynamic_bridging
 fault list.

10121 stuck faults were changed to DS from the inactive bridging fault
 list.

0 stuck faults were changed to DI from the inactive bridging fault list.

0 stuck faults were changed to NP from the inactive bridging fault list.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

896

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Direct Fault Crediting

Feedback

203578 stuck faults were changed to DS from the inactive transition fault
 list.

0 stuck faults were changed to DI from the inactive transition fault
 list.
0 stuck faults were changed to NP from the inactive transition fault
 list.

The following table describes the direct fault crediting process.

Table 8 Direct Fault Crediting Process

Transition Fault
Status

Existing Stuck-at Fault Status Updated Stuck-at Fault Status

DS Not DS DS

DI Not DS DI

TP (small delay defect) Not DS DS

AP Not DT or AP NP

NP Not DT or AP NP

If the -persistent_fault_models option is not enabled, you can apply direct crediting to
stuck-at faults by using -external option if you have transition fault list. The following is a
script example that uses this method:

Script Example Using the -external Option
run_drc compression.spf

set_faults -model stuck

add_faults -all

update_faults -direct_credit -external transition.flt

run_atpg -auto

See Also

• Fault Categories and Classes

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

897

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Example Commands Used in Persistent Fault Model Flow

Feedback

Example Commands Used in Persistent Fault Model Flow
The following example shows the commands used in a typical persistent fault model flow:

read_netlist des_unit
run_build_model des_unit
set_delay -launch system_clock
#
#Activate persistent fault model feature
#
set_faults -persistent_fault_models
#
Model=Transition memory bypass=No OCC=Yes
#
add_pi constraints 0 memory_bypass
run_drc des_unit.spf -patternexec comp
set_faults -model stuck
add_faults -all
set_fault -model transition
add_faults -all
run_atpg -auto
write_patterns trans_bp0_occ1.bin -format binary
set_faults -model stuck
#
Credit transition detections to stuck-at faults.
#
update_faults -direct_credit
#
Optional step to increase fault coverage
run_fault_sim
#
drc -force
remove_pi_constraints -all
remove_clocks -all
#
Model=Stuck-at memory bypass=Yes OCC=No
#
add_pi_constraints 1 memory_bypass
run_drc des_unit.spf -patternexec comp_occ_bypass
set_fault -model stuck
run_atpg -auto
write_patters stuck_bp1_occ0.bin -format binary
drc -force
remove_pi_constraints -all
remove_clocks -all
#
Model=Stuck-at memory bypass=No OCC=No
#
add_pi_constraints 0 memory_bypass_mode
run_drc des_unit.spf -patternexec comp_occ_bypass
set_faults -model stuck

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

898

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: Persistent Fault Model Support
Example Commands Used in Persistent Fault Model Flow

Feedback

run_atpg -auto
write_patterns stuck_bp0_occ0.bin -format binary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

899

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

27
Using TestMAX ATPG and DFTMAX Ultra
Compression

DFTMAX Ultra compression is an advanced test compression technology that delivers the
optimal quality of results as measured by test time, data volume, design area, congestion,
and time to implementation.

TestMAX ATPG has built-in knowledge of DFTMAX Ultra compression and its pattern
decompression and compression technology. Using a design netlist and a STIL procedure
file, TestMAX ATPG generates a set of test patterns specifically intended for the DFTMAX
Ultra test mode.

The following sections describe how to use TestMAX ATPG with DFTMAX Ultra
compression:

• Generating Patterns for DFTMAX Ultra Designs

• High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnosis

• Test Validation and VCS Simulation for DFTMAX Ultra Designs

• Limitations for Using DFTMAX Ultra

Generating Patterns for DFTMAX Ultra Designs
To generate patterns for DFTMAX Ultra designs you must use either serial STIL or parallel
STIL patterns generated by TestMAX ATPG. DFTMAX Ultra compression does not accept
any other pattern format.

The following sections describe how to generate patterns specifically for a DFTMAX Ultra
design:

• Pattern Types Required by DFTMAX Ultra

• Script Example for Generating Patterns for DFTMAX Ultra

• Manipulating Patterns for DFTMAX Ultra

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

900

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
Generating Patterns for DFTMAX Ultra Designs

Feedback

Pattern Types Required by DFTMAX Ultra
TestMAX ATPG generates two types of STIL test patterns that can be used by DFTMAX
Ultra compression:

• Serial STIL– These patterns are used for both scan testing and simulation of full scan
testing. The test patterns are applied to the device for testing on the ATE and are used
for simulating the entire test procedure, including serial scan-in data, decompression
of the scan-in data, launch and capture, compression of the scan-out data, and serial
scan-out data.

• Parallel STIL– These patterns are used for fast simulation of the launch and capture
phases of scan testing. The decompressed test patterns are loaded directly into the
scan chains in parallel and bypasses the serial scan-in and scan-out parts of the
simulation.

You can write serial or parallel STIL patterns with or without the unified STIL
flow. However, to use the unified STIL flow, you must explicitly specify the –
unified_stil_flow option. The following example writes STIL patterns using the unified
STIL flow:

TEST-T> write_patterns patterns.stil -format stil \
 -unified_stil_flow
For details on generating serial and parallel STIL patterns, see the Writing ATPG Patterns
section.

After you simulate and validate the results of the test procedure using several test
patterns, you can skip these patterns in future runs. You can then selectively simulate the
launch and capture segments using additional test patterns loaded in parallel.

Script Example for Generating Patterns for DFTMAX Ultra
The following script is an example of a TestMAX ATPG pattern generation session for a
chip that uses DFTMAX Ultra compression:

USER INPUTS AND DFTMAX ULTRA OUTPUT FILES ###set
TOP_MODULE_NAME top_module_nameset NETLIST_FILES1 netlist_files1set
NETLIST_FILES2 netlist_files2set LIBRARY_FILES1 library_files1set
LIBRARY_FILES2 library_files2set BUILD_CONSTRAINTS_FILE
build_constraints_fileset DRC_CONSTRAINTS_FILE drc_constraints_fileset
STL procedure file_FILE spf_fileset LOG log_filesetenv SYNOPSYS
path_to_tool_installation############### BUILD SETTINGS
###################set_messages -level expert -log $LOG
-replacereport_version -fullbuild -forceset_faults -pt_credit
0set_faults -summary verboseset_rules N2 warningset_rules B12
warningset_rules B5 warningset_faults -atpg_effectivenessset_atpg

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

901

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
Generating Patterns for DFTMAX Ultra Designs

Feedback

-verboseset_netlist -redefined_module lastread_netlist
$NETLIST_FILES1read_netlist $NETLIST_FILES2read_netlist
$LIBRARY_FILES1 -libraryread_netlist $LIBRARY_FILES2
-librarysource -echo $BUILD_CONSTRAINTS_FILErun_build_model
$TOP_MODULE_NAME############### DRC SETTINGS ###################source
-echo $DRC_CONSTRAINTS_FILEset_faults -model stuckrun_drc
$STL procedure file_FILE#################### RUN ATPG
####################add_nofaults -module .*COMPRESSOR.*add_faults
-allrun_atpg -auto_compressionrun_simulation –
remove_padding_patternswrite_patterns ultra.stil format stil

Manipulating Patterns for DFTMAX Ultra
You can use the update_streaming patterns command to modify or remove ATPG-
generated patterns for use in DFTMAX Ultra compression. In some cases, the order in
which you specify this command depends on whether you are using internal or external
patterns.

The following topics describe how to use the update_streaming_patterns command to
manipulate ATPG-generated patterns:

• Controlling the Peak and Average Power During Shifting

• Increasing the Maximum Shift Length of Patterns

• Optimizing Padding Patterns

• Removing and Reordering Patterns

Controlling the Peak and Average Power During Shifting
You can use the -load_scan_in option of the update_streaming_patterns command
to control the peak and average power during shifting. This option enables you to specify
certain scan-in pins to maintain a constant value during the shift operations. For example,
if you specify a value of 0 for the test1 scan-in pin, the pattern is modified so that all test1
pins maintain a constant 0 value during load shifting.

You can specify values for as many scan-in pins as required using the Tcl list syntax. The

-load_scan_in option reduces overall power consumption during shifting, and it can
be used for both internal and external patterns. However, this option also causes some
coverage loss and simulation mismatches might occur if you specify scan-in pins
connected to OCC chains.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

902

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
Generating Patterns for DFTMAX Ultra Designs

Feedback

The following example modifies internal patterns for the test_si1 and test_si3 pins after
running ATPG:

TEST-T> run_atpg -auto
TEST-T> update_streaming_patterns -load_scan_in \ {test_si1 0
 test_si3 1}
The next example updates external patterns created during ATPG with the specified
values of the test_si4 and test_si7 scan-in pins:

TEST-T> set_patterns -external pat.stil
TEST-T> update_streaming_patterns -load_scan_in \ {test_si4 1
 test_si7 1}

Increasing the Maximum Shift Length of Patterns
You can use the -max_shifts option of the update_streaming_patterns command to
specify the maximum shift length, which enables you to increase the size of internal and
external patterns from the optimal value set by TestMAX ATPG. You can use this option
before an ATPG run so the generated patterns use the specified shift length or you can
apply it to external patterns. The -max_shifts option prevents overshifting and makes the
pattern shift lengths equal across different blocks, which assures correct pattern porting.

You can apply this option in an initial session to increase the shift length of the patterns,
then use these same patterns in another session by writing and reading them back again.
For subsequent sessions, make sure you set the pattern shift length to the same value set
in the previous session. Otherwise, you will see errors and simulation mismatches.

The following example uses the -max_shifts option before an initial ATPG run:

read_image design.img
update_streaming_patterns –max_shifts 300
 run_atpg –auto
write_patterns pat.stil -format stil –serial –replace

The following example applies the -max_shifts option in a second session using external
patterns:

read_image design.img
update_streaming_patterns –max_shifts 320
set_patterns -external pat.stil

Optimizing Padding Patterns
When you use DFTMAX Ultra compression technology, the MUX control bits for each test
pattern are loaded by the previous pattern. During ATPG, patterns are created in groups.
For the first pattern in a group, TestMAX ATPG prepends a padding pattern that loads
the required MUX control bits. During the later stages of pattern generation, TestMAX
ATPG searches for patterns that do not incrementally detect new faults and removes those
patterns from the pattern set. This process also introduces padding patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

903

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
Generating Patterns for DFTMAX Ultra Designs

Feedback

You can use the -remove_padding_patterns option of the

update_streaming_patterns command to optimize padding patterns by removing all
padding patterns except for the first and last padding pattern.

Figure 145 Optimizing Padding Patterns

   

Performing Padding Pattern Optimization
The following commands optimize padding patterns for an internal pattern set generated
by ATPG:

run_atpg ...
update_streaming_patterns –remove_padding_patterns
write_patterns ...

The following commands optimize padding patterns for an external pattern set:

set_patterns –external stil_file_name
update_streaming_patterns –remove_padding_patterns
write_patterns ...

Removing and Reordering Patterns
Use the -remove and -insert options of the update_streaming_patterns command to
remove and reorder individual patterns and blocks of patterns.

To remove one or more patterns, specify a list using the -remove option of the

update_streaming_patterns command.

The following command removes patterns 3 and 9:

update_streaming_patterns -remove {3 9}

You can specify blocks of patterns by providing the first and last pattern numbers of the
block as a sublist inside the pattern removal list. You can mix individual pattern numbers
and pattern blocks in the list.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

904

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnosis

Feedback

The following command removes patterns 5 through 7:

update_streaming_patterns -remove {{5 7}}

The following command removes patterns 3, 5 through 7, and 9:

update_streaming_patterns -remove {3 {5 7} 9}

To remove patterns and reinsert them at a different location in the pattern set, use both the

-insert and -remove options of the update_streaming_patterns command. For each
pattern number or block provided in the removal list, specify the pattern number at which
the removed patterns should be reinserted in the insertion list. For removed patterns that
you do not want reinserted, specify an insertion pattern value of X. Note that all removal
pattern numbers are pre-manipulation values.

The following command removes pattern 3, and reinserts patterns 4 through 6 at pattern 0:

update_streaming_patterns -remove {3 {4 6}} -insert {X 0}

You can issue multiple the update_streaming_patterns command using the
-remove and -insert options. Each command resequences the patterns and
pattern numbers after performing the specified pattern manipulations. Subsequent
update_streaming_patterns commands must refer to the resequenced pattern
numbers.

You can reorder chain test patterns, stuck-at patterns, and transition fault patterns.
However, you cannot perform reordering operations that mix these pattern types. If you
mix pattern types, an error is reported, as shown in the following example:

Error: Pattern 2 and 13 are not of same type. Reordering is
possible between patterns of same type only
Transition patterns are 6 to 99
Chain test patterns are 1 to 5

High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnosis
If a failing part has multiple chain defects, you can create high resolution patterns that can
more accurately identify failing scan cells when there are multiple failing scan chains.

The following sections describe the basic steps to this process:

• Identifying Defective Chains

• Generating High Resolution Patterns

• Rerunning Diagnosis

• Flow Example

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

905

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnosis

Feedback

Identifying Defective Chains
You need to perform an initial chain diagnostics run to identify a set of defective chains
based on the chain test failures reported in the failure log file. To do this, specify the
-streaming_report_chains_only option of the run_diagnosis command, as shown in
the following example:

run_diagnosis failure_log_file.log -streaming_report_chains_only
 chain_fail_report.txt

Generating High Resolution Patterns
To generate a set of high resolution patterns that identify the failing flip-flops in the
defective chains, apply the add_chains_masks command to the entire production pattern
set (including the chain test patterns and other logic patterns). You then use these patterns
to generate a new set of failure log files that are used to identify the defective flip-flops.
The following example shows this process:

Note:
If you mask the chain using the add_chain_mask command, the compares
during output capture may fail. Use the add_cell_constraint xx command to
avoid failing.

set_patterns –external full_pattern_set.stil
add_chain_masks –filename chain_fail_file.txt -diagnosis –external
write_patterns high_resolution_set.stil –format stil -external

Rerunning Diagnosis
Using the newly generated high resolution patterns, you need to retest the failing part
and collect the new fail data. You can then rerun diagnostics using the failure log file
generated from the high resolution patterns. You don't need to use any specific options in
the run_diagnosis command for DFTMAX Ultra compression designs, as shown in the
following example:

run_diagnosis high_res_pat_failure_log_file.log -verbose

Flow Example
read_image image_file.dat

Step 1
Run diagnostics to identify defective chains
run_diagnosis high_res_pat_failure_log_file.log
 -streaming_report_chains_only chain_fail_list
set_patterns –delete

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

906

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
Test Validation and VCS Simulation for DFTMAX Ultra Designs

Feedback

Step 2
Read full pattern test file
set_patterns -external full_pattern_set.stil

Use add_chain_masks command to generate high resolution patterns
add_chain_masks -external -filename chain_fail_list -diagnosis

Write the patterns
write_patterns high_resolution_set.stil –format stil -external

Step 3
Retest the failing part with the high resolution patterns and collect
 the fail data

Step 4
set_patterns -external high_resolution_set.stil

Main diagnosis run using log file generated using high resolution
 patterns
run_diagnosis high_res_pat_failure_log_file.log -verbose

Test Validation and VCS Simulation for DFTMAX Ultra Designs
You can perform test pattern validation for a DFTMAX Ultra design using MAX Testbench
and then run a VCS simulation to validate the test protocol and test patterns.

For more information, see the Using MAX Testbench in the Test Pattern Validation User
Guide.

The validation process for a DFTMAX Ultra design uses a serial STIL file or a parallel STIL
file.

Limitations for Using DFTMAX Ultra
The following ATPG requirements and limitations apply to DFTMAX Ultra compression:

• Full-sequential ATPG is not supported

• Path delay fault testing is supported only for fast-sequential ATPG.

• The write_patterns command normally writes out a unified STIL file by default,
which uses a single STIL file for both serial and parallel simulation. You can perform
serial or parallel simulation using the unified STIL flow. However, to use this flow for
DFTMAX Ultra designs, you must explicitly specify the -unified_stil_flow option to
write out the STIL pattern files.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

907

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: Using TestMAX ATPG and DFTMAX Ultra Compression
Limitations for Using DFTMAX Ultra

Feedback

• The following options of the set_drc command are not supported:

◦ -lockup_after_compressor | -nolockup_after_compressor

◦ -pipeline_in_compressor | -nopipeline_in_compressor

• The -per_pin_limit option of the set_diagnosis command is not supported.

• You cannot mix the generation of launch-on-capture (LOC) and launch-on-shift (LOS)
patterns in the same session.

• The analyze_faults, analyze_compressors, and run_justification commands
are not supported.

• Retention tests are not supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

908

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

28
Troubleshooting

The following sections describe troubleshooting tips and techniques:

• Reporting Port Names

• Reviewing a Module Representation

• Rerunning Design Rule Checking

• Troubleshooting Netlists

• Troubleshooting STIL Procedures

• Analyzing the Cause of Low Test Coverage

• Completing an Aborted Bus Analysis

• Using Pipeline Guidance

Reporting Port Names
To verify the names of top-level ports, you can obtain a list of the inputs, outputs, or
bidirectional ports for the top level of the design using these commands:

DRC-T> report_primitives -pis
DRC-T> report_primitives -pos
DRC-T> report_primitives -pios
DRC-T> report_primitives -ports
To obtain the names of ports for any specific module, use the following command:

DRC-T> report_modules module_name -verbose
The following example shows a verbose report produced by the report_modules
command. The names of the pins are listed in the Inputs and Outputs sections.

Verbose Module Report

TEST-T> report_modules INC4 -verbose pins

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

909

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Reviewing a Module Representation

Feedback

module name tot(i/ o/ io) inst refs(def'd) used
---------------- ---------------- ---- ----------- ----
INC4 11(5/ 6/ 0) 10 1 (Y) 1
Inputs : A0 () A1 () A2 () A3 () CI ()
Outputs : S0 () S1 () S2 () S3 () CO () PR ()
PROP1 : and conn=(O:PROP I:A0 I:A1 I:A2 I:A3)
HADD0S : xor conn=(O:S0 I:A0 I:CI)
HADD1S : xor conn=(O:S1 I:A1 I:C0)
HADD2S : xor conn=(O:S2 I:A2 I:C1)
HADD3S : xor conn=(O:S3 I:A3 I:C2)
HADD0C : and conn=(O:C0 I:A0 I:CI)
HADD1C : and conn=(O:C1 I:A1 I:C0)
HADD2C : and conn=(O:C2 I:A2 I:C1)
CARRYOUT : and conn=(O:CO I:PROP I:CI)
buf9 : buf conn=(O:PR I:PROP)
--

Reviewing a Module Representation
To review the internal representation of a module definition, you will need to specify
the report_modules command with the name of the module and the -verbose option.
Alternatively, you can use the run_build_model command and specify the name of the
module as the top-level design.

You might want to review the internal representation of a library module in TestMAX
ATPG if errors or warnings are generated by the read_netlist command. For example,
suppose that you use the read_netlist command to read in the module csdff, whose
truth table definition is shown in Truth Table Logic Model, and the command generates the
warning messages shown in Read Netlist Showing Warnings.

Truth Table Logic Model
primitive csdff (Q, SDI, SCLK, D, CLK, NOTIFY);
output Q; reg Q;
input SDI, SCLK, D, CLK, NOTIFY;
table
// SDI SCLK D CLK NR : Q- : Q+
// --- --- --- ---- --- : --- : ---
? 0 0 (01) ? : ? : 0 ; // clock D=0
? 0 1 (01) ? : ? : 1 ; // clock D=1
0 (01) ? 0 ? : ? : 0 ; // scan clock SDI=0
1 (01) ? 0 ? : ? : 1 ; // scan clock SDI=1
? 0 * 0 ? : ? : - ; // hold
* 0 ? 0 ? : ? : - ;
? 0 ? 0 ? : ? : - ;
? 0 ? (?0) ? : ? : - ;
? (?0) ? 0 ? : ? : - ;
? 0 ? ? * : ? : x ; // force to X
endtable
endprimitive

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

910

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Rerunning Design Rule Checking

Feedback

Read Netlist Showing Warnings
BUILD-T> read_netlist csdff.v
Begin reading netlist (csdff.v)...
Warning: Rule N15 (incomplete UDP) failed 64 times.
Warning: Rule N20 (underspecified UDP) failed 2 times.
End parsing Verilog file test.v with 0 errors;
End reading netlist: #modules=1, top=csdff, #lines=25,
CPU_time=0.01 sec

To review the model:

1. Execute the run_build command:

BUILD-T> run_build_model csdff
2. Click the SHOW button in the graphical schematic viewer (GSV) toolbar, and from the

pop-up menu, choose ALL.

A schematic similar to the following figure appears, allowing you to examine the ATPG
model.

Figure 146 Module Showing Correct Interpretation

   

Do not be concerned if the schematic shows extra buffers. During the model building
process, TestMAX ATPG inserts these buffers wherever there is a direct path to a
sequential device from a top-level port. These buffers are not present in instantiations of
the module in the design.

Rerunning Design Rule Checking
The file specified in the run_drc command is read each time the design rule checking
(DRC) process is initiated. You can quickly test any changes that you make to this file by
issuing another run_drc command, as follows:

DRC-T> run_drc specfile.spf

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

911

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Troubleshooting Netlists

Feedback

pause here for edits to DRC file
TEST-T> drc -force
DRC-T> run_drc

Troubleshooting Netlists
The following tips are for troubleshooting problems TestMAX ATPG might encounter while
reading netlists:

• For severe syntax problems, start troubleshooting near the line number indicated by
the TestMAX ATPG error message.

• Focus on category N rules; these cover problems with netlists.

• To see the number of failures in category N, execute the report_rules n -fail
command.

• To see all violations in a specific category such as N9, execute the
report_violations n9 command.

• To see violations in the entire category N, execute the report_violations n
command.

• Netlist parsing stops when TestMAX ATPG encounters 10 errors. To increase this limit,
execute the set_netlist -max_errors command.

• When reading multiple netlist files using wildcards in the read_netlist command, to
determine which file had a problem, reread the files with the -verbose option and omit
the -noabort option.

• Extract the problematic module definition, save it in a file, and attempt to read in only
that file.

• Consider the effect of case sensitivity on your netlist, and explicitly set the case
sensitivity by using the -sensitive or -insensitive option with the read_netlist
command.

• Consider the effect of the hierarchical delimiter. If necessary, change the default by
using the -hierarchy_delimiter option of the set_build command. Then reread
your netlists.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

912

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Troubleshooting STIL Procedures

Feedback

Troubleshooting STIL Procedures
Problems in the procedures defined in the STIL procedure file can be either syntax errors
or DRC violations. Syntax errors usually result in a category V (vector rule) violation
message, and TestMAX ATPG reports the line number near the violation.

The following sections describe how to troubleshoot STIL procedures:

• Opening the STL Procedure File

• STIL load_unload Procedure

• STIL Shift Procedure

• STIL test_setup Macro

• Correcting DRC Violations by Changing the Design

Opening the STL Procedure File
To fix the problem, open the STL procedure file with an editor, make any necessary
changes, and use the run_drc command again to verify that the problem was corrected.
For detailed descriptions and examples of the STIL procedures, see STIL Procedure Files.

A general tip for troubleshooting any of the STL procedure file procedures is to click
the ANALYZE button in the GSV toolbar and select the applicable rule violation from
the Analyze dialog box. TestMAX ATPG draws the gates involved in the violation and
automatically selects an appropriate pin data format for display in the schematic. To
specify a particular pin data format, click the SETUP button and select the Pin Data Type
in the Setup dialog box. For more information on pin data types, see Displaying Pin Data.

STIL load_unload Procedure
When you analyze DRC violations TestMAX ATPG encountered during the load_unload
procedure, the GSV automatically sets the pin data type to Load. With the Load pin
data type, strings of characters such as 10X11{ }11 are displayed near the pins.
Each character corresponds to a simulated event time from the vectors defined in the
load_unload procedure. The curly braces indicate where the Shift procedure is inserted
as many times as necessary. Thus, the last value before the left curly brace is the logic
value achieved just before starting the Shift procedure. The values following the right
curly brace are the simulated logic values between the last Shift procedure and the end
of the load_unload procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

913

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Troubleshooting STIL Procedures

Feedback

The following guidelines ae for using the load_unload procedure:

• Set all clocks to their off states before the Shift procedure.

• Enable the scan chain path by asserting a control port (for example, scan_enable).

• Place any bidirectional ports that operate as scan chain inputs into input mode.

• Place any bidirectional or three-state ports that operate as scan chain outputs into
output mode, and explicitly force the ports to Z.

• Set all constrained ports to values that enable shifting of scan chains.

• Place all bidirectional ports into a non-loating input mode if this is possible for the
design.

STIL Shift Procedure
When you analyze DRC violations encountered during the Shift procedure, the GSV
automatically sets the displayed pin data type to Shift. In the Shift pin data type, logic
values such as 010 are displayed. Each character represents a simulated event time in the
Shift procedure defined in the STL procedure file.

The following guidelines are for the test cycles you define in the Shift procedure:

• Use the predefined symbolic names _si and _so to indicate where scan inputs are
changed and scan outputs are measured.

• If you want to save patterns in Waveform Generation Language (WGL) format,
describe the Shift procedure using a single cycle.

• Remember that state assignments in STIL are persistent for a multicycle Shift
procedure. Therefore, when you place a CLOCK=P to cause a pulse, that setting
continues to cause a pulse until CLOCK is turned off (CLOCK=0 for a return-to-zero port,
or CLOCK=1 for a return-to-one port).

The following example shows a Shift procedure that contains an error. The first cycle
of the shift applies MCLK=P, which is still in effect for the second cycle. As the Shift
procedure is repeated, both MCLK and SCLKbecome set to P, which unintentionally causes
a pulse on each clock on each cycle of the Shift procedure.

Multicycle Shift Procedure With a Clocking Error

"load_unload" {
V { MCLK = 0; SCLK = 0; SCAN_EN = 1; }
Shift {
V { _si=##; _so=##; MCLK=P; }
V { SCLK=P;} // PROBLEM: MCLK is still on!

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

914

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Troubleshooting STIL Procedures

Feedback

}
}

The following example shows the same Shift procedure with correct clocking. As the
Shift procedure is interactively applied, MCLK and SCLK are applied in separate cycles.
An additional SCLK=0 has been added after the Shift procedure, before exiting the
load_unload, to ensure that SCLK is off.

Multicycle Shift Procedure With Correct Clocking

"load_unload" {
V {
MCLK = 0; SCLK = 0; SCAN_EN = 1;
}
Shift {
V { _si=##; _so=##; MCLK=P; SCLK=0;}
V { MCLK=0; SCLK=P;}
}
V { SCLK=0;}
}

The following example shows the same Shift procedure converted to a single cycle. The
procedure assumes that timing definitions elsewhere in the test procedure file for MCLK and
SCLK are adjusted so that both clocks can be applied in a non-overlapping fashion. Thus,
the two clock events can be combined into the same test cycle.

Multicycle Shift Converted to a Single Cycle

"load_unload" {
W "TIMING";
V { MCLK = 0; SCLK = 0;; SCAN_EN = 1; }
Shift {
V { _si=##; _so=##; MCLK=P; SCLK=P;}
}
V { MCLK=0; SCLK=0;}
}

STIL test_setup Macro
When you analyze DRC violations encountered during the test_setup macro, the graphical
schematic viewer automatically sets the displayed pin data type to Test Setup. In the Test
Setup pin data type, logic values in the form XX1 are displayed. Each character represents
a simulated event time in the test_setup macro defined in the STL procedure file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

915

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Analyzing the Cause of Low Test Coverage

Feedback

The following rules are for the test cycles you define in the test_setup macro:

• Force bidirectional ports to a Z state to avoid contention.

• Initialize any constrained primary inputs to their constrained values by the end of the
procedure.

• Pulse asynchronous set/reset ports or clocking in a synchronous set/reset only if you
want to initialize specific nonscan circuitry.

• Place clocks and asynchronous sets and resets at their off states by the end of the
procedure. Note that it is not necessary to stop Reference clocks (including what
TestMAX DFT refers to as ATE clocks). All other clocks still must be stopped.

Correcting DRC Violations by Changing the Design
If you cannot correct a DRC violation by adjusting one of the STL procedure file
procedures, defining a primary input constraint, or changing a clock definition, the violation
is probably caused by incorrect implementation of ATPG design practices, and a design
change might be necessary. Note that a design can be testable with functional patterns
and still be untestable by ATPG methods.

If you have scan chains with blockages and you cannot determine the right combination
of primary input constraints, clocks, and STL procedure file procedures, the problem
might involve an uncontrolled clock path or asynchronous reset. Try dropping the scan
chain from the list of known scan chains. This will increase the number of nonscan cells
and decrease the achievable test coverage, but it might let you generate ATPG patterns
without a design change.

If you still cannot correct the violation, you must make a design change. Examine the
design along with the design guidelines presented in the Working With Design Netlists and
Libraries section to determine how to change your design to correct the violation.

Analyzing the Cause of Low Test Coverage
When test coverage is lower that expected, you should review the AN (ATPG untestable),
ND (not detected), and PT (possibly detected) faults, and refer to the following sections:

• Where Are the Faults Located?

• Why Are the Faults Untestable or Difficult to Test?

• Using Justification

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

916

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Analyzing the Cause of Low Test Coverage

Feedback

Where Are the Faults Located?
To find out where the faults are located, choose Faults > Report Faults to access the
Report Faults window, which displays a report in a separate window. Alternatively, you can
use the report_faults command with the -class and -level options.

The following command generates a report of modules that have 256 or more AN faults:

TEST-T> report_faults -class an -level 4 256
The following example shows the report generated by this command. The first column
shows the number of AN faults for each block. The second column shows the test
coverage achieved in each block. The third column shows the block names, organized
hierarchically from the top level downward.

Fault Report of AN Faults Using the Level Option

TEST-T> report_faults -class AN -level 4 256
#faults testcov instance name (type)
------- ------- -----------------------
22197 91.70% /spec_asic (top_module)
2630 83.00% /spec_asic/born (born)
2435 28.00% /spec_asic/born/fpga2 (fpga2)
788 5.35% /spec_asic/born/fpga2/avge1 (avge)
1647 3.28% /spec_asic/born/fpga2/avge2 (yavge)
5226 0.00% /spec_asic/dac (dac)
5214 0.00% /spec_asic/dac/dual_port (dual_port)
11098 66.46% /spec_asic/video (video)
11098 66.24% /spec_asic/video/decipher (vdp_cyphr)
11027 60.00% /spec_asic/video/decipher/dpreg (dpreg)
426 96.97% /spec_asic/gex (gex)
260 93.89% /spec_asic/gex/fifo (gex_fifo)
799 94.56% /spec_asic/vint (vint)
798 54.29% /spec_asic/vint/vclk_mux (vclk_mux)
1514 94.80% /spec_asic/crtc_1 (crtc)
476 96.79% /spec_asic/crtc/crtc_sub (crtc_sub)
465 94.20% /spec_asic/crtc/crtc_sub/attr (attr)
1004 77.68% /spec_asic/crtc/crap (crap)

The report shows that the two major contributors to the high number of AN faults are the
following hierarchical blocks:

• /spec_asic/dac/dual_port (with 5,214 AN faults and 0.00 percent test coverage)

• /spec_asic/video/decipher/dpreg (with 11,027 faults and 60.00 percent test
coverage)

You can also review other classes of faults and combinations of classes of faults by using
different option settings in the report_faults command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

917

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Analyzing the Cause of Low Test Coverage

Feedback

Why Are the Faults Untestable or Difficult to Test?
To find out why the faults cannot be tested, you can use the analyze_faults command or
the run_justification command.

The following example uses the analyze_faults command to generate a fault analysis
summary for AN faults:

TEST-T> analyze_faults -class an
The following example shows the resulting fault analysis summary, which lists the
common causes of AN faults. In this example, the three major causes are constraints that
interfered with testing (7,625 faults), blockages as a secondary condition of constraints
(5,046 faults), and faults downstream from points tied to X (1,500 faults). As with the
report_faults command, you can specify other classes of faults or multiple classes.

Fault Analysis Summary of AN Faults

TEST-T> analyze_faults -class an
Fault analysis summary: #analyzed=13398, #unexplained=257.
7625 faults are untestable due to constrain values.
5046 faults are untestable due to constrain value blockage.
11 faults are connected to CLKPO.
11 faults are connected to DSLAVE.
210 faults are connected to TIEX.
233 faults are connected to TLA.
129 faults are connected to CLOCK.
50 faults are connected to TS_ENABLE.
26 faults are connected from CLOCK.
128 faults are connected from TLA.
1500 faults are connected from TIEX.
114 faults are connected from CAPTURE_CHANGE.

To see specific faults associated with each classification cause (for example, to see a
specific fault connected from TIEX), use the -verbose option with the analyze_faults
command.

The following command generates an AN fault analysis report that gives details of the first
three faults in each cause category:

TEST-T> analyze_faults -class an -verbose -max 3
You can redirect this report to a file by using the output redirection option:

TEST-T> analyze_faults -class an -verb > an_faults_detail.txt

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

918

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Analyzing the Cause of Low Test Coverage

Feedback

You can examine each fault in detail by using the analyze_faults command and naming
the specific fault. For example, the following command generates a report on a stuck-at-0
fault on the module /gcc/hclk/U864/B:

TEST-T> analyze_faults /gcc/hclk/U864/B -stuck 0
The following example shows the result of this command. The report lists the fault location,
the assigned fault classification, one or more reasons for the fault classification, and
additional information about the source or control point involved.

Fault Analysis Report of a Specific Fault
--
Fault analysis performed for /gcc/hclk/U864/B stuck at 0 \
(input 2 of MUX gate 58328).
Current fault classification = AN \
(atpg_untestable-not_detected).
--
Connection data: to=DSLAVE
Fault is blocked from detection due to constrained values.
Blockage point is gate /gcc/hclk/writedata_reg0 (91579).

For additional examples, see Example: Analyzing an AN Fault.

Using Justification
The run_justification command provides another troubleshooting tool. Use it to
determine whether one or more internal points in the design can be set to specific values.
This analysis can be performed with or without the effects of user-defined or ATPG
constraints.

If there is a specific fault that shows up in an NC (not controlled) class, you can use the
run_justification command to determine which of the following conditions applies to
the fault:

• The fault location can be identified as controllable if TestMAX ATPG is given more CPU
time or a higher abort limit and allowed to continue.

• The fault location is uncontrollable.

In the following example, the run_justification command is used to confirm that an
internal point can be set to both a high and low value.

Using run_justification

TEST-T> run_justification -set /spec_asic/gex/hclk/U864/B 0
Successful justification: pattern values available in pattern 0.
Warning: 1 patterns rejected due to 127 bus contentions (ID=37039,
pat1=0). (M181)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

919

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Completing an Aborted Bus Analysis

Feedback

TEST-T> run_justification -set /spec_asic/gex/hclk/U864/B 1
Successful justification: pattern values available in pattern 0.
Warning: 1 patterns rejected due to 127 bus contentions (ID=37039,
pat1=0). (M181)

For additional examples of the run_justification command, see Checking
Controllability and Observability.

Completing an Aborted Bus Analysis
During the DRC analysis, TestMAX ATPG identifies the multidriver nets in the design and
attempts to determine whether a pattern can be created to do the following:

• Turn on multiple drivers to cause contention.

• Turn on a single driver to produce a noncontention state.

• Turn all drivers off and have the net float.

TestMAX ATPG automatically avoids patterns that cause contention. However, it is
important to determine whether each net needs to be constantly monitored. The more nets
that must be monitored, the more CPU effort is required to create a pattern that tests for
specific faults while avoiding contention and floating conditions.

When TestMAX ATPG successfully completes a bus analysis, it knows which nets must
be monitored. However, if a bus analysis is aborted, nets for which analysis was not
completed are assumed to be potentially problematic and therefore need to be monitored.
Usually, increasing the ATPG abort limit and performing an analyze_buses command
completes the analysis, allowing faster test pattern generation.

For an example of interactively performing a bus analysis, see Analyzing Buses.

Using Pipeline Guidance
While debugging a specific violation on a input port of the load compressor you can
bypass the automatic tracing by providing user input of your head pipeline structure. This
should only be attempted if you suspect there was an error with how initial tracing was
done by DRC.

Following are the steps that are followed:

1. Specifying the Head Pipeline Structures in the SPF

2. Using set_drc -pipeline_structures

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

920

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Using Pipeline Guidance

Feedback

Specifying the Head Pipeline Structures in the SPF
No Fork
LoadPipelineStages 6
LoadPipelineElements {
Input "test_si1" !{
Stage 0 1 0 "SNPS_PipeHead_test_si6_1/Q" M ;
Stage 0 2 1 "SNPS_PipeHead_test_si6_1_slave/Q" S;
Stage 1 3 2 "SNPS_PipeHead_test_si6_2/Q" M ;
Stage 1 4 3 "SNPS_PipeHead_test_si6_2_slave/Q" S ;
Stage 2 5 4 "SNPS_PipeHead_test_si6_3/Q" M ;
Stage 3 6 5 "SNPS_PipeHead_test_si6_4/Q" M ;
Stage 4 7 6 "SNPS_PipeHead_test_si6_5/Q" M ;
Stage 5 8 7 "SNPS_PipeHead_test_si6_6/Q" M ;
}
}

Figure 147 No Fork

   

Forked Pipelines
LoadPipelineStages 3;
LoadPipelineElements{
Input "test_si3"{
Stage 0 1 0 "pipein/reg_3/Q" M;
Stage 1 2 1 "pipe1in/reg_3/Q" M;
Stage 1 3 1 "pipe2in/reg_3/Q" M;
Stage 1 4 1 "pipe3in/reg_3/Q" M;
Stage 1 5 1 "pipe4in/reg_3/Q" M;
Stage 1 6 1 "pipe5in/reg_3/Q" M;
Stage 2 7 2 "pipe12in/reg_3/Q" M;
Stage 2 8 3 "pipe22in/reg_3/Q" M;
Stage 2 9 4 "pipe32in/reg_3/Q" M;
Stage 2 10 5 "pipe42in/reg_3/Q" M;
Stage 2 11 6 "pipe52in/reg_3/Q" M;
}
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

921

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: Troubleshooting
Using Pipeline Guidance

Feedback

Figure 148 Forked Pipelines

   

Using set_drc -pipeline_structures
In order to use head pipeline guidance feature; you must use set_drc -pipeline_structures
before running drc with updated SPF. In order to see more information on pipeline tracing
make sure to set_messages -level expert.

Pipeline default DRC tracing:

Load compressor pipeline input SI_3b successfully traced forward to gate 1066 (invert=0).

Load pipeline SI_3b (84) = stage 0:1066

Pipeline guidance:

Load pipeline structure for input SI_3b successfully traced forward to gate 1066 (invert=0).

Load pipeline SI_3b (84) = stage 0:1066

Please note that wrong specifications could lead to other R* violation failures or lead to
suppressing real issues that would lead to failing ATPG patterns during simulations. This
feature should be used for debug only.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

922

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

29
ATPG FAQ

This section contains the following topics:

• What is the Difference Between Multicore Processing and Multithreading?

• How Can I Avoid Generating Patterns With Floating BIDI Ports?

• How Do I Abbreviate Commands?

• What Special Characters Are Used in Tcl Mode?

• What Are Limited Regular Expressions?

• What are the Compressor Connections in report_scan_chains Output?

• What are Some Examples of Pin Data?

• How Do I Use the write_testbench Command to Customize MAX Testbench Output?

• Validating Simulation Libraries Used For ATPG

• How Do I Customize Ltran Output for FTDL, TSTL2, or TDL91?

• How TestMAX ATPG Processes Setup and Hold Violations

• Interpreting UDP Messages

• What is the Difference between the add_capture_masks vs add_cell_constraints
Commands?

• JTAG Support

• Node File Format for Bridging Faults

• Optimizing Basic Scan Patterns

• Design and ATPG Usage Tips for Designs with Phase Lock Loops (PLLs)

• Shared Scan-In Designs

• Creating End-of-Cycle Measures in ATPG Patterns

• Troubleshooting Pattern Simulation Failures

• WGL Pattern Generation Options

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

923

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What is the Difference Between Multicore Processing and Multithreading?

Feedback

• Subnet Formats for Diagnosis

• Handling Escape Characters in Tcl Mode

• Passing Complex Options to LSF/GRID

What is the Difference Between Multicore Processing and
Multithreading?

Answer:

Multicore processing uses two or more cores to execute multiple concurrent processes.
Multithreading concurrently executes small, multiple tasks or threads based on instructions
from a single central controlling scheduler. The following table and figures summarize
the differences between multicore processing and the multithreading technology used by
TestMAX ATPG II:

Table: Multicore Processing Versus Multithreading

Multicore Processing Multithreading

"Heavyweight" – resource intensive "Lightweight" – takes considerably fewer
resources than multicore processing

Process switching requires constant interaction
with operating system

Thread switching occurs independent of
operating system

Each process executes the same code but uses
its own memory and file resources

Threads share the same set of open files and
child processes.

Figure: Comparing Multicore Processing to Multithreading

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

924

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What is the Difference Between Multicore Processing and Multithreading?

Feedback

 

Fault Master

Core 1 Memory

Fault Set 1

Core 2 Memory

Core 3 Memory Core N Memory

Fault Set 2

Fault Set 3 Fault Set N

Traditional Multicore ATPG

Task Master

Core 1 Core 2

Core 3 Core N

TestMAX ATPG II Multithreading

Memory

Task 1

Memory

Task 2

Faults

Memory

Task 3

Memory

Task N

Small, similar tasks are
run in parallel to keep
the cores moving.

Flat memory usage
from reduced memory
requirements and
limited sharing of
memory.

Task master distributes and
tracks faults across multiple
slaves. ATPG is run
independently on each
slave.

Communication
between the various
processes is usually
very slow

Cores and Speed Up

Se
rv

er
 M

em
or

y

Max Available Multic
ore ATPG

TestMAX ATPG II

 

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

925

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
How Can I Avoid Generating Patterns With Floating BIDI Ports?

Feedback

How Can I Avoid Generating Patterns With Floating BIDI Ports?
Answer:

By default, TestMAX ATPG creates patterns that leave bidirectional ports floating --
unless it is necessary to drive the port to detect a target fault. This means the majority of
generated patterns contain floating bidirectional ports.

To avoid floating inputs, you need to specify one of the following set_simulation
commands before pattern generation:.

set_simulation -bidi_fill
set_simulation -strong_bidi_fill
set_simulation -weak_bidi_fill

How Do I Abbreviate Commands?
Answer:

Some commands and command keywords might be specified with just a few characters.
Abbreviation parameters differ depending on whether you are running TestMAX ATPG in
Tcl mode or Native mode.

Tcl Mode
In Tcl mode, application commands are specific to TestMAX ATPG. You can abbreviate
application command names and options to the shortest unambiguous (unique) string.
For example, you can abbreviate the add_pi_constraints command to add_pi_c or the
report_faults command option -collapsed to -co. Conversely, you cannot abbreviate
most built-in commands.

Command abbreviation is meant as an interactive convenience. You should not use
command or option abbreviations in script files, however, because script files are then
susceptible to command changes in subsequent versions of the application. Such changes
can make abbreviations ambiguous.

The variable sh_command_abbrev_mode determines where and whether command
abbreviation is enabled. Although the default value is Anywhere, in the site startup file for
the application, you can set this variable to Command-Line-Only. To disable abbreviation,
set sh_command_abbrev_mode to None.

If you enter an ambiguous command, TestMAX ATPG attempts to help you find the correct
command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

926

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What Special Characters Are Used in Tcl Mode?

Feedback

Example
The command entered in the following example, report_scan_c, is ambiguous:

 > report_scan_c
 Error: ambiguous command ‘report_scan_c’ matched 2 commands:
 (report_scan_cells, report_scan_chains) (CMD-006).

TestMAX ATPG lists up to three of the ambiguous commands in its error message. To list
all the commands that match the ambiguous abbreviation, use the help function with a
wildcard pattern. For example:

 > help report_scan_c_*
 report_scan_cells # Reports scan cell information for selected scan
 cells
 report_scan_chains # Reports scan chain information

Native Mode
In Native mode, the minimum number of characters needed for any specific command or
keyword can be found by using the help command_name command. The letters shown
in uppercase represent the minimum abbreviation allowed. Commands are not case-
sensitive.

 For example:

 TEST> help analyze fault
 ANalyze Faults < < pin_pathname -Stuck <0|1>
 [-Observe gate_id] [-Display] > |
 <-Class fault_class>... > >
 [-Verbose]

In this example, the minimum abbreviation for the analyze faults command is AN F and
the keywords -observe, -display, -class, and -verbose require only one character
each. In addition, the underscore character can be used between command tokens in
place of a space.

The following list shows equivalent forms of the same command: remove atpg
primitives, remove_atpg_primitives, rem atpg prim, rem_atpg_prim,
rem_a_p, and REM_A_P.

What Special Characters Are Used in Tcl Mode?
Answer:

The characters listed in the following table have special meaning for TestMAX ATPG in Tcl
mode in certain contexts:

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

927

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What Are Limited Regular Expressions?

Feedback

Character Description

$ De-references a variable.

() Used for grouping expressions.

[] Denotes a nested command.

\ Used for escape quoting.

“” Denotes weak quoting. Nested commands and variable substitutions still
occur.

{} Denotes rigid quoting. There are no substitutions.

; Ends a command.

Begins a comment.

What Are Limited Regular Expressions?
Answer:

TestMAX ATPG has several commands and options that enable you to specify a regular
expression in place of a specific string. The following information shows how to construct a
regular expression to achieve your desired string matching goals:

• Regular Expression Meta-Characters

• Examples

• Using Escape Characters with Wildcards and Regular Expressions

Regular Expression Meta-Characters
Regular Expression Description

. Matches any single character

* Matches preceding item 0 or more times

+ Matches preceding item 1 or more times

? Matches preceding item 0 or 1 times

^ Matches start of string (optional)

[a-d] Matches a single character within a range of characters: a,b,c,d

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

928

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What Are Limited Regular Expressions?

Feedback

Regular Expression Description

[~a-d] Matches a single character not within a range of characters

\c Escapes next character '
c
', except if that character is within a set of
[]

Usage Notes:
• A '\' that appears as the first character of a string, escapes the entire string, and none

of the remaining characters are considered as meta-characters.

• A '~' must appear as the first character of a [...] range to invert the range match, or it is
taken literally.

• A '-' should appear as the first or last character of a [...] range, or it is taken as a range
separator.

• A '\t' is not a tab, but the letter 't'.

• If a regular expression is enclosed in matched double quotation marks "...." the
quotation marks are removed before being evaluated.

• A caret '^' that appears anywhere except at the start of a string is taken literally as that
particular character.

• The set_build -hierarchical_delimiter command impacts regular expression
matching. You should always know the status of your hierarchical separator character.

Examples
Example Matches

.*_pad ABC_pad go[123]_pad pad_pad_pad _pad

..._pad ABC_pad zyx_pad

a.*z az abc%xyz az%123%z

[a-z]+\[[0-9]+ abc[12] alpha[1] a[123456789]

[a-zA-Z_]+\[[0-9]+\] A_B[12] Dog_Cat[9]

[a-z]+\[[0-9]+\].* abc[2]xyz bat[121]bat[121] cat[9]dog

[A-C]+_[pad]+ ABC_pad ABC_a ABC_p ABC_ppaadd BAA_dad

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

929

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

Example Matches

[A-C]+_[pad]+ ABC_pad C_p CC_pp

[A-C]?_[pad]? A_p B_a _p C_

[A-C]*_[pad]+ _pad AAAAA_p BB_aaaa CABCAB_papa

[a-zA-Z0-9_]*z abRAcadabra_9z_zzz_abc_y_z z Z9z

[a-z_]*[0-9_]*.+z abracadabro_z_123_abc_y_z y_200z yz z

[aA].*[zZ] Az aZ abc%xyz az[123]/z

data[12] data1 data2

data\[12\] data[12]

Using Escape Characters With Wildcards and Regular
Expressions
A wildcard or regular expression specification used in an escaped identifier is not
recognized as wildcard or regular expression. For example, in the following command, the
regular expression is not correctly interpreted:

add_nofaults -instance \\u_padring_wrap/u_jtag/.*

If you want to use a wildcard with an escaped name, you must use the following:

add_nofaults -instance *u_padring_wrap/u_jtag/.*

What are the Compressor Connections in report_scan_chains
Output?

Answer:

When you run the report_scan_chains command, there is a column titled "compressor
connections," as shown in the following example:

TEST-T> report_scan_chains
chain group length input_id output_id compressor
 connections
----- ---------- ------ -------- ---------

11 core_group 24 3816 38758
 0/8=test_so7 1/8=test_so7 2/8=test_so7

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

930

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

At first glance, the report appears to only identify the output connections of the chains in
load_mode and unload_mode. However, the text identified in purple actually corresponds
to output for the report_compressors command, as shown in the following example:

output port chain connection for load_mode=0
 unload_mode=8
------------ --
test_so7 11

output port chain connection for load_mode=1
 unload_mode=8
------------ --
test_so7 11

output port chain connection for load_mode=2
 unload_mode=8
------------ --
test_so7 11
The output of the report_compressors command also identifies how each chain
physically connections to the decompressor and compressor, as shown in the following
example:

name type #inputs
 #outputs #modes mode controls
-- ------ -------
 -------- ------ -----------------------------------
ORCA_TOP_U_decompressor_ScanCompression_mode load 5
 96 3 Mode 0: test_si7=0 test_si6=0

 Mode 1: test_si7=1 test_si6=0

 Mode 2: test_si7=0 test_si6=1
------------------------ ----- ------

external port connection input output external chain
 connection
------------------------ ----- ------

test_si1 0 0
 1
test_si2 1 1
 2
test_si3 2 2
 3
test_si4 3 3
 4
test_si5 4 4
 5
 --- 5 6
…
 --- 95 96

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

931

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

In this case, there are 5 input data pins. They are numbered 0-4 on the input side of
the decompressor. They flow out to ports 0-95 on that block, and hook to chains 1-96,
respectively. There are also 2 mode pins and an 8th pin: XTOL_ENABLE.

For each input mode (0-2), the report shows the flow of data from the top-level pin to the
internal chains (connection 10 is to chain 11), as shown in the following example:

output_id inv ports connected to output for mode 0
--------- ---
 --

10 no test_si2

output_id inv ports connected to output for mode 1
--------- ---
 --

10 no test_si1

output_id inv ports connected to output for mode 2
--------- ---
 --

10 no test_si5
The report for the output compressor is as follows:
name type #inputs
 #outputs #modes mode controls
-- ------ ------- --------
 ------ --------------------------------
ORCA_TOP_U_compressor_ScanCompression_mode unload 96
 8 3
Unload compression type = shared
------------------------- ----- ------

external chain connection input output external port
 connection
------------------------- ----- ------

1 0
 0 test_so1
2 1
 1 test_so2
3 2
 2 test_so3
4 3
 3 test_so4
5 4
 4 test_so5
6 5
 5 test_so6
7 6
 6 test_so7

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

932

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

8 7
 7 test_so8
9 8

…
96 95

The block in the example has 96 inputs (chains 1-96, numbered 0-95), and these inputs
flow to 8 scan outputs. Note in the following example, that chain 11 appears in the input
connection side:

output_id inv chains connected to output
--------- ---
 --

6 no 4 11 14 18 22 27 33 34 38 40 43 46 49 51 54 57 60 62
 64 67 71 73 76 79 80 84 87 90 93 94
7 no 5 11 15 19 25 28 32 35 39 42 44 47 50 53 56 58 61 64
 67 69 71 75 77 80 83 85 87 90 92 95

Note that this data was also in another report for “single observe mode." But it appears
again here in this report with all the connections of chain 1:

output port chain connection for load_mode=0
 unload_mode=3
----------- --
test_so7 4 11 18 22 34 43 49 57 67 76 84 90

output port chain connection for load_mode=0
 unload_mode=7
----------- --
test_so7 4 11 18 22 34 49

output port chain connection for load_mode=0
 unload_mode=8
--------- --
test_so7 11

output port chain connection for load_mode=0
 unload_mode=15
----------- --
test_so7 4 11 18 22 34 43 49

output port chain connection for load_mode=1
 unload_mode=3
----------- --
test_so7 4 11 18 22 34 43 49 57 67 76 84 90

output port chain connection for load_mode=1
 unload_mode=3
----------- --

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

933

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

test_so7 4 11 18 22 34 43 49 57 67 76 84 90

output port chain connection for load_mode=1
 unload_mode=8
------------- --
test_so7 11

output port chain connection for load_mode=1
 unload_mode=15
------------ --
test_so7 4 11 18 22 34 43 49

output port chain connection for load_mode=2
 unload_mode=3
----------- --
test_so7 4 11 18 22 34 43 49 57 67 76 84 90

output port chain connection for load_mode=2
 unload_mode=7
----------- --
test_so7 4 11 18 22 34 49

output port chain connection for load_mode=2
 unload_mode=8
----------- --
test_so7 11

output port chain connection for load_mode=2
 unload_mode=15
----------- --
test_so7

In the STIL procedure file, this refers to the following chain:

ScanChain "11" {
 ScanLength 24;
 ScanEnable "scan_en";
 ScanMasterClock "pclk";
}

The following relationships in the STL procedure file are also important:

ScanChain "sccompin0" {
 ScanIn "test_si1";
}
ScanChain "sccompin1" {
 ScanIn "test_si2";
}
ScanChain "sccompin2" {
 ScanIn "test_si3";
}
ScanChain "sccompin3" {
 ScanIn "test_si4";

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

934

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

}
ScanChain "sccompin4" {
 ScanIn "test_si5";
}
ScanChain "sccompin5" {
 ScanIn "test_si6";
}
ScanChain "sccompin6" {
ScanIn "test_si7";
}
ScanChain "sccompin7" {
 ScanIn "test_si8";
}
ScanChain "sccompout0" {
 ScanOut "test_so1";
}
ScanChain "sccompout1" {
 ScanOut "test_so2";
}
ScanChain "sccompout2" {
 ScanOut "test_so3";
}
ScanChain "sccompout3" {
 ScanOut "test_so4";
}
ScanChain "sccompout4" {
 ScanOut "test_so5";
}
ScanChain "sccompout5" {
 ScanOut "test_so6";
}
ScanChain "sccompout6" {
 ScanOut "test_so7";
}
ScanChain "sccompout7" {
 ScanOut "test_so8";
}

load_group {
 "sccompin0";
 "sccompin1";
 "sccompin2";
 "sccompin3";
 "sccompin4";
}
unload_group {
 "sccompout0";
 "sccompout1";
 "sccompout2";
 "sccompout3";
 "sccompout4";
 "sccompout5";

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

935

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

 "sccompout6";
 "sccompout7";
}
mode_group {
 "sccompin5";
 "sccompin6";
}
unload_mode_group0 {
 "sccompin0";
 "sccompin1";
 "sccompin2";
 "sccompin3";
}
unload_mode_group1 {
 "sccompin4";
 "sccompin0";
 "sccompin1";
 "sccompin2";
}
unload_mode_group2 {
 "sccompin3";
 "sccompin4";
 "sccompin0";
 "sccompin1";
}
enable_group {
 "sccompin7";
}

The only new information is the enable pin for X-tolerance (masking) being “sccompin7”
which is test_si8.

CompressorStructures {
 Compressor "ORCA_TOP_U_decompressor_ScanCompression_mode" {
 Mode 0 {
 UnloadModeGroup unload_mode_group0;
 ModeControls {
 "test_si6" = 0;
 "test_si7" = 0;
 }
 Connection 1 "2" "6" "11" "16" "22" "26" "31" "37" "43" "49" "54"
 "59" "64" "69" "76" "79" "85" "90" "95";

So, load mode 0 connects chain 11 to connection 1. Connection “1” is really test_si2 (“1”
coming from sccompin1). This matches report_compressors.

Load mode 1 and 2 also match the following report:

Mode 1 {
 UnloadModeGroup unload_mode_group1;
 ModeControls {
 "test_si6" = 0;
 "test_si7" = 1;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

936

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

 }
 Connection 0 "1" "6" "11" "16" "21" "25" "32" "37" "42" "48" "52"
 "56" "62" "66" "72" "78" "83" "89" "93";
}
Mode 2 {
 UnloadModeGroup unload_mode_group2;
 ModeControls {
 "test_si6" = 1;
 "test_si7" = 0;
 }
 Connection 4 "5" "11" "15" "21" "25" "30" "35" "39" "44" "49" "55"
 "59" "65" "70" "73" "79" "83" "90" "93";

The output compressor is similarly described as follows:

Compressor "ORCA_TOP_U_compressor_ScanCompression_mode" {
 Mode 0 {
 ModeControls {
 "test_si8" = 0;
 }
 Connection "11" 6 7;

So, when the xtol enable signal (test_si8) is 0, you can view scan chain 11 at ports 6 and
7, which are really test_so7 and test_so8.

The remaining 49 modes are also defined. Chain 11 in these definitions follows:

Mode 2 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 0;
 "test_si1" = 0;
 "test_si2" = 0;
 "test_si3" = 0;
 "test_si4" = 1;
 }
Connection "11" 6;

Mode 13 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 0;
 "test_si1" = 1;
 "test_si2" = 1;
 "test_si3" = 0;
 "test_si4" = 0;
 }
Connection "11"" 6;

Mode 15 {
 ModeControls {

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

937

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 0;
 "test_si1" = 1;
 "test_si2" = 1;
 "test_si3" = 1;
 "test_si4" = 0;
 }
 Connection "11" 6;

Mode 16 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 0;
 "test_si1" = 1;
 "test_si2" = 1;
 "test_si3" = 1;
 "test_si4" = 1;
 }
 Connection "11" 6;

Mode 18 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 1;
 "test_si5" = 0;
 "test_si1" = 0;
 "test_si2" = 0;
 "test_si3" = 1;
 }
 Connection "11" 6;

Mode 29 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 1;
 "test_si5" = 1;
 "test_si1" = 1;
 "test_si2" = 0;
 "test_si3" = 0;
 }
 Connection "11" 6;

Mode 31 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 1;
 "test_si5" = 1;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

938

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are the Compressor Connections in report_scan_chains Output?

Feedback

 "test_si1" = 1;
 "test_si2" = 1;
 "test_si3" = 0;
 }
 Connection "11" 6;

Mode 32 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 0;
 "test_si7" = 1;
 "test_si5" = 1;
 "test_si1" = 1;
 "test_si2" = 1;
 "test_si3" = 1;
 }
 Connection "11" 6;

Mode 34 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 1;
 "test_si7" = 0;
 "test_si4" = 0;
 "test_si5" = 0;
 "test_si1" = 0;
 "test_si2" = 1;
 }
 Connection "11" 6;

Mode 45 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 1;
 "test_si7" = 0;
 "test_si4" = 1;
 "test_si5" = 1;
 "test_si1" = 0;
 "test_si2" = 0;
 }
Connection "11" 6;

Mode 47 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 1;
 "test_si7" = 0;
 "test_si4" = 1;
 "test_si5" = 1;
 "test_si1" = 1;
 "test_si2" = 0;
 }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

939

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

Connection "11" 6;

Mode 48 {
 ModeControls {
 "test_si8" = 1;
 "test_si6" = 1;
 "test_si7" = 0;
 "test_si4" = 1;
 "test_si5" = 1;
 "test_si1" = 1;
 "test_si2" = 1;
 }
Connection "11" 6;

What are Some Examples of Pin Data?
Answer:

The following examples show the various pin data types and helps you interpret the
contents of the data.

You can use the set_pindata command or the SETUP button to adjust the pin
data displayed in the graphical schematic viewer (GSV). Also, the ANALYZE button
automatically selects an appropriate pin data choice when drawing a rule violation.

The simulation waveform viewer (SWV) supports only the following pin data types: Debug
Sim Data, Sequential Sim Data, and Test Setup.

Bidi Control Value
You use the -bidi_control_value option of the set_pindata command to set the
simulated values that occur when the bidi_control pin is set to its off state (as defined by
the set_drc -bidi_control_pin command).

Examples:

X
1

Clock Cone
When you specify the -clock_cone argument of the set_pindata command, a clock port
is also specified. The characters displayed near device pins indicate whether the attached
net is in the clock or effect cone for that clock. A C designation indicates the net is in the
clock cone for the selected clock. E indicates the net is in the effect cone, CE indicates the
net is in both, and N indicates the net is in neither.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

940

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

Examples:

C
E
CE
N

Clock On
Examples:

X-X
0-1
X-1
When you specify the -clock_on option,the GSV displays two bits separated by a dash (-)
for each pin. The first bit is the simulated value that results when all clocks are set to off.
All other inputs are set to X or to their constrained values. This is the same as the Clock
Off data. It is displayed here to help you debug errors. The second bit is the simulated
value that results when a specified clock is set to on. All other inputs are set to X or their
constrained values.

Clock Off
Examples:

X
1
0
CX
C1
C0
When you select the -clock_off option, the GSV displays the simulated values which
occur when all defined clocks are set to their off values and all other inputs are set to X.
Any 0 or 1 values are indications of logic with an unblocked combinational path back to a
clock port. Xs are a sign of logic with no path to a clock port or the path is blocked by gates
which have Xs for inputs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

941

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

Note that the data displays differently if the run_drc command successfully completes. In
this case, the clock off data is displayed as CX, C1, and C0. The "C" prefix indicates that the
gate is in the clock cone, and is independent from the 0, 1 or X simulated values.

Constraint Data
Examples:

1. X/-,X/-,X/-

2. 0/-,0/B,0/-

3. X/-,1/B,1/-

4. X/-,~01/B,~01/B

When constraint data is chosen, the data consists of three pairs of characters "T/B,C/B,S/
B" where:

T = simulated value due to tied gates

B = fault blockage due to tied gates indicated by T

C = simulated value due to constraints for combinational ATPG:

tied gates, constrained pins, constant value gates

B = fault blockage due to constraints indicated by C

S = simulated value due to constraints during sequential scan ATPG

B = fault blockage due to any constraint indicated by S

The blockage fields are either the characters "B" for blocked, or "-" for not blocked.

A "~" followed by one or more characters is an indication of not allowed (restricted)
values. For example, ~01 means not 0 or 1, or the same as restricted to X or Z. ~Z means
restricted to 0,1, or X.

Example 1 "X/-,X/-,X/-" indicates no constraints and no blocks.

Example 2 "0/-,0/B,0/-" indicates the pin is constrained to 0 due to tied logic, there is also
a constraint of 0 during combinational ATPG which contributes to a blockage. During
sequential scan ATPG there is a constraint to 0 but no corresponding blockage.

Example 3 "X/-,1/B,1/-" indicates a constraint to 1 for both combinational and sequential
scan ATPG, but a blockage due to that constraint only for combinational ATPG.

Example 4 "X/-,~01/B,~01/B" indicates there is no constraint or blockage due to tied gates
but there is a constraint and a blockage for the combinational and sequential scan ATPG

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

942

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

algorithm of not 0 or 1 (~01), in other words X or Z, due to constrained pins and constant
value gates.

Debug Sim Data
Examples:

#000-011
00011
#000-011 / 01
#010-#010-0001 / -
The debug sim data displays either a single selected simulation source, or a comparison
of two simulation sources. When two sources are shown, the data is separated by a slash,
as in "AAA / BBB ". For a Fast Sequential simulation source a scan load is shown by "#",
and a dash "-" is used to separate different capture procedures. For full sequential or VCD
simulation sources a single continuous stream of characters are shown. A VCD source
cannot contain data for all circuit points and the absence of data is shown with a single
dash as in "-" or " AAA / - ".

Delay Data
The following list shows all the possible delay data annotations which may show up in the
GSV or primitive report:

- no path delay behavior 0->1 rising edge node in path 1->0 falling edge
node in path LCC launch and capture clock gate LC launch clock gate LN
launch node gate CC capture clock gate CN capture node gate

Error Data
This setting only has meaning if the DRC process stops due to an rules violation with a
severity of error. As an alternative to the ANALYZE button you can also set the pin data
type to error.

Fault Data
Examples:

1. NO/DS
2. AN/UT

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

943

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

3. --/--
4. ##/##
5. DI/DI
Choosing a pin data type of Fault Data displays the current fault codes for the pin in the
order: stuck-at-0 / stuck-at-1. "##" is an indication of a location where a nofault exists. "--"
indicates there are not any faults at this pin.

Example 1 indicates the stuck-at-0 has been classified as not-observed (NO) and the
stuck-at-1 has been classified as detected-by-simulation (DS).

Example 2 indicates there are no faults associated with this pin.

Example 3 indicates a site where the nofault attribute has been placed to inhibit faults.

Fault Sim Result
Examples:

1. 0
2. 0/1
3. 1->1
4. 0->1/0
Choosing a pin data setting of Fault Sim Results displays the good machine vs. bad
machine values for a specified faulty location and selected pattern. A single value
indicates there is no difference between the good machine and faulty machine simulation.
When there is a difference, the good machine is given first followed by a forward slash and
the faulty machine value.

Example 1 indicates no difference between good and faulty machine.

Example 2 indicates a good machine response of 0 and faulty machine response of 1.

Example 3 is a clocked output with no difference between good and faulty machine.

Example 4 is a clocked output in which the good machine goes to 1 but the bad machine
goes to 0.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

944

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

FULL_SEQ_Scoap_data
Examples:

1. 1-1-4
2. *-0-2
3. 2-3-z2-0
If you set the pin data display mode to FULL_SEQ_Scoap_data, the pin data field shows
the set of SCOAP controllability and observability numbers for the pin. For a three-state
node, the data display format is:

c0.c1.cZ.obs

where c0 is the control-to-0 measure, c1 is the control-to-1 measure, cZ is the control-to-
Z measure, and obs is the observability measure. For an ordinary (non three-state) node,
the data display format is the same, except that there is no control-to-Z field so you should
observe:

c0.c1.obs

Example 1 indicates a control-to-0 and control-to-1 measure depth of 1 and 1, respectively,
and an observability measure depth of 4.

Example 2 shows a control-to-0 measure depth of asterisk "*". This is typically found on a
net which cannot be controlled to 0 (tied high).

Example 3 shows a tristateable node.

Full Sequential TG Data
Examples:

1. ?xxx
2. #0xx
3. #x00-0xx
When the pin data setting of full_seq_tg_data is selected, the displayed data is the
simulated data from Full-Sequential Test Generator. This data takes the form of 3 events
per cycles, unless a sequential capture procedure has been defined, in which case the
number of characters can vary greatly. The leading character is a ? when it has not been
decided if a load is required, a "#" if a load is required, and omitted if no load is required.

Example 1 indicates that the need for a load is unknown.

Example 2 indicates a single load, followed by a sequence of 0xx.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

945

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

Example 3 indicates a single load, followed by a capture sequence of x00, followed by a
second capture sequence of 0xx without another load.

Good Sim Results
Examples:

1. 010
2. 0
3. 0->X
4. X->X
When you specify the -good_sim_results option, the GSV displays the simulated
data from the specified ATPG pattern. Note: This option is for ATPG patterns only. For
functional patterns, use the -seq_sim_data option.

The event time of the displayed data can be selected from five settings using the time
option of the set_primitive_report command. The choices are clock, preclock,
postclock, lete, and all(the default). A setting of all shows a three-character value of
preclock, clock, postclock. Any information that is not available is displayed as a question
mark "?".

The data on the output of a scan cell might go to X in the last frame before the scan
unload operation, even when the scan cell is not clocked. When this occurs, the X does
not propagate further. There are two possible explanations for this situation:

1. In compressed patterns, the X indicates that the scan cell cannot be observed due to
compressor effects.

2. If timing exceptions are enabled, the X indicates that the expected value captured by
the scan cell was overridden by a timing exception.

Load
Examples:

1. X{}X
2. 1{}1
3. 001{}1
4. X{}0{}1
When the pin data setting of Load is selected, the simulation events from the load_unload
test procedure are displayed. The curly braces "{}" represent a placeholder for the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

946

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

shift procedure. The logic values in front of the "{}" are from test vectors defined in the
load_unload procedure before the application of Shift. The first logic value after the "{}" is
the final simulated value at the end of the shift procedure. Any additional values following
this character are from test vectors defined within the load_unload procedure but occurring
after the application of the Shift procedure.

Simulation is performed by setting all constrained ports to their constrained values, all
constant value gates to their constant values, and all other input ports to X. Then each test
cycle in the procedure is simulated, propagating its effect throughout the design.

Example 1 indicates the pin is at an X state during the load_unload procedure.

Example 3 indicates three time events before shift of "001" and after the shift the pin is still
a 1.

Example 4 indicates there are two shift procedures and the pin begins at a value of X, is a
0 at the end of the first shift procedure and is a 1 at the end of the second procedure.

Master Observe
Examples:

010
111
When the pin data setting of Master Observe is selected, the simulation events due to the
test cycles defined in the master_observe procedure are displayed.

None
No pin data is displayed when the pin data selection is none.

Pattern
Examples:

010
0
0->X
X->X
XXXX0100000011000010000010000000

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

947

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

When you select the -pattern option, the GSV displays the simulated data from one of
the 32 most recent patterns (from the pattern simulation buffer). You can select all 32
patterns, if needed. Note: The contents of the pattern simulation buffer can vary since this
buffer gets used during ATPG pattern generation when specifying the analyze_buses,
analyze_faults, run_justification, and other commands. To see the values from a
specific ATPG pattern use the -good_sim_results option.

You can display the event time from among five different settings using the time option of
the set primitive_report command. The choices are clock, preclock, postclock, lete,
and all (the default). A setting of all shows a three-character value of preclock, clock,
postclock. Any information that is not available is displayed as a question mark "?".

When fast-sequential patterns are displayed, they will always follow the three-character
format for each clock cycle.

Examples:

#010
#011 100
#111 100 #100 011
The # character indicates a scan chain load. There might be only one scan chain load
at the start of a fast-sequential pattern or there might be multiple loads within a single
pattern.

SCOAP Data
Examples:

2-2-1 0-0-0-0
0-*-2 0-*-0-0
--* 1-1-2-2
--6 3-3-0-0 e) *-0-8 *-0-0-0
When the pin data setting of SCOAP is selected, the displayed data is the SCOAP rating
value. There are two sets of numbers, the first set consists of three characters of the form
"C0-C1-O" and is for combinational ATPG. The the second set consists of four characters
of the form "C0-C1-O-D" and is for sequential ATPG.

For the "C0-C1-0" format, each field is the minimum number of scan cells or input ports
needed to:

C0 = control the pin to a 0.

C1 = control the pin to a 1.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

948

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

O = observe the value at the pin.

For the "C0-C1-0-D" format, each field is the minimum sequential depth necessary to:

C0 = control the pin to a 0.

C1 = control the pin to a 1.

O = observe the value at the pin.

D = sensitize the gate to detect the fault at an observe point.

An asterisk "*" indicates the value exceeds the 254 number program limit for tracking this
information.

SDC Case Analysis
Examples:

a) 1/0 b) 0/X c) X/1
When sdc_case_analysis is chosen, two values separated by a slash (/) are displayed for
each pin. The first value is the value set by the set_case_analysis commands in the SDC
file. The second value is the value set by the constraints used by TestMAX ATPG DRC
analysis.

Example a,"1/0," indicates that the SDC set_case_analysis commands set the pin to a
logic 1, and the constraints used by TestMAX ATPG DRC set the pin to a logic 0.

Example b, "0/X," indicates that the SDC set_case_analysis commands set the pin to a
logic 0, and the pin is unconstrained for TestMAX ATPG DRC.

Example c, "X/1," indicates that the pin is unconstrained by SDC set_case_analysis
commands, and the constraints used by TestMAX ATPG DRC set the pin to a logic 1.

Seq Sim Data
Examples from run_simulation -sequential:

1. 0-0-1
2. 010-010-0-0
3. 0-1-00111-0
4. X/0X/0-Z/1Z/1
The set_simulation -data command can be used before a run _simulation
-sequential command to indicate that a range of patterns should be stored during
simulation. Then, by setting the pin data selection to Seq Sim Data, the saved patterns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

949

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

are selected for display. Each pattern translates into one or more simulation events, which
are displayed with a dash, "-" as a separator between patterns. When the pattern source
is from external functional patterns, the dashes cannot be accurate as event collapsing
occurs during pattern reading. If a series of two pattern events do not change inputs, then
the redundant one is discarded.

Example 1 indicates 3 tester cycles and 3 events.

Example 2 indicates 4 tester cycles, and 8 events.

Example 4 indicates 2 tester cycles and 4 events. This type of data shows up when you
run simulation with faults inserted (for example, run_simulation -seq pin_pathname 0|
1). The value standing before "/" indicates good machine values. In the example shown
above, the good values are XX-ZZ. The value standing after "/" indicates faulty machine
values. In this case, the faulty values are 00-11.

Examples from run_simulation with full-sequential ATPG patterns:

1. #100011-#111100
2. #000#110#110001
3. #01100
The simulator that works with full-sequential ATPG patterns separates the patterns with a
dash but does not separate the clock cycles as done by the fast-sequential simulator. For
this reason, it can sometimes be difficult to separate the continuous string of characters
into clock cycles. The easiest way to do this is to display a clock PI or a clock input to a
sequential device so that it is obvious where the clock pulses occur.

Example 1 above represents two patterns, each with a single scan chain load, indicated
by the “#” character, and two clock cycles. The signal in question is most likely changing in
response to the leading edge of a clock because the changes occur in the second of the
three simulation frames that normally make up a single clock cycle. The initial set of three
values (100) in the first pattern represents the first clock cycle and the next set of three
values (011) represents the second clock cycle. In the second pattern, the first clock cycle
is represented by the 111 and the second clock cycle by the 100.

Example 2 represents a single pattern with three separate scan chain loads. A single clock
cycle follows each of the first two loads, and two clock cycles follow the third scan chain
load. In this example, the signal displayed is likely changing in response to the trailing
edge of a clock because the changes occur in the third of the three simulation frames for a
clock cycle.

Example 3 represents a single pattern with two clock cycles. However the last simulation
frame of the first clock cycle has been merged with the first simulation frame of the last
clock cycle; as a result, there are only five simulation values listed. If you examined the
clock pulses for this pattern, they would appear as 01010.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

950

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

Shadow Observe
Examples:

010
111
When the pin data setting of Shadow Observe is selected, the simulation events due to the
test cycles defined in the shadow_observe procedure are displayed.

Shift
Examples:

1. XXX
2. 010
3. 000
4. 00010
5. 010/00110
When the pin data setting of Shift is selected, the simulation events due to test cycles
defined in the shift procedure are displayed.

Simulation is performed by setting all constrained pins and constant value gates to their
appropriate values and then simulating the test cycles in the load_unload before the shift
procedure to determine the initial values at the start of the shift procedure. Then the test
cycles in the shift procedure are simulated to provide the values which are displayed.

Example 1 indicates the shift procedure contains 3 simulation events and the pin of
interest is an X value for all three events.

Example 2 indicates a pin which is clocked during the shift procedure.

Example 5 is a special case which is often associated with JTAG related designs. The
first three values before the slash "/" indicate the general case of the shift procedure. The
values after the slash indicate an additional (non-general) application of a shift. to obtain
this type of shift pattern the load_unload procedure must contain test cycles after the Shift
which pulse the shift clock. One or more additional shift operations is possible in which
case each would be separated by a forward slash "/".

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

951

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What are Some Examples of Pin Data?

Feedback

Stability Patterns
Examples:

1. XXXX/XXX
2. 1111/111
3. 000011/111
By default, the stability patterns are not available unless the -store_stability option of
the set_drc command has been selected before performing a run_drc command. If the
stability patterns are available, then selecting the Stability Patterns setting of pin data will
cause the simulation events due to the test cycles in the load_unload, shift, and capture
procedures to be displayed. However, this data is only available for sequential devices that
have been classified as stable with constant 1 or constant 0 values.

Example 1 indicates a pin which is at an X value through the load_unload (values before
"/") and through the capture procedure (values after "/").

Example 3 indicates a pin which is a 1 by the end of load_unload and remains so through
a capture clock procedure.

Test Setup
Examples:

1. X
2. 0
3. 1
4. X0111
When the pin data setting of Test Setup is selected, the simulation events due to test
cycles defined in the test_setup macro are displayed. By default, only the final simulated
value is available unless the set_drc -store_setup command has been performed
before running drc checks.

If there is no test_setup macro defined but PI constraints exist, then there is an implied
test_setup macro consisting of one test cycle in which the constrained ports are assigned
their constraint values.

Example 2 indicates a logic value of 0 due to test_setup macro.

Example 4 indicates 5 simulation events with a final value of 1.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

952

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
How Do I Use the write_testbench Command to Customize MAX Testbench Output?

Feedback

Tie Data
Examples:

X
0
1
Z
When the pin data setting of Tie Data is selected, the logic values resulting from tied logic
are displayed. An X indicates that there is no value due to tied logic while a 0, 1, or Z
indicates the affect of tied logic at that pin.

How Do I Use the write_testbench Command to Customize MAX
Testbench Output?

Answer?

MAX Testbench can be configured at several levels. At the top of the MAX Testbench
configuration file, you can edit the set cfg_* variables to define the various testbench
default values, such as the progress message interval time and the simulation time unit.
The second half of the configuration file contains a set of editable setup parameters for the
VCS/MIT/Cadence simulation script file. A default version of this configuration file is shown
in the following example.

You can use the write_testbench command or the Write Testbench dialog box in the GUI
to specify a customized configuration file. TestMAX ATPG, in this case, invokes a separate
translation process to customize the testbench output for Verilog.

The following steps show you how to use write_testbench to customize testbench output
for Verilog:

1. Create a local copy of the default Verilog configuration file.

Using the write_testbench command:

write_testbench –parameters {-generate_config stil2verilog.config}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

953

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
How Do I Use the write_testbench Command to Customize MAX Testbench Output?

Feedback

Or, using the Write Testbench dialog box:

There is also an alias, write_testbench_config, that creates a configuration file
called stil2verilog.config. This alias is created from the following command:

write_testbench -parameters {-generate_config stil2verilog.config} –
replace

2. Edit the default configuration file, stil2verilog.config, so that it contains
your preferred parameters. (You can also rename this file, for example,
"my_custom_config_file".)

3. Create a reference to this custom configuration file when you create patterns using the
write_patterns command. For example:

TEST> write_testbench -input <stil_filename> -output <testbench_name>
-config_file my_custom_config_file -replace

Example
The following example shows the default configuration file:

 ###### STIL2VERILOG CONFIGURATION FILE TEMPLATE (go-nogo default values)
 #####

 # uncomment out the setting statement to use predefined variables

 ##### variables to define test bench default values

 # cfg_patterns_read_interval: specifies the maximum number of patterns
 loaded simultaneously in the simulation process
 #set cfg_patterns_read_interval 1000

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

954

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
How Do I Use the write_testbench Command to Customize MAX Testbench Output?

Feedback

cfg_patterns_report_interval: Specifies the interval of the progress
 message
#set cfg_patterns_report_interval 5

 # cfg_message_verbosity_level: control for a pre-specified set of trace
 options
 #set cfg_message_verbosity_level 0

 # cfg_evcd_file evcd_file: generates an extended-VCD of the simulation
 run
 #set cfg_evcd_file "evcd_file"

 # cfg_diag_file: generates a failures log file compliant with TestMAX
 ATPG diagnostics
 #set cfg_diag_file "diag_file"

 # cfg_serial_timing: generates a delay for parallel scan access to align
 parallel load timing with serial load timing
 #set cfg_serial_timing 0

 # cfg_time_unit: specifies the simulation time unit
 #set cfg_time_unit "1ns"

 # cfg_time_precision: specifies the simulation time precision
 #set cfg_time_precision "1ns"

 # cfg_dut_module_name: specifies the DUT module name to be tested
 (variable to be used only when the tool asks for it)
 #set cfg_dut_module_name "dut_module_name"

 # cfg_tb_module_name: specifies the test bench top level module name
 #set cfg_tb_module_name "tbench_module_name"

 ##### variables to generate simulator script

 # define_<preprocessor_define>: specifies the preprocessor definitions
 for the simulator
 #set define_<user_def1> 0
 #set define_<user_def2> "TRUE"

 # design_files: specifies all source files required to run the
 simulation
 # Multiple files are specified in double quotation marks separated by
 space. E.g.: "file1.v file2.v ..."
 # Wild-card character (*) is supported. E.g., "dir1/*.v dir2/*/*.v"
 #set design_files "netlist1.v designs/*.v"

 # lib_files: specifies all library source files required to run the
 simulation
 # Multiple files are specified in double quotation marks separated by
 space. E.g.: "file1.v file2.v ..."
 # Wild-card character (*) is supported. E.g., "dir1/*.v dir2/*/*.v"

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

955

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Validating Simulation Libraries Used For ATPG

Feedback

 #set lib_files "lib1.v libs/*.v"

 # vcs_options: specifies the user VCS command line options
 #set vcs_options "VCSoption1 VCSoption2"

 # nc_options: specifies the user NCSim command line options
 #set nc_options "NCoption1 NCoption2"

 # mti_options: specifies the user ModelSim command line options
 #set mti_options "MTIoption1 MTIoption2"

 # xl_options: specifies the user Verilog XL command line options
 #set xl_options "XLoption1 XLoption2"

 #### TB file formatting section
 # cfg_tb_format_extended: specifies whether an extended TB file is need
 #set cfg_tb_format_extended 0

 #### TB file IDDQ Testing parameters
 # cfg_iddq_seed_file: set this parameter when faults are seeded from
 an external fault list file and you want to override the default
 <tb_module_name>.faults
 #set cfg_iddq_seed_file "your_fault_list_file"

 # cfg_iddq_verbose: 1 (default) to enable PowerFault verbose report, 0
 otherwise
 #set cfg_iddq_verbose 1

 # cfg_iddq_leaky_status: 1 (default), enable generaton of PowerFault
 leaky nodes report in file <tb_name>.leaky, 0 otherwise
 #set cfg_iddq_leaky_status 1

 # cfg_iddq_seed_faul_model: set the PowerFault fault model, 0 (default)
 SA faults, 1 for Bridging faults, for automatic seeding
 #set cfg_iddq_seed_faul_model 0

 # cfg_iddq_cycle: set the initial counter value for IDDQ strobes
 (default to 0)
 #set cfg_iddq_cycle 0

Note: For a complete list of all customized parameters and their descriptions, see
"Customized MAX Testbench Parameters Used in a Configuration File with the
write_testbench Command."

Validating Simulation Libraries Used For ATPG
TestMAX ATPG reads simulation libraries in Verilog structural form and dynamically
creates an internally derived ATPG model for use during ATPG. Not all models come
through cleanly, and it is common to experience many rules violations messages. The
following template can assist you in identifying problems with libraries. This template

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

956

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Validating Simulation Libraries Used For ATPG

Feedback

reads in the library cells, and then creates a test jig design with each of the library cells
instantiated once. Then ATPG patterns are generated which should be simulated against
the original Verilog library cells.

This validation technique is not foolproof or exhaustive. Because ATPG is used to
generate patterns, there are no Xs or Zs applied to inputs. This means any differences
in how the derived ATPG model and the original Verilog model handle Xs are not be
uncovered.

 # --- Boilerplate for Library Validation ---
 # --
 #
 set_messages log tmax.log -replace -double
 report_version -full
 build -force

set_netlist -nocheck_only_used_udps

 #
 # --- step #1: Read in all of the library cells.
 # Be sure to use "-library" in case no `celldefines
 # are used or the 'write_netlist' in step #4 is
 # unable to filter out all the library cells.
 #
 read_netlist lib1/*.v -library -delete -noabort

 #
 # --- step #2: Define a black box list to identify modules
 # not desired in the output. TestMAX ATPG automatically
 # drops 1-pin devices from the testbench, but you
 # can wish to keep OTHER library modules out of the
 # testbench.
 #
 set_build -reset_box # clear the list
 set_build -black_box ad01d0 # this removes 'ad01d0'

 #
 # --- step #3: Create the in-memory testbench, module named
 # AAA using an undocumented switch to set netlist.
 #
 set_netlist -testbench AAA

 # NOTE: Do not use the -testbench option when reading design
 # netlist and libraries. The option -testbench is designed to
 # instantiate all unused modules into one top-level module
 # to create a design that can be used to generate
 # test vectors for all the unused cells for library verification
 # purposes only. Your netlist usually contains unused library cells
 # when the -testbench option is used.
 #
 # NOTE: Any modules defined with set build -black_box is
 # excluded in the resulting testbench for library validation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

957

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Validating Simulation Libraries Used For ATPG

Feedback

 #
 # --- step #4: Write the testbench out, excluding the library cells
 # by use of the '-stop design_level' option. If all
 # goes well, there should be a single module in the
 # output and it is the test_jig.
 #
 write_netlist test_jig.v -top AAA -stop design_level -replace

 #
 # --- step #5: Build in-memory image of testjig needed for ATPG
 # and review any N messages before proceeding to step #6
 run_build_model AAA

 #
 # --- step #6: Define any PI constraints or PI Equivs or Clocks
 # you know the testing requires, and which TestMAX ATPG
 # can have trouble figuring out. The testing port
 # names is <libcell>_<pin>, where the port name
 # is constructed of the name of the library cell, an
 # underscore, and the pin name of the cell. So pin
 # "D" on cell "SDFF", becomes "SDFF_D".
 #
 remove_pi_equivalences -all # clear the list
 #add_pi_equivalences ABC_CP -inv ABC_CN # example differential in

 remove_pi_constraints -all # clear the list
 #add_pi_constraints 1 XYZ_DS # example constant pin

 remove_clocks -all # clear the list
 #add_clocks 0 LSSD_A # example clock, offstate=0

 #
 # --- step #7: First pass at Clock Definitions
 # This undocumented command uses the existing list of
 # clocks, PI constraints, and PI equivs, and tries to
 # determine additional clocks not defined. The
 # -add_clocks option causes the clock list to be
 # updated as the command runs. Otherwise it is just
 # an informative report.

 analyze_clocks -all -add_clocks -command_report -verbose -max 8
 # --- Record clocks at this point into a command file.
 #
 report_clocks -command > define_clocks.cmd

 #
 # --- step #8: change to test mode
 #
 run_drc

 #
 # --- At this point, manual edits to the clock list can be needed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

958

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
How Do I Customize Ltran Output for FTDL, TSTL2, or TDL91?

Feedback

 # The file 'define_clocks.cmd' usually
 # requires edits to change clocks, add clocks, add PI
 # constraints, etc., until DRC violations are reduced as much
 # as possible. It might not be possible to satisfy the
 # C3 rule check on a standalone latch.
 #
 interrupt #command file paused: F12 or RESUME to continue

 #
 # --- step #9: generate ATPG patterns
 #
 set_atpg -capture 4 -abort 100
 add_faults -all
 run_atpg

 #
 # --- step #10: supplement patterns with Full-Sequential patterns
 #
 set_atpg -full_seq_atpg -full_seq_time 0 0 -full_seq_abort 100
 run_atpg
 report_summaries

 #
 # --- step #11: save patterns
 #
 write_patterns testbench.stil -format stil -serial -replace

 # All done. Verilog simulation should now be performed using
 # 'test_jig.v', 'testbench.v', and the original verilog library
 # cells.

How Do I Customize Ltran Output for FTDL, TSTL2, or TDL91?
Answer:

The default Ltran configuration files are adequate for most translations. However, there
are a number of fields in the configuration files that you can modify to customize the
output file. The configurable fields are part of the simulator command. The comments in
the Ltran configuration files identify these fields. All of these fields are optional. You can
change them into comments using curly braces {}. The fields enable you to specify header
information in the output file.

Customizing Ltran Configuration Files
The default Ltran configuration files are in the directory $SYNOPSYS/auxx/syn/ltran.
Before you edit them, ensure that you make a local copy (unless you need to permanently
change them).

This section shows you how to customize Ltran configuration files.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

959

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
How Do I Customize Ltran Output for FTDL, TSTL2, or TDL91?

Feedback

Customizing Simulator Format-Specific Controls
The following links describe the simulator format-specific controls:

• Customizing Ltran Output for FTDL

• Customizing Ltran Output for TDL91

• Customizing Ltran Output for TSTL2

Common Ltran Controls
This section describes the Ltran configuration commands generic to all formats.

Most of the Ltran configuration files contain two Ltran commands, rename_bus_pins
and header, which you can use to customize the format of the pattern output files. These
commands are embedded in comments by default. You can enable them by deleting the
curly braces {} surrounding them that make them comments.

The rename_bus_pins command has the syntax:

 rename_bus_pins busvec;

The rename_bus_pins command flattens bussed signal names. It changes a bus signal
name such as bus[5]into bus5. To control the format of the mapped name, change the
busvec string. For example:

 rename_bus_pins $bus_$vec_;

maps the signal name bus[5] to the signal name bus_5_.

To make Ltran place the signal names in a vertical list as comments above their column
position in the vectors, use the header command. The syntax is:

 header nn;

where nn is an integer that specifies how often (in number of lines) the pin header listing
should be repeated.

Character Padding
To pad the FTDL, TSTL2 and TDL_91 formats, use the SCANIN_DEFAULT parameter in
the SIMULATOR statement of the Ltran command file. The following example shows how
to set the pad state using the SCANIN_DEFAULTparameter:

 SIMULATOR WGL
 SCANIN_DEFAULT = "c",
 ...
 ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

960

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
How TestMAX ATPG Processes Setup and Hold Violations

Feedback

Where "c" is the pad character for short chains. It is either a 1, 0 or caret (^). The caret
tells Ltran to use the first non-X state in a short chain as the pad character; it handles the
differential input cases.

How TestMAX ATPG Processes Setup and Hold Violations
Setup violations and hold violations are processed in different ways by the TestMAX
ATPG simulators. Both types of violations use a worst-case analysis of possible glitches
produced by simultaneous changes at the inputs of gates. Because of gate timing, the
zero-delay simulation cannot resolve which glitches are impossible. For the purposes of
timing exceptions, glitches never come from the outputs of flip-flops.

Setup violations use the following assumption:

Transitions are launched and propagated as usual, but they become X at their destination.
After a violation has been turned into an X, the X persists until the next scan load. Most
patterns have only a single load, and in this case the X persists until the end of the pattern.
Multi load patterns might have the X removed before the end of the pattern. For delay
tests using system clock launch, the state of the circuit is assumed to have stabilized after
the scan load. For last-shift launch or stuck-at fault tests, transitions created by the last
shift of the scan load are considered.

Hold violations use the following assumption: Transitions are launched and propagated as
usual, but the capturing register is clocked too late to capture the old value and becomes
X. If the capturing register is clocked again, in a later capture cycle of the same pattern,
while its data inputs are stable, it clocks in the stable value successfully (unless there is
also a setup violation on it).

Violations created by the set_false_path and set_multicycle_path SDC commands
are setup or hold violations or both, as specified by the command and the set_sdc setting.
Violations created by set_disable_timing and set_case_analysis (with set_sdc
-case_paths) are treated as setup violations only.

Example of How TestMAX ATPG Handles an Ambiguous Case
Note in Figure 1, there is a set_false_path -hold exception from flip-flop 33 to flip-flop
34, and the path from flip-flop 32 has no exception.

Figure 1: Example With a set_false_path -hold Exception

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

961

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

   

TestMAX ATPG interprets hold exceptions as late clocking of the capturing register,
which, in this case, occurs in flip-flop 34. However, there is no exception from flip-flop
32, which applies a controlling value to gate 12. But the controlling value is not removed
until the same simulation frame in which the transition from flip-flop 33 occurs. By a strict
interpretation, the timing violation should be masked. However, this implies that flip-flop
32 is also clocked late even though it has no exception. As a result, this example is an
ambiguous case: Flip-flop 32 would need to be considered as clocked normally for the
other paths to which it fans out.

In this case, the transition along the exception path causes the capturing register, flip-flop
34, to be assigned to X for the violating clock cycle. This particular non-violation is difficult
to reliably distinguish from actual violations. Any misinterpretation that caused over-
optimistic behavior would result in the generation of bad patterns. Therefore, TestMAX
ATPG is slightly pessimistic in this case.

Interpreting UDP Messages
Many of the detailed DRC violation messages associated with creating derived ATPG
models for UDPs from vendor libraries need additional explanation on how the messages
should be interpreted and whether further action is needed.

Variant #1
For example, one such commonly occurring message is something on the order of
"Expected <string of chars with 't'> got <non 't'>. Users ask, "How do I interpret the 't', ':',
and '.'?

For the LAT2 UDP table shown below, TestMAX ATPG issues the following text:

underspecified UDP (Expected "tx.:.:." got "?x?:?:-")
 primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;
 input d, gn, ntfy;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

962

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? p ? : ? : - ; #6 "p" includes (0x)
 ? ? * : ? : X ; #7
 endtable
 endprimitive

In this case the string Expected "tx.:.:." contains a 't' meaning a test for 0 or 1 is
expected. The periods "." occur for each position for which TestMAX ATPG does not care
what the value is after the mismatch is detected, and the colons ':' occur as separators in
the same position they hold in the table entries.

The 't' occurs in the first character position, so TestMAX ATPG is expecting the first
character of the table entry to test for a 0 or 1. Instead it got "?x?:?:-", which can be
used to help identify table entry #1 or #6 as the entry corresponding to the violation
message. In this case you might need to get the Verilog reference manual out to decipher
that the "p" is shorthand for the edge combinations of (01), (0x), (x1), (0z), and (z1).
TestMAX ATPG is warning about the (0x) transition, which is similar to a steady state input
on GN of "X" because the table entry implies that the output holds state when GN goes
from 0 to X regardless of the value of D and Q-.

Let's rewrite table entry #6 and expand it into its variants, skipping those that have edge
combinations which include Z.

primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;
 input d, gn, ntfy;

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? (01) ? : ? : - ; #6a expanded
 ? (x1) ? : ? : - ; #6b expanded
 ? (0x) ? : ? : - ; #6c expanded
 ? ? * : ? : X ; #7
 endtable
endprimitive

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

963

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

This new variant of the UDP table has three lines to replace the original. If you read this
with TestMAX ATPG and then perform a run build_model on it, you get the same violation
message:

underspecified UDP (Expected "tx.:.:." got "?x?:?:-")
Note the entry 6c which has the (0x) edge transition for GN and is the closest match to
the error message showing "? x ? : ? : -". If the latch enable GN transitions to an X state,
the table entry should not indicate a hold state, it would be better if it tested that D and
Q- were identical, and if so then the output would be known. You can test this change by
expanding entry 6c into two new lines as follows:

 primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;
 input d, gn, ntfy;

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? (01) ? : ? : - ; #6a expanded
 ? (x1) ? : ? : - ; #6b expanded
 0 (0x) ? : 0 : 0 ; #6c1 expanded
 1 (0x) ? : 1 : 1 ; #6c2 expanded
 ? ? * : ? : X ; #7
 endtable
 endprimitive

This new variant of the UDP table has two lines to replace the original 6c. If you read this
with TestMAX ATPG and then perform a run build_model on it, you get a different violation
this time:

unsupported UDP entry (Entry "??*?:X")
The reason the violation is different is because by default TestMAX ATPG shows only
the single most significant violation for each module. By curing one violation message
you expose the next. To see all of the violation messages at once issue the set_netlist
-nocheck_only_used_udps command before reading the file with the modules being
tested.

This N21 violation occurs any time a UDP has a notify column entry. There is no gate-level
representation for the functionality described by the characters in the notify column and
TestMAX ATPG is issuing a warning. Nearly all such models use this column for setting the
output to an X as a result of a timing violation. For our ATPG functional model (timingless),

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

964

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

this violation can be ignored. At this point you have eliminated all the warnings that we
can.

This example has been useful for demonstrating how to interpret UDP related warning
messages and what action to take to try to reduce the warnings. Having led you through
the process we'll now suggest some additional changes to the table that you can or cannot
have noticed along the way.

The first change is that entry 6a and 6b are essentially redundant to entry 1. An edge
transition on GN to a 1 for a level sensitive device is identical to a constant 1 on GN. So
we could drop these entries from the table.

The second change is that entries 6c1 and 6c2 are essentially redundant to entries 4and 5
by a similar argument.

So in the end we could have reduced warnings for this UDP by commenting out the
original entry 6rather than by expanding it into other lines. Each case is different and
sometimes an idea for the final solution becomes more obvious by commenting out
troublesome lines than by expanding them. Both methods should be considered when
troubleshooting UDP messages. The reduced warning UDP is then:

 primitive LAT2 (q, d, gn, ntfy);
 output q;
 reg q;
 input d, gn, ntfy;

 table
 # D GN ntfy : Q- : Q+
 # --- --- --- --- ---
 ? 1 ? : ? : - ; #1
 0 0 ? : ? : 0 ; #2
 1 0 ? : ? : 1 ; #3
 1 x ? : 1 : 1 ; #4
 0 x ? : 0 : 0 ; #5
 ? ? * : ? : X ; #6
 endtable
 endprimitive

Variant #2
As another example, a message similar to "Expected <string of chars with 't'> got <string
with 0 or 1 or X> is provided.

For the UDP table shown below TestMAX ATPG reporst the following message:

underspecified UDP (Expected "1xr11?:t:." got "1xr11?:?:X")
 primitive FJK (q, j, k, cp, cd, sd, ntfy);
 output q;
 reg q;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

965

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

 input j,k, cp, cd, sd, ntfy;

 table
 # J K CP CD SD ntfy Q- : Q+
 # --- --- --- --- --- --- : --- : ---
 0 0 r 1 1 ? : ? : - ; # 1. hold

 0 1 r 1 1 ? : ? : 0 ; # 2. clocked K
 0 1 r x 1 ? : ? : 0 ; # 3.
 ? ? ? x 1 ? : 0 : 0 ; # 4.

 1 0 r 1 1 ? : ? : 1 ; # 5. clocked J
 1 0 r 1 x ? : ? : 1 ; # 6.
 ? ? ? 1 x ? : 1 : 1 ; # 7.

 1 1 r 1 1 ? : 0 : 1 ; # 8.
 1 1 r 1 1 ? : 1 : 0 ; # 9.

 ? ? f 1 1 ? : ? : - ; # 10.

 0 0 (x1) 1 1 ? : ? : - ; # 11.
 0 1 (x1) 1 1 ? : 0 : 0 ; # 12.
 1 0 (x1) 1 1 ? : 1 : 1 ; # 13.
 0 0 (0x) 1 1 ? : ? : - ; # 14.
 0 1 (0x) 1 1 ? : 0 : 0 ; # 15.
 1 0 (0x) 1 1 ? : 1 : 1 ; # 16.

 * ? ? 1 1 ? : ? : - ; # 17.
 ? * ? 1 1 ? : ? : - ; # 18.

 ? ? ? 0 1 ? : ? : 0 ; # 19. clear
 ? ? ? 1 0 ? : ? : 1 ; # 20. set
 ? ? ? 0 0 ? : ? : 0 ; # 21. clear and set active
 ? ? ? 0 x ? : ? : 0 ; # 22. pessimism

 ? ? (?0) 1 1 ? : ? : - ; # 23. ignore falling clock.
 ? ? (1x) 1 1 ? : ? : - ; # 24.

 ? ? ? (?1) 1 ? : ? : - ; # 25. ignore changes on set and
 ? ? ? 1 (?1) ? : ? : - ; # 26. reset.
 ? ? ? ? ? * : ? : X ; # 27.
 endtable
 endprimitive

Here the message "Expected "1xr11?:t:." got "1xr11?:?:X" provides a useful hint. When we
try to find the table entry to match the "1xr11?:?:X" we won't be able to do so. Notice that
the Q+ entry is an X and the only entry in our UDP table that explicitly sets the next state
Q+ to X is entry 27. By Verilog default, all input combinations not explicitly defined by UDP
table entries result in outputs set to X. So what TestMAX ATPG is trying to hint at is that a
table entry is missing and it expects to see one of the form "1 x r 1 1 ? : t : . ;", where the t
is replaced by 0 and 1, and an appropriate value for Q+ has been used of either 0/1/x/- .

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

966

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

Let us construct two additional entries and add them to the table by expanding the 't' into
0 and 1, and expanding the final output column, shown as a period, into its appropriate
values given the input states:

J K CP CD SD ntfy Q : Q+

--- --- --- --- --- --- : --- : ---

1 x r 1 1 ? : 0 : 1 ; # A. Q=0, clock J=1

1 x r 1 1 ? : 1 : x ; # B. Q=1, clock K=X

When we insert these new entries we don't really need the ones in which the output is X
as that is the default but it wont' hurt for now. We also don't want to add these to the end
of the table after all the entries with wildcard '?' or we wont get a match. We'll add our two
new lines after entry #9 as lines A and B.

 primitive FJK (q, j, k, cp, cd, sd, ntfy);
 output q;
 reg q;
 input j,k, cp, cd, sd, ntfy;

 table
 # J K CP CD SD ntfy Q- : Q+
 # --- --- --- --- --- --- : --- : ---
 0 0 r 1 1 ? : ? : - ; # 1. hold

 0 1 r 1 1 ? : ? : 0 ; # 2. clocked K
 0 1 r x 1 ? : ? : 0 ; # 3.
 ? ? ? x 1 ? : 0 : 0 ; # 4.

 1 0 r 1 1 ? : ? : 1 ; # 5. clocked J
 1 0 r 1 x ? : ? : 1 ; # 6.
 ? ? ? 1 x ? : 1 : 1 ; # 7.

 1 1 r 1 1 ? : 0 : 1 ; # 8.
 1 1 r 1 1 ? : 1 : 0 ; # 9.

 1 x r 1 1 ? : 0 : 1 ; # A. Q=0, clock J=1
 1 x r 1 1 ? : 1 : x ; # B. Q=1, clock K=X

 ? ? f 1 1 ? : ? : - ; # 10.

 0 0 (x1) 1 1 ? : ? : - ; # 11.
 0 1 (x1) 1 1 ? : 0 : 0 ; # 12.
 1 0 (x1) 1 1 ? : 1 : 1 ; # 13.
 0 0 (0x) 1 1 ? : ? : - ; # 14.
 0 1 (0x) 1 1 ? : 0 : 0 ; # 15.
 1 0 (0x) 1 1 ? : 1 : 1 ; # 16.

 * ? ? 1 1 ? : ? : - ; # 17.
 ? * ? 1 1 ? : ? : - ; # 18.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

967

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

 ? ? ? 0 1 ? : ? : 0 ; # 19. clear
 ? ? ? 1 0 ? : ? : 1 ; # 20. set
 ? ? ? 0 0 ? : ? : 0 ; # 21. clear and set active
 ? ? ? 0 x ? : ? : 0 ; # 22. pessimism

 ? ? (?0) 1 1 ? : ? : - ; # 23. ignore falling clock.
 ? ? (1x) 1 1 ? : ? : - ; # 24.

 ? ? ? (?1) 1 ? : ? : - ; # 25. ignore changes on set and
 ? ? ? 1 (?1) ? : ? : - ; # 26. reset.
 ? ? ? ? ? * : ? : X ; # 27.
 endtable
 endprimitive

After adding these new entries TestMAX ATPG now produces a different violation
message of:

underspecified UDP (Expected "xtr11.:.:." got "x?r11?:?:X")
We have succeeded in eliminating one warning message by adding a table entry which
reduces pessimism in the model behavior. By repeatedly analyzing the UDP messages
in this manner and adjusting the table we can eventually eliminate all of the warning
messages due to missing entries.

Variant #3
As another example, a violation message of N28, unsupported priority can occur.
This is an indication of incomplete information in the table needed for asynchronous set or
clear behavior of the UDP to match the TestMAX ATPG primitive's asynchronous set/clear
behavior. N28 violations deal generally with prioritization between asynchronous set, clear,
and clocks.

For the UDP table shown below TestMAX ATPG issues an N28 violation:

unsupported priority (reset "CD" has no priority over other clocks)
 primitive TOGGLE (Q, CP, CD, ntfy);
 output Q;
 reg Q;
 input CP, CD, ntfy;

 table
 # CP CD ntfy: Q- : Q+
 # --- --- --- : --- : --- ;
 (01) 1 ? : 0 : 1 ; # 1. toggle
 (01) 1 ? : 1 : 0 ; # 2. toggle

 0 1 ? : ? : - ; # 3. hold

 ? 0 ? : ? : 0 ; # 4. async clear

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

968

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

 (01) x ? : 1 : 0 ; # 5. reduce pessimism
 0 x ? : 0 : 0 ; # 6. potential clear
 ? ? * : ? : X ; # 7. go to X
 endtable
 endprimitive

What TestMAX ATPG is trying to indicate with the N28 message is that the pin CD has
been identified as an asynchronous reset but that it has not been completely described to
have priority over "other clocks", or in this case the CP pin. The TestMAX ATPG primitive
for a DFF device models the behavior of the asynchronous reset pin to have priority over
the clock pin, so the ATPG primitive we wish to use does not exactly match this table.

If you are interested in eliminating the N28 violation look for entries in the table which
describe asynchronous set or reset functions. Generally they define the behavior when the
"clock" pins are at steady states. You should add an entry that defines the async behavior
in the presence of clock events. In our exampleline "4b" is added to produce the model
below:

 primitive TOGGLE (Q, CP, CD, ntfy);
 output Q;
 reg Q;
 input CP, CD, ntfy;

 table
 # CP CD ntfy: Q- : Q+
 # --- --- --- : --- : --- ;
 (01) 1 ? : 0 : 1 ; # 1. toggle
 (01) 1 ? : 1 : 0 ; # 2. toggle

 0 1 ? : ? : - ; # 3. hold

 ? 0 ? : ? : 0 ; # 4. async clear
 * 0 ? : ? : 0 ; # 4b. async clear

 (01) x ? : 1 : 0 ; # 5. reduce pessimism
 0 x ? : 0 : 0 ; # 6. potential clear
 ? ? * : ? : X ; # 7. go to X
 endtable
 endprimitive

Line 4 specifies that the output is cleared whenever CD=0 for any steady state value on
CP (? = 0, 1, or x). By adding line 4b we also define the behavior that any edge event
on CP while CD=0 also produces Q=0. This then fully describes an asynchronous reset
behavior with priority over clocks and matches our ATPG primitive. This eliminates the N28
violation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

969

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

Variant #4
As another example, a violation message of N23, inconsistent entry can occur. This
is an indication that two entries in the table define conflicting behavior.

For the UDP table shown below TestMAX ATPG issues the N23 violation:

inconsistent UDP (Entry should have clocks off: *?1??:-)
 primitive DFF (Q, D, CP, SD, ntfy);
 output Q;
 input D, CP, SD, ntfy;
 reg Q;
 table
 # D CP SD ntfy: Q- : Q+
 # --- --- --- --- : --- : --- ;
 1 r 1 ? : ? : 1 ; # 1. clock D
 0 r 1 ? : ? : 0 ; # 2.

 ? ? 0 ? : ? : 1 ; # 3. async set
 ? * 0 ? : ? : 1 ; # 4.

 ? 0 1 ? : ? : - ; # 5. hold
 ? (?0) 1 ? : ? : - ; # 6.

 * ? ? ? : ? : - ; # 7. ignore edge
 ? ? (?1) ? : ? : - ; # 8. ignore edge

 1 (0x) 1 ? : 1 : 1 ; # 9. possible clock with Q- = D
 0 (0x) 1 ? : 0 : 0 ; # 10.

 1 r x ? : ? : 1 ; # 11. possible SD
 ? ? x ? : 1 : 1 ; # 12. possible SD, with Q- = 1

 1 (0x) x ? : 1 : 1 ; # 13. possible set, possible clock

 ? ? ? * : ? : X ; # 14. go to X
 endtable
 endprimitive

Reviewing the violation message against the lines in the table we can identify line 7 as
the closest match to "* ? 1 ? : ? : -". The difference between the violation message and
line 7 is that the violation message shows SD=1. In reviewing line 7 we see that this line
indicate the output is held for any transition on the D input and for any values of CP and
SD, including SD=0!!! So TestMAX ATPG is suggesting we change this line to indicate
SD=1 is required.

 primitive DFF (Q, D, CP, SD, ntfy);
 output Q;
 input D, CP, SD, ntfy;
 reg Q;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

970

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Interpreting UDP Messages

Feedback

 table
 # D CP SD ntfy: Q- : Q+
 # --- --- --- --- : --- : --- ;
 1 r 1 ? : ? : 1 ; # 1. clock D
 0 r 1 ? : ? : 0 ; # 2.

 ? ? 0 ? : ? : 1 ; # 3. async set
 ? * 0 ? : ? : 1 ; # 4.

 ? 0 1 ? : ? : - ; # 5. hold
 ? (?0) 1 ? : ? : - ; # 6.

 * ? 1 ? : ? : - ; # 7. ignore edge
 ? ? (?1) ? : ? : - ; # 8. ignore edge

 1 (0x) 1 ? : 1 : 1 ; # 9. possible clock
 0 (0x) 1 ? : 0 : 0 ; # 10.

 1 r x ? : ? : 1 ; # 11. possible SD
 ? ? x ? : 1 : 1 ; # 12.
 1 (0x) x ? : 1 : 1 ; # 13. possible set, possible clock

 ? ? ? * : ? : X ; # 14. go to X
 endtable
 endprimitive

After changing CP=? in line 7 to SD=1 we've eliminated the N23 violation.

Debugging UDP-based Models
The following advice is beneficial if you are debugging violation messages encountered
when reading UDP modules:

1. Put the UDP definition into its own file until debugging is completed. By doing so, the
only warning or error messages are from the single UDP you are debugging.

2. Enable display of ALL messages in the model, not just the most serious ones by
issuing "set netlist -nocheck_only_used_udps" before reading the file containing the
UDP.

3. Within TestMAX ATPG define an alias to make the repeated steps easier. For example,
if the file containing the UDP is named 'udp.v' then define an alias named 'go' similar
to:v

alias go clear ; build -f ; read net udp.v -del ; \ run build ; rep
 viol -all

4. Now type "go" and review the violation messages for guidance on what might need
changed. Next, edit your source 'udp.v' file, save the edits and return to TestMAX

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

971

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
What is the Difference between the add_capture_masks vs add_cell_constraints
Commands?

Feedback

ATPG and type "go" again, or "!!". Repeat this process until you've eliminated as many
violation messages as possible.

5. Review the resulting derived ATPG model in the graphical schematic viewer:

a. Use the SHOW button and select ALL.

b. Compare the gate level functionality of the derived ATPG model with the intended
functionality of the truth table.

6. If your UDP table is complex, or results in more gates than you expected then
consider using the set_netlist -noxmodeling option before reading in the UDP.
This avoids trying to explicitly model output=X states. After this is done you can use a
write_netlist command to get a gate level implementation of the simplified function
using ATPG primitives. This might be helpful in trying to understand how to modify your
UDP table to produce fewer ATPG gates.

What is the Difference between the add_capture_masks vs
add_cell_constraints Commands?

Answer:

As an example, suppose you had a cell called my_bad_cell with a 1on its D input and an
active clock edge. If that cell has a cell constraint of OX, it captures the value of 1. Then,
when the scan chain unload values are set by the simulator, it substitutes an Xfor the
existing value of 1. Further, if any other subsequent clock cycles captures a value of 1 in
my_bad_cell, the captured value of 1 might propagate to other cells.

In these same circumstances, if you placed a capture mask on my_bad_cell, it captures a
value of X rather than of 1. This means that any cells downstream from my_bad_cell also
encounter that X value rather than the value of 1 that was on the D input of my_bad_cell.

Similarly, if you have an unclocked test pattern, the cell with a capture mask unloads the
same value that was loaded into it by the scan chain load. Even in that situation, the cell
with a cell constraint of OX unloads an X.

Masking a Scan Cell by Instance Name
You can use the following commands to mask a scan cell by instance name:

• To mask load/unload but allow non-X capture: add_cell_constraints xx
instance_name

• To mask capture but allow non-X load/unload: add_capture_masks instance_name

• To mask both load/unload and capture: add_cell_constraints xx instance_name
and add_capture_masks instance_name

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

972

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
JTAG Support

Feedback

Masking a Nonscan Cell by Instance Name
You can use the following commands to mask a nonscan cell by instance name:

• To mask load but allow non-X capture: add_capture_masks instance_name –
load_only

• To mask capture but allow non-X load: There is no direct method.
The closest approximation is set_sdc –hold (with set_simulation
-timing_exceptions_for_stuck_at, if necessary) and read_sdc, with
set_false_path –to instance_name in the SDC file

• To mask both load and capture: add_capture_masks instance_name

JTAG Support
TestMAX ATPG supports many designs variants using 1149.1 Boundary Scan test
methods (JTAG). Designs that contain scan chains as well as JTAG can be classified into
four major types according to how scan chains are accessed for test:

Type 1 - Core scan chains are independently accessed in parallel through top level ports
without the use of the TAP controller.

Type 2 - Core scan chains are independently accessed in parallel after loading a single
JTAG instruction during device initialization.

Type 3 - One or more core or boundary scan chains are accessed via TDI/TDO pins after
loading a single JTAG instruction during device initialization. This includes variants of: A)
access to the boundary scan only; B) access to an individual core scan chain; C) access
to two or more core scan chains daisy-chained into one long chain. The most common
variant of this is access to all core scan chains as a single, long, daisy-chained scan
chain using TDI and TDO.

Type 4 - Boundary Scan chains and core scan chains require unique TAP controller
instructions which enable access via TDI/TDO in a one-at-time fashion. These instructions
must be applied dynamically each time scan chains are loaded or unloaded.

TestMAX ATPG is able to support all four types above.

Common Tasks for Supporting JTAG
Supporting Scan-Through-Tap designs can involve one or more of the following tasks:

• Use of test_setup to initialize the TAP controller.

• Use of load_unload to step the TAP controller to different states.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

973

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
JTAG Support

Feedback

• Constraining TCK and TRSTN to their off states during ATPG to keep the TAP
controller in a known state.

• Constraining TMS.

• Limiting the clocks used during ATPG.

Initializing TAP Using test_setup
Except for type 1 designs as described previously, nearly all other types require some
initialization of the TAP control. This is accomplished by defining test cycles in the
test_setup procedure by means of Vector or V{...} statements. An example test_setup
procedure which is common for type 2 designs is shown in the following example. This
resets the TAP controller and loads one instruction intended to open up parallel access to
core scan chains.

 MacroDefs {
 test_setup {
 W "my_timing" ;
 V { TMS=0; TCK=0; TRSTN=P; CLK=0; } # pulse TAP reset
 V { TRSTN=1; } # reset off, state now RESET
 V { TMS=0; TCK=P; } # move to IDLE
 V { TMS=1; TCK=P; } # move to SELECT-DR
 V { TMS=1; TCK=P; } # move to SELECT-IR
 V { TMS=0; TCK=P; } # move to CAPTURE-IR
 V { TMS=0; TCK=P; } # move to SHIFT-IR

 # load 4-bit instruction
 V { TMS=0; TCK=P; TDI=0; } # SHIFT-IR, bit1 : IREG=0
 V { TMS=0; TCK=P; TDI=0; } # SHIFT-IR, bit2 : IREG=00
 V { TMS=0; TCK=P; TDI=1; } # SHIFT-IR, bit3 : IREG=001
 V { TMS=1; TCK=P; TDI=1; } # move to EXIT1-IR, IREG=0011

 V { TMS=1; TCK=P; } # move to UPDATE IR
 V { TMS=0; TCK=P; } # move to IDLE
 V { TMS=0; TCK=0; } # clock off
 }
 }

Each of the V {...} statements in this test_setup procedure should be interpreted as
a single tester cycle. Start by applying a reset to the TAP controller by pulsing TRSTN.
Next, apply various 1/0 combinations to the TMS input while clocking TCK to move about
the TAP controller state machine until you are in the SHIFT-IR state. In the SHIFT-IR
state, use TDI to march in our desired instruction, in this example it is a 4-bit instruction
"0011". This varies by design. On the last IR shift, raise TMS high causing a transition to
the EXIT1-IR state and proceed to adjust TMS while clocking TCK until we arrive at the
IDLE state.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

974

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
JTAG Support

Feedback

For most type 2 designs, this initialization sequence enables the parallel access to core
scan chains and with some additional constraints on TCK and TRSTN should be sufficient
to pass DRC checks.

For type 3 and 4 designs some additional steps are generally added to the end of
test_setup to move from an IDLE state to a CAPTURE-DR state. This depends on whether
the internal scan chain accessed by the IR instruction loaded requires a CAPTURE-DR
operation before shifting the data out. An example test_setup with some additional test
cycles highlighted is shown below:

 MacroDefs {
 test_setup {
 W "my_timing" ;
 V { TMS=0; TCK=0; TRSTN=P; CLK=0; } # pulse TAP reset
 V { TRSTN=1; } # reset off, state now RESET
 V { TMS=0; TCK=P; } # move to IDLE
 V { TMS=1; TCK=P; } # move to SELECT-DR
 V { TMS=1; TCK=P; } # move to SELECT-IR
 V { TMS=0; TCK=P; } # move to CAPTURE-IR
 V { TMS=0; TCK=P; } # move to SHIFT-IR

 # load 4-bit instruction
 V { TMS=0; TCK=P; TDI=0; } # SHIFT-IR, bit1 : IREG=0
 V { TMS=0; TCK=P; TDI=0; } # SHIFT-IR, bit2 : IREG=00
 V { TMS=0; TCK=P; TDI=1; } # SHIFT-IR, bit3 : IREG=001
 V { TMS=1; TCK=P; TDI=1; } # move to EXIT1-IR, IREG=0011

 V { TMS=1; TCK=P; } # move to UPDATE IR
 V { TMS=0; TCK=P; } # move to IDLE
 V { TMS=1; TCK=P; } # move to SELECT DR V { TMS=0; TCK=P; } #
 move to CAPTURE DR V { TMS=0; TCK=0; } # clock off
 }
 }

Keeping the TAP Controller from Changing State
For type 2, 3, and 4 designs, after working hard to define a test_setup procedure to get
the TAP controller into just the "right" state it is now important to keep the ATPG algorithm
from using TCK or TRSTN which could disturb this state by defining PI constraints.
This can be done in a number of ways, but the most convenient of which is to issue the
command lines:

 add_pi_constraints 0 TCK

 add_pi_constraints 1 TRSTN

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

975

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
JTAG Support

Feedback

When to Constrain TMS
For some designs, constraining TCK and TRSTN is not sufficient and DRC checks fail
with scan blockages (rule = S1). Depending upon the design and the design of the TAP
controller logic it can also be necessary to constrain the TMS port to a constant value. If
you experience scan chain blockages during DRC you might want to define a PI constraint
on TMS and try again. Generally TMS is constrained to a 1 but both states might need to
be tried.

Controlling TAP using load_unload
For type 3 and type 4 designs, the shifting of scan chains is done through the TDI/TDO
ports of the TAP controller and involve clocking of TCK with TMS=0. The majority of scan
chain shifting for load/unload is done with the TAP controller in the SHIFT-DR state or
sometimes the SHIFT-IR state. For proper TAP controller operation it is necessary to exit
this state on the last shift and this requires using TMS=1 for the final shift. To accomplish
this last shift with TMS=1 we use a special form of the load_unload procedure where the
final scan out measure occurs outside of the Shift statement:

 load_unload
 V { TMS=0; TCK=0; TRSTN=1; CLK=0; RESETB=1; SCAN_EN=1;}
 Shift {
 V { TDI=#; TDO=#; TCK=P; }
 }
 V { TMS=1; TDI=#; TDO=#; TCK=P; } # move to EXIT1-DR
 }

In the previous example all of the scan chain shifts are done within the Shift statement
when TMS=0 except for the final shift which is done with TMS=1. TestMAX ATPG
supports scan shifts and measures outside of the Shift statement and you can define
more complicated procedures if they are required. For example, the following load_unload
procedure not only does the final shift with TMS=1 but also transitions the TAP controller
from the SHIFT-DR state through the EXIT1-DR to UPDATE-DR to SELECT-DR to
CAPTURE-DR.

 load_unload
 V { TMS=0; TCK=0; TRSTN=1; CLK=0; RESETB=1; SCAN_EN=1;}
 Shift {
 V { TDI=#; TDO=#; TCK=P; }
 }
 V { TMS=1; TDI=#; TDO=#; TCK=P; } # move to EXIT1-DR V { TMS=1;
 TCK=P; } # move to UPDATE-DR V { TMS=1; TCK=P; } # move to SELECT-DR
 V { TMS=0; TCK=P; } # move to CAPTURE-DR }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

976

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
JTAG Support

Feedback

Accessing Internal Scan Chains Through the TAP
For type 4 designs, multiple internal scan chains are accessed one at a time by loading
different TAP instructions. Support of this type of serial access to multiple internal scan
chains requires use of special multiple scan group syntax. For more information and
examples see: Supporting Multiple Scan Groups in STIL

Limiting Clocks during ATPG
For type 3 and 4 designs, the transition from load_unload to capture and back to
load_unload must be done with great care so that proper movement around the TAP
controller state diagram is achieved. For example, when accessing the boundary scan
register (BSR) as a scan chain a TAP instruction is loaded to enable access, then ATPG
wishes to load the BSR by shifting in known values using the "load_unload" procedure.
After this loading occurs, the ATPG algorithm applies a "capture_XXXX" procedure in
normal functional mode before shifting out the BSR. Without any restrictions, the ATPG
algorithm randomly uses any defined clock which has not been constrained to off, as well
as a non-clocking capture where no clocks are used. When the BSR is being used, this
is disastrous. To avoid this problem TestMAX ATPG provides for restricting clocks used
during the capture procedures and it is often the case that the clock needs to be restricted
so that only TCK is used. This is accomplished by the set_drc -clock TCK command:

Use of this command not only limits the clocks used to only TCK, it also ensures that TCK
is always used and there are no non-clocking capture procedures attempted. So if DRC
should fail with a scan chain block, you might want to try limiting the clock used during
"capture" to just TCK and see if the situation improves.

If a design uses scan-through-tap of Type 4 (for example, the TAP controller must be
stepped around a precise flow during shift and capture), then you must use the set_drc
-clock TCK command.

The use restrictions for the -clock TCK argument are as follows:

• Only TCK is used; no other clocks can be used.

• Only one application of TCK is allowed between shifts.

• A chain test using our current algorithm always occurs because a chain test wants no
clock and this restriction requires TCK.

If you are unaware of these ATPG restrictions, you might have a design in which the core
clocks are separate from TCK and are not usable during ATPG. It might be that 90% of the
logic cannot be accessed because TestMAX ATPG cannot activate clocks other than TCK.

As an alternative, the set_drc -controller_clock TCKoption provides some relief from
these restrictions. This setting blindly applies a pulse of TCK during the last capture of
each pattern, but does not otherwise use this clock. This ensures that one (and only one)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

977

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Node File Format for Bridging Faults

Feedback

pulse of TCK occurs for each pattern, which keeps the TAP controller synchronized as it
travels around its state machine.

The set_drc -controller_clock TCK command supports designs where a scan-
through-tap is used with separate core clocks.

The set_drc -seq_capture command selects the special Full-Sequential capture
procedure defined in the DRC file for Full-Sequential ATPG. Otherwise, by default, the
Full-Sequential algorithm uses the same capture procedures as the Basic-Scan and Fast-
Sequential ATPG algorithms.

Limitations of set_drc -controller_clock tckare as follows:

• TestMAX ATPG cannot create a chain test.

• Caution: there is absolutely no checking in which it is safe to apply the TCK pulse in
parallel with other clocks. This is the designer’s responsibility.

TAP controllers with no reset pin
If your TAP controller has no asynchronous reset pin then it is impossible to change the
state machine from "XXXX" to a non-X state by simulation of TCK clocks. To overcome
this, issue the following command before performing DRC:

 set_drc -initialize_dfa_dlat random

This causes a random initialization to 0 or 1 of all DFF and DLAT devices in the design,
and allows the DRC analysis to process the test_setup vectors with the JTAG state
machine in a non-X state. Note: This random initialization is not part of any patterns
produced so that you are responsible for establishing similar initial conditions in any
simulator in which you verify patterns.

Node File Format for Bridging Faults
The node file is read with an add_faults -node_file command when the fault model is
set to bridging. This file can be in two forms: Star-RCXT coupling capacitance report, or
node file containing pairs of nets as described in "Node File Format" below.

Star-RCXT Format
An unmodified Star-RCXT coupling capacitance report can be used for a node file; for
example:

 * % coupling victim aggressor
 24 1.03e-15 io_c0[5] io_c7[4]
 23.9 2.58e-15 io_c2[3] io_if/io_decode1/G7055
 23.5 1.32e-15 io_if/\io_c8_decoded[13] io_c5[5]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

978

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Node File Format for Bridging Faults

Feedback

See "Bridging Fault ATPG " in the TestMAX ATPG User Guide for information on using
Star-RCXT to generate a coupling capacitance report.

Node File Format
The node file contains a list of node pairs used to create bridging faults. It can be provided
compressed in gzip format. TestMAX ATPG has no facility to generate such a list, so you
are expected to supply it.

Each node pair must be on separate lines. The first two entries indicate the bridge
locations of the nodes for a bridging fault. The bridge location must be a valid instance
input pin, instance output pin, or a recognized net name. Otherwise, the node pair is
ignored. A summary message prints when TestMAX ATPG reads the file, indicating how
many node pairs were ignored, as well as the line number of the first occurrence. Lines
that have no entries or that begin with a double slash ("//") are ignored. Otherwise, any line
that has fewer than two entries results in an error condition, reading stops, and a parsing
error message prints the line number.

By default (that is, when only the bridge locations are specified), all four bridging faults
associated with a node pair are added to the fault list. The faults added are:

Location_A with ba0 and location_B as aggressor at 0
Location_A with ba1 and location_B as aggressor at 1
Location_B with ba0 and location_A as aggressor at 0
Location_B with ba1 and location_A as aggressor at 1

When a third field is used, it must be a valid bridging fault selection or a parsing error is
issued and reading terminates. Any entries used after the third field is ignored.

The node pair line has the following format:

<bridge_locationA> <bridge_locationB> [wand | wor | adom | bdom | comp | ba0 | ba1 |
rba0 | rba1]

Where:

wand

Indicates that the bridging fault exhibits a wired AND effect.

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

979

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Node File Format for Bridging Faults

Feedback

These faults are added:

• A with ba0 and B as aggressor at 0

• B with ba0 and A as aggressor at 0

wor

Indicates that the bridging faults exhibits a wired OR effect.

   

These faults are added:

• A with ba1 and B as aggressor at 1

• B with ba1 and A as aggressor at 1

adom

Indicates that the bridging faults associated with a dominant first node are added
to the fault list.

   

This includes the ba0 and ba1 faults for the node pair with bridge_locationA
being the aggressor node.

• B with ba0 and A as aggressor at 0

• B with ba1 and A as aggressor at 1

bdom

Indicates that the bridging faults associated with a dominant second node are
added to the fault list. Bdom is identical to Adom but with B taking the place of A.

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

980

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Optimizing Basic Scan Patterns

Feedback

This includes the ba0 and ba1 faults for the node pair with bridge_locationB
being the aggressor node.

• A with ba0 and B as aggressor at 0

• A with ba1 and B as aggressor at 1

comp

Indicates that a composite set of all four faults associated with a node pair are
added to the fault list. It is the same as default behavior. Comp type is equivalent
to cumulate Adom and Bdom type for the same node pair. It is also equivalent to
cumulate Wand and Wor type or BA0, BA1, RBA0 and RBA1 type for the same
node pair.

• A with ba0 and B as aggressor at 0

• A with ba1 and B as aggressor at 1

• B with ba0 and A as aggressor at 0

• B with ba1 and A as aggressor at 1

BA0

A single ba0 fault is added to A, and B is the aggressor at 0.

BA1

A single ba1 fault is added to A, and B is the aggressor at 1.

RBA0

A single ba0 fault is added to B, and A is the aggressor at 0.

RBA1

A single ba1 fault is added to B, and A is the aggressor at 1.

Optimizing Basic Scan Patterns
You can use the -optimize_patterns option of the run_atpg command to produce a
compact set of patterns with high test coverage. This option enables you to use a single
run_atpg command instead of iterating multiple run_atpg commands and manually
adjusting various parameters.

When the -optimize_patterns option is set, TestMAX ATPG monitors the ATPG process
and dynamically adjusts the internal algorithms to generate a compact pattern set. The
trade-off is a longer runtime. All manually specified run_atpg settings, such as abort
limits, minimum detects, and merge limits, are ignored during this operation. However,
these settings are restored after pattern optimization is completed.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

981

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Optimizing Basic Scan Patterns

Feedback

Note that the -optimize_patterns option generates two-clock ATPG patterns as basic
scan patterns. But they are stored, read, and simulated as fast-sequential patterns. As a
result, a fault simulation that uses two-clock ATPG patterns usually takes longer than the
original ATPG run.

The -optimize_patterns option of the run_atpg command will work with the
-chain_test, -coverage, and -patterns options of the set_atpg command. This option
also works with all power aware options of the set_atpg command. However, the power
aware options might impact the effectiveness of the pattern optimization process.

The -optimize_patterns option is useful during a final TestMAX ATPG run when you
want to optimize the pattern count. It generates a lower number of patterns and produces
similar test coverage compared to a single run_atpg -auto_compression command. You
cannot use the -optimize_patterns option with any additional run_atpg options.

You should use the run_atpg -auto_compression command for general pattern
generation purposes, such as initial test coverage estimates, writing patterns for
verification, analyzing the effects of various options, and obtaining good test coverage and
pattern count without increased runtimes. For details on using the -auto_compression
option, see Using Automatic Mode to Generate Optimized Patterns.

Note the following limitations when using the -optimize_patterns option:

• Multiple run_atpg commands are supported, but pattern optimization can only be
specified one time.

• A learned recipe is not saved.

• Fast-Sequential and Full-Sequential ATPG modes are not supported.

• Be aware that unlike the run_atpg -auto_compression command, specifying
set_atpg -capture_cycle number will not enable Fast-Sequential ATPG during the
pattern optimization process. To run Fast-Sequential top-off ATPG, it must be done as
an extra step. For example:

run_atpg –optimize_patterns
set_atpg –capture 4
run_atpg -auto fast_sequential

• Only stuck-at and transition fault models are supported.

• Distributed APTG is not supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

982

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Design and ATPG Usage Tips for Designs with Phase Lock Loops (PLLs)

Feedback

Design and ATPG Usage Tips for Designs with Phase Lock Loops
(PLLs)

It is very common for designs to have one and sometimes more than one PLL devices
used as clock generators. Here are some design and ATPG setup techniques that can be
generically applied to designs containing PLLs.

Design Considerations:
• Plan on bypassing the PLL as a clock source in ATPG test mode. The most common

method for doing this is to place a MUX on the clock output of the PLL under the
control of a test mode pin and in test mode to provide the core clock from a direct top
level input.

• Some PLLs are designed with either a power down control or a test mode control. If
they exist, use them by placing the PLL into either a power down mode or test mode
during ATPG test. Consult with your library supplier for their preferred mode if there are
choices. In the absence of a preference you should choose a powered down mode.
On the tester, this can help reduce the power consumption which would otherwise
occur if the PLL is trying to acquire lock and we've broken the clock feedback for ATPG
purposes.

• If the PLL does not have a power down or test mode, then consider disabling it's clock
input during ATPG test mode in addition to the MUX around its clock output. If the PLL
has no power down mode then the next best thing is to make sure it sees no transitions
on it's input clock during the application of ATPG patterns on the tester. In addition,
some simulation models behave better if the input clock is shut off during ATPG mode.
This can be accomplished as easily as adding an AND gate in the clock input path,
disabled when in ATPG test mode.

ATPG Tool Considerations:
• PLL modules are typically modeled with behavioral techniques and TestMAX ATPG

does not support behavioral modeling outside of its RAM/ROM syntax. It might be
necessary to black box the PLL model. This can be done before building the in-memory
image by use of the -black_box option of the set_build command. For example:

set_build -black_box PLL_500MHZ
where "PLL_500MHZ" is the module name to be black boxed.

• The MUX on the PLL output must have it's select line held at a constant value. This
generally involves defining a PI constraint, but on circuits with JTAG/TAP this can
involve sequencing the TAP controller in the test_setup procedure to archive a constant
value on the select line.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

983

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Shared Scan-In Designs

Feedback

Shared Scan-In Designs
TestMAX ATPG only supports the patterns formats for WGL and STIL. Note that shared
scan-in designs are not supported if they are Adaptive Scan designs.

Release 2002.09 (and older) of TestMAX DFT does not write correct STL procedure file-
formatted files for such designs. Before running DRC on a shared scan-in design, you
need to modify its STIL procedure file.

Here is an example of an STIL procedure file for a shared scan-in design that passes
DRC.

Assume the design has:

• 10 scan chains. Three scan chains (C8, C9, and C10) share the same scan input port.

• clocks CLKA and CLKB (off state is 0). These clocks pulse during scan chain shifting.

• TEST_MODE enable signal to put the chip in test mode.

• SCAN_ENABLE enable signal to start scan chain shifting.

• RESET signal that resets the chip to its active 1 state.

For this example, the minimum STL procedure file information needed to pass is as
follows:

 STIL;

 ScanStructures {
 ScanChain c1 { ScanIn "si1"; ScanOut "so1"; }
 ScanChain c2 { ScanIn "si2"; ScanOut "so2"; }
 ScanChain c3 { ScanIn "si3"; ScanOut "so3"; }
 ScanChain c4 { ScanIn "si4"; ScanOut "so4"; }
 ScanChain c5 { ScanIn "si5"; ScanOut "so5"; }
 ScanChain c6 { ScanIn "si6"; ScanOut "so6"; }
 ScanChain c7 { ScanIn "si7"; ScanOut "so7"; }
 ScanChain c8 { ScanIn "si8"; ScanOut "so8"; }
 ScanChain c9 { ScanIn "si8"; ScanOut "so9"; }
 ScanChain c10 { ScanIn "si8"; ScanOut "so10"; }
 }

 Procedures {
 "load_unload" {
 V { "CLKA"=0; "CLKB"=0; "RESET"=0; "TEST_MODE"=1; "SCAN_ ENABLE"=1; }
 Shift {
 V { _si=\r8 #; _so=\r10 #; "CLKA"=P; "CLKB"=P; }
 }
 }
 }

 MacroDefs {

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

984

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Creating End-of-Cycle Measures in ATPG Patterns

Feedback

 "test_setup" {
 V { TEST_MODE=1; RESET=0; CLKA=0; CLKB=0; SCAN_ENABLE=0; }
 }
 }

Creating End-of-Cycle Measures in ATPG Patterns
The TestMAX ATPG combinational ATPG algorithm is based on a preclock measure of
scan outputs and regular design outputs. This preclock measure requires a fundamental
event order within a tester cycle of:

• Force inputs

• Measure outputs

• Pulse capture clocks (optional)

This preclock measure has been chosen because it enables superior ATPG pattern
generation performance without compromising on pattern count or tester cycle count.

Many ASIC vendors and users prefer to have patterns with an event order using postclock
or End-of-Cycle measures. A postclock measure seems to be a more comfortable form
because it matches the event order of most functional patterns and is perhaps easier to
debug.

Many ASIC vendors claim that they can only accept postclock measure format. It is rare to
find an ASIC tester which does not support the preclock measure. More often than not it is
a software translation limitation rather than a tester limitation. The fundamental event order
for a postclock measure cycle is:

1. Force inputs

2. Pulse capture clocks (optional)

3. Measure outputs

The TestMAX ATPG combinational ATPG algorithm will not produce this postclock form
of patterns. However, the postclock style of patterns can be created using some post
processing techniques applied during the write_patterns command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

985

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Creating End-of-Cycle Measures in ATPG Patterns

Feedback

Drawbacks of Using End-of-Cycle Measures
Here are some drawbacks of creating End-of-Cycle style ATPG patterns:

• The internal pattern format is in preclock format and attempting to compare internal
patterns to an external form in STIL, Verilog, VHDL, and so forth. is more difficult.

• At least one additional tester cycle is needed for every ATPG pattern. This additional
cycle is placed in the load_unload procedure and performs a scan chain pre-measure
before the Shift procedure.

• Capture Clock procedures cannot be condensed into a single tester cycle and must be
defined with a minimum of 2 tester cycles. The first cycle performs a force PI, measure
PO, and the second cycle performs an optional clock pulse.

In general terms, the cost of implementing the End-of-Cycle measure is two additional
tester cycles for every ATPG pattern generated. There is no increase or decrease to
overall test coverage or the number of ATPG patterns produced by choosing End-of-Cycle
measures over preclock measure. This can or cannot be significant, depending upon your
budget for test cycles or tester time.

Requirements Needed to Produce End-of-Cycle Measures
To create End-of-Cycle style ATPG patterns with the write_patterns command the
following setup steps are required:

1. The DRC procedure file must contain a timing definition block and the time at which
outputs and scan outputs are measured must be defined to occur at the end of a test
cycle, after any potential clock pulses.

2. All capture procedures must be defined using two or more test cycles and the event
order must be:

cycle 1: force PI's, measure PO's cycle 2: mask PO's, pulse clocks
3. The load_unload procedure must pre-measure the first scan chain output before the

first scan shift is performed.

In this case, you are still measuring outputs before a clock. You do not change the
fundamental event order which must continue to be: 1) force PI's, 2) measure PO's, 3)
pulse clocks; make sure that relative to a single tester cycle timing, the measures occur
after any clock pulses. For example, if you define tester timing for a 100nS period in which
PI's are forced at offset zero, a clock is pulsed from 50 to 70ns and outputs are measured
at 99ns, then your "capture_XXX" procedures produce a 2-cycle timing of:

 time action cycle
 ---- ------------------------------- -----
 000 force PI's 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

986

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

 050 assert clock (but inhibited) 1
 070 remove clock 1
 099 measure PO's 1
 100 force PI's (no change needed) 2
 150 assert clock 2
 170 remove clock 2
 199 measure PO's (masked) 2

The fundamental event order is still that of the preclock timing under which the ATPG
patterns are generated but the per cycle timing is such that measures are performed at the
end of a tester cycle.

Troubleshooting Pattern Simulation Failures
The following sections provide troubleshooting guidance when you experience
mismatches during simulation of ATPG generated patterns.:

• Your ATPG Patterns are Failing: What Next?

• Interpreting the Simulation Failure Messages

• Isolating a Failing Pattern to Assist in Troubleshooting

• Eliminating a Few Failing Patterns from a Larger Set

• Locating the Target Fault Site for the Failing Pattern

• Isolating a Fault List to Assist in Troubleshooting

• Interpreting the report_patterns Command

• Viewing Pattern Data in the Graphical Schematic Viewer

• Using the analyze_simulation_data Command

Note the following:

If you need to regenerate patterns while debugging them, you should adjust the tester
cycle period to avalue that is easy to work with and to troubleshoot. For example, a tester
cycle period of 1000ns is easier to work with than one of 240ns. If you have multiple timing
sets defined, try to make them all have identical tester cycle periods.

The parallel Verilog testbench does not present the same simulation times for the capture
procedures as the serial testbench. If you want to have the parallel scan load have the
identical timing as the serial scan load would take, then define tmax_serial_timing
during the Verilog compilation/simulation. This might be done by placing a `define
statement within the Verilog testbench, or by adding a +define+tmax_serial_timing
argument to the Verilog command line options.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

987

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

Your ATPG Patterns are Failing: What Next?
The following troubleshooting tips are presented in a suggested order of investigation
and attack. However, you should read all of the suggestions and choose an order of
exploration that makes sense for your particular design and failure mechanism.

1. What timing mode are you using in the simulator?

Most users simulate 5 to 10 patterns using serial scan loading with full timing and the
balance of the patterns using parallel scan loading in zero delay or typical timing mode.
If you are using unit delay timing you should try zero delay. If zero delay is failing then try
typical timing. If that fails try full annotated timing. To make this process more efficient see
the topic at the end of this topic on isolating a failing pattern.

2. Are the chain tests failing?

Unless you have explicitly suppressed the creation of the chain test by use of set atpg
-chain off then the first pattern (pattern 0) in the pattern block is a chain test pattern.
By default, this pattern shifts a repeating value of 0011... into each scan chain, there is
no capture clock in this pattern so the values are not disturbed, and the same values
(adjusted for scan-in to scan out inversions) is expected to shift out again during the
scan unload of pattern 1. If you experience simulation mismatches on pattern 0 (which
occurs during pattern 1 scan loading) then you have a fundamental problem with your
design because it cannot successfully shift a bit from scan input to scan output. Look for
a clock timing problem in the vicinity of the scan cell which fails. You might find one of the
alternative scan chain patterns such as "1000" easier to debug, these are selected by the
-chain_test option of the set_atpg command before generating patterns. See the topic
at the end of this topic for interpreting failure messages and translating them into scan cell
instance names.

Another possibility when the scan chain tests fail is that you are using a pattern translator
from one of the four native pattern formats created by TestMAX ATPG (STIL, WGL,
VHDL) and your pattern translator is introducing an error. This can happen when the
pattern translator was created for a different ATPG tool and then used with the TestMAX
ATPG output. If you are using WGL through a translator to other formats carefully study
the inversion control as well as the bidirectional port mapping controls of the set_wgl
command. Also check the FAQ section of this online help for vendor specific WGL setup
and configuration advice.

Stick to basics and work on getting the chain tests to pass before moving on to failures in
other patterns.

3. Are you observing setup/hold or other timing errors?

Does your simulator indicate any setup or hold or other timing violation before the ATPG
pattern mismatch? If so, you can have some timing problems to correct that are outside of
the scope of ATPG patterns. Investigate the areas experiencing the timing problems and

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

988

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

correct them. The add_capture_mask command can be helpful for disabling the capture
of any expected values at state elements with setup/hold timing problems. If the state
element is also a part of a scan chain, then the add_cell_constraints command can be
used to mask observed values and control loaded values into that state element.

If you are experiencing simulation timing problems then you might benefit from switching
to zero delay simulation mode. This is not always successful, though, and having ATPG
pattern mismatches in zero delay mode is not conclusive proof of bad patterns.

If you feel comfortable, you can also temporarily edit the SDF timing annotation file to
change the setup or hold limit to zero or a very small number and then re-simulate. If these
simulations now pass, this is an indication that the ATPG simulation mismatch is directly
linked to a timing problem. The ATPG patterns show mismatches until the timing problems
are corrected.

4. Has your ATPG library been validated?

Massive simulation mismatches can often be a sign of a bad ATPG model.

Unless you have successfully used your current library before, you should suspect the
ATPG models in use do not match the simulation library models. Even if you have used
the library before, you might be using different library cells with the current design than
with the previous design. When an ATPG model produces a different expected answer
(other than X) than the simulation model, result in ATPG patterns which fail in simulation.

5. Is TestMAX ATPG producing a bad pattern?

One sanity check that you can perform to check TestMAX ATPG patterns is to run a good
machine simulation on the patterns both with and without the -sequential option.

 set_patterns -external saved_pattern_file

 run_simulation

 run_simulation -sequential

Here is some background on the run_simulation command. The first form uses the
same simulation engine used during Basic-Scan and Fast-Sequential pattern generation
to check the ATPG algorithms generated patterns. So a person would not expect there to
be any simulation mismatches reported by the run_simulation command for patterns
created with the same version of TestMAX ATPG and restored to the same conditions
under which the original patterns were generated. If you see mismatches, please provide a
testcase, as there might be a bug involved.

The second form of the command, with the -sequential option actually uses a different
simulation engine whose primary intended function is the simulation of non-ATPG
functional patterns. This simulation engine has many limitations, and it is not uncommon
for it to report mismatches when it is used on ATPG patterns. However, if use of the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

989

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

-sequential option does show a difference, then it is best to have Synopsys evaluate
whether that difference is expected or a bug.

In summary, mismatches using run_simulation are not expected and considered a high
probability indicator of a bug. In contrast, mismatches using the -sequential option are
often normal and only occasionally an indication of a problem; however, it is best to submit
a testcase to Synopsys for review.

If there are no mismatches reported by either form of the run_simulation command, this
does not rule out the possibility that there is a TestMAX ATPG bug. If you have exhausted
all reasonable possibilities then it is time to send in a testcase and the referenced
simulation libraries, timing files, control files, and so forth.

Important Note: Do not add the run_simulation step to your generic command scripts,
as it is not a necessary step in the standard ATPG flow. Performing a run_simulation
command at the end of an ATPG run wastes CPU time because the simulation has
already been done during the vector generation process; there is no need to repeat this
simulation. Use of the run_simulation command is only recommended when debugging
patterns is necessary or when working with functional patterns.

6. Are you getting massive failures or just a few patterns failing?

If just a few patterns are failing you can gain some useful clues about those patterns
by performing a report_patterns -all -types command. Check to see whether the
patterns that fail are associated with the same clock or whether they are of a particular
type, such as Basic Scan with clock_on_measures (COM) for example.

Finding a pattern to the failures can give you some potential workarounds. If you find
the clock-on measures are failing you could return to DRC mode and disable them and
then regenerate patterns. For some clocks, such as asynchronous resets, you could try
constraining them to an off value.

If there are just a few patterns failing you could extract and eliminate them from the
pattern set by making use of the -reorder option of the write_patterns command.
This option takes as an argument a file containing a numeric list which defines both the
order and pattern numbers of the patterns to be written. It is a convenient method for
dropping selected patterns from the pattern output. Note, however, that you cannot drop
or reorder patterns from within a range of Full-Sequential patterns. This is because Full-
Sequential patterns assume the design is left at the simulation state caused by the prior
Full-Sequential pattern. Any dropping or reordering of Full-Sequential patterns would lead
to simulation failures. and so is not allowed.

7. Are you using parallel patterns? What was the shift count?

Using the -parallel n_shifts with a value of 1 or more when writing patterns assists
in loading the nonscan devices to known states by serially simulating the last N shifts of
every parallel scan chain load. This value is automatically calculated and included in the
STIL pattern file. You can overwrite this value using the write_testbench command,

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

990

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

or the stil2verilog command using a configuration file, or on the VCS compilation
command line using the predefine options +tmax_parallel=N, as documented in the Test
Pattern Validation User Guide.

8. Are your failures isolated to a few scan cells?

Are you getting the same few scan cell locations failing over and over again? If so, then
you might wish to go back and use the add_cell_constraints OX command to mask off
the observe value at that cell and generate new patterns. There is a drop in test coverage
but your new ATPG patterns created can then pass in simulation.

If you are using Fast-Sequential or Full-Sequential ATPG along with a cell constraint of
X, or XX, you might wish to consider using the add_capture_masks as well. The cell
constraint causes the cell to be loaded to X, but the capture mask is necessary to ensure
the cell remains at X for a pattern where multiple capture clocks might be applied.

9. Did you have DRC violation warnings that would indicate that patterns might fail?

Did you have any N20 violations when reading the library or building the design? If so,
there is a risk that the Verilog simulation model predicts an X when the ATPG model
predicts a non-X. This rarely causes a simulation mismatch but you might be in the
unlucky 2% of N20 violations that are the root cause of the simulation mismatch. It might
be worthwhile to perform a library validation if your library cells. A mismatch during library
validation can identify a potential cause of simulation mismatches in your design.

The presence of certain DRC rule violations, such as C1, C5-C14, and S29 for the Basic-
Scan or Fast-Sequential ATPG algorithms, and C22 and C25 for the Full-Sequential
algorithm, can cause TestMAX ATPG to create patterns that fail in simulation. These
warnings should be carefully investigated/corrected before starting ATPG. If you have not
corrected them, an additional warning is issued at the start of ATPG pattern generation.

There is a -mask option of the set_rules command you can use which attempts to
increase the chances of patterns successfully simulating in exchange for potentially
lower test coverage. Generally this masking is unnecessary for the Basic-Scan and Fast-
Sequential ATPG algorithms.

Have you ignored any V18 or V20 violations? If so, there is a risk that this has caused
simulation failures. Consult the online help for the full text of V18 and V20 violations and
the risks involved.

Interpreting the Simulation Failure Messages
When a parallel compare fails the bit number listed is the bit in the chain relative to the
scan chain output port and the numbering scheme starts from zero. So, bit 0 is the bit
that is connected directly to the scan output port, bit 1 is the bit one shift clock away from
the scan output, and so forth. So the scan cell bit position can also be thought of as the
number of shifts required to move the scan cell data to the scan output.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

991

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

 XTB: Reading test data file "/path/to/mxtb_usf.dat"
 XTB: Total patterns number 4
 XTB: Starting parallel simulation of 4 patterns
 >>> Error during scan pattern 2 (detected during parallel unload of
 pattern 1)
 >>> At T=840.00 ns, V=9, exp=1, got=0, chain c0, pin SO, scan cell
 10
 >>> At T=840.00 ns, V=9, exp=0, got=1, chain c0, pin SO, scan cell
 11

To find out the corresponding scan element to the scan cell bit that has the mismatch
you use the report_scan_cells command and specify the scan chain name and the
bit number. The report lists the instance pathname of the scan cell and if you specify the
-pins option also lists the pin name and inversion information for the scan cell.

 TEST> report_scan_cells c1 -pins
 chain cell type inv gate# instance_name (type)
 ------- ---- ------- --- ------ -------------------------------
 c1 0 MASTER IN 147 reg4/r (N_LATCH)
 input I 147 reg4/r/D (N_LATCH)
 output N 147 reg4/r/Q (N_LATCH)
 c1 1 MASTER IN 145 reg3/r (N_LATCH)
 DSLAVE IN 146 reg4/lat1 (P_LATCH)
 input I 145 reg3/r/D (N_LATCH)
 output N 146 reg4/lat1/Q (P_LATCH)
 c1 2 MASTER NI 143 reg2/r (N_LATCH)
 SCANTLA IN 144 reg3/lat1 (P_LATCH)
 input N 143 reg2/r/D (N_LATCH)
 output N 144 reg3/lat1/Q (P_LATCH)

Many users prefer to write the complete list of scan cells into a file for ease of reference:

 TEST> report_scan_cells -all -reverse -verbose > SCAN_CELLS.rpt

The inversion information is often important to understand if you intend to correctly relate
the pattern data to simulated values from the pattern.

The two character inversion code of IN for the master cell indicates the inversion to the
internal sequential modeling element which has been identified as the master by TestMAX
ATPG. The first character is an I if there is an inversion from the scan chain input to the
sequential device identified as the master and an N if there is no inversion. The second
character conveys similar information about the inversion from the master's stored value to
the scan chain output. The master is most often inside of the library cell the user normally
sees so the cells pin inversion information is also necessary.

The single character I or N listed for the input pin conveys the inversion from the scan
input port to the library cell's "DI" pin. In the previous example the N indicates there is
no inversion. Likewise the single character I for the output pin "Q" indicates there is an
inversion between the value seen on "Q" and the scan output port.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

992

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

   

The previous diagram shows in simplified form how a relationship of IN for the master cell
and N and I for the cell's input and output pin affects how data needs to be interpreted. In
this diagram, the SDI pin represents the top level design scan in port and SDO represents
the top level design's scan out port. There is no inversion in the scan path between SDI
port and the library cells "DI" input pin. However, within the library cell there is inversion
both going into and coming out of the sequential element. An inverter exists between the
library cell's output and the top level SDO scan output port, causing an additional data
inversion to be considered.

 XTB: Starting parallel simulation of 4 patterns
 XTB: Using 0 serial shifts
 XTB: Begin parallel scan load for pattern 0 (T=100.00 ns, V=2)
 >>> Error during scan pattern 2 (detected during parallel unload of
 pattern 1)
 >>> At T=840.00 ns, V=9, exp=1, got=0, chain c0, pin SO, scan cell
 10
 >>> At T=840.00 ns, V=9, exp=0, got=1, chain c0, pin SO, scan cell
 11
 XTB: Simulation of 4 patterns completed with 2 errors (time: 1700.00 ns,
 cycles: 17)

Since this is a scan chain unload mismatch the error message indicates expected value at
the scan output was expected 1, but got 0. You need translate this into "expected 0", got
"1" at the Q pin because of the inversion indicated by the "I" on the output pin in the report
scan cells output.

If you find yourself in the middle of a simulator debug session you should keep in mind
the four different possible inversion arches shown by the previous diagram. If you are
investigating the stored value within the sequential model of the DFF in the simulator then
the top-left arch tells you the relation between the scan in data and the data to be found
in the state element. The top-right arch tells you whether that value is inverted by the time

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

993

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

it appears at the SDO output. The lower-left and lower-right arch are used when you are
looking at the "DI and "Q" pins of the library cell in the simulator.

Isolating a Failing Pattern to Assist in Troubleshooting
Step #1: Get the patterns back in. If you have TestMAX ATPG up and running then no
problem, you are done. If you don't you'll need to re-establish the same environment as
was used to create the patterns. A typical sequence is:

 read_libraries

 read_design

 run_build

 add_clocks, PI constraints, PI equivs

 run_drc <original.spf> # with original STIL procedure file

You can essentially rerun any command file you had with the exception that instead of:

 add_faults -all

 run_atpg -auto_compression

You'll do:

 set_patterns -external <file_you_saved_patterns_in>

Not all of the pattern format that TestMAX ATPG can create can be read back in. Synopsys
provides the Ltran tool as a way to produce TSTL2, FTDL, and TDL91 formats. If you are
using one of those formats it is best to write a binary or STIL pattern file along with the
creation of the FTDL/TSTL2/TDL91 patterns. Otherwise, you'll have nothing to read back
in.

Use binary formats whenever possible to read patterns into TestMAX ATPG. Other pattern
formats such as WGL and STIL have limited features to store all data about the patterns.
For example, when you read a STIL or WGL pattern file back, a fast-sequential pattern
might be interpreted as a full-sequential pattern.

Step #2: Now that the patterns have been read into TestMAX ATPG again you can write
them out. For example, say that your failing pattern is pattern 412 and you want to write
out that pattern plus one on either side in STIL format.

 write_patterns pat412.v -format stil -first 411 -last 413

Your output file includes a test_setup procedure, if one was defined in our procedures file,
along with patterns 411, 412, and 413.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

994

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

Eliminating a Few Failing Patterns from a Larger Set
As an example, suppose you have 1000 patterns and want to eliminate patterns 103, 412,
and 720 from this set.

Step #1: Get the patterns back in. If you have TestMAX ATPG up and running with
original patterns then proceed to step #2. If you don't you'll need to reestablish the same
environment as was used to create the patterns. You should essentially re-run any
command file you had with the exception that instead of:

 add_faults -all

 run_atpg # or some other variant

You'll do:

 set_patterns -external <file_you_saved_patterns_in>

Step #2: Generate a list of patterns vs. pattern type:

 report_patterns -external -all -type > reorder.dat

If your patterns were in the internal pattern buffer just substitute '-internal' for '-
external' in the example command above.

Step #3: Edit the 'reorder.dat' file and delete or comment out the lines corresponding to
patterns 103, 412, and 720 as well as the table headings in this report.

Step #4: Write out new pattern file using the -reorder option. The edited file causes the
undesired patterns to be dropped as the patterns are written out.

 write_patterns pat.wgl -external -format wgl -reorder reorder.dat

Locating the Target Fault Site for the Failing Pattern
Suppose you would like to know which fault sites are trying to be tested for the specific
scan cell bit which shows a simulation mismatch. You can use the TestMAX ATPG
diagnostic capability to help you figure this out.

Step #1: Translate the mismatch messages from the simulator into the failure data file
format needed for the run_diagnosis command.

 # 0.00 ns : Begin test setup
 # 900.00 ns : Begin patterns, first pattern = 0
 >>> Error during scan pattern 2 (detected during parallel unload of
 pattern 1)
 >>> At T=840.00 ns, V=9, exp=1, got=0, chain c0, pin SO, scan cell
 10
 5 c4 2 (exp=1, got=0) # pin SRC63, scan cell 2, T= 6595.00 ns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

995

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

You can cut and paste the error text into a file. This is because testbench produces error
messages in which the unwanted lines are commented out by the leading '#', and the
remaining lines just happen to match the format needed for TestMAX ATPG diagnostics!
As a minimum, our file would need this:

 #pattern output bit
 5 c4 1
 5 c4 2

But we could just as easily inserted a more verbose group of lines:

 # ERROR during scan pattern 5 (detected during load of pattern 6)
 5 c4 1 (exp=1, got=0) # pin SRC63, scan cell 1, T= 6495.00 ns
 5 c4 2 (exp=1, got=0) # pin SRC63, scan cell 2, T= 6595.00 ns

The first column is the failing pattern number. The second column is either the name of
the scan output pin, or in the case of a design with multiple scan groups it is the name of
the scan chain. The third column is the scan cell position. The remaining columns are not
required and treated as comment text.

We'll save this text into a file called "failures.dat".

Step #2: Read in the original pattern file into TestMAX ATPG and use the run_diagnosis
command:

 set_patterns -external pat.bin # our original patterns

 run_diagnosis failures.dat # our failure file data

The result of this operation is that TestMAX ATPG attempts to identify all of the possible
locations of faults that would produce a failure on the tester on these two patterns at these
two bit positions. These are also places we'll want to investigate in a simulation that fails.

 TEST> run_diagnosis fail.dat
 Diagnosis summary for failure file fail.dat
 #failing_patterns=2, #defects=1, #unexplained_fails=0
 --
 Fault candidates for defect 1: #failing_patterns_explained=1
 Warning: Fault candidates cause passing patterns to fail.
 --
 Explained pattern list:
 5
 --
 val code pin_pathname (module_name)
 --- ---- --
 sa1 DS u2/U34/Z (NR3L)
 sa1 -- u2/q1n_sig_reg_0/D1 (FL1S2AQ)
 sa0 DS u2/q1n_sig_reg_0/SD (FL1S2AQ)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

996

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

So this has identified three different physical but logically identical fault sites that are being
tested by one of the failing patterns. This might be helpful information.

However, a word of caution -- this technique requires that all failures be provided starting
from the first failure encountered. You can't just randomly pick a failure from your
simulation data and present it to TestMAX ATPG via a failure file. You must present all of
the reported failures in sequence up to and including the failure you are interested in.

Isolating a Fault List to Assist in Troubleshooting
Suppose you would like to know which faults are being tested by a particular ATPG
pattern. How would you figure this out? Let's use an example in which a failure is occurring
on pattern 46. Here are the steps necessary to create a fault list for those patterns.

 set_patterns -external saved_pattern_file # reload our patterns

 write_patterns pat_0_45.bin -external -format bin -last 45

 write_patterns pat_46.bin -external -format bin -first 46 -last 46

You've just created two pattern files, one with the patterns up to but not including the
pattern of interest, and the other with our pattern of interest (pattern = 46).

 set_patterns -external pat_0_45.bin

 add_faults -all # or restore custom fault list

 run_atpg # to regrade faults

 write_faults faults_left.dat -class an -class nd -uncollapse -rep

You've just created a fault list of all the faults NOT detected by the first block of patterns.

 remove_faults -all

 set_patterns -external pat_46.bin

 read_faults faults_left.dat

 run_atpg

 write_fault faults_detect_46.dat -class dt -class pt -collapsed

Now you've got a fault list file that contains exactly the faults detected by pattern 46. We
wrote the "collapsed" fault list but you could have also save the "uncollapsed" list which
would include all primary faults and equivalent fault sites detected.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

997

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

Interpreting the report_patterns Command
There are times when you are just unsure as to whether the patterns in the external
format you are simulating match the patterns originally created by TestMAX ATPG.
If you wish to compare the internal form of the patterns to the external form you are
using the report_patterns command. This lists in the transcript the internal pattern
generated without any translations to an external form. Don't forget that if the simulation
message indicates that the failure occurred during the 'load' of pattern 6 that the ATPG
pattern number to review is 6 - 1 = 5. This is because the scan unload of pattern 5 occurs
simultaneously with the scan load of pattern 6.

 TEST> report_patterns 5 -chain c4
 Pattern 5 (basic_scan)
 Time 0: load c4 = 111
 Time 1: force_all_pis = 0000101111 00101111
 Time 2: measure_all_pos = 1011101110 00110101
 Time 3: pulse clocks clk1 (0) clk2 (1) clk3 (2) clk4 (3)
 Time 4: apply procedure master_observe (ID=0) 1 times
 Time 5: unload c4 = 011

There are a couple of problems with using this information. The first is that your design
probably has more than 18 input pins, 18 outputs, and a scan chain slightly longer than 3
bits. But we need to fit this onto a page and so had to pick a small example.

The second problem is that you need a reference for which bit in the "force_all_pis" and
"measure_all_pos" is which. This can be determined by using the report_primitives
-pis -pios command for the inputs, and the report_primitives -pos -pios"
command for the outputs. The data presented for the force_all_pis/measure_all_pos data
corresponds left-to-right with the corresponding report_primitives command output
from top to bottom.

The scan data is presented left-to-right in the order in which bits are shifted into the scan
chain for "loads" (111), or shifted out for "unloads" (011).

The previous example shows a six-event sequence for a basic-scan pattern. Time 0
involves loading scan chain c4 and involves shifting of three bits into scan chain c4. Time
1 applies values to all top level inputs. Time 2 measures all top level outputs. Time 3
applies a pulse to four different clocks (which must have been declared as PI equivalent).
Time 4 is used to apply a master observe procedure. Finally at Time 5 the expected data
from the prior events is unloaded from chain c4. This again involves shifting three bits out
of the scan chain.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

998

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

Viewing Pattern Data in the Graphical Schematic Viewer
Well, the textual report of the pattern 5 data for chain c4 is pretty dry but fortunately
TestMAX ATPG also supports a graphical view. To visually see the pattern data, we have
two mechanisms that might be used:

• selecting pindata of "good machine"

• using the analyze_simulation_data command

We recommend using analyze_simulation_data because it can display all forms of
patterns: Basic-Scan, Fast-Sequential, or Full-Sequential. Selecting pindata = good
machine works fine for Basic-Scan patterns, and, by default, shows the preclock and
postclock simulation time.

To begin we should display the appropriate gates in the GSV window. Next we either issue
the analyze_simulation_data 5 -fast command or use the SETUP button to select
a pin data type of "good machine" with a pattern number of 5. The following example
shows the good machine pindata for pattern 5 on chain c4, bit 1. This is instance = u1/
q1_sig_reg_0 as well as bit 2, instance = u1/q1_sig_reg2_2

An important thing to remember about the "good machine" data is that there are five
forms of the data display for the time in the cycle. There is the time=clock (default),
time=preclock, time=postclock, time= all, and time=LETE. The various forms are
discussed below.

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

999

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Troubleshooting Pattern Simulation Failures

Feedback

   

For time=clock, the values shown on the schematic represent the simulation results with
the capture clock active and the state elements at their previous states. This is the default
display for Good Sim Data until you adjust it. Think of this as a simulation snapshot at the
instant the clocks go active, but before any data-in to data-out changes of DFF's or DLAT's
have occurred.

For time=preclock, the values shown represent the simulation results with the capture
clock OFF and the state elements at their states from the last scan load. When the pattern
is a Basic-Scan pattern, many gates/pins in the design do not have a calculated preclock
value and the value is shown as either 'x' or '-' or '?'.

For time=postclock, the values shown represent the simulation results with the capture
clock OFF and the state elements at their newly captured states.

For time=LETE, the values shown on the schematic represent the simulation results with
the capture clock on and the leading edge and level sensitive state elements at their new
value to be used by a trailing edge state element.

For time=all, the values shown on the schematic represent the pre-, active-, and post-clock
times as three characters. A question mark "?" represents data not available. This form is
probably the more natural representation of data for those familiar with logic simulators.
The command to display this type of time value is set_primitive_report -time all.
Do not trust the pre-clock time value. TestMAX ATPG does not simulate the pre-clock
value for all gates in the design — only those gates where there is a need. Generally an
"X" value is used as the pre-clock value for all other gates. For clocks and reset values a
non-X value is used. This makes ATPG much faster but debugging somewhat harder and
potentially more confusing.

Using the analyze_simulation_data Command
Perhaps a better presentation of the pattern data in the GSV is created using the
analyze_simulation_data command. This command shows the pattern data for both
Basic-Scan and Fast-Sequential patterns in a event sequence format that uses "#" for

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1000

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

scan loads, and separates each "capture_xxx" procedure with a dash "-". To try this new
option do:

 # add gates of interest to schematic view
 analyze_simulation_data -fast_sequential 5
 # where 5 is failing
 set_pindata debug_sim_data
 # click REFRESH to update schematic

The analyze_simulation_data command can also be used to read in a Value Change
Dump (VCD) data file collected during Verilog simulation and to display the values
graphically, or side-by-side with Fast-Sequential or Full-Sequential expected values.

WGL Pattern Generation Options
The following sections explain the various WGL pattern generation options:

• Creating LSI-Compatible WGL Patterns

• Creating NEC-Compatible WGL Patterns

• WGL Scan Chain Padding

• WGL Scan Chain Definitions

• Macro Usage in WGL

• Grouping Bidirectional Port Data in WGL

• Controlling Port Data Order in WGL

• Specifying Windowed Measures in WGL

• Delayed Input Force Timing and Force Prior in WGL

• Balancing Vector and Scan Statements in WGL

• Mapping Bidirectional Ports Within Vector Statements in WGL

• Mapping Bidirectional Ports Within Scan Statements in WGL

• Adjusting Pattern Data for Serial Versus Parallel Interpretation in WGL

• Selecting Scan Chain Inversion Reference in WGL

• Effect of CELLDEFINE in WGL

• Ambiguity of the Master Cell in WGL

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1001

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

Creating LSI-Compatible WGL Patterns
To produce LSI-compatible WGL output you need to use the set_drc, set_buses,
set_simulation, and set_wgl commands, as shown in the following example:

set_drc -nomulti_captures_per_load

set_buses -external_z x

set_simulation -xclock_gives_xout

set_rules c13 error

set_rules z4 error

set_wgl -nolast_scan

set_wgl -scan_map keep

set_wgl -pre_measured

set_wgl -inversion_reference master

set_wgl -chain_list shift

set_wgl -nomacro -nopad -nogroup_bidis

set_wgl -bidi_map { 0x 0- 1x 1- xx x- z0 -0 z1 -1 zx -x zz -z }

Note the following:

• Scan shifts must use a single tester cycle. For more information, see "Defining the Shift
Procedure."

• Scan Chain names defined in the STIL procedure file must not contain spaces or other
white space. For example, use "chain_1" instead of "chain 1".

• You must define the end-of-cycle timing, as follows:

1. The timing block must define the end-of-cycle measure. For more information, see
"Creating End-of-Cycle Measures in ATPG Patterns."

2. The load_unload procedure must use pre-measure scan outputs. For more
information, see "Defining the load_unload Procedure."

• You can use the ReflectIO protocol. However, unless all bidirectional pins are fully
controlled, you should avoid this protocol since it can create patterns which fail in
simulation and might contain contention when all BIDI pins are not controlled.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1002

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_drc.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_simulation.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_shift.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_shift.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/12a.atpg/end_of_cycle_measure.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_load_unload.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

For a design with bidirectional ports, the ReflectIO protocol causes each capture_XXX
procedure to use the reflectIO style of syntax. For example, you can define all clocks
and then issue the set_drc -bidi_control_pin command followed by a write_drc
command to create a template STIL procedure file. Then modify the capture_XXX
procedures to appear similar to the following 3-cycle protocol:

capture_CLK {
 W _default_WFT_;
 V { _pi=\r15 # ; _po=\j \r44 % ; } # force PI, TN=1
 V { TN=0; _io=\r32 Z ; _po=\j \r44 X ; } # disable bidis
 V { _io=\m \r32 % ; CLK=P; } # reflect bidis, pulse CLK
 }

• All capture_XXX procedures for clocks must have the same number of tester cycles,
V{...} constructs. If you use a three cycle capture for 'CLK', then you must also use
a three-cycle capture for 'RST', 'CLK2', and so forth. This includes the non-clocking
capture procedure named capture.

• Use a test_setup procedure to initialize all input pins to a known value in the first test
cycle. Initialize bidirectional pins to Z.

• If inputs are applied with a delay on the tester, then the Timing block of the STIL DRC
procedure file should include a "ForcePrior" or "P" character at time offset zero of each
cycle before applying the required value within that cycle. This generates a V6 warning
during DRC which will have to be ignored. There is an example of ForcePrior at the
end of topic: Controlling Pin Timing in STIL

• You can use only one timing block.

• Use the -order_pins option of the write_patterns command when writing WGL
patterns.

• Do not use the -measure_forced_bidis option of the write_patterns command
when writing WGL patterns

• Contact LSI for the latest advice and application notes concerning the use of TestMAX
ATPG.

See Also

set_wgl

set_drc

set_simulation

set_contention

write_drc_file

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1003

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_drc.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_drc_file.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_test_setup.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_patterns.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_patterns.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_drc.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_simulation.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_contention.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_drc_file.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

write_patterns

End-of-Cycle Measures and Load_Unload

End-of-Cycle Measures and Timing

End-of-Cycle Measures and Capture Procedures

Creating NEC-Compatible WGL Patterns
To produce NEC-compatible WGL output, you need to use both the set_simulation and
set_wgl commands, as shown in the following example:

set_simulation -strong_bidi_fill

set_wgl -nomacro

set_wgl -nopad

set_wgl -notester_ready

set_wgl -inversion_reference master

set_wgl -scan_map dash

set_wgl -bidi_map { 0x 0- 1x 1- xx x- z0 -0 z1 -1 zx -x zz -z -x -- z-
 -- }

Note the following:

• Scan shifts must use a single tester cycle. For more information, see "Defining the Shift
Procedure."

• You must define the end-of-cycle timing, as follows:

1. The timing block must define the end-of-cycle measure. For more information, see
"Creating End-of-Cycle Measures in ATPG Pattterns."

2. The load_unload procedure must use pre-measure scan outputs. For more
information, see "Defining the load_unload Procedure."

3. The clock capture procedures must use the two-cycle end-of-cycle measure format.
For more information, see "Defining Capture Procedures in STIL."

• You must explicitly initialize bidirectional ports to non-Z values in the load_unload
procedure.

• Use the test_setup procedure to eliminate uninitialized ports at T=0. For more
information, see "Defining the test_setup Procedure."

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1004

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_patterns.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_load_unload.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_basic_sig_timing.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/capture_procedures.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_simulation.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_shift.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_shift.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/12a.atpg/end_of_cycle_measure.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_load_unload.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/capture_procedures.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_test_setup.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

• Use the test_setup procedure to eliminate floating ports at T=0.

• Do not use the -measure_forced_bidis option of the write_patterns command
when writing WGL patterns.

• Use the WGL to ALB to Verilog translation path. Other paths, such as WGL to ALB to
CPT, have not been validated to work.

See Also

set_wgl

set_simulation

set_contention

write_patterns

End-of-Cycle Measures and Load_Unload

End-of-Cycle Measures and Timing

End-of-Cycle Measures and Capture Procedures

WGL Scan Chain Padding
When a design has more than one scan chain and the scan chains are not all the same
length then you have the option of causing the WGL patterns to be written so that all scan
load and unload data is the same length (set_wgl -pad) or is only the length of the scan
chain (set_wgl -nopad). The default is not to pad, and this is preferred by most vendors.

When padding is enabled, the pad value can be any one of 0, 1, or X and you select
which by the -pad_character option of the write_patterns command when the WGL
patterns are written. The default when padding is enabled, is to pad with a zero. Note,
however, that when padding is enabled and a particular pad character is chosen that this
will have no effect on the padding used for the chain test patterns. The padding for chain
test patterns is always the continuation of the repeating string 0011.

The first example shows a portion of the WGL SCANSTATE block for a design with three
scan chains of length 2, 3, and 8 bits where padding is disabled.

scan chain padding disabled
 scanstate
 c1L0 := c1G(11);
 c2L1 := c2G(011);
 c3L2 := c3G(00110011);
 c1E3 := c1G(00);
 c2E4 := c2G(100);
 c3E5 := c3G(11001100);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1005

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_patterns.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_simulation.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_contention.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_patterns.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_load_unload.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/define_basic_sig_timing.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/tmax_ug/11.stil/capture_procedures.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_patterns.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

The second example shows the same data with scan chain padding enabled and a pad
character of X used so that it is easier to see where the padding occurs. For scan load
strings the padding occurs on the left (first shifted in) for all shorter chains. For scan
unload strings the padding occurs on the right (last shifted out).

scan chain padding enabled with pad = X
 scanstate
 c1L0 := c1G(XXXXXX11);
 c2L1 := c2G(XXXXX011);
 c3L2 := c3G(00110011);
 c1E3 := c1G(00XXXXXX);
 c2E4 := c2G(100XXXXX);
 c3E5 := c3G(11001100);

See Also

set_wgl

set_buses

WGL Scan Chain Definitions
By convention, the scanchain block in WGL defines the instances in the physical
sequence of each scan chain, starting at the scan input, and traversing to the scan output.
The number of instances in the scan chain matches the number of bits called for in the
scanstate block for loading or observing from the scan chain.

On some designs, generally those with JTAG used during ATPG, the final scan chain shift
is done outside of the scan loop. This translates into the "scan()" vector being shortened
by one bit and an additional vector() or more being added to the procedure to handle
the final shift outside of the scan statement. Now most WGL translators require that the
number of bits defined in the scanchain block match the physical length of the scan chain.
However, a few require that the number of bits match the length of data to be loaded by
the "scan()" statements. The-chain_list option controls how the scan chain is listed in
the scanchain block. The default is all which causes all instances in the scan chain to be
included in the defining list. Optionally specifying shift causes the list to match only those
bits loaded by the "scan()" statements.

The first examples shows the default scanchain block for a design with two scan chains of
5 and 4 bits.

set_wgl -chain_list all
 scanchain
 chain1 ["si1", "A4", !, "A3", "A2", "A1", "A0", "so1"];
 chain2 ["si2", "B3", "B2", "B1", "B0", !, "so2"];
 end

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1006

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

The second example shows the same scanchain block when the final shift of the scan
chain is done outside of the Shift procedure and a selection of -chain_list shift is used. The
final instance in each scan chain "A1", and "B1" have been omitted from the scan chain
definitions.

set_wgl -chain_list shift
 scanchain
 chain1 ["si1", "A4", !, "A3", "A2", "A1", "so1"];
 chain2 ["si2", "B3", "B2", "B1", !, "so2"];
 end

See Also

set_wgl

set_buses

Macro Usage in WGL
WGL supports the definition of macros. Macros can be used to represent commonly
repeated sequences and the use of macros can lead to more compact WGL pattern files.
TestMAX ATPG will write WGL using macros if the set_wgl -macro option has been
used. Most vendors do not support macros as this requires a more complex WGL reader
and so the TestMAX ATPG default is not to use macros.

When macros are enabled, TestMAX ATPG adds various macro definitions to the WGL
pattern file. The following example is a macro for a capture procedure for the port CLK.
There will generally be a macro for each procedure in the DRC file.

an example macro definition
 macro capture_CLK (SDI3_I, SDO1_I, D0_I, D2_I, CLK, RSTB, SDI,
 INC, SCAN_9, SDI3_O, SDO1_O, D0_O, D2_O, P, SDO, CO)
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I @CLK @RSTB @SDI
 @INC @SCAN_9 X X X X XX XX X];
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I @CLK @RSTB @SDI
 @INC @SCAN_9 @SDI3_O @SDO1_O @D0_O @D2_O @P
 @SDO @CO];
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I 1 @RSTB @SDI
 @INC @SCAN_9 X X X X XX XX X];
 endmacro

The first following example shows a segment from a WGL PATTERN block which does not
use macros and the second example is the same information using macros.

example patterns without macros
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I, "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O, "SDO1":O,
 "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]", "CO")
 { test_setup }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1007

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 0 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];

 { scan_test }
 { pattern 0 }
 { load_unload }
 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U0], output [c2:c2U1], output [c3:c3U2],
 input [c1:c1L0], input [c2:c2L1], input [c3:c3L2];
 { capture_RSTB }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 1 X X X X X X X X X];
 vector(tp1) := [- Z - - 0 0 0 0 0 1 Z 0 Z Z Z 0 1 0 0];

 { pattern 1 }
 { load_unload }
 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U3], output [c2:c2U4], output [c3:c3U5],
 input [c1:c1L3], input
 [c2:c2L4], input [c3:c3L5];
 { capture_CLK }
 vector(tp1) := [Z Z 0 Z 0 1 1 1 0 0 X X X X X X X X X];
 vector(tp1) := [- - 0 - 0 1 1 1 0 0 Z Z X Z Z 0 1 0 1];
 vector(tp1) := [Z Z 0 Z 1 1 1 1 0 0 X X X X X X X X X];

 { pattern 2 }
 { load_unload }
 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U6], output [c2:c2U7], output [c3:c3U8],
 input [c1:c1L6], input
 [c2:c2L7], input [c3:c3L8];
 capture_RSTB }
 vector(tp1) := [Z Z Z Z 0 1 1 1 1 1 X X X X X X X X X];
 vector(tp1) := [- Z Z Z 0 0 1 1 1 1 Z 0 1 0 Z 0 0 0 0];

example patterns using macros
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I, "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O, "SDO1":O,
 "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]", "CO")
 { test_setup }
 test_setup

 { scan_test }
 { pattern 0 }
 load_unload(c1U0, c2U1, c3U2, c1L0, c2L1, c3L2)
 capture_RSTB(-, Z, -, -, 0, 1, 00, 0, 1, Z, 0, Z, Z, Z0, 10, 0)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1008

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

 { pattern 1 }
 load_unload(c1U3, c2U4, c3U5, c1L3, c2L4, c3L5)
 capture_CLK(-, -, 0, -, 0, 1, 11, 0, 0, Z, Z, X, Z, Z0, 10, 1)

 { pattern 2 }
 load_unload(c1U6, c2U7, c3U8, c1L6, c2L7, c3L8)
 capture_RSTB(-, Z, Z, Z, 0, 1, 11, 1, 1, Z, 0, 1, 0, Z0, 00, 0)

See Also

set_wgl

set_buses

Grouping Bidirectional Port Data in WGL
In WGL patterns a bidirectional port appears as two characters, one for the force input
value and another for the measure output value. These two characters can appear side by
side (grouped), or in independent locations within the data (split columns). The set_wgl
-group_bidis command causes the two characters to appears as a single column of
two characters, with the first representing the input action and the second representing
the output action. The default is to present the bidirectional port data as two separate
columns.

The first following example uses grouped bidis and in this example there are four
bidirectional ports which appear as the first four columns of each vector()statement. The
characters "ZX" indicate a force of Z (no force) and a measure of X (mask measure).

example patterns using grouped bidis
 pattern group_ALL ("SDI3", "SDO1", "D0", "D2", "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "P[0]",
 "P[1]", "SDO[2]", "SDO[3]", "CO")
 { test_setup }
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 0 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX ZX 0 0 0 0 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 0 0 0 X X X X X];

In the second following example split bidis are used. Notice that the pattern data no longer
has any two character columns. The port order list now lists each bidirectional port twice
and follows each by either :Ior :O to indicate direction. The two parts of the bidirectional
port data do not appear as adjacent data in the vector, they can appear at any position.

#example patterns using split bidis
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I,
 "CLK", "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O,
 "SDO1":O, "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]",
 "CO")
 { test_setup }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1009

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

 vector(tp1) := [Z Z Z Z 0 0 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];

See Also

set_wgl

set_buses

Controlling Port Data Order in WGL
The default pin data order of the WGL pattern data follows the order in which the ports are
defined in the design's top module. By changing the order of the ports in the top module
you can affect the order of the WGL data.

There is also the -order_pins option of the write_patterns command. Use of this
option causes the ports to occur in the order: inputs, bidis, and outputs. Within each
grouping the port data order matches the order the ports are defined in the design's top
module.

For a top-level design with port order:

 module TOP (I1,B1,O1,O2,O4,O3,B3,B2,I3,I2);

the following two examples illustrate the difference in data order.

default port order using grouped bidis
 pattern group_ALL ("I1", "B1", "O1", "O2", "O4", "O3", "B3",
 "B2", "I3", "I2")
 { test_setup }
 vector(tp1) := [0 ZX X X X X ZX ZX 0 0];
 vector(tp1) := [0 ZX 1 1 1 1 ZX ZX 0 0];
 vector(tp1) := [1 0X 1 1 1 1 0X 0X 1 1];

port order using ORDER_PINS option
 pattern group_ALL ("I1", "I3", "I2", "B1", "B3", "B2", "O1",
 "O2", "O4", "O3")
 { test_setup }
 vector(tp1) := [0 0 0 ZX ZX ZX X X X X];
 vector(tp1) := [0 0 0 ZX ZX ZX 1 1 1 1];
 vector(tp1) := [1 1 1 0X 0X 0X 1 1 1 1];

See Also

set_wgl

set_buses

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1010

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_write_patterns.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

Specifying Windowed Measures in WGL
The default WGL patterns written will define timing which performs a strobed measure
(single time measure) when outputs are to be measured. If your tester supports window
measure (measure over a continuous range of time) and you would like to have a
windowed measure, this type of measure can be created. This time you do not use any
set_wgl options, but instead make edits to the Timing block of the DRC procedure file.
Note that these edits must be made before performing the run_drc command and before
generating ATPG patterns.

The following example illustrates a window measure for the symbolic group out_ports
defined elsewhere in the DRC file. The STIL language specifies that the uppercase
{H,L,T,X} characters indicate a strobed measure, and the lowercase characters {h,l,t,x}
call for a window measure. In this specific example the ports associated with the symbolic
group out_portsis continuously measured for high/low/tristate values between an
offset of 450 nS and 490 nS from the beginning of the tester cycle. The '490ns' x; text
specifies the window measure is turned off at this time and is text which is not needed for
a strobed measure.

Timing {
 WaveformTable "WINDOW_COMPARE" {
 Period '1000ns';
 Waveforms {
 clocks { P { '0ns' D; '500ns' U; '600ns' D; } }
 input_ports { 01Z { '0ns' D/U/Z; } }
 out_ports { X { '0ns' X; } }
 out_ports { HLT { '0ns' X; '450ns' h/l/t; '490ns' X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 }
 }
 }

See Also

set_wgl

set_buses

Delayed Input Force Timing and Force Prior in WGL
It is a common requirement when running the pattern timing to require that one or more
pins have their inputs applied at some delayed offset from the beginning of the tester
cycle. This is another adjustment that is made in the Timing block of the DRC file
rather than with a set_wgl command. In the following example the symbolic pin group
input_grp2 has its pattern data applied at an offset of 5ns into the tester cycle.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1011

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_run_drc.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

What is the value on the pins of group input_grp2 from the start of the cycle to offset 5ns?
The answer is that the value is undefined unless you specify some value in the timing
block such as 0, 1, X, or perhaps Z. What if you just want the port to continue the value
from the previous tester cycle? In WGL as well as STIL there is a "Force Prior" concept
which indicates the value is to be whatever was previously assigned.

To cause the WGL output to call for a Force Prior, edit the Timingblock of the DRC file
before performing a run_drc command and before generating any ATPG patterns and
add the "P" character to the beginning of the timing definition for those inputs which
are applied after a delay. Note that this use of the "P" waveform character will produce
a V6 warning which you can ignore. In the following example, the symbolic pin group
input_grp2calls for the Force Prior value.

WaveformTable "FORCE_PRIOR_EXAMPLE" {
 Period '1000ns';
 Waveforms {
 CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } }
 CLOCK { 01ZN { '0ns' D/U/Z/X; } }
 RESETB { P { '0ns' U; '400ns' D; '800ns' U; } }
 RESETB { 01ZN { '0ns' D/U/Z/X; } }
 input_grp1 { 01ZN { '0ns' D/U/Z/X; } }
 input_grp2 { 0 { '0ns' P; '5ns' D; } }
 input_grp2 { 1 { '0ns' P; '5ns' U; } }
 input_grp2 { Z { '0ns' P; '5ns' Z; } }
 out_ports { HLTX { '0ns' X; '490ns' H/L/T/X; } }
 bidi_ports { 01ZN { '0ns' Z; '20ns' D/U/Z/X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { HLT { '0ns' X; '490ns' H/L/T; } }
 }
 } # end FORCE_PRIOR_EXAMPLE

See Also

set_wgl

set_buses

Balancing Vector and Scan Statements in WGL
By default, the last event in the WGL pattern file is a scan chain unload to observe the
measure values of the final capture clock. This corresponds to a scan() statement in
the WGL file. Some vendors require that the final event in the WGL pattern file be a
vector()statement to ensure that clocks are off and to provide a symmetric order where
the scan statements are always followed by an identical number of vector statements. You
can cause the final events in the WGL file to be vector statements by using the set_wgl
-nolast_scanoption to change the default behavior.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1012

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_run_drc.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

The first following example shows the default final pattern where the last event is a scan()
statement. The second example shows the effect of using -nolast_scan.

#example made with -last_scan
 { pattern 26 }
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U78], output [c2:c2U79], output [c3:c3U80],
 input [c1:c1L78], input [c2:c2L79], input [c3:c3L80];
 { capture
 vector(tp1) := [-Z -0 -0 -1 0 1 1 1 1 1 Z 1 0 0 0];
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U81], output [c2:c2U82], output [c3:c3U83],
 input [c1:c1L81], input [c2:c2L82], input [c3:c3L83];
 end

#example made with -nolast_scan
 { pattern 26 }
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U78], output [c2:c2U79], output [c3:c3U80],
 input [c1:c1L78], input [c2:c2L79], input [c3:c3L80];
 { capture_CLK }
 vector(tp1) := [-Z -0 -0 -1 0 1 1 1 1 1 Z 1 0 0 0];
 { load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U81], output [c2:c2U82], output [c3:c3U83],
 input [c1:c1L81], input [c2:c2L82], input [c3:c3L83];
 { nocapture }
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 end

See Also

set_wgl

set_buses

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1013

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

Mapping Bidirectional Ports Within Vector Statements in WGL
You've seen an example earlier of how TestMAX ATPG supports creating WGL patterns
with bidirectional port data represented as either a single column of two characters
(grouped) or as two columns of single characters (non-grouped or split). In addition to
this choice in grouping there is also the ability to change or map the characters used. Not
every vendor agrees on what the WGL character representation should be for bidirectional
port data so TestMAX ATPG has been designed to provide flexibility by use of the set_wgl
-bidi_map option.

The syntax for this option is: set_wgl -bidi_map <from> <to>
There are 9 mappings that can be adjusted: 3 for which the bidirectional port is an input,
4 for which the bidirectional port is an output, and 2 for when the bidirectional port is a
scan input or scan output. This argument can be repeated on the same command line or
across multiple commands to specify more than one mapping. If the same from designator
is repeated then the later one will replace the earlier ones.

The from designator is a two-character string the represents the TestMAX ATPG internal
data. The to designator is a two-character string that specifies the characters which will
appear in the WGL pattern output in place of this internal representation.

Definition of TestMAX ATPG Internal Representation = "from"

 from
 ====
 0x : force 0, no measure
 1x : force 1, no measure
 xx : force unknown, no measure

 z0 : no force, measure 0
 z1 : no force, measure 1
 zx : no force, no measure
 zz : no force, measure Z

 -x : bidi is in scan input mode
 z- : bidi is in scan output mode

The preceding table defines all the legal combinations available for the from portion of the
mapping option. Any other combination is illegal. The to designator is also made up of
characters 0/1/x/z/- but the mapping is checked to ensure that you are not destroying the
intent of the data or masking measures that would affect the test coverage reported. As an
example of a mapping the following table represents a commonly requested map in which
one of the bidirectional characters is always a dash:

A common mapping

 from : to
 ==== : ==

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1014

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

 0x : 0- # force 0, no measure
 1x : 1- # force 1, no measure
 xx : x- # force unknown, no measure
 z0 : -0 # force Z, measure 0
 z1 : -1 # force Z, measure 1
 zx : -x # force Z, no measure
 zz : -z # force Z, measure Z
 -x : -- # bidi is a scan input
 z- : -- # bidi is a scan output

With the exception of the {zz,-z} mapping above, this table represents the default
mapping.

The set_wgl command which would implement the previous table is:

BUILD> set_wgl -bidi_map { 0x 0- 1x 1- xx x- z0 -0 \
 z1 -1 zx -x zz -z x -- z- -- }

Note in the previous example that you can specify the -bidi_map option only one time,
and the parameters must be in a list structure. Alternatively, you can repeat the entire
command line for each entry, as shown in the following example:

set_wgl -bidi_map {0x 0-}
set_wgl -bidi_map {1x 1-}
set_wgl -bidi_map {xx x- }
set_wgl -bidi_map {z0 -0 }
set_wgl -bidi_map {z1 -1}
set_wgl -bidi_map {zx -x}
set_wgl -bidi_map {zz -z}
set_wgl -bidi_map {x --}
set_wgl -bidi_map {z- --}

Note: Not all mappings are allowed. For example, you cannot map the dash for scan input
or scan output to any other character. Also, you can map "zz" to "-z", but you cannot map
"zz" to "z-". because of the loss of measure and to unambiguously read back in the WGL
which is written out. The "zz"->-z" mapping still indicates a measure must be performed
but a "zz"->z-" mapping could be confused with a "zx"->z-" mapping which generally is
interpreted to mean there is no force and no measure.

Note: The ability to use some bidi mappings is affected by whether the tester can measure
Z values or not. If the tester can measure Z values then the default setting of set_buses
-external_z Z should be used and the WGL patterns can contain both ZZ and ZX data
(no force, measure Z and no force, no measure). If the tester cannot measure Z values
or you want to generate patterns for which no Z-measure is needed you would set the
set_buses -external_z X option before generating patterns. This would result in WGL
patterns with "ZX" data for bidirectional pins but no "ZZ". If "ZZ" does not appear in the
WGL you can define a bidi map of "ZX"->Z-" or "ZX"->-Z" which you could not do if the Z
measure were enabled and "ZZ" were possibly present.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1015

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

Note: Most vendors do not support a simultaneous force and measure on the same port in
the same cycle. With that in mind you should not use the -measure_forced_bidis option
of the write_patterns command as this allows for a simultaneous force and measure
whenever possible.

To report the current bidirectional map settings use the report_settings wgl command.
The output is similar to the following example and the mapping will appear as a series of
(from,to) settings.

wgl = macro_usage=off, nopad=on, scan_map=dash
 group_bidis=off, inversion_reference=master, tester_ready=on
 bidi_map=(Z0,-0)(Z1,-1)(0X,0-)(1X,1-)(XX,X-)(ZX,-X)(ZZ,-Z)(Z-,--)

As an example of how the vector() statement data changes for bidirectional ports the
first following example shows some pattern data with four bidirectional pins (grouped as
single column of two characters each) where the mapping is identical to the TestMAX
ATPG internal representation. The second example uses a common mapping in which the
bidirectional character pair always has one character represented as a dash.

An example where the mapping matches TestMAX ATPG internal
 representation.

 { pattern 1 }
 { load_unload }
 vector(tp1) := [0X 1X XX ZX 0 1 X X 0 0 X X X X X];
 vector(tp1) := [0X 1X XX ZX 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0X 1X XX ZX 1 1 - X 0 1 X X X - X],
 output [c1:c1U0], input [c1:c1L1]];
 { capture_CLK }
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 1 0 1 X X X X X];
 vector(tp1) := [Z0 Z1 ZX ZZ 0 1 0 1 0 1 Z 0 0 1 0];
 vector(tp1) := [ZX ZX ZX ZX 1 1 0 1 0 1 X X X X X];

 { pattern 2 }
 { load_unload }
 vector(tp1) := [ZX ZX ZX 0X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX 0X 0 1 X X 0 1 X X X X X];
 scan(tp1) := [ZX ZX ZX 0X 1 1 - X 0 1 X X X - X],
 output [c1:c1U1], input [c1:c1L2]];
 { capture_CLK }
 vector(tp1) := [0X 0X 0X 0X 0 1 1 1 1 0 X X X X X];
 vector(tp1) := [0X 1X Z0 ZZ 0 1 1 1 1 0 Z 0 1 0 0];
 vector(tp1) := [0X 1X ZX ZX 1 1 1 1 1 0 X X X X X];

The same patterns after defining a mapping of:
 (0x,0-)(1x,1-),(xx,x-),(z0,-0),(z1,-1),(zx,-x),(zz,-z)

 { pattern 1 }
 { load_unload }

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1016

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_report_settings.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

 vector(tp1) := [0- 1- X- Z- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [0- 1- X- Z- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0- 1- X- Z- 1 1 - X 0 1 X X X - X],
 output [c1:c1U0], input [c1:c1L1]];
 { capture_CLK }
 vector(tp1) := [-X -X -X -X 0 1 0 1 0 1 X X X X X];
 vector(tp1) := [-0 -1 -X -Z 0 1 0 1 0 1 Z 0 0 1 0];
 vector(tp1) := [-X -X -X -X 1 1 0 1 0 1 X X X X X];

 { pattern 2 }
 { load_unload }
 vector(tp1) := [-X -X -X 0- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X 0- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-X -X -X 0- 1 1 - X 0 1 X X X - X],
 output [c1:c1U1], input [c1:c1L2]];
 { capture_CLK }
 vector(tp1) := [0- 0- 0- 0- 0 1 1 1 1 0 X X X X X];
 vector(tp1) := [0- 1- -0 -Z 0 1 1 1 1 0 Z 0 1 0 0];
 vector(tp1) := [0- 1- -X -X 1 1 1 1 1 0 X X X X X];

See Also

set_wgl

set_buses

Mapping Bidirectional Ports Within Scan Statements in WGL
The vector() statements in WGL correspond to the application of tester cycles. The scan()
statements correspond to the serial loading and unloading of scan chains. The various
vendor rules for character mapping of the vector() statements cannot be the same as for
the scan() statement and so TestMAX ATPG supports the set_wgl -scan_map option to
allow somewhat independent control of characters in the scan() statement. The available
choices for scan mapping are: dash, bidi, keep, and none. The default is dash.

The following examples show some of the variations of -scan_map. The patterns are for a
design with three scan chains and the first bidirectional port is a scan input and the second
bidirectional port is a scan output.

For a setting of dash, every scan input and output position in the scan() statement
contains a dash, and all bidirectional ports acting as a scan input or output contain a
double dash.

 # set_wgl -scan_map dash

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1017

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

For a setting of bidi, every scan input and output position in the scan() statement
contains a dash, and any bidirectional port acting as a scan input or output follows the
mapping defined by the -bidi_map options. For the following example, assume a BIDI
mapping of (-x,--) for scan inputs, and (z-,z-) for scan outputs.

 # set_wgl -scan_map bidi -bidi_map {-x --} -bidi_map {z- z- }

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- Z- X- X- 1 1 - - 0 1 X X - - X],

For a setting of keep, every scan input and output position in the scan() statement
keeps the same characters as from the previous vector() statement in the load_unload
procedure, including any scan inputs or outputs on bidirectional ports. It is important that
the load_unload procedure have at least one vector() statement before the Shift procedure
in order for a selection of keep to work properly.

set_wgl -scan_map keep

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0- -X X- X- 1 1 X X 0 1 X X X X X],

For a setting of none, every scan input and output position in the scan() statement
contains a dash, and any bidirectional port acting as a scan input or output uses the
TestMAX ATPG internal representation of "-X" for input and "Z-" for output.

 # set_wgl -scan_map none

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-X Z- X- X- 1 1 - - 0 1 X X - - X],

See Also

set_wgl

set_buses

Adjusting Pattern Data for Serial Versus Parallel Interpretation in
WGL
The scan load data in the WGL patterns can be represented in two different ways,
depending upon the reference point required by your WGL pattern translation tool.
The set_wgl -tester_readysetting selects a data format that is ready to serially
shift into the device without further processing for scan cell inversions. The -set_wgl
-notester_ready option selects a data format that is ready to parallel load directly into
the scan cells without further processing for inversions.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1018

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

In the following figure, if you desire to have all devices A,B,C, and D loaded with 1's
after a scan load, and your WGL translation application expects the data in parallel
(-notester_ready) format, then the WGL scan data must be written as all 1's. However,
if your WGL translation application expects the data in serial format (-tester_ready), then
the WGL scan data must be adjusted for internal inversions that it passes through before
being shifted into place. As you can see, the data is not the same: "1111" vs. "0110".
So it is very important to know which data format your WGL translation application is
expecting. The parallel format is the more popular, so if you do not know you should try the
-notester_ready option first.

Note that both the serial and parallel load formats are sensitive to the referencing scheme
for determining inversion if the final WGL translator is doing a parallel-form to serial form
translation or a serial-form to parallel-form translation.

One additional variant of WGL output is needed if the WGL is to be interpreted for a
parallel simulation and the end-of-cycle protocol is used. This end of cycle protocol results
in a scan output pre-measure before beginning the "scan()" statement for the balance of
the scan load/unload. The expected scan output vector needs to be shifted by the single
bit of the pre-measure. To accomplish this, use the -pre_measured option instead of the
-notester_ready option.

See Also

set_wgl

set_buses

Selecting Scan Chain Inversion Reference in WGL
The scanchain block of the WGL pattern file defines each scan chain in physical order
from input port to output port. When an inversion exists between positions in the scan
order, and exclamation mark "!" is inserted to indicate an inversion of the data has

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1019

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

occurred between the two positions. This inversion information is crucial for the correct
translation of the scan chain load and unload data by the WGL-to-simulator or WGL-to-
tester tools supported by your vendor.

More than one interpretation of the reference scheme for calculating inversions
exists and so TestMAX ATPG offers options of master, cell, and omit for the set_wgl
-inversion_reference command.

The previous diagram can provide some insight into the two different referencing schemes
for inversion markers. When TestMAX ATPG calculates the inversion markers for a setting
of master the reference point begins at the scan input pin, and then looks at whether the
data is inverted from that point to the actual sequential simulation primitive functioning as
the "master cell" where the value is stored. This is often a Verilog UDP level underneath
the vendor's library cell. For a library cell with only one sequential element there is only
one answer but for a library cell with two or more sequential elements, the answer might
be ambiguous. As shown in the diagram, for an inversion reference of master there are
inversions between the scan input and U1, between U1 and U2, and between U2 and U3.
The corresponding WGL scanchain definition is shown in the following example.

set_wgl -inversion_reference master

 scanchain
 c1 ["si", !, "U1/R", !, "U2/R", !, "U3/R", "so"];
 end

When TestMAX ATPG calculates the inversion markers for a setting of cell it begins at
the scan in pin and then determines whether an inversion of the data occurs relative to
the scan input pin of each library cell. This reference is used by some WGL translators
in forming the FORCE/RELEASE statements needed for a parallel Verilog simulation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1020

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

The location of the inversion markers is unambiguous and not affected by which cell
is classified as the "master" cell by TestMAX ATPG during DRC. Using an inversion
reference of cell and the preceding diagram, there is an inversion only between the scan
input of cell U1 and the scan input of U2. The corresponding WGL scanchain definition is
shown in the following example:

 # set_wgl -inversion_reference cell

 scanchain
 c1 ["si", "U1/R", !, "U2/R", "U3/R", "so"];
 end

Sometimes, no matter which inversion reference you select the external WGL translator
seems to come up with patterns that mismatch in simulation. If the simulation environment
serially processes scan load information, then there is one more inversion reference that
might be of use and that is the omitoption. This option leaves out all inversion markers. By
combing both the -inversion_reference omit and -tester_ready options, TestMAX
ATPG produces scan load/unload data that is preprocessed for inversions and is ready
to shift into the device unchanged, and omits the inversion markers so the external WGL
translator is mydesignled into thinking that no data adjustments for inversion are needed.
The corresponding WGL scanchain data when omit is used is shown in the following
example:

set_wgl -inversion_reference omit

 scanchain
 c1 ["si", "U1/R", "U2/R", "U3/R", "so"];
 end

See Also

set_wgl

set_buses

Effect of CELLDEFINE in WGL
The previous examples showed the effect of different choices of inversion reference on
the placement of the inversion markers "!" in the scanchain definition block. Another item
which affects the scanchain block is the presence or absence of the `celldefine compiler
directive in the definition of the library model. Consider the following two examples:

Verilog library module without celldefine
 module SDFF (Q, CLK, SE, D, SI);
 input CLK, SE, D, SI;
 output Q;
 uMUX M (di, SE, D, SI);
 uDFFQ R (Q , CLK, di);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1021

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
WGL Pattern Generation Options

Feedback

 endmodule

 # WGL scanchain shows instance "R"
 scanchain
 c1 ["si", "U1/R", !, "U2/R", "U3/R", "so"];
 end

Verilog library module with celldefine
 `celldefine
 module SDFF (Q, CLK, SE, D, SI);
 input CLK, SE, D, SI;
 output Q;
 uMUX M (di, SE, D, SI);
 uDFFQ R (Q, CLK, di);
 endmodule
 `endcelldefine

 # scanchain instances have no "R"
 scanchain
 c1 ["si", "U1", !, "U2", "U3", "so"];
 end

In the first example the Verilog module definition was not defined inside a `celldefine/
`endcelldefine pair. The resulting WGL scanchain definition shows instance pathnames
that include the R of the uDFFQ device.

In the second example the Verilog module definition was within a `celldefine/`endcelldefine
pair. The resulting WGL scanchain definition does not include the instance references
beneath the SDFF module.

Note: Reading a netlist with the -library option has the same effect as enclosing the
module with `celldefine/`endcelldefine pair and is yet another way to affect the WGL
output.

See Also

set_wgl

set_buses

Ambiguity of the Master Cell in WGL
The diagram below provides one simple example of the potential for ambiguity when
using an inversion reference of master. In this example some DFF functions are created
with a library cell using two latches. TestMAX ATPG defines the "master" based on which
sequential device in a scan chain shifts first due to the leading edge of the defined shift
clocks. So with the CLK port defined as active high, the "master" becomes the second
LATCH in U1 and U3, with U2 acting as a lockup latch. If the polarity of CLK is reversed,

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1022

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
Subnet Formats for Diagnosis

Feedback

then the first latch in U1 is classified as the master and the lockup latch is classified as the
master for cell U3! Both polarities of CLK generates ATPG patterns but most likely only
one resulting WGL inversion set is correct.

See Also

set_wgl

set_buses

Subnet Formats for Diagnosis
This topic describes the formats used for defining the net structure, including subnets for
diagnosis, and also for defining subnet stuck-open faults for the diagnosis ranking flow.

Net Topology Definition
The figure shows an example of a net with a single driver and several fanouts.

Figure 1 Logical (a) and Abstracted Physical (b) View of a Net

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1023

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_wgl.htm
https://spdocs.synopsys.com/dow_retrieve/P-2019.06/dg/tmolh/Content/man_set_buses.htm

Chapter 29: ATPG FAQ
Subnet Formats for Diagnosis

Feedback

   

A B

The example net in the figure is displayed in the following example as an ASCII
representation of the abstracted net topology in a format accepted by TestMAX ATPG:

 .net
 <net_driver># net driver of this net - pin E
 <fanout_pin1> # id=1: first fanout branch – pin A
 <fanout_pin2># id=2: second fanout branch – pin B
 <fanout_pin3># id=3: third fanout branch – pin C
 .subnets
 1 2 # a defect in subnet N.2 affects 1st (A) and 2nd (B) branches
 1 2 3 # a defect in subnet N.1 affects 1st (A), 2nd (B) and 3rd (C)
 branches

As shown in the previous example, a net is completely defined by two sections: .net and
.subnets.

The .net section defines the net driver name, which is the hierarchical pinpath name to a
valid pin. This section defines any fanout branches according to their hierarchical pinpath
names. There should be one fanout pinpath name per line. To maintain a compact format,
each fanout branch in .subnets section is referred to using an id. Each fanout branch id is
assigned based on the order it is defined. For instance, the id of the first fanout branch A is
equal to 1 since it is defined first. The id of fanout branch B is 2, and so forth.

The .subnets section defines a list of subnets (one per line) and their fanout branches. The
subnets are uniquely defined by a set of ids of the affected branches. For instance, subnet
N.2 has pins A (of id 1) and B (of id 2) as fanout branches. Therefore, it is defined as “1 2”.

When TestMAX ATPG reads the subnet ASCII file, it assigns an id for each subnets based
on the order of the definition. These ids are used for reporting purposes. For instance, the
subnet with id 1 in the previous example is N.2.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1024

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Subnet Formats for Diagnosis

Feedback

Subnets Fault Format
The fault list file is different than the net structure file, although both files contain similar
sections.

To completely describe a subnet fault, the .net and .subnets sections need to be defined.
The .net section contains the description of the net driver pinpath name, and the .subnets
section contains the list of the subnets to rank for the previously defined net driver. Each
subnet is identified by its id, and one id should be present per line.

An example of fault file format is shown below:

If the following subnets are present in memory:

net=CORE/\I_ENC/I_CSC/r189/U2_2/S #subnets=3

net=CORE/\I_ENC/I_CSC/U421/Y #subnets=4

Then, to rank each subnet of each net driver, the subnet fault file should appear as follows:

 .net
 CORE/\I_ENC/I_CSC/r189/U2_2/S
 .subnets
 1
 2
 3
 .net
 CORE/\I_ENC/I_CSC/U421/Y
 .subnets
 1
 2
 3
 4

The subnet fault format is flexible enough so that it is not necessarily to specify
the .subnets section. In this case, all subnets of this driver is added in the fault list.
Furthermore, only a subset of a particular subnet could be specified and ranked.

For example, say the following subnet fault file is read in:

 .net
 CORE/\I_ENC/I_CSC/U411/Y
 .net
 CORE/\I_ENC/I_CSC/U421/Y
 .subnets
 1
 3
 .net
 CORE/\I_ENC/I_CSC/r189/U2_2/S

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1025

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Handling Escape Characters in Tcl Mode

Feedback

The fault list includes all subnets of net drivers CORE/\I_ENC/I_CSC/r189/U2_2/Sand
CORE/\I_ENC/I_CSC/U411/Y, as well as subnets 1 and 3 for net driver CORE/ \I_ENC/
I_CSC/U421/Y.

Handling Escape Characters in Tcl Mode
In Tcl mode, a backslash character (\) specified at the end of a line represents a line
continuation. Any single backslash specified in the middle of a word escapes the character
following it.

The following sections describe the various methods for handling escape characters:

• Using Escape Characters with Wildcards and Regular Expressions

• Specifying Escaped Names for a List Argument

• Specifying Escaped Names for a String Argument

Using Escape Characters with Wildcards and Regular
Expressions
A wildcard or regular expression used in an escaped identifier is not recognized as
wildcard or regular expression. For example, in the following command, the regular
expression is not correctly interpreted:

add_nofaults -instance \\u_padring_wrap/u_jtag/.*

If you want to use a wildcard with an escaped name, you must use the following:

add_nofaults -instance *u_padring_wrap/u_jtag/.*

Specifying Escaped Names for a List Argument
The following examples show the various methods for specifying escaped names for a list
argument:

add_faults {{\abccdef/hij/U1/A}}
add_faults {\\abccdef/hij/U1/A}
add_faults {abccdef/hij/U1/A}
add_faults [list {\abccdef/hij/U1/A}]
add_faults [list \\abccdef/hij/U1/A]
add_faults [list abccdef/hij/U1/A]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1026

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: ATPG FAQ
Passing Complex Options to LSF/GRID

Feedback

Specifying Escaped Names for a String Argument
The following examples show the various methods for specifying escaped names for a
string argument:

add_nofaults {\\abccdef/hij/U1/A}
add_nofaults {\abccdef/hij/U1/A}
add_nofaults {abccdef/hij/U1/A}

Passing Complex Options to LSF/GRID
The -options choice of the add_distributed_processors command can be used for
passing most simple options for the bsub and qsub executables. However, parsing of the
options has some limitations. For example, you cannot pass a value enclosed in double
quotation marks.

For passing more complex options, please use this procedure:

1. Create a wrapper script called "bsub_wrapper" and make it an executable file; for
example,

 #!/bin/csh -f /path/to/real/bsub -R"sunos5_8 && maxmem>512" $*
2. In a TestMAX ATPG command file, include an add_distributed_processors

command similar to this example:

add_distributed_processors -lsf /path/to/bsub_wrapper -nslaves 4 \
 -options "-q hw-atpg -u kaiser.soze@mysterychip.com"

You can pass complex options to qsub with the previous example in a similar fashion:
replace "lsf" with "grd" and the path to bsub with the path to qsub.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1027

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

30
Scripts

This section provides links to the following scripts:

ATPG

• Basic ATPG Run

• Basic TestMAX ATPG Run

• ATPG Run Without SPF

• Bridging Faults

• Cell-Aware ATPG

• Dynamic Bridging ATPG

• Low Power ATPG

• Multicore ATPG;

• Scan-Through Tap ATPG

• Transition Fault ATPG

• Transition Fault ATPG Using LOES

General

• Basic TestMAX ATPG Diagnosis Run

• Distributed Processing Fault Simulation

• DFTMAX What-If Analysis

• Fault Coverage of Combined ATPG and JTAG Vectors

• Generating DFMAX Ultra High Resolution Patterns

• Generating Patterns for DFTMAX Ultra

• IDDQ Bridging

• Slack-Based Testing

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1028

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Basic ATPG Run Script

Feedback

Basic ATPG Run Script

 

Build ATPG Model

Add Faults, Run ATPG

Write the Patterns

Read Netlist, Library

Run DRC
with
SPF

 

set_messages -log mylog -replace
Read in the netlist library and
Verilog library
read_netlist -library library/*.v
read_netlist design.v
Build the ATPG Model
run_build_model DESIGN_TOP
Set up and run DRC
set_drc stil_procedures.spf
run_drc
Add faults and run ATPG
add_faults -all
run_atpg -auto
Write the patterns
write_patterns DESIGN.stil -format STIL \
-replace
write_patterns DESIGN.bin -replace

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1029

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Basic TestMAX ATPG Run

Feedback

For more information, see Basic ATPG Flow

Basic TestMAX ATPG Run

 

Build ATPG Model

Add Faults, Run ATPG

Write Patterns

Read Netlist, Library

Run DRC
with
SPF

tmax2 Command

Set Thread Count

 

In TestMAX ATPG, expert and
verbose messaging is
recommended.
set_messages -level expert

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1030

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Basic TestMAX ATPG Run

Feedback

set_atpg -verbose
TestMAX ATPG Uses 8 threads by
default. Use these settings to
change
the number of threads. Make sure
that both set_atpg and set_
simulation
use the same thread count.
set_atpg -num_threads 8
set_simulation -num_threads 8
Read in the netlist library and
Verilog library
read_netlist -library library/*.v
read_netlist design.v
Build the ATPG Model
run_build_model DESIGN_TOP
#Set up and run DRC
set_drc stil_procedures.spf
run_drc
Add faults and run ATPG
add_faults -all
run_atpg -auto
Write the patterns
write_patterns DESIGN.stil -format STIL -replace
write_patterns DESIGN.bin -replace

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1031

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
ATPG Run No SPF

Feedback

ATPG Run No SPF

 

Build ATPG Model

Add Faults, Run ATPG

Write Test Patterns

Run DRC

Read Netlist, Library

Add Clock, PI
Constraints

 

set_messages -log mylog -replace
Read in the netlist library and
Verilog library
read_netlist -library library/*.v
read_netlist design.v
Build ATPG Model
run_build_model DESIGN_TOP
Add Clocks and PI Constraints
add_clocks 0{clk}-shift \
-timing{100 50 80 40}
add_clocks 1{rst}-timing{100 50 80
40}
add_scan_enable 1 test_se
add_scan_chains c1 test_sis data_out
add_pi_constraints 1 test_mode
Set up and run DRC

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1032

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Bridging Fault ATPG

Feedback

set_drc stil_procedures.spf
run_drc
Add faults and run ATPG
add_faults -all
run_atpg -auto
Write the patterns
write_patterns DESIGN.stil -format STIL \
-replace
write_patterns DESIGN.bin -replace

For more information, see Basic ATPG Flow.

Bridging Fault ATPG

 

TetraMAX
Bridging ATPG

 Bridging
Test Patterns

TetraMAX
Faultsim Using

SSA Model

TetraMAX
Incremental
SSA ATPG

Bridge & SSA
Test Patterns

 

set_faults -model bridging
add_faults -node_file coupling.txt
// Optionally set drive strength
// set atpg \
// -optimize_drive_strength
run_atpg -auto
write_patterns bridging.pat \
-format bin
remove_faults -all
set_faults -model stuck

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1033

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Cell-Aware ATPG

Feedback

add_faults -all
set_patterns -external bridging.pat
run_fault_sim
set_patterns -internal
run_atpg -auto
set_patterns -external bridging.pat \
-append
write_patterns -bridge_ssa.pat \
-format ...

Note:
The stuck-at fault model can detect many bridges. So fault simulate stuck
patterns against bridging. You can also try the opposite flow: Run ATPG with
bridging faults and write out bridging patterns. Then run fault simulation of
bridging patterns using stuck-at faults. Then, topoff with additional stuck-at
faults for any remaining undetected stuck-at faults. A similar scheme can be
used to combine patterns from other fault models (e.g. transition).

Cell-Aware ATPG

 

Read Cell Test Models

Write Test Program

Read Design Image

Add Faults

Run ATPG

 

Read the design image
read_image ./design/leon3mp.img
Read CTMs

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1034

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Cell-Aware ATPG

Feedback

read_cell_model ./CTM/*.CTM
Add Faults
add_faults -all -cell_aware
Run ATPG
run_atpg -optimize
Write the patterns
write_patterns \
./patterns/cell_aware_patterns.bin -replace

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1035

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Dynamic Bridging Fault ATPG

Feedback

Dynamic Bridging Fault ATPG

 

GDS II
Database

Extraction
Parameters

Transition
Delay Patterns

Bridging
Pairs

Transition +
Bridging Patterns

Reports

STAR RC

TetraMAX FaultSim

TetraMAX ATPG

 

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1036

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Dynamic Bridging Fault ATPG

Feedback

read netlist and libraries,
build, run drc
read_netlist design.v -delete
run_build_model design
run_drc design.spf
set fault model to dynamic
bridging
set_faults -model dynamic
bridging
read in fault list
add_fault -node ...
run atpg
run_atpg -auto_compression
write out the bridging
patterns
write_patterns dyn_bridge_pat.bin \\
-format binary -replace
Fault simulate dynamic bridge patterns with stuck-at
faults. This is intended to reduce the set of patterns
by not generating patterns for stuck-at faults
detected by the dynamic bridging patterns
remove_faults -all
set_faults -model stuck
add_faults -all
read in dynamic bridging pattern
set_patterns external dyn_bridge_pat.bin
fault simulate
run_fault_sim
generate additional stuck-at patterns
set_patterns internal
run_atpg -auto_compression

Note the following:

• ATPG attempts to launch a transition along the victim while holding the aggressor at a
static value

• Before running ATPG with run_atpg a fault list should have been created

• Basic-scan (launch on last shift), Two Clocks, and Fast-Sequential ATPG modes are
supported

• Fault simulation supported as usual with run_fault_sim command

• Dynamic Bridging ATPG and Fault Simulation do not support Full-Sequential mode

• Strength-based pattern generation (similar to what exists for the static bridging
fault model) is not supported Node file format: pair of bridge locations on each line,
separated by a space

• An unmodified coupling capacitance report generated from Synopsys Star-RCXT could
be also used

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1037

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Low Power ATPG

Feedback

• More info on node file, see the “Node File Format for Bridging Pairs” topic in TestMAX
ATPG Online Help.

• Fault list file should not include clocks and asynchronous set or reset signals, because
proper detection status cannot be guaranteed for these faults

• For more information on dynamic bridging, see Running the Dynamic Bridging Fault
ATPG Flow.

Low Power ATPG

   

read_netlist -lib $my_lib.v
read_netlist $my_design.v
run_build $my_design
run_drc $my_drc_file.spf
report_clock -gating
set_atpg -fill adjacent
set_atpg -power_budget 25
add_faults -all
run_atpg -auto
report_power -per_pattern -percentage

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1038

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Multicore ATPG

Feedback

Notes:

• TestMAX ATPG performs low-power fill during ATPG

◦ set_atpg -fill adjacent

• Reduces Peak Power during Capture

◦ Accepts designer-specified switching activity budget

◦ Simple, highly automated flow eliminates need for manual ad hoc solutions

◦ Produces compact pattern set

◦ Enables testing at mission-mode power levels

• For more information, see Power-Aware ATPG.

Multicore ATPG

 

Create Fault List

Run DRC

Use Multiple Cores
During run_atpg

Continue with
Other Commands

 

Perform DRC and enter TEST mode
run_drc top_level.spf

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1039

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Multicore ATPG

Feedback

select the fault model and create
the fault list
set_faults -model transition
Other ATPG settings here
...
Use two cores during run_atpg
set_atpg -num_processes 2
run_atpg -auto
Continue with other commands
after run_atpg
...
// Multicore Usage - Farm Multi-Host (LSF)
bsub -R "span[hosts=1]" -n 4 \
tmax_multicore_batch.csh
// Ensure all slots are reserved on a single host
// 4 slots are allocated for ATPG run
read_netlist Libs/*.v -delete -library -noabort
run_build_model top_level
run_drc top_level.spf
set_faults -model stuck
...
add_faults -all
set_atpg -num_processes 4
// Multicore Usage - Farm Multi-Host (GRID)
qsub -l cputype=amd64,\
mem_free=16G,mem_avail=16G,\
cpus_used=4,model=AMD2800 \
tmax_multicore_batch.csh
// 4 slots are allocated for ATPG run
read_netlist Libs/*.v -delete -library -noabort
run_build_model top_level
run_drc top_level.spf
set_faults -model stuck…
add_faults -all
set_atpg -num_processes 4

Notes:

• Allows you to parallelize and improve ATPG runtime.

• Uses up to the number of user-specified cores.

• Better memory utilization (~50% increase per core) compared to distributed (~100%
increase per slave)

• Good runtime scalability

• Very predictable QoR

• Communication via shared memory instead of files and sockets

• Simple user model: set_atpg -num_processes 2

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1040

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Scan-Through-TAP ATPG Flow

Feedback

• All ATPG engines: basic-scan, two-clock, fast-seq, full-seq

• For more information, see Running Multicore ATPG

Scan-Through-TAP ATPG Flow

 

SDF

PrimeTime

DFT Compiler
Test Synthesis

BSD Compiler
JTAG Insertion

Functional
Patterns

Netlist
& SPF

TestMAX ATPG

ATPG
Patterns

 

set_messages -log STT_tmax_
atpg.log -replace
read_netlist ./tmax_
lib/class.v

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1041

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Transition Delay Fault ATPG

Feedback

read_netlist $output_dir/TOP_
bsd.v
run_build TOP
// only allow captures with
tck clock
add_clock 0 TAP_TCK
set_drc -clock TAP_TCK -init 0
//use spf generated from BSDC
run_drc $output_dir/stt_
bsd.spf
add_faults -all
run_atpg -auto
// write out fault list and ATPG patterns
write_faults $output_dir/top_stt.faults -all -replace
write_patterns $output_dir/top_stt.stil -format stil -replace

Transition Delay Fault ATPG

 

SDF Parasitics

SDC

Test
Constraints

Test
Protocol

Pin Slacks Paths

Patterns

ICC II

PrimeTime

TetraMAX

 

// last_shift launch:
read_netlist lib.v -lib
read_netlist test.v
run_build top
set_delay -launch_cycle \
last_shift

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1042

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Transition Delay Fault ATPG Using LOES Timing

Feedback

set_fault -model transition
set_drc test.spf
read_sdc <FILE_NAME>
set_delay -nopi_changes
set_delay -nopo_measures
add_po_mask -all
set_delay -common_launch_capture_
clock
set_delay -allow_multiple_common_clocks
#optional# set_delay -slow_equivalence
#optional# set_delay -nodisturb
add_pi_constraints 0 scan_en
run_drc
run_atpg -auto
write_pattern patp.stil -format stil -parallel
write_pattern pats.stil -format stil -serial
exit
// system_clock launch:
read_netlist lib.v -lib
read_netlist test.v
run_build top
set_delay -launch_cycle system_clock
set_drc test.spf
set_fault -model transition
read_sdc <file_name>
set_delay -nopi_changes
set_delay -nopo_measures
add_po_mask -all
set_delay -common_launch_capture_clock
set_delay -allow_multiple_common_clocks
#optional# set_delay -slow_equivalence
#optional# set_delay -nodisturb
add_pi_constraints 0 scan_en
run_drc
run_atpg -auto
write_pattern patp.stil -format stil -parallel
write_pattern pats.stil -format stil -serial
exit

For more information, see Transition Delay Fault ATPG.

Transition Delay Fault ATPG Using LOES Timing
// Typical Flow for Using Launch-On
// Extra Shift Mode
set_delay –launch_cycle extra_shift
Other delay settings are the same for LOES and LOC
set_delay –common_launch_capture_clock –nopi_changes
add_po_masks -all
run_drc design_with_loes.spf –patternexec Internal_scan
set_faults –model transition

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1043

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Transition Delay Fault ATPG Using LOES Timing

Feedback

run_atpg –auto
write_patterns design_with_loes.stil –format stil
write_faults design_with_loes.faults –all
drc –force
Prepare to change the LOSPipelineEnable constraint value
remove_pi_constraints –all
set_delay –launch_cycle system_clock
set_delay –common_launch_capture_clock –nopi_changes
add_po_masks -all
run_drc design_with_loc.spf –patternexec Internal_scan
set_faults –model transition
#Use -retain_code so the redundant faults do not need to be
identified again
read_faults design_with_loes.faults –retain_code
Many faults that are AU for LOES can be detected by LOC
update_faults -reset_au

For more information, see Transition Delay Fault ATPG Timing Modes -- LOES.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1044

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Basic TestMAX ATPG Diagnosis Run

Feedback

Basic TestMAX ATPG Diagnosis Run

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1045

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Basic TestMAX ATPG Diagnosis Run

Feedback

Read the image used to
generate the pattern for
diagnostics:
read_image \
Results/design1_img.gz
Use the class-based candidate
organization in the diagnosis
report.
set_diagnosis -organization \
class
set_diagnosis -fault_type all
TestMAX ATPG thread settings
set_atpg -num_threads 8
set_simulation -num_threads 8
Set the pattern file, using the
binary pattern set if available, but
only to diagnose pattern-based failure
data. STIL (or WGL) patterns are
required to diagnose cycle-based
failure data, and may be used to
diagnose pattern-based failure data.
set_patterns -external patterns.bin
Perform diagnosis on the failure file
and generate data for Yield Exporer.
Multiple runs using different failure files
with the same pattern may be
run in sequence:
run_diagnosis datalogs/fail1.log
write_ydf results1/design1_diagnosis.ydf -replace
run_diagnosis datalogs/fail2.log
write_ydf results2}/design1_diagnosis.ydf -append
run_diagnosis datalogs/fail3.log
write_ydf results3/design1_diagnosis.ydf -append

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1046

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Distributed Processing Fault Simulation Flow

Feedback

Distributed Processing Fault Simulation Flow

 

Run DRC

Read Netlist
Build Top-Level

Select Fault Model
Create Fault List

Set Distributed
Environment

Write Fault List

Run Fault
Simulation

Read Functional
Vectors

 

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1047

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
DFTMAX What-If Analysis

Feedback

read_netlist libs.v -delete -library
read_netlist scan_design.v
run_build <top_level >
run_drc top_level.spf
set_fault -model stuck
add_faults -all
set_distributed \
-work_dir /shared/workdir
add_distributed_processors "hosta hostb"
set_pattern -external func_pat.bin.gz
run_fault_sim -distributed -sequential
write_fault final.flt -all -collapsed \
-compress gzip -replace

DFTMAX What-If Analysis
set_messages -log \
scancompress_analysis.log -replace
read libraries and netlist
read_netlist libs/tmax_libs/*.v -library
read_netlist design.v
run_build top
run drc in regular scan mode
run_drc scan.spf
set_faults -model stuck
add_faults -all
analyze_compressor -num_inputs 15 \
-num_scanouts 15 -num_chains 180

DFTMAX Ultra High Resolution Pattern Flow
read_image image_file.dat
Step 1
Run diagnostics to identify defective
chains. For faster run time, read
chain test patterns only. To
generate a separate set
containing chain test patterns
use run_atpg –only_chain_test
set_patterns –external chain.stil
run_diagnosis \
high_res_pat_failure_log_file.log \
-streaming_report_chains_only \
chain_fail_list
set_patterns –delete
Step 2
Read full pattern test file
set_patterns -external full_pattern_set.stil
Use add_chain_masks command to
generate high resolution patterns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1048

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Fault Coverage of Combined ATPG and JTAG Test Vectors

Feedback

add_chain_masks -external -filename chain_fail_list \
-diagnosis
Write the patterns
write_patterns high_resolution_set.stil –format stil \
-external
Step 3
Retest the failing part with the high resolution
patterns and collect the fail data
Step 4
set_patterns -external high_resolution_set.stil
Main diagnosis run using log file generated using
high resolution patterns
run_diagnosis high_res_pat_failure_log_file.log -verbose

Note:
If you mask the chain using the add_chain_mask command, the compares
during output capture may fail. Use the add_cell_constraint xx command to
avoid failing.

Fault Coverage of Combined ATPG and JTAG Test Vectors
//Generate the JTAG test vectors in BSD Compiler:
create_bsd_patterns
write_test -f verilog -out jtag_tb.v
// Edit the testbench to add the eVCD dumpvar
// command in the initial block:
initial begin
_failed = 0;
/* Generate VCDE */
// 'ifdef vcde_out
// extended VCD, see IEEE Verilog 1364-2001
$display("// %t : opening Extended VCD output file", $time);
$dumpports(design.design_inst, "sim_vcde.out");
// 'endif
// Run VCS simulation as follows:
Command: vcs -R -l vcs.log ver_files.v jtag_tb.v
+define+GATES+ +notimingchecks+ -y models -v libs/my_io.v -v
libs/my_techlib.v +libext+.v+
// Step 2: Run ATPG for regular scan patterns
Read in libraries and top-level design with bsd inserted
read_netlist core.v
read_netlist io.v
read_netlist design_w_bsd.v
run_build
Run drc for atpg patterns
run_drc mydesign.spf
Obtain the coverage of the core, excluding IEEE 1149.1 logic
add_nofaults ORCA_BSR_top_inst
add_nofaults ORCA_DW_tap_inst
add_faults -all

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1049

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Generating Patterns for DFTMAX Ultra

Feedback

Generate ATPG patterns
run_atpg -auto
Write out atpg patterns and faultlist
write_faults atpg.faults.gz -compress gzip -all -replace
write_patterns atpg.pats.gz -format bin -compress gzip -replace
// Step 3: Read in external bsd patterns & run fault_sim
Read in top-level design and run drc without a .spf file
read_netlist {core.v io.v design_w_bsd.v}
run_build
run_drc
read in external patterns with appropriate strobe options
set_patterns -delete -external sim_vcde.out
-strobe_period {100 ns} –strobe_offset {95 ns}
run seq simulation to verify there are no miscompares
run_sim -sequential
Read in atpg faultlist and add in the jtag faults
read_faults atpg_faults.gz -retain
add_faults ORCA_BSR_top_inst
add_faults ORCA_DW_tap_inst
Fault simulate the jtag patterns
run_fault_sim –sequential
report_summaries

Generating Patterns for DFTMAX Ultra
USER INPUTS AND DFTMAX ULTRA OUTPUT FILES
set TOP_MODULE_NAME top_module_name
set NETLIST_FILES1 netlist_files1
set NETLIST_FILES2 netlist_files2
set LIBRARY_FILES1 library_files1
set LIBRARY_FILES2 library_files2
set BUILD_CONSTRAINTS_FILE build_constraints_file
set DRC_CONSTRAINTS_FILE drc_constraints_file
set STL procedure file_FILE spf_file
set LOG log_file
setenv SYNOPSYS path_to_tool_installation
############### BUILD SETTINGS ###################
set_messages -level expert -log $LOG -replace
report_version -full
build -force
set_faults -pt_credit 0
set_faults -summary verbose
set_rules N2 warning
set_rules B12 warning
set_rules B5 warning
set_faults -atpg_effectiveness
set_atpg -verbose
set_netlist -redefined_module last
read_netlist $NETLIST_FILES1
read_netlist $NETLIST_FILES2
read_netlist $LIBRARY_FILES1 -library

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1050

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
IDDQ Bridging Flow

Feedback

read_netlist $LIBRARY_FILES2 -library
source -echo $BUILD_CONSTRAINTS_FILE
run_build_model $TOP_MODULE_NAME
############### DRC SETTINGS ###################
source -echo $DRC_CONSTRAINTS_FILE
set_faults -model stuck
run_drc $STL procedure file_FILE
#################### RUN ATPG ####################
add_nofaults -module .*COMPRESSOR.*
add_faults -all
run_atpg -auto_compression
run_simulation –remove_padding_patterns
write_patterns ultra.stil format stil

IDDQ Bridging Flow

 

Netlist,

PrimeTimeBridging
Pairs

IDDQ Bridging

StarRC

TetraMAXSPF

Patterns
 

Enable IDDQ Bridging fault model
set_fault -model iddq_bridging
Read bridging pairs
add_fault –node_file bridging_
pair.txt
Run ATPG

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1051

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
IDDQ Bridging Flow

Feedback

run_atpg -auto
Write patterns
write_patterns iddq_bridging.stil
\
-format stil

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1052

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Slack-Based Testing

Feedback

Slack-Based Testing

 

SDC,
ExceptionsSDF,

Parasitics

Pin Slacks

Transition
Patterns

Yield
Explorer

Reports,
HistogramsSlack-Based

Patterns

PrimeTime

Slack-Driven
ATPG

Timing-Based Fault Grading

 
TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1053

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: Scripts
Slack-Based Testing

Feedback

// PrimeTime:
...
set timing_save_pin_arrival_and_slack
true
update_timing
report_global_slack -max -nosplit
global_slack_file
...
// TestMAX ATPG:
read_netlist CORE.v -library
read_netlist DESIGN.v
run_build_model TOP
add_pi_constraint 0 scan_en
run_drc DESIGN.spf
set_faults -model transition
set_delay -launch system
read_timing global_slack_file
set_delay -max_delta_per_fault 0.5
set_delay -max_tmgn 2.5
run_atpg -auto
report commands

Note:
Because of additional requirements placed on the on-chip clocking controller,
launch-on shift mode has some major drawbacks when used with internal
clocking. However, launch-on extra shift mode provides many of the
advantages of launch-on shift mode, without placing an extra burden on the on-
chip clocking controller.

For more information, see Transition Delay Fault ATPG Timing Modes.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1054

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

31
Validating Test Patterns

This section describes the Synopsys tools you can use to validate generated test patterns.
This includes MAX Testbench, which validates STIL patterns created from TestMAX ATPG,
and PowerFault, which validates IDDQ patterns created from TestMAX ATPG.

The following sections provide an introduction to test pattern validation:

• TestMAX ATPG Pattern Format Overview

• Writing STIL Patterns

• Design to Test Validation Flow

TestMAX ATPG Pattern Format Overview
The following figure shows an overview of the TestMAX ATPG pattern formats.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1055

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Validating Test Patterns
Writing STIL Patterns

Feedback

Figure 149 TestMAX ATPG Pattern Formats

   

Writing STIL Patterns
TestMAX ATPG creates unified STIL patterns by default. This simplifies the validation flow
considerably because only a single STIL file is required to support all simulation modes
(you do not need to write both serial and a parallel formats).

You can use unified STIL patterns in MAX Testbench. It is based only on the actual STIL
file targeted for the tester.

You can use a single unified STIL pattern file to perform all types of simulation, including
parallel and mixed serial and parallel.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1056

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Validating Test Patterns
Writing STIL Patterns

Feedback

Figure 150 Unified STIL Pattern Validation Flow

   

The write_patterns command includes several options that enable TestMAX ATPG to
produce a variety of pattern formats.

The -format stil option of the write_patterns command writes patterns in the
proposed IEEE 1450.1-2005 Standard Test Interface Language (STIL) for Digital Test
Vectors format. For more information on the proposed IEEE 1450.1-2005 STIL for Digital
Test Vectors format (extension to the 1450.0-1999 standard), see Appendix E STIL
Language Format in the TestMAX ATPG User Guide. This format can be both written and

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1057

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Validating Test Patterns
Design to Test Validation Flow

Feedback

read. However, only a subset of the language written by TestMAX ATPG is supported for
reading back in.

The -format stil99 option of the write_patterns command writes patterns in the
official IEEE-1450.0 Standard Test Interface Language (STIL) for Digital Test Vectors
format. This format can be both written and read, but only the subset of the language
written by TestMAX ATPG is supported for reading back in.

You must use a 1450.0-compliant DRC procedure as input when to write output in stil99
format.

The syntax generated when using the -format stil option is part of the proposed IEEE
1450.1-2005 extensions to STIL 1450-1999.

If you use the -format stil or stil99 options, TestMAX ATPG generates a STIL file
with a name in the filename <pfile>.<ext> in which you specified write_patterns
pfile>.<ext>.
When you use the -format stil or -format stil99 options, you can also use the
-serial or -parallel options to specify TestMAX ATPG to write patterns in serial
(expanded) or parallel form. See the description of the write_patterns command in
TestMAX ATPG Help for detailed information on using these options.

Design to Test Validation Flow
The following figure shows the validation flow using MAX Testbench. In this flow, test
simulation and manufactured-device testing use the same STIL-format test data files.

Figure 151 Design-to-Test Validation Flow

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1058

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Validating Test Patterns
Design to Test Validation Flow

Feedback

When you run the Verilog simulation, MAX Testbench applies STIL-formatted test data
as stimulus to the design and validates the design’s response against the STIL-specified
expected data. The simulation results ensure both the logical operation and timing
sensitivity of the final STIL test patterns generated by TestMAX ATPG.

MAX Testbench validates the simulated device response against the timed output
response defined by STIL. For windowed data, it confirms that the output response is
stable within the windowed time region.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1059

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

32
Using MAX Testbench

MAX Testbench is a pattern validation tool that converts TestMAX ATPG STIL test vectors
for physical device testers into Verilog simulation vectors.

The following sections describe how to use MAX Testbench:

• Overview

• Running MAX Testbench

• write_testbench Command Syntax

• MAX Testbench Command-Line Parameters Used With the write_testbench Command

• stil2Verilog Command Syntax

• Configuring MAX Testbench

• MAX Testbench Error Messages and Warnings

• Troubleshooting MAX Testbench

• Debugging Parallel Simulation Failures Using Combined Pattern Validation

Overview
MAX Testbench simulates and validates STIL test patterns used in an ATE environment.
These patterns are used in an ATE environment.

MAX Testbench reads a STIL file generated from TestMAX ATPG, interprets its protocol,
applies its test stimulus to the DUT, and checks the responses against the expected
data specified in the STIL file. MAX Testbench is considered a genuine pattern validator
because it uses the actual TestMAX ATPG STIL file used by the ATE as an input to test
the DU.

MAX Testbench supports all STIL data generated by TestMAX ATPG, including:

• All simulation mechanisms (serial, parallel and mixed serial/parallel)

• All type of faults (SAF, TF, DFs, IDDQ and bridging)

• All types of ATPG (Basic ATPG, Fast and Full Sequential)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1060

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Running MAX Testbench

Feedback

• STIL from BSDC

• All existing DFT structures (e.g., normal scan, adaptive scan, PLL including on-chip
clocking, shadow registers, differential pads, lockup latches, shared scan-in …)

MAX Testbench does not support DBIST/XDBIST or core integration.

Adaptive scan designs run in parallel mode only when translating from a parallel STIL
format written from TestMAX ATPG. Likewise, for serial mode, adaptive scan designs run
only when translating from a serial STIL format written from TestMAX ATPG.

Installation
The command setup and usage for MAX Testbench is as follows:

alias stil2Verilog 'setenv SYNOPSYS /install_area/latest; $SYNOPSYS/
platform/syn/bin/stil2Verilog'
Then execute the following:

stil2Verilog -help

Obtaining Help
To access help information, specify the -help option on the tool command line. This
command will print the description of all options.

There is no specific man page for each error or warning. The messages that are printed if
errors occur are clear enough to enable you to adjust the command line to continue.

See Also

• Writing ATPG Patterns

Running MAX Testbench
You can run the MAX Testbench using either the write_testbench command or the
stil2Verilog command. The write_testbench command enables you to run MAX
Testbench without leaving the TestMAX ATPG environment, and the stil2Verilog
command is a standalone executable.

The MAX Testbench flow consists of the following basic steps:

1. Use TestMAX ATPG to write a STIL pattern file.

TEST-T> write_patterns STIL_pat_file -format STIL

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1061

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Running MAX Testbench

Feedback

For details on using the write_patterns command, see Writing ATPG Patterns.

2. Specify the write_testbench or stil2Verilog command using the STIL pattern file
generated from the write_patterns command.

Examples:

% write_testbench –input stil_pattern_file.stil \ –output
Verilog_testbench.v
% stil2Verilog stil_pattern_file.stil Verilog_testbench.v
Two files are generated:

• The first file is the Verilog principal file, which uses the following convention:
Verilog_Testbench_filename.v.

• The second generated file is a data file named
Verilog_Testbench_filename.dat.

An example of the output printed after running the stil2Verilog command is as
follows:

STIL2VERILOG
 # # # Copyright (c) 2007-2014 SYNOPSYS INC. ALL RIGHTS RESERVED
 # # ##
 maxtb> Parsing command line... maxtb> Checking for feature
 license... maxtb> Parsing STIL file "comp_usf.stil" STIL
 version 1.0 (Design 2005) Building test model
 Signals SignalGroups Timing ScanStructures :
 "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "sccompin0" "sccompin1"
 "sccompout0" "sccompout1" "sccompout2" "sccompout3" "sccompin2"
 "sccompin3" PatternBurst "ScanCompression_mode"
 PatternExec "ScanCompression_mode" ClockStructures
 "ScanCompression_mode": pll_controller
 CompressorStructures : "test_U_decompressor_ScanCompression_mode"
 "test_U_compressor_ScanCompression_mode" Procedures
 "ScanCompression_mode": "multiclock_capture" "allclock_capture"
 "allclock_launch" "allclock_launch_capture" "load_unload"
 MacroDefs "ScanCompression_mode": "test_setup" Pattern
 block "_pattern_" Pattern block "_pattern_ref_clk0" ...
 maxtb> Info: Event ForceOff (Z) interpreted as CompareUnknown (X)
 in the event waves of WFT "_multiclock_capture_WFT_" containing
 both compare and force types (I-007) maxtb> STIL file successfully
 interpreted (PatternExec: ""ScanCompression_mode""). maxtb> Total
 test patterns to process 21 maxtb> Detected a Scan Compression mode.
 maxtb> Test data file "comp_usf.dat" generated successfully. maxtb>
 Test bench file "comp_usf.v" generated successfully. maxtb> Info
 (I-007) occurred 2 times, use -verbose to see all occurrences. maxtb>
 Memory usage: 6.9 Mbytes. CPU usage: 0.079 seconds. maxtb> End.

3. Run the simulation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1062

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
write_testbench Command Syntax

Feedback

Invoke the VCS simulator using the following command line:

% vcs Verilog_testbench_file design_netlist \ -v design_library
Note the following:

• When running zero-delay simulations, you must use the +delay_mode_zero and
+tetramax arguments.

See Also

• Configuring MAX Testbench

• Predefined Verilog Options

write_testbench Command Syntax
The syntax for the write_testbench command is as follows:

write_testbench -input [stil_filename | {-split_in \
{list_of_stil_files_for_split_in\}}] -output testbench_name
[-generic_testbench] [-patterns_only] [-replace] [-config_file
config_filename] [-parameters {list_of_parameters}]
The options are described as follows:

-input [stil_filename | {-split_in \ {list_of_stil_files_for_split_in\}}]

The stil_filename argument specifies the path name of the previous TestMAX
ATPG-generated STIL file requested by the equivalent Verilog testbench. You
can use a previously generated STIL file as input. This file can originate from
either the current session or from an older session using the write_patterns
command.

The following syntax is used for specifying split STIL pattern files as input (note
that backslashes are required to escape the extra set of curly braces):

{-split_in \{list_of_stil_files_for_split_in\}}
The following example shows how to specify a set of split STIL pattern files:

write_testbench -input {-split_in \{patterns_0.stil
patterns_1.stil\}} -output pat_mxtb

-output testbench_name

Specifies the names used for the generated Verilog testbench output files.
Files are created using the naming convention <testbench_name>.v and
<testbench_name>.dat.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1063

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
write_testbench Command Syntax

Feedback

-generic_testbench

Provides special memory allocation for runtime programmability. Used in the
first pass of the runtime programmability flow, this option is required because
the Verilog 95 and 2001 formats use static memory allocation to enable buffers
and arrays to store and manipulate .dat file information. For more information on
using this command, see Runtime Programmability.

-patterns_only

Used in the second pass, or later, run of the runtime programmability flow, this
option initiates a light processing task that merges the new test data in the test
data file. This option also enables additional internal instructions to be generated
for the special test data file. For more information on using this command, see
Runtime Programmability.

-replace

Forces the new output files to replace any existing output files. The default is to
not allow a replacement.

-config_file config_filename

Specifies the name of a configuration file that contains a list of customized
options to the MAX Testbench command line. See "Customized MAX Testbench
Parameters Used in a Configuration File with the write_testbench Command" for
a complete list of options that can be used in the configuration file. You can use
a configuration file template located at $SYNOPSYS/auxx/syn/ltran.

-parameters {list_of_parameters}

Enables you to specify additional options to the MAX Testbench command line.
See "MAX Testbench Command-Line Parameters Used with the write_testbench
Command" for a complete list of parameters you can use with the -parameters
option.

If you use the -parameters option, make sure it is the last specified argument
in the command line, otherwise you might encounter some Tcl UI conversion
limitations.

A usage example for this option is as follows:

write_testbench -parameters { -v_file \”design_file_names\” –
v_lib \”library_file_names\” –tb_module module_name –config_file
config1}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1064

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Command-Line Parameters Used With the write_testbench Command

Feedback

Note the following:

• All the parameters must be specified using the Tcl syntax required in the TMAX shell.
For example: -parameters {param1 param2 –param3 \”param4\”}

• quotation marks must have a backslash, as required by Tcl syntax, to be interpreted
correctly and passed directly to the MAX Testbench command line.

• Parameters specified within a -parameters {} list are order-dependent. They are
parsed in the order in which they are specified, and are transmitted directly to the MAX
Testbench command line. These parameters must follow the order and syntax required
for the MAX Testbench command line.

MAX Testbench Command-Line Parameters Used With the
write_testbench Command

You can use the -parameters option of the write_testbench command to specify a list of
customized configuration parameters for running MAX Testbench in the TestMAX ATPG
environment.

The syntax for the -parameters option is as follows:

write_testbench -parameters {list_of_parameters}

A usage example for this option is as follows:

write_testbench -parameters { -v_file \”design_file_names\” –v_lib
\”library_file_names\” –tb_module module_name –config_file config1}
Note the following:

All the parameters must be specified using the Tcl syntax required in the TMAX shell. For
example: -parameters {param1 param2 –param3 \”param4\”}
Quotation marks must have a backslash, as required by Tcl syntax, to be interpreted
correctly and passed directly to the MAX Testbench command line.

Parameters specified within a -parameters {}list are order-dependent. They are parsed
in the order in which they are specified, and are transmitted directly to the MAX Testbench
command line. These parameters must follow the order and syntax required for the MAX
Testbench command line.

The parameters you can specify are as follows:

-config_file TB_config_file
-first d
-generate_config config_file_template

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1065

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Command-Line Parameters Used With the write_testbench Command

Feedback

-generic_testbench
-help [msg_code]
-last d
-log log_file
-parallel
-patterns_only
-replace
-report
-run_mode (go-nogo) | diagnosis
-sdf_file sdf_file_name
-serial
-ser_only
-shell
-sim_script [[vcs] | [mti] | [nc] | [xl]]
-split_in {1.stil, 2.stil…} | "dir1/*.stil" testbench_name
-split_out pat_intervstil_filetestbench_name
-tb_format (v95) | v01 | sv
-tb_module module_name
-verbose
-version
-v_file “design_file_names”
-v_lib “library_file_names”
-verdi
Note that all options can be abbreviated. For example, you can abbreviate the
-generate_config, as -generate, or -gen.

-config_file TB_config_file
MAX Testbench can be configured at several levels. At the top of the MAX
Testbench configuration file, you can edit the set cfg_* variables to define the
various testbench default s, such as the progress message interval time and the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1066

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Command-Line Parameters Used With the write_testbench Command

Feedback

simulation time unit. The second half of the configuration file contains a set of
editable setup parameters for the VCS/MIT/Cadence simulation script file.. The
TB_config_file parameter specifies the name of the configuration file used
to set up the testbench at generation time. See Example of the Configuration
Template.

-first d
Specifies the first pattern number that TestMAX ATPG writes. The default is
to begin with pattern 0. For Full-Sequential patterns, this option might cause
simulation mismatches.

-generate_config config_file_template
MAX Testbench can generate a configuration file template that you can edit and
modify. The config_file_template parameter specifies the path where the
configuration file template is written.

-generic_testbench
Provides special memory allocation for runtime programmability. Used in the
first pass of the runtime programmability flow, this option is required because
the Verilog 95 and 2001 formats use static memory allocation to enable buffers
and arrays to store and manipulate .dat file information. For more information on
using this option, see "MAX Testbench Runtime Programmability."

-help [msg_code]
Shows all possible options, displays the complete stil2verilog syntax, and
exits. If msg_code is specified, then prints the help page corresponding to that
code msg_code syntax: '1-letter'-'3-digit code' where letter can be 'E', 'W' or 'I'
and the 3-digit code must correspond to a valid code in the range [000-999] For
example: E-001, W-010

-last d
Specifies the last pattern number for the patterns to be written. The default is to
end with the last available pattern.

-log
Generates a log file.

-parallel
This option specifies the parallel load mode for simulation,which is the default.

-patterns_only
Used in the second pass, or later, run of the runtime programmability flow, this
option initiates a light processing task that merges the new test data in the test
data file. This option also enables additional internal instructions to be generated

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1067

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Command-Line Parameters Used With the write_testbench Command

Feedback

for the special test data file. For more information on using this option, see "MAX
Testbench Runtime Programmability."

-replace
Forces MAX Testbench to overwrite the testbench files, the configuration file
template, and simulation script.

-report
Displays the configuration setting and test pattern information. It has the
following parameters (note that multiple parameters can be specified if
separated by commas):

all — displays all the information (default in verbose mode)

config — displays the configuration setting

dft — displays DFT structure information

drc — displays DRC warnings

flow — displays STIL pattern flow

macro — displays macro information

nb_patterns — displays the total number of patterns to be executed

proc — displays procedure information

sigs — displays all the signal information

sig_groups — displays all the signal groups information

wft — displays waveformtable information

-run_mode go-nogo | diagnosis
Allows the targeting of either “go-nogo” mode or diagnosis mode; "go-nogo"
mode is the default. For details, see Setting the Run Mode.

-sdf_file sdf_file_name
Specifies the SDF file name used for back annotation.

-serial
The serial option states that a serial scan simulation is required. The default
simulation scan load is parallel. The same behavior can be obtained by using
the +define+tmax_serial compiler directive to force the simulation of all
patterns to be serial. If +tmax_serial=N is used, MAX Testbench forces serial
simulation of the first N patterns, and then starts parallel simulation of the
remaining patterns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1068

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Command-Line Parameters Used With the write_testbench Command

Feedback

-ser_only
Allows a reduction in the size of the testbench and limits the simulation to serial
only mode.

-shell
Runs MAX Testbench in shell mode. (Note that this option is not yet supported.)

-sim_script vcs | mti | nc | xl
The -sim_script option specifies a simulation script to be generated together
with the testbench file. You also must provide the v_file and v_lib options.
Note that only VCS scripts are supported; the other simulator scripts that are
generated conform to the simulator script generated by TMAX (write_patterns
command). The argument specifies the target simulator:

vcs — VCS simulator command shell script

mti — ModelSim simulator command shell script

xl — Cadence XL simulator command shell script

nc — Cadence NCVerilog simulator command shell script

Note the specification of several arguments at the same time to target all of the
simulators is supported as repetitive entries "-sim_script vcs -sim_script
mti -sim_script xl "
The output name of the generated script file is:

<name_of_testbench_file>_<simulator>.sh.
-split_in {1.stil, 2.stil…} | "dir1/*.stil" testbench_name

Specifies that MAX Testbench uses split STIL files based on either a detailed
list of STIL files or a generic list description using the wildcard (*) symbol. In
the generic list format, the files are recognized in alphabetical order. For more
information on this option, see Using Split STIL Pattern Files.

-split_out pat_interval stil_file testbench_name
Specifies that MAX Testbench splits STIL files The pat_interval argument
specifies the maximum number of patterns that a given .dat file will contain. For
more information on this option, see Splitting Large STIL Files.

-tb_format v95 | v01 | sv
Specifies the test bench format applied to the -tbench_file> specification. The
default is v95. The options and formats include:

v95 Verilog 1995

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1069

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Command-Line Parameters Used With the write_testbench Command

Feedback

v01 Verilog 2001

sv SystemVerilog

-tb_module module_name
Specifies the module name for the top-level module of the Verilog testbench.

-verbose
Activates verbose mode.

-version
Prints the stil2verilog banner, including the version.

-v_file “design_file_names”

Specifies design netlist source files (the DUT description) required to run
the simulation. This option is required when using the sim_script option.
Wildcard characters are supported. Note that design_file_name1 and
design_file_nameN must be separated with spaces. Quotation marks are
required for more than one file name.

-v_lib “library_file_names”
Specifies the library file (the DUT related technology library) required to run
the simulation. This option is required when using sim_script option. Note
that library_file_name1 and library_file_nameN must be separated
with spaces. Quotation marks required for more than one file name. Supports
wildcard characters for easy simulation script generation.

-verdi
Allows to automatically generate a precomputed waveform signal window.

MAX TestBench generates the following files:

1. <tb_name>_verdi.play: TCL Verdi play script

2. <tb_name>_verdi.signals: Verdi waveform signal file.

The simulation generates the <tb_name>.fsdb file

For example when using write_testbench -input pat.stil -output xtb
-parameters { -verdi }the output reports the following:

maxtb> Test data file "xtb.dat" generated successfully.
maxtb> Test bench file "xtb.v" generated successfully.
maxtb> Verdi TCL script file "xtb_verdi.play" generated
 successfully.
maxtb> Verdi waveform signal file "xtb_verdi.signals" generated
 successfully.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1070

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
stil2Verilog Command Syntax

Feedback

maxtb> VCS options to generate the FSDB file: "+define+tmax_fsdb
 -lca -kdb -debug_access+all"
maxtb> Verdi command line: "verdi -ssf xtb.fsdb -play
 xtb_verdi.play"

Note:
The >_si, >_clk and >_so are virtual buses that can be expanded.

See Also

• write_testbench

• How Do I Use the write_testbench Command to Customize MAX Testbench Output?

stil2Verilog Command Syntax
The basic syntax for the stil2Verilog command is as follows:

stil2Verilog [pattern_file] [tbench_file] [options]
The syntax descriptions are as follows:

pattern_file
Specifies the ATPG-generated STIL pattern file used as input. This file must be
specified, except when the -split_in option is used.

tbench_file
Specifies the name of the testbench file to generate. When the tb_file_name is
specified, a .v extension is added when generated the protocol file, and a .dat
extension is used when generating the test data file. You should use only the
root name with the command line, for example, stil2erilogpat.stil tbench,
that generates tbench.v and tbench.dat files in the current working directory.
This argument is optional when the -generate_config or -report options are
specified.

Other optional arguments can be specified, as shown in the following syntax. The defaults
are shown in bold enclosed between parentheses.

-config_file TB_config_file

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1071

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
stil2Verilog Command Syntax

Feedback

-first d
-force_enhanced_debug
-generate_config config_file_template
-generic_testbench
-help [msg_code]
-last d
-log log_file
-parallel
-patterns_only
-replace
-report
-run_mode (go-nogo) | diagnosis
-sdf_file sdf_file_name
-serial
-ser_only
-sim_script <= [[vcs] | [mti] | [nc] | [xl]]
-split_in { 1.stil, 2.stil… } | { dir1 /*.stil } testbench_name
-split_out pat_intervstil_filetestbench_name
-tb_format <= (v95) | v01 | sv
-tb_module module_name
-verbose
-version
-v_file { design_file_names }
-v_lib { library_file_names }
-verdi

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1072

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
stil2Verilog Command Syntax

Feedback

The descriptions for the optional syntax items are as follows:

-config_file TB_config_file
MAX Testbench can be configured at several levels. At the top of the MAX
Testbench configuration file, you can edit the set cfg_* variables to define the
various testbench defaults, such as the progress message interval time and the
simulation time unit. The second half of the configuration file contains a set of
editable setup parameters for the VCS/MIT/Cadence simulation script file. The
TB_config_file parameter specifies the name of the configuration file used
to set up the testbench at generation time. See Example of the Configuration
Template.

-first d
Specifies the first pattern number that TestMAX ATPG writes. The default is
to begin with pattern 0. For Full-Sequential patterns, this option might cause
simulation mismatches.

-force_enhanced_debug
Forces MAX Testbench to halt if any errors are encountered when processing
the parallel strobe data (PSD) file. The default is to not force MAX Testbench to
stop. For more information on the PSD file, see Understanding the PSD File.

-generate_config config_file_template
MAX Testbench can generate a configuration file template that you can edit and
modify. The config_file_template parameter specifies the path where the
configuration file template is written.

-generic_testbench (or -streaming_patterns)

Generates a generic testbench that can load future test patterns (.dat files)
without recompiling. For more information on using this command, see Runtime
Programmability.

-help [msg_code]
Shows all possible options, and the complete stil2Verilog syntax and exits.
If msg_code is specified, then prints the help page corresponding to that code
msg_code syntax: '1-letter'-'3-digit code' where letter can be 'E', 'W' or 'I' and
the 3-digit code must correspond to a valid code in the range [000-999] For
example: E-001, W-010

-last d
Specifies the last pattern number for the patterns to be written. The default is to
end with the last available pattern.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1073

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
stil2Verilog Command Syntax

Feedback

-log
Generates a log file.

-parallel
Specifies the parallel load mode for simulation, which is the default.

-patterns_only
Generates test patterns only (.dat file) to be used with an existing equivalent
testbench (.v file). For more information on using this command, see Runtime
Programmability.

-replace
Forces MAX Testbench to overwrite the testbench files, the configuration file
template, and simulation script.

-report
Displays the configuration setting and test pattern information. It has the
following parameters (note that multiple parameters can be specified if
separated by commas):

all — displays all the information (default in verbose mode)

config — displays the configuration setting

dft — displays DFT structure information

drc — displays DRC warnings

flow — displays STIL pattern flow

macro — displays macro information

nb_patterns — displays the total number of patterns to be executed

proc — displays procedure information

sigs — displays all the signal information

sig_groups — displays all the signal groups information

wft — displays WaveformTable information

-run_mode go-nogo | diagnosis
Allows the targeting of either Go-nogo mode (the default) or diagnosis mode.
For details, see Setting the Run Mode.

-sdf_file sdf_file_name
Specifies the SDF file name used for back annotation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1074

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
stil2Verilog Command Syntax

Feedback

-serial
Specifies the serial load mode simulation. The default simulation scan
load is parallel. The same behavior can be obtained by using the +define
+tmax_serial compiler directive to force the simulation of all patterns to be
serial. If +tmax_serial=N is used, MAX Testbench forces serial simulation of
the first N patterns, and then starts parallel simulation of the remaining patterns

-ser_only
Generates the testbench file for serial load mode only. This allows a reduction in
the size of the testbench and speeds up the simulation.

-shell

Runs the tool in shell mode.

-sim_script vcs | mti | nc | xl
The sim_script <simulator> option specifies a simulation script to be
generated together with the testbench file. You also must provide the v_file
and v_lib options. Note that only VCS scripts are supported; the other
simulator scripts that are generated conform to the simulator script generated
by TMAX (write_patterns command). The argument specifies the target
simulator:

• vcs — VCS simulator command shell script

• mti — ModelSim simulator command shell script

• xl — Cadence XL simulator command shell script

• nc — Cadence NCVerilog simulator command shell script

Note the specification of several arguments at the same time to target all of the
simulators is supported as repetitive entries "-sim_script vcs -sim_script
mti -sim_script xl "
The output name of the generated script file is:

<name_of_testbench_file>_<simulator>.sh.
-split_in { 1.stil, 2.stil… } | { dir1 /*.stil }

Specifies MAX Testbench to use split STIL files based on either a detailed list
of STIL files or a generic list description using the wildcard (*) symbol. In the
generic list format, the files are recognized in alphabetical order. Multiple file
names must be enclosed in curly brackets with spaces on both sides of each
bracket, as shown in the following example:

stil2Verilog -split_in { bill.patt.stil.ts_and_chain
 bill.patt_0.stil bill.patt_1.stil bill.patt_2.stil

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1075

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
stil2Verilog Command Syntax

Feedback

 bill.patt_3.stil bill.patt_4.stil bill.patt_5.stil
 bill.patt_6.stil bill.patt_7.stil bill.patt_8.stil
 bill.patt_9.stil bill.patt_10.stil } bill.pat_stil.v –replace

Note that you can also specify multiple files in the configuration file. For more
information on this option, see Using Split STIL Pattern Files.

-split_out pat_intervalstil_file
Specifies MAX Testbench to split STIL files, The pat_interval argument
specifies the maximum number of patterns that a given .dat file will contain. For
more information on this option, see Splitting Large STIL Files.

-tb_format v95 | v01 | sv
Specifies the testbench format applied to the tbench_file specification. The
default is v95, and is currently the only supported option. Formats:

v95 — Verilog 1995

v01 — Verilog 2001

sv — SystemVerilog

-tb_module module_name
Specifies the module name for the top-level module of the Verilog testbench.

-verbose
Activates verbose mode.

-version
Prints the stil2Verilog banner, including the version.

-v_file { design_file_names }

Specifies design netilist source files (the DUT description) required to run the
simulation. It is required when using the sim_script option. Wild characters are
supported. Note that design_file_name1 and design_file_nameN must be
separated with spaces. Multiple file names must be enclosed in curly brackets
with spaces on both sides of each bracket (you can also specify multiple files in
the configuration file).

-v_lib { library_file_names }
Specifies the library file (the DUT related technology library) required to run
the simulation. This option is required when using sim_script option. Note
that library_file_name1 and library_file_nameN must be separated with

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1076

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
stil2Verilog Command Syntax

Feedback

spaces. Multiple file names must be enclosed in curly brackets with spaces on
both sides of each bracket, as shown in the following example:

stil2Verilog pats.stil maxtb -replace -v_lib { lib1.v lib2.v }

Note that you can also specify multiple files in the configuration file. Wildcard
characters are supported for simulation script generation.

-verdi
Allows to automatically generate a precomputed waveform signal window.

stil2verilog generates the following files:

1. <tb_name>_verdi.play: TCL Verdi play script

2. <tb_name>_verdi.signals: Verdi waveform signal file.

The simulation generates the <tb_name>.fsdb file.

Setting the Run Mode
There are two basic run modes you can set when starting MAX Testbench using the
stil2Verilog command: Go-nogo and Diagnosis.

The Go-nogo mode is set using the -run_mode go-nogo option. In this mode, MAX
Testbench does the following:

• Sets the verbosity level to 0 (equivalent to using +define+tmax_msg=0 at VCS
compilation time)

• Makes the testbench reporting the beginning of each 5 patterns (equivalent to using
+define+tmax_rpt=5 at VCS compilation time)

• Initializes the file name for the collection of diagnostics failures to
<testbench_name>.diag.

The Diagnosis mode is set using the -run_mode diagnosis option. In this mode, MAX
Testbench saves the mismatches in the <testbench_name>.diag file in a pattern-
based format compatible with the TestMAX ATPG run_diagnosis command.

For example, the mismatches are recorded in the following manner:

30 test_so2 10 (exp=0, got=1) // chain , V=313, T=31240.00 ns
30 test_so3 10 (exp=0, got=1) // chain , V=313, T=31240.00 ns
30 test_so4 10 (exp=0, got=1) // chain , V=313, T=31240.00 ns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1077

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

These failures can be used by the TestMAX ATPG diagnostics to identify the
failing scan chain. You can print a report using the command run_diagnosis
-only_report_failures.

The failures log file name default can be changed at the time the simulation is executed by
using the following compiler directive:

% vcs ... +define+tmax_diag_file=\"<file_name>\"
The default can also be changed at the time the testbench is generated using the
configuration file parameter cfg_diag_file.

See Also

• Understanding the Failures File

• Using the Failures File

Configuring MAX Testbench
You can specify options for running MAX Testbench using either a configuration file
or a set of predefined simulator script options. The following table describes the MAX
Testbench configuration options.

Table 9 MAX Testbench Configuration Options

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Predefined Verilog code included in the simulator script. Specifies the initial
number of serial (flattened scan) vectors.

Syntax:
set
define_u
ser_def
N
Example:
set
define_t
max_seri
al 0

Syntax
:
+tmax
_seri
al or
tmax_
seria
l=N
Examp
le:
+defi
ne+tm
ax_se
rial=
0

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1078

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 9 MAX Testbench Configuration Options (Continued)

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Predefined Verilog code included in the simulator script. Specifies the parallel
scan access with N serial vectors.

Syntax:
set
define_u
ser_def
N
Example:
set
define_t
max_para
llel 0

Syntax
:
+tmax
_para
llel=
N
Examp
le:
+defi
ne+tm
ax_pa
ralle
l=0

Predefined Verilog code included in the simulator script. Specifies the number
of patterns to simulate.

Syntax:
set
define_u
ser_def
N
Example:
set
define_t
max_n_pa
ttern_si
m 10

Syntax
:
+tmax
_n_pa
ttern
_sim=
N
Examp
le:
+defi
ne+tm
ax_n_
patte
rn_si
m=10

Predefined Verilog code included in the simulator script. Generates a delay (a
"dead period") for parallel scan access to align parallel load timing with serial
load timing.

Syntax:
set
define_t
max_seri
al_timin
g
Example:
set
define_t
max_seri
al_timin
g

Syntax
:
+defi
ne+tm
ax_se
rial_
timin
g

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1079

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 9 MAX Testbench Configuration Options (Continued)

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Sets the top-level module. Syntax:
set
tb_modul
e_name
"new_nam
e"
Example:
set
tb_modul
e_name
"top1"

N/A

Sets the TestMAX ATPG DRC severity level. The drcw_severity option
requires two parameters:
rule_name: TestMAX ATPG rule name (the wild-card character '*' is supported)
severity: severity level ("ignore"| "warning"|"error")

Syntax:
set
drcw_sev
erity
rule_nam
e
severity
Example:
set
drcw_sev
erity
C11
warning

N/A

Extends the size optimization and generates an extended testbench. To create
a compact testbench, set this option to 1.

Syntax:
set
cfg_tb_f
ormat_ex
tended N
Example:
set
cfg_tb_f
ormat_ex
tended 1

N/A

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1080

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 9 MAX Testbench Configuration Options (Continued)

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Specifies the maximum number of patterns that can be simultaneously loaded
during the simulation.

Syntax:
set
cfg_patt
erns_rea
d_interv
al N
Example:
set
cfg_patt
erns_rea
d_interv
al 1

N/A

Specifies the interval for reporting a simulation progress message (0 is
disabled; N is every Nth pattern reported) .

Syntax:
set
cfg_patt
erns_rep
ort_inte
rval N
Example:
set
cfg_patt
erns_rep
ort_inte
rval 3

Syntax
:
+tmax
_rpt=
N
Examp
le:
+tmax
_rpt=
3

Defines the verbosity output level for MAX Testbench:
0
,
1
,
2
,
3
and
4
.

Syntax:
set
cfg_mess
age_verb
osity_le
vel N
Example:
set
cfg_mess
age_verb
osity_le
vel 2

Syntax
:
+tmax
_msg=
N
Examp
le:
+tmax
_msg=
3

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1081

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 9 MAX Testbench Configuration Options (Continued)

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Generates an extended VCD file of the simulation run Syntax:
set
cfg_evcd
_file
"evcd_fi
le"
Example:
set
cfg_evcd
_file
"run1.ev
cd"

N/A

Changes the default name of the failure log file when the simulation is
executed. This option overrides the failure log file name specified in the
testbench file and affects the simulation runtime.

Syntax:
set
cfg_diag
_file
"diag_fi
le"
Example:
set
cfg_diag
_file
"failure
_2"

Syntax
:
+tmax
_diag
_file
="dia
g_fil
e"
Examp
le:
+tmax
_diag
_file
="
failu
re_1"

Displays annotation statements in the main pattern block during simulation:
0-disabled, 1-pattern adjacent statements only, 2-all annotation statements.

Syntax:
set
cfg_disp
lay_ann_
stmts
number
Example:
set
cfg_disp
lay_ann_
stmts 1

N/A

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1082

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 9 MAX Testbench Configuration Options (Continued)

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Configures a miscompare in pattern-based (N=1)format or cycle-based (N=2)
format

N/A Syntax
:
+tmax
_diag
=N
Examp
le:
+tmax
_diag
=2

Sets the patterns per PSD partition file for the CPV flow. The default is 1000. Syntax:
set
cfg_nb_p
atterns_
per_psd_
file N
Example:
set
cfg_nb_p
atterns_
per_psd_
file 10

N/A

Specifies the simulation time unit (time scale) Syntax:
set
cfg_time
_unit
"N"
Example:
set
cfg_time
_unit
"1ps"

N/A

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1083

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 9 MAX Testbench Configuration Options (Continued)

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Specifies the simulation time precision in units Syntax:
set
cfg_time
_precisi
on
"unit"
Example:
set
cfg_time
_precisi
on "1ns"

N/A

Defines the DUT Module name. This option is not required unless prompted by
the tool.

Syntax:
set
cfg_dut_
module_n
ame
"name"
Example:
set
cfg_dut_
module_n
ame
"module_
1"

N/A

Delays (or advances, if N is set to a negative value) the release time of the
parallel shift starting at the beginning of the next cycle. The default is 0, which
means the release time is applied to the end of the current cycle. A negative
delay is not supported when using a DFTMAX serializer design with a clock
controller. The units must be included in the specification.

Syntax:
set
cfg_para
llel_rel
ease_tim
e N
Example:
set
cfg_para
llel_rel
ease_tim
e 5.00ns

N/A

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1084

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 9 MAX Testbench Configuration Options (Continued)

Configuration type Configur
ation file
option

Simul
ator
predef
ined
option

Reports the instance name of the failing cells during the simulation of a
parallel-formatted STIL file. To enable the report, you must set the boolean
variable to '1". The default, 0, turns off this reporting. This feature affects
simulation memory consumption.

Syntax:
set
cfg_para
llel_sti
l_report
_cell_na
me N
Example:
set
cfg_para
llel_sti
l_report
_cell_na
me 1

N/A

Reverts the order in which all ports created using the
add_net_connections command are connected to the design under test
(DUT). This option is enabled when set to 1 (the default is 0).

Syntax:
set
cfg_add_
net_conn
ection_r
evert_or
der N
Example:
set
cfg_add_
net_conn
ection_r
evert_or
der 1

N/A

Reverses the name of the specified port name connected to the DUT. This
configuration option takes precedence over the
cfg_add_net_connection_revert_order command.

Syntax:
set
cfg_reve
rse_bus_
order
"port_na
me"
Example:
set
cfg_reve
rse_bus_
order
"t"

N/A

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1085

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Note the following:

• The “Configuration File Option" column describes variables for the configuration file
defined by the -config_file file_name option of the stil2Verilog command.

• The “Simulator Predefined Option" column describes options used in a simulator script
or defined in configuration file specified by the -config_file file_name option of the
stil2Verilog command (see the following example).

Use the following compiler directive to change the time of the simulation execution.

% vcs ... +define+tmax_serial=1
• In the first three rows of Table 1, the define_user_def syntax is used for user-defined

simulator variables. This syntax is also used for variables that are hard-coded into the
testbench file, such as tmax_serial and tmax_parallel.

You can change the default for the define_user_def option when the testbench is
generated using the -sim_script vcs|mti|xl|nc option and the -config_file
file_name option. To change the default, specify the "set define_tmax_serial=1"
option in the configuration file.

Understanding the Failures File
When you set the -run_mode diagnosis option of the stil2Verilog command, MAX
Testbench prints all miscompare messages to a file used with the run_diagnosis
command for diagnostics. The format of this file is dependent of the pattern type (legacy
scan, DFTMAX compression, or serializer), the simulation mode (serial or parallel), and
the STIL type (dual or unified).

The following sections describe the relationship of the failures formats for each pattern
type:

• Legacy Scan Failures

• DFTMAX Compression Failures

• Serializer Scan Failures

MAX Testbench and Legacy Scan Failures
In legacy scan, given the serial/parallel and dual/unified types, the failure formats are
the same. A failure contains the cycle count of the failure (V=), the expected data (exp=),
the data captured (got=), the chain name (chain), the scan output pin name (pin), and
the scan cell position (scan cell). The following figure describes the relationship of the
failures for legacy scan.

Figure 1 Relationship of Failures Format for Legacy Scan

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1086

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

   

The following examples are reports for the same failure printed during the simulation of the
patterns.

Example 1

Error during scan pattern 32 (detected during unload of pattern 31)
At T=49240.00 ns, V=493, exp=0, got=1, chain 4, pin test_so4, scan cell
10

Example 2

Error during scan pattern 32 (detected during parallel unload of pattern
31)
At T=16240.00 ns, V=163, exp=0, got=1, chain 4, pin test_so4, scan cell
10

Example 3

Error during scan pattern 32 (detected during parallel unload of pattern
31)
At T=16240.00 ns, V=163, exp=0, got=1, chain 4, pin test_so4, scan cell
10

MAX Testbench and DFTMAX Compression Failures
The failure formats are different when using DFTMAX compression. A failure contains the
cycle count of the failure (V=), the expected data (exp=), the data captured (got=), the
chain name (chain) only for dual STIL flow parallel, the scan output pin name (pin) for
dual STIL flow serial mode and unified STIL flow parallel mode. The pin information for
dual STIL flow for parallel mode is the pin pathname of the failing scan cell output. The
report also contains the scan cell position (scan cell).

Figure 2 Relationship of Failures Format for DFTMAX Compression

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1087

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

   

The following examples are reports for the same failure printed during the simulation of the
patterns.

Example 4

Error during scan pattern 31 (detected during unload of pattern 30)
At T=31240.00 ns, V=313, exp=0, got=1, chain , pin test_so2, scan cell 10
At T=31240.00 ns, V=313, exp=0, got=1, chain , pin test_so3, scan cell 10
At T=31240.00 ns, V=313, exp=0, got=1, chain , pin test_so4, scan cell 10
Example 5

Error during scan pattern 31 (detected during parallel unload of pattern
30)
At T=15740.00 ns, V=158, exp=0, got=1, chain 10, pin
snps_micro.mic0.pc0.prog_counter_q_reg[11] .QN, scan cell 10
In the case of dual STIL flow parallel mode for DFTMAX compression patterns,
MAX Testbench, reports the failing scan chain and failing scan cell position. But, for
performance reasons, the scan cell instance name for the failing position is not reported.
However, it does report the scan cell instance name with position 0 for the failing scan
chain.

Example 6

Error during scan pattern 31 (detected during parallel unload of pattern
30)
Error during scan pattern 31 (detected during parallel unload of pattern
30)
At T=15740.00 ns, V=158, exp=0, got=1, pin test_so3, scan cell 10
Error during scan pattern 31 (detected during parallel unload of pattern
30)
At T=15740.00 ns, V=158, exp=0, got=1, pin test_so4, scan cell 10

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1088

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

In the case of Unified STIL flow parallel mode for DFTMAX compression patterns, MAX
Testbench reports the failing scan cell position only. The failing scan chain name and the
failing scan cell instance name are not provided. You can use TestMAX ATPG diagnostics
to retrieve the failing scan chain name.

MAX Testbench and Serializer Scan Failures
The following figure describes the relationship of serializer scan failures.

Figure 3 Relationship of Failures Format for Serializer

   

Example 7

Error during scan pattern 5 (detected during unload of pattern 4)
At T=28340.00 ns, V=284, exp=0, got=1, chain , pin test_so1, scan cell 2,
serializer index 1
At T=28440.00 ns, V=285, exp=0, got=1, chain , pin test_so1, scan cell 2,
serializer index 2
At T=28540.00 ns, V=286, exp=1, got=0, chain , pin test_so1, scan cell 2,
serializer index 3
In the case of the dual STIL flow parallel mode for serializer patterns, MAX Testbench
reports the failing scan chain and failing scan cell position. But, for performance reasons,
the scan cell instance name for the failing position is not reported. However, it does report
the scan cell instance name of position 0 for the failing scan chain.

Example 8

Error during scan pattern 5 (detected during parallel unload of pattern
4)
At T=6640.00 ns, V=67, exp=1, got=0, chain 1, pin
snps_micro.mic0.alu0.accu_q_reg[4] .Q, scan cell 2
In the case of unified STIL flow parallel mode for serializer patterns, MAX Testbench
reports the failing scan cell position only. The failing scan chain and the failing scan cell

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1089

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

instance name are not provided. The failing scan chain name could be retrieved using the
diagnostics in TestMAX ATPG.

Example 9

Error during scan pattern 5 (detected during unload of pattern 4)
At T=28340.00 ns, V=284, exp=0, got=1, chain , pin test_so1, scan cell 2,
serializer index 1
At T=28440.00 ns, V=285, exp=0, got=1, chain , pin test_so1, scan cell 2,
serializer index 2
At T=28540.00 ns, V=286, exp=1, got=0, chain , pin test_so1, scan cell 2,
serializer index 3

Using the Failures File
You can configure and use the failures file printed by MAX Testbench for diagnosis. To use
this file, you need to set the +tmax_diag option.

By default, the diagnosis file name is <tbenchname>.diag. The default names of
the diagnosis file when the -split_out option is used are <tbenchname>_0.diag,
<tbenchname>_1.diag, and so forth, for the different partitions. You can change the
default using the +tmax_diag_file option.

The setting +tmax_diag=1 reports the pattern-based failure format. The setting
+tmax_diag=2 reports the cycle-based failure format.

Note the following limitations:

• You cannot run the diagnosis directly if all the partitions are simulated sequentially.
This is because the failures are created in separate failure log files. Before running the
diagnosis, you must manually append the failure log files into a single file.

• You cannot run the diagnosis if the entire partitions are simulated sequentially and the
cycle-based format is used (+tmax_diag=2). This is because the recorded cycles are
reset for each partition simulation.

Both settings offer a way to generate a failure log file that can be used for a diagnostic if
a fault is injected in a circuit and its effect simulated. You can also use these settings to
validate the detection of a fault by TestMAX ATPG diagnostics. In addition, they can be
used for per-cycle pattern masking or for TestMAX ATPG diagnostics to find the failing
scan chain and cell for a unified STIL flow miscompare.

The following figure summarizes the formats and applications possible for failures printed
using the +tmax_diag option.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1090

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Figure 152 Summary of Uses for Failures File

   

The format names and their descriptions are as follows:

• Format A = <pat_num> <pin_name> <shift_cycle> (exp=%b, got=%b)

• Format B = <pat_num><chain_name> <cell_index> (exp=%b, got=%b)

• Format C = <pat_num><pin_name> (exp=%b,got=%b)

• Format S = <pat_num>pat_num> <pin_name> <unload_shift_cycle>
<shift_position> (exp=%b, got=%b)

• Format D = C <pin_name> <vect_nbr> (exp=<exp state>, got=<got state>)
Note the following:

• The USF and DSF serial simulation modes have the same format and capability. Thus,
only the USF parallel is present in the tables. The USF serial is not displayed in the
tables.

• The cycle-based format is printed only for serial simulation. This is because the
simulation in parallel has less cycles than serial simulation. Thus, the cycles reported
by parallel simulation are not valid. If +tmax_diag=2 is used for a parallel simulation
mode, the simulation is not stopped, but the testbench automatically changes the
+tmax_diag setting to 1. A warning message is also printed in the simulation log.
Then, as shown in the following tables, the following statement is printed for all parallel
simulation DSF and USF modes: "Not Supported."

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1091

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

The following tables describe the failures file format and their usage in detail.

Figure 153 Failures Format

   

Figure 154 Simulation Failures Format and Usage

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1092

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Figure 155 Failures Format and Usage for DFTMAX Compression

   

* Failures are usable for TestMAX ATPG diagnostics provided that the command
set_diagnosis –dftmax_chain_format is used

Figure 156 Simulation Failures Format and Usage for DFTMAX Compression

   

Figure 157 Failures Format and Usage for Serializer

   

* If the set_diagnosis -dftmax_chain_format command is specified, failures can be
used for TestMAX ATPG diagnostics.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1093

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Figure 158 MAX Testbench Simulation Failures Format and Their Usage for Serializer

   

See Also

• Diagnosing Manufacturing Test Failures

Using Split STIL Pattern Files
You can use the -split_in option of the stil2Verilog command to specify the use of
split STIL pattern files. This option has two different formats:

• The -split_in { 1.stil, 2.stil… } format uses split STIL files based on a
detailed list of STIL files.

• The -split_in { dir1/*.stil } format uses split STIL files based on a generic list
description using the wildcard (*) symbol.

Note the following:

• The input STIL files from both the detailed list format and the generic list format
are assumed to belong to the same pattern set (split patterns of the same original
patterns). Multiple files must be specified within curly brackets, with a space before and
after each bracket.

• The input STIL files all have the same test protocol (procedures, signals, WFTs,
etc). The only difference between these STIL files is the content of the "Pattern"
block, which contains test data. Max Testbench takes the first STIL file it encounters
as a representative to the other STIL files and extracts and interprets the protocol
information from it.

• You must ensure that the input STIL files correspond to the same split patterns. You
must also avoid any form of mixing with other STIL files in the list (using the detailed list
format) or mixing within the directory (using the generic list format).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1094

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Execution Flow for -split_in Option
When the -split_in option is specified, the testbench is generated using a single
execution. One testbench (.v) file is generated for all STIL files. The number of .dat files
directly correlates to the number of input STIL files.

The following example shows a MAX Testbench report:

maxtb> Parsing STL procedure file "pat1.stil" ...
maxtb> Parsing STIL data file "pat1.stil, pat2.stil, pat3.stil…"…
maxtb> STIL file successfully interpreted (PatternExec: "").
maxtb> Detected a Normal Scan mode.
maxtb> Test bench files " xtb_tbench.v", "xtb_tbench1.dat”…
“xtb_tbench3.dat" generated successfully.
maxtb> Test data file mapping :
pat1.stil ?? xtb_tbench1.dat (patterns <X1> to <Y1>)
pat2.stil ?? xtb_tbench2.dat (patterns <X2> to <Y2>)
pat3.stil ?? xtb_tbench3.dat (patterns <X3> to <Y3>)
The header of each .dat file identifies the STIL partition that was used to generate it, as
shown in the following example line:

// Generated from original STIL file : ./pat1.stil
Using this information, you can link various simulations to the original STIL partitions,
regardless of the order of the STIL files specified by the -split_in option. You can
also combine the existing -sim_script option with the -split_in option to generate a
validation script that enables automatic management of the validation step when using
different simulation modes.

See Also

• Reading Multiple Pattern Files

Splitting Large STIL Files
You can use the -split_out option of the stil2Verilog command to specify MAX
Testbench to split large STIL files. For example, for a STIL file with ten patterns, the
following command generates one testbench file and three .dat files:

stil2Verilog –split_out 4 mypat.stil my_tb

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1095

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

The first .dat file contains four patterns (0 to 3), the second .dat file contains four patterns
(#4 to #7), and the third .dat file contains two patterns (patterns #8 and #9).

The splitting process is based on a user-specified interval. Therefore, you should avoid
splitting between two interdependent patterns.

The following sections describe how to split large STIL files:

• Why Split Large STIL Files?

• Executing the Partition Process

• Example Test

Why Split Large STIL Files?
The ability to split STIL files is useful for two situations:

• When the number of patterns in a .dat file is so large that it cannot be simulated
because it exceeds the system memory capacity. For example, to simulate two million
patterns, the size of the .dat file contains 24 million lines, which corresponds to all
instructions for all patterns. In this case, the simulator (VCS) runs out of memory before
completing the simulation.

• Even if the system memory can accommodate the entire simulation, the excessive
memory consumption drastically impacts the performance of the simulation. This
can occur when the use of memory swapping and memory resources prevent other
applications from using that machine.

When it splits the STIL files, MAX Testbench can resolve a completely blocked simulation,
or optimize the memory and runtime simulation. This capability also allows MAX
Testbench to serially run a set of patterns as if these patterns were split from TestMAX
ATPG in different STIL files.

Executing the Partition Process
You use the -split_out option to define the maximum number of patterns to include in
each partition. Based on your specification, MAX Testbench generates a testbench (.v) file
and a set of partitioned data (.dat) files from a single STIL file.

When splitting large STIL files, MAX Testbench uses the following equation to determine
the number of partitions (or .dat files) to create:

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1096

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

The partitioning process is as follows:

1. The first partition (partition 0) starts as normal and stops at the execution of the last
pattern of the partition.

2. The second partition (partition 1) starts by reproducing the test_setup macro and the
Condition statement to restore the context of the last pattern of the first partition
(partition 0).

The second partition contains a duplication of the last pattern of the previous partition,
except that all unload states are masked. The strobe of the states corresponds to
the second-to-last pattern of the previous partition. This strobe is ensured by the
first partition, so you do not need to replicate it. All subsequent partitions follow the
architecture of the second partition.

3. Use VCS to create a simulation executable for MAX Testbench, then use the simulation
executable and the +tmax_part=partition_number option to simulate each partition,
as shown in the following example:

simv +tmax_part=0 simv +tmax_part=1 simv +tmax_part=2

Example Test
Note the following example test:

./simv +tmax_part=0 | tee run_vcs_par_usf_split_simv0.log

./simv +tmax_part=1 | tee run_vcs_par_usf_split_simv1.log

./simv +tmax_part=0 | tee run_vcs_par_usf_split_simv0.log
Chronologic VCS simulator copyright 1991-2013
Contains Synopsys proprietary information.
##
MAX TB
Test Protocol File generated from original file
 "pattn/pattn_comp_USF_par.stil"
STIL file version: 1.0
Enhanced Runtime Version: use <sim_exec> +tmax_help for available runtime
 options
##

XTB: Reading partition 0 (test data
 file /TEST_split/pattn/pattn_comp_USF_par_split_0.dat)
XTB: Enabling Enhanced Debug Mode. Using mode 1 (conditional parallel
 strobe).
XTB: Starting parallel simulation of 6 patterns
XTB: Using 0 serial shifts
XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: Begin parallel scan load for pattern 10 (T=1700.00 ns, V=18)
XTB: Begin parallel scan load for pattern 10, unload 2 (T=2000.00 ns,
 V=21)
XTB: Begin parallel scan load for pattern 5 (T=1700.00 ns, V=18)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1097

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

XTB: Simulation of 6 patterns completed with 0 mismatches (0 internal
 mismatches) (time: 2000.00 ns, cycles: 20)

 V C S S i m u l a t i o n R e p o r t
Time: 2000000 ps

./simv +tmax_part=1 | tee run_vcs_par_usf_split_simv1.log
Chronologic VCS simulator copyright 1991-2013
Contains Synopsys proprietary information.
##
MAX TB
Test Protocol File generated from original file
 "pattn/pattn_comp_USF_par.stil"
STIL file version: 1.0
Enhanced Runtime Version: use <sim_exec> +tmax_help for available runtime
 options
###

XTB: Reading partition 1 (test data
 file /TEST_split/pattn/pattn_comp_USF_par_split_1.dat)
XTB: Enabling Enhanced Debug Mode. Using mode 1 (conditional parallel
 strobe).
XTB: Starting parallel simulation of 6 patterns
XTB: Using 0 serial shifts
XTB: Begin parallel scan load for pattern 5 (T=200.00 ns, V=3)
XTB: Begin parallel scan load for pattern 10 (T=1700.00 ns, V=18)
XTB: Simulation of 6 patterns completed with 0 mismatches (0 internal
 mismatches) (time: 2200.00 ns, cycles: 22)

 V C S S i m u l a t i o n R e p o r t
Time: 2200000 ps

Controlling the Timing of a Parallel Check/Assert Event
When a vector is applied for a parallel-load operation, the state of all the scan elements
must be examined so it can be compared to the expected unload state. Subsequently, the
next state must be forced to implement the load operation. This operation is performed as
a single event:

• It compares the current state across all elements

• It forces the next state on all elements (during the same time in the Verilog simulation).

The placement of this event is restricted within the vector period. It should not occur before
the "scan" mode has stabilized. If not, it might sample scan states too early, and generate
miscompares because the scan state has not stabilized. Also, the event should not occur
after the first clock pulse into the scan elements, as the force operation will not have set
the proper value to load with this clock event. See the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1098

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Note that the default parallel operation will place this event a single (1) time increment
before the first defined clock pulse in the shift vector. This is the latest possible time, which
allows the device scan state to stabilize on the scan elements.

However, some situations might forcing the next state at this time might violate the setup
time. This occurs particularly in cases in which setup timing checks have been defined
on scan elements. When setup violations have occurred, the simulation may generate X
values on the flip-flops and affect the simulation response for the next unload operation. In
circumstances such as this, you may need to override the default placement of the parallel
event and specify a different time for this event. You can set this time using the following
configuration command:

cfg_parallel_release_time time_value

Figure 159 Implementing the Load Operation as a Single Event

   

The timing for parallel load simulation differs from a serial load simulation when the data
is driven directly on the flip-flops. The following figure shows how the parallel load MAX
Testbench works in terms of force, release, and strobe times.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1099

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Figure 160 Timing For Parallel Load MAX Testbench

   

There is a limitation in which the delayed parallel_release_time cannot be displayed in
parallel simulation waveforms. If you need to see the parallel release time, you can edit
your testbench file and see the results in the simulation log file only.

In the testbench, look for release_scells followed by #PRTIME and add the following two
lines for the $display statement(s):

always /* ParallelShiftMode */ @(release_scells) begin
#PRTIME;
$display("“XTB: initiating release at T=%0t, (using %0d serial
 shifts)", $time, SSHIFTS);
$display("“XTB: initiating release at T=%0t, for pattern %0d (using %0d
 serial shifts)", $time, cur_pat, SSHIFTS);

The difference between these two $display statements is that the second statement
prints the current pattern number. See the example in the following figure, which shows
the different results produced by these two statements in the output simulation log file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Figure 161 Example Testbench Edits

   

Figure 162 Example of Simulation Log File Edits

   

The following figure shows an example with a 25 ns delay. Currently, adding the $display
statement is the only way to validate that the delay is honored.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Figure 163 Example with 25 ns Delay

   

For more information, see Defining the load_unload Procedure.

Using MAX Testbench to Report Failing Scan Cells
You can use MAX Testbench to report the instance names of failing scan cells to help you
debug mismatches during a parallel simulation. MAX Testbench reads the VCS log file
with the basic simulation failure log file information (the scan chain names and the cell IDs)
and reports the instance names of the failing scan cells.

This flow is ideal for large designs because it significantly reduces the VCS compilation
time and memory requirements, and the memory required to run a VCS simulation.

Note: The PSD file is still required in the unified STIL flow for scan compression.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

This topic includes the following sections:

• Flow Overview

• Flow Example

Flow Overview
The flow for reporting failing scan cells includes two separate MAX Tesbench runs:

• In the first run, MAX Testbench creates a testbench used in a parallel VCS simulation.
The following example shows the command used in the first MAX Tesbench run:

stil2verilog pats.stil maxtb -config_file xtb.cfg -replace

The output log file from the VCS simulation contains basic diagnosis information, such
as the vectors, scan chain names, cell IDs, and scan cell names.

• In the second run, MAX Testbench uses the simulation failure log file information from
the VCS simulation log file and the original STIL data to produce a log file containing a
list of failing scan cells. The command for the second MAX Testbench run includes the
new

-failing_cell_report option, which specifies the VCS simulation log file, and the

-log option, which specifies the name of the log file containing the failing scan cells.

stil2verilog pats.stil -failing_cell_report simv.log \ -log
 new_simv.log

The following figure shows the flow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Figure 164 Flow for Reporting the Instance Names of Failing Scan Cells

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Flow Example
The following example shows the process for reporting the instance names of failing scan
cells.

First MAX Testbench Run:

stil2verilog pats.stil maxtb -config_file xtb.cfg -replace

VCS Simulation Log (simv.log):

XTB: Starting parallel simulation of 31 patterns
XTB: Using 0 serial shifts
XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: Begin parallel scan load for pattern 5 (T=6200.00 ns, V=63)
XTB: Begin parallel scan load for pattern 10 (T=12200.00 ns, V=123)
XTB: Begin parallel scan load for pattern 15 (T=18200.00 ns, V=183)
XTB: Begin parallel scan load for pattern 20 (T=24200.00 ns, V=243)
XTB: Begin parallel scan load for pattern 25 (T=30200.00 ns, V=303)
>>> Error during scan pattern 26 (detected from parallel unload of
 pattern 25)
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 0
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 7, scan cell 2
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 3
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 6
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 7, scan cell 7
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 8
>>> Error during scan pattern 26 (detected from parallel unload of
 pattern 25)
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 14, scan cell 1
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 14, scan cell 3
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 14, scan cell 7
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 14, scan cell 10
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 14, scan cell 11
>>> Error during scan pattern 26 (detected from parallel unload of
 pattern 25)
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 2
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 3
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 4
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 5
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 7
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 9
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 11
>>> Error during scan pattern 26 (detected from parallel unload of
 pattern 25)
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 28, scan cell 6
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 28, scan cell 7
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 28, scan cell 10
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 28, scan cell 11
>>> Error during scan pattern 26 (detected from parallel unload of
 pattern 25)
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 35, scan cell 3
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 35, scan cell 5

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 35, scan cell 8
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 35, scan cell 11
XTB: Begin parallel scan load for pattern 30 (T=36200.00 ns, V=363)
XTB: Simulation of 31 patterns completed with 26 mismatches (time:
 37400.00 ns, cycles: 374)

Second MAX Testbench Run:

stil2verilog pats.stil -failing_cell_report simv.log -log new_simv.log

MAX Testbench Log (new_simv.log):

STIL2VERILOG
Copyright (c) 2007 - 2016 Synopsys, Inc.
This software and the associated documentation are proprietary to
 Synopsys,
Inc. This software may only be used in accordance with the terms and
 conditions
of a written license agreement with Synopsys, Inc. All other use,
 reproduction,
or distribution of this software is strictly prohibited.
maxtb> Parsing command line...
maxtb> Checking for feature license...
maxtb> Parsing STIL file "pats.stil" ...
... STIL version 1.0 (Design 2005) ...
... Building test model ...
... Signals ...
... SignalGroups ...
... Timing ...
... ScanStructures : "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
 "11" "12" "13" "14" "15" "16" "17" "18" "19" "20" "21" "22"
 "23" "24" "25" "26" "27" "28" "29" "30" "31" "32" "33"
 "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44" "45"
 "46" "47" "48" "49" "50" "51" "52" "53" "54" "55" "56" "57"
 "58" "59" "60" "61" "62" "63" "64" "65" "66" "67" "68" "69"
 "70" "71" "72" "sccompin0" "sccompin1" "sccompin2" "sccompout0"
 "sccompout1" "sccompout2" "sccompout3" "sccompout4" "sccompout5"
 "sccompin3" "sccompin4" "sccompin5" ...
... PatternBurst "ScanCompression_mode" ...
... PatternExec "ScanCompression_mode" ...
... ClockStructures "ScanCompression_mode": occ_ctrl ...
... CompressorStructures :
 "des_unit_U_decompressor_ScanCompression_mode"
 "des_unit_U_compressor_ScanCompression_mode" ...
... Procedures "ScanCompression_mode": "internal_load_unload"
 "multiclock_capture" "allclock_capture" "allclock_launch"
 "allclock_launch_capture" "load_unload" ...
... MacroDefs "ScanCompression_mode": "test_setup" ...
... Pattern block "_pattern_" ...

maxtb> STIL file successfully interpreted (PatternExec:
 ""ScanCompression_mode"").
maxtb> Total test patterns to process 51

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

maxtb> Detected an X-Tolerant Scan Compression mode.
maxtb> Parsing simulation log file "simv.log"
maxtb> Report Failing Cells:
>>> Error during scan pattern 26
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 0, cell
 name U_CORE.dd_d.data2_reg_2_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 7, scan cell 2, cell
 name U_CORE.dd_d.data2_reg_0_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 3, cell
 name U_CORE.dd_d.data1_reg_7_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 6, cell
 name U_CORE.dd_d.data1_reg_4_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 7, scan cell 7, cell
 name U_CORE.dd_d.data1_reg_3_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 7, scan cell 8, cell
 name U_CORE.dd_d.data1_reg_2_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 14, scan cell 1, cell
 name U_CORE.dd_d.data3_reg_7_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 14, scan cell 3, cell
 name U_CORE.dd_d.data3_reg_5_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 14, scan cell 7, cell
 name U_CORE.dd_d.data3_reg_1_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 14, scan cell 10, cell
 name U_CORE.dd_d.data2_reg_6_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 14, scan cell 11, cell
 name U_CORE.dd_d.data2_reg_5_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 2, cell
 name U_CORE.dd_d.data5_reg_4_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 3, cell
 name U_CORE.dd_d.data5_reg_3_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 4, cell
 name U_CORE.dd_d.data5_reg_2_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 5, cell
 name U_CORE.dd_d.data5_reg_1_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 7, cell
 name U_CORE.dd_d.data4_reg_7_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 9, cell
 name U_CORE.dd_d.data4_reg_5_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 21, scan cell 11, cell
 name U_CORE.dd_d.data4_reg_3_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 28, scan cell 6, cell
 name U_CORE.dd_d.data6_reg_6_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 28, scan cell 7, cell
 name U_CORE.dd_d.data6_reg_5_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 28, scan cell 10, cell
 name U_CORE.dd_d.data6_reg_2_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 28, scan cell 11, cell
 name U_CORE.dd_d.data6_reg_1_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 35, scan cell 3, cell
 name U_CORE.dd_d.o_data_reg_7_
>>> At T=31540.00 ns, V=316, exp=0, got=1, chain 35, scan cell 5, cell
 name U_CORE.dd_d.o_data_reg_5_

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 35, scan cell 8, cell
 name U_CORE.dd_d.o_data_reg_2_
>>> At T=31540.00 ns, V=316, exp=1, got=0, chain 35, scan cell 11, cell
 name U_CORE.dd_d.data7_reg_7_

Note that the text highlighted in red represents the instance name of the failing cell.

MAX Testbench Runtime Programmability
MAX Testbench supports a runtime programmability flow that enables you to specify a
series of runtime simulation options that use the same compiled executable in different
modes.

For example, you can compile a single executable using one or more runtime
options, such as +tmax_msg, +tmax_rpt, +tmax_serial, +tmax_parallel,
+tmax_n_pattern_sim, and +tmax_test_data_file. You can then specify any of these
options at runtime using the same executable.

You can also use a set of options to change test patterns. For example, if you want to write
out patterns with different chain tests. The flow for using split patterns is different than the
flow for regular patterns. For details, see Runtime Programmability for Patterns.

The following sections describe how to configure and execute runtime programmability in
MAX Testbench:

• Basic Runtime Programmability Simulation Flow

• Runtime Programmability for Patterns

• Example: Using Runtime Predefined VCS Options

• MAX Testbench Runtime Programmability Limitations

See Also

• Configuring MAX Testbench

• Predefined Verilog Options

Basic Runtime Programmability Simulation Flow
The basic simulation flow for runtime programmability is as follows:

1. Generate a STIL-based testbench. For details, see Running MAX Testbench.

2. Configure the compile-time options, as needed.

3. Compile the testbench, design, and libraries, and produce a single default simulation
executable. You only need to compile the executable one time, using minimal
configuration.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

4. Run the simulation, for example:

<sim_exec> +<runtime_option>
Note that you can use any of the following runtime options:

• tmax_msg

• tmax_rpt

• tmax_serial

• tmax_parallel

• tmax_n_pattern_sim

• tmax_test_data_file
For details on these options, see the MAX Testbench Configuration section.

5. If you encounter a new behavior, or need a new report or test patterns, specify the
appropriate runtime option and rerun the simulation without recompiling the executable.
For example:

<simv_exec> <+tmax_test_data_file="myfile.dat">
In the previous example, myfile.dat is the newly generated data (.dat) file to be used
with the existing testbench file.

Note the following:

• If you specify the tmax_serial option at compile time and the +parallel option at
runtime, the resulting simulation is a parallel simulation.

• The msg and rpt options affect the simulation report by providing different verbosity
levels. Their defaults are 0 and 5, respectively. Setting up values different than these
values, either at compile-time or runtime, is automatically reported by the testbench at
simulation time 0. The runtime options override their compilation-time counterparts.

• The n_pattern_sim option overrides the equivalent tmax_n_pattern_sim option, if
the latter option is specified. Otherwise, it overrides the default initial set of patterns
(the entire set in the STIL file, or the set generated by Max Testbench using the -first
and -last options).

Runtime Programmability for Patterns
You can use the -generic_testbench and -patterns_only options with the

write_testbench or stil2Verilog commands to configure runtime programmability for
patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Do not confuse the use of regular patterns and the use of split patterns for runtime
programmability. You cannot simultaneously use the -generic_testbench and

-patterns_only options for split patterns. See Using Split Patterns for details.

The following sections describe how to use runtime programmability for patterns:

• Using the -generic_testbench Option

• Using the -patterns_only Option

• Executing the Flow

• Using Split Patterns

Using the -generic_testbench Option
The -generic_testbench option, used in the first pass of the flow, provides special
memory allocation for runtime programmability. This is required because the Verilog 95
and 2001 formats use static memory allocation to enable buffers and arrays to store
and manipulate .dat information. This type of data storage cannot be handled by a
standard .dat file. Also, it is expected that .dat files will continue to expand as they store an
increasing number of vectors and atomic instructions.

The -generic_testbench option runs a task that detects the loading of the .dat file, and then
allocates an additional memory margin. If, at some point, the data exceeds this allocated
capacity, an error message, such as the following, will appear.

XTB Error: size of test data file <file_name>.dat exceeding
testbench memory allocation. Exiting...
(recompile using -pvalue+design1_test.tb_part.MDEPTH=<###>).

As indicated in the message, you will need to recompile the testbench using the suggested
Verilog parameter to adjust the memory allocation.

Using the -patterns_only Option
The -patterns_only option is used for a second pass, or later, run. It initiates a light
processing task that merges the new test data. This option also enables additional internal
instructions to be generated for the special .dat file. For example, it includes a computation
of the capacity for later usage by the testbench for memory management.

If you are running an updated pattern file, and have specified the -pattern_only option,
you will see the following message:

XTB: Setting test data file to "<file_name>.dat" (at runtime).
Running simulation with new database...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Executing the Flow
The flow for runtime programmability for patterns is as follows:

1. Generate the testbench in generic mode using the first available STIL file. For example:

write_testbench -input pats.stil -output runtime_1 \
-replace -parameter {-generic_testbench \
-log mxtb.log -verbose}
Executing 'stil2Verilog'...

2. Compile and simulate this testbench (along with other required source and library files).

3. When a new pattern set is required, generate a new STIL file, while keeping the same
STIL procedure file for the DRC (same test protocol).

4. Rerun MAX TestBench against the newly generated STIL file to generate only new the
test data file, as shown in the following example:

write_testbench -input pats_new.stil -output runtime_2 \
-replace -parameter { -patterns_only -log mxtb_2.log \
-verbose}

5. Attach the newly generated .dat file to the simulation executable and rerun the
simulation (without recompilation), as shown in the following example:

simv +tmax_test_data_file=”<new_pattern_filename>.dat”
Command: ./simv +tmax_test_data_file=runtime_2.dat
###
MAX TB Version H-2013.03
Test Protocol File generated from original file " pats_
new.stil"
STIL file version: 1.0
##
XTB: Setting test data file to "runtime_2.dat" (at runtime).
Running simulation with new database...
XTB: Starting parallel simulation of 5 patterns
XTB: Using 0 serial shifts
XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: Simulation of 5 patterns completed with 0 errors (time:
2700.00 ns, cycles: 27)
V C S S i m u l a t i o n R e p o r t

6. Repeat steps 3 to 5, as needed, to include a new STIL file.

Using Split Patterns
The following examples show how to split patterns for runtime programmability.

This example uses the stil2Verilog command:

stil2Verilog input_stil_file_name output_testbench_name \
-tb_module < > -split_out 32 –generic -replace \
-log translation.log

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

The next example uses the write_testbench command:

write_testbench -input input_stil_file_name -out output_testbench_
name \
-parameters {-split_out 32 -tb_module < > –generic \
–log mxtb.log}

The next set of examples show the process of splitting pattern files using the
write_patterns command and a series of write_testbench commands. Note that you
do not need to use the -patterns_only option to create the first split file. In this case, the
first split file is created using the -generic option in the first write_testbench command of
the command sequence.

write_patterns ./pattern/top_scan.stil -format stil -replace \
-split 5
write_testbench -input ./pattern/top_scan_0.stil
-output ./pattern/top_scan_maxtb -replace \
-parameter {-generic -log mxtb_generic_split_0.log \
-verbose }
write_testbench -input ./pattern/top_scan_1.stil \
-output ./pattern/top_scan_maxtb_1 -replace \
-parameter {-patterns_only -log mxtb_split_1.log \
-verbose }
write_testbench -input ./pattern/top_scan_2.stil \
-output ./pattern/top_scan_maxtb_2 -replace \
-parameter {-patterns_only -log mxtb_split_2.log \
-verbose }
write_testbench -input ./pattern/top_scan_3.stil \
-output ./pattern/top_scan_maxtb_3 -replace \
-parameter {-patterns_only -log mxtb_split_3.log \
-verbose }
write_testbench -input ./pattern/top_scan_4.stil \
-output ./pattern/top_scan_maxtb_4 -replace \
-parameter {-patterns_only -log mxtb_split_4.log \
-verbose }
write_testbench -input ./pattern/top_scan_5.stil \
-output ./pattern/top_scan_maxtb_5 -replace \
-parameter {-patterns_only -log mxtb_split_5.log \
-verbose }

Example: Using Runtime Predefined VCS Options
The following example shows how to use runtime predefined VCS options:

%> ./simv_usf +tmax_msg=3 +tmax_n_pattern_sim=1 +tmax_rpt=3
##
MAX TB Version H-2013.03
Test Protocol File generated from original file "runtime.stil"
STIL file version: 1.0
##
XTB: Setting runtime option "tmax_n_pattern_sim" to 1.
XTB: User requesting simulating patterns 0 to 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

XTB: Setting runtime option "tmax_msg" to 3.
XTB: Setting runtime option "tmax_rpt" to 3.
XTB: Starting parallel simulation of 2 patterns
XTB: Using 0 serial shifts
XTB: Processed statement: WFTStmt
XTB: Processed statement: ConditionStmt
XTB: Starting macro test_setup..., T=0.00 ns, V=1
XTB: Processed statement: test_setupStmt
XTB: Processed statement: SetPat
XTB: Starting proc load_unload..., T=200.00 ns, V=3
XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: (parallel) shift, at 300.00 ns
XTB: Processed statement: load_unloadStmt
XTB: Starting proc capture..., T=400.00 ns, V=5
XTB: Processed statement: captureStmt
XTB: Processed statement: IncPat
XTB: Starting proc load_unload..., T=500.00 ns, V=6
XTB: (parallel) shift, at 600.00 ns
XTB: Processed statement: load_unloadStmt
XTB: Starting proc capture_clk..., T=700.00 ns, V=8
XTB: Processed statement: capture_clkStmt
XTB: Processed statement: IncPat
XTB: Simulation of 2 patterns completed with 0 error (time: 1000.00 ns,
 cycles: 10)
V C S S i m u l a t i o n R e p o r t

MAX Testbench Runtime Programmability Limitations
The following limitations apply to runtime programmability in MAX Testbench:

• The following runtime options are not supported: tmax_vcde, tmax_serial_timing,
tmax_diag_file, tmax_diag.

• You cannot change between the +delay_mode_zero, +typdelays, +mindelays, and
+maxdelays options.

• You cannot use a different test_setup procedure at runtime.

• The width of a variable must remain constant.

• The STIL procedure file cannot be changed before generating second-pass patterns.

• Compile-time switches cannot be changed.

• You cannot use $dumpvars statements.

• You must use the same version of VCS throughout the entire runtime programmability
process.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

MAX Testbench Support for IDDQ Testing
IDDQ testing detects circuit faults by measuring the amount of current drawn by a CMOS
device in the quiescent state (a value commonly called “IddQ”). If the circuit is designed
correctly, this amount of current is extremely small. A significant amount of current
indicates the presence of one or more defects in the device.

You can use the following methods in MAX Testbench to configure the IDDQ testing:

• Compile-Time Options for IDDQ

• IDDQ Configuration File Settings

• Generating a VCS Simulation Script

See Also

• Generating IDDQ Test Patterns

Compile-Time Options for IDDQ
MAX Testbench has two compile-time options that support IDDQ testing and are specified
at the command line when starting a simulation. Note that these compile-time options
cannot be specified in the configuration file:

• tmax_iddq
This option enables IDDQ testing during PowerFault simulation. The default behavior is
not to use the IDDQ test mode. The following example enables IDDQ testing from the
VCS command line:

% vcs ... +define+tmax_iddq
• tmax_iddq_seed_mode=<0|1|2>

This option changes the fault seeding for IDDQ testing to one of three modes:

◦ 0 for automatic seeding (default)

◦ 1 for seeding from a fault file only

◦ 2 for both automatic seeding and file seeding

When the seeding mode is set to 1 or 2, the testbench assumes the existence of a fault
list file (or its symbolic link) in the current directory named tb_module_name.faults. If
this file is not found, the simulation stops and an error is issued.

You can override the default fault list name in the configuration file (see the next
section).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

See Also

• Predefined Verilog Options

IDDQ Configuration File Settings
You can make several IDDQ test-related specifications in a dedicated subsection of the
configuration file. Note that there are no command-line equivalences to these settings
since they are testbench file-specific commands.

cfg_iddq_seed_file fault_list_file

This parameter overrides the default tb_module_name.faults file when faults are
seeded from an external fault list file. The default tb_module_namefile in Max
Testbench is DUT_name_test.

The following example specifies faults seeded from a file called my_dut_test:

set cfg_iddq_seed_file my_dut_test
cfg_iddq_verbose 0 | 1

This parameter enables or disables the PowerFault verbose report. The default
is 1, which enables the verbose report. Specify a value of 0 to disable the
verbose report.

The following example disables the PowerFault verbose report:

set cfg_iddq_verbose 0
You can use the +define+tmax_msg=4 simulation option to report file names
that are used during the simulation process.

cfg_iddq_leaky_status 0 | 1

This parameter enables or disables the PowerFault leaky nodes report printed
in the tb_name.leaky file. The default is 1, which enables the leaky nodes report.
Specify a value of 0 to disable this report.

The following example disables the PowerFault leaky nodes report:

set cfg_iddq_leaky_status 0
cfg_iddq_seed_faul_model 0 | 1

This parameter specifies the PowerFault fault model used for external fault
seeding. The default is 0, which specifies SA faults. Specify a value of 1 for
bridging faults.

The following example specifies bridging faults for automatic seeding:

set cfg_iddq_seed_faul_model 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

cfg_iddq_cycle value

Use this parameter to set the initial counter value for IDDQ strobes. The default
is 0.

The following example sets the initial counter value to 1:

set cfg_iddq_cycle 1
Configuring MAX Testbench

Generating a VCS Simulation Script
You can use MAX Testbench to generate a script that sets up required information
for IDDQ test simulation. This information is required to enable the PLI access option
functions (+acc), the path to the archive PowerFault PLI library (libiddq_vcs.a), and the
path to the PLI function interface (iddq_vcs.tab).

Note that automatic simulation script generation for IDDQ testing is limited to the VCS
simulator only.

The following example is a basic script generated by MAX Testbench using the
-sim_script option (without using any available parameters from the configuration file)
when IDDQ test mode is enabled:

#!/bin/sh
LIB_FILES="my_lib.v ${IDDQ_HOME}/lib/libiddq_vcs.a
 –P${IDDQ_HOME}/lib/iddq_vcs.tab"
DEFINES=""
OPTIONS="+tetramax +acc+2"
NETLIST_FILES="my_netlist.v"
TBENCH_FILE="new_i021_s1_s.v"
SIMULATOR="vcs"
${SIMULATOR} -R ${DEFINES} ${OPTIONS} ${TBENCH_FILE} ${NETLIST_FILES}
 ${LIB_FILES}
SIMSTATUS=$?
if [${SIMSTATUS} -ne 0]
then echo "WARNING: simulation command returned error status
 ${SIMSTATUS}"; exit ${SIMSTATUS};
fi

Note the following:

• When generating the script, MAX Testbench assumes that the IDDQ_HOME
environment variable points to the location of an existing PowerFault PLI.

• You must have a valid Test-IDDQ license to run the PowerFault PLI.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

How MAX Testbench Works
The Verilog writer for MAX Testbench is essentially an algorithm that browses the data
structure and retrieves the appropriate information according to the order and the form
determined by the Verilog testbench template.

MAX Testbench does not parse the netlist file. It retrieves the DUT interface (its
hierarchical name and its primary I/O) from the STIL file. Therefore, it is the responsibility
of the STIL provider (TestMAX ATPG) to make sure that this interface corresponds
effectively to the one described in the netlist. The testbench file (test protocol) contains all
the details of the STIL file, whereas the test data file translates the execution part (Pattern
blocks).

Figure 4 Relationship of Files in MAX Testbench Flow

   

Figure 5 MAX Testbench Flow

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

   

For more information, see Editing the STIL Procedure File.

Predefined Verilog Options
The following table describes a set of predefined Verilog options. When specified on the
VCS compilation line, these options must be preceded by the +define statement.

Table 10 Predefined Verilog Options

Verilo
g
Option

Description

+tmax_
help

Used with the simv executable, this option reports the available runtime options, which
are:
+tmax_n_pattern_sim
+tmax_serial
+tmax_parallel
+tmax_msg
+tmax_rpt
+tmax_test_setup_only_once
+tmax_test_data_file

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Table 10 Predefined Verilog Options (Continued)

Verilo
g
Option

Description

+tmax_
parall
el=N

Forces the parallel-load simulation of all scan data, with N bits extracted and serially
simulated. This option overrides the behavior of a testbench written by MAX Testbench
with the -serial option and overrides the value of N of a testbench written by MAX
Testbench with the -parallel option. If N is not specified, it is processed as zero
(meaning all bits are parallel-loaded).

+tmax_
serial
=N

Forces the serial simulation of the first N patterns for a testbench written by MAX
Testbench with only the -parallel option. This option then starts the parallel simulation
of the remaining patterns using the parallel parameters specified when the testbench was
written.

+tmax_
rpt=N

Specifies the interval of the progress message

+tmax_
msg=N

Control for a pre-specified set of trace options

+tmax_
vcde

Generates an extended VCD of the simulation run

+tmax_
serial
_timin
g

Generates a delay (a "dead period") for parallel scan access.

+tmax_
test_s
etup_o
nly_on
ce

Simulates the test_setup macro only one time when using split patterns with MAX
Testbench. This option is useful when you are using multiple STIL pattern files and want
to avoid multiple simulations of the test_setup macro. It can be used for both compile time
and runtime during a simulation.

+tmax_
usf_de
bug_st
robe_m
ode

Reports various levels of details of simulation runtime miscompare messages for scan
compression technology. For complete information on using this option, see "Debug
Modes for Simulation Compare Messages."

The +tmax_rpt option controls the generation of a statement on entry to every TestMAX
ATPG pattern unit during the simulation. This statement is printed during the simulation
run, and provides an indication of progress during the simulation run. This progress
statement has two forms, depending on whether the next scan operation is executed in
serial or parallel fashion:

Starting Serial Execution of TestMAX ATPG pattern N, time NNN, V #NN
Starting Parallel Execution of TestMAX ATPG pattern N, time NNN, V #NN

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

Starting Serial Execution of TestMAX ATPG pattern N (load N), time NNN, V
#NN Starting Parallel Execution of TestMAX ATPG pattern N (load N), time
NNN, V #NN
By default, the pattern reporting interval is set to every 5 patterns. This value can be
changed by specifying the interval value to the +tmax_rpt option. For instance, +define
+tmax_rpt=1 on the VCS compile line generates a message for each TestMAX ATPG
pattern executed. All pattern reporting messages can be disabled by setting +define
+tmax_rpt=0.

The +tmax_msg option controls a pre-defined set of trace options, using the values 1
through 4 to specify tracing, where '1' provides the least amount of trace information and
'4' traces everything. These values activate the trace options as follows:

0 — disables all tracing (except progress reports with +tmax_rpt)

1 — traces entry to each Procedure and Macro call

2 — adds tracing of WaveformTable changes

3 — adds tracing of Labels

4 — adds tracing of Vectors

The +tmax_msg option is set to 0 by default.

These two options +tmax_rpt and +tmax_msg provide a single control of tracing
information, established as the simulation environment is started. By editing the testbench
file, additional options can be specified during the simulation run.

The option +tmax_evcd supports generation of an extended VCD file for the instance
of the design under test (dut). The name of this file is "sim_vcde.out". The option
+tmax_serial_timing causes an interval of no events to be generated for each parallel
scan access operation. This period aligns the overall simulation time of parallel scan
access with the same time required for a normal serial shift operation. This "dead period"
is described in "Parallel Scan Access". By default, this dead period is not present and
the parallel scan access simulation occupies a single cycle period for the entire scan
operation. For designs that can accept this dead period, this option facilitates coordinating
times between parallel and serial simulations, and facilitates identifying the physical
runtime of a pattern set with parallel scan access operation present. Some designs
might not support this dead period, for instance certain styles of PLL models might lose
synchronization for intervals without clock events present. These designs should not use
this option.

The +tmax_diag option controls the generation of miscompare messages formatted for
TestMAX ATPG diagnostics during the simulation.

For more information, see Configuring MAX Testbench.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

MAX Testbench Limitations
The following limitations appliy when using MAX Testbench:

• MAX Testbench does not support DBIST/XDBIST, or core integration. XDBIST and
CoreTest are EOL (End-Of-Life) tools.

• For script generation, predefined options are supported only for a VCS script.

See Also

• Runtime Programmability Limitations

Example of the Configuration Template
You can specify the following command to generate a template containing the options
described in Table 1:

stil2Verilog -generate_config TB_config_file

Example 1 Configuration Template Example

STIL2VERILOG CONFIGURATION FILE TEMPLATE (go-nogo default values)

uncomment out the setting statement to use predefined variables
the “set cfg_*” variables only affect the testbench definition

cfg_patterns_read_interval: specifies the maximum number of patterns
loaded simultaneously in the simulation process
#set cfg_patterns_read_interval 1000

cfg_patterns_report_interval: Specifies the interval of the progress
message
#set cfg_patterns_report_interval 5

cfg_message_verbosity_level: control for a prespecified set of trace
options
#set cfg_message_verbosity_level 0

cfg_evcd_file evcd_file: generates an extended-VCD of the simulation
run
#set cfg_evcd_file "evcd_file"

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

cfg_diag_file: generates a failures log file compliant with TestMAX
ATPG diagnostics. This overrides the name in the tb file.
#set cfg_diag_file "diag_file"
cfg_serial_timing: generates a delay for parallel scan access to align
parallel
load timing with serial load timing
#set cfg_serial_timing 0
cfg_time_unit: specifies the simulation time unit
#set cfg_time_unit "1ns"
cfg_time_precision: specifies the simulation time precision
#set cfg_time_precision "1ns"
cfg_dut_module_name: specifies the DUT module name to be tested
(variable to be used only when the tool asks for it)
#set cfg_dut_module_name "dut_module_name"

TB file formatting section
cfg_tb_format_extended: specifies whether an extended TB file is needed
#set cfg_tb_format_extended 0

set drcw_severity <rule_name> <severity>
The command "drcw_severity" needs two mandatory parameters:
- <rule_name>: TestMAX ATPG rule name (wild-card character '*' is
supported)
- <severity>: severity level ("ignore"|"warning"|"error")
#set drcw_severity C11 warning

variables affecting only the simulator script generation
define_<preprocessor_define>: specifies the preprocessor definitions
for the simulator
#set define_<user_def1> 0
#set define_<user_def2> "TRUE"

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Configuring MAX Testbench

Feedback

#design_files: specifies all source files required to run the simulation
#set design_files "netlist1.v netlist2.v"
lib_files: specifies all library source files required to run the
simulation
#set lib_files "lib1.v lib2.v"
vcs_options: specifies the user VCS command line options
#set vcs_options "VCSoption1 VCSoption2"
nc_options: specifies the user NCSim command line options
#set nc_options "NCoption1 NCoption2"
mti_options: specifies the user ModelSim command line options
#set mti_options "MTIoption1 MTIoption2"
xl_options: specifies the user Verilog XL command line options
#set xl_options "XLoption1 XLoption2"
An example configuration file is shown in the following example.

Example 2 Example Configuration Rile

STIL2VERILOG CONFIGURATION FILE

Specifies the maximum number of patterns
loaded simultaneously in the simulation process
set cfg_patterns_read_interval 1000

Specifies the interval of the progress message
set cfg_patterns_report_interval 5

Control for a prespecified set of trace options
set cfg_message_verbosity_level 3

Generates a failures log file compliant with
TestMAX ATPG diagnostics
set cfg_diag_file "diag_file"

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Specifies the DUT module name to be tested
#set cfg_dut_module_name "dut_module_name"

Specifies all source files required to run the simulation
#set design_files "netlist1.v netlist2.v"

other configurations…
To assign a value to a configuration parameter, use the following syntax:

set config_parameter_name value
A comment line must begin with the pound symbol (#).

See Also

• Runtime Programmability

• Predefined Verilog Options

MAX Testbench Error Messages and Warnings
The following sections list and describe the various error messages and warnings
associated with MAX Testbench:

• Error Message Descriptions

• Warning Message Descriptions

• Informational Message Descriptions

You can access a detailed description for a particular message by specifying either of the
following commands:

stil2Verilog -help [message_code]
or

write_testbench -help [message_code]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Error Message Descriptions
The following table describes all MAX Testbench error messages:

Table 11 Error Message Descriptions

Error Message Description What Next

E

E-001- No license
found for this site

The license file specified in the Synopsys
installation does not contain a valid license
for this site.

Check the
SYNOPSYS
environment variable or
contact Synopsys to get a
valid license.

E-002- No threads
associated with the
first PatternExec

The tool automatically searches for the
first PatternExec statement in the specified
STIL file. Its name is displayed in the
verbose mode execution. This message
occurs when the STIL interpretation
process failed to retrieve any execution
threads corresponding to the detected
PatternExec statement.

Check the validity of
the STIL file and its first
PatternExec statement.

E-003 - Multiple
PatList found, not
fully supported
yet (only one at a
time or in parallel
but with PLL like
patterns)

The PatList statement is not yet fully
supported. The tool only supports for now
only simple PatList representations, like
the PLL like patterns.

Generate a STIL that uses
the supported PatList
syntax and patterns .

E-006- Cannot recover
signal <name> from
the STIL structures,
last label <name>

Respective signal cannot be found in the
Signals list of the STIL file.

Check the STIL file syntax

E-007- Unsupported
event %s in wave
of cluster "%c" of
signal %s in WFT "%s"

The tool currently does not support
the following event types:WeakDown,
WeakUp, CompareLowWindow,
CompareHighWindow,
CompareOffWindow,
CompareValidWindow, LogicLow,
LogicHigh, LogicZ, Marker, ForcePrior

Generate a STIL that uses
only the supported event
types

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1125

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 11 Error Message Descriptions (Continued)

Error Message Description What Next

E-008- The event
waves of cluster
<name> of signal
<name> in WFT
<name> have
incompatible types
(force and compare
simultaneously, not
yet supported)

The cluster of reported signal contains
both force and compare event waves
simultaneously. The tool does not support
this yet .

Generate a STIL that does
not use this type of event
waves in the WaveForm
description

E-010- Can't find
definition for
<name> in the STIL
structures

The specified Procedure or Macro cannot
be found in the STIL structures. That can
be caused by an incomplete STIL file.

Check the syntax of the
STIL file

E-011- Too many
signal references
in the Equivalent
statement %s, not yet
supported

The tool only supports one to one
equivalences for now and the input STIL
file contains Equivalent statements with
multiple signal specifications.

Generate a STIL that
contains only one to one
equivalences

E-013- Invalid
Equivalent statement
<location>

The tool only supports one to one
equivalences for now and the specified.
Equivalent statement does not respect this
rule.

Generate a STIL that
contains correct Equivalent
statements

E-014- Loop Data
statement in <name>
not yet supported

Only the simple Loop statement is
currently supported. The Loop Data is not
yet supported.

Generate a STIL that does
not contain Loop Data

E-015 - The requested
help page does not
exist

A message code was specified that does
not correspond to an existing help page.

Check the correctness of
the message code

E-017- Duplicate
definition for <name>

There is more than one definition for a
specified Procedure/Macro in the input
STIL file. This represents a bad STIL
syntax and should be corrected.

Check the syntax of the
input STIL file

E-018- Multiple
specification of -log
option

The command line -log option has been
specified more than one time. Only one
specification is allowed to avoid confusion.

Check and edit the
command line to have a
single -log specification

E-019- Missing "log"
option value

The command line -log option has an
mandatory argument that specifies the
name of the file which is used to write the
transcription of the tool execution. This
argument is absent.

Check and edit the
command line to add a file
name as argument for -log

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1126

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 11 Error Message Descriptions (Continued)

Error Message Description What Next

E-021- Error during
the consistency
checking of the
command line
parameters and
options

The error message indicates which
parameter/option is cone timerned.

Modify the command line
according to the error
message. Check the user
documentation for more
details

E-023- cannot write
file <file_name> as
it already exists,
specify -replace if
you want to overwrite
it

When the tool is about to generate a
file it checks if the respective file name
already exists on disk. In this case, to
avoid accidental lost of user important data
the tool asks the user for a confirmation,
more specific the user has to provide the
-replace option in the command line to
confirm that this is the desired behavior.

If the overwriting of the
respective file is desired
then add the -replace
option in the command line

E-024- Ambiguous
option <name>,
can match multiple
options like <enum>

The specified command line option match
more than one command line option.
The command line processing allows for
incomplete option name specifications, but
a minimal specification is required to avoid
ambiguity.

Edit the command line and
clearly specify your options
to avoid ambiguity

E-025-
<file/directory_name>
No such file or
directory

The specified file(s) or folder(s) cannot be
found on disk. This usually is caused by
a wrong specification of the design/library
files generated from the command line or
from the config file.

Specify correct file/folder
names

E-028- <value> is not
a valid cfg_time_unit
or cfg_time_precision
value (Valid integer
are 1, 10 and 100.
Units of measurement
are s, ms, us, ns, ps
and fs)

Specified value for cfg_time_unit or
cfg_time_precision is invalid. This usually
occurs in the config file consistency
checking process.

Edit the invalid values with
correct ones

E-029- It is illegal
to set the time
precision larger than
the time unit

Value specified for time precision is too
big.

Specify a lower value for
time precision, lower or
equal with the time unit

E-030- Cannot
generate Verilog
testbench neither
for serial nor for
parallel load mode...

Specified testbench generation mode
is not possible with the given STIL file.
This might happen when you specify the
parallel_only or serial_only configuration.

Specify a different
simulation mode

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1127

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 11 Error Message Descriptions (Continued)

Error Message Description What Next

E-031- Cannot open
<file_name> file.

Specified file name is not accessible. It
can be a config file name, a log file name,
design file name, library file name, test
data file, protocol file, and so forth.

Check the existence, the
location, or the permission
of the specified file

E-032- Error during
the consistency
checking of
config_file data

The error message indicates which config
file field is affected.

Modify the config file
according to the error
message

E-033- Error reading
Tcl file <file_name>
at line <#>. Only
comments and variable
settings allowed

The config file only supports a limited
Tcl syntax, such as variable settings,
comments and empty lines.

Modify the config file by
removing the unsupported
syntax.

E-035- Cannot
retrieve DUT
module name in
STIL file. Set the
"cfg_dut_module_name"
in the config file to
avoid the problem

The tool automatically extracts the DUT
module name from the specified STIL file.

Use a config file to
specify it by setting the
cfg_dut_module_name
parameter. A template
config file can be
generated using the
-generate_config option

E-036- Detected
an unsupported
multi-vector Shift
construct.

The tool detected a STIL Shift block that
includes multiple Vector statements –
some of which are not consuming data
without a pound (#) sign .

Make sure the vectors
are not intended to be
post-amble (or preamble)
vectors that need to
defined after (or before)
the Shift block. If so,
correct the STIL file
accordingly. If not, contact
Synopsys support.

E-037- Detected
an unsupported
multi-vector Loop
construct.

The tool detected a STIL Loop block that
includes multiple Vector statements.

USF Parallel simulation
is not supported for STIL
files using these type of
constructs.

E-038- Cannot process
MISR outputs.
Theratio between the
number of compressors
and the number of
SERDES MISR outputs
is not supported.
Parallel simulation
may fail

The tool detected a situation in which it
can't determine the assignment between
the compressor outputs and the SERDES
MISR output

If possible, use a number
of compressors that can
divide with the number of
SERDES MISR outputs.
The simulation may fail
otherwise.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1128

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 11 Error Message Descriptions (Continued)

Error Message Description What Next

E-039- Shift
statement can only
be called from
Procedures

Shift statements are only supported when
they are called inside a Procedure.

Generate a STIL file that
respects this syntax

E-040 - Wrong values
for -first and/or
-last options

The first and last options need to be
positive integers and in increasing order
(last > first). First and last must both be
less than max_patterns.

Set the appropriate values.

E-041 - Parallel
simulation mode for
loop block within
procedure "proc"

Parallel simulation for a STIL file with a
loop block consuming scan data within a
load_unload procedure is not supported.

Regenerate a "serial_only"
STIL version from
TestMAX ATPG or use the
-ser_only MAXTestbench
option (in case of USF
STIL) to generate the
appropriate testbench and
run the simulation in serial
mode.

E-042 - Error during
the consistency
checking of the input
STIL file

Identifies a missing structure or field in the
STIL file.

Add the missing structure
or field in the input STIL
file.

E-043 - Enhanced
Debug Mode for
Combined Pattern
Validation (EDCPV)

Due to some consistency checks, EDCPV
mode cannot be activated. As a result, the
generated testbench cannot pinpoint the
exact failing scan cell in parallel simulation
mode.

Refer to the requirements
described in "Debugging
Parallel Simulation
Failures Using Combined
Pattern Validation."

E-044 -Detected an
invalid multibit
scan cell. Simulation
cannot be performed
in parallel mode

MAX Testbench detected multibit scan
cells that are incorrectly described. In
this case, parallel mode simulation is not
possible, since the respective scan cell
cannot be correctly identified in the design.

Check the input STIL file
and the TestMAX ATPG
parameters for errors.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 11 Error Message Descriptions (Continued)

Error Message Description What Next

E-045 - Cannot find
integer variable
<string> used in Loop

The variable specified in the Loop
statement is incorrect. The Loop statement
accepts an integer variable declared in the
Variables block or an integer expression.
The support for integer expressions is
limited to simple divisor operations. Integer
expressions must be delimited by quotes.
For example, use the following:
Loop 'cnt/4'
Where cnt is the name of the variable. If
the variable name is surrounded by double
quotes, it must be correctly represented in
the expression.

Fix the STIL protocol so it
uses the correct syntax.

E-046 - Invalid
number of
connections in the
ShiftPowerControllerS
tructures block for
the scan chain

STIL analysis shows that the
ShiftPowerControllerStructures block
defines a number of connections bigger
than the number of cells in the scan chain.

Please fix the
ShiftPowerControllerStruct
ures block definition in the
STIL file.

E-047 - Internal
computation failure
due invalid order of
ScanChainGroups in
the STIL file

STIL analysis shows that the
ScanChainGroups are not described in the
order of the Compressors

Please fix the order in the
STIL file.

E-048 - Internal
computation failure
due invalid number of
scan inputs/outputs
of SeqCompressor

STIL analysis shows that the
ScanChainGroup is incorrectly described
(or missing)

Please fix the order in the
STIL file.

E-049 - I(ATE
Protocol Error)
Detected STIL value
(%s) different
from requested UI
value(%s)

Enabling protocol-based TB using two
conflicting setting values (STIL annotation
and UI -ate_prot option))

Please, review requested
protocol and either align
both values or set only one
single value.

E-050 - Internal
computation failure
due to invalid
patterns length in
the STIL File

STIL analysis shows that the length of
patterns in pattern block are different.

Please fix the STIL file
to have equal length of
patterns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 11 Error Message Descriptions (Continued)

Error Message Description What Next

E-051 - PiP for
Normal Scan mode not
supported without
CellType information

STIL analysis shows that the celltype
information is missing for the current
configuration, which is required for Parallel
simulation.

Please Use "-cellnames
type" in write_patterns
to generate STIL with
required information.

E-052 - Scanned
input(s) are
missing from
LoadPipelineElements
structure

STIL analysis shows that description
of scan input from the signal groups is
missing in the LoadPipelineElements
structure.

Please Use " -usf2 "
in write_patterns
to generate STIL with
required information.

E-053 -
min_ate_clock_cycle
missing from STIL
history block

STIL analysis shows that the
min_ate_clock_cycle required for
XLBIST pattern parallel simulation is not
present in the STIL history block.

Check the input STIL file.

E-054 - Generic
testbench not
supported for
Sequential DFT
Type or serial only
simulation mode in
xtb2.

Generic testbench not supported for
Sequential DFT Type or serial only
simulation mode in xtb2.

Please do not use
-generic_testbench in
stil2verilog call

E-999 - The tool has
just encountered an
internal error

Submit a test case
that reproduces the
problem to the Synopsys
Support Center at:
http://solvnet.synopsys.co
m/EnterACall.

Warning Message Descriptions
The following table lists all MAX Testbench warning messages and their descriptions.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1131

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages

Warning
Message

Description What Next

W-000:
Failed to
initialize
error file
<file_name>,
no STIL
syntax error
messages are
available

This message occurs when the reported
error filename is invalid, does not exists or
the user does not have access rights to it.
This does not affect the tool execution, but
the eventual STIL syntax error messages
will not be displayed.

If this is not the expected behavior,
then check the file path and the
SYNOPSYS environment variable.

W-001:
Multiple
assignments
for signal
<name>
(old value
<value>),
proceeding
with
<value>,
last label
<name>

This message occurs when a signal
is assigned multiple values inside a
statement. The signal can be part of a
SignalGroup or all the assignments can
be SignalGroups. If possible, the tool will
report the location where this happens,
the parent Macro/Procedure name (if
any), if there was needed a WFCMap
specification, and the name of the last
Label observed during processing. This
message is displayed only in verbose
mode.

Check the STIL file if this is not the
expected behavior.

W-002:
Multiple
assignments
for signal
<name> in
signal group
<name>,
proceeding
with
<value>,
last label
<name>

This message occurs when a signal
is assigned multiple values inside a
statement. The signal can be part of a
SignalGroup or all the assignments can
be SignalGroups. If possible, the tool will
report the locationwhere this happens,
the parent Macro/Procedure name (if
any), if there was needed a WFCMap
specification, and the name of the last
Label observed during processing. This
message is displayed only in verbose
mode.

Check the STIL file if this is not the
expected behavior.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1132

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-003:
Multiple
assignments
for inout
signal
<name> in
signal group
<name>
without
a WFCMap
specified
(<values>),
last label
<name>

This message occurs when a signal
is assigned multiple values inside a
statement. The signal can be part of a
SignalGroup or all the assignments can
be SignalGroups. If possible, the tool will
report the location where this happens,
the parent Macro/Procedure name (if
any), if there was needed a WFCMap
specification, and the nameof the last
Label observed during processing.

Check the STIL file if this is not the
expected behavior.

W-004:
Insufficient
data for
signal group
<name>,
ignoring
signal
<name>

This message occurs for signal groups
when the length of the data assigned
to it is less then the length of the signal
group itself. In this case the signals for
which there is no data to be assigned
are ignored. This is usually caused by an
incorrect STIL.

Check the STIL file if this is not the
expected behavior.

W-005:
Multiple
assignments
for sig
<name>,
proceeding
with <value>

This message occurs when a signal
is assigned multiple values inside a
statement. The signal can be part of a
SignalGroup or all the assignments can
be SignalGroups. If possible, the tool will
report the locationwhere this happens,
the parent Macro/Procedure name (if
any), if there was needed a WFCMap
specification, and the nameof the last
Label observed during processing. This
message is displayed only in verbose
mode.

Check the STIL file if this is not the
expected behavior.

W-006:
Cannot build
testbench
in parallel
load mode
(no scan
chains
found)

This message occurs when the tool did
not detect any scan chains in the input
STIL file. Without the full description of
the scan chains a parallel load mode
testbench cannot be generated.

Check the STIL file syntax or
regenerate the STIL file using the
latest versions of TestMAX DFT and
TestMAX ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1133

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-007:
SYNOPSYS and
SYNOPSYS_TMA
X
environment
variables
have
different
values,
SYNOPSYS_TMA
X is
considered
in this case

This message occurs then both
SYNOPSYS and SYNOPSYS_TMAX
environment variables are specified
but with different values. In this
case the values specified by the
SYNOPSYS_TMAX environment variable
is considered.

If this is not the desired behavior,
specify the correct environment
variables.

W-008:
Failed to
retrieve
WFC <wfc>
of signal
<name> from
WFT <name>,
processing
its string
value, last
label <name>

This message occurs when a signal is
assigned a WFC that is not described in
the current WFT In this case the tool will
try to interpret the WFC behavior using
its string value instead of the WFT. This
message is displayed only in verbose
mode.

Check the STIL file if this is not the
expected behavior.

W-009:
Failed to
retrieve
WFC <wfc>
for signal
<name>
of group
<name> in
WFT <name>,
processing
its string
value, last
label <name>

This message occurs when a signal inside
a signal group is assigned a WFC that is
not described in the current WFT. In this
case the tool will try to interpret the WFC
behavior using its string value insteadof
the WFT. This message this displayed
only in verbose mode when the concerned
signal is of type Pseudo.

Check the STIL file if this is not the
expected behavior.

W-010:
Cannot build
testbench
in parallel
load mode
(no cells
specified in
<name> scan
chain)

This message occurs when the tool did
not detect any scan cells in the respective
scan chain. Without the full description
of the scan chains a parallel load mode
testbench cannot be generated.

Check the STIL file syntax or
regenerate it using the latest versions
of TestMAX DFT and TestMAX ATPG.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1134

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-011:
Multiple
assignments
for signal
<name> in
Vector stmt,
proceeding
with
<value>,
last label
<name>

This message occurs when a signal
is assigned multiple values inside a
statement. The signal can be part of a
SignalGroup or all the assignments can
be SignalGroups. If possible, the tool will
report the locationwhere this happens, the
parent Macro/Procedure name (if any),
and the name of the last Label observed
during processing.

Check the STIL file if this is not the
expected behavior.

W-012:
Cannot
generate
simulation
script
file (DUT
module name
missing)

This message occurs when the tool was
not able to automatically detect the name
of the DUT module and a simulation script
is requested. In this case the script file will
not be generated.

Specify the DUT module name using
the command line or the configuration
file.

W-013:
NETLIST_FILE
S variable
in the
simulation
script file
is empty
(design
files
missing)

This message occurs as a simulation
script have been requested but no design
files have been specified, neither using
the command line -v_file option nor the
design_files variable in the configuration
file. In this case the script file is not
completed.

Specify the design files by editing the
generated simulation script file.

W-014:
LIB_FILES
variable
in the
simulation
script file
is empty
(library
files
missing)

This message occurs as a simulation
script have been requested but no library
files have been specified, neither using
the command line -v_file option nor the
lib_files variable in the configuration file. In
this case the script file is not completed.

Specify the library files by editing the
generated simulation script file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1135

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-015:
Parallel
option
ignored as
-serial_only
testbench
requested

When a serial_only testbench is
requested then, as expected, all the
parallel options are ignored. The user is
warned to avoid any confusion.

If this is not the expected behavior,
change the testbench generation
mode.

W-017:
Detected
BIST
Structures
are not
supported
and might
generate
errors

The tool detected BIST constructs in the
input STIL file. These constructs are not
supported and might generate errors if
used during execution or simulation.

Generate a STIL file that does not
contain BIST constructs.

W-018:
Specified
time
precision
<value>
too large.
This can
cause errors
during
simulation

The value specified for cfg_time_precision
in the configuration file is too large.

Edit the configuration file and change
the value accordingly.

W-019:
Parallel
nshift
parameter
not
supported
for scan
compression
designs.
Ignored.

In the case of scan compression designs,
the tool can generate a testbench for
parallel load mode simulation with nshift
only when the input STIL file supports the
Unified STIL flow.

Regenerate the STIL file using the
default mode of the
write_patterns
command.

W-020:
<name>
parameter
not yet
supported
(ignored)

Certain parameters enumerated in the
configuration file example are not yet
supported.

A full list of the supported parameters
can be found in the user guide. If
specified, these parameters are
ignored.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1136

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-021: Test
bench module
name already
defined in
command
line.
"cfg_tb_modu
le_name"
variable
in the
configuratio
n file
ignored

The testbench module name can be
specified both in command line and in
the configuration file. If both specified,
then the command line specification
has priority and so the configuration file
specification is ignored.

If this is not the expected behavior,
then remove the command line
specification.

W-022:
Design files
already
defined
in command
line.
"design_file
s" variable
in the
configuratio
n file
ignored

The design file name can be specified
both in command line and in the
configuration file. If both specified, then
the command line specification has
priority and so the configuration file
specification is ignored.

If this is not the expected behavior,
then remove the command line
specification.

W-023:
Library
files
already
defined
in command
line.
"lib_files"
variable
in the
configuratio
n file
ignored

The library file name can be specified both
in command line and in the configuration
file. If both specified, then the command
line specification has priority and so the
configuration file specification is ignored.

If this is not the expected behavior,
then remove the command line
specification.

W-024:
Unknown
<name>
variable
(ignored)

The reported variable name is not part of
the configuration file syntax.

To find the correct syntax of this file
you can generate a configuration file
template using the
-generate_config
option.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1137

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-025:
Configuratio
n file
<file_name>
does not
contain any
variable
setting

The specified input configuration file does
not contain any variable settings.

Check the configuration file content
or path if that is not the expected
behavior.

W-026:
Invalid
load/unload
chains or
groups of
ctlCompresso
r <name>

The ctlCompressor block is not valid
because the load/unload chains or groups
are not correct (i.e.: some scan chains are
specified in the groups but are undefined
or empty). Since the ctlCompressor block
is wrong, it is not possible to run a parallel
simulation from a serial formatted STIL
file.

Check the STIL file and rerun
TestMAX DFT or TestMAX ATPG, if
necessary.

W-030:
Detected
Serial
Only test
patterns,
the
generated
testbench
can only
be run
in serial
simulation
mode

This occurs either when the user
intentionally requested a serial only
testbench or when the provided STIL file
does not contain enough information to
allow a parallel load mode simulation also.

Check the STIL file, TestMAX ATPG
script and the options of the
write_patterns
command and the DFT script used
with DFT compiler, and make sure that
this is the desired behavior.

W-031:
Detected
Parallel
Only test
patterns,
the
generated
testbench
can only
be run in
parallel
simulation
mode

This message occurs when the provided
STIL file contains pure parallel patterns,
specially formatted for a parallel
simulation. These patterns can't be
simulated serially.

Check the STIL file, TestMAX ATPG
script and the options of the
write_patterns
command and the DFT script used
with DFT compiler and make sure that
this is the desired behavior.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1138

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-032:
Parallel
nshift
parameter
too small
(minimum
<value>
serial shift
required)

This message occurs when the user
specifies a parallel nshift parameter too
small. A wrong nshift parameter value
might cause the simulation to fail.

Change the parallel nshift parameter
using the
-parallel
command line option of MAX
TestBench or the -parallel option of
the
write_patterns
command of TestMAX ATPG.

W-033:
Unified STIL
Flow for
Serializer
is not yet
supported.
Mode
forced to
serial only
simulation

The current version of MAX Testbench
does not support Unified STIL Flow mode
for Serializer architecture.

Contact Synopsys support for the next
available release supporting Unified
STIL Flow mode for Serializer.

W-034:
Unified STIL
Flow for
multiple
shifts
load/unload
protocol
not yet
supported.
Mode
forced to
serial only
simulation

The current version of MAX Testbench
does not support Unified STIL Flow mode
for multiple shifts load/unload protocol.

Contact Synopsys support for the next
available release supporting Unified
STIL Flow mode for multiple shifts
load/unload protocol.

W-035:
Parallel
load mode
simulation
of multi
bit cells
not yet
supported.
Mode
forced to
serial only
simulation

The current version of MAX Testbench
does not support parallel load mode
simulation of multi bit cells.

Contact Synopsys supportfor the next
available release supporting parallel
load mode simulation of multibit cells.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-036: Scan
cell with
multiple
input ports
not yet
supported:
parallel
load mode
simulation
might fail

The current version of MAX Testbench
does not support scan cell with multiple
input ports. Since the tool cannot force
all the specified input ports, parallel load
mode simulation might fail.

Contact Synopsys support for the next
available release supporting parallel
load mode simulation of multiple
inputs.

W-037:
Unified STIL
Flow for
Sequential
Compression
is not yet
supported.
Mode
forced to
serial only
simulation

The current version of MAX Testbench
does not support the Unified STIL Flow
mode for Sequential Compression
architecture.

Contact Synopsys support for the
next available release supporting
Unified STIL Flow mode for Sequential
Compression.

W-038:
Testbench
data file
requiring
very large
memory,
automaticall
y
using/updati
ng
-split_out
to <value>

MAX Testbench has detected that
the testbench data file size required
a memory buffer larger than the one
supported currently by Verilog 1995 (the
default testbench output). To avoid a
Verilog simulation failure, the pattern data
has been written out in multiple .dat files;
each file will contain a maximum number
of patterns specified by the
-split_out
value. A mapping with all the created
partitions is reported at the end of MAX
Testbench execution. Use this map
to simulate the desired partition. For
example,
simv +tmax_part=0

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1140

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-039:
Delayed
release time
(cfg_paralle
l_release_ti
me) set in
configuratio
n file <>
ignored
(valid only
for DSF
parallel
STILs).

The configuration option
cfg_parallel_release_time is not supported
for a USF STIL, nor for a serial-only STIL
file

No action required. This message is
a notification that the set value is not
recognized by MAX Testbench.

W-040:
Unified STIL
Flow for
Scalable
Adaptive
Scan is
not yet
supported.
Mode
forced to
serial only
simulation.

The current version of MAX Testbench
does not support the Unified STIL
Flow mode for Scalable Adaptive Scan
architecture.

Contact Synopsys support for the
next available release supporting the
Unified STIL Flow mode for Scalable
Adaptive Scan.

W-041:
Disabling
the Enhanced
Debug Mode
for Unified
STIL Flow
(EDUSF).

Due to consistency checks, EDUSF
mode cannot be activated. The generated
testbench will not be able to pinpoint the
exact failing scan cell in parallel simulation
mode.

W-042:
Pattern-base
d failure
data format
in serial
load mode
simulation
is not
compliant
with the
TestMAX ATPG
diagnosis
tool.

The pattern-based failure data format of
DFTMAX Ultra Chain Test in serial load
mode simulation is not compliant with the
TestMAX ATPG diagnosis tool.

Use a cycle-based failure data format
in serial load mode simulation for
DFTMAX Ultra Chain Test in serial
load mode simulation. Contact
Synopsys support for the next
available release with the full support
of pattern-based failure data format.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1141

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-043:
Testbench
data file
requiring
very large
memory,
simulation
might fail.
Please
regenerate
using
-split_out
with a max
value of
<XXX >.

According to MAX Testbench (pessimistic)
estimation, the size of at least one of the
resulting .dat files may exceed disk space.
If this is intentional, you can ignore the
warning and proceed with the simulation.
Otherwise, use a value smaller or equal to
the value computed by MAX Testbench.

Automatic split-out is enabled when
the
-split_out
option is not set. So either remove
this option and let MAX Testbench
automatically compute and set the
required split out value, or follow
the warning recommendation and
set a value smaller or equal to the
one specified. If you know you have
enough space and the logic simulator
runs correctly, you can proceed with
the simulation. For further details, see
the description of the W-038 message.

W-044:
Detected
invalid
multibit
scan cell,
simulation
cannot be
performed
in parallel
mode.

MAX Testbench detected multibit scan
cells that were incorrectly described. In
this case, a parallel mode simulation is
not possible since the respective scan cell
can't be correctly identified in the design.

Check the input STIL file and the
TestMAX ATPG parameters for errors.

W-045:
Unified
STIL Flow
disabled due
to errors
detected
in the DFT
structure
processing.
Mode
forced to
serial only
simulation.

MAX Testbench detected unexpected
errors while processing the DFT structure.
As a result, the parallel simulation mode
of the unified STIL flow is disabled.

Check other errors and warnings
reported during the MAX Testbench
execution.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1142

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-046:
Unified STIL
Flow for
Sequential
Plus is only
supported
for
multi-core
architecture
s. Mode
forced to
serial only
simulation.

MAX Testbench detected only one
core during the processing of the DFT
structure. In this case, the parallel
simulation mode of the unified STIL flow is
disabled.

Check other errors and warnings
reported during the MAX Testbench
execution.

W-047:
Specified
cfg_reverse_
bus_order
cannot be
found in
the design,
ignored .

MAX Testbench detected that the
identified port name is incorrect.

Make sure you set the correct port
name in the STIL file.

W-048:
Failing scan
cell name
display
feature
may have an
impact on
simulator
performance
.

The failing scan cell name display
functionality increases the Verilog
testbench size and the memory usage. On
large designs, this feature can impact the
simulator performance.

Disable the failing scan cell name
display functionality and use the
-failing_cell_report option to
post-process the simulator log file.
Example:
stil2verilog pats.stil
-failing_cell_report simv.log

W-049:
Specified
Inverted
Output port
cannot be
found in
the design
or it's not
a scanout
port,
ignored.

MAX Testbench is unable to localize the
specified port in the DUT port list or it is
not a scanout port, which is currently the
only port type supported.

Make sure you set the correct scanout
port name in the STIL file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-050:
Parallel
release time
(%0f) is
bigger than
strobe time
or clock
edge time;
parallel
simulation
may fail.

The release time value specified by
cfg_parallel_release_time
command is not compatible with the
strobe time or clock edge time.

If parallel simulation fails, check the
release time value.

W-051:
ctlCompresso
r <name>
has <value>
unconnected
modes:
ignored.

The ctlCompressor block has some
unconnected modes and MAX Testbench
ignores them.

If this is not the expected behavior, fix
the unconnected modes in the STIL
file.

W-052:
Compressors
are using
only <value>
out of
<value>
connections
of
UnloadSerial
izer <name>.

Some of the UnloadSerializer connections
are unused.

Check the input STIL file to determine
if this is the intended behavior.

W-053:
Invalid
signal
<name>.

MAX Testbench detects an invalid signal
name because of an escape character
and attempts to fix the issue.

If the simulator fails during Verilog
testbench compilation, check the
specified signal name in the STIL file.

W-054:
Serial
simulation
not
supported
for this DFT
architecture
. Forcing
Parallel
only
simulation.

The tool detected a DFT architecture
where USF STIL file can be used only for
Parallel simulation.

Serial simulation is not supported for
this USF STIL file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1144

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-055:
Detected
an invalid
InternalShif
tStart
value in the
SerializerSt
ructures
block,
automaticall
y computing
a new value.

The tool detected a DFT Serializer type
configuration where the InternalShiftStart
statement present in the STIL seems
invalid.

The tool will automatically compute
internally a new value but if the
Parallel simulation fails please review
the original InternalShiftStart value.

W-056:
Requesting
Unified
STIL Flow
2 (USF2)
algorithm
for
unsupported
scan
compression
architecture
. Switching
to
traditional
USF mode

Unified STIL Flow 2 (USF2) cannot be
applied for the selected scan compression
architecture. Therefore only traditional
USF can be applied for now.

Please contact Synopsys to be
informed if and when the selected
scan compression architecture will be
supported.

W-057:
Missing
required
information
(internal
nodes) for
Unified
STIL Flow
2 (USF2).
Switching to
traditional
USF mode

Unified STIL Flow 2 (USF2) requires
certain mandatory information that are
missed. Therefore only traditional USF
can be applied for now.

This could be a bug or because an
incompatible STIL file was used.
Please contact Synopsys for support.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1145

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-058:
Invalid
number
of scan
inputs/outpu
ts of
SeqCompresso
r, ignoring

STIL analysis shows that the
ScanChainGroup is incorrectly described
(or missing)

Please fix the order in the STIL file.

W-059:
Disabling
the Enhanced
Debug Mode
for Combined
Pattern
Validation
(EDCPV)

Due to some consistency checks, EDCPV
mode cannot be activated, the generated
testbench will not be able to pinpoint the
exact failing scan cell in parallel simulation
mode.

Please refer to the User's Guide (or
contact Synopsys) to understand the
requirements for EDCPV mode.

W-060:
Scanout
is being
observed
in capture
mode, may
result in
parallel
simulation
failure

STIL analysis shows that scanout are
being observed in the capture mode. It
can result in parallel simulation failure

Please fix the issue in STIL file

W-061:
No v2
license
found for
this site.
Turning
off PI/PO
Optimization
.

To Use PI/PO optimization feature, you
need to MaxTB v2 or need to provide
Test-CA license with MaxTB.

Please use MaxTB v2 or get Test-CA
license

W-062:
No v2
license
found for
this site.
Turning off
PSD v3.0
Processing.

To Use PSD v3.0 feature, you need to
provide Test-CA license with MaxTB. If
you want to switch to legacy PSD, Please
use -legacy in run_sim command while
generating PSD data from TetraMAX
ATPG

Please get Test-CA license or use
-legacy in run_sim command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-063:
No PSD file
available
for the
cores

There are no PSD files found for the
mentioned cores. Hence the Enhanced
Debug mode won't be available for these
cores during the simulation.

Please Update the STIL file to point to
PSD files.

W-064:
MISR might
not be
correctly
filled
in the
misr_load
proc for
parallel
simulation

W-065:
Mismatch in
the number
of chains in
misr_group
and number
of inputs to
misr_load proc

W-066:
Partition
Group
selects no
chains

The specified group doesn't have any
chains specified in the SelectedChains
block.

Please make sure this is expected.

W-067:
ActiveScanCh
ains not
found in
definition

It seems that the ActiveScanChains is not
correctly described in the definition of the
procedure.

Please make sure this is expected.

W-068:
Ignoring
-first
option

-first option not supported with
-generic_testbench option.

Generate testbench using
-generic_testbench option and
then generate only .dat file with
-patterns_only and -first

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1147

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 12 MAX Testbench Warning Messages (Continued)

Warning
Message

Description What Next

W-069:
Parallel
Simulation
strobe
cannot be
provided for
Scancell

In parallel Simulation this Scancell
cannot be strobed due to presence
of SNPS_PIPELINE keywords in the
ScanChain. The value will be masked.

Generate STIL file with Cell type
information enabled.

Informational Message Descriptions
Table 3 lists all MAX Testbench informational messages and their descriptions.

Table 13 Informational Message Descriptions

Info Message Description What Next

I-001 - nshift
parameter is
greater or equal
than the maximum
scan chain length
(%d in the current
design)

This message indicates that the value specified for the nshift
parameter is greater or equal than the maximum scan chain
length. In this situation, as expected, the simulation becomes
a serial one.

This is an
expected
behavior.

I-002- Time unit
sets to <value>

This is a message to inform the user that he is about to
overwrite the automatic setting for this parameter with a
specified value using the cfg_time_unit parameter from the
configuration file.

This is an
expected
behavior

I-003- Time
precision sets to
<value>

This is a message to inform the user that he is about to
overwrite the automatic setting for this parameter with a
specified value using the cfg_time_precision parameter from
the configuration file.

This is an
expected
behavior

I-004- Multiple
assignments for
signal <name>
in signal group
<name>, using
WFCMap and
proceeding with
<value>, last label
<name>

This message occurs when a signal is assigned multiple
values inside a statement. The signal can be part of a
SignalGroup or all the assignments can be SignalGroups. If
possible, the tool will report the location where this happens,
the parent Macro/Procedure name (if any), the WFCMap
resulting value, and the name of the last Label observed
during processing. This message is displayed only in verbose
mode.

This is an
expected
behavior

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1148

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
MAX Testbench Error Messages and Warnings

Feedback

Table 13 Informational Message Descriptions (Continued)

Info Message Description What Next

I-005- Event
ForceOff (Z)
interpreted as
CompareUnknown (X)
in the event waves
of cluster "X" of
Signal "%s" in WFT
"%s"

This message describes how the tool interprets certain
'unusual' constructs found in the waveform table. These
constructs are usually encountered when processing older
versions of STIL.

This is an
expected
behavior

I-006- Multiple
assignments for
sig <name>,
using WFCmap and
proceeding with
<value>

This message occurs when a signal is assigned multiple
values inside a statement. The signal can be part of a
SignalGroup or all the assignments can be SignalGroups. If
possible, the tool will report the location where this happens,
the parent Macro/Procedure name (if any), the WFCMap
resulting value, and the name of the last Label observed
during processing. This message is displayed only in verbose
mode.

This is an
expected
behavior

I-007- Event
ForceOff (Z)
interpreted as
CompareUnknown
(X) in the event
waves of WFT "%s"
containing both
compare and force
types

This message informs the user about how the tool interprets
certain 'unusual' constructs found in the waveform table.
Usually encountered when processing older versions of STIL.

This is an
expected
behavior

I-008- Requesting
<name> EVCD
file generation
(use "tmax_vcde"
simulator compiler
definition to
enable file
generation)

User specified a EVCD file in the configuration file. The tool
will update the testbench but the simulation will not generate
the EVCD file by default.

Specify
the
"tmax_vcd
e"
simulator
compiler
definition
to enable
file
generation

I-009- Updated
Serializer Tail
Pipeline internally
to zero due to
shorter Serializer
data length

In the case of DFTMAX Serializer with slow pipelines (core
pipelines), for some configurations TestMAX ATPG does not
consider the Serializer Tail pipeline stages as expected by
MAX Testbench. When this occurs, MAXTestbench attempts
to compensate for this behavior.

This
situation
rarely
occurs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1149

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

Table 13 Informational Message Descriptions (Continued)

Info Message Description What Next

I-011- The
following clocks
will not be
pulsed during the
parallel Shift:
list_of_clocks

Lists the clocks that will not be used during the parallel shift
simulation.

See the
I-011
manpage
for
additional
details.

Troubleshooting MAX Testbench
The following sections describe how to resolve MAX Testbench-generated errors:

• Introduction

• Troubleshooting Compilation Errors

• Troubleshooting Miscompares

• Debugging Simulation Mismatches Using the write_simtrace Command

Introduction
You can run a design against a set of predefined stimulus and check (validate) the design
response against an expected response. This process mimics the behavior of the tester
against a device under test.

Problems might occur with

• incorrect or incomplete STIL data

• incorrect connections of the device to this stimulus in the testbench

• incorrect device response due to structural errors or timing problems inside the design

Ultimately, the goal of using a testbench is to validate that the device response, often with
accurate internal timing, does match the response expected in the STIL data.

There are alternative and additional troubleshooting strategies to what is presented in
this section. The most important aspects when testing are knowledge of the design and
remembering the fundamental characteristics of the test you’re troubleshooting.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1150

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

Troubleshooting Compilation Errors
This section describes some of the typical error messages you encounter during
compilation when using VCS or Ncsim.

These error messages are related to the following parameters or issues:

• FILELENGTH Parameter

• NAMELENGTH Parameter

• Memory Allocation

• MDEPTH Parameter

FILELENGTH Parameter
The following error message appears if you exceed the maximum file length:

XTB Error: cannot open /disk/path.to.a.large.file.name.maxtb_psd.dat PSD
 file. Disabling Enhanced Debug USF mode...

By default, the FILELENGTH parameter in MAX Testbench is set to 1024 characters,
which corresponds to the 1024 character limit imposed by NCSIM. In some cases, you can
set this parameter to a higher limit at the compilation stage either in the testbench file or at
the simulation command line.

You can use the following MAX Testbench parameter to change the maximum file length:

parameter FILELENGTH = 1024; // max length for file names

If you are using a set of long paths, you can set the Verilog FILELENGTH parameter in the
testbench, using the following syntax:

-pvalue+tb_name. FILELENGTH=your_value

You also might encounter the following error:

Warning-[STASKW_CO] Cannot open file
/disk/some.path.name.to.a.very.large.file.name.maxtb.Verilog.gz, 8535
The file
 /disk/some.path.name.to.a.very.large.file.name.maxtb.maxtb_psd.dat'
could not be opened. No such file or directory.
Ensure that the file exists with proper permissions.
XTB Error: cannot
 open /disk/some.path.name.to.a.very.large.file.name.maxtb_psd.dat PSD
 file. Disabling Enhanced Debug USF mode...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1151

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

For exceptionally long paths, you can override the Verilog parameter in the testbench
and specify an extended file length at the simulation recompile command line using the
following syntax:

vcs -pvalue+tb_name. FILELENGTH=your_value

NAMELENGTH Parameter
For parallel strobe data (PSD) files, the default filename length is 800 characters. If you
exceed this length, the following message appears:

Warning-[STASKW_CO] Cannot open file
./LongName.p.maxtb.v, 1278
The file 'ReallyLongName.p.maxtb_psd.dat' could not be opened. No such
 file or directory.
Ensure that the file exists with proper permissions.
XTB Error: cannot open ReallyLongName.p.maxtb_psd.dat PSD file. Disabling
 Enhanced Debug USF mode...

To correct this error, you can set the NAMELENGTH parameter in the testbench or at the
simulation recompile line using the following syntax:

vcs -pvalue+tb_name.NAMELENGTH=800

Memory Allocation
The following error message identifies a memory allocation error:

XTB Error: size of test data file filename .dat exceeding testbench memory
allocation. Exiting...
(recompile using -pvalue+design1_test.tb_part.MDEPTH=<###>).

In this case, you need to recompile the testbench using the following Verilog parameter to
adjust the memory allocation:

-pvalue+design1_test.tb_part.MDEPTH=depth)

For more information, see MAX Testbench Runtime Programmability.

MDEPTH Parameter
The following warning message appears during compilation:

Warning-[STASKW_RMIEAFL] Illegal entry
maxtb.v, 934
Illegal entry found at file /temp/patterns/maxtb.dat line 422
while executing $readmem.
Please ensure that the file has proper entries.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1152

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

This happens if you change the value of the default MDEPTH using the -pvalue
+top_test.MDEPTH option and the specified value is too small for the size of the .dat file
used with the testbench.

If this warning is ignored, this leads to an error in the testbench simulation later. This
warning should always be changed to error so that it the MDEPTH is fixed. This can be
done using the -error=STASKW_RMIEAFL simulation runtime option.

Troubleshooting Miscompares
The following sections describe the process of debugging failures (miscompares) detected
when simulating a design using MAX Testbench and a set of generated STIL pattern data:

• Handling Miscompare Messages

• Understanding MAX Testbench Parallel Miscompares

• Localizing a Failure Location

• Adding More Fingerprints

These sections also present some techniques for using MAX Testbench to assist in the
analysis of simulation mismatch messages when they occur during a simulation run.
These techniques start with the direct approach:

• Understanding the simulation mismatch message completely

• Proceeding to some advanced options to assist in debugging the overall simulation
behavior

• Miscompares are most commonly the misapplication of STIL data and caused by either
incorrect design constructs for this data

• STIL constructs for the design or the context of the application

Handling Miscompare Messages
Test data is sampled at distinct points in the test pattern, which are called test strobes.
Test strobes indicate whether the device is operating properly or not in response to the
stimulus provided by the test data.

In general, miscompares happen only on outputs (or bidirectional signals in the
output mode). This limits the visibility into both the device operation and the test data
expectations, which can make analyzing these failures more complicated. Furthermore,
these output measurements are placed to occur at locations of a stable device response
to assure repeatable test operation. And finally, output strobe miscompares often identify
an internal failure that might have happened some time in the past. All of these issues
complicate the analysis process.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1153

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

In the following figure, the limited visibility into the design behavior is shown by output
strobe data on signal “out” that indicates this signal remains high between two test
Vectors, although the actual device operation has a period of a low state between these
two measurements. This is not incorrect, in fact it is probably expected design operation.

Figure 165 Measurement Points on “OUT”

   

This section details the four forms of miscompare messages generated by Verilog DPV
and the information that each message contains.

Miscompare Message 1
STILDPV: Signal SOT expected to be 1 was X
At time 1240000, V# 5
With WaveformTable "_default_WFT_"
At Label: "pulse"
Current Call Stack: "capture_CLK"

This miscompare message is generated from a STIL Vector when an output response
does not match the expected data present in the test data. The message contains a
fingerprint of information to consider when analyzing this failure. It reports the nature of the
error and where it happened, but does not indicate why.

• The expected state in the STIL test data, and the actual state seen in the simulation
during this test strobe.

• Both the simulation time index and the STIL vector number, to cross-reference this
failure in simulation time with the test data.

• The current WaveformTable name active in this vector, to help correlate this failure with
the STIL data and identify what timing was active at this failure.

• The last STIL vector label seen during execution of the STIL test data. Again, this helps
to correlate the failure with the STIL data. Be aware that the label might be the last one

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1154

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

seen if there is no label on this vector (the message reports “Last Label Seen:” if the
label is not on this vector itself).

• The procedure and macro call stack, if this failure happens from inside a procedure or
macro call (or series of calls).

Both the labels and the call stack information might be lists of multiple entries. Verilog DPV
separates multiple entries with a backslash (\) character.

Miscompare Message 2
STILDPV: Signal SOT expected to be 1 was X
At time 9640000, V# 97
With WaveformTable "_default_WFT_"
Last Previous Label (6 cycles prior): pulse"
Current Call Stack: load_unload”
TestMAX ATPG pattern 7, Index 5 of chain c1 (scancell A1)
If the failure occurs during an identified unload of scan data during the simulation with
the simulation executing serial scan simulation, then the failure message will contain an
additional line of information that identifies:

• The failing pattern number from the TestMAX ATPG information.

• The index into the Shift operation that reported the failure.

• The name of the failing scan chain.

• The name of the scan cell that aligns with this index.

The index specified in this message is relative to the scan cell order identified in the
ScanStructures section of the STIL data; index 1 = the first scan cell in the ScanStructures
section and so on.

Miscompare Message 3
STILDPV: Parallel Mode Scancell A1 expected to be 1 was X
At time 9040100, V# 91
With WaveformTable "_default_WFT_"
TestMAX ATPG pattern 7, Index 5 of chain c1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1155

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

If the failure occurs during an identified unload of scan data during the simulation with
the simulation executing parallel scan simulation, then the failure message is formatted
differently. It identifies:

• The failing scan cell, and the expected and actual states of that cell.

• The time that this failure was detected (beware: in parallel mode this is the time that
the parallel-measure operation was performed. This is inside the Shift operation being
performed, but it might not correlate with a strobe time inside a Vector, because the
scan data must be sampled before input events occur).

• The WaveformTable active for this Shift.

• The failing pattern number from the TestMAX ATPG information.

• The index into the Shift operation that reported the failure.

• The name of the failing scan chain.

Like miscompare message 2, the index specified in this message is relative the scan cell
order identified in the ScanStructures section of the STIL data; index 1 = the first scan
cell in the ScanStructures section and so on.

Miscompare Message 4
STILDPV: Signal SOT changed to 1 in a windowed strobe at time 940000
Output strobes can be defined to be instantaneous samples in time, or “window strobes”
that validate an output remains at the specified state for a region of time.

When window strobes are used, an additional error might be generated if an output
transitions inside the region of that strobe. This error message identifies the signal, the
state it transitioned to, and the simulation time that this occurred.

For an example of the scenario that generates this message, see Figure 5.

Understanding MAX Testbench Parallel Miscompares
The following example shows the VCS script used for parallel simulation for MAX
Testbench:

vcs -full64 -R \
 -l parallel_stil.log \
 +delay_mode_zero +tetramax

 par.v \
 -v ../lib/class.v \
 ../1_dftc/result/lt_timer_flat.v \

 +define+tmax_rpt=1 \
 +define+tmax_msg=10

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1156

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/dow_retrieve/D-2010.06/tpvug/tpvug_2.html#CDEGAFGE

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

Localizing a Failure Location
When a failure occurs, your first debugging step is to localize the failure in the STIL data
file.

The following sections describe how to localize a failure by interpreting the fingerprint
information:

• Resolving the First Failure

• Miscompare Fingerprints

• Additional Troubleshooting Help

When the failure is localized, you need to determine if it's reasonable to test this output
signal at this location.

With STIL constructs, an output remains in the last specified operation (the last
WaveformCharacter asserted) until that operation (WaveformCharacter) is changed on
that signal.

In the example that follows, a signal called “tdo” is being tested in a Vector after a Shift
operation. But in the two Vectors, “tdo” is not included, because it is expected that this
signal should remain in the last tested state, or should this signal have been set to an
untested value (generally an “X” WaveformCharacter for TestMAX ATPG tests). Notice that
the “tck=P” signal is repeated in the last two vectors, because it does not remain in the last
tested state.

load_unload {
W _default_WFT_;
...
Shift { V { tdi=#; tdo=#; tck=P; }}
V { tdi=#; tdo=#; tck=P; tms=1; }
V { tck=P; tms=1; }
V { tck=P; tms=0; }
}
Resolving the First Failure
Subsequent failures can be caused by cascading effects; the very first error is the best
error to start examining. Because basic scan patterns, starting with a scan load and
ending with a scan unload, are self-contained units, failures in one scan pattern do not
typically propagate—unless the failure is indicative of a design or timing fault that persists
throughout the patterns (or the patterns have sequential behavior).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1157

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

Don’t take “first” literally as the first printed mismatch, all mismatches that happen at
the same time step (or even at different times, but in the same STIL vector), are all a
consequence of a problem that was functionally detected at this point. Any error generated
in the first failing vector is a good starting point.

Miscompare Fingerprints
The following sections explain how to interpret the information contained in the
miscompare messages and how to troubleshoot various situations:

• Expected versus Actual States

• Current Waveform Table

• Labels and Calling Stack

Expected versus Actual States
The first piece of data to analyze is the expected state (specified in the test data), and the
actual state present from the simulation run.

Are all the actual states an “X” value? This can indicate initialization issues, or the loss
of the internal design state during operation caused by glitches or transient events. If an
“X” is found in the simulation, start tracing it backward in both the design and in simulation
time—where did that X come from?

Are the mismatches hard errors? For example is a “1” expected, but it is actually a “0”?
This could be caused by one of the following:

• Timing problems in the design

• Strobe positioning

• Extra or missing clocks

• Glitches, or transients

Current Waveform Table
The next piece of data in the mismatch message to analyze is the WaveformTable
reference.

What are the event times specified for this strobe? What are the event times on the
other inputs? Are the event relationships proper—was the test developed with the strobe
events after (or before) the input events and is that timing relationship maintained in this
WaveformTable?

Is there enough time between the input events and the output strobes? Does the design
have time to settle before the strobe measurement?

TestMAX ATPG has distinct event ordering requirements, and the timing specified in the
WaveformTable needs to be compatible with the test generation. In particular, the strobe

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1158

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

times must be placed before the clock pulse (pre-clock measure) or after the clock pulse
(post-clock measure).

The name of the WaveformTable can sometimes help locate the failure as well. In
particular for path delay environments, the name of the WaveformTable can identify the
launch, capture, or combined events and isolate the failing Vector that uses that named
WaveformTable.

Labels and Calling Stack
The final piece of information to analyze in the mismatch message is the referenced label
and the current call stack at the failing location. This can often isolate the location of a
mismatch by the presence of the label or the name of the procedure currently active when
this mismatch occurred.

What activity is happening here? Is it a capture or scan operation? Is an output strobe
expected here?

Additional Troubleshooting Help
Sometimes the information contained in the mismatch message is not sufficient to localize
the failure in the STIL data. When this happens, the first thing to do is to activate the
tracing options to get more information about what was being simulated when the failure
occurred. The next section describes how to activate the MAX Testbench trace options.

Sometimes tracing might not get clearly to the failing location either. The last recourse is to
edit the STIL data itself and add more information.

Adding More Fingerprints
If you cannot identify the location of a failure, you might need to edit the STIL data and
add additional information. The most helpful construct to add is the Label statements to
a Vector that did not have distinct labels (see following example). Because the previous
label is always printed in the miscompare message, adding labels directly can eliminate
ambiguity in identifying that failing location.

load_unload {
W _default_WFT_;
...
Shift { V { tdi=#; tdo=#; tck=P; }}
V { tdi=#; tdo=#; tck=P; tms=1; }
1_u_post_2: V { tck=P; tms=1; }
1_u_post_3: V { tck=P; tms=0; }
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1159

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

Labels might be added in STIL data files generated by TestMAX ATPG or might be added
to the procedure definitions (if the label is added to a procedure) defined in the STL
procedure file data sent to TestMAX ATPG as well, if TestMAX ATPG is used to regenerate
the STIL data test.

Debugging Simulation Mismatches Using the write_simtrace
Command
This section describes the process for using the write_simtrace command to assist in
debugging ATPG pattern miscompares found during a Verilog simulation. You can use this
command in conjunction with simulation miscompare information to create a new Verilog
module to monitor additional nodes. A typical flow using TestMAX ATPG and VCS is also
provided.

The following topics are covered in this section:

• Overview

• Debugging Flow

• Input Requirements

• Using the write_simtrace Command

• Understanding the Simtrace File

• Error Conditions and Messages

• Example Debug Flow

• Restrictions and Limitations

Overview
Analyzing simulation-identified mismatches of expected behavior during the pattern
validation process is a complex task. There are many reasons for a mismatch, including:

• Response differences due to internal design delays

• Differences due to effects of the “actual” timing specified

• Formatting errors in the stimulus

• Fundamental errors in selecting options during ATPG

Each situation might contribute to the causes for a mismatch. The only evidence of a
failure is a statement generated during the simulation run that indicates that the expected
state of an output generated by ATPG differs from the state indicated by the simulation.
Unfortunately, there is minimal feedback to help you identify the cause of the situation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1160

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

To understand the specific cause of the mismatch, you need to compare two sets of
simulation data: the ATPG simulation that produced the expected state and the behavior of
the Verilog simulation that produced a different state.

After you identify the first difference in behavior, there are still several more steps in
the analysis process. You will need to trace back this first difference through the design
elements (and often back through time) to identify the cause of the difference. The process
of tracing back through time involves re-running the simulation data to produce additional
data; as a result, the analysis of this issue is an iterative process,

The key to identifying the discrepancies between the environments is to correlate the
information between the Verilog simulation and the TestMAX ATPG simulation. TestMAX
ATPG includes a graphical schematic viewer (GSV) with simulation annotation capability.
Verilog also has several mechanisms to provide access to internal simulation results that
are common to all Verilog simulators.

The write_simtrace command facilitates the creation of a Verilog module by adding
simulation data to be used for comparison with TestMAX ATPG.

Debugging Flow
The following figure shows a typical flow for debugging simulation miscompares using the
write_simtrace command.

This flow assumes that you are familiar with Verilog simulation. It also assumes that you
are using a common netlist for both the Verilog and TestMAX ATPG environments, and
that you have executed the run_simulation command after ATPG with no failures.

Figure 1 Debugging Simulation Miscompares Using write_simtrace

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1161

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

Note in the preceding figure that a Verilog testbench is written out after the TestMAX ATPG
process, and is simulated. The simulation log file shows miscompares on scan cells or
primary outputs. For each miscompare, you will need to analyze the relevant nodes in
the TestMAX ATPG GSV to find their source. The write_simtrace command is used to
generate a new Verilog module with these additional signals and read it into the simulator.
If you monitor the changes on the nodes in the simulation environment at the time the
miscompares occur, and correlate that data with the same pattern in TestMAX ATPG,
you will eventually see some differences between the two environments that led to the
divergent behavior.

The overall process of analyzing simulation miscompares is iterative. You can use
the same TestMAX ATPG session for ATPG by analyzing with the GSV and running
write_simtrace. On the other hand, the simulation would need to be rerun with the new
module to monitor the specified signals.

If you do not want to keep the TestMAX ATPG session running (due to license or hardware
demands, for example), it is recommended that you write out an image after DRC and
save the patterns in binary format. This will ensure that you can quickly re-create the
TestMAX ATPG state used for debugging.

Input Requirements
To leverage the functionality of this feature, you need to supply a common or compatible
netlist for both TestMAX ATPG and the Verilog simulator.

You also need to provide a MAX Testbench format pattern. Additional testbench
environments produced by Synopsys tools are supported but might require additions
or modifications depending on the naming constructs used to identify the DUT in the
testbench. Usage outside these flows is unsupported.

A TestMAX ATPG scan cell report, as produced by the following command, is useful for
providing the instance path names of the scan cells:

report_scan_cells –all > chains.rpt
To avoid rerunning TestMAX ATPG from scratch, it is recommended that you create an
image of the design after running DRC and then save the resulting ATPG patterns in
binary format. This ensures that the TestMAX ATPG environment can be quickly recovered
for debugging simulation miscompares if the original TestMAX ATPG session cannot be
maintained.

Depending on the context and usage of Verilog, you might need to edit the output simtrace
file to add a timescale statement. In addition, this file can be modified to identify an offset
time to start the monitoring process.

You also need to modify the Verilog scripts or invocation environment to include the debug
file as one of the Verilog source files to incorporate this functionality in the simulation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1162

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

Using the write_simtrace Command
The write_simtrace command generates a file in Verilog syntax that defines a
standalone module that contains debug statements to invoke a set of Verilog operations.
This debugging process references nodes specified by the -scan and -gate options.
Because this is a standalone module, it references these nets as instantiated in the
simulation through the testbench module; there are dependencies on these references
based on the naming convention of the top module in the testbench module.

After running the write_simtrace command, if all nodes specified were found and the file
was written as expected, TestMAX ATPG will print the following message:

End writing file ‘filename’ referencing integer nets, File_size = integer
This statement identifies how many nets were placed in the output file to be monitored.
Note that the file name will not include the path information.

Understanding the Simtrace File
The format of the output simtrace file is shown below:

 // Generated by TestMAX ATPG(TM)
 // from command: < simtrace_command_line >

 `define TBNAME AAA_tmax)testbench_1_16.dut
 // `define TBNAME module_test.dut
 module simtrace_1;
 initial begin
 // #<time_to_start> // uncomment and enter a time to start
 $monitor("%t: <scan_data>; <gate_data>", $time(), <list of net
 references>);
 end
 endmodule // simtrace_1

The name of this module is the name of the file without an extension. The module consists
of a Verilog initial block that contains an annotation (commented-out) that you can
uncomment and edit to identify the time to start this trace operation.

The default trace operation uses the Verilog $monitor statement, which is defined in the
Verilog standard and supported (with equivalent functionality) across all Verilog clones.

Each -scan and -gate option identifies a set of monitored nets in the display. Each of
these sets is configured as identified below. A semicolon is placed between each different
set of nodes in the display to emphasize separate options.

The <scan_data> is explained as follows:

If the scan reference contains a chain name and a cell name, for example, “ c450:23 ”,
then the display will contain this reference name, followed by 3 state bits that represent
the state of the scan element before this reference, the state of this reference, and the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1163

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

state after this reference. The states before and after are enclosed in parentheses. If there
is no element before (this is the first element of the chain) or no element after (this is the
last element of the chain), then the corresponding state will not be present. Following the
3 states, each non-constant input to this cell is listed as well. This allows tracing of scan
enable and scan clock behavior during the simulation. For example, for a cell in the middle
of a chain:

C450:23 (0)1(1), D:0 SI:1 SE:0 CK:0
The <gate_data> is formatted similarly to the <scan_data> with a port name specified.
The name of the signal or net is printed, followed by the resolved state of that net. For
example: Clk1:0 .

If the gate_reference is to a module, then the information printed looks very similar to the
information for scan_data, with one output state of the module, followed by a listing of all
non-constant inputs.

Names may be long and might traverse through the design hierarchy. By default, only the
last twenty characters of the name are printed in the output statement. The -length option
can be specified to make these names uniformly longer or shorter.

You need to read the simtrace file into a Verilog simulation by adding this filename to the
list of Verilog source files on the Verilog command line or during invocation.

Error Conditions and Messages
The output file is notgenerated if there are errors on the write_simtrace command line.
All errors are accompanied by error messages of several forms, which are described as
follows:

• A standard TestMAX ATPG error message is issued for improper command arguments,
missing arguments, or incomplete command lines (no arguments).

• In addition, M650 messages might be generated, with the following forms:

Cannot write to simulation debug file <name>. (M650)

No nodes to monitor in simulation debug file <name>. (M650)
These two messages indicate a failure to access a writable file, or that there were no
nodes to monitor from the command line. Both of these situations mean that an output file
will not be generated.

Example Debug Flow
The following use case is an example of how to use the debug flow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1164

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

After running ATPG and writing out patterns in legacy Verilog format, the simulation of the
patterns results in the following lines in the Verilog simulation log file:

 37945.00 ns; chain7:43 0(0) INs: CP:1 SI:0;
 dd_decrypt.U878.ZN:0,
 INs: A1:1 A2:1 B1:1 B21 C:1;
 37955.00 ns; chain7:43 0(0) INs: CP:0 SI:0;
 dd_decrypt.U878.ZN:0,
 INs: A1:1 A2:1 B1:1 B21 C:1

 // *** ERROR during scan pattern 4 (detected during final pattern
 unload)
 4 chain7 43 (exp=0, got=1) // pin SO_7, scan cell 43, T=
 38040.00 ns
 // 40000.00 ns : Simulation of 5 patterns completed with 1
 errors

From the TestMAX ATPG scan cells report:

chain7 43 MASTER NN 10199 dd_decrypt/kdin_reg_25_ (SEDFD1)
The miscompared gates and patterns are displayed in the TestMAX ATPG GSV, as shown
in the following figure.

Figure 166 Display of Miscompared Gates and Patterns

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1165

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Troubleshooting MAX Testbench

Feedback

To create the debug module in TestMAX ATPG, specify the following write_simtrace
command:

 TEST-T> write_simtrace debug.v -re -l 100 -scan chain 7:43 \
 -gate { dd_decrypt/U878 test_se }
 End writing file 'debug.v' referencing 8 nets, File_size = 788.

After rerunning the simulation with the debug.v module, the following information is now
included in the Verilog simulation log file:

 37945.00 ns; chain7:43 1(0) INs: CP:1 SI:0; dd_decrypt.U878.ZN:1,
 INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:1;

 37955.00 ns; chain7:43 1(0) INs: CP:0 SI:0;
 dd_decrypt.U878.ZN:1,
 INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:1;

 // *** ERROR during scan pattern 4 (detected during final pattern
 unload)

 4 chain7 43 (exp=0, got=1) // pin SO_7, scan cell 43, T=
 38040.00 ns

To correlate the information that appears in the TestMAX ATPG GSV for pattern 4, look at
the values in the simulation log file at the time of the capture operation. To do this, search
backward from the time of the miscompare to identify when the scan enable port was
enabled:

 33255.00 ns; chain7:43 0(0) INs: CP:0 SI:0;
 dd_decrypt.U878.ZN:0,
 INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:1;

 33300.00 ns; chain7:43 0(0) INs: CP:0 SI:0;
 dd_decrypt.U878.ZN:0,
 INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:0;

 33545.00 ns; chain7:43 1(0) INs: CP:1 SI:0;
 dd_decrypt.U878.ZN:1,
 INs: A1:1 A2:1 B1:1 B2:1 C:1 ; test_se:0;

 33555.00 ns; chain7:43 1(0) INs: CP:0 SI:0;
 dd_decrypt.U878.ZN:1,
 INs: A1:1 A2:1 B1:1 B2:1 C:1 ; test_se:0;

 33600.00 ns; chain7:43 1(0) INs: CP:0 SI:0;
 dd_decrypt.U878.ZN:1,
 INs: A1:1 A2:1 B1:1 B2:1 C:1 ; test_se:1;

This example shows that the D input of the scan cell will capture the output of
dd_decrypt.U878 . Notice that there is a difference between the TestMAX ATPG value
and the simulator value for dd_decrypt.U878.C . If you can identify the cause of this
discrepancy, you will eventually find the root cause of the miscompare. By tracing the logic

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1166

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

cone of dd_decrypt.U878.C in the TestMAX ATPG GSV to primary inputs or sequential
elements, the additional objects to be monitored in simulation can be easily extracted and
their values compared against TestMAX ATPG.

Restrictions and Limitations
Note the following usage restrictions and limitations:

• Encrypted netlists for TestMAX ATPG or the Verilog simulator are not supported
because the names provided by this flow will not match in both tools.

• Non-Verilog simulators are not supported.

Debugging Parallel Simulation Failures Using Combined Pattern
Validation

This section describes how to debug parallel simulation failures using the combined
pattern validation (CPV) flow. You can use this flow to precisely debug patterns by
reporting the exact failing scan cell for scan compression architectures.

This debug capability is an enhancement to the existing unified STIL flow (USF) and
includes interoperability between TestMAX ATPG, MAX Testbench, and VCS.

The following sections describe how to debug parallel simulation failures:

• Overview

• Understanding the PSD File

• Creating a PSD File

• Flow Configuration Options

• Displaying the Instance Names of Failing Cells

• Debug Modes for Simulation Miscompare Messages

• Pattern Splitting

• MAX Testbench and Consistency Checking

• Using the PSD File with DFTMAX Ultra Compression

• Limitations for Debugging Simulation Failures Using CPV

See Also

• Writing STIL Patterns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1167

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Overview
The combined pattern validation (CPV) parallel simulation failure debug flow is similar to
the unified STIL flow (USF). However, the CPV parallel simulation flow enables you to
quickly debug failures without using TestMAX ATPG to identify the chains and cell instance
names with issues. It also provides support for debugging parallel simulation failures and
the flexibility to use your own debug tools.

The USF has limited support for debugging parallel simulation failures. The USF debug
report lists the pattern number, scan output pin, and the shift index for each failure, but it
not does not include the particular scan cell that failed.

For diagnosing manufacturing defects, the information provided by the USF is sufficient,
since you usually only need to pinpoint the exact fault site (the location of the faulty gate
or pin). However, for parallel simulation pattern debugging, you usually need to identify the
exact failing scan cell and instance name.

For more information on USF, see Writing STIL Patterns.

The following figure shows the basic CPV parallel simulation failure debug flow.

Figure 167 CPV Parallel Simulation Failure Debug Flow

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1168

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

As shown in the preceding figure, TestMAX ATPG saves the parallel test data to the
parallel strobe data (PSD) file in the working directory. You then write the STIL pattern
files, and MAX Testbench uses the USF file and the PSD file to generate a testbench and
test data file.

MAX Testbench also generates a key test data file that holds only the parallel strobe
data used during the simulation miscompare activity of the simulator. This additional
MAX Testbench output file, the PSD file file (*.dat.psd), is used during the load_unload
procedure as golden (expected) data, which provides comparison data at the scan chain
level and failure information at the scan cell resolution level.

See Also

• Using MAX Testbench

• Setting the Run Mode

Understanding the PSD File
The PSD file is a binary format file that contains additional parallel strobe data required for
debugging parallel simulation failures. You can create a separate PSD file for each pattern
unload. Without compression, this file can be four to ten times larger than the original DSF
parallel STIL file. You can compress the PSD file as needed using the gzip utility.

The data in the PSD file corresponds to the expected strobe (unload scan chain) data. It is
coded using two bits to model states 0, 1 and X, as shown in the following example:

Pattern 1 (fast_sequential)
Time 0: load c1 = 0111
Time 1: force_all_pis = 0000000000 00000ZZZZ
Time 2: pulse clocks ck2 (1)
Time 3: force_all_pis = 0000100100 00000ZZZZ
Time 4: measure_all_pos = 00ZZZZ
Time 5: pulse clocks ck1 (0)
Time 6: unload c1 = 0000

The History section of the USF file contains attributes that link the PSD file and USF
pattern file. This information uses STIL annotation, as shown in the following example:

Ann {* PSDF = last_100 *}
Ann {* PSDS = 1328742765 *}
Ann {* PSDA = #0#0/0 *}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1169

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Note the following:

• PSDF — Identifies the PSD file name and location.

• PSDS — Identifies the unique signature (composed of a date and specific ID number)
of the PSD file corresponding to the USF file.

• PSDA — Identifies the number of partitions when more than one PSD file is used.

TestMAX ATPG does not use the STIL Include statement to establish the USF to PSD file
link. This means the additional parallel strobe data does not need to use the STIL syntax,
which could overload the USF file with large amounts of test information.

The following figure shows examples of the attributes in the USF file and the
corresponding hex data in the PSD file.

Figure 168 USF File and PSD File Example

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1170

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Creating a PSD File
There are two ways to create a PSD file:

• Using the ATPG flow

Specify the -parallel_strobe_data_file option of the set_atpg command and the
run_atpg command. This process is described in Using the run_atpg Command to
Create a PSD File.

Note:
This flow is not supported with threaded ATPG, use the Run Simulation flow
instead.

• Using the Run Simulation flow

Specify the -parallel_strobe_data_file option of the run_simulation command
to create a PSD file and support the backward compatibility of an existing STIL file.
This process is described in Using the run_simulation Command to Create a PSD File.

Note:
This is only supported flow for threaded ATPG.

The following figure shows these options in a flow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1171

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Figure 169 Options for Creating a PSD File

   

Using the run_atpg Command to Create a PSD File
Note:

The following is not supported with threaded ATPG.

To generate a PSD file during the ATPG flow, you need to specify the

-parallel_strobe_data_file option of the set_atpg command and the run_atpg
command.

You can also specify the report_settings atpg command to print the settings in the
PSD file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1172

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

The following example shows how to generate a PSD file using the run_atpg command:

TEST-T> set_atpg -parallel_strobe_data_file psd_file \
 -replace_parallel_strobe_data_file
TEST-T> report_settings atpg
atpg = parallel_strobe_data_file=psd_file,
timing_exceptions_au_analysis=no, num_processes=0;
TEST-T> run_atpg
TEST-T> write_patterns out.stil -format stil
TEST-T> write_testbench -input usf.1040.stil \
 -output usf.1040 -replace -parameter \
 { -first 10 -last 40 -config config.file -verbose \
 -log mxtb.log}
Executing 'stil2Verilog'...
maxtb> Starting from test pattern 10
maxtb> Last test pattern to process 40
maxtb> Total test patterns to process 31
maxtb> Detected a Scan Compression mode.
maxtb> Generating Verilog testbench for both serial and parallel load
 mode...

Note the following:

• When you invoke MAX Testbench, the PSD file specified in the set_atpg command
is automatically used. If you do not want to include the PSD file, specify the following
option during simulation compilation:

tmax_usf_debug_strobe_mode=0
• The write_testbench command in the previous example references a configuration

file called my_config. This file contains the following command:

set cfg_parallel_stil_report_cell_name 1

This command is described in detail in Displaying Instance Names.

Using the run_simulation Command to Create a PSD File
You use the -parallel_strobe_file option of the run_simulation command to create
a PSD file that supports the backward compatibility of an existing STIL file.

The following example shows how to use the run_simulation command to create a PSD
file:

set_atpg -noparallel_strobe_data_file

set_patterns -external usf.stil -delete
Warning: Internal pattern set is now deleted. (M133)
End parsing STIL file usf.stil with 0 errors.
End reading 22 patterns, CPU_time = 23.00 sec, Memory = 0MB

report_patterns -summary

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

 Pattern Summary Report

#internal patterns 0
#external patterns (usf.stil) 22
#fast_sequential patterns 22

run_simulation -parallel_strobe_data_file \
 test_tr_resim.psd -replace
Created parallel strobe data file 'test_tr_resim.psd'
Begin good simulation of 22 external patterns.
Simulation completed: #patterns=22, #fail_pats=0(0), #failing_meas=0(0),
 CPU time=11.00
Total parallel strobe data patterns: 22, external patterns: 22

write_patterns usf_resim.stil -format stil -replace -external
Warning: STIL patterns defaulted to parallel simulation mode. (M474)
Patterns written reference 158 V statements, generating 802 test cycles
End writing file 'usf_resim.stil' with 22 patterns, File_size = 1531782,
 CPU_time = 23.0 sec.

report_patterns -summary
 Pattern Summary Report

#internal patterns 0
#external patterns (usf.stil) 22
#fast_sequential patterns 22

write_testbench -input usf_resim.stil -output usf_resim \
 -replace -parameter { -log mxtb_resim.log -verbose \
 -config my_config }
Note the following:

• For TestMAX ATPG-generated ATPG patterns, you should use the run_simulation
command without any additional options. In this case, TestMAX ATPG automatically
uses the appropriate simulation algorithm based on the type of pattern input. TestMAX
ATPG recognizes patterns produced using Basic Scan or Fast-Sequential mode, but
Full-Sequential mode patterns are not supported in this flow.

• You can also improve the performance of non-threaded ATPG by using the
-num_processes option of the set_simulation command. This option specifies the
use of multiple CPU cores. For example, the set_simulation -num_processes 4
command specifies the use of 4 cores. With threaded ATPG run_simulation will use
number of threads specified by set_simulation -num_threads

• The write_testbench command in the previous example references a configuration
file called my_config. This file contains the following command:

set cfg_parallel_stil_report_cell_name 1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1174

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

This command is described in detail in the next section, Displaying Instance Names.

• When you invoke MAX Testbench, the PSD file specified in the run_simulation
command is automatically used. If you don't want to include the PSD file, specify the
following option during simulation compilation:

tmax_usf_debug_strobe_mode=0

Flow Configuration Options
In the example flow shown in Creating a PSD File, MAX Testbench uses as input a PSD
file created from TestMAX ATPG and a configuration file that specifies the reporting of
instance names. Depending on your debugging needs and simulation resources, you can
use different combinations of this input to MAX Testbench.

For example, if you do not want to reference the instance names in the simulation
miscompare messages, you can exclude this information from the configuration file as
described in Displaying Instance Names. Or, if you do not want to reference the strobe
data provided in the PSD file (see Understanding the PSD File), you can exclude this file.

The following table shows a summary of MAX Testbench mismatch debug support.

Figure 170 MAX Testbench Simulation Mismatch Support

   

The following section shows examples of these reporting options.

Example Simulation Miscompare Messages
You can use different configuration combinations of input to report various simulation
miscompare messages.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1175

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

The following sections show examples of the various miscompare messages:

• Example 1 shows messages that appear when neither a PSD file or a configuration file
is used as input to MAX Testbench.

• Example 2 shows messages that appear when a PSD file is used, but not a
configuration file.

• Example 3 shows messages that appear when you use both a PSD file and a
configuration file as input.

• Verbosity Setting Examples shows messages with the trace reporting verbosity level
set to 0 (the default) using the +tmax_msg runtime option.

Example 1
Example 1 Messages That Appear With No PSD File and No Configuration File

   

Example 2
Example 2 Messages That Appear With a PSD File and No Configuration File

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1176

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

   

Example 3
Example 3 Messages That Appear With a PSD File and a Configuration File

   

Verbosity Setting Examples
You can further control the reporting of simulation miscompare messages by specifying the
+tmax_msg runtime option, or by setting the cfg_message_verbosity_level command
in the MAX Testbench configuration file. For details on the +tmax_msg option, see "Setting
the Verbose Level."

The following examples show how the messages appear when you set the verbosity level
to 0 (the default) using the +tmax_msg runtime option.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Example 4 Using a PSD File and No Configuration File With Verbosity Level 0

###
MAX TB
Test Protocol File generated from original file "pats.usf.stil"
STIL file version: 1.0
NO CONFIGURATION FILE
##
XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so1, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so4, scan cell 2
XTB: searching corresponding parallel strobe failures...
>>> At T=2740.00 ns, V=28, exp=1, got=0, chain 2, scan cell 2
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 4, scan cell 2
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 9, scan cell 2

Example 5 Using a PSD File and Configuration File with Verbosity Level 0

###
MAX TB
Test Protocol File generated from original file "pats.usf.stil"
STIL file version: 1.0
USING THE CONFIGURATION FILE
##
XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so1, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so4, scan cell 2
XTB: searching corresponding parallel strobe failures...
>>> At T=2740.00 ns, V=28, exp=1, got=0, chain 2, scan cell 2, cell
 name mic0.alu0.accu_q_reg[7]
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 4, scan cell 2, cell
 name mic0.ctrl0.s_state_reg[1]
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 9, scan cell 2, cell
 name mic0.pc0.prog_counter_q_reg[5]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1178

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Example 6 Using a Configuration File and No PSD file with Verbosity Level 0:

XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so1, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
 pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so4, scan cell 2
>>> Error during scan pattern 7 (detected from parallel unload of
 pattern 6)

Displaying the Instance Names of Failing Cells
You can set MAX Testbench to report the instance names of failing cells during the
simulation of a parallel-formatted STIL file. To enable this reporting, set the

cfg_parallel_stil_report_cell_name command to 1 in the configuration file (0 is the
default), as shown in the following example:

set cfg_parallel_stil_report_cell_name 1

Important: Memory consumption is affected when you enable the reporting of instance
cells. The best way to turn off parallel simulation failure debug mode without recompiling
the simulation executable is to set the following runtime option:

./simv +tmax_usf_debug_strobe_mode=0

The following example shows how MAX Testbench reports instances of failing cells:

Error during scan pattern 28 (detected during parallel unload
 of pattern 27)
At T=33940.00 ns, V=340, exp=0, got=1, chain 35, scan cell
 1, cell name U_CORE.dd_d.o_tval_reg
At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell
7, cell name U_CORE.dd_d.o_data_reg_3_

At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell
9, cell name U_CORE.dd_d.o_data_reg_1_

The following table shows the configurations supported by MAX Testbench for debugging
parallel mismatches with instance names. The configuration file is used when the

cfg_parallel_stil_report_cell_name 1 option is specified. The PSD file is the
parallel strobe data file used for parallel simulations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Figure 171 Support for Debugging Parallel Mismatch With Instance Names

 

TetraMAX, DFTMAX,
and DFTMAX Ultra MAX Testbench

Command:
write_patterns -parallel

Dual STIL Flow
-nounified_stil_flow

Unified STIL Flow:
-unified_stil_flow

Legacy Supported with
configuration file

DFTMAX Ultra compression
Supported with
configuration file and
PSD file

Serializer compression

Supported with
configuration file

Supported with
configuration file

Supported with
configuration file

Supported with
configuration file and
PSD file  

See Also

• Configuring MAX Testbench

• Debugging Parallel Simulation Failures for Combined Pattern Validation (CPV)

Debug Modes for Simulation Miscompare Messages
You can specify modes for reporting various levels of details of simulation runtime
miscompare messages for scan compression technology. To do this, use the
+tmax_usf_debug_strobe_mode predefined simulation command option. The syntax for
this option is as follows:

+tmax_usf_debug_strobe_mode=<0, 1, 2, 3>
Each mode is described as follows:

0 - Disables parallel simulation failure debug and generates normal error messages
related only to the scan output. This mode is useful for increasing simulation performance
when you only want to quickly determine the pass/fail status of very large designs.

1 - Specifies the default mode, referred to as the "Conditional parallel strobe mode."
This mode generates miscompare simulation messages using parallel strobe data that is
applied only to USF failures.

2 - This mode, referred to as the "Unconditional parallel strobe mode," concurrently
activates the USF and the CPV parallel strobe data for generating miscompare messages
for each pattern.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1180

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

3 - Generates miscompare messages only for internal errors using parallel strobe data
applied to each pattern. The messages generated from this mode do not indicate if a
parallel strobe failure is propagated to the primary scan output (after the compressor).

You can also specify this option as a command in the Runtime field of the testbench (*.v)
file produced by MAX Testbench. However, the simulation command line always overrides
the default specification of the testbench file.

The following table summarizes the errors reported for each mode. An "Error" is actually
a reported mismatch message generated during scan-unload processing."Normal IO
Errors" refer to error messages generated during scan that report errors relative to the
scan output. "Internal Errors" refer to error messages generated during scan that report
the error relative to an internal scan cell.

Table 14 Debug Modes and Reported
Errors

Mode Normal IO Errors Internal Errors

Mode=0 Yes No

Mode=1 Yes Yes

Mode=2 Yes Yes

Mode=3 No Yes

Note that in serial simulation, the Internal error field is not available. Only the normal I/O
errors are recorded, as if you received tester failures at the I/O of the device.

The following examples show how messages for the various modes appear in the log file:

MODE 0 Log File Example

jv_comp_parallel_mode0.log:XTB: Enhanced Debug Mode disabled (user
 request).
jv_comp_parallel_mode0.log:XTB: Simulation of 7 patterns completed with 6
 mismatches (time: 2700.00 ns, cycles: 27)

MODE 1 Log File Example

jv_comp_parallel_mode1.log:XTB: Enabling Enhanced Debug Mode. Using mode
 1 (conditional parallel strobe).
jv_comp_parallel_mode1.log:XTB: Simulation of 7 patterns completed with 6
 mismatches (1672 internal mismatches) (time: 2700.00 ns, cycles: 27)

MODE 2 Log File Example

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1181

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

jv_comp_parallel_mode2.log:XTB: Enabling Enhanced Debug Mode. Using mode
 2 (unconditional parallel strobe).
jv_comp_parallel_mode2.log:XTB: Simulation of 7 patterns completed with 6
 mismatches (10569 internal mismatches) (time: 2700.00 ns, cycles: 27)
--

MODE 3 Log File Example

jv_comp_parallel_mode3.log:XTB: Enabling Enhanced Debug Mode. Using mode
 3 (only parallel strobe).
jv_comp_parallel_mode3.log:XTB: Simulation of 7 patterns completed with
 (10569 internal mismatches) (time: 2700.00 ns, cycles: 27)

Pattern Splitting
MAX Testbench stores key simulation miscompare activity for the parallel strobe data in
a *psd.dat file. This data is used during the load_unload procedure as golden (expected)
data. By default, the *psd.dat file contains a maximum of 1000 patterns. When more than
1000 patterns are used, MAX Testbench automatically splits the contents of the PSD file
and generates a set of corresponding set of *_psd.dat files.

You can manually specify pattern splitting in TestMAX ATPG or MAX Testbench using any
of the following flow options:

• Split the patterns using the write_patterns command in TestMAX ATPG before they
are used by MAX Testbench. This process is described in Splitting Patterns Using
TestMAX ATPG.

• Use the -split_out option of the write_testbench or stil2Verilog commands to
split the patterns in MAX Testbench. This flow is described in Splitting Patterns Using
MAX Testbench.

• Use the run_simulation command flow and the -first and -last options of the
write_testbench or stil2Verilog commands to address only the failing VCS
pattern sets in MAX Testbench. This flow is described in Specifying a Range of Split
Patterns Using MAX Testbench.

Splitting Patterns Using TestMAX ATPG
You can split patterns using the write_patterns command in TestMAX ATPG before
using the patterns in MAX Testbench. For example, you might want TestMAX ATPG to
write out 500 patterns per file. To do this, read each split STIL pattern file into TestMAX
ATPG and then specify the run_simulation -parallel_strobe_data_file command
for each pattern file.

The following figure shows the flow for using the write_patterns command to split
patterns before using MAX Testbench. For examples of this flow, see Examples Using
TestMAX ATPG For Pattern Splitting.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1182

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Figure 172 Debugging Flow Using Split Patterns in Binary Format

   

Examples Using TestMAX ATPG For Pattern Splitting
The following examples show pattern splitting using the write_patterns command in
TestMAX ATPG:

• Set Up Example

• Example Using Pattern File From write_patterns Command

• Example Using Split USF STIL Pattern Files

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1183

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Set Up Example
The following example writes out split binary patterns from the same ATPG run:

run_atpg -auto
write_patterns pats.bin -format binary -replace -split 3

Example Using Pattern File From write_patterns Command
This example uses split binary pattern files from the write_patterns commands in the
previous example, then writes out USF STIL patterns:

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats_0.bin -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.bin.0.psd -replace
write_patterns pat.0.psd.bin.stil -format stil -replace -external
report_patterns -summary

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats_1.bin -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.bin.1.psd -replace
write_patterns pat.1.psd.bin.stil -format stil -replace -external
report_patterns -summary
set_atpg -noparallel_strobe_data_file
set_patterns -ext pats_2.bin -delete
report_patterns -summary

run_sim -parallel_strobe_data_file pat.bin.2.psd -replace
write_patterns pat.2.psd.bin.stil -format stil -replace -external
report_patterns -summary

write_testbench -input pat.0.psd.bin.stil -output \
 pat.0.bin..psd.mxtb -replace -parameters \
 {-log mxtb_bin.0.log -verbose -config my_config}
write_testbench -input pat.1.psd.bin.stil -output pat.1.bin..psd.mxtb \
 -replace -parameters {-log mxtb_bin.1.log -verbose \
 -config my_config}
write_testbench -input pat.2.psd.bin.stil -output \
 pat.2.bin..psd.mxtb -replace -parameters \
 {-log mxtb_bin.2.log -verbose -config my_config}

Example Output Files:

pat.bin.2.psd
pat.bin.1.psd
pat.bin.0.psd
pat.2.psd.bin.stil
pat.1.psd.bin.stil
pat.0.psd.bin.stil
mxtb_bin.2.log
pat.2.bin..psd.mxtb.v

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1184

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

pat.2.bin..psd.mxtb.dat
pat.2.bin..psd.mxtb_psd.dat
mxtb_bin.1.log
pat.1.bin..psd.mxtb.v
pat.1.bin..psd.mxtb.dat
pat.1.bin..psd.mxtb_psd.dat
mxtb_bin.0.log
pat.0.bin..psd.mxtb.v
pat.0.bin..psd.mxtb.dat
pat.0.bin..psd.mxtb_psd.dat

Example Using Split USF STIL Pattern Files
The following example uses split USF STIL pattern files:

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats.usf_0.stil -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.usf.0.psd -replace
write_patterns pat.usf.0.psd.stil -format stil -replace -external
report_patterns -summary
set_atpg -noparallel_strobe_data_file
set_patterns -ext pats.usf_1.stil -delete
report_patterns -summary

run_sim -parallel_strobe_data_file pat.usf.1.psd -replace
write_patterns pat.usf.1.psd.stil -format stil -replace -external
report_patterns -summary

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats.usf_2.stil -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.usf.2.psd -replace
write_patterns pat.usf.2.psd.stil -format stil -replace -external
report_patterns -summary

write_testbench -input pat.usf.0.psd.stil -output \
 pat.usf.0.psd.mxtb -replace -parameters \
 {-log mxtb_usf.0.log -verbose -config my_config}
write_testbench -input pat.usf.1.psd.stil -output \
 pat.usf.1.psd.mxtb -replace -parameters \
 {-log mxtb_usf.1.log -verbose -config my_config}
write_testbench -input pat.usf.2.psd.stil -output \
 pat.usf.2.psd.mxtb -replace -parameters {-log \
 mxtb_usf.2.log -verbose -config my_config}

Example Output Files:

pat.usf.2.psd
pat.usf.1.psd
pat.usf.0.psd
pat.usf.2.psd.stil
pat.usf.1.psd.stil

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1185

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

pat.usf.0.psd.stil
mxtb_usf.2.log
pat.usf.2.psd.mxtb.v
pat.usf.2.psd.mxtb.dat
pat.usf.2.psd.mxtb_psd.dat
mxtb_usf.1.log
pat.usf.1.psd.mxtb.v
pat.usf.1.psd.mxtb.dat
pat.usf.1.psd.mxtb_psd.dat
mxtb_usf.0.log
pat.usf.0.psd.mxtb.v
pat.usf.0.psd.mxtb.dat
pat.usf.0.psd.mxtb_psd.dat

Splitting Patterns Using MAX Testbench
You can manually specify pattern splitting in MAX Testbench using the -split_out option
of the write_testbench or stil2Verilog commands.

The following figure shows the flow for splitting patterns using MAX Testbench.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1186

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Figure 173 Flow for Using MAX Testbench to Split Patterns

   

You can also split patterns in both TestMAX ATPG and MAX Testbench. This flow is
described in Figure 7.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1187

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

Figure 174 Flow For Using Both TestMAX ATPG and MAX Testbench to Split Patterns

   

Specifying a Range of Split Patterns Using MAX Testbench
You can split a specified range of split patterns in MAX Testbench so you can better focus
your debugging efforts. To do this, use the standard run_simulation command flow and
read back only the set of binary or STIL patterns that failed in simulation, then produce the
PSD file (for details, see Using the run_simulation Command to Create a PSD File).

MAX Testbench and Consistency Checking
When you run MAX Testbench, it automatically detects and processes the PSD file, and
issues the following message:

maxtb> Detected STIL file with Enhanced Debug for CPV (EDCPV) Capability
 (PSD file: psdata). Processing...

MAX Testbench performs a series of consistency checks between the contents of the
USF file and PSD file. If any issues are detected, it generates a testbench file without the
parallel strobe data, and issues the following warning message:

Warning: Disabling the Enhanced Debug Mode for Combined Pattern
Validation (EDCPV) corrupted PSD file due to bad file signature
 (1329175245). Make sure the PSD file corresponds to the generated STIL
 file (W-041)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1188

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

The following message is specific to the debugging parallel simulation failures using the
Combined Pattern Validation (CPV) flow:

W-041: Disabling the Enhanced Debug Mode for Unified STIL Flow (EDUSF)

This message is issued when the debug mode for parallel simulation failures cannot be
activated because of consistency checking failures. As a result, the generated testbench
is not be able to pinpoint the exact failing scan cell in parallel simulation mode. MAX
Testbench continues to generate the testbench files without the parallel strobe data file.

See Also

• MAX Testbench Error Warnings and Messages

Using the PSD File with DFTMAX Ultra Compression
If you are running DFTMAX Ultra compression, make sure you use the
-parallel_strobe_data_file option of the run_simulation command to create a PSD
file. It is important that you do not use the set_atpg -parallel_strobe_data_file
command to create a PSD file with DFTMAX Ultra compression. In this case, the
update_streaming_patterns -remove_padding_patterns command invalidates the
PSD file.

Also, you should use only binary files for external patterns.

To create the PSD file with DFTMAX Ultra compression in a single session:

1. Run ATPG in TestMAX ATPG.

run_atpg -auto
For more information on running TestMAX ATPG, see Running the Basic ATPG Design
Flow in the TestMAX ATPG User Guide.

2. Use the update_streaming_patterns command to clean up the padding patterns.

update_streaming_patterns -remove_padding_patterns
3. Write the unified STIL patterns.

write_patterns out.stil -format binary -replace
4. Delete all current internal and external patterns

set_patterns -delete
5. Specify a set of externally generated patterns.

set_patterns -external out.stil

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1189

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

6. Create the PSD file.

run_simulation -parallel_strobe_data_file comp.psd -replace
7. Write the final set of patterns that match the PSD file.

write_patterns pat_u.stil -for stil -repl -unified_stil_flow -ext
8. Run MAX Testbench.

write_testbench -input pat_u.stil -out maxtb -replace -parameters
{-log mxtb.log -verbose -config my.cfg}

Script Example
The following script contains the commands for using the PSD file with DFTMAX Ultra
compression.

run_atpg -auto
update_streaming_patterns -remove_padding_patterns

write_patterns out.stil -format binary -replace

set_patterns -del
set_patterns -ext out.stil
run_simulation -parallel_strobe_data_file comp.psd -replace

write_patterns pat_u.stil -for stil -repl -unified_stil_flow -ext

write_testbench -input pat_u.stil -out maxtb -replace -parameters \
 {-log mxtb.log -verbose -config my.cfg}

Limitations for Debugging Simulation Failures Using CPV
Note the following limitations related to debugging simulation failures using CPV:

• The Full-Sequential mode is not supported.

• The set_patterns and run_simulation commands are not supported for multiple
contiguous runs (see Creating a PSD File). Also, update and masking flows are not
supported, including pattern restore from binary and new pattern write flows, multiple
pattern read back, and single merged pattern write.

• When the set_atpg –parallel_strobe_data command is used with
DFTMAX Ultra compression, the PSD file is invalidated by a subsequent
update_streaming_patterns –remove_padding_patterns command. Only the
run_simulation flow should be used with DFTMAX Ultra compression.

• The -first, -last, -sorted, -reorder, and -type options of the write_patterns
command are not supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1190

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Using MAX Testbench
Debugging Parallel Simulation Failures Using Combined Pattern Validation

Feedback

• The -sorted, -reorder, and -type options of the write_testbench and
stil2Verilog commands are not supported.

• The -last option of the run_simulation command is not supported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1191

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

33
Using Loadable Nonscan Cells in TestMAX ATPG

Nonscan cells are nonscan flip-flops or latches that capture known values during the last
shift cycle. You can configure TestMAX ATPG to recognize any nonscan cells that load the
value of a combinational logic function of multiple scan cells during simulation or ATPG.
Logic and fault simulation can simulate these load values for depths up to the length of the
longest scan chain. ATPG can control these load values with a sequential depth of 1.

The following sections describe how to use loadable nonscan cells in TestMAX ATPG:

• Simulation Support

• ATPG Support

• Multithreading ATPG

• Fault Simulation Support

• Reporting Loadable Nonscan Cells

• Analyzing

• Limitations

Simulation Support
When simulating loadable nonscan cells, TestMAX ATPG supports the basic scan, two-
clock, and fast-sequential simulation engines.

Simulation support for loadable nonscan cells is set by the following set_simulation
switch:

-shift_cycles number

You can set the number value to specify the depth of the loading to be simulated. The
maximum value of the specified number is 10, but also no more than the length of the
longest scan chain (plus 1for compression).The default for number is 0, which will not
enable simulation of loadable nonscan cells.

To ensure that the run_simulation command reports accurate results, set the number for
set_simulation -shift_cycles to the same value you used to generate the patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1192

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 33: Using Loadable Nonscan Cells in TestMAX ATPG
ATPG Support

Feedback

Note that the run_simulation command will fail in subsequent runs if you set the
shift cycles to a lower number than you originally set using the set_simulation
-shift_cycles switch.

In the graphical schematic viewer (GSV), the simulated shift cycles are displayed in the
“Good Sim Results” pindata, and the cycles are enclosed in curly braces; for example:
“{11100}011”.

ATPG Support
Both the basic scan and two-clock ATPG engines support loadable nonscan cells
(the fast-sequential engine is not supported). To enable ATPG support, first set the
set_drc -load_nonscan_cells switch, and then set the shift cycles to 1 or higher using
set_simulation -shift_cycles. (Note that ATPG only supports a depth of 1, although
more cycles are simulated if a greater value is specified.)

Multithreading ATPG
When using multithreading ATPG, if set_simulation shift_cycles is not set, then
run_atpg would set it to 1 by default so that pattern generation will simulate the nonscan
cells correctly. Subsequent run_simulation command uses shift_cycles of 1. If
patterns are then reloaded into a new session then you must use set_simulation
-shift_cycles 1 before doing run_sim to avoid simulation mismatches.

Fault Simulation Support
In order to get correct fault simulation coverage, you must first specify set_simulation
-shift_cycles to the same value you set for pattern generation, or a higher value. You
must also specify the set_drc -load_nonscan_cells command before specifying the
run_drc command.

Reporting Loadable Nonscan Cells
You can use the following options of the report_nonscan_cells command to explicitly
report loadable nonscan cells:

• load — Reports all loadable nonscan cells when the set_drc -load_nonscan_cells
command is specified.

• nonx_load — Reports loadable nonscan cells which always have a non-X value (that
is, 0 or 1) during the random pattern-based analysis performed when the set_drc
-load_nonscan_cells command is specified.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1193

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 33: Using Loadable Nonscan Cells in TestMAX ATPG
Reporting Loadable Nonscan Cells

Feedback

Example 1: Using the load and nonx_load Options

TEST-T> report_nonscan_cells load

type behavior_data gate_id instance_name (type)

-------- ------------- ------- -------------------------------

LE load_unstable 95 n0and (FD1)

LE load_unstable 96 n0or (FD1)

LE load_unstable 97 n0aoi (FD1)

LE load_unstable 98 n0xor (FD1)

LE load_unstable 99 l2andf (FD1)

LE load_unstable 100 l2orf (FD1)

TEST-T> report_nonscan_cells nonx_load

type behavior_data gate_id instance_name (type)

-------- ------------- ------- -------------------------------

LE load_unstable 95 n0and (FD1)

LE load_unstable 96 n0or (FD1)

LE load_unstable 97 n0aoi (FD1)

LE load_unstable 98 n0xor (FD1)

Note that the report from the load option contains all nonscan cells that can be loaded
when the set_drc -load_nonscan_cells command is specified. The report from the
nonx_load option is a subset of those cells that are guaranteed to always have known
values at the end the load operation.

Alternatively, you can use the run_simulation and run_atpg commands to print
comments that refer to the number of nonscan cells that were loaded, as shown in the
following example:

Shift simulation completed: #shifts=3, #nonscancells_loaded=48
The statement "#shifts=3" is the value specified by the set_simulation
-shift_cycles command. The statement "#nonscancells_loaded=48" is the total
number of cells that were loaded in all patterns (that is, the number of cells multiplied by
the number of patterns).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1194

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 33: Using Loadable Nonscan Cells in TestMAX ATPG
Analyzing

Feedback

After you run the run_drc command, a new section is printed in the run_drc log, as
shown in the following example:

 Nonscan rules checking completed, CPU time=0.00 sec.
 --

 Shift_pattern simulation setup completed: #shift_cycles=1,
 #shift_patterns=5
 Shift simulation completed: #shifts=1, #nonscancells_loaded=128
 Shift simulation completed: #shifts=1, #nonscancells_loaded=128
 Shift simulation completed: #shifts=1, #nonscancells_loaded=128
 Nonscan load cell identification completed: #load_nonscan_cells=4
 Begin DRC dependent learning...

The previous identifies four loadable nonscan cells.

Analyzing
After setting the shift cycles to the desired value using the set_simulation
-shift_cycles command, you can analyze the loading of nonscan cells using the
analyze_nonscan_loading command. The syntax for this command is as follows :

analyze_nonscan_loading
[-atleast <percentage <0 | 1 | B>>]
[-atmost <percentage <0 | 1 | B>>]
[-max number]
[-patterns number]

(See the analyze_nonscan_loading command online help topic for complete details on
the syntax items.)

The analyze_nonscan_loading command simulates the specified number of random
patterns and reports the number of nonscan cells that are loadable. By default, 1024
patterns are simulated and all nonscan cells are reported in a histogram of the percentage
of patterns in which a non-X value was loaded.

Note that no instances are reported by default. To report instances, use either the
-atleast or -atmost switches, taking into account the minimum or maximum percentage
of the time that was loaded with the specified value (with B meaning either 0 or 1). To
report the most possible instances, specify “-atleast {1 B}”. For example:

 TEST-T> analyze_nonscan_loading -patterns 100 -atleast {10 0}
 Begin nonscan loading analysis: #patterns=100, #nonscan_cells=7
 Shift_pattern simulation setup completed: #shift_cycles=1,
 #shift_patterns=3
 Shift simulation completed: #shifts=1, #nonscancells_loaded=160
 Shift simulation completed: #shifts=1, #nonscancells_loaded=160
 Shift simulation completed: #shifts=1, #nonscancells_loaded=160
 Shift simulation completed: #shifts=1, #nonscancells_loaded=20

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1195

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 33: Using Loadable Nonscan Cells in TestMAX ATPG
Limitations

Feedback

 Nonscan_loading analysis summary: #patterns=100, #nonscan_cells=7,
 CPU_time=0.00 sec

 Range nonscan cell load count
 ----- -----------------------
 0 1
 1-9 1
 10-19 0
 20-29 0
 30-39 0
 40-49 0
 50-59 0
 60-69 0
 70-79 0
 80-89 0
 90-99 1
 100 4
 --

 Nonscan_loading report: threshold=10, type=atleast, value=0, max=0
 --

 gate_id type count instance name
 -------- ---- -----
 --
 91 DFF 93 n0and
 95 DFF 48 l2andf
 94 DFF 47 n0xor
 93 DFF 30 n0aoi

In the previous example, only four instances are reported even though five instances were
loaded with non-X values in more than 10% of the simulations. This indicates that the
listed instance that was not loaded failed to meet the -atleast condition that a 0 should
be loaded in 10% of the simulations.

Limitations
Full-sequential patterns for loadable nonscan cells are not supported for ATPG or
simulation.

It's important to note that the loadable nonscan cells feature is limited in its effectiveness.
It will not be of much benefit if the load_unstable cells form a deep sequential circuit,
have sequential loops, or are fed by X-generators. Since this feature has runtime
penalties in DRC, ATPG, and simulation, you should make sure you are getting a net
benefit when using it. You can check its effectiveness by comparing the number of S19

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1196

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 33: Using Loadable Nonscan Cells in TestMAX ATPG
Limitations

Feedback

violations to the following line of run_drc output (which is only printed when the set_drc
-load_nonscan_cells command is specified):

Nonscan load cell identification completed: #load_nonscan_cells=6
 (nonx=4)

Note that the loadable nonscan cells feature is beneficial if the #load_nonscan_cells
value is large and/or this value comprises a large percentage of S19s violations.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1197

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

34
PowerFault

The following sections describes PowerFault and its simulation:

• PowerFault Simulation

• Verilog Simulation with PowerFault

• Faults and Fault Seeding

• PowerFault Strobe Selection

• Using PowerFault Technology

PowerFault Simulation
PowerFault simulation technology enables you to validate the IDDQ test patterns
generated by TestMAX ATPG.

The following sections describe PowerFault simulation:

• PowerFault Simulation Technology

• IDDQ Testing Flows

• Licensing

PowerFault-IDDQ might not work on unsupported operating platforms or simulators. See
the TestMAX ATPG Release Notes for a list of supported platforms and simulators.

PowerFault Simulation Technology
PowerFault simulation technology verifies quiescence at strobe points, analyzes and
debusg nonquiescent states, selects the best IDDQ strobe points for maximum fault
coverage, and generates IDDQ fault coverage reports.

Instead of using the IDDQ fault model, you can use the standard stuck-at-0/stuck-at-1
fault model to generate ordinary stuck-at ATPG patterns, and then allow PowerFault to
select the best patterns from the resulting test set for IDDQ measurement. The PowerFault
simulation chooses the strobe times that provide the highest fault coverage.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1198

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Simulation

Feedback

PowerFault technology uses the same Verilog simulator, netlist, libraries, and testbench
used for product sign-off, helping to ensure accurate results. The netlist and testbench do
not need to be modified in any way, and no additional libraries need to be generated.

You run PowerFault after generating IDDQ test patterns with TestMAX ATPG, as described
in Quiescence Test Pattern Generation in the TestMAX ATPG User Guide.

You perform IDDQ fault detection and strobe selection in two stages:

1. Run a Verilog simulation with the normal testbench, using the PowerFault tasks to
specify the IDDQ configuration and fault selection, and to evaluate the potential IDDQ
strobes for quiescence.

The inputs to the simulation are the model libraries, the description of the device under
test (DUT), the testbench, and the IDDQ parameters (fault locations and strobe timing
information).

The simulator produces a quiescence analysis report, which you can use to debug any
leaky nodes found in the design, and an IDDQ database, which contains information on
the potential strobe times and corresponding faults that can be detected.

2. Run the IDDQ Profiler, IDDQPro, to analyze the IDDQ database produced by the
PowerFault tasks. The IDDQ Profiler selects the best IDDQ strobe times and generates
a fault coverage report, either in batch mode or interactively.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1199

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Simulation

Feedback

Figure 175 Data Flow for PowerFault Strobe Selection

   

IDDQ Testing Flows
There are two recommended IDDQ testing flows:

• IDDQ Test Pattern Generation — TestMAX ATPG generates an IDDQ test pattern set
targeting the IDDQ fault model rather than the usual stuck-at fault model.

• IDDQ Strobe Selection From an Existing Pattern Set — Use an existing stuck-at ATPG
pattern set and let the PowerFault simulation select the best IDDQ strobe times in that
pattern set.

The following figure shows the types of data produced by these two IDDQ test flows.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1200

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Simulation

Feedback

Figure 176 IDDQ Testing Flows

   

IDDQ Test Pattern Generation
In the IDDQ testing flow shown in IDDQ Testing Flows, TestMAX ATPG generates a test
pattern that directly targets IDDQ faults. Instead of attempting to propagate the effects of
stuck-at faults to the device outputs, the ATPG algorithm attempts to sensitize all IDDQ
faults and apply IDDQ strobes to test all such faults. TestMAX ATPG compresses and
merges the IDDQ test patterns, just like ordinary stuck-at patterns.

While generating IDDQ test patterns, TestMAX ATPG avoids any condition that could
cause excessive current drain, such as strong or weak bus contention or floating buses.
You can override the default behavior and specify whether to allow such conditions by
using the set_iddq command.

In this IDDQ flow, TestMAX ATPG generates an IDDQ test pattern and an IDDQ fault
coverage report. It generates quiescent strobes by using ATPG techniques to avoid all bus
contention and float states in every vector it generates. The resulting test pattern has an
IDDQ strobe for every ATPG test cycle. In other words, the output is an IDDQ-only test
pattern.

After the test pattern has been generated, you can use a Verilog/PowerFault simulation
to verify the test pattern for quiescence at each strobe. The simulation does not need to

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1201

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Simulation

Feedback

perform strobe selection or fault coverage analysis because these tasks are handled by
TestMAX ATPG.

Having TestMAX ATPG generate the IDDQ test patterns is a very efficient method. It
works best when the design uses models that are entirely structural. When the design
models transistors, capacitive discharge, or behavioral elements in either the netlist or
library, the ATPG might be either optimistic or pessimistic because it does not simulate the
mixed-level data and signal information in the same way as the Verilog simulation module.
Consider this behavior when you select your IDDQ test flow.

IDDQ Strobe Selection From an Existing Pattern Set
In the IDDQ testing flow shown in IDDQ Testing Flows, PowerFault selects a near-
optimum set of strobe points from an existing pattern set. The existing pattern can be a
conventional stuck-at ATPG pattern or a functional test pattern. The output of this flow
is the original test pattern with IDDQ strobe points identified at the appropriate times for
maximum fault coverage.

In order for valid IDDQ strobe times to exist, the design must be quiescent enough of
the time so that an adequate number of potential strobe points exist. You need to avoid
conditions that could cause current to flow, such as floating buses or bus contention.

The specification of faults targeted for IDDQ testing is called fault seeding. There are
a variety of ways to perform fault seeding, depending on your IDDQ testing goals. For
example, to complement stuck-at ATPG testing done by TestMAX ATPG, you can initially
target faults that could not be tested by TestMAX ATPG, such as those found to be
undetectable, ATPG untestable, not detected, or possibly detected. For general IDDQ fault
testing, you can seed faults automatically from the design description, or you can provide
a fault list generated by TestMAX ATPG or another tool.

The Verilog/PowerFault simulator determines the quiescent strobe times in the test pattern
(called the qualified strobe times) and determines which faults are detected by each
strobe. Then the IDDQ Profiler finds a set of strobe points to provide maximum fault
coverage for a given number of strobes.

You can optionally run the IDDQ Profiler in interactive mode, which lets you select
different combinations of IDDQ strobes and examine the resulting fault coverage for
each combination. This mode lets you navigate through the hierarchy of the design and
examine the fault coverage at different levels and in different sections of the design.

Licensing
The Test-IDDQ license is required to perform Verilog/PowerFault simulation. This license
is automatically checked out when needed, and is checked back in when the tool stops
running.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1202

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

By default, the lack of an available Test-IDDQ license causes an error when the tool
attempts to check out a license. You can have PowerFault wait until a license becomes
available instead, which lets you queue up multiple PowerFault simulation processes and
have each process automatically wait until a license becomes available.

PowerFault supports license queuing, which allows the tool to wait for licenses that
are temporarily unavailable. To enable this feature, you must set the SNPSLMD_QUEUE
environment variable to a non-empty arbitrary value (“1”, “TRUE”, “ON”, “SET”, and so
forth.) before invoking PowerFault:

unix> setenv SNPSLMD_QUEUE 1

Existing Powerfault behavior with SSI_WAIT_LICENSE will continue to be supported for
backward functionality of existing customer scripts.

% setenv SSI_WAIT_LICENSE

If the license does not exist or was not installed properly, then the Verilog/PowerFault
simulation will hang indefinitely without any warning or error message.

Verilog Simulation with PowerFault
PowerFault simulation technology operates as a standard programmable language
interface (PLI) task that you add to your Verilog simulator. You can use PowerFault to find
the best IDDQ strobe points for maximum fault coverage, to generate IDDQ fault coverage
reports, to verify quiescence at strobe points, and to analyze and debug nonquiescent
states.

The following sections describe Verilog simulation with PowerFault:

• Preparing Simulators for PowerFault IDDQ

• PowerFault PLI Tasks

Preparing Simulators for PowerFault IDDQ
PowerFault includes two primary parts:

• A set of PLI tasks you add to the Verilog simulator

• The IDDQ Profiler, a program that reads the IDDQ database generated by the
PowerFault’s IDDQ-specific PLI tasks

Before you can use PowerFault, you need to link the PLI tasks into your Verilog simulator.
The procedure for doing this depends on the type of Verilog simulator you are using and

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1203

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

the platform you are running. The following sections provide instructions to support the
following Verilog simulators (platform differences are identified with the simulator):

• Synopsys VCS

• Cadence NC-Verilog®

• Cadence Verilog-XL®

• Model Technology ModelSim®

These instructions assume basic installation contexts for the simulators. If your
installation differs, you will need to make changes to the commands presented here. For
troubleshooting problems, refer to the vendor-specific documentation on integrating PLI
tasks. Information about integrating additional PLI tasks is not presented here.

setenv SYNOPSYS root_directory
set path=($SYNOPSYS/bin $path)
For a discussion about the use of the SYNOPSYS_TMAX environment variable, see
Specifying the Location for TestMAX ATPG Installation.

Then, to simplify the procedures, set the environment variable $IDDQ_HOME to point to
where you installed Powerfault IDDQ. For example, in a typical Synopsys installation using
csh, the command is:

setenv IDDQ_HOME $SYNOPSYS/iddq/
Note the following:

• sparc64 and hp64 should be used only in specific 64-bit contexts.

• PowerFault features dynamic resolution of its PLI tasks. This means that after a
simulation executable has been built with the PowerFault constructs present (following
the guidelines here), this executable does not need to be rebuilt if you change to a
different version of PowerFault. Changing the environment variable $IDDQ_HOME to the
desired version will load the runtime behavior of that version of PowerFault dynamically
into this simulation run.

Using PowerFault IDDQ With Synopsys VCS
To generate the VCS simulation executable with PowerFault IDDQ, invoke VCS with the
following arguments:

• Command-line argument +acc+2

• When running zero-delay simulations, you must use the +delay_mode_zero and
+tetramax arguments.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1204

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

• Command-line argument -P $IDDQ_HOME/lib/iddq_vcs.tab to specify the PLI table
(or merge this PLI table with other tables you might already be using), a reference to
$IDDQ_HOME/lib/libiddq_vcs.a. do not used the -P argument with any non-PLI
Verilog testbenches.

In addition, you must specify:

• Your design modules

• Any other command-line options necessary to execute your simulation

If your simulation environment uses PLIs from multiple sources, you might need to
combine the tab files from each PLI, along with the file $IDDQ_HOME/lib/iddq_vcs.tab
for PowerFault operation, into a single tab file. See the VCS documentation for information
about tab files.

The following command will enable the ssi_iddq task to be invoked from the Verilog source
information in model.v:

vcs model.v +acc+2 -P $IDDQ_HOME/lib/iddq_vcs.tab \
$IDDQ_HOME/lib/libiddq_vcs.a
For VCS 64-bit operation, if you specify the -full64 option for VCS 64-bit contexts,
you must also set $IDDQ_HOME to the appropriate 64-bit build for that platform: either
sparc64 for Solaris environments or hp64 for HP-UX environments. If you do not specify
the -full64 option, then sparcOS5 or hp32 should be specified. Since the -comp64
option affects compilation only, $IDDQ_HOME should reference sparcOS5 or hp32 software
versions as well.

For difficulties that you or your CAD group cannot handle, contact Synopsys at:

Web: https://solvnet.synopsys.com Email: support_center@synopsys.com Phone:
1-800-245-8005 (inside the continental United States)

Additional phone numbers and contacts can be found at: http://www.synopsys.com/
Support/GlobalSupportCenters/Pages

For additional VCS support, email vcs_support@synopsys.com.

Using PowerFault IDDQ With Cadence NC-Verilog
The following sections describe how to prepare for and run a PowerFault NC-Verilog
simulation:

• Setup

• Creating the Static Executable

• Running Simulation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1205

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

• Creating a Dynamic Library

• Running Simulation

Setup
You can use the Powerfault library with NC-Verilog in many ways. The following example
describes two such flows. For both flows, set these NC-Verilog-specific environment
variables:

setenv CDS_INST_DIR <path_to_Cadence_install_directory>
setenv INSTALL_DIR $CDS_INST_DIR
setenv ARCH <platform> //sun4v for solaris, lnx86 for linux.
setenv SNPSLMD_LICENSE_FILE <>
32-bit Setup
setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools:${LD_LIBRARY_PATH} // 32-bit
set path=($CDS_INST_DIR/tools/bin $path) // 32-bit
64-bit Setup
Use +nc64 option when invoking

setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools/64bit:${LD_LIBRARY_PATH} //
64-bit
set path=($CDS_INST_DIR/tools/bin/64bit $path) // 64-bit
For the 64-bit environments use the *cds_pic.a libraries

Creating the Static Executable
The following steps describe how to create the static executable:

1. Create a directory to build the ncelab and ncsim variables and navigate to this
directory. Create an environment variable to this path to access it quickly.

mkdir nc cd nc setenv LOCAL_NC "/<this_directory_path>"

If PowerFault is the only PLI being linked into the Verilog run, then go to step 2. If
additional PLIs are being added to your Verilog environment, then go to step 3.

2. Run two build operations using your Makefile.nc

make ncelab $IDDQ_HOME/lib/sample_Makefile.nc make ncsim
 $IDDQ_HOME/lib/sample_Makefile.nc

Go to step 6.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1206

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

3. Copy the PLI task and the sample makefile into the nc directory. The makefile contains
the pathname of the PowerFault object file $IDDQ_HOME/lib/libiddq_cds.a.

cp $IDDQ_HOME/lib/veriuser_sample_forNC.c . cp
 $IDDQ_HOME/lib/sample_Makefile.nc .

4. Edit the example files to define additional PLI tasks.

5. Run two build operations using your Makefile.nc
make ncelab -f sample_Makefile.nc make ncsim -f sample_Makefile.nc

6. Ensure the directory you created is located in your path variable before the instances of
these tools under the directory: $CDS_INST_DIR.

set path=($LOCAL_NC $path)
Running Simulation
ncvlog <design data and related switches>
ncelab -access +rwc <related switches>
ncsim <testbench name and related switches>
Make sure that the executables ncelab and ncsim picked up in the previous steps are the
ones created in $LOCAL_NC directory, not the ones in the cadence installation path.

You can also use the single-step ncVerilog command as follows:

ncVerilog +access+rwc +ncelabexe+$LOCAL_NC/ncelab +ncsimexe+$LOCAL_NC/
ncsim <design data and other switches>
If using 64-bit binaries, use the “+nc64” option with the ncVerilog script

Creating a Dynamic Library
This section describes a flow to create a dynamic library libpli.so and update the path,
LD_LIBRARY_PATH to include the path to this library. In this flow, TestMAX ATPG resolves
PLI functional calls during simulation. There are two ways to build the dynamic library:
either use vconfig, as in the first flow below, or use the sample_Makefile.nc, with the target
being libpli.so.

1. Create a directory in which to build the libpli.so library and navigate to this directory.
Set an environment variable to this location to access it quickly.

mkdir nc cd nc setenv LIB_DIR "/<this_directory_path>"
2. Copy the PLI task file into the directory.

cp $IDDQ_HOME/lib/veriuser_sample_forNC.c .
3. Edit the sample files to define additional PLI tasks.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1207

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

4. Use the vconfig utility and generate the script fo create the libpli.so library. You can also
use the cr_vlog template file shown at the end of this step.

• Name the output script cr_vlog.

• Select Dynamic PLI libraries only

• Select build libpli

• Ensure that you include the user template file veriuser.c in the link statement.

This is the $IDDQ_HOME/lib/veriuser_sample_forNC.c file that you copied to the
$LIB_DIR directory.

• Link the Powerfault object file from the pathname, $IDDQ_HOME/lib/libiddq_cds.a

The vconfig command displays the following message after it completes:

*** SUCCESSFUL COMPLETION OF VCONFIG
****** EXECUTE THE SCRIPT: cr_vlog TO BUILD: Dynamic PLI library.

• Add another linking path:$IDDQ_HOME/lib to the first compile command in the
cr_vlog script.

The cr_vlog script is as follows:

cc -KPIC -c ./veriuser_sample_forNC.c -I$CDS_INST_DIR/tools/Verilog/
include -I$IDDQ_HOME/lib
ld -G veriuser_sample_forNC.o $IDDQ_HOME/lib/libiddq_cds.a -o
libpli.so

• Change the cr_vlog script to correspond the architecture of the machine on which it
runs.

• To compile on a 64-bit machine, use the -xarch=v9 value with the cc command.

• For Linux, use -fPIC instead of -KPIC. Also, you might need to replace ld with gcc
or use -lc with ld on Linux.

5. Run the cr_vlog script to create libpli.so library. Ensure the directory $LIB_DIR you
create is in the path, LD_LIBRARY_PATH.

setenv LD_LIBRARY_PATH ${LIB_DIR}:${ LD_LIBRARY_PATH}
You must edit the generated cr_vlog script to add a reference to 64-bit environment on the
veriuser.c compile (add -xarch=v9), and the -64 option to the ld command.

Running Simulation
ncvlog <design data and related switches>

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1208

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

ncelab -access +rwc <related switches>
ncsim <testbench name and related switches>
Equivalently, single-step ncVerilog command can also be used
as
follows.
ncVerilog +access+rwc <design data and other switches>

Using PowerFault IDDQ With Cadence Verilog-XL
The following sections describe how to setup and run a PowerFault Cadence Verilog-XL
simulation:

• Setup

• Running Simulation

• Running Verilogxl

Setup
To access user-defined PLI tasks at runtime, create a link between the tasks and a
Verilog-XL executable using the vconfig command. The vconfig command displays a
series of prompts and creates another script called cr_vlog, which builds and links the
ssi_iddq task into the Verilog executable.

This is a standard procedure for many Verilog-XL users. You only need to do it only one
time for a version of Verilog-XL, and it should take about 10 minutes. Cadence uses this
method to support users that need PLI functionality.

After you create a link between the PowerFault IDDQ constructs and the Verilog-XL
executable, you can use them each time you run the executable. The PowerFault IDDQ
functions do not add overhead to a simulation run if the run does not use these functions.
The functions are not loaded unless you use PowerFault IDDQ PLIs in the Verilog source
files.

You do not need any additional runtime options for a Verilog-XL simulation to use
PowerFault IDDQ after you create a link to it.

To create a link between the tasks and a Verilog-XL executable, do the following:

1. Set the Verilog-XL specific environment variables:

setenv CDS_INST_DIR <path_to_Cadence_install_directory> setenv
 INSTALL_DIR $CDS_INST_DIR setenv TARGETLIB . setenv
 ARCH <platform> setenv SNPSLMD_LICENSE_FILE <> setenv
 LD_LIBRARY_PATH $CDS_INST_DIR/ tools:${LD_LIBRARY_PATH} set
 path=($CDS_INST_DIR/tools/bin $CDS_INST_DIR/tools/ bin $path)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1209

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

2. Create a directory to hold the Verilog executable and navigate into it. Set an
environment variable to this location to access it quickly.

mkdir vlog cd vlog setenv LOCAL_XL "/<this_directory_path>"
3. Copy the sample veriuser.c file into this directory:

cp $IDDQ_HOME/lib/veriuser_sample_forNC.c .
4. Edit the veriuser_sample_forNC.c file to define additional PLI tasks.

5. Run the vconfig command and create the cr_vlog script to link the new Verilog
executable. The vconfig commands displays the following prompts. Respond to each
prompt as appropriate; for example,

Name the output script cr_vlog. Choose a Stand Alone target. Choose a Static
with User PLI Application link. Name the Verilog-XL target Verilog.

You can answer no to other options.

Create a link between your user routines and Verilog-XL. The cr_vlog script includes a
section to compile your routines and include them in the link statement.

Ensure that you include the user template file veriuser.c in the link statement. This
is the $IDDQ_HOME/lib/veriuser_sample_forNC.c file that you copied to the vlog
directory.

Ensure that you include the user template file vpi_user.c in the link statement. The
pathname of this file is $CDS_INST_DIR/Verilog/src/ vpi_user.c. The vconfig
command prompts you to accept the correct path.

Create a link to Powerfault object file as well. The pathname of this file is
$IDDQ_HOME/lib/libiddq_cds.a

After it completes, the vconfig command completes:

*** SUCCESSFUL COMPLETION OF VCONFIG ***
*** EXECUTE THE SCRIPT: cr_vlog TO BUILD: Stand Alone
Verilog-XL

6. Add to the option -I/$IDDQ_HOME/lib to the first compile command in the cr_vlog file,
which compiles the sample veriuser.c file.

7. Do the following before running the generated cr_vlog script:

Note for HP-UX 9.0 and 10.2 users:

The cr_vlog script must use the -Wl and -E compile options. Change the cc command
from cc -o Verilog to cc -Wl,-E -o Verilog.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1210

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

If you are using either HPUX 9.0 or Verilog-XL version 2.X, you must also create a link
to the -ldld library. The last lines of the cr_vlog script must be similat to:

+O3 -lm -lBSD -lcl -N -ldld
If you use a link editor (such as ld) instead of the cc command to create the final link,
make sure you pass the -W1 and -E options as shown previously.

Note for Solaris users:

You must create a link between the cr_vlog script and the -lsocket, -lnsl, and -lintl
libraries.

Check the last few lines of script and ensure these libraries are included.

8. Run the cr_vlog script. The script creates a link between the ssi_iddq task and the new
Verilog executable (Verilog) in the current directory.

9. Verify that the Verilog directory appears in your path variable before other references to
an executable with the same name, or reference this executable directly when running
Verilog. For example,

set path=(./vlog $path)
Running Simulation
Before running simulation, ensure that the executable Verilog used to run simulation is the
executable that you created in the $LOCAL_XL directory and not the executable in the
Cadence installation path.

To run simulation, use the following command:

Verilog +access+rwc <design data and related switches>
Running Verilogxl
There is no command line example due to the interpreted nature of this simulation. You do
not need any runtime options to enable the PLI tasks after you create a link between them
and the Verilog-XL executable.

Using PowerFault IDDQ With Model Technology ModelSim
User-defined PLI tasks must be compiled and linked in ModelSim to create a shared
library that is dynamically loaded by its Verilog simulator, vsim.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1211

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

The following steps show you how to compile and link a ModelSim shared library:

1. Create a directory where you want to build a shared library and navigate to it; for
example,

mkdir MTI
cd MTI

2. Copy the PLI task into this directory as "veriuser.c"; for example,

cp $IDDQ_HOME/lib/veriuser_sample.c veriuser.c
3. Edit veriuser.c to define any additional PLI tasks.

4. Compile and link veriuser.c to create a shared library named "libpli.so"; for example,

cc -O -KPIC -c -o ./veriuser.o \
-I<install_dir_path>/modeltech/include \
-I$IDDQ_HOME/lib -DaccVersionLatest ./veriuser.c
ld -G -o libpli.so veriuser.o \
$IDDQ_HOME/lib/libiddq_cds.a -lc

For compiling on a 64-bit machine, use -xarch=v9 with cc. For Linux, use -fPIC
instead of -KPIC.

5. Identify the shared library to be loaded by vsim during simulation. You can do this in
one of three ways:

• Set the environment variable PLIOBJS to the path of the shared library; for
example,

setenv PLIOBJS
 <path_to_the_MTI_directory>/libpli.so vlog ... vsim ...

• Pass the shared library to vsim in its -pli argument; for example,

vlog ...
vsim -pli <path_to_the_MTI_directory>/libpli.so ...

• Assign the path to the shared library to the Veriuser variable in the "modelsim.ini"
file, and set the environment variable MODELSIM to the path of the modelsim.ini file;
for example,

In the modelsim.ini file:

Veriuser = <path_to_the_MTI_directory>/libpli.so

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1212

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

On the command line:

setenv MODELSIM <path_to_modelsim.ini_file/modelsim.ini
vlog ...
vsim ...

PowerFault PLI Tasks
The following sections describe the various PowerFault PLI tasks:

• Getting Started

• PLI Task Command Summary Table

• PLI Task Command Reference

Getting Started
The first step in using PowerFault technology is to run a Verilog simulation using your
normal testbench, combined with the PowerFault tasks to seed faults and evaluate
potential IDDQ strobes.

A task called ssi_iddq executes PowerFault commands in the Verilog file that configures
the Verilog simulation for IDDQ analysis. Some of the commands are mandatory and
some are optional. The commands must at least specify the device under test, seed the
faults, and apply IDDQ strobes.

For example, preparation for IDDQ testing can be as simple as adding a module similar to
the following to your Verilog simulation:

module IDDQTEST();
parameter CLOCK_PERIOD = 10000;
initial begin
$ssi_iddq("dut tbench.M88");
$ssi_iddq("seed SA tbench.M88");
end
always begin
fork
CLOCK_PERIOD;
(CLOCK_PERIOD -1) $ssi_iddq("strobe_try");

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1213

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

join
end
endmodule
This example contains three PowerFault commands. The first one specifies the device
under test (DUT) to be tbench.M88. The second one seeds the entire device with stuck-
at (SA) faults. Inside the always block, the third one invokes the strobe_try command to
evaluate the device for IDDQ strobing at one time unit before the end of each cycle.

The order of commands in the Verilog file is important because the PLI tasks must be
performed in the following order:

1. Specify the DUT module or modules (mandatory).

2. Specify other simulation setup parameters (optional).

3. Specify disallowed leaky states (optional).

4. Specify allowed leaky states (optional).

5. Specify fault seed exclusions (optional).

6. Specify fault models (optional).

7. Specify fault seeds (mandatory).

8. Run testbench and specify strobe timing (mandatory).

PLI Task Command Summary Table
The following table provides a quick summary of the PowerFault commands that you
can use in Verilog files to perform PLI tasks. For detailed information on each command,
see the next section, PLI Task Command Reference. If you are viewing this document in
online form, you can click the page number reference in the table to jump to the detailed
description of the command.

Table 15 PLI Task Command Summary

Simulation Setup Commands

dut Specifies the DUT modules

output Names the IDDQ database

ignore Specifies black box nets and modules

statedep_float Specifies the primitives that can block floating nodes

io Specifies DUT ports

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1214

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

Table 15 PLI Task Command Summary (Continued)

measure Specifies the rail for IDDQ measurement

verb Turns verbose mode on or off (off by default)

Leaky State Commands

allow Allows user-specified leaky states

disable
SepRail

Forces all top-level pullups and pulldowns in contention to be identified as leaky,
see

disallow Disallows user-specified leaky states

Fault Seeding Commands

seed SA Seeds stuck-at faults automatically

seed B Seeds bridging faults automatically

scope Sets the scope for faults seeded by read commands

read_bridges Seeds bridging faults from a file

read_tmax Seeds faults from a TestMAX ATPG fault list

read_verifault Seeds faults from a Verifault fault list

Fault Seed Exclusion Command

exclude Excludes module instances from fault seeding

Fault Model Commands

model SA Configures operation of the seed SA command

model B Configures operation of the seed B command

Strobe Commands

strobe_try Performs an IDDQ strobe evaluation if the chip is quiet; see

strobe_force Forces an IDDQ strobe evaluation

strobe_limit Limits the number of IDDQ strobe evaluations

cycle Sets the internal cycle count

Circuit Examination Commands

status Prints a report on leaky nets

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1215

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

Table 15 PLI Task Command Summary (Continued)

summary Prints a nodal analysis summary

PLI Task Command Reference
The following sections describe the syntax and functions of the PowerFault commands:

• Conventions

• Simulation Setup Commands

• Leaky State Commands

• Fault Seeding Commands

• Fault Model Commands

• Strobe Commands

• Circuit Examination Commands

• Disallowed/Disallow Value Property

• Can Float Property

Each command description includes the Backus-Naur form (BNF) syntax and a description
of the command behavior.

Conventions
The following conventions apply to the PLI task command descriptions:

• Special-Purpose Characters

• Module Instances and Entity Models

• Cell Instances

• Port and Terminal References

Special-Purpose Characters
Several special-purpose characters are used in the command syntax descriptions, as
described in the following table.

Table 16 Special Characters in Command Syntax

Character Purpose

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1216

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

Table 16 Special Characters in Command Syntax
(Continued)

+ Plus-sign suffix indicates repetition of one or
more

* Asterisk suffix indicates repetition of zero or more

[] Square brackets enclose an optional element

() Parentheses indicate grouping

| Vertical bar separates alternative choices

When you use Verilog escaped identifiers in a command, each escape character must
itself be escaped. For example, to use the name tbench.dut.\IO(23) with the allow
command, use the following syntax:

$ssi_iddq("allow float tbench.dut.\\IO(23)");
Module Instances and Entity Models
A number of commands accept either module-instance or entity-model as a parameter.
A module-instance is a full path name of an instantiated module, such as the module
name tbench.au.ctrl?. An entity-model? is the definition name (not instance name) of a
module. For example, tbench.au.ctrl might be one instance of the IOCTRL entity model.
When you specify an entity model in a command, it applies to all instances of that model.

Cell Instances
The commands for fault seeding refer to Verilog cells. A cell instance is a module instance
that has either of these characteristics:

• The module definition appears between the compiler directives ‘celldefine and
‘endcelldefine??.

• The module definition is in a model library, and the +nolibcell option has not been
used. A library is a collection of module definitions contained in a file or directory that
are read by library invocation options (such as the -y option provided by most Verilog
simulators).

If you use the +nolibcell option when you invoke the Verilog simulator, only modules
meeting the first condition above are considered cells.

By default, PowerFault treats cells as fault primitives. It seeds faults only at cell
boundaries, not inside of cells. However, some design environments generate netlists
that mark very large blocks as cells. To make PowerFault seed inside those cells, use

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1217

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

the model SA seed_inside_cells command or the model B seed_inside_cells
command.

Port and Terminal References
The commands for allowing and disallowing leaky states refer to connection references.
A connection reference describes a port of a module or a terminal of a primitive. You
can refer to a port by its name. You can also refer to ports and terminals by their index
numbers, with 0 indicating the first port or terminal. For example, port.0 refers to the first
port of a module;term.0 refers to the first terminal (the output terminal) of a primitive.

Simulation Setup Commands
The following simulation setup commands set up the general operating parameters for the
PowerFault simulation, such as the name of the device under test (DUT), the name of the
generated IDDQ database, and the names of the DUT ports:

• dut

• output

• ignore

• io

• statedep_float

• measure

• verb

dut
dut module-instance+
This command is required and must be the first ssi_iddq-task command executed. It
specifies which instances represent the device under test. The arguments are the full path
names of one or more module instances.

Here are some examples of valid dut commands:

$ssi_iddq("dut tbench.core");

$ssi_iddq("dut tbench.slave tbench.master");
output
output [mode] [label] database-name
mode ::= (create|append|replace=testbench-number)
label ::= label=string

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1218

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

This command specifies the name of the generated IDDQ database. The database is a
directory that PowerFault uses to store simulation results. During the Verilog simulation,
the ssi_iddq-task commands fill the database with information for the IDDQ Profiler. You
run the IDDQ Profiler after the Verilog simulation to select strobes and generate IDDQ
reports.

The following command makes the ssi_iddq task create a database named /cad/sim/
M88/iddq.db1?:

$ssi_iddq("output /cad/sim/M88/iddq.db1");
The default mode is create?, which creates the database if it does not already exist. If the
database already exists, its entire contents are cleared before the new simulation results
are stored.

When you use the append mode, the simulation results are appended to the specified
database. The append mode allows the simulation results from multiple testbenches for
a circuit to be saved into one database, as described in the “Combining Multiple Verilog
Simulations” section.

The replace mode replaces one specified testbench result in a multiple set of results
saved using the append mode. For the testbench number, specify 1 to overwrite the first
results saved, 2 to overwrite the second results saved, and so on.

The label option assigns a string label to represent the current testbench. This is useful
when the database is used to store results from multiple testbenches. When the IDDQ
Profiler selects strobes, it uses the label to identify the testbench from which the strobe
was selected.

The append mode is useful for a circuit that has multiple testbenches. It is much more
efficient to append the results from multiple testbenches to one database, rather than
create a separate database for each testbench. For details, see “Combining Multiple
Verilog Simulations”.

Do not use the append mode with multiple concurrent simulations. For example, you
cannot start four Verilog simulations at the same time and try to have each one append to
the same database. If you have multiple testbenches for a circuit, you need to run them
serially.

ignore
ignore net module-or-prim-instanceconn-ref
ignore net entity-modelconn-ref
ignore (all|core|ports) module-or-prim-instance
ignore (all|core|ports) entity-model

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1219

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

conn-ref ::= port-name | port.port-index |
term.term-index
port-name ::= scalar-port-name | vector-port-name
[port-index]
The ignore command describes which nodes in your circuit should be ignored for IDDQ
testing. Ignored nodes are excluded from analysis, fault seeding, and status reports. The
same effect can be produced by using the exclude?, allow fight?, and allow float
commands together, but using the ignore command is more efficient. This command
overrides all built-in checkers and all custom checkers defined with the disallow
command.

In the first two forms of the command, conn-ref describes which node to ignore. For
example, the following command causes the node connected to the port named INTR in
the module tbench.core.busarb to be ignored:

$ssi_iddq("ignore net tbench.core.busarb INTR");
The following command causes the node connected to the fifth port of
tbench.core.busarb to be ignored:

$ssi_iddq("ignore net tbench.core.busarb port.5");
The following command causes the nodes connected to the INTR port of all instances of
the ARB module to be ignored:

$ssi_iddq("ignore net ARB INTR");
In the last two forms of the command, the (all|core|ports) option describes how
the command is applied to nodes of a particular module or primitive. For example, the
following command causes all nodes connected to ports of the tbench.core.pll module
to be ignored:

$ssi_iddq("ignore ports tbench.core.pll");
The following command causes all nodes inside tbench.core.pll to be ignored:

$ssi_iddq("ignore core tbench.core.pll");
The following command causes all nodes connected to ports and all nodes inside
tbench.core.pll to be ignored:

$ssi_iddq("ignore all tbench.core.pll");
io
io net-instance+

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1220

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

This command lists any primary inputs and outputs (I/O pads) that are not connected
to ports of the DUT modules. PowerFault assumes that each port of a DUT module is
connected to an I/O pad. If your chip has I/O pads that are not connected to a port of a
DUT module, you can optionally specify them with this command. Doing so might allow
PowerFault to find better strobe points.

statedep_float
statedep_float #-and-ins#-nand-ins#-nor-ins#-or-ins
This command specifies the types of primitives that can block floating nodes. The default
setting is:

$ssi_iddq("statedep_float 3 3 2 0");
By default, AND and NAND gates with up to three inputs and NOR gates with up to two
inputs can block floating nodes. These primitives are commonly used to “gate” a three-
state bus so that it does not cause a leakage current. For more information on this topic,
see “State-Dependent Floating Nodes”.

If your foundry implements two-input OR gates so that they can block floating nodes, use
this command:

$ssi_iddq("statedep_float 3 3 2 2");measure (0|1)
measure
measure (0|1)
This command specifies which power rail to use for IDDQ measurement. By default,
PowerFault assumes that IDDQ measurements are made on the VDD (power) rail; this
is the most common test method. If your automated test equipment (ATE) is configured
to measure ISSQ, the current flowing through the VSS (ground) rail, use the following
command:

$ssi_iddq("measure 0");
verb
verb (on|off)
This command turns verbose mode on and off. In verbose mode, the ssi_iddq task
echoes every command before execution, and it also prints the result (qualified or
unqualified) of every strobe_try command. By default, verbose mode is initially off. To
turn on verbose mode, use this command:

$ssi_iddq("verb on");
Leaky State Commands
PowerFault has powerful algorithms for determining quiescence. By default, it recognizes
two types of leaky states: floating inputs (“float”) and drive contention (“fight”). It is also

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1221

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

configurable; the allow, disable SepRail, and disallow commands let you modify the
algorithms for determining quiescence.

The following sections describe the leaky state commands:

• allow

• disable SepRail

• disallow

allow
The allow command specifies the types of leaky states that are to be ignored. The
disallow command defines new leaky states that would normally be unrecognized,
such as leaky behavioral and external models (for more information, see “Behavioral and
External Models”). The allow command tells PowerFault how to ignore leaky states it
normally recognizes; the disallow command tells PowerFault how to identify leaky states
it does not normally recognize.

There are several different forms of this command. These are the forms that apply to
specified nets, instances, or entity models:

allow (float|fight) net-instance
allow (float|fight) module-or-prim-instance [conn-ref]
allow (float|fight) entity-model [conn-ref]
conn-ref ::= port-name | port.port-index | term.term-index
port-name ::= scalar-port-name|
vector-port-name[port-index]
These commands specify which leaky states in the design to allow (ignored by
PowerFault). You can use them to have PowerFault ignore leaky states that are not
present in the real chip.

Incomplete Verilog models can cause misleading leaky states, which PowerFault should
ignore. For example, consider a chip that has an internal three-state bus with a keeper
latch like the one shown in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1222

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

Figure 177 Three-State Bus With Keeper Latch

   

When the bus is fabricated on the chip, the keeper latch prevents the bus from floating.
However, the Verilog model for the bus does not include the keeper latch. As a result,
when the bus floats (has a Z value) during the Verilog simulation, PowerFault considers it
a possible cause of high current and disqualifies any strobe try at that time.

To tell PowerFault that the bus addr[0] does not cause high current when it floats during
the simulation, use a command like the following:

$ssi_iddq("allow float tbench.iob.addr[0]");
When you use a module (primitive) instance name, the allow command applies to all
nets declared inside the instance, including those inside of submodules, and to all nets
attached to the instance’s ports (terminals). For example, to allow nets to float inside of
and connected to tbench.au.ctlr?, use this command:

$ssi_iddq("allow float tbench.au.ctlr");
If you use an entity-model name, the command applies to every instance of that entity
model. For example, to allow all nets to float inside of and connected to the instances of
the IOCTL module, use the following command:

$ssi_iddq("allow float IOCTL");
By using the optional connection reference, you can make the command apply to a
specific port or terminal. For example, if IOCTL has a port named out2?, then the following
command allows the nets attached to the out2 port of all IOCTL instances to float:

$ssi_iddq("allow float IOCTL out2");
The following command allows the nets attached to the output terminal of all bufif0
instances to float:

$ssi_iddq("allow float bufif0 term.0");
To globally allow leaky states, use this command:

allow (all|poss) (fight|float)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1223

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

This form of the allow command turns on global options that apply to every net. The
all option makes PowerFault ignore all true and all possibly leaky states. The poss
option makes PowerFault ignore just the possibly leaky states; true leaky states are still
disallowed. For a description of true and possibly floating nodes, see “Floating Nodes and
Drive Contention”.

This form of the allow command is most useful for verifying strobe timing and debugging
test vectors. For example, if you want to find vectors that definitely have drive contention
(so that you can measure it on your ATE), use these commands:

$ssi_iddq("allow poss fight");
$ssi_iddq("allow all float");
In this case, only vectors with true drive contention are disqualified because all floating
nodes and all nodes with possible drive contention are ignored.

Here is the form of the command for allowing leaky states inside cells:

allow cell (fight|float)
This form of the allow command applies to every net that is internal to a cell. Nets
connected to cell ports and nets outside of cells are not affected. The fight option makes
PowerFault ignore all true and possible drive contention on nets inside of cells. The float
option makes PowerFault ignore all true and possibly floating nets inside of cells. For a
description of true and possibly floating nodes, see “Floating Nodes and Drive Contention”.

This form of the allow command is most useful when your cell libraries have many
internal nets that are erroneously flagged as floating or contending. This most commonly
happens when cells use dummy local nets (nets not present in the real chip) for the
purpose of timing checks. If you know that all the nets internal to your cells are always
quiescent, you can use these commands:

$ssi_iddq("allow cell fight");
$ssi_iddq("allow cell float");
disable SepRail
Current measurements, performed at test, are subject to the configuration of the test
equipment when considering current contributions. Typically, many test environments use
separate power supplies for the device signals (often referred to as "pin electronics") from
the primary power supply for the device itself.

Because of these separate supplies, some leaky conditions might not contribute current
that is measured from the device rails or primary power supply. In particular, out-of-state
pullups or pulldowns on the IO of the device might not contribute to measured IDDQ
current. Eliminating test vectors that do not contribute leaky current can reduce the overall
effectiveness of a set of IDDQ tests. Remember, only pullups and pulldowns that are

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1224

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

associated with the top-level signals of the design are considered here. Internally, all
current-generating situations are considered.

By default, IddQTest will not identify all out-of-state pull conditions on top-level IO signals
as leaky. Certain situations are allowable. In particular, internal pulls (pullups or pulldowns
that are part of the internal device definition) that are pulling to the opposite state of
the measured rail (for example, internal pulldowns for IddQ measurements) will not be
identified as leaky. External pulls (pullups or pulldowns that are external to the device
referenced with the dut command) that are pulling to the same state as the measured rail
(for example, external pullups for IddQ measurements) will also not be identified as leaky.

To override this default behavior, and force all out-of-state conditions with pullups and
pulldowns at the top level of the design to be identified as leaky, the option disable
SepRail must be specified. This can be specified as:

$ssi_iddq("disable SepRail");
disallow
disallow module-or-prim-instanceleaky-condition
disallow entity-modelleaky-condition
leaky-condition ::= expr
expr ::= (expr) | expr && expr | expr || expr
| conn-ref == value | conn-ref != value
conn-ref ::= port-name | port.port-index | term.term-index
port-name ::= scalar-port-name |
vector-port-name[bit-index]
value ::= 0|1|Z|X
This command describes specific leaky states that would not otherwise be recognized. At
every strobe try, PowerFault examines your entire netlist for leaky states. If your chip has
leaky states that cannot be detected by analyzing the Verilog netlist, you might need to
use the disallow command.

For example, consider the case where the input pads on your chip have pullups as shown
in the following figure, but these pullups are missing from your Verilog models.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1225

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

Figure 178 Input Macro With Pullup

   

If IPUP is the entity model for your input pad and its input port is named in?, use the
following command to tell PowerFault that the DUT is leaky when the input is 0:

$ssi_iddq("disallow IPUP in == 0");
You can also refer to a port or terminal by its index number. Index numbers start at
zero. For example, if port in is the second port in the IPUP port list, then the preceding
command example is equivalent to the following command:

$ssi_iddq("disallow IPUP port.1 == 0");
The leaky-condition argument specifies an entity model or a particular instance that
is nonquiescent. This condition is a Boolean expression describing the combination of
port values or terminal values that make the chip leaky. If you specify an entity model, the
condition applies to all instances of the entity model.

For example, assume the bidirectional pads on your chip have pulldowns as shown in the
following figure, but those pulldowns are missing from your Verilog model.

Figure 179 Bidirectional Macro With Pulldown

   

To tell PowerFault that BDRV is an entity model that is leaky when port io is high and port
en is high, use this command:

$ssi_iddq("disallow BDRV (io == 1) && (en == 1)");
The == and != operators differ from their Verilog counterparts. The expression (conn-
ref == value) is true only if the values match exactly. For example, if io is X, then the
expression (io == 1) is not true.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1226

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

The following form of the disallow command turns on global options, which apply to
every net:

disallow (Xs|Zs|Caps)
Turning on these options makes PowerFault follow pessimistic rules for determining
quiescence. By default, nets at three-state (Z), unknown (?X?), and capacitive (Caps)
values are allowed as long as they do not cause leakage. In other words, a net can be at Z
if it does not have any loads.

To make PowerFault compatible with less-sophisticated IDDQ tools that disallow every X
or Z, use these commands:

$ssi_iddq("disallow Xs");
$ssi_iddq("disallow Zs");
Using these disallow commands, no Xs or Zs are allowed because a single X or Z
implies nonquiescence and disqualifies an IDDQ strobe try. Because PowerFault analyzes
the netlist in detail, if your chip is modeled structurally (the logic is implemented with
Verilog user-defined primitives and ordinary primitives), you probably do not need to use
this form of the disallow command. It is better to describe only the specific leaky states,
so that more strobe times are allowed.

Fault Seeding Commands
At the beginning of the simulation, before using the strobe_try command to evaluate
strobes for IDDQ testing, you need to tell PowerFault where to seed faults. For this
purpose, you can use seed commands to seed faults automatically, or read commands to
seed faults from an existing fault list.

The seed and read commands are cumulative. If you want to seed some faults
automatically and seed some faults from a fault list, use both the seed and read
commands.

The following sections describe the various seeding commands:

• seed SA

• seed B

• scope

• read_bridges

• read_tmax

• read_verifault

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1227

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

• read_zycad

• exclude

seed SA
seed SA module-instance+
seed SA net-instance+
This command seeds both stuck-at-0 and stuck-at-1 faults in each of the specified
instances or nets. For module instances, PowerFault performs automatic hierarchical
seeding of each module and all its lower-level modules. The placement of fault seeds
(ports, terminals, and so on) is determined by the current fault model. For more
information, see Fault Model Commands.

Here are some examples of valid seed SA commands:

$ssi_iddq("seed SA tbench.M88.IO tbench.M88.CORE");

$ssi_iddq("seed SA tbench.M88.IO.CO tbench.M88.IO.IRDY");
seed B
seed B module-instance+
seed B net-instancenet-instance
This command automatically seeds bridging faults throughout the specified instances
or between two specified nets. For module instances, PowerFault performs automatic
hierarchical seeding of each module and all its lower-level modules. The placement of fault
seeds (between ports, terminals, and so on) is determined by the current fault model. For
more information, see Fault Model Command.

Here are some examples of valid seed B commands:

$ssi_iddq("seed B tbench.M88.IO");
$ssi_iddq("seed B tbench.M88.IO.SHF0 tbench.M88.IO.SHF1");
scope
scope module-instance
This command sets the scope for the faults seeded by subsequent read_ type commands.
By default, PowerFault expects full path names for all fault entries. Some ATPG
environments generate fault entries that have incomplete path names (for example,
without the testbench module name). For those environments, use the scope command to
specify a prefix for all path names.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1228

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

For example, the following four commands tell PowerFault to do the following: seed faults
from files tbench.core and tbench.io?, consider all names in U55.flist to be relative
to tbench.core?, and consider all names in U24.flist to be relative to tbench.io?:

$ssi_iddq("scope tbench.core");
$ssi_iddq("read_tmax U55.flist");
$ssi_iddq("scope tbench.io");
$ssi_iddq("read_tmax U24.flist");
read_bridges
read_bridges file-name
This command reads the names of net pairs from a file (one pair per line) and seeds a
bridging fault between each listed pair. For example, a file containing the following two
lines would seed bridging faults in the tbench.M88 module between TA and TB?, and
between PA and PB?:

tbench.M88.TA tbench.M88.TB
tbench.M88.PA tbench.M88.PB
read_tmax
read_tmax [strip] fault-classes* file-name
fault-classes ::=(DS|DI|AP|NP|UU|UO|UT|UB|UR|AN|NC|NO|--)
This command reads fault entries from a TestMAX ATPG fault list. By default, only fault
entries in the AP, NP, NC, and NO classes are seeded. If you want to seed faults in other
classes, use the fault-classes argument to specify the fault classes. For definitions of
these fault classes, refer to the TestMAX ATPG User Guide.

For example, the following command seeds faults in the fa1 file that are in the following
classes: possibly detected (AP, NP), undetectable (UU, UT, UB, UR), ATPG untestable
(AN), and not detected (NC, NO):

$ssi_iddq("read_tmax AP NP UU UT UB UR AN NC NO fa1");
By default, PowerFault remembers all the comment lines and unseeded faults in the fault
list, so that when it produces the final fault report, you can easily compare the report to the
original fault list. If you do not want to save this information (it requires extra disk space),
use the strip option:

$ssi_iddq("read_tmax strip AP NP UU UT UB UR AN NC NO fa1");
read_verifault
read_verifault [strip] status-types* file-name

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1229

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

status-types ::=(detected|potential|undetected|
drop_task|drop_active|drop_looping|drop_detected |
drop_potential|drop_pli|drop_hyper_active|
drop_hyper_mem|untestable)
This command reads fault seeds from a Verifault-XL fault list. By default, only fault
descriptors without status or with the status undetected or potential are seeded. If you
want to seed faults with other status types, use the status-types argument to specify the
status types.

For example, the following command seeds all faults with status potential, undetected,
or untestable from the file M88.flist?:

$ssi_iddq("read_verifault potential undetected untestable
M88.flist");
By default, PowerFault remembers all the comment lines and unseeded faults in the fault
list, so that when it produces the final fault report, you can easily compare the report to the
original fault list. If you do not want to save this information (it requires extra disk space),
use the strip option:

$ssi_iddq("read_verifault strip potential undetected
untestable M88.flist");
read_zycad
read_zycad [strip] fault-types* result-types* file-name
fault-types::= (i|o|n)
result-types::= (C|D|H|I|M|N|O|P|U)
This command reads fault seeds from a Zycad fault origin file. By default, only fault origins
with the node type (n) and the undetected (U) or not run yet (N) or possibly (P) result
are seeded. If you want to seed other fault types or results, use the fault-types and
result-types arguments to specify them.

For example, the following command seeds all input and output faults with the impossible
(I) and possibly (P) result from the file M88.fog?:

$ssi_iddq("read_zycad i o I P M88.fog");
exclude
exclude module-instance+
exclude primitive-instance+

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1230

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

exclude entity-model+
The exclude command excludes specified parts of the design from fault seeding. This
command specifies instances and entities that are to be excluded from the fault seeding
performed by the seed?, read_tmax?, read_verifault?, and read_zycad commands.

For example, to exclude all instances of the BRAM16 entity from fault seeding, use the
following command:

$ssi_iddq("exclude BRAM16");
To exclude individual instances, specify the full path name of each instance:

$ssi_iddq("exclude tbench.M88.io tbench.M88.mem");
The exclude command excludes only instances from seeding. It does not exclude them
from being checked for leaky states. If you need to ignore a leaky state, use the allow
command, described in Leaky State Commands.

Fault Model Commands
The model commands determine where the seed commands will place faults. Therefore,
if you use a model command, you must execute it before the seed command. When you
specify a module instance name in the seed command, the seeding algorithm performs a
hierarchical traversal of the instance, seeding faults on the ports and terminals specified
by the current fault model. By default, this traversal stops at cell boundaries.

The settings made with a model command are not cumulative. The current model is
based only on the most recent model command. In other words, each model command
overwrites the settings made by the previous model command.

The following sections describe the fault model commands:

• model SA

• model B

model SA
model SA directionsa-placement [seed_inside_cells]
direction ::= (port_IN|port_OUT|term_IN|term_OUT)+
sa-placement ::= (all_mods|leaf_mods|cell_mods|prims)+
This command specifies where the seed SA command seeds stuck-at faults. The following
table summarizes the command options.

Table 17 Options for Stuck-At Fault Models

Direction Options

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1231

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

Table 17 Options for Stuck-At Fault Models (Continued)

port_IN Enables stuck-at faults on input ports of chosen modules

port_OUT Enables stuck-at faults on output ports of chosen modules

term_IN Enables stuck-at faults on input terminals of primitives

term_OUT Enables stuck-at faults on output terminals of primitives

Stuck-At Placement Options

all_mods Chooses all modules for port stuck-at faults

leaf_mods Chooses leaf modules for port stuck-at faults

cell_mods Chooses cell modules for port stuck-at faults

prims Chooses primitives for terminal stuck-at faults

Seed Inside Cells Option

seed_inside_cells Enables fault seeding inside cells

The default stuck-at fault seeding behavior is equivalent to the following model SA
command:

model SA port_IN port_OUT term_IN term_OUT
leaf_mods cell_mods prims
With the default stuck-at fault model, faults are seeded on input and output ports of cell
and leaf modules, and on input and output terminals of every primitive, but not inside cells.
Primitives and modules found inside of cells are ignored. A leaf module is a module that
does not contain any instances of submodules.

If you want to seed inside cells, include the seed_inside_cells option. For example,
these two lines seed stuck-at faults on output terminals of every primitive, including those
inside cells:

$ssi_iddq("model SA term_OUT prims seed_inside_cells");
$ssi_iddq("seed SA tbench.M88");
For detailed examples showing how the model SA command options affect the placement
of fault seeds, see Options for PowerFault-Generated Seeding.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1232

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

model B
model B bridge-placement [seed_inside_cells]
bridge-placement ::= (cell_ports|fet_terms|
gate_IN2IN|gateIN2OUT|vector)+
This command specifies where the seed B command seeds bridging faults. A bridging
fault is a short circuit between two different functional nodes in the design. A fault of this
type is considered detected by an IDDQ strobe when one node is at logic 1 and the other
is at logic 0.

The following table summarizes the model B command options.

Table 18 Options for Bridging Fault Models

Bridge Placement Options

cell_port
s

Enables bridging faults between adjacent ports of cells and between each input and
output port of cells (if the cell has two or fewer output ports)

fet_terms Enables bridging faults between all pairs of terminals of field effect transistor (FET)
switches

gate_IN2I
N

Enables bridging faults between adjacent input terminals of non-FET primitives
(including UDPs)

gate_IN2O
UT

Enables bridging faults between all pairs of input and output terminals of non-FET
primitives (including UDPs)

vector Enables bridging faults between adjacent bits of expanded vectors

Seed Inside Cells Option

seed_insi
de_cells

Enables fault seeding inside cells

The default bridging fault seeding behavior is equivalent to the following model B
command:

model B cell_ports fet_terms gate_IN2IN gate_IN2OUT vector
With the default bridging fault model, bridging faults are seeded between the ports of cells,
the terminals of primitives, and the bits of expanded vectors. No seeding is performed
inside cells.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1233

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

To seed other types of bridging faults, specify them with the model B command. For
example, these two lines seed bridging faults between the ports of all cells inside
tbench.M88?:

$ssi_iddq("model B cell_ports");
$ssi_iddq("seed B tbench.M88");
For detailed examples showing how the model B command options affect the placement
of fault seeds, see Options for PowerFault-Generated Seeding.

Strobe Commands
After you specify the DUT modules and seed the faults, you need to describe the IDDQ
strobe timing. When the testbench is running, it must use either the strobe_try or
strobe_force command to indicate when it is appropriate to apply an IDDQ strobe.

The following sections describe the various strobe commands:

• strobe_try

• strobe_force

• strobe_limit

• cycle

strobe_try
strobe_try
You should have the testbench invoke the strobe_try command at as many potential
strobe times as possible. The strobe_try command tells PowerFault that the circuit is
stable and can be tested for quiescence.

For example, you can use the following line just before the end of each cycle:

$ssi_iddq("strobe_try")
At each occurrence of this line, PowerFault determines whether the circuit is quiescent,
allowing an IDDQ strobe to be applied. If the verb on command has been executed, the
simulator reports the result of each strobe_try?, allowing you to identify nonquiescent
strobe times.

You should use the strobe_try command one time per tester cycle, and it should be
the last event of the cycle. For example, if you have delay paths that take multiple clock
cycles, do not use the command when those paths are active.

strobe_force
strobe_force

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1234

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

This command turns off quiescence checking and allows PowerFault to consider all strobe
times. Use this command only if you are sure the chip is quiescent. For example, you can
use it if your technology provides an IDDQ_OK signal that forces the chip into quiescence.

If you know the quiescent points in your simulation, you can use the strobe_force
command rather than the strobe_try command to reduce the simulation runtime. With
the strobe_force command, PowerFault does not need to check the entire chip for
quiescence at each strobe try.

strobe_limit
strobe_limit max-strobes
This command terminates the Verilog simulation when max-strobes qualified strobe
points have been found.

For example, the following command stops the simulation after 100 qualified strobe points
have been found:

$ssi_iddq("strobe_limit 100");
cycle
cycle cycle-number
This command sets the initial PowerFault cycle number, an internal counter maintained
by PowerFault. The cycle number has no affect on finding or selecting IDDQ strobes. It is
used during Verilog simulations and during strobe selection to report a cycle number along
with the simulation time of each strobe.

By default, the cycle number begins at 1 and is incremented after every strobe try. If
your test program does not strobe on every cycle, you can use the cycle command to
synchronize PowerFault with the cycle count of your test program. For example, if your
cycle count begins at 0 instead of 1, use this command:

$ssi_iddq("cycle 0");
The cycle command can also accept a nonstring argument, allowing you to set the cycle
number to the value of a simulation variable. For example:

always @testbench.CYCLE
$ssi_iddq("cycle", testbench.CYCLE);
Circuit Examination Commands
The circuit examination commands, status and summary?, provide information on the
location and cause of IDDQ testing problems found in the design.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1235

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

The following sections describe the circuit examination commands:

• status

• summary

status
status [drivers]
(leaky|nonleaky|both|all_leaky)[file-name]
This command determines why your circuit is quiescent or nonquiescent at a particular
simulation time. It is most useful when you are having difficulty producing qualified strobe
points.

If there is a persistent leaky node in your circuit (for example, caused by an always-active
pulldown), PowerFault will not be able to find quiescent strobe points. Fortunately, the
status leaky command can quickly identify any leaky nodes, allowing you to improve
your test program so that it produces more quiescent strobe points.

Use the following command to print out all the net conditions that imply that the circuit is
not quiescent:

$ssi_iddq("status leaky");
The command prints out the name of each leaky net and the reason that the net’s value
implies that the circuit is not quiescent. There are two possible causes for a leaky node: a
floating input or drive contention.

Here is an example of a report generated by the status command:

Time 35799
top.dut.ioctl.stba is leaky. Re: float
top.dut.ioctl.addr[0] is leaky. Re: fight
top.dut.ioctl.addr[1] is leaky. Re: possible fight

If you use the status command and the strobe_try command in the same simulation
run, and you want the status report to include the first strobe, you must execute the first
status command before the first strobe_try command.

Use the following command to print out all the net conditions that imply that the circuit is
quiescent:

$ssi_iddq("status nonleaky");
Use the following command to print out all the net conditions that imply that the circuit is or
is not quiescent:

$ssi_iddq("status both");

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1236

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

The output of the status command can be quite long because it can contain up to one
line for every net in the chip. You can direct the output to a file instead of to the screen.
For example, to write the leaky states into a file named bad_nets?, use the following
command:

$ssi_iddq("status leaky bad_nets");
The simulator creates the bad_nets file the first time it executes the status command.
When it executes the status command again in the same simulation run, it appends the
output to the bad_nets file, together with the current simulation time. This creates a report
of the leaky states at every disqualified strobe time.

By default, the leaky option reports only the first occurrence of a leaky node. If the same
leaky condition occurs at different strobe times, the report says “All reported” at each such
strobe time after the report of the first occurrence. To get a full report on all leaky nodes,
including those already reported, use the all_leaky option instead of the leaky option,
as in the following example:

$ssi_iddq("status all_leaky bad_nodes");
This can produce a very long report.

The drivers option makes the status command print the contribution of each driver.
However, it reports only gate-level driver information. For example, consider the following
command:

$ssi_iddq("status drivers leaky bad_nodes");
The command produces a report like this:

top.dut.mmu.DIO is leaky: Re: fight
St0<- top.dut.mmu.UT344
St1<- top.dut.mmu.UT366
StX<- resolved value
top.dut.mmu.TDATA is leaky: Re: float
HiZ<- top.dut.mmu.UT455
HiZ<- top.dut.mmu.UT456
In this example, top.dut.mmu.DIO has a drive fight. One driver is at strong 0 (St0) and
the other is at strong 1 (St1). The contributing value of each driver is printed in Verilog
strength/value format (described in section 7.10 of the IEEE 1364 Verilog LRM).

The same status command without the drivers option produces a report like this:

top.dut.mmu.DIO is leaky: Re: fight

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1237

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

top.dut.mmu.TDATA is leaky: Re: float
summary
summary file-name
When you use the summary command, PowerFault prints a summary at the end of the
simulation that describes problem nodes. It lists the nodes reported by the status
command and also lists the nodes that were not reported but might cause problems.

The summary for each node is reported in this format:

net-instance-name: property+
The summary command merges simulation information reported by the status command
with static information from the formal analyzer. For example, consider the case where the
status command produces the following output:

Time 3999
tbench.M88.SELM.RESET is leaky: Re: float
tbench.M88.VEE[0] is leaky: Re: float
HiZ <- tbench.M88.CB.vee0.out
HiZ <- tbench.M88.LB.vee0.out
Time 12999
tbench.M88.DIO[1] is leaky: Re: possible fight
St0 <- tbench.M88.dpad1_clr
StX <- tbench.M88.dpad1_snd
StX <- resolved value
tbench.M88.BIO is leaky: Re: disallowed X
tbench.M88.U244 is leaky: Re: ARAM (WR_EN == 1 && DATA[0]
== Z)
The corresponding summary might look like this:

Summary of problem nodes:
tbench.M88.SELM.RESET: did float : unconnected
tbench.M88.VEE[0]: did float : not muxed
tbench.M88.DIO[1]: did fight : can float : not muxed

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1238

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Verilog Simulation with PowerFault

Feedback

tbench.M88.BIO: disallowed value
tbench.M88.U244: disallow ARAM (WR_EN == 1 && DATA[0] == Z)
tbench.M88.APP.POW: constant fight
The summary lists nodes that can cause problems for IDDQ testing. It might also identify
node properties that are considered design problems. For example, if floating nodes are
illegal in your design environment, you should check to see whether any nodes have the
“did float” or “can float” property.

The more your circuit is modeled at the gate level, the more accurate the summary is.

The following table lists and describes the node properties reported by the summary
command.

Table 5 Node Properties Reported by summary Command

Node
Propert
y

Description

did float The node was reported as floating (or possibly floating) during simulation.

did fight The node was reported as having (or possibly having) drive contention during the
simulation.

did pull The node was reported as having (or possibly having) an active pullup/pulldown during
simulation.

disallow
ed value

The node was reported as violating a simple
disallow
command during the simulation.

disallow
expr

The node was reported as violating a compound
disallow
command during the simulation. expr contains the text of the
disallow
command.

can float The node can float, but was not reported as floating during the simulation.

can fight The node can have drive contention, but was not reported as having this condition during
the simulation.

can pull The node has pullups/pulldowns, but they were not active during the simulation.

not
muxed

The node has multiple drivers that are not multiplexed. In other words, the control logic
for the drivers does not always enable one and only one driver at a time.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1239

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

Node
Propert
y

Description

unconne
cted

The node is an unconnected input.

constant
fight

The node has a constant current. In other words, it has both a pullup and a pulldown.

Disallowed/Disallow Value Property
A node with the “disallowed value” property violated a simple disallow command at some
time during the simulation. Here are some examples of simple disallow commands:

$ssi_iddq("disallow tbench.M88 (BIO == X)");
$ssi_iddq("disallow BUF3I (out == 0)");
A node with the “disallow expr” property violated a compound disallow command at
some time during the simulation. Here are some examples of compound disallow
commands:

$ssi_iddq("disallow ARAM (WR_EN == 1 && DATA[0] == Z)");
$ssi_iddq("disallow PHMX (in == 1 && en != 0)");
Can Float Property
Each node with the “can float” property requires special consideration because it can
cause high current. Each such node was never reported as floating during the simulation
because of one or more of these conditions:

• The node never floated.

• The node floated but was blocked.

• The node floated but did not have a load (it was not connected to a gate-level input).

For more information, see Floating Nodes and Drive Contention.

Faults and Fault Seeding
The process of specifying fault locations for IDDQ testing is called fault seeding. You can
have PowerFault seed faults automatically from the design description, or you can use a
fault list generated by TestMAX ATPG or another tool.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1240

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

The following sections describe faults and fault seeding:

• Fault Models

• Fault Seeding

• Options for PowerFault-Generated Seeding

Fault Models
The TestMAX ATPG and Verilog/PowerFault environments support several different types
of fault models which are described in the following sections:

• Fault Models in TestMAX ATPG

• Fault Models in PowerFault

Fault Models in TestMAX ATPG
In TestMAX ATPG, the term “fault model” refers to the type of fault used for test pattern
generation.

• For IDDQ testing, there are two choices: stuck-at and IDDQ. The stuck-at fault model is
the standard, default model most often used to generate test patterns.

• The IDDQ fault model is used to generate test patterns specifically for IDDQ testing.

There are two types of IDDQ fault models, the pseudo-stuck-at model and the toggle
model.

The fault model choice in TestMAX ATPG determines how the ATPG algorithm operates.
For the stuck-at model, TestMAX ATPG attempts to propagate the effects of faults to the
scan elements and device outputs. For the IDDQ model, TestMAX ATPG attempts to
control all nodes to 0 and 1 while avoiding conditions that violate quiescence.

For more information on TestMAX ATPG fault models, see the TestMAX ATPG User Guide
or consult the TestMAX ATPG online help.

Fault Models in PowerFault
In the PowerFault environment, the term “fault model”? refers to the algorithm used to
seed faults in the design when you use the seed SA command to seed stuck-at faults or
the seed B command to seed bridging faults.

Stuck-At Faults
A stuck-at-0 fault is considered detected when the node in question is placed in the 1
state, the circuit is quiescent, and an IDDQ strobe occurs. Similarly, a stuck-at-1 fault is
considered detected when the node is placed in the 0 state, the circuit is quiescent, and an
IDDQ strobe occurs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1241

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

To seed stuck-at faults from a TestMAX ATPG fault file, use the read_tmax command.
Similar commands are available to seed faults from a Verifault fault list. To seed stuck-at
faults automatically throughout the design based on the locations of the modules, cells,
primitives, ports, and terminals in the design, use the model SA and seed SA commands.

Untestable faults are ignored during fault detection and strobe selection, but they are still
listed in fault reports for reference. Faults untestable by PowerFault include stuck-at-0
faults on supply0 wires and stuck-at-1 faults on supply1 wires.

Bridging Faults
A bridging fault involves two nodes. The fault is considered detected when one node is
placed in the 1 state, the other is placed in the 0 state, the circuit is quiescent, and an
IDDQ strobe occurs. For an accurate fault model, the two nodes in question must be
physically adjacent in the fabricated device, so that actual bridging between the nodes is
possible in a defective device.

You can seed bridging faults by reading them from a list (which could be generated by an
external tool) by using the read_bridges command. You can also seed bridging faults
automatically between adjacent cell ports, between terminals of field effect transistor (FET)
switches, between the terminals of gate primitives, and between adjacent vector bits. In
this case, adjacent means “right next to each other in the Verilog description.” To seed
bridging faults in this manner, use the model B and seed B commands.

Fault Seeding
At the beginning of the Verilog/PowerFault simulation, before using the strobe_try
command to evaluate strobes for IDDQ testing, you need to tell PowerFault where to
seed faults. To do this, you can use seed commands to seed faults automatically or the
read_tmax command to seed faults from an existing fault list.

The seed and read_tmax commands are cumulative. If you want to seed some faults
automatically and seed some faults from a fault list, you can use both the seed and
read_tmax commands, and all of the faults seeded by the two commands are used.

The following sections describe fault seeding:

• Seeding From a TestMAX ATPG Fault List

• Seeding From an External Fault List

• PowerFault-Generated Seeding

Seeding From a TestMAX ATPG Fault List
To seed the design with stuck-at faults from a TestMAX ATPG fault list, use the read_tmax
command. In this command, you specify the TestMAX ATPG fault file name, and
optionally, the detectability classes of faults to be seeded.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1242

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

In TestMAX ATPG, you create a fault file upon completion of test pattern generation
by using the write_faults command. Typically, you write a complete fault list using a
command similar to the following:

write_faults mylist.faults -replace -all
Before you generate the fault list, you need to set the hierarchical delimiter character in
TestMAX ATPG. PowerFault expects the delimiter character to be a period. By default,
TestMAX ATPG uses the forward slash (/) character. To generate the fault list in a
compatible format, use the following set_build command before you build the model:

set_build -hierarchical_delimiter .
The generated fault file describes each fault in terms of type (stuck-at-0 or stuck-at-1),
detectability class, and location in the design. For example:

sa0 DS .testbench.fadder.co
sa1 DS .testbench.fadder.co
sa0 DS .testbench.fadder.sum
sa1 DS .testbench.fadder.sum
...
Each fault class and each hierarchical group of fault classes has a two-character
abbreviation. For example, DS stands for “detected by simulation.”

The TestMAX ATPG fault classes are defined in the following list:

DT - detected
DS - detected by simulation
DI - detected by implication
PT - possibly detected
AP - ATPG untestable, possibly detected
NP - not analyzed, possibly detected
UD - undetectable
UU - undetectable, unused
UO - undetectable, unobservable
UT - undetectable, tied
UB - undetectable, blocked

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1243

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

UR - undetectable, redundant
AU - ATPG untestable
AN - ATPG untestable, not detected
ND - not detected
NC - not controlled
NO - not observed
TestMAX ATPG places each fault into one of the bottom-level fault classes. For more
information about fault classes, refer to the TestMAX ATPG User Guide.

By default, the PowerFault command read_tmax seeds faults in the AP, NP, NC, and
NO classes. If you want to seed faults belonging to classes other than the default set,
you need to specify the classes in the read_tmax command. For example, the following
command seeds faults in the fa1 file that belong to the following classes: possibly
detected (AP, NP), undetectable (UU, UT, UB, UR), ATPG untestable (AN), and not
detected (NC, NO):

$ssi_iddq("read_tmax AP NP UU UT UB UR AN NC NO fa1");
One way to use this command is to target undetectable and possibly detected faults in
TestMAX ATPG. In this way, PowerFault complements TestMAX ATPG to obtain the best
possible overall test coverage. If adequate coverage of these faults is obtained with just
a few IDDQ strobes and if your tester time budget allows it, you can then seed faults
throughout the design with the seed SA command and generate additional IDDQ strobes
to obtain even better IDDQ test coverage.

Seeding From an External Fault List
If you use the Verifault-XL fault simulator, you can seed the design with faults from a
Verifault fault list or fault dictionary. Similarly, if you use the Zycad fault simulator, you can
seed the design with faults from the Zycad f

To seed faults from these types of files, use the read_verifault command, described in
“read_verifault”.

To seed the design with bridging faults from a file-based list, use the read_bridges
command. For details, see “read_bridges” in the PowerFault PLI Tasks section.

PowerFault-Generated Seeding
To have PowerFault automatically seed the design, use the seed SA command to seed
stuck-at faults or the seed B command to seed bridging faults. To specify how these
seeding algorithms operate, use the model SA and model B commands. For details, see
“Fault Model Commands” in the PowerFault PLI Tasks section.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1244

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

Options for PowerFault-Generated Seeding
For PowerFault-generated seeding, use the seed SA and seed B commands. The model
SA and model B commands specify the behavior of the seeding algorithms.

The following sections provide some specific examples showing how you can use the
model SA and model B command options to control the seeding of faults in the design:

• Stuck-At Fault Model Options

• Bridging Faults

For basic information on using the model SA or model B command, see “model SA” or
“model B” in PowerFault PLI Tasks section.

Stuck-At Fault Model Options
The model SA command determines where the seed SA command seeds stuck-at faults.
The following table lists and describes the fault model options available in the model SA
command.

Table 19 Options for Stuck-At Fault Models

Direction Options

port_IN Enables stuck-at faults on input ports of chosen modules

port_OUT Enables stuck-at faults on output ports of chosen modules

term_IN Enables stuck-at faults on input terminals of primitives

term_OUT Enables stuck-at faults on output terminals of primitives

Stuck-At Placement Options

all_mods Chooses all modules for port stuck-at faults

leaf_mods Chooses leaf modules for port stuck-at faults

cell_mods Chooses cell modules for port stuck-at faults

prims Chooses primitives for terminal stuck-at faults

Seed Inside Cells Option

seed_inside_cells Enables fault seeding inside cells

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1245

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

The all_mods?, leaf_mods?, and cell_mods options specify which types of modules will
have port faults. The port_IN and port_OUT options specify which types of ports from
those modules are seeded with stuck-at faults.

The prims option specifies that any primitive instance found within a seeded module will
have terminal faults. The term_IN and term_OUT options specify which types of terminals
from those primitives are seeded with stuck-at faults.

Here is a specific example to help demonstrate how these options work. Assume that you
have the following Verilog description of a testbench module called tbench.M88:

module M88();
hier hmod(hout, hin);
leaf lmod(lout, lin);
cell cmod(cout, cin);
nand(nout, nin1, nin2);
endmodule

module hier(out, in);
output out;
input in;
leaf lmod(lout, lin);
endmodule

module leaf(out, in);
output out;
input in;
nand(nout, nin1, nin2);
endmodule

`celldefine
module cell(out, in);
output out;
input in;
nand(nout, nin1, nin2);

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1246

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

endmodule
`endcelldefine
At the top level of hierarchy, this testbench module contains a hierarchical module (?
hmod?), a leaf-level module (?lmod?), a module that has been defined as a cell (?cmod?),
and a primitive gate (?nand?). The following figure shows a circuit diagram corresponding
to this Verilog description.

Figure 180 Circuit Example for Stuck-At Fault Seeding

   

Default Stuck-At Fault Seeding
By default, the seed SA command seeds port faults on leaf and cell modules and seeds
terminal faults on primitives. The default behavior is equivalent to using the following
model SA command:

model SA port_IN port_OUT term_IN term_OUT
leaf_mods cell_mods prims
Suppose that you start stuck-at seeding using the default model:

$ssi_iddq("seed SA tbench.M88");
This command seeds stuck-at faults on the following nets:

tbench.M88.lmod.lin
tbench.M88.lmod.lout
tbench.M88.hmod.lmod.nin1
tbench.M88.hmod.lmod.nin2
tbench.M88.hmod.lmod.nout
tbench.M88.lin

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1247

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

tbench.M88.lout
tbench.M88.lmod.nin1
tbench.M88.lmod.nin2
tbench.M88.lmod.nout
tbench.M88.cin
tbench.M88.cout
tbench.M88.nin1
tbench.M88.nin2
tbench.M88.nout
The following figure shows the circuit diagram with each seeded fault marked with an
asterisk (*).

Figure 181 Seed Locations: Default Stuck-At Fault Model

   

all_mods
The all_mods option chooses all modules for port stuck-at faults. Thus, the following two
lines seed faults on the input and output ports of all modules inside tbench.M88?:

$ssi_iddq("model SA port_IN port_OUT all_mods");
$ssi_iddq("seed SA tbench.M88");
As a result, stuck-at faults are seeded on the following nets:

tbench.M88.hin
tbench.M88.hout
tbench.M88.hmod.lin

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1248

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

tbench.M88.hmod.lout
tbench.M88.lin
tbench.M88.lout
tbench.M88.cin
tbench.M88.cout
The following figure shows the resulting locations of seeds using this fault model.

Figure 182 Seed Locations: all_mods Stuck-At Fault Model

   

cell_mods
The cell_mods option chooses cells for port stuck-at faults. Thus, the following two lines
seed faults on the input and output ports of every cell module inside tbench.M88?:

$ssi_iddq("model SA port_IN port_OUT cell_mods");
$ssi_iddq("seed SA tbench.M88");
As a result, stuck-at faults are seeded on the following nets:

tbench.M88.cin
tbench.M88.cout
The following figure shows the resulting locations of seeds using this fault model.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1249

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

Figure 183 Seed Locations: cell_mods Stuck-At Fault Model

   

leaf_mods
The leaf_mods option chooses leaf-level modules for port stuck-at faults. Thus, the
following two lines seed faults on the input and output ports of every leaf module inside
tbench.M88?:

$ssi_iddq("model SA port_IN port_OUT leaf_mods");
$ssi_iddq("seed SA tbench.M88");
As a result, stuck-at faults are seeded on the following nets:

tbench.M88.hmod.lin
tbench.M88.hmod.lout
tbench.M88.lin
tbench.M88.lout
The following figure shows the resulting locations of seeds using this fault model.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1250

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

Figure 184 Seed Locations: leaf_mods Stuck-At Fault Model

   

prims
The prims option chooses primitives for terminal stuck-at faults. Thus, the following two
lines seed faults on the input terminal of every primitive inside tbench.M88?:

$ssi_iddq("model SA term_IN prims");
$ssi_iddq("seed SA tbench.M88");
As a result, stuck-at faults are seeded on the following nets:

tbench.M88.hmod.lmod.nin1
tbench.M88.hmod.lmod.nin2
tbench.M88.lmod.nin1
tbench.M88.lmod.nin2
tbench.M88.nin1
tbench.M88.nin2
The following figure shows the resulting locations of seeds using this fault model.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1251

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

Figure 185 Primitive Input Stuck-At Fault Model

   

The following two lines seed faults on the output terminal of every primitive inside
tbench.M88:

$ssi_iddq("model SA term_OUT prims");
$ssi_iddq("seed SA tbench.M88");
As a result, stuck-at faults are seeded on the following nets:

tbench.M88.hmod.lmod.nout
tbench.M88.lmod.nout
tbench.M88.nout
The following figure shows the resulting locations of seeds using this fault model.

Figure 186 Seed Locations: Primitive Output Stuck-At Fault Model

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1252

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

seed_inside_cells
The seed_inside_cells option enables seeding of faults inside cells. Thus, the following
two lines seed faults on the output terminal of every primitive inside tbench.M88?,
including those inside cells:

$ssi_iddq("model SA term_OUT prims seed_inside_cells");
$ssi_iddq("seed SA tbench.M88");
As a result, stuck-at faults are seeded on the following nets:

tbench.M88.hmod.lmod.nout
tbench.M88.lmod.nout
tbench.M88.cmod.nout
tbench.M88.nout
The following figure shows the resulting locations of seeds using this fault model.

Figure 187 Primitive Output Seeding for seed_inside_cells

   

Bridging Faults
The model B command determines where the seed B command seeds bridge faults. The
following table lists and describes the bridge placement options available for the model B
command.

Table 20 Options for Bridging Fault Models

Bridge Placement Options

cell_port
s

Enables bridging faults between adjacent ports of cells and between each input and
output port of cells (if the cell has no more than two output ports)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1253

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

Table 20 Options for Bridging Fault Models (Continued)

fet_terms Enables bridging faults between all pairs of terminals of FET switches

gate_IN2I
N

Enables bridging faults between adjacent input terminals of non-FET primitives
(including UDPs)

gate_IN2O
UT

Enables bridging faults between all pairs of input and output terminals of non-FET
primitives (including UDPs).

vector Enables bridging faults between adjacent bits of expanded vectors

Seed Inside Cells Option

seed_insi
de_cells

Enables fault seeding inside cells

cell_ports
The cell_ports option seeds bridging faults between adjacent ports of each cell, and
also between the cell inputs and outputs if the cell has no more than two output ports.
Ports are considered adjacent when they appear next to each other in the module’s port
list definition. For example, consider the following module definition:

‘celldefine
module bsel(out, in1, in2, in3);
output out;
input in1, in2, in3;
endmodule
‘endcelldefine
The following port pairs are considered adjacent:

out, in1
in1, in2
in2, in3
As a result, the cell_ports option seeds five bridging faults: three between pairs of
adjacent ports and two more between the inputs and outputs. This is the bridging fault list:

out, in1
in1, in2

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1254

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

in2, in3
out, in2
out, in3
fet_terms
The fet_terms option seeds bridging faults between all pairs of terminals of each FET
switch. This results in four bridging faults for a CMOS switch or three bridging faults for
any other type of switch.

For example, consider this primitive:

nmos UF44(out, data, ctl);
The term_fets option seeds these three bridging faults:

out, data
out, ctl
data, ctl
gate_IN2IN
The gate_IN2IN option seeds bridging faults between adjacent input terminals of gates.
Terminals are considered adjacent when they appear next to each other in the primitive’s
terminal list.

For example, consider the following primitive:

and U2033(out, in1, in2, in3);
The gate_IN2IN option seeds the following two bridging faults:

in1, in2
in2, in3
gate_IN2OUT
The gate_IN2OUT option is like the gate_IN2IN option, except that it seeds bridging faults
between inputs and outputs. For the previous example, the gate_IN2OUT option seeds the
following three bridging faults:

out, in1
out, in2
out, in3

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1255

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Faults and Fault Seeding

Feedback

vector
The vector option seeds bridging faults between adjacent bits of a vector. Two bits are
considered adjacent when they have an index within one unit of each other.

For example, consider the following vector:

wire [3:0] dvec;
The vector option seeds the following three bridging faults:

dvec[3], dvec[2]
dvec[2], dvec[1]
dvec[1], dvec[0]
seed_inside_cells
The seed_inside_cells option enables seeding of faults inside cells.

Assume that you have a circuit with a module tbench.M88 that contains an instance of the
following cell:

‘celldefine
module n2buf(a, b, en, out);
input a, b, en;
output out;
nmos(out, n2out, en);
nand(a2out, a, b);
endmodule
‘endcelldefine
The following figure shows a circuit diagram for this cell.

Figure 188 Example Circuit for Bridging Faults

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1256

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

The following two lines seed bridging faults between cell ports and between FET-switch
terminal pairs inside tbench.M88?:

$ssi_iddq("model B cell_ports fet_terms");
$ssi_iddq("seed B tbench.M88");
These commands seed five bridging faults between the ports of n2buf?:

a, b
b, en
a, out
b, out
en, out
By default, no faults are seeded inside of cells. Therefore, the internal net i2n is not
considered for fault seeding. To include this internal node, use the seed_inside_cells
option:

$ssi_iddq("model B cell_ports fet_terms
seed_inside_cells");
$ssi_iddq("seed B tbench.M88");
In this case, the following additional bridging faults are seeded:

i2n, en
i2n, out

PowerFault Strobe Selection
After you run a Verilog/PowerFault simulation, you can use the PowerFault strobe
selection tool, IDDQPro, to select a set of strobe times to obtain maximum fault coverage.
IDDQPro uses the information in the IDDQ database produced by the Verilog/PowerFault
simulation.

The following sections describe PowerFault strobe selection:

• Overview of IDDQPro

• Invoking IDDQPro

• Interactive Strobe Selection

• Strobe Selection Tutorial

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1257

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

• Understanding the Strobe Report

• Fault Report Formats

• Verifault Interface

• Iterative Simulation

Overview of IDDQPro
IDDQPro is a strobe selection tool that operates on the IDDQ database produced by a
Verilog/PowerFault simulation. IDDQPro selects a set of strobe times to maximize fault
coverage for a given number of strobes.

When you run a Verilog/PowerFault simulation, the output command in the PowerFault
Verilog module specifies the name of the IDDQ database. The database contains
information on seeded faults and the faults detected at each qualified strobe time.

When you invoke IDDQPro, you specify the database name and the number of strobes
you want to use. IDDQPro analyzes the database and finds a set of strobes that
maximizes the number of faults detected.

You can run IDDQPro in batch mode or interactive mode.

• In batch mode, IDDQPro selects a set of strobes and reports the results.

• In interactive mode, IDDQPro displays a command prompt.

You can interactively enter commands to select strobes, display reports, and traverse the
hierarchy of the design.

IDDQPro produces two report files: a strobe report (iddq.srpt) and a fault report (iddq.frpt).

• The strobe report shows the time value and cumulative fault coverage of each selected
strobe point.

• The fault report lists the status of each seeded fault, either detected or undetected, for
the complete set of selected strobes.

Each report file starts with a header that summarizes the report contents and tells you how
to interpret the information provided.

After you use IDDQPro to select a set of strobes, it is a good idea to copy and save the
strobe report file so that you will not need to generate it again. The strobe report can take
a long time to generate. It is not as important to save the fault report file because you can
quickly regenerate it, as long as you have the strobe report file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1258

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

Invoking IDDQPro
You invoke IDDQPro at an operating system prompt. The following sections describe the
process for invoke IDDQPro:

• ipro Command Syntax

• Strobe Selection Options

• Report Configuration Options

• Log File and Interactive Options

ipro Command Syntax
The full Backus-Naur form (BNF) description of the command syntax for IDDQPro is as
follows:

ipro options* iddq-database-name+

options ::=

-strb_lim max-strobes |

-cov_lim percent-cov |

-ign_ucov |

-strb_set file-name |

-strb_unset file-name |

-strb_all |

-prnt_fmt (tmax|verifault|zycad) |

-prnt_nofrpt |

-prnt_full |

-prnt_times |

-path_sep (.|/) |

-log file-name |

-inter

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1259

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

The command consists of the keyword ipro?, followed by zero or more options, followed
by one or more IDDQ database names. A typical command specifies a limit on the number
of strobes with the -strb_limoption and specifies a single IDDQ database. For example:

ipro -strb_lim 5 iddq

This command invokes IDDQPro, specifies a maximum limit of five strobes, and specifies
iddq as the name of the IDDQ database.

Here are some more examples of IDDQPro invocation commands:

ipro -strb_lim 5 iddqdb1 iddqdb2
ipro -strb_lim 8 /net/simserver/CCD/iddq
ipro -strb_lim 10 iddq
ipro -strb_lim 10 -cov_lim 0.95 iddq
ipro -strb_lim 10 -cov_lim 0.95 -prnt_fmt verifault iddq

Strobe Selection Options
You can control strobe selection by using the following ipro command options:

-strb_lim max-strobes
-cov_lim percent-cov
-strb_set file-name
-strb_unset file-name
-strb_all
If you do not use any options, IDDQPro selects strobes until it either uses up all the
possible strobe points or reaches the absolute maximum coverage possible.

-strb_lim
The -strb_lim option specifies the maximum number of strobe points to select. The
practical maximum number depends on the test equipment being used. Typically, only five
to ten IDDQ strobes are allowed per test. IDDQPro attempts to obtain the best possible
coverage, given the specified maximum number of strobes.

For example, to limit the number of selected strobes to ten, you would use a command
such as the following:

ipro -strb_lim 10 iddq

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1260

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

-cov_lim
The -cov_lim option specifies the target fault coverage percentage. Strobe selection
stops when fault coverage reaches or exceeds this limit. Coverage is expressed as a
decimal fraction between 0.00 and 1.00. For example, to choose as many strobes as
necessary to reach 80 percent fault coverage, you would use a command such as the
following:

ipro -cov_lim 0.80 iddq
-strb_set
The -strb_set option causes IDDQPro to select the strobe times listed in a file. IDDQPro
evaluates the effectiveness of the strobes listed in the file. If you have a set of strobe times
you think are good for IDDQ testing, put them into a file, with one time value per line.

For example, to force the selection of strobes at times 29900 and 39900, put those two
times into a file named stimes like this,

29900
39900
and then use a command such as the following:

ipro -strb_set stimes -strb_lim 8 /cad/sim/M88/iddq
As a result of this command, IDDQPro selects the two specified strobe times, plus six
other strobe times that it selects with its regular coverage-maximizing algorithm. The usual
strobe report, iddq.srpt?, includes all eight strobes. In addition, IDDQPro generates a
separate strobe evaluation report called iddq.seval?, which shows the coverage obtained
by just the two file-specified strobe times.

If you are using multiple testbenches, specify the testbench number before each strobe
time. Testbench numbering starts at 1. For example, to select the strobes at times 299 and
1899 in the first testbench and time 399 in the second testbench, enter the following lines
in the strobe time file:

tb=1 299
tb=1 1899
tb=2 399
To regenerate a fault report from a saved strobe report, use the -strb_set option and
specify the name of the strobe report file. For example:

ipro -strb_set iddq.srpt -strb_lim 5 iddq

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1261

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

-strb_unset
The -strb_unset option prevents IDDQPro from selecting the strobe times listed in a file.
If you have a set of strobe times that you do not want IDDQPro to use, put them into a file,
with one value per line. For example, if you want to prevent the strobes at times 59900
and 89900 from being selected, put those two times into a file named bad_stimes and
then use a command such as the following:

ipro -strb_unset bad_stimes -strb_lim 8 /cad/sim/M88/iddq
As a result of this command, IDDQPro selects eight strobe times using its regular
coverage-maximizing algorithm, but excluding the strobes at times 59900 and 89900. If
you are using multiple testbenches, specify the testbench number before each strobe time
as explained previously for the -strb_set option.

-strb_all
The -strb_all option causes IDDQPro to select all qualified strobe points, starting with
the first strobe time, instead of using the coverage-maximizing algorithm. The strobe report
and fault report show the coverage obtained by making an IDDQ measurement at every
qualified strobe point.

Although it is usually impractical to make so many measurements, the -strb_all option
is useful because it determines the maximum possible coverage that can be obtained from
your testbench or testbenches. In addition, the resulting fault report identifies nets that
never get toggled; they are reported as undetected.

Report Configuration Options
You can control the generation of the fault report by IDDQPro by using the following ipro
command options:

-prnt_fmt (tmax|verifault|zycad)
-prnt_nofrpt
-prnt_full
-prnt_times
-path_sep
-ign_ucov
-prnt_fmt
The -prnt_fmt option specifies the format of the fault report produced by IDDQPro. The
format choices are tmax?, verifault?, and zycad?. The default format is tmax?.

In the default format, the faults are reported as shown in the following example:

sa0 NO .testbench.fadder.co

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1262

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

sa1 DS .testbench.fadder.co
sa0 DS .testbench.fadder.sum
sa1 NO .testbench.fadder.sum
...
To generate a fault report in Zycad .fog format, use a command similar to the following:

ipro -prnt_fmt zycad -strb_lim 5 iddq
In the Zycad configuration, faults are reported as shown in the following example:

@testbench.fadder
co 0 n U
co 1 n D
sum 0 n D
sum 1 n U
...
To generate a fault report in Verifault format, use a command similar to the following:

ipro -prnt_fmt verifault -strb_lim 5 iddq
In the Verifault configuration, faults are reported as shown in the following example:

fault net sa0 testbench.fadder.co 'status=undetected';
fault net sa1 testbench.fadder.co 'status=detected';
fault net sa0 testbench.fadder.sum 'status=detected';
fault net sa1 testbench.fadder.sum 'status=undetected';
...
-prnt_nofrpt
Use the -prnt_nofrpt option to suppress generation of the fault report. Otherwise, by
default, IDDQPro generates the iddq.frpt fault report every time the program is run in batch
mode.

-prnt_full, -prnt_times, and -path_sep
The -prnt_full?, -prnt_times?, and -path_sep options control the generation of
Zycad-format fault reports. These options do not affect on Verifault-format fault reports.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1263

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

The -prnt_full option controls the reporting of hierarchical paths. By default, faults are
divided into groups, with the cell name shown at the beginning of each group. Only the
leaf-level net name is shown in each line.

Here is an example taken from a report in the default Zycad reporting format:

@tbench.M88
sio24 0 n D
sio24 1 n D
sio25 0 n D
sio25 1 n U
If you use the -prnt_full option, the full hierarchical paths are reported in each line, as
shown in the following example:

tbench.M88.sio24 0 n D
tbench.M88.sio24 1 n D
tbench.M88.sio25 0 n D
tbench.M88.sio25 1 n U
The -prnt_times option causes the fault report to include the simulation time at which
each fault was first detected. For example, with the -prnt_times options, the same faults
as described in the preceding example are reported as follows:

tbench.M88.sio24 0 n 129900 D
tbench.M88.sio24 1 n 39900 D
tbench.M88.sio25 0 n 455990 D
tbench.M88.sio25 1 n U
The -path_sep option specifies the character for separating the components of a
hierarchical path. The default character is a period (.) so that path names are compatible
with Verilog. If you want Zycad-style path names, select the forward slash character (/)
instead, as in the following example:

ipro -prnt_fmt zycad -prnt_full -path_sep / -strb_lim 5 iddq
Then the same faults described previously are reported as follows:

/tbench/M88/sio24 0 n D
/tbench/M88/sio24 1 n D
/tbench/M88/sio25 0 n D

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1264

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

/tbench/M88/sio25 1 n U
-ign_uncov
The -ign_uncov option prevents IDDQPro from using the “potential” status in the fault
report. All faults are still listed, but faults that would normally be reported as potential
are instead reported as undetected. This option also prevents IDDQPro from generating
coverage statistics for uninitialized nodes in the strobe report. For information on
uninitialized nodes, see Faults Detected at Uninitialized Nodes.

Log File and Interactive Options
The -log option lets you specify the name of the IDDQPro log file. The log file contains a
copy of all messages displayed during the IDDQPro session. By default, the log file name
is iddq.log.

By default, IDDQPro runs in batch mode. This means that IDDQPro reads the IDDQ
database, selects the strobe times, produces the strobe report and fault report files, and
returns you to the operating system prompt.

The -inter option lets you run IDDQPro in interactive mode. In this mode, IDDQPro
displays a prompt. You interactively select strobes manually or automatically, request the
reports that you want to see, and optionally browse through the hierarchy of the design.

The IDDQPro interactive commands are described in the next section, Interactive Strobe
Selection.

Interactive Strobe Selection
To use IDDQPro in interactive mode, invoke it with the -inter option, as in the following
example:

% ipro -inter iddq
When IDDQPro is started in interactive mode, it loads the results from the Verilog
simulation and waits for you to enter a command. No strobes are selected and no reports
are generated until you enter the commands to request these actions.

At the interactive command prompt, you can enter commands to select strobes, display
reports, and traverse the hierarchy of the design. When you change to a lower-level
module in the design hierarchy, the reports that you generate apply only to the current
scope of the design.

The following table lists and briefly describes the interactive commands. The following
sections provide detailed descriptions of these commands.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1265

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

Table 21 IDDQPro Interactive Commands

Command Description

cd Changes the interactive scope to lower-level instance

desel Prevents selection of specified strobe times

exec Executes a list of interactive commands in a file

help Displays a summary description of all commands or one command

ls Displays a list of lower-level instances at the current level

prc Prints a fault coverage report

prf Prints a list of all seeded faults and their detection status

prs Prints a list of all qualified strobes and their status

quit Terminates IDDQPro

reset Cancels all strobe selections and detected faults

sela Selects strobes automatically using the coverage-maximizing algorithm

selall Selects all strobes

selm Selects one or more strobes manually, specified by time value

To run an interactive IDDQPro session, you typically use the following steps:

1. Select the strobes automatically or manually, or select all strobes (?sela?, selm?, or
selall?).

2. If you want to analyze just a submodule of the design, change to hierarchical scope for
that module (?ls?, cd?).

3. Print a strobe report, coverage report, and fault report (?prs?, prc?, prf?).

4. Repeat steps 1 through 3 to examine different sets of strobes or different parts of the
design. Use the reset command to select an entirely new set of strobes.

5. Exit from IDDQPro (?quit?).

By default, the output of all interactive commands is sent to the terminal (stdout). The
printing commands, especially prf and prs?, can produce very long reports. If you want to
redirect the output of one of these commands to a file, use the -out option.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1266

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

cd
cd module-instance
The cd command changes the current scope of the analysis to a specified module
instance. You can use this command to produce different reports for different parts of
the design. For example, to print separate fault reports for modules top.M88.alu and
top.M88.io?, enter the following commands:

cd top.M88.alu
prf -out alu.frpt
cd top.M88.io
prf -out io.frpt
To get a listing of modules in the current hierarchical scope, use the ls command. To
move up to the next higher level of hierarchy, use the following command:

cd ..

desel
desel strobe-times* selm-options*
strobe-times ::= [tb=testbench-number] simulation-time
selm-options ::= -in file-name | -out file-name
The desel (deselect) command prevents IDDQPro from selecting one or more specified
strobe times when you later use the sela or selall command. The strobe times can be
explicitly listed in the command line or read from an input file.

If the desel command specifies strobes that are currently selected, they are first
deselected. The specified strobes are all made unselectable by subsequent invocations of
the sela or selall command. However, they can still be selected manually with the selm
command.

For example, the following command deselects the two strobes at 59900 and 89900
and prevents them from being selected automatically by a subsequent sela or selall
command:

desel 59900 89900
If you are using multiple testbenches, you can deselect strobes from different testbenches.
For example, the following command manually deselects strobes at time 799 and 1299
from testbench 1 and a strobe at time 399 from testbench 2:

desel tb=1 799 tb=1 1299 tb=2 399

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1267

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

exec
exec file-name
The exec command executes a list of interactive commands stored in a file.

help
help [command-name]
The help command displays help on a specified interactive command. If you do not
specify a command name, the help command provides help on all interactive commands.

ls
ls
The ls command lists the lower-level instances contained in the current scope of the
design. To change the hierarchical scope, use the cd command.

prc
prc [-out file-name]
The prc (print coverage) command displays a report on the fault coverage of instances in
the current hierarchical scope. This report shows which blocks in your design have high
coverage and which have low coverage.

This command reports statistics on seeded faults. Faults that were not seeded during the
Verilog/PowerFault simulation (such as faults detected by a previous run) are not included
in the fault coverage statistics.

prf
prf [-fmt (tmax|verifault)] [-full] [-times]
[-out file-name]
The prf (print faults) command displays a report on the faults in the instances contained in
the current hierarchical scope.

The output of this command is just like the default fault report file produced in batch
mode, iddq.frpt, except that the prf command lists the status of faults beneath the current
hierarchical scope, rather than all faults in the whole design.

The prf command complements the prc command. The prc command shows which
blocks have low coverage, and the prf command shows which faults are causing the low
coverage.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1268

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

prs
prs [-out file-name]
The prs (print strobe) command displays the time value for every qualified IDDQ strobe.
For each selected strobe, the number of incremental (additional new) faults detected by
the strobe is also reported.

quit
quit
The quit command terminates IDDQPro.

reset
reset
The reset command clears the set of selected strobes and detected faults, allowing you
to start over.

sela
sela sela-options*
sela-options ::=
-cov_lim percent_cov |
-strb_lim max_strobes |
-out file-name
The sela (select automatic) command automatically selects strobes using a coverage-
maximizing algorithm. This is the same selection algorithm IDDQPro uses in batch mode.

The -cov_lim and -strb_lim options work exactly like the command-line options
described in Strobe Selection Options.

The -out option redirects the output of the command to a specified file.

selm
selm strobe-times* selm-options*
strobe-times ::= [tb=testbench-number] simulation-time
selm-options ::= -in file-name | -out file-name
The selm (select manual) command lets you manually select strobes by specifying the
strobe times. You can explicitly list the strobe times in the command line or read them from
an input file using the -in option.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1269

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

After you run this command, IDDQPro analyzes the strobe set and reports the results. To
redirect the output to a file, use the -out option.

The selm and sela commands work together in an incremental fashion. Each time you
use one of these commands, it adds the newly selected strobes to the list of previously
selected strobes. This continues until the maximum possible coverage is achieved,
after which no more strobes can be selected. If the IDDQPro analysis determines that a
manually selected strobe fails to detect any additional faults, the selection is automatically
canceled.

For example, consider the following two commands:

selm 29900 39900
sela -strb_lim 6
The first command manually selects the two strobes at 29900 and 39900. The second
command automatically selects six more strobes that complement the first two strobes and
maximize the fault coverage.

To clear all strobe selections and start over, use the reset command.

If you are using multiple testbenches, you can select strobes from different testbenches.
For example, the following command manually selects strobes at times 799 and 1299 in
testbench 1 and the strobe at time 399 in testbench 2:

selm tb=1 799 tb=1 1299 tb=2 399

selall
selall [-out file-name]
The selall (select all) command automatically selects every qualified strobe, starting with
the first strobe time and continuing until the maximum possible coverage is achieved or all
qualified strobes are selected.

Although it is usually impractical to make so many measurements, the -selall command
is useful because it determines the maximum possible coverage that can be obtained from
your testbench or testbenches. If you use the prf command after the selall command,
the resulting fault report identifies nets that never get toggled; they are reported as
undetected.

Strobe Selection Tutorial
After you install the Synopsys IDDQ option to TestMAX ATPG, you can do the Strobe
Selection Tutorial to test the installation and to get an introduction to PowerFault strobe
selection.

This tutorial is intended to be a brief demonstration, not a comprehensive training session.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1270

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

The following sections guide you through the Strobe Selection Tutorial:

• Simulation and Strobe Selection

• Interactive Strobe Selection

Simulation and Strobe Selection
The $IDDQ_HOME/samples directory contains some examples of designs and scripts to
demonstrate PowerFault capabilities. One example is a simple one-bit full adder. In the
following set of tutorial procedures, you will run a script that simulates the testbench and
selects a set of IDDQ strobe times in the testbench:

• Examine the Verilog File

• Run the doit Script

• Examine the Output Files

Examine the Verilog File
The following steps show you how to examine the Verilog design file.

1. Change to the directory $IDDQ_HOME/samples/fadder?.

2. Look for two files in the directory: the doit script and the fadder.v Verilog file.

3. Using any text editor, view the contents of the fadder.v file.

The fadder.v Verilog file contains three modules: testbench?, iddqtest?, and fadder?.

The testbench module is the testbench for the full adder. It tests every possible input
pattern, from b000 through b111, and prints out the port values at one time unit before the
end of each cycle.

The iddqtest module invokes the PLI tasks for IDDQ analysis. It contains the following
$ssi_iddq commands:

$ssi_iddq("dut testbench.fadder");
$ssi_iddq("seed SA testbench.fadder");
// strobe 1 time unit before end of cycle
forever begin
(testbench.CYCLE - 1)
$ssi_iddq("strobe_try");
1;
end

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1271

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

The first command defines the device under test to be testbench.fadder?. The second
one seeds stuck-at faults throughout the entire device. The third one performs IDDQ
strobe evaluation one time unit before the end of each cycle.

The fadder module is a gate-level description of the device under test, a single-bit full
adder implemented with NOR gates. Each gate has a unit delay. Given two input bits (x
and y) and a carry-in bit (ci), the full adder computes the sum bit and the carry-out (co) bit.
The model implements the following Boolean equations:

co = (x & y) | (x & ci) | (y & ci)

sum = x ^ y ^ ci

The following figure shows the stimulus, response, and IDDQ strobe points for the full
adder simulation.

Figure 189 Full Adder Simulation Strobe Points

   

Run the doit Script
The following steps show you how to run the doit script, which runs the Verilog/
Powerfault simulation and IDDQ Profiler.

1. Using any text editor, view the contents of the doit (do it) file. This is a script that
creates a directory for the simulator output, invokes the Verilog simulator (with IDDQ
PLI tasks), and runs the IDDQ Profiler to select the strobe times.

2. If necessary, edit the file to work with your system configuration. For example, if your
simulator is invoked by a command other than vcs or Verilog?, modify the line that
invokes the simulator.

3. Run the script.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1272

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

The script runs the Verilog simulation, which produces the following results:

time co sum {x,y,ci}
9 0 0 000
19 0 1 001
29 0 1 010
39 1 0 011
49 0 1 100
59 1 0 101
69 1 0 110
79 1 1 111
The $ssi_iddq tasks produce the following summary report:

IDDQ-Test
Strobes (qualified/tested) = 8/8
Faults seeded (stuck-ats/bridges) = 32/0
Created IDDQ database: iddq
This report tells you that eight strobes were tested, and all eight were found to be
quiescent.

The script then invokes the IDDQ Profiler, which selects some of the eight quiescent
strobes. It generates two files: a strobe report named iddq.srpt and a fault report named
iddq.frpt?. The script then tells you the path to the output files.

Loading seeds
Beginning strobe selection
...
Strobe selection complete
Strobe report is printed to iddq.srpt
Fault report is printed to iddq.frpt
Examine the Output Files
The following steps show you how to examine the report files.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1273

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

1. Go to the directory containing the fadder output files. Find the subdirectory called
iddq?, which contains the IDDQ database generated by the $ssi_iddq PLI tasks, and
the two IDDQ Profiler output files, iddq.srpt and iddq.frpt?.

2. Examine the contents of the strobe report file, iddq.srpt?. You should see the
following report:

Date: day/date/time # Reached requested fault coverage. # Selected
 3 strobes out of 8 qualified. # Fault Coverage (detected/seeded)
 = 100.0% (32/32) # Timeunits: 1.0ns # # Strobe: Time Cycle Cum-Cov
 Cum-Detects Inc-Detects 9 1 50.0% 16 16 39 4 84.4% 27 11 49 5 100.0%
 32 5

The report shows the requested level of fault coverage, 100 percent, was achieved
by three strobes. A table shows the time values and cycle numbers of the selected
strobes, the cumulative fault coverage achieved by each successive strobe, the
cumulative number of faults detected with each successive strobe, and the incremental
(additional) faults detected with each successive strobe.

3. Examine the contents of the fault report file, iddq.frpt?. The report shows the list of
faults and the test result for each fault:

sa0 DS .testbench.fadder.co sa1 DS .testbench.fadder.co sa0
 DS .testbench.fadder.sum sa1 DS .testbench.fadder.sum sa0
 DS .testbench.fadder.x sa1 DS .testbench.fadder.x sa0
 DS .testbench.fadder.y sa1 DS .testbench.fadder.y sa0
 DS .testbench.fadder.ci sa1 DS .testbench.fadder.ci sa0
 DS .testbench.fadder.u12_out sa1 DS .testbench.fadder.u12_out sa0
 DS .testbench.fadder.u10_out sa1
 DS .testbench.fadder.u10_out ... sa0 DS .testbench.fadder._x sa1
 DS .testbench.fadder._x sa0 DS .testbench.fadder._y sa1
 DS .testbench.fadder._y

The test result for each fault is either DS (detected by simulation) or NO (not
observed). In this case, all faults were detected. Each fault is identified by fault type
(sa0 = stuck-at-0, sa1 = stuck-at-1) and the hierarchical net name.

Interactive Strobe Selection
In the previous steps of this tutorial, you used the IDDQ Profiler in batch mode, which is
the default operating mode. In this mode, the IDDQ Profiler selects a set of strobes and
attempts to obtain the requested fault coverage with the fewest possible strobes.

You can also use the IDDQ Profiler in interactive mode to perform strobe and fault
coverage analysis. In a typical interactive session, you select a set of strobes, print a
strobe report and a fault coverage report for that set of strobes, and then repeat this
process for different sets of strobes. You can examine the status of all faults or just the
faults within a specified hierarchical scope.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1274

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

The following sections guide you through the interactive strobe selection portion of this
tutorial:

• Select Strobes Automatically

• Select All Strobes

• Select Strobes Manually

• Cumulative Fault Selection

Select Strobes Automatically
The following steps show you how to use the IDDQ Profiler to automatically select the
strobes in a single step:

1. In the directory containing the fadder output files, execute the following command:

% ipro -inter iddq
The ipro -inter command invokes the IDDQ Profiler in interactive mode, and the
iddq argument specifies the name of the IDDQ database to use for the interactive
session.

2. At the IDDQ Profiler prompt (>), enter the “select automatic” command:

> sela
This command invokes the same strobe selection algorithm used in batch mode. The
IDDQ Profiler responds as follows:

... # Reached requested fault coverage. # Selected 3 strobes out of
 8 qualified. # Fault Coverage (detected/seeded) = 100.0% (32/32) #
 Timeunits: 1.0ns # # Strobe: Time Cycle Cum-Cov Cum-Detects
 Inc-Detects 9 1 50.0% 16 16 39 4 84.4% 27 11 49 5 100.0% 32 5

The list of selected strobes is the same as in batch mode.

3. Enter the “print coverage” command:

> prc
The IDDQ Profiler responds as follows:

Fault coverage for top modules

Instance NumDet NumFaults %Coverage (stuck-at bridge)
testbench 32 32 100.0% (32/32 0/0)

For the current set of selected strobes, 32 out of 32 faults are detected, and coverage
is 100 percent.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1275

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

4. Enter the “print faults” command:

> prf
The IDDQ Profiler produces the same fault report that you saw earlier in the
iddq.frpt file:

sa0 DS .testbench.fadder.co sa1 DS .testbench.fadder.co ... sa0
 DS .testbench.fadder._y sa1 DS .testbench.fadder._y

5. Enter the “reset” command:

> reset
This command clears the set of selected strobes and detected faults.

Select All Strobes
The following steps show you how to manually select all possible strobes.

1. Enter the “select all” command:

> selall
The IDDQ Profiler responds as follows:

Selected all qualified strobes. # Selected 5 strobes out of 8
 qualified. # Fault Coverage (detected/seeded) = 100.0% (32/32) #
 Timeunits: 1.0ns # # Strobe: Time Cycle Cum-Cov Cum-Detects
 Inc-Detects 9 1 50.0% 16 16 19 2 62.5% 20 4 29 3 84.4% 27 7 39 4
 90.6% 29 2 49 5 100.0% 32 3

All qualified strobes were selected in sequence, starting with the first strobe at time=9,
until the target coverage of 100 percent was achieved. Five strobes were required,
rather than the three selected by the sela (select automatic) command.

2. Reset the strobe selection and detected faults:

> reset
Select Strobes Manually
The following steps show you how to select strobes manually.

1. Enter the following “select manual” command to manually select a single strobe at
time=39:

> selm 39
The IDDQ Profiler responds as follows:

Selected 1 strobes out of 8 qualified. # Fault Coverage
 (detected/seeded) = 50.0% (16/32) # Timeunits: 1.0ns # # Strobe: Time
 Cycle Cum-Cov Cum-Detects Inc-Detects 39 4 50.0% 16 16

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1276

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

This single strobe detected 16 faults, providing coverage of 50 percent.

2. To find out which faults have not yet been detected, enter the “print faults” command:

> prf
You should see the following response:

sa0 DS .testbench.fadder.co sa1 NO .testbench.fadder.co sa0
 NO .testbench.fadder.sum sa1 DS .testbench.fadder.sum ... sa0
 DS .testbench.fadder._x sa1 NO .testbench.fadder._x sa0
 NO .testbench.fadder._y vsa1 DS .testbench.fadder._y

The second column shows DS for “detected by simulation” or NO for “not observed.”

3. Enter the following command to see a list of modules:

> ls
The IDDQ Profiler responds as follows:

ls testbench

This simple model has only one level of hierarchy. In a multilevel hierarchical model,
you can change the scope of the design view by using the ls?, cd module_name?, and
cd .. commands. When you use the prf command, only the faults residing within the
current scope (in the current module and below) are reported. Similarly, a coverage
report generated by the prc command applies only to the current scope.

4. Enter the following command to manually select another strobe at time=49:

> selm 49

The IDDQ Profiler responds as follows:

Selected 2 strobes out of 8 qualified. # Fault Coverage
 (detected/seeded) = 87.5% (28/32) # Timeunits: 1.0ns # # Strobe: Time
 Cycle Cum-Cov Cum-Detects Inc-Detects 39 4 50.0% 16 16 49 5 87.5% 28
 12

The IDDQ Profiler adds each successive strobe selection to the previous selection set.
The report shows the cumulative coverage and cumulative defects detected by each
successive strobe.

5. Look at the fault list:

> prf
6. Reset the strobe selection and detected faults:

> reset

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1277

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

Cumulative Fault Selection
The following steps show you how to combine manual and automatic selection techniques:

1. Manually select the two strobes at time=19 and time=29:

> selm 19 29
The IDDQ Profiler responds as follows:

Selected 2 strobes out of 8 qualified. # Fault Coverage
 (detected/seeded) = 78.1% (25/32) # Timeunits: 1.0ns # # Strobe: Time
 Cycle Cum-Cov Cum-Detects Inc-Detects 19 2 50.0% 16 16 29 3 78.1% 25
 9

2. Enter the “select automatic” command:

> sela
The IDDQ Profiler responds as follows:

Reached requested fault coverage. # Selected 4 strobes out of 8
 qualified. # Fault Coverage (detected/seeded) = 100.0% (32/32) #
 Timeunits: 1.0ns # v# Strobe: Time Cycle Cum-Cov Cum-Detects
 Inc-Detects v 19 2 50.0% 16 16 29 3 78.1% 25 9 59 6 96.9% 31 6 69 7
 100.0% 32 1

The sela command keeps the existing selected strobes and applies the automatic
selection algorithm to the remaining undetected faults. In this case, four strobes were
required to achieve 100 percent coverage.

3. Reset the strobe selection and detected faults:

> reset
4. Continue to experiment with the commands you have learned. For help on command

syntax, use the help command:

> help
or

> help command_name

5. When you are done, exit with the quit command:

> quit

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1278

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

Understanding the Strobe Report
A strobe report (iddq.srpt file) is generated when you run IDDQPro in batch mode and
each time you select strobes in interactive mode. The following sections describe a strobe
report:

• Example Strobe Report

• Fault Coverage Calculation

• Adding More Strobes

• Deleting Low-Coverage Strobes

Example Strobe Report
A strobe report lists the selected strobes in time order and shows the following information
for each strobe:

• The simulation time

• The simulation cycle number

• The cumulative coverage achieved

• The cumulative number of faults detected

• The incremental (additional new) faults detected

The report gives you an idea of the effectiveness of each strobe. A large jump in coverage
indicates a valuable strobe. A very small increase in coverage indicates a strobe with little
value.

Here is an example of a strobe report:

IDDQ-Test strobe report
Date: day date time
Reached requested fault coverage.
Selected 6 strobes out of 988 qualified.
Fault Coverage (detected/seeded) = 90.3% (23082/25561)
Timeunits 1.0ns
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
19990 2 48.3% 12346 12346
329990 33 69.0% 17637 5291

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1279

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

2109990 211 74.2% 18966 1329
2129990 213 77.9% 19912 946
2759990 276 85.7% 21906 1994
2809990 281 90.3% 23082 1176

Fault Coverage Calculation
The fault coverage statistics in a strobe report include the following types of faults:

• Faults Detected by Previous Runs

• Undetected Faults Excluded From Simulation

• Faults Detected at Uninitialized Nodes

Faults Detected by Previous Runs
For example, the following report indicates that faults were detected by previous runs:

Reached requested fault coverage.
Selected 8 strobes out of 755 qualified.
Fault Coverage (detected/seeded) = 90.0% (90/100)
Faults detected by previous runs = 60
In this example, an existing fault list was read into the Verilog simulation with read_tmax
or a similar command. That fault list had 60 faults that were already detected, either by an
external tool such as Verifault or by a previous IDDQPro run. Therefore, the eight selected
strobes only detected 30 more faults than the 60 that were already detected.

Undetected Faults Excluded From Simulation
The following report indicates that undetected faults were excluded from simulation:

Reached requested fault coverage.
Selected 4 strobes out of 2223 qualified.
Fault Coverage (detected/seeded) = 85.0% (170/200)
Undetected faults excluded from simulation = 20
The fault list read in by read_tmax or a similar command had 20 faults that were
undetected but excluded. Perhaps the fault list covered the entire chip, but 20 faults were
excluded from seeding at the I/O pads. The four selected strobes detected 170 faults and
did not detect 30 faults. However, of the 30 undetected faults, only 10 were simulated by
IDDQPro.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1280

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

Faults Detected at Uninitialized Nodes
The following report indicates that faults were detected at uninitialized nodes:

Reached requested fault coverage.
Selected 5 strobes out of 2223 qualified.
Fault Coverage (detected/seeded) = 92.5% (370/400)
Faults detected at un-initialized nodes = 10
If an uninitialized node is driven to X (unknown rather than floating) during every selected
vector, a strobe detects one stuck-at fault, either stuck-at-0 or stuck-at-1, because the
node is driven to either 1 or 0. However, it is not known which type of fault is detected. The
report indicates that 370 out of 400 faults were detected. Of the 370 detected faults, 10
have an unknown type, corresponding to the 10 nodes that were never initialized.

Adding More Strobes
After a Verilog/PowerFault simulation, you can use IDDQPro repeatedly to evaluate the
effectiveness of different strobe combinations. It is not necessary to rerun the Verilog/
PowerFault simulation each time.

You can use the strobes selected from an IDDQPro run as the initial strobe set for
subsequent runs. For example, consider the following sequence of commands:

ipro -strb_lim 6 /cad/sim/M88/iddq
mv iddq.srpt stimes
ipro -strb_set stimes -strb_lim 8 /cad/sim/M88/iddq
The first command runs IDDQPro and selects six strobe points. The second command
copies the strobe report file to a new file. The third command invokes IDDQPro again,
using the strobe report from the first run as the initial strobe set, and selects two additional
strobe points. After the second run, the strobe report file (iddq.srpt) contains eight strobe
points, consisting of the six original strobes plus two new ones.

Deleting Low-Coverage Strobes
If you identify a strobe that provides very little additional coverage, you can delete it from
the strobe report and run IDDQPro again to recalculate the coverage:

1. Run IDDQPro to select an initial set of strobes:

ipro -strb_limit 8 iddq
2. Save the strobe report to a separate file:

mv iddq.srpt stimes

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1281

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

3. Edit the new file and delete the strobe that provides the fewest incremental fault
detections.

4. Run IDDQPro again, using the edited file for initial strobe selection:

ipro -strb_limit 8 -strb_set stimes iddq
For best results, delete only one strobe at a time and run IDDQPro each time to
recalculate the coverage. Coverage lost by deleting multiple strobes cannot be calculated
by simple addition of the incremental coverage because of overlapping coverage.

Fault Report Formats
A fault report (iddq.frpt file) is generated when you run IDDQPro in batch mode and each
time you use the prf command in interactive mode. The fault report lists all the seeded
faults and their detection status.

You can choose the fault report format by using the -prnt_fmt option when you invoke
IDDQPro. The format choices are the TestMAX ATPG, Verifault, and Zycad formats. The
default is TestMAX ATPG.

The following sections describe the various fault report formats:

• TestMAX ATPG Fault Report Format

• Verifault Fault Report Format

• Listing Seeded Faults

TestMAX ATPG Fault Report Format
A fault report in TestMAX ATPG format lists one fault descriptor per simulated fault. Each
fault descriptor shows the type of fault, the fault status (DS=detected by simulation,
NO=not observed), and the full net name (or two net names for a bridging fault).

Here is a section of a fault report in TestMAX ATPG format:

sa0 DS tb.fadder.co
sa1 DS tb.fadder.co
sa0 DS tb.fadder.sum
sa1 DS tb.fadder.sum
The fault report shows five faults, all of which are detected by the selected strobes. All five
faults involve nets in the tb.fadder module instance. The first four faults are stuck-at-0
and stuck-at-1 faults for the co and sum nets. The last fault is a bridge fault between the x
and ci nets.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1282

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

Verifault Fault Report Format
A fault report in Verifault format lists one fault descriptor per simulated fault. Each fault
descriptor begins with the keyword fault?, followed by type of the fault, the full name of
the net, and the fault status.

Here is a section of a fault report in Verifault format:

fault net sa0 tb.fadder.co ’status=detected’;
fault net sa1 tb.fadder.co ’status=detected’;
fault net sa0 tb.fadder.sum ’status=detected’;
fault net sa1 tb.fadder.sum ’status=detected’;
fault bridge wire tb.fadder.x tb.fadder.ci
’status=detected’;
The fault report shows five faults, all of which are detected by the selected strobes. All five
faults involve nets in the tb.fadder module instance. The first four faults are stuck-at-0
and stuck-at-1 faults for the co and sum nets. The last fault is a bridge fault between the x
and ci nets.

Listing Seeded Faults
The IDDQ database stores the faults seeded by the Verilog/PowerFault simulation in a
compact binary format. Usually, you use IDDQPro to select strobes, calculate the fault
coverage, and print a fault report that lists all the seeded faults along with their detection
status. However, there might be times you want a list of the seeded faults without selecting
strobes. For example, if there are no quiet strobe points to select, IDDQPro cannot
generate the fault report.

To generate a list of seeded faults under these circumstances, start IDDQPro in interactive
mode, and then use the prf command to generate a fault report, and redirect the output to
a file:

ipro -inter iddq-database-name
prf -out iddq.frpt
quit

Verifault Interface
You can seed a design with faults taken from a Verifault fault list. The following figure
shows the data flow for this type of fault seeding.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1283

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

Figure 190 Data Flow for Verifault Interface

   

To seed faults from Verifault fault dictionaries and fault lists, use the read_verifault
command in the Verilog/PowerFault simulation, as described in “read_verifault” in the
PowerFault PLI Tasks section. By default, PowerFault remembers all the comment lines
and unseeded faults in the Verifault file, so that when it produces the final fault report, you
can easily compare the report to the original file.

When you use the read_verifault command to seed fault descriptors generated by
Verifault, and your simulator is Verilog-XL, use the -x and +autonaming options when you
start the simulation:

Verilog -x +autonaming iddq.v ...
Otherwise, the read_verifault command might not be able to find the nets and terminals
referenced by your fault descriptors.

By default, the read_verifault command seeds both prime and nonprime faults. When
you run IDDQPro after the Verilog simulation to select strobes and print fault reports, all
fault coverage statistics produced by IDDQPro include nonprime faults. If you want to see
statistics for only prime faults, seed only those faults. For example, you can create a fault
list with just prime faults and use that list with the read_verifault command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1284

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
PowerFault Strobe Selection

Feedback

By default, IDDQPro generates fault reports in TestMAX ATPG format. To print a fault
report in Verifault format, use the -prnt_fmt verifault option:

ipro -prnt_fmt verifault -strb_lim 5 iddq-database-name
When you use multiple testbenches, the fault report files show only the comment lines
from the first testbench. PowerFault does not try to merge the comment lines from the fault
list in the second and subsequent testbenches with those in the first testbench.

If you mix fault seeds from other formats, like using the read_zycad command to seed
faults from a Zycad .fog file, the Zycad faults detected in previous iterations are counted in
the coverage statistics but are not printed in the fault report.

Iterative Simulation
You can run PowerFault iteratively, using each successive testbench to reduce the number
of undetected faults. This feature is supplied only for backward compatibility with earlier
versions of PowerFault. In general, you get better results by using the multiple testbench
methodology explained in Combining Multiple Verilog Simulations.

In the following example, you have two testbenches and you want to choose five strobes
from each testbench. All of the PowerFault tasks have been put into one file named ssi.v?.

This is the procedure to perform simulations iteratively:

1. In ssi.v?, seed the entire set of faults, using either the seed command or the read
commands.

2. Run the Verilog simulation with the first testbench:

vcs +acc+2 -R -P $IDDQ_HOME/lib/iddq_vcs.tab
testbench1.v ssi.v ... $IDDQ_HOME/lib/libiddq_vcs.a
or
Verilog testbench1.v ssi.v ...

3. Run IDDQPro to select five strobe points:

ipro -strb_lim 5 ...
4. Save the fault report and strobe report:

mv iddq.srpt run1.srpt
mv iddq.frpt run1.frpt

5. Edit and change ssi.v so that it seeds only the undetected faults in run1.frpt?:

...

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1285

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

$ssi_iddq("read_tmax run1.frpt");
...

6. Run the Verilog simulation again, using the second testbench:

vcs +acc+2 -R -P $IDDQ_HOME/lib/iddq_vcs.tab
testbench2.v ssi.v ... $IDDQ_HOME/lib/libiddq_vcs.a
or
Verilog testbench2.v ssi.v ...

7. Run IDDQPro again to select five strobe points from the second testbench:

ipro -strb_lim 5 ...
8. Save the fault report and strobe report:

mv iddq.srpt run2.srpt
mv iddq.frpt run2.frpt

After completion of these steps, run1.srpt contains five strobe points for the first testbench
and run2.srpt contains five strobe points for the second testbench.

If you have more than two testbenches, repeat steps 5 through 8 for each testbench,
substituting the appropriate file names each time.

Using PowerFault Technology
The following sections provide information on using PowerFault simulation technology:

• PowerFault Verification and Strobe Selection

• Testbenches for IDDQ Testability

• Combining Multiple Verilog Simulations

• Improving Fault Coverage

• Floating Nodes and Drive Contention

• Status Command Output

• Behavioral and External Models

• Multiple Power Rails

• Testing I/O and Core Logic Separately

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1286

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

PowerFault Verification and Strobe Selection
You can use PowerFault simulation technology to perform the following IDDQ tasks:

• Verifying TestMAX ATPG IDDQ Patterns for Quiescence

• Selecting Strobes in TestMAX ATPG Stuck-At Patterns

• Selecting Strobe Points in Externally Generated Patterns

Verifying TestMAX ATPG IDDQ Patterns for Quiescence
When you use the TestMAX ATPG IDDQ fault model, TestMAX ATPG generates test
patterns that have an IDDQ strobe in every pattern. When you write the patterns to a
Verilog-format file, TestMAX ATPG automatically includes the PowerFault tasks necessary
for verifying quiescence at every strobe.

To verify TestMAX ATPG IDDQ test patterns for quiescence, use the following procedure:

1. In TestMAX ATPG, use the write_patterns command to write the generated test
patterns in STIL format. For example, to write a pattern file called test.stil, you could
use the following command:

write_patterns test.stil -internal -format stil
2. Using MAX Testbench, create a Verilog testbench (for details, see Using the

stil2Verilog Command). For example, to write a Verilog testbench called test.v you
could use the following command:

stil2Verilog test.stil test
3. If you want to specify the name of the leaky node report file, open the test pattern file in

a text editor and search for all occurrences of the status drivers leaky command,
and change the default file name to the name you want to use. This is the default
command:

// NOTE: Uncomment the following line to activate
// processing of IDDQ events
// define tmax_iddq
‘$ssi_iddq("status drivers leaky top_level_name.leaky");
Substitute your own file name as in the following example:

‘$ssi_iddq("status drivers leaky my_report.leaky");
Save the edited test pattern file.

4. Run a Verilog/PowerFault simulation using the test pattern file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1287

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

The simulator produces a quiescence analysis report, which you can use to debug any
leaky nodes found in the design.

Selecting Strobes in TestMAX ATPG Stuck-At Patterns
Instead of generating test patterns specifically for IDDQ testing, you can use TestMAX
ATPG to generate ordinary stuck-at ATPG patterns and then use PowerFault simulation
technology to choose the best strobe times from those patterns. To do this, you need to
modify the Verilog testbench file to enable the simulator’s IDDQ tasks.

This is the general procedure:

1. In TestMAX ATPG, use the write_patterns command to write the generated test
patterns in STIL format. For example, to write a pattern file called test.stil, you could
use the following command:

write_patterns test.stil -internal -format stil
2. Using MAX Testbench, create a Verilog testbench(for details, see Using the stil2Verilog

Command). For example, to write a Verilog testbench called test.v you could use the
following command:

stil2Verilog test.stil test
3. Open the test pattern file in a text editor.

4. At the beginning of the file, find the following comment line:

// ‘define tmax_iddq

Remove the two forward slash characters to change the comment into a ‘define
tmax_iddq statement. This enables the PowerFault tasks that TestMAX ATPG has
embedded in the testbench.

Instead of activating the ‘define tmax_iddq statement in the file, you can define
tmax_iddq when you invoke the Verilog simulator. For example, when you invoke
VCS, use the +define+tmax_iddq=0+ option.

5. If you want to specify the name of the leaky node report file, search for all occurrences
of the status drivers leaky command and change the default file name to the
name you want to use. This is the default command:

‘$ssi_iddq("status drivers leaky top_level_name.leaky");
6. Save the edited test pattern file.

7. Run a Verilog simulation using the edited test pattern file.

8. Run the IDDQ Profiler.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1288

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

When you run the Verilog/PowerFault simulation, the IDDQ system tasks evaluate each
strobe time for fault coverage. When you run the IDDQ Profiler, it selects the best strobe
times.

Selecting Strobe Points in Externally Generated Patterns
You can use PowerFault simulation technology to select strobes from testbenches
generated by sources other than TestMAX ATPG. The procedure depends on the
testbench source:

• For test vectors generated by other ATPG tools, edit the testbench to add the
PowerFault tasks.

• For functional (design verification) test vectors, edit the testbench to add the
PowerFault tasks and determine timing for the tester vector. Use t-1, the last increment
of time within a test cycle, for IDDQ strobes.

• For BIST (built-in self-test), control the clock with tester and determine timing for the
tester vector. Use t-1 for IDDQ strobes.

To see how to edit the testbench to add PowerFault tasks, you can look at some Verilog
testbenches generated by TestMAX ATPG. For example, after the initial begin
statement, you need to insert $ssi_iddq tasks to invoke the PowerFault commands:

initial begin
//Begin IddQTest initial block
$ssi_iddq("dut adder_test.dut");
$ssi_iddq("verb on");
$ssi_iddq("seed SA adder_test.dut");
$display("NOTE: Testbench is calling IDDQ PLIs.");
$ssi_iddq("status drivers leaky LEAKY_FILE");
//End of IddQTest initial block
...
end
You also need to find the capture event and insert the PowerFault commands to evaluate
a strobe at that point. For example:

event capture_CLK;
always @ capture_CLK begin
->forcePI_default_WFT;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1289

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

#140; ->measurePO_default_WFT;
#110 PI[4]=1;
#130 PI[4]=0;
//IddQTest strobe try
begin
$ssi_iddq("strobe_try");
$ssi_iddq("status drivers leaky LEAKY_FILE");
end
//IddQTest strobe try
end

Testbenches for IDDQ Testability
When you create a testbench outside of the TestMAX ATPG environment, the following
design principles can significantly improve IDDQ testability:

• Separate the Testbench From the Device Under Test

• Drive All Input Pins to 0 or 1

• Try Strobes After Scan Chain Loading

• Include a CMOS Gate in the Testbench for Bidirectional Pins

• Model the Load Board

• Mark the I/O Pins

• Minimize High-Current States

• Maximize Circuit Activity

Separate the Testbench From the Device Under Test
For better IDDQ testability, maintain a clean separation of the testbench from the device
under test (DUT). The Verilog DUT module should model only the structure and behavior
of the chip. Put the chip-external drivers and pullups in the testbench. The testbench
should also generate stimulus for the chip and verify the correctness of the chip’s outputs.

Drive All Input Pins to 0 or 1
The mapping of testbench Xs to automated test equipment (ATE) drive signals is not well
defined. The results depend on how the active load on the ATE is programmed. Because

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1290

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Xs can be mapped to VDD, VSS, or some intermediate voltage, such as (VDD-VSS)/2,
avoid having your testbench drive Xs into the chip. PowerFault reports input pins driven to
X as “possible float.”

Try Strobes After Scan Chain Loading
To minimize simulation time and database size when you run a Verilog/PowerFault
simulation, do not perform a strobe_try on every serialized scan load step. Instead, use
strobe_try only after the entire scan chain is loaded.

If your simulation does a parallel scan load or you are using functional vectors, use
strobe_try before the end of each cycle.

Include a CMOS Gate in the Testbench for Bidirectional Pins
If your chip has bidirectional I/O pins, place a CMOS gate inside the testbench to transmit
the signal between the testbench driver and the I/O pad. For details, see Use Pass Gates.

Model the Load Board
Take into account external connections to the DUT. When a chip is tested by ATE, it
resides on a load board. The load board is a printed circuit board that provides the
encapsulating environment in which the chip is tested. It can contain pullups/pulldowns,
latches for three-state I/O pins, power/ground connections, and so on.

In general, your Verilog testbench should model the load board as accurately as possible.
Any pullups/pulldowns/latches that would exist on the load board should be modeled in the
testbench. In general, if a chip requires pullups to operate correctly in a real system, you
can assume they are needed on the load board also.

Mark the I/O Pins
The top-level ports of each DUT module are assumed to be primary I/O ports and are
given special treatment by PowerFault. If the testbench drives the DUT through other
ports, use the io command to tell PowerFault about these ports. For information on the io
command, see “io” in the PowerFault PLI Tasks section.

Minimize High-Current States
Try to minimize times when analog, RAM, and I/O cells are in current-draining states. Put
them into standby mode when possible and write a complete set of test vectors for analog/
RAM/IO standby mode.

Because IDDQ testing can be performed when the circuit is in a low-current state, try to
minimize the number of vectors that put the circuit into high-current states. For maximum
coverage, you might need to repeat the vectors that are normally applied during high-
current states. For example, if your I/O pads have active pullups during some vectors, you

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1291

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

can apply those same vectors again when the pullups are disabled, so that IDDQ testing
can be performed on those vectors.

Maximize Circuit Activity
Try to toggle each node during low-current states. Some easy methods for achieving high
circuit activity include:

• Shift alternating 0/1 patterns into scan registers.

• Apply alternating 0/1 patterns to data and address lines.

Combining Multiple Verilog Simulations
If you use different Verilog simulation runs to test different portions of a device or to drive a
device into different states, you can use PowerFault technology to choose a set of strobe
times for maximum fault coverage over all the resulting testbenches. For example, if there
are 30 testbenches and your tester time budget allows only five IDDQ strobes, the five
selected strobes ought to provide the best coverage out of all possible strobes in all 30
testbenches.

If you want to improve coverage efficiency within a single testbench, see Deleting Low-
Coverage Strobes.

To combine multiple simulation results, you can merge the IDDQ information from each
successive Verilog/PowerFault simulation into a single database. Then you can apply the
IDDQ Profiler to that single database. This process is illustrated in the following figure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1292

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Figure 191 Using Multiple Testbenches

   

The following procedure is an example of a strobe selection session using two
testbenches and a budget of five IDDQ strobes. The PowerFault PLI tasks for testbench1
and testbench2 are in files named iddq1.v and iddq2.v?, respectively.

1. In iddq1.v and iddq2.v, seed the entire set of faults, using either the seed command or
read commands. For example:

$ssi_iddq("seed SA iddq1.v");

$ssi_iddq("seed SA iddq2.v");
2. In iddq1.v, use the output create command to save the simulation results to an IDDQ

database named iddq.db?:

$ssi_iddq("output create label=run1 iddq.db");
3. In iddq2.v, use the output append command to append the simulation results to the

database you created in Step 2:

$ssi_iddq("output append label=run2 iddq.db");
4. Run a Verilog/PowerFault simulation using testbench1.v and iddq1.v?.

5. Run a Verilog/PowerFault simulation using testbench2 and iddq2.v?.

6. Run the IDDQ Profiler to select five good strobe points from the iddq.db database:

ipro -strb_lim 5 iddq

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1293

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

A strobe report for multiple testbenches shows both the testbench number and simulation
time within the respective testbench for each selected strobe. Testbench names and labels
are listed in the header of the strobe report. Testbenches are numbered in sequence,
starting with 1.

When you use multiple testbenches, the fault report files show only the comment lines
from the first testbench. PowerFault does not try to merge the comment lines from the fault
list in the second and subsequent testbenches with those in the first testbench.

Improving Fault Coverage
PowerFault does not require additional design-for-test (DFT) circuitry or modifications to
your testbench, models, or libraries. It does not require configuration files, and it runs on
any Verilog chip design.

If PowerFault is unable to find enough qualified strobes to provide satisfactory fault
coverage, you might be able to find more qualified strobes by using the techniques
described in the following sections:

• Determine Why the Chip Is Leaky

• Evaluate Solutions

Determine Why the Chip Is Leaky
The first step is to run the Verilog/PowerFault simulation to determine why the chip is leaky
at strobe times. At each strobe try, PowerFault examines your chip for leaky states. If it
finds any leaky states, it disqualifies the strobe point.

To check the leaky states for each strobe point, use the status command after the
strobe_try?, as in the following example:

always begin
fork
CLOCK_PERIOD;
(CLOCK_PERIOD -1)
begin
$ssi_iddq("strobe_try");
$ssi_iddq("status drivers leaky bad_nodes");
end
join

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1294

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

end
This example creates a file called bad_nodes that describes each leaky state at each
strobe point. For example:

Time 3999
top.dut.vee[0] is leaky: Re: float
HiZ <- top.dut.veePad0.out
top.dut.DIO[1] is leaky: Re: fight
St0 <- top.dut.dpad1_cld
St1 <- top.dut.dpad1_snd
StX <- resolved value
For each status command, the simulator reports the simulation time and a list of
leaky nodes. In the report, the full path name of each net is followed by a reason
(such as Re: float?) and a list of drivers and their contribution to the net value. For
example, in the preceding example, top.dut.vee[0] is floating because its lone driver
(?top.dut.veePad0?) is in the high-impedance state.

For a complete description of the output of the status command, see Status Command
Output. For more information on leaky states, see Leaky State Commands.

Evaluate Solutions
After you identify and understand the leaky states, you need to decide how to eliminate or
ignore them so that you can change unqualified strobes into qualified ones. Use any of the
following methods:

• Use the allow Command

• Configure the Verilog Testbench

• Configure the Verilog Models

Use the allow Command
The allow command can make PowerFault ignore leaky states that you know are not
present in the real chip. For example, incomplete Verilog models can cause misleading
leaky states that prevent PowerFault from qualifying strobe points. For more information,
see Leaky State Commands.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1295

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Configure the Verilog Testbench
In some cases, you can fix leaky states by modifying the Verilog testbench, as described
in the following sections:

• Drive All Input Pins to 0 or 1

• Use Pass Gates

• Model the Load Board

• Mark the I/O Pins

Drive All Input Pins to 0 or 1
Make sure the testbench initializes all primary inputs. If your testbench drives Xs into the
primary input pins of the device under test (DUT), PowerFault disqualifies the vector and
flags those pins as “possible float.” PowerFault takes the conservative position that Xs
driven by the testbench might translate to the automated test equipment (ATE) turning off
the drive signal and allowing the input pin to float.

If your ATE replaces Xs with a default drive value (either VDD or VSS), then driving Xs
should be allowed. In that case, use the allow float command on all your input pins, as
in the following example:

$ssi_iddq("allow float testbench.chip.RE");
$ssi_iddq("allow float testbench.chip.ABUS[0]");
$ssi_iddq("allow float testbench.chip.ABUS[1]");
Use Pass Gates
If your chip has bidirectional I/O pins, place a CMOS gate inside the testbench to transmit
the signal between the testbench driver and the I/O pad.

The following code shows how two registers in the testbench are connected to signals that
feed the DUT pins:

reg bio_reg, dtrdy_reg; // registers to hold stimulus
// drive bidirectional "bio" signal through pass gate
wire bio_tmp = bio_reg;
cmos(bio_sig, bio_tmp,‘b1,‘b0);

// drive input signal directly
wire dtrdy_sig = dtrdy_reg;

// hookup signals to dut

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1296

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

dut dut(bio_sig, dtrdy_sig, ...);
Notice how the input signal dtrdy_sig is driven directly by the dtrdy_reg register, but the
bidirectional signal bio_sig is driven through the cmos primitive, as shown in the following
figure.

Figure 192 Pass Transistor Between the Testbench and DUT

   

Model the Load Board
When a chip is tested by ATE, it resides on a load board. The load board is a printed
circuit board that provides the encapsulating environment in which the chip is tested. It can
contain pullups/pulldowns, latches for three-state I/O pins, power and ground connections,
and so on.

In general, your Verilog testbench should model the load board as accurately as possible.
Any pullups, pulldowns, and latches that would exist on the load board should be modeled
in the testbench. In general, if a chip needs pullups to operate correctly in a real system,
you can assume they are needed on the load board also.

Mark the I/O Pins
The top-level ports of a DUT module are assumed to be primary I/O ports and are given
special treatment by PowerFault. If the testbench drives the DUT through other ports, use
the io command to tell PowerFault about these ports. For information on the io command,
see PowerFault PLI Tasks.

Configure the Verilog Models
In general, the more your chip is modeled at a structural level (using gates, switches, and
wires), the better for IDDQ testing. If your cells model logic behaviorally rather than with
built-in Verilog primitives and user-defined primitives (UDPs), PowerFault might find fewer
qualified strobe points. For details, see the following sections:

• Drive All Buses Possible

• Gate Buses That Cannot Be Driven

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1297

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

• Use Keeper Latches

• Enable Only One Driver

• Avoid Active Pullups and Pulldowns

• Avoid Bidirectional Switch Primitives

Drive All Buses Possible
Because floating buses can disqualify strobe points, try to always drive internal buses.
Either configure the control logic to always enable one driver for the bus, or use keeper
latches (holders).

For example, here is a bus that has two drivers that are fully multiplexed:

bufif1 (addr0, X[0], sel); // driver 1
bufif1 (addr0, Y[0], sel_bar); // driver 2
not (sel_bar, sel); // inverter
Gate Buses That Cannot Be Driven
If driving the bus is not always possible or desirable, gate the bus so that when it does
float, the effect is blocked. For example, here is a bus that has two drivers and one load:

bufif1 (addr0, X[0], x_en); // driver 1
bufif1 (addr0, Y[0], y_en); // driver 2
or (x_or_y_en, x_en, y_en); // qualifier
and (addr0_qualified, addr0, x_or_y_en); // load
The bus value is blocked at the load (AND gate) when neither driver is active. If you want
to use OR gates to block floating buses, use the statedep_float command. For more
information on this command, see “statedep_float” in the PowerFault PLI Tasks section.
For more information on blocking floating buses, see State-Dependent Floating Nodes.

Use Keeper Latches
If a bus cannot always be driven or gated, consider using keeper latches (also called
“keepers”). A keeper retains the last value driven onto the bus. It has a weaker drive
strength than normal bus drivers so that it can be overdriven.

Keepers should be modeled structurally. For example, here is a bus that has two drivers
and one keeper:

bufif1 (addr0, X[0], x_en); // driver 1
bufif1 (addr0, Y[0], y_en); // driver 2

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1298

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

buf (pull0,pull1) (addr0, addr0); // keeper
Avoid modeling keepers behaviorally or with continuous assignments:

wire (pull0,pull1) addr0 = addr0; // AVOID THIS
Use only strength-restoring gates such as buf for modeling keepers. Avoid using switch
primitives (?nmos?, pmos?, cmos?) for modeling keepers:

rnmos(addr0, addr0, ‘b1); // AVOID THIS
Enable Only One Driver
Because bus contention disqualifies strobe points, initialize all control logic (enabling lines)
for bus drivers. Furthermore, if possible, configure the control logic to enable only one
driver for the bus at a time.

Avoid Active Pullups and Pulldowns
Active pullups and pulldowns can also disqualify strobe points, so use keeper latches on
three-state buses rather than pullups or pulldowns. PowerFault treats each of the following
elements as a pullup or pulldown:

• pullup and pulldown primitives

• tri1 and tri0 nets

• wand and wor nets

Conflicting values on “wired AND” nets are reported as active pullups, and conflicting
values on “wired OR” nets are reported as active pulldowns.

When you must use pullups or pulldowns, model them structurally like this:

wire n26;
pullup(n26);
OR
tri1 n26;
Avoid modeling pullups and pulldowns behaviorally or with continuous assignments, as in
the following example:

wire (highz0,pull1) n26 = n26; // AVOID THIS
Avoid Bidirectional Switch Primitives
Avoid using the rtran?, rtranif1?, and rtranif0 primitives. If possible, replace them
with nmos?, pmos?, or cmos primitives.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1299

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Floating Nodes and Drive Contention
PowerFault recognizes certain types of floating nodes and drive contention, and reports
them according to their classification. The following sections describe floating nodes and
drive contention:

• Floating Node Recognition

• Drive Contention Recognition

Floating Node Recognition
The following sections describe floating node recognition:

• Leaky Floating Nodes

• Floating Nodes Ignored by PowerFault

• State-Dependent Floating Nodes

• Configuring Floating Node Checks

• Floating Node Reports

• Nonfloating Nodes

Leaky Floating Nodes
PowerFault identifies the following types of floating nodes as leaky:

• True floating node — This is a node at Z, which does not have any active drivers, as
shown in the following figure.

Figure 193 True Floating Node Example

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1300

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

• Possibly floating node — This is a node at X that might not have an active driver, as
shown in the following figure, or an undriven capacitive node. A capacitive node is a
Verilog net with small, medium, or large strength.

Figure 194 Possibly Floating Node Example

   

Floating Nodes Ignored by PowerFault
PowerFault ignores (does not report) these types of floating nodes:

• Floating node without a load — This is a node that does not drive anything, as shown
in the following figure.

Figure 195 Floating Node Without Load Example

   

• State-dependent floating node — This is a node that can be allowed to float because
its effects are blocked by the states of other inputs, as shown in the following figure.

Figure 196 Blocked Floating Node Example

   

State-Dependent Floating Nodes
For AND, NAND, and NOR gates, the IDDQ effect of a floating input can be blocked by the
other inputs. For example, if one input to a two-input NAND gate is floating but the other
input is 0, the floating input is blocked so that it cannot cause a leakage current.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1301

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

In the preceding figure, the 0 input turns off transistor n2, so there is no conducting path
from VDD to VSS through transistors p1 and n1. If the 0 input was 1 instead, PowerFault
would identify the floating input as leaky.

By default, all inputs of 2-input and 3-input AND/NAND gates and 2-input NOR gates are
treated as state-dependent floating nodes. By default, gates with more inputs and other
types of gates are not allowed to have floating inputs. You can change the input limit for
the AND, NAND, and NOR gates by using the statedep_float command. For more
information, see “statedep_float” in " PowerFault PLI Tasks ."

Configuring Floating Node Checks
Using the allow and disallow commands, you can configure how floating nodes are
recognized. The allow command lets you do the following:

• Allow a particular node to float

• Allow all nodes to float

• Allow possible floating nodes (true floating nodes are still disallowed)

The disallow command lets you do the following:

• Disallow a Z on a particular node

• Disallow Zs on all nodes

For a complete description of the allow and disallow commands, see PowerFault PLI
Tasks.

Floating Node Reports
The status leaky command reports a list of floating nodes and nodes with drive
contention. In order to save space, it reports only the floating node at the first strobe
where the node is leaky. To get a report on all floating nodes (including those previously
reported), use the all_leaky option with the status command. For example:

$ssi_iddq("status drivers all_leaky bad_nodes");
Nonfloating Nodes
To get a list of leaky nodes, use the following command:

$ssi_iddq("status leaky");
To get a list of nonleaky nodes, use the following command:

$ssi_iddq("status nonleaky");
This command reports a list of nodes that are not floating and do not have drive
contention, together with the reason that each node was found to be nonleaky. This

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1302

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

information can be useful when you think a node should be reported as floating, but it is
not.

Drive Contention Recognition
PowerFault identifies the following types of drive contention:

• Pullups and pulldowns — For example, see the active pullup in Figure 197.

• Contention between multiple bus drivers — For example, see the true drive fight in
Figure 198.

Figure 197 Active Pullup

   

Figure 198 True Drive Fight

   

PowerFault makes a distinction between true and possible drive contention. A true fight
occurs when a net has both a 0 (VSS) driver and a 1 (VDD) driver. A possible fight occurs
when one or more drivers are at X on a bus with multiple drivers, as shown in the following
figure.

Figure 7 Possible Drive Fight

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1303

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

PowerFault also warns about unusual connections that indicate static leakage. The first
time you execute the status command, it writes warning messages to the simulation log
file about the following conditions:

• A node connected to both VSS (supply0) and VDD (supply1)

• A node connected to both a pullup and a pulldown

Status Command Output
The output of the status command can help you determine the cause of floating nodes
and drive contention. Eliminating or reducing these types of leaky states not only makes
your design more IDDQ-testable, it can also reduce the device power consumption.

The following sections describe the status command output:

• Status Command Overview

• Leaky Reasons

• Nonleaky Reasons

• Driver Information

Status Command Overview
The status command is executed during the Verilog/PowerFault simulation. It reports the
nodes found to be leaky or nonleaky. For information on the command syntax, see “status”
in PowerFault PLI Tasks.

The status of each node is reported in this format:

net-instance-name is (leaky|non-leaky). Re: reason
The instance name of each net is followed by a reason that explains why the node was
found to be leaky or nonleaky. For example:

top.dut.TBIN is leaky: Re: float
top.dut.DIO is leaky: Re: possible float
The status command distinguishes between true and possible leaks. Possible leaks
arise when nodes and drivers have unknown values (X). In the preceding example,
top.dut.TBIN is truly floating (Z), whereas top.dut.DIO is possibly floating.

By default, the status leaky command reports only the first occurrence of a leaky node.
When there are leaky nodes at a strobe, and all these leaky nodes have been reported at
previous strobe times, the command prints the message “All reported.”

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1304

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Leaky Reasons
The status command determines that a node is leaky for either a standard or user-defined
reason. A standard reason is reported when the node is leaky due to a built-in quiescence
check, such as fight, float, pullup, or pulldown. A user-defined reason is reported when the
node violates a condition specified by the disallow command.

Table 22 lists the standard leaky reasons and Table 23 lists the user-defined leaky
reasons.

Table 22 Standard Leaky Reasons

Reason Description

Fight A drive fight between two or more drivers of equal strength. One driver is at 0 and
another is at 1.

Pullup An active pullup. A net with a pullup is being driven to 0. Any time a stronger driver at 0 is
overriding a weaker driver at 1, the net is flagged as having an active pullup.

Pulldow
n

An active pulldown. A net with a pulldown is being driven to 1. Any time a stronger driver
at 1 is overriding a weaker driver at 0, the net is flagged as having an active pulldown.

Float A floating input node; an input node that is undriven (Z).

Possibl
e Fight

A possible drive fight. One driver at X might be fighting with another driver (see Floating
Nodes and Drive Contention).

Possibl
e Pullup

A possible active pullup. A net with a pullup is being driven by an X. Any time a stronger
driver at X is overriding a weaker driver at 1, the net is flagged as having a possible
pullup.

Possibl
e
Pulldow
n

A possible active pulldown. A net with a pulldown is being driven by an X. Any time a
stronger driver at X is overriding a weaker driver at 0, the net is flagged as having a
possible pulldown.

Possibl
e Float

A possible floating input node. The node is at X, but might have no active drivers (see
Floating Nodes and Drive Contention).

Table 23 User-Defined Leaky Reasons

Reason Description

Disallowed 0 A
disallow
command flags the net’s present state (0) as leaky.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1305

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Table 23 User-Defined Leaky Reasons (Continued)

Reason Description

Disallowed 1 A
disallow
command flags the net’s present state (1) as leaky.

Disallowed X A
disallow
command flags the net’s present state (X) as leaky.

Disallowed Z A
disallow
command flags the net’s present state (Z) as leaky.

Disallow all Xs A
disallow X
command flags the net’s state (X) as leaky.

Disallow all Zs A
disallow Z
command flags the net’s present state (Z) as leaky.

Disallow all Caps A
disallow Caps
command flags the net’s present capacitive state as
leaky.

Disallowed 0 A
disallow
command flags the net’s present state (0) as leaky.

Disallowed 1 A
disallow
command flags the net’s present state (1) as leaky.

A user-defined leaky reason appears when a node has a state specifically disallowed by a
disallow command. For example:

$ssi_iddq("disallow top.dut.SDD == 0");
$ssi_iddq("disallow Z");
These two disallow commands produce a report like the following:

top.dut.SDD is leaky: Re: disallowed 0
top.dut.BIO is leaky: Re: disallow all Zs

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1306

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

In this example, top.dut.SDD is 0, which is disallowed by the first disallow command;
and top.dut.BIO is Z, which is disallowed by the second disallow command.

Nonleaky Reasons
Table 24 lists the standard nonleaky reasons and Table 25 lists the user-defined nonleaky
reasons.

Table 24 Standard Nonleaky Reasons

Reason Description

0 or 1 The node is a quiet 0 or 1.

Z no loads The node is floating, but not connected to any inputs.

Z blocked The node is floating, but is blocked (see Floating Nodes and Drive
Contention).

X no contention The node is driven to X (it is not floating) and has no contention; it is probably
uninitialized.

Possible float no
loads

The node is X and might be floating, but is not connected to any inputs.

Possible float
blocked

The node is X and might be floating, but is blocked.

Table 25 User-Defined Nonleaky Reasons

Reason Description

Allowable float The node is (or possibly is) floating, but an allow command permits it.

Allowable fight The node has (or possibly has) drive contention, but an
allow
command allows it.

Allow all fights The node has (or possibly has) drive contention, but an
allow
command allows all contention.

Allow poss fights The node possibly has drive contention, but an
allow
command allows possible contention.

Allow all floats The node is (or possibly is) floating, but an
allow
command allows all floats.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1307

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Table 25 User-Defined Nonleaky Reasons (Continued)

Reason Description

Allow poss floats The node is possibly floating, but an
allow
command allows all possible floats.

A user-defined nonleaky reason appears when a node has a state specifically allowed by
an allow command. For example:

$ssi_iddq("allow fight top.dut.PL");
$ssi_iddq("allow all float");
These two allow commands can produce a report like the following:

top.dut.PL is non-leaky: Re: allowable fight
top.dut.BIO is non-leaky: Re: allow all floats

Driver Information
To determine why a net is floating or has drive contention, its drivers must be examined.
Simulation debuggers and even some system tasks (such as the $showvar task in the
Verilog simulator) can perform this examination. You can also use the drivers option of
the status command, but this option generates only gate-level driver information.

The drivers option causes the status command to print the contribution of each driver.
For example:

$ssi_iddq("status drivers leaky bad_nodes");
can produce output like:
top.dut.mmu.DIO is leaky: Re: fight
St0 <- top.dut.mmu.UT344
St1 <- top.dut.mmu.UT366
StX <- resolved value
top.dut.mmu.TDATA is leaky: Re: float
HiZ <- top.dut.mmu.UT455
HiZ <- top.dut.mmu.UT456

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1308

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

In this example, top.dut.mmu.DIO has a drive fight. One driver is at strong 0 (?St0?) and
the other at strong 1 (?St1?). The contributing value of each driver is printed in Verilog
strength/value format, as described in section 7.10 of the IEEE 1364 Verilog LRM.

The same status command without the drivers option produces a report like this:

top.dut.mmu.DIO is leaky: Re: fight
top.dut.mmu.TDATA is leaky: Re: float

Behavioral and External Models
PowerFault examines the structure of your Verilog HDL model to determine whether the
chip is quiescent. PowerFault looks for bus contention, floating inputs, active pullups, and
other current-drawing states.

If you use behavioral models or external models (like LMC, LAI, or VHDL cosimulated
models) to simulate subblocks of the chip, PowerFault cannot to determine when those
subblocks are quiescent. As a result, it might select strobe points that are inappropriate for
IDDQ testing. To prevent this from happening, use the disallow command.

The following sections describe the disallow command in more detail:

• Disallowing Specific States

• Disallowing Global States

Disallowing Specific States
The disallow command is a flexible command that lets you describe the leaky states
for all instances of a behavioral or external model. One or more commands can describe
which input, output, or internal states correspond to nonquiescence.

For example, the three following disallow commands describe when instances of the
BRAM and DAC entities are leaky:

$ssi_iddq("disallow BRAM (REFRESH == 1 && ENABLE == 0)");
$ssi_iddq("disallow BRAM (WRITE_EN == 1 || READ_EN == 1)");
$ssi_iddq("disallow DAC (port.0 != 0 && port.1 != 0)");

Disallowing Global States
You can use the disallow command to disallow all nets in the Verilog simulation from
having a particular value. This is useful if the libraries contain behavioral gate models. For
example, if the three-state buffers are not modeled with Verilog primitives or UDPs, then
PowerFault might not be able to detect bus contention.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1309

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Here is an example of a three-state buffer modeled behaviorally:

module BUF0 (out, data, control);
output out;
input data, control;
wire out = (control == 0) ? data : ‘bZ;
endmodule
To prevent bus contention during an IDDQ strobe, you can disallow all Xs with this
command:

$ssi_iddq("disallow X");
If disallowing all Xs is too pessimistic, you can use a specific disallow command for each
three-state buffer entity. For example, if you have two types of three-state buffers, BUF0
and BUF1, use the following commands:

$ssi_iddq("disallow BUF0 (out == X)");
$ssi_iddq("disallow BUF1 (out == X)");
If the libraries contain behavioral gate models, PowerFault might not be able to detect
floating buses (buses with all drivers turned off). To prevent floating buses during an IDDQ
strobe, you can disallow all Zs with this command:

$ssi_iddq("disallow Z");
If disallowing all Zs is too pessimistic, you can use a disallow command for each three-
state buffer entity. For example, you could use the following commands:

$ssi_iddq("disallow BUF0 (out == Z)");
$ssi_iddq("disallow BUF1 (out == Z)");
For more information on the disallow command, see Leaky State Commands.

Multiple Power Rails
This section describes how to apply PowerFault to a chip with multiple power rails, where
each power rail feeds a separate logic block on the chip. The overall strategy is as follows:

1. Determine the number of IDDQ test points for each block.

2. For one block, run a Verilog/PowerFault simulation, seeding only the faults in that
block; and use IDDQPro to select strobes for the block.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1310

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

3. Repeat step 2 for each block in the design. Exclude any strobes that have already
been selected for previous blocks.

4. To determine the fault coverage for each block using the full set of strobes, run
IDDQPro separately on each database, manually selecting all strobes selected in steps
2 and 3.

Here is an example. Suppose you have a chip with three power rails, as shown in the
following figure.

Figure 199 Chip With Three Power Rails

   

Step 1

Select two IDDQ strobes for each block.

Step 2

Run a Verilog simulation, seeding faults only in block1. The Verilog simulation produces a
database named db1 (see Figure 200). You then use IDDQPro to automatically select two
strobes from the database and save the strobe report in accum.strobes (see Figure 201):

ipro -strb_lim 2 -prnt_nofrpt db1

mv iddq.srpt accum.strobes

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1311

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Figure 200 Create a Database for Block 1

   

Figure 201 Select Two Strobes for Block 1

   

Step 3

Run the next Verilog simulation, this one seeding faults only in block2. The Verilog
simulation produces a database named db2?. You then use IDDQPro to automatically
select two strobes from db2 and append the two strobes to accum.strobes (see the
following figures):

 ipro -strb_lim 2 -strb_unset accum.strobes -prnt_nofrpt db2

cat iddq.srpt >> accum.strobes

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1312

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Figure 202 Create a Database for Block 2

   

Figure 203 Select Two Strobes for Block 2

   

To complete step 3, you run the last Verilog simulation, this one seeding faults only in
block3. The Verilog simulation produces a database named db3. You then use IDDQPro to
automatically select two strobes from db3 and append the two strobes to accum.strobes?:

ipro -strb_lim 2 -strb_unset accum.strobes -prnt_nofrpt db3
cat iddq.srpt >> accum.strobes
The accum.strobes file now has six strobes (two for each block). The strobes you selected
for any one block might be qualified for the other two blocks, so in step 4 you will try to
select all six strobes.

Step 4

To begin step 4, you run IDDQPro to manually select six strobes from db1?. You select the
strobes stored in accum.strobes and save the resulting strobe and fault reports:

ipro -strb_lim 6 -strb_set accum.strobes db1
mv iddq.srpt iddq.srpt1
mv iddq.frpt iddq.frpt1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1313

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

Continuing step 4, you run IDDQPro to manually select six strobes from db2?. You select
the strobes stored in accum.strobes and save the resulting strobe and fault reports:

ipro -strb_lim 6 -strb_set accum.strobes db2
mv iddq.srpt iddq.srpt2
mv iddq.frpt iddq.frpt2
To finish step 4, you repeat the same procedure using db3?:

ipro -strb_lim 6 -strb_set accum.strobes db3
mv iddq.srpt iddq.srpt3
mv iddq.frpt iddq.frpt3
Conclusion

After step 4 is complete, you have selected a total of six strobes (two for each block). The
three individual strobe reports describe the fault coverage of the six strobes for each of the
three blocks. The three individual fault reports describe the detected faults for each of the
three blocks.

Testing I/O and Core Logic Separately
PowerFault looks at the chip as a whole. By default, everything in the DUT module,
including I/O pads, must be quiescent to qualify a strobe point for IDDQ testing.

If the I/O pads and core logic have separate power rails, you can probably increase fault
coverage by testing the core logic separately. This is because you can test the core at
times when the I/O pads are leaky, assuming that you are able to measure IDDQ just for
the core logic (ignoring the current drawn by the I/O pads).

To qualify strobes just for the core logic, use the allow command to ignore floating I/
O pins and drive contention at I/O pins. This command makes PowerFault ignore all
leaky states at the I/O pads. Also use the exclude command to prevent faults from being
seeded inside the I/O pads.

Here is an example:

$ssi_iddq("allow float top.dut.clk33_pad");
$ssi_iddq("allow fight top.dut.clk33_pad");
$ssi_iddq("exclude top.dut.clk33_pad");
$ssi_iddq("allow float top.dut.dto_pad");
$ssi_iddq("allow fight top.dut.dto_pad");

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1314

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 34: PowerFault
Using PowerFault Technology

Feedback

$ssi_iddq("exclude top.dut.dto_pad");

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1315

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

35
Types of Reports

You can use the following output reports for various types of analysis in TestMAX ATPG:

Analyze Buses

Analyze Faults

ATPG Constraints

ATPG Primitives

Report Buses

report_capture_masks

Cell Constraints

Clocks

Commands

report_delay_paths

Diagnosis

Faults

Memory

Modules

Net Connections

Nets

Nofaults

Nonscan Cells

Patterns

PI Constraints

PI Equivalences

Pin Data

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1316

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_ability Command

Feedback

PO Masks

Primitives

Rules

run_build_model

run_drc

run_fault_sim

run_justification

run_simulation

Scan Ability

Scan Cells

Scan Chains

Scan Path

Settings

Summaries

Version

Violations

Wires

Output From the report_scan_ability Command
You can use output from the report_scan_ability command to view data on nonscan
cells that have been selected to behave as scan cells using the set_scan_ability
command. The syntax for this command is as follows:

report_scan_ability [-max d]

Standard Format
 gate_id type instance_name
 ------- ---- -------------------------
 97299 DFF /core/host/d_l2odd_reg
 97302 DFF /core/host/rd_stat_reg_1

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1317

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_cells Command

Feedback

gate_id

Indicates the primitive ID number of the nonscan cell which has been selected to
be treated as a virtual scan cell.

type

Indicates the primitive type on the reported virtual scan cell. Possible primitive
types are DLAT and DFF.

instance_name

Indicates the instance name of the virtual scan cell.

See Also

• report_scan_ability

Output From the report_scan_cells Command
You can use output from the report_scan_cells command to view scan cell information
for selected scan cells. The syntax for this command is as follows:

report_scan_cells < <chain_name [position]> | -shadows | -all >

[-pins] [-max d] [-reverse] [-verbose]

Standard Format
 chain cell type inv gate# instance_name (type)
------- ---- ------- --- ------ ---------------
 c1 0 MASTER IN 147 /reg4/r (N_LAT)
 c1 1 MASTER IN 145 /reg3/r (N_LAT)
 DSLAVE IN 146 /reg4/lat1 (P_LAT)
 c1 2 MASTER NI 143 /reg2/r (N_LAT)
 SCANTLA IN 144 /reg3/lat1 (P_LAT)

chain

Indicates the chain name in which the reported scan cell resides.

cell

Indicates the cell position in the scan chain of the reported scan cell. Position 0
indicates the scan cell closest to the scanout pi, position 1 is adjacent to it, and
so forth.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1318

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_cells Command

Feedback

type

Indicates the state element type of a primitive associated with the reported scan
cell. The possible choices are MASTER, SLAVE, SHADOW, OBS_SHADOW
(observable shadow), DSLAVE (dependent slave or lockup latch), and
SCANTLA (scannable transparent latch).

inv

Indicates the inversion relationships of the primitive associated with the reported
scan cell. The inversion data consists of 2 characters each of which can be
N (not inverted) or I (inverted). The first character indicates the inversion
relationship of the primitive to the chain input port. The second character
indicates the inversion relationship of the primitive to chain output port.
Additional explanation of this inversion reference can be found in the topic:
Troubleshooting Pattern Simulation Failures

gate#

Indicates the primitive ID number of the gate.

instance_name

Indicates the instance name of the gate.

(type)

Indicates the name of library module from which the primitive was derived.

-Pin Format
 chain cell type inv gate# instance_name (type)
 ------- ---- ------- --- ------ -------------------------------
 c1 0 MASTER IN 147 /reg4/r (N_LAT)
 input I 147 /reg4/r/D (N_LAT)
 output N 147 /reg4/r/Q (N_LAT)
 c1 1 MASTER IN 145 /reg3/r (N_LAT)
 DSLAVE IN 146 /reg4/lat1 (P_LAT)
 input I 145 /reg3/r/D (N_LAT)
 output N 146 /reg4/lat1/Q (P_LAT)
 c1 2 MASTER NI 143 /reg2/r (N_LAT)
 SCANTLA IN 144 /reg3/lat1 (P_LAT)
 input N 143 /reg2/r/D (N_LAT)
 output N 144 /reg3/lat1/Q (P_LAT)

Description

The -pin format includes all data reported in the standard format plus two additional entries
for each scan cell that identify its input and output pins. The type field is used to indicate
either input or output. The inversion field consists of only one character. For the input pin,
this indicates the inversion of the pin relative to the chain input. For the output pin, this

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1319

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_cells Command

Feedback

indicates the inversion of the pin relative to the chain output. The full pin pathname of the
pin is given in the instance_name field.

Verbose Format
 chain cell type edge inv gate# clocks instance_name
 (type)
 ----- ---- ------ ---- --- ----- ----------------------

 C1 4096 MASTER TE NN 1647 - c1mhz - tck - rst /B/id_0 (SF1)
 C1 4095 MASTER TE NN 1646 - c1mhz - tck - rst /B/id_4 (SF1)
 C1 4094 MASTER TE NN 1648 - c1mhz - tck - rst /B/swait (SF2)
 C1 4093 MASTER TE NN 1678 - c1mhz - tck - rst /B/th_iq_0 (SF1)
 : : : : : :
 C1 4078 MASTER TE NN 1663 - c1mhz - tck - rst /B/tal_iq_7
 (SF1)
 C1 4077 MASTER LE NN 5810 + tck /A/tdo_lock
 (SF4)
 DSLAVE TE NN 4275 - c1mhz - tck - rst
 /A/C/mblk/peak/dd15 (SF1)
 C1 4076 MASTER TE NN 4295 - c1mhz - tck - rst
 /A/C/mblk/peak/dd14 (SF1)
 C1 4075 MASTER LS NN 1309 + c1mhz + tck + rst
 /A/C/mblk/peak/LOCKUP2 (LAT1)
 DSLAVE TE NN 2224 - tck - c1mhz - rst /A/C/sblk/aga0
 (SF2)
 C1 4074 MASTER TE NN 2223 - tck - c1mhz - rst /A/C/sblk/aga1
 (SF1)
 : : : : : :
 C1 3950 MASTER TE NN 4291 - c1mhz - tck - rst
 /C/peak/current_19 (SF1)
 C1 3949 MASTER LS NN 1308 + c1mhz + tck + rst /C/peak/LOCKUP3
 (LAT1)
 DSLAVE TE NN 4048 - tst32k - c1mhz
 /A/C/micro_blk/egdma/save0 (SF1)
 C1 3948 MASTER TE NN 4047 - tst32k - c1mhz
 /A/C/micro_blk/egdma/save
 : : : : : :
 C1 3771 MASTER LE NN 1861 + c1mhz + tck + rst /B/rgf_8 (SF3)
 C1 3770 MASTER LE NN 1858 + c1mhz + tck + rst /B/rgf_7 (SF3)
 SCANTLA UP NN 0832 ? c1mhz ? tck ? rst /B/rgf_LOCKUP
 (LAT2)
 C1 3769 MASTER LE NN 1811 + c1mhz + tck + rst /B/ci8_6 (SF3)
 : : : : : :
 C1 3557 MASTER LE NN 1945 + c1mhz + tck + rst /B/rgd_4 (SF3)
 SHADOW LE IN 1751 + c1mhz + tck + rst /B/rgd_3 (DF2)
 C1 3556 MASTER LE NN 1948 + c1mhz + tck + rst /B/rgd_2 (SF3)
 SHADOW LE IN 1753 + c1mhz + tck + rst /B/rgd_1 (DF2)
 : : : : : :
 C1 160 MASTER LE NN 5812 + c1mhz + tck + rst
 /dbsn/cb_d_2/scan_out (SF4)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1320

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_cells Command

Feedback

 SHADOW LS NN 1482 + tck
 /dbsn/cb_d_2/data_in (LAT1)
 C1 159 MASTER LE NN 5916 + c1mhz + tck + rst
 /dbsn/cb_h/scan_out (SF4)
 SHADOW LS NN 1506 + tck
 /dbsn/cb_b_6/data_in (LAT1)
 SHADOW LS NN 1582 + tck
 /dbsn/cb_h/data_in (LAT1)
 SHADOW LS NN 1596 + tck
 /dbsn/cb_b_3/data_in (LAT1)
 SHADOW LS NN 1597 + tck
 /dbsn/cb_b_4/data_in (LAT1)
 SHADOW LS NN 1598 + tck
 /dbsn/cb_b_5/data_in (LAT1)
 SHADOW LE IN 2106 + tck + c1mhz + rst
 /C/clockgen/kprev (DF1)
 : : : :

The -verbose format includes all data reported in the standard format plus the following
additional columns:

edge

Indicates the clock edge on which the device captures during a scan shift. LE
indicates leading edge (a 0->1 transition for a clock with off state 0, or 1->0
transition for a clock with off state 1). TE indicates trailing edge. LS indicates the
device is level sensitive and not edge sensitive. UP indicates unstable pin, when
all clocks are off, a clock pin of the state element is unstable.

clocks

Indicates all clock names and associated polarity which affect the contents of
the state element. The identification of clocks considers only true clock inputs of
DFFs/DLATs and ignores the set/reset inputs. A polarity of "+" indicates a 0->1
transition of this clock pin at the top level of the chip causes a capture. A polarity
of "-" indicates a 1->0 transition of the clock at the top level causes a capture. A
polarity of "?" indicates the polarity is not given, as for a scan TLA device.

See Also

• report_scan_cells

• Scan Cells

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1321

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_chains Command

Feedback

Output From the report_scan_chains Command
You can use output from the report_scan_chains command to view scan chain
information. The syntax for this command is as follows:

report_scan_chains [-verbose]

Standard Format
 chain group length input_pin output_pin
 ------- ----- ------ ------------ ------------------
 c1 sg0 230 /scanin1 /scanout1
 c2 sg0 225 /scanin2 /scanout2
 c3 sg0 230 /scanin3 /scanout3

chain

Indicates the name of the chain to be reported.

group

Indicates the group name associated with the report chain. The group name is
normally internally generated and is of the form "sgN" where N is the unique
group ID number. Scan chains in the same group are assumed to be loaded and
unloaded in parallel. When multiple scan groups are defined in the DRC file, the
group name will appear here.

length

Indicates the number of scan cells in the reported chain.

input_pin

Indicates the pin name of the chain input pin.

output_pin

Indicates the pin name of the chain output pin.

Verbose Format
 chain group #LE/#TE/#LS input_pin output_pin clocks
 ----- ----- ----------- ----------- ----------- ------------------
 c1 sg0 230/0/1 /a_scanin1 /a_scanout1 clk1 rst clk2 #dslaves=2
 c2 sg0 200/25/0 /a_scanin2 /a_scanout2 clk2 #shadows=14
 c3 sg0 115/115/0 /a_scanin3 /a_scanout3 phi_1 phi_2
 c4 sg0 224/0/0 /a_scanin4 /a_scanout4 clk1 set rst #scantlas=3
 c5 sg0 0/175/0 /a_scanin5 /a_scanout5 nclk

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1322

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_path Command

Feedback

chain

Indicates the name of the chain to be reported.

group

Indicates the group name associated with the report chain.

#LE/#TE/#LS

Provides a breakdown of the master cells in the scan chain into how many are
leading edge (LE), trailing edge (TE), or level sensitive (LS). The sum of these
will equal the total scan length reported in the standard report.

input_pin

Indicates the pin name of the chain input pin.

output_pin

Indicates the pin name of the chain output pin.

clocks

Provides a list of all clocks associated with master and other cells in the scan
chain. This list includes any clock physically attached to the cells, including
asynchronous set, reset, shift, and capture operations. In addition, if the scan
chain contains any DSLAVE, SHADOWS, OBSERVABLE SHADOWS, or scan
transparent latch devices, the count of these types of cells will appear in this
area.

See Also

• Understanding Compressor Connections in the Output from report_scan_chains

• report_scan_chains

• Scan Cell Types

Output From the report_scan_path Command
You can use output from the report_scan_path command to view the gates in a segment of
a scan chain path. The syntax for this command is as follows:

report_scan_path chain_name <sco | cell_position> <sci | cell_position>

Standard Format
 Scan path for chain=c1: begin_position=SCO, end_position=SCI
 /SDO2 (148) PO (_PO)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1323

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_scan_path Command

Feedback

 --- I 137-/reg4/Q
 SDO2 O
 PO usage: scanout(c1)
 /reg4 (137) BUF (DFFP)
 --- I 147-/reg4/r/Q
 Q O 148-SDO2
 /reg4/r (147) DLAT (N_LAT)
 !SB I (/TIE_1)
 !RB I (/TIE_1)
 CK I 14-
 D I 146-/reg4/lat1/Q
 Q O 137-
 scan_behavior: MASTER(LS/-) chain=c1 cell_id=0 invert_data=IN obs=noproc
 /reg4/lat1 (146) DLAT (P_LAT)
 !SB I (/TIE_1)
 !RB I (/TIE_1)
 CK I 19-
 D I 116-/reg3/Q
 Q O 147-/reg4/r/D
 scan_behavior: DSLAVE(LS/-) chain=c1 cell_id=1 invert_data=IN

Verbose Format
 TEST> report_scan_path big_chain 1 2 -verbose
 Scan path for chain=big_chain: begin_position=1,
 end_position=2
 dff1/base_dff1 (15) DFF (base_dff)
 set P I (TIE_0)
 reset P I (TIE_0)
 clk I 6-
 data I 13-dff1/base_mux0/out
 q O 12-/dff0/base_mux0/d1
 8-/gate5/in ...
 scan_behavior: MASTER(LE/-) chain=big_chain cell_id=1 invert_data=NN
 obs=noproc
 set_reset_usage: set=no, reset=no, unstable_flag=no,
 set_dominance=clocks_only, reset_dominance=clocks_only dff1/base_mux0
 (13) MUX (base_mux)
 sel I 2-se
 d0 I 8-gate5/out
 d1 I 16-dff2/base_dff1/q
 out O 15-/dff1/base_dff1/data
 dff2/base_dff1 (16) DFF (base_dff)
 set P I (TIE_0)
 reset P I (TIE_0)
 clk I 6-
 data I 5-dff2/base_mux0/out
 q O 13-/dff1/base_mux0/d1
 scan_behavior: MASTER(LE/-) chain=big_chain cell_id=2 invert_data=NN
 obs=noproc

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1324

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_settings Command

Feedback

 set_reset_usage: set=no, reset=no, unstable_flag=no,
 set_dominance=clocks_only, reset_dominance=clocks_only

Description

The first line of the scan path report identifies the beginning and ending positions of
the scan chain of the reported scan path. The scan chain path is displayed backward
beginning at the selected starting scan cell (SCO indicates begin point is chain output)
and ending at the selected ending scan cell (SCI indicates end point is chain input). The
gates in the scan path are displayed in the standard primitive report format. The scan path
report does not report gates which do not have a single sensitized path to its preceding
scan path gate.

Note that the scan_behavior line contains an invert_data statement, as shown in bold
in the following example:

scan_behavior: MASTER(LE/-) chain=big_chain cell_id=2 invert_data=NI
 obs=noproc

The invert_data statement in the example displays net inversion data in a two-character
format: the "N" character refers to normal (non-inverting) behavior, and the "I" character
refers to inverting behavior. The first character of the sequence corresponds to the area
of the scan cell between the scan-in port and the _DFF primitive. The second character
corresponds to the area of the scan cell between the primitive to the scan-out port.

In the following example, net inversion occurs from the scan-in port to the _DFF primitive
of the scan cell, and the scan cell behavior is normal (non-inverting) from the primitive to
the scan-out port:

invert_data=IN

The behavior can be the same in both locations of the scan cell, as shown in the following
examples:

invert_data=NN
invert_data=II

See Also

• report_scan_path

• Primitives Report

Output From the report_settings Command
You can use output from the report_settings command to view the current settings defined
by any of the set commands. The syntax for this command is as follows:

report_settings

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1325

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_settings Command

Feedback

Standard Format
 atpg =
allow_clockon_measures=no, abort_limit=10,
capture_cycles=0, coverage=100.00, decision=norandom,
di_analysis=yes, full_seq_abort_limit=10, full_seq_atpg=no,
full_seq_time=(10.0,0.0), full_seq_merge=off, merge=off,
basic_min_detects_per_pattern=(0,0),
fast_min_detects_per_pattern=(0,0),
full_min_detects_per_pattern=(0,0),
new_capture=no, patterns=0, prevention=norandom,
random_fill=yes, store=yes, summary=yes, time=(0.0,0.0),
verbose=no, post_capture_contention_prevention=no,
chain_test=0011;

debug=off, hex=yes, max_intervals=1000, max_pattern_cells=250,
 max_seed_patterns=16, max_total_cells=250,
 min_lfsr_length=20,
 multi_seeds_per_interval=no, num_,
 num_patterns_per_interval=256, randomize_pis=no,
 chain_test=no,
 sim_misr=yes, verbose=no, dump=none,
 pi_assumed_scan=no, po_assumed_scan=no,
 use_cell_constraints=no, use_constant_value_cells=no;
 build = add_buffer=yes, delete_unused_gates=yes, fault_boundary=lowest,
 hierarchical_delimiter='/', limit_fanout=256,
 undriven_bidi=PIO,
 net_connections_change_netlist=yes,
 merge: bus_keepers=yes
 cascaded_gates_with_pin_loss=no
 equivalent_dlat_dff=on
 wire_to_buffer=yes
 feedback_paths=yes
 flipflop_from_dlat=yes
 mux_from_gates=pin-preserve
 tied_gates_with_pin_loss=no
 wire_to_buffer=yes
 xor_from_gates=pin-preserve
 buses = external_Z=Z, fault_contention=TIEX
 commands = abort=yes, history=yes
 contention = allow_multiple_drivers_on=yes, atpg=yes, bidi=yes, bus=yes,
 dff_dlat=no, float=no, pre_capture_clock_check=yes,
 post_capture_clock_check=yes, ram=no,
 retain_bidi_direction=no,
 severity=warning, verbose=no, wire=no;
 delay = diagnostic_propagation=no, launch_cycle=any_launch,
 mask_nontarget_paths=no,
 pi_changes=yes, po_measures=yes, relative_edge=no,
 robust_fill=yes,
 simulate_hazards=yes, allow_reconverging_paths=no;
 drc = test_proc_file=none,

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1326

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_settings Command

Feedback

 allow_unstable_set_resets=no, bidi_control_pin=no,
 clock=any,
 controller_clock=no, disturb_clock_grouping=yes,
 initialize_dff_dlat=X, multi_captures_per_load=yes,
 oscillation=500,
 remove_false_clocks=no, shadows=on,
 skew=1, store_setup=no, store_stability_patterns=no,
 TLAs=yes, trace=off,
 unstable_lsrams=no, z_check_with_constraints=no
 observe_procedure=any, pipeline=no;
 faults = atpg_effectivenes=no, au_credit=0, equiv_code=(--),
 fault_coverage=no, model=stuck, report=uncollapsed,
 summary=noverbose;
 iddq = atpg=no, float=no, strong=yes, toggle=no, weak=yes, write=yes
 exclude_ports=all;
 learning = atpg_equivalence=on(sim_passes=32, test_passes=5000),
 common_input=yes, equivalent_latches=yes,
 implication=medium,
 max_feedback_sources=100, verbose=no;
 match_names = match_names options are not set
 messages = display=yes, double_slash=no, level=standard,
 transcript_comments=yes,
 logfile=off
 netlist = celldefine=yes, check_only_used_udps=yes, dominance=on,
 conservative_mux=combination
 enable_portfaults=yes, escape=cond, max_errors=10,
 pin_assign=no, redefined_module=last, scalar_net=no,
 sequential_modeling=no, suppress_faults=yes,
 xmodeling=yes;
 patterns = source=internal,
 histogram_summary=no, load_summary=no,
 verilog_lastscan=yes;
 physical = verbosity_level=1 (default)
 pindata = none;
 -shift_character=X, -constrain_character=X;
 primitive_report= interval=0, max_fanout=2, time=clock, verbose=no;
 random_patterns = clock=none, length=1024, observe_type=master;
 simulation = basic_scan=yes, bidi_fill=off, data=(0:-1), measure=pat,
 oscillation=(10,2), store_memory_contents=no,
 words_per_pass=32, xclock_give_xout=no, verbose=no;
 wgl = chain_list=all, forces_during_load=previous, group_bidis=no,
 inversion_reference=master, last_scan=yes,
 macro_usage=no, pad=no,
 scan_map=dash, scan_data_format=pre_measured,

 bidi_map=(Z0,-0)(Z1,-1)(0X,0-)(1X,1-)(XX,X-)(ZX,-X)(-X,--)(ZZ,-Z)(Z-,--)
 workspace sizes = connectors=20000, decisions=5000, line=50000,
 string=2048,

 ydf = YDF schema is not set

Description

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1327

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_summaries Command

Feedback

This report gives the current setting for most options selected with a "set" command.

See Also

• report_settings

Output From the report_summaries Command
You can use output from the report_summaries command to view primitive, fault, pattern,
library cell, memory, optimization, sequential depth, or CPU usage summaries.

Standard Format
 TEST> set_faults -fault_coverage
 TEST> report_summaries faults
 Uncollapsed Fault Summary Report

 fault class code #faults
 ------------------ ---- ---------
 Detected DT 144501
 Possibly detected PT 4224
 Undetectable UD 1634
 ATPG untestable AU 9335
 Not detected ND 6811

 total faults 166505
 test coverage 91.53%
 fault coverage 86.78%

This report gives the current fault summary report followed by the current pattern summary
report.

Verbose Format
 TEST> set_faults -summary verbose
 TEST> report_summaries
 Collapsed Fault Summary Report

 fault class code #faults
 ------------------------------ ---- ---------
 Detected DT 28689
 detected_by_simulation DS (1822)
 detected_by_implication DI (26867)
 Possibly detected PT 617
 not_analyzed-pos_detected NP (617)
 Undetectable UD 976

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1328

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_summaries Command

Feedback

 undetectable-unused UU (8)
 undetectable-tied UT (505)
 undetectable-blocked UB (463)
 ATPG untestable AU 6795
 atpg_untestable-not_detected AN (6795)
 Not detected ND 102341
 not-controlled NC (6171)
 not-observed NO (96170)

 total faults 139418
 test coverage 20.95%

 Pattern Summary Report

 #internal patterns 25
 #basic_scan patterns 25

The verbose report displays the 11 classes of faults that make up the five major fault
categories. These numbers are enclosed in parenthesis "()" and sum to produce the
number of the major category. Fault classes with zero counts are not listed.

Primitives Report
TEST> report summaries primitives
 Gate Summary Report

 #primitives 101071
 #primary_inputs 251
 #primary_outputs 148
 #primary_bidis 128
 #DLATs 227
 #TLAs 195
 #nonscan 32
 #DFFs 11369
 #nonscan 416
 #scan 10953
 #BUSs 577
 #contention_fails 289
 #BUFs 4108
 #INVs 6425
 #ANDs 9740
 #NANDs 21086
 #ORs 5689
 #NORs 2981
 #XORs 2207
 #XNORs 944
 #TIE0s 11357
 #MUXs 20017
 #WIREs 23

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1329

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_summaries Command

Feedback

 #BUFZs 138
 #TSDs 3656

The primitives report list the breakdown of ATPG primitives in the flattened model by types.
Indented values such are #TLAs and #nonscan sum to form the entry just above them
#DLATs. The total count of all ATPG primitives is given by #primitives.

Library Cells Report
 TEST> report_summaries library
 Library Cells Report

 Cell name used
 -------- ------------
 an2p1 2589
 an2p2 111
 an8p1 58
 aoi211p1 376
 fdrtp1 4416
 na4p1 8
 no2p1 4593
 no7p1 4
 no8p1 13
 oai31p1 82
 or2p8 16
 or7p2 1
 or8p1 53
 sfdrstp1 134

The library cells report summaries the number of library cells used by the flattened design
list by cell name. The determination of a library cell vs. a hierarchical design module is not
an foolproof process and so this report could be slightly off by missing some cells. Your
ASIC vendor generally provides similar functionality in their tools which are more accurate.

Optimizations Report
 TEST> report_summaries optimizations
 Optimizations Report

 optimization #occurrences #primitives #pins #modules
 type eliminated lost optimized

 unused gates 105129 105129 759 74
 tied gates 0 24 0 0
 buffers 220542 220542 0 560

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1330

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_summaries Command

Feedback

 inverters 64131 64131 0 209
 cascaded gates 808 808 0 6
 SWs as BUFs 24 0 0 1
 DLATs as BUFs 0 0 0 0
 MUXs 22061 109195 45 33
 XORs 0 0 0 0
 equiv. DLAT/DFF 43 0 0 10
 DLATs as DFFs 0 0 0 0
 DFFs as DLATs 0 0 0 0
 BUS keepers 0 0 0 0
 feedback paths 0 0 0 0

 total 412738 499829 804 590

The optimizations summary report provides details of the number of gates removed during
optimization process as well as whether there were any fault sites dropped (#pins lost)
during this effort.

Sequential Depths Report
 TEST> report_summaries sequential_depths
 type depth gate_id
 ------- ----- -------
 Control 7 91788
 Observe 5 1496
 Detect 10 1496

The sequential depths report provides the maximum sequential depth found for control,
observe, and detection of a fault location. A representative gate ID corresponding to this
maximum is provided. There can be additional locations with equal depth but only one is
given.

See Also

• Coverage Calculations

• Fault Classes

• report_faults

• report_primitives

• report_patterns

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1331

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_version Command

Feedback

• set_faults

• Understanding Flattening Optimization

Output From the report_version Command
You can use output from the report_version command to identify the current version of
TestMAX ATPG or the virtual address space in which TestMAX ATPG is executing. The
syntax for this command is as follows:

report_version
 [-full | -short | -address]
 [-banner]
 [-verbose]

Standard Format
Indicates the program major version.

BUILD-T> report_version
 H-2013.03-SP5-CS1-tcl

Full Format
Indicates the major version, the compile date, and the hour, minute, and second of the last
compile.

BUILD-T> report_version -full
 H-2013.03-SP5-CS1-i131004_180753-tcl

Short Format
Indicates the program internal version and represents the date the program was last
compiled.

BUILD-T> report_version -short
 i131004-tcl

Address Format
Reports whether the executable is using 32-bit or 64-bt virtual address space. A 32-bit
executable can use at most 2.1 to 3.8 GB of virtual memory, depending on the platform.
So, your design plus libraries plus patterns must all fit in this range of memory. A 64-bit
executable does not have this limit and is typically limited by the size of physical RAM plus
swap space of the workstation on which it is running.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1332

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_violations Command

Feedback

BUILD-T> report_version -address
 32bit executable

Banner Format
Generates the product name and the full version report. This consists of the product name
(TestMAX ATPG), short version string, the date, and the time of day stamp of the currently
running version.

BUILD-T> report_version -banner
 TestMAX ATPG (TM) H-2013.03-SP5-CS1-i131004_180753 –tcl

Verbose Format
Generates the product name and the full version report (same as the -banner option),
followed by the date version for subsystem tasks.

BUILD-T> report_version -verbose
 TestMAX ATPG (TM) H-2013.03-SP5-CS1-i131004_180753
 util020306 edif102400 udp030603 otdd111798 veri091708 net031604
 flat121611
 stil032009 syn121400 vhdl120203 wgl100308 api101507 vcde_102602
 tpapi040700 lbist111207-tcl

See Also

• report_version

Output From the report_violations Command
You can use output from the report_violations command to view rule violation data. The
syntax for this command is as follows:

report_violations <violation_id | rule_id | rule_type

| -all> [-max d]

Standard Format
 Warning: Unconnected module input pin (N_LAT/NR).
(B8-1)
 Warning: Undriven module internal net (DFFP/notify_reg).
(B9-1)
 Warning: Undriven module internal net (DFFRLP/notify_reg).
 (B9-2)
 Warning: Nonscan DLAT /reg0/lat1 (138) disturbed during
time 0 of load_unload procedure. (S19-1)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1333

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_wires Command

Feedback

 Warning: Nonscan DLAT /reg2/lat1 (142) disturbed during
time 0 of load_unload procedure. (S19-2)

This report displays the rule violation occurrence message for selected violations. The
message is preceded by text that indicates the severity of the violation (either Warning: or
Error:).

See Also

• report_violations

Output From the report_wires Command
You can use output from the report_wires command to view data associated with wire
gates.

report_wires [id | -summary | -all]

[-contention <fail | pass | abort>] [-max d] [-verbose]

Summary Format
 Wire summary: #wire_gates=2
 Contention status: #pass=2, #fail=0, #abort=0,
#not_analyzed=0

#wire_gates

Indicates the total number of WIRE gates in the simulation model.

Contention status

Indicates the number of WIRE gates that are in each WIRE contention category.

Standard Format
 TEST> report_wires -all
 contention zstate #drivers
 gate_id status/capture status strong/weak behavior_data
 ------- -------------- ------ ----------- --------------------
 79 pass 4 0 clock
 206 pass 5 0

gate_id

Indicates the primitive ID number of the WIRE gate.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1334

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_wires Command

Feedback

contention status

Indicates the contention status category of the WIRE gate.

contention capture

This field is not used for WIRE gates.

zstate status

This field is not used for WIRE gates.

#drivers strong/weak

Indicates the number of strong drivers followed by the number of weak drivers
that are connected to the WIRE gate.

behavior_data

This lists the learned behavior information for the WIRE gate. This includes
logical behavior and connectivity to clocks.

Verbose Format
 TEST> report_wires -all -verbose
 contention zstate #drivers
 gate_id status/capture status strong/weak behavior_data
 ------- -------------- ------ ----------- --------------------
 79 pass 4 0 clock
 inputs: 75(BUF) 76(BUF) 77(BUF) 78(BUF)
 206 pass 5 0
 inputs: 203(BUF) 204(BUF) 205(BUF) 201(BUF) 202(BUF)

gate_id...

All data contained in the standard report is also included in the verbose report.

inputs:

This identifies the gates connected to all inputs of the WIRE gate. Each entry
gives the primitive ID number followed by the primitive type in parentheses.

See Also

• report_wires

• Wire Gate

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1335

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the analyze_buses Command

Feedback

Output From the analyze_buses Command
You can use output from the analyze_buses command to analyze potential problems
associated with buses. The syntax for this command is as follows:

analyze_buses <gate_id | -all>

[-exclusive [first | all] | -prevention | -zstate] [-update]

Standard Format - defaults
 analyze_buses 28510
 Bus 28510 (28406,28111) failed contention check
(values available in pattern 0).

text

The text indicates the results of performing contention ability checking on the
bus gate with gate_ID number 28510. The bus gate failed this check which
indicates a pattern could be created that resulted in a contention condition on
the analyzed bus gate. In this case, the contention occurred on the two bus
drivers with gate_ID numbers 28406 and 28111. The internal gate values for this
pattern are displayable by selecting the pin_data to be "pattern 0".

Standard Format - zstate
 analyze_buses 3640 -zstate
 BUS analysis required 0 remade decisions.
 Bus 3640 failed Z-state ability check (values available in pattern 0).

text

The text indicates the results of performing Z-state ability checking on the bus
gate with gate_ID number 3640. The bus gate failed this check which indicates
a pattern could be created that resulted in a Z state condition on the analyzed
bus gate. In this case, test generation successfully created this pattern with no
remade decisions. The internal gate values for this pattern are displayable by
selecting the pin_data to be "pattern 0".

Standard Format - exclusive
 analyze_buses -all -exclusive first
 Bus Contention results: #pass=68, #bidi=34, #fail=0, #abort=0, CPU
 time=129.45

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1336

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the analyze_faults Command

Feedback

text

The text summarizes the contention ability analysis for all bus gates. The fields
are:

#pass - The number of bus gates which are proven incapable of contention.

#bidi - The number of bidirectional bus gates which are otherwise incapable of
contention.

#fail - The number of bus gates which are proven capable of contention.

#abort - The number of bus gates whose contention ability analysis was
aborted.

CPU time - The total CPU time in seconds required to perform the contention
ability analysis.

Standard Format - prevention
 analyze_buses -all -prevention
 BUS analysis required 0 remade decisions.
 Busses passed contention prevention (values available in pattern 0).

text

The text indicates the results of performing test generation to satisfy the
conditions required to prevent contention on bus gates which are contention
sensitive. In this case, the test generation successfully created a pattern that
satisfied these conditions with no remade decisions. The internal gate values for
this pattern are displayable by selecting the pin_data to be "pattern 0".

See Also

• report_buses

• set_contention

Output From the analyze_faults Command
You can use output from the analyze_faults command to determine why certain faults are
not detected. The syntax for this command is as follows:

analyze_faults < < pin_pathname -stuck <0|1> [-observe gate_id]

 [-display] > | <-class fault_class>... > > [-max max_faults]
 [-source_points min_percent max_points] [-verbose]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1337

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the analyze_faults Command

Feedback

Standard Format for Blocked pin_pathname
 analyze_faults /i0/MUX_RST_DPE/A -stuck 0

 Fault analysis performed for /i0/MUX_RST_DPE/A stuck at 0
 (input 1 of MUX gate 4133).
 Current fault classification = AN (atpg_untestable-
 not_detected).
 --
 Connection data: to=MASTER,RESET from=CLOCK
 Fault is blocked from detection due to constrained values.
 Blockage point is gate /i0/MUX_RST_DPE (4133).
 Source of blockage is gate /TEST (11).

Connection data:

The connection data indicates connectivity between the fault site and potential
observe points and trouble points. In this case, the fault site can only be
observed at a master element of a scan cell. It also connects forward to the
reset input of a state element and connects backward to a defined clock pin.

Blockage point

The analysis determined that the fault was untestable due to a blockage that
was the result of some constrained value. The gate at which the blockage
occurred is displayed and indicates the point at which it becomes impossible to
further propagate a fault effect.

Source of blockage

The analysis determined that the blockage was due to value constraints.
The gate that was the origin of the constraint is given. Generally, these are
constrained pins, tie gates, or state elements which have restricted behavior for
the current ATPG process.

Standard Format for Successful pin_pathname
 analyze_faults /U1/Q -stuck 0

 Fault analysis performed for /U1/Q stuck at 0 (output of BUF gate 63).
 Current fault classification = DS (detected_by_simulation).

 Connection data: to=REGPO,MASTER,TS_ENABLE
 Fault site control to 1 was successful (data placed in parallel pattern
 0).
 Observe_pt=7277(DFF) test generation was successful (data placed in
 parallel
 pattern 1).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1338

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the analyze_faults Command

Feedback

 The gate_report data is now set to "pattern:1".

Connection data:

The connection data indicates connectivity between the fault site and potential
observe points and trouble points. In this case, the fault site can be observed
at a regular primary output (not connected to a clock) or a master element of a
scan cell. It also connects forward to enable input of a tristate gate (TSD or SW).
The fault site had no backward connectivity to a potential trouble point.

Fault site control

The fault analysis successfully created a pattern that set the fault site to the
required value which for this fault was a "1" state. The simulated values for this
pattern at any selected gate can be displayed by setting pindata to "pattern 0".

Observe Point

The fault analysis successfully created a pattern that detected the fault at the
indicated observe point (a DFF gate with gate_id number 7277). The simulated
values for this pattern at any selected gate can be displayed by setting pindata
to "pattern 1".

gate_report data

The pindata setting used when displaying gates is set to the pattern which
detected the fault (pattern 1). The automated display will select all gates in a
path between the fault site and the observe point with their simulated values that
result from that pattern.

Standard Format for Class
 TEST> analyze_faults -class an
 Fault analysis summary: #analyzed=2375, #unexplained=17.
 1660 faults are untestable due to constrain values.
 674 faults are untestable due to constrain value blockage.
 25 faults are connected from CAPTURE_CHANGE.
 194 faults are connected to CLKPO.
 106 faults are connected to CLOCK.
 116 faults are connected from CLOCK.
 141 faults are connected to DSLAVE.
 6 faults are connected to FAIL_WIRE.
 2 faults are connected from RAM.
 9 faults are connected to RAM_ADR.
 22 faults are connected to RAM_DATA.
 4 faults are connected to RAM_WRITE.
 84 faults are connected to RESET.
 48 faults are connected to SET.
 11 faults are connected to TLA.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1339

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the analyze_faults Command

Feedback

 22 faults are connected from TLA.
 189 faults are connected to TS_ENABLE.
 58 faults are connected to FAIL_TE.

#analyzed

This is the total number of collapsed faults that were analyzed.

#unexplained

This is the total number of analyzed collapsed faults that could not be clearly
associated with with any distinct type of problem.

due to constrain values

This is the total number of collapsed faults that were identified as untestable due
to constrained values. These constraints are normally due to PI constraints, tie
gates, or restricted behavior of state elements.

due to constrain value blockage

This is the total number of collapsed faults that were identified as untestable due
to observe blockages that resulted from constrained values.

connected to/from CAPTURE_CHANGE

This is the total number of collapsed faults that had connectivity to a TE(state
element that captures on a clocks trailing edge) which is driven by a LE (state
element that captures on the same clocks leading edge.

connected to CLKPO

This is the total number of collapsed faults that had connectivity to primary
outputs which have connection to clock input pins.

connected to/from CLOCK

This is the total number of collapsed faults that had connectivity from clock pins.

connected to DSLAVE

This is the total number of collapsed faults that had connectivity to dependent
slave scan cell state elements.

connected to FAIL_WIRE

This is the total number of collapsed faults that had connectivity to WIRE gates
which failed the contention ability checking (capable of contention).

connected to/from RAM

This is the total number of collapsed faults that had connectivity to or from RAM
MEMORY gates.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1340

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the analyze_faults Command

Feedback

connected to RAM_ADR

This is the total number of collapsed faults that had connectivity to RAM_ADR
gates.

connected to RAM_DATA

This is the total number of collapsed faults that had connectivity to RAM_DATA
gates.

connected to RAM_WRITE

This is the total number of collapsed faults that had connectivity to a write input
of a RAM MEMORY gate.

connected to/from RESET

This is the total number of collapsed faults that had connectivity to a reset input
of a DLAT or DFF gate.

connected to/from SET

This is the total number of collapsed faults that had connectivity to a set input of
a DLAT or DFF gate.

connected to/from TLA

This is the total number of collapsed faults that had connectivity to or from a
transparent latch.

connected to TS_ENABLE

This is the total number of collapsed faults that had connectivity to an enable
input of a TSD or SW gate.

connected to FAIL_TE

This is the total number of collapsed faults that had connectivity between a LE
(leading edge) sensitive element and a TE (trailing edge) sensitive element.

Blockage and Constraint Value Source Points Format
 TEST-T> analyze_faults -class AN -source_points 5 0
 Fault analysis summary: #analyzed=802, #unexplained=0.
 420 faults are untestable due to constrain values.
 382 faults are untestable due to constrain value blockage.
 22 faults are connected to DSLAVE.
 2 faults are connected to TIEX.
 62 faults are connected to TLA.
 28 faults are connected to CLOCK.
 6 faults are connected to RESET.
 34 faults are connected to NONSCAN_LOAD.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1341

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the analyze_faults Command

Feedback

 6 faults are connected from CLOCK.
 22 faults are connected from TLA.
 126 faults are connected from TIEX.

 Blockage Points - Total 145:
 --

 Blockage Value Source Points - Total 3:
 --
 i_test_se 37.16%

 Constraint Value Source Points - Total 27:
 --
 test_mode1 17.08%
 i_test_se 5.74%

Note in the previous example that the blockage point data does not include pin
pathnames. In this case, all 145 blockage points did not exceed the specified threshold
of 5% of the explained faults for class AN. The following example shows the number of
constrained sources, but not the percentage:

 TEST-T> analyze_faults -class AN -source_points 0 5
 ... (same fault counts as before) ...

 Blockage Points - Total 145:
 --
 duto1/U_clk_control_i_0/pipeline_or_tree_l_reg 0.87%
 duto2/U_clk_control_i_0/pipeline_or_tree_l_reg 0.75%
 duto1/U_clk_control_i_0/load_n_meta_0_l_reg 0.62%
 SNPS_PipeTail_test_so5_1 0.62%
 SNPS_PipeTail_test_so6_1 0.62%

 Blockage Value Source Points - Total 3:
 --
 i_test_se 37.16%
 i_pll_bypass 1.00%
 i_pll_mode 0.25%

 Constraint Value Source Points - Total 27:
 --
 test_mode1 17.08%
 i_test_se 5.74%
 duto1/U_clk_control_i_0/U_cycle_ctr_i/count_int_reg_0_ 3.99%
 duto2/U_clk_control_i_0/U_cycle_ctr_i/count_int_reg_0_ 3.99%
 duto1/U_clk_control_i_0/U_cycle_ctr_i/count_int_reg_1_ 3.74%

Verbose Format
 analyze_faults -class au -verbose -max 4
 Fault analysis summary: #analyzed=802, #unexplained=1.
 349 faults are untestable due to constrain values.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1342

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_atpg_constraints Command

Feedback

 sa1 AN /i2/i1/U395/B
 sa1 AN /i2/i1/DIA_reg_9/D
 sa1 AN /i2/i1/DIC_reg_9/D
 sa1 AN /i1/i3/U395/B
 409 faults are untestable due to constrain value blockage.
 sa0 AN /i1/i1/U395/C
 sa1 AN /i1/i1/U406/B
 sa1 AN /i1/i1/U414/B
 sa1 AN /i1/i1/U416/B
 141 faults are connected to DSLAVE.
 sa1 AN /i3/U30xNDMARQ_CK_MUX/S
 sa1 AN /i3/U63/Z
 sa0 AN /i3/U63/Z
 sa1 AN /i3/U30xNDMARQ_CK_MUX_25/S
 11 faults are connected to TLA.
 : : : :
 : : : :
 2 faults are connected from RAM.
 sa1 AN /myram/dout[9]
 sa0 AN /myram/dout[8]

fault paths

When the verbose option is selected, the standard fault data is given for each
of the faults that were placed in the associated fault analysis category (up to the
user-selectable maximum allowed limit).

See Also

• set_contention

• set_faults

• report_faults

Output From the report_atpg_constraints Command
You can use output from the report_atpg_constraints command to analyze data from the
current ATPG constraints list. The syntax for this command is as follows:

report_atpg_constraints [-summary | -all] [-max d]

Summary Format
 ATPG constraint summary: #constraints=3, #DRC_constraints=0

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1343

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_atpg_primitives Command

Feedback

#constraints

Indicates the total number of ATPG constraints in the current list.

#DRC_constraints

Indicates the number of DRC ATPG constraints in the current list. DRC
constraints can only be added/removed in DRC command mode and are
considered during the DRC process.

Standard Format
 name val DRC site
 ---------------- --- --- -------------------------------
 my_constraint1 1 no /my_atpg_primitive1 (20217)
 my_constraint2 0 no /core/txrx/gook/U1842 (1911)
 my_constraint3 1 yes /core/alu/PIE/U44 (12683)

name

Indicates the user-selected name assigned to the ATPG constraint.

val

Indicates the value of the ATPG constraint. It is "0", "1", or "Z".

DRC

Indicates whether the ATPG constraint is to be checked during DRC.

site

Indicates the site of the ATPG constraint. It gives the pin pathname with the
primitive ID number in parentheses.

See Also

• report_atpg_constraints

Output From the report_atpg_primitives Command
You can use output from the report_atpg_primitives command to analyze data from the
current ATPG primitives list. The syntax for this command is as follows:

report_atpg_primitives <atpg_primitive_name | -summary | -all> [-max d]
 [-verbose]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1344

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_atpg_primitives Command

Feedback

Summary Format
 ATPG gate summary: EQUIV=1

<gate_type>= d

Indicates the total number of ATPG primitives for each used ATPG primitive
type.

Standard Format
 name gate_id type inputs
 ------------- ------- ----- -------------------------------
 my_atpg_prim1 20217 EQUIV 861 ~990

name

Indicates the user-selected name assigned to the ATPG primitive.

gate_id

Indicates the primitive ID number of the ATPG primitive.

type

Indicates the primitive type of the ATPG primitive. It can be AND, OR, SEL1,
SEL01, or EQUIV.

inputs

Indicates the inputs of the ATPG primitive. For each input, the primitive ID
number of the connecting primitive is given. A "~" character that precedes a
primitive ID number indicates the input is inverted before use.

Verbose Format
 /my_atpg_prim1 (20217) EQUIV (_EQUIV)
 --- I () 861-/pix/fifo/late/reg_stack/U42/Y
 --- I () 990-/pix/fifo/late/counter/U232/Y
 my_atpg_prim1 O ()

Description

The verbose format gives the standard primitive report for reported ATPG primitives.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1345

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_buses Command

Feedback

See Also

• report_primitives

• report_atpg_primitives

Output From the report_buses Command
You can use output from the report_buses command to analyze data associated with BUS
primitives.

report_buses

< gate_id | -behavior <buf | inv | and | or | xor | xux

| tie0 | tie1 | tiez> | -bidis | -contention

<fail | pass | abort | bidi> | -keepers | -pull | -weak

| -zstate <fail | pass | abort | bidi> | -summary | -all >

[-max d] [-verbose]

Summary Format
 Bus summary: #bus_gates=102, #bidi=33, #weak=0,
#pull=25, #keepers=0
 Contention status: #pass=69, #bidi=33,
#fail=0, #abort=0, #not_analyzed=0
 Z-state status : #pass=26, #bidi=33,
#fail=43, #abort=0, #not_analyzed=0
 Learned behavior : none

#bus_gates

Indicates the total number of BUS gates in the simulation model.

#bidi

Indicates the number of BUS primitives with an external bidirectional connection.

#weak

Indicates the number of BUS primitives with only weak connections.

#pull

Indicates the number of BUS primitives with both strong and weak connections.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1346

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_buses Command

Feedback

#keepers

Indicates the number of BUS primitives connected to a bus keeper.

Contention status

Indicates the number of BUS primitives that are in each BUS contention
category.

Z-state status

Indicates the number of BUS primitives that are in each Z-state ability category.

Learned behavior

Indicates the number of BUS primitives that are in each learned behavior
category.

Standard Format
 contention zstate #drivers
 gate_id status/capture status strong/weak behavior_data
 ------- -------------- ------ ----------- --------------------
 154 pass stable pass 1 1
 206 pass stable pass 1 1

gate_id

Indicates the primitive ID number of the BUS primitive.

contention status

Indicates the contention status category of the BUS primitive.

contention capture

Indicates whether the BUS primitive can change contention condition after a
capture clock due to driver enable line connectivity to scan cells.

zstate status

Indicates the Z-state status category of the BUS primitive.

#drivers strong/weak

Indicates the number of strong drivers followed by the number of weak drivers
that are connected to the BUS primitive.

behavior_data

This lists the learned behavior information for the BUS primitive. This includes
logical behavior, connectivity to clocks, and bus keeper ability.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1347

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_cell_constraints Command

Feedback

Verbose Format
 contention zstate #drivers
 gate_id status/capture status strong/weak behavior_data
 ------- -------------- ------ ----------- --------------------
 154 pass stable pass 1 1
 inputs: 15(PI) 153(wBUF)
 206 pass stable pass 1 1
 inputs: 22(PI) 205(wBUF)

gate_id...

All data contained in the standard report is also included in the verbose report.

inputs:

This identifies the primitives connected to all inputs/bidis of the BUS primitive.
Each entry gives the primitive ID number followed by the primitive type in
parentheses. A "w" preceding a primitive type indicates a weak connection.

See Also

• report_buses

• Bus Gate

Output From the report_cell_constraints Command
You can use output from the report_cell_constraints command to analyze cell constraints
added with the add_cell_constraints command. The syntax for this command is as follows:

report_cell_constraints

Standard Format
 type chain pos. site name
 ---- ----- ---- ---------------------------
 1 c10 6 /MAIN/ALU/TP/FI/FIFO/\stat[3]
 OX c34 17 /MAIN/BOZ/RT/RTI_1/\reg3[3]

type

Indicates the type of the scan cell constraint.

chain

Indicates the chain that contains the constrained scan cell.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1348

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_clocks Command

Feedback

pos.

Indicates the position of the constrained scan cell in its chain.

site name

Indicates the name that was used to identify the scan cell. This can be a
pathname of a pin that connects to the constrained scan cell or the name of an
instance that contains the scan cell. If the cell constraint was not identified by a
name, this field is blank.

See Also

• report_cell_constraints

Output From the report_clocks Command
You can use output from the report_clocks command to reference all pins defined to be
clocks. The syntax for this command is as follows:

report_clocks [-matrix] [-intclocks] [-verbose]

Standard Format
 clock_name off usage
 ------------ --- --------------------------
 /CLK 0 master shift
 /RSTB 1 master reset

clock_name

Indicates the port name of the clock.

off

Indicates the off state of the clock. The off state can be either 0 or 1.

usage

This lists usage information associated with the clock. This includes the names
of scan cell memory types that it connects to, whether it is used to perform
shifting, and connectivity to set/reset lines.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1349

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_clocks Command

Feedback

Matrix Format
The dynamic clock pair group ability can be displayed using the -matrix switch. The clock
report matrix will give a table where each row indicates the potential grouping relationship
of a candidate clock with each of the other candidate clocks.

 id# clock_name type 0 1 2 3 4 5 6 7
 --- ------------ ---- --- --- --- --- --- --- --- ---
 0 clk C --- --A --A --A --A --A --A .
 1 iopclk11 C B-- --- --A BPA BPA BPA BPA .
 2 iopclk12 C B-- B-- --- --A BPA BPA BPA .
 3 iopclk21 C B-- BPA B-- --- --A BPA BPA .
 4 iopclk22 C B-- BPA BPA B-- --- BPA BPA .
 5 iopclk31 C B-- BPA BPA BPA BPA --- --A .
 6 iopclk32 C B-- BPA BPA BPA BPA B-- --- .
 7 iopclk41 C B-- BPA BPA BPA BPA BPA BPA .
 8 iopclk42 C B-- BPA BPA BPA BPA BPA BPA .
 9 tx_intf1_clk C --- --A --A --A --A --A --A .
 10 tx_intf2_clk C --- --A BPA --A --- --A BPA .
 11 tx_intf3_clk C --- --A BPA --A BPA --A --- .
 12 tx_intf4_clk C -D- BPA BPA --A BPA --A BPA .
 13 por R --- --A --A --A --A --A --A .
 14 rst SR --- --- --- --- --- --- --- .

 clock 1 clock 2
 id# #cells #masks id# #cells #masks masked gates
 --- ------ ------ --- ------ ------ -----------------
 0 244 8 12 347 0 13628 13629 13630
 13639 13645 13647
 13649 14700

id#

Indicates the identification number of the clock.

clock_name

Indicates the clock name.

type

Indicates the current clock type. The clock type can be any combination of C
(flip-flops), CW (RAM write control), S (set) or R (reset).

0 1 2...

One column for each clock.

BPA, --A, B--, ...

Indicates the possible relationship between a row clock and a column clock.
These relationships are described using three characters --

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1350

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_clocks Command

Feedback

The first character can be:

'B' indicating a valid before relationship

(row clock can be applied before column clock).

'-' indicating no before relationship.

The second character can be:

'P' indicating a valid parallel relationship.

'D' indicating an allowed parallel relationship that

has an acceptable level of disturbances.

'-' indicating no parallel relationship.

The third character can be:

'A' indicating a valid after relationship

(row clock can be applied after column clock).

'-' indicating no after relationship.

More information is available at the end of the matrix table report if the dynamic
clock grouping feature has been enabled with disturbed clock grouping.

id1 id2

Indicates the clock pairs using the clock id#.

#cells

Indicates the number of scan cells.

C1 #masks

Indicates the number of disturbed scan cells clocked by id1, as well as the total
number of scan cells clocked by id1.

C2 #masks

Indicates the number of disturbed scan cells clocked by id2, as well as the total
number of scan cells clocked by id2.

masked gates

Indicates the gate number of all cells disturbed when id1 and id2 are pulsed
simultaneously. If a basic scan pattern pulses both clocks at the same time, then
all those cells will capture an 'X'.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1351

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_clocks Command

Feedback

Internal Clocks Format
Using the -INTClocks option, you can report all internal clocks and all information
associated with each internal clock.

 report_clocks -intclocks

 int_clock_instance_name gate_id off source cycle conditions
 --------------------------- ------- --- ------ ----- --------------
 ioclk_pll_cntr/U2 654 0 29 0 960=1 (0,4)
 1 961=1 (0,5)
 2 962=1 (0,6)
 intclk_pll_cntr/U2 700 0 30 0 982=1 (0,4)
 1 983=1 (0,5)
 2 984=1 (0,6)
 --
 PLL clock_off pattern: 960=0 961=0 972=0 982=0 983=0 984=0
 --

int_clock_instance_name and gate_id

Both of these columns correspond. They are the pin declared as an internal
clock.

off state

The clock off state (in practice, it is always 0).

source

The gate id declared as the PLL source for the internal clock.

cycle

The clock cycle numbers starting from 0. There are as many as the number
defined for the internal clock.

conditions

This column starts with the gate id of the controlling element and the value that
it must be set to to enable that pulse. When a clock chain is used, the gate id is
for the clock chain flip-flop. The two numbers in parentheses are the pll_cycle
and the pll_pulse for the corresponding internal clock pulse. For each external
event (cycle) a number of PLL pulses is simulated and a check is performed to
determine which one turns on the internal clock.

PLL clock_off pattern

The pattern that prevents any internal clock pulses. This uses the same gate ids
as in the conditions field, in the opposite states.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1352

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_clocks Command

Feedback

Verbose Format
A verbose format of report clock can be displayed using the -Verbose argument. This
report gives detailed information for how a clock is used in the design.

 report_clocks -verbose
 scan connections nonscan connections
 clock_name off clock set reset clock set reset usage
 ------------ --- ------------------ -------------------

 Ram_Clk 0 0 0 0 256 0 0 RAM nonscan_DFF
 BPCICLK 0 56 0 0 0 0 0 master shift
 Pixel_Clk 0 525 0 0 0 0 0 master shift
 nReset 1 0 440 7 0 0 0 PO master set
 reset

clock_name

Indicates the clock name.

off

Indicates the off state of the corresponding clock.

scan connections

Indicates the number of scan cell ports connected to this clock. The ports taken
in account are the clock, set, and reset ports. The number of scan connections
will match the number of scan registers, except for those scan registers that
cannot capture (those with DRC Rule C15 violations)

nonscan connections

Indicates the number of nonscan cell ports connected to this clock. The ports
taken in account are the clock, set, and reset ports. Cells with constraints, such
as "constant value cells" might not be counted here. The number of nonscan
connections will exclude those nonscan cells that cannot capture (those with
DRC Rule C16 violations) and some classes of transparent latches (TLAs).

usage

Indicates the functional usage of the clock.

See Also

• add_clocks

• remove_clocks

• report_clocks

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1353

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_commands Command

Feedback

Output From the report_commands Command
You can use output from the Report Commands command to display command history or
to display a list of commands or specific command syntax similar to the help command.
The syntax for this command is as follows:

report_commands [command_name | -all] [-usage] [-history [-depth d]]

Summary Format
 add_atpg_constraints add_atpg_primitives
 add_cell_constraints add_clocks
 add_equivalent_nofaults add_faults
 add_net_connections add_nofaults
 add_pi_constraints add_pi_equivalences

#constraints

Indicates the total number of ATPG constraints in the current list.

Description

The summary report gives a list of all supported commands. The capitalized characters
indicate the minimum characters necessary to enter the command.

Standard Format
 add_clocks <off_state> port_name...

Description

The standard report displays the full usage of the reported command. The capitalized
characters indicate the minimum characters necessary to enter the command or its
arguments. Arguments enclosed in angled brackets < > are required. Arguments enclosed
in square brackets "[]" are optional.

Usage Format
 add_clocks <off_state> port_name...
 Allowed usage = DRC

Description

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1354

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_memory Command

Feedback

The usage report displays the standard command report and also gives restricted usage
information. The restrictions include the allowed command modes and effect on deletion of
internal patterns.

See Also

• Report Commands

Output From the report_memory Command
You can use output from the report_memory command to analyze memory gate data for
selected memory gates. The syntax for this command is as follows:

report_memory <gate_id | instance_name | -all | -summary>

[-max d] [-contents <address | all>] [-verbose]

SUMMARY FORMAT
RAM summary: #RAMS=1, #clock_unstable=1, #load_unstable=0,
#read_only=0.
ROM summary: #ROMS=0, #hot_read=0, #readoff_X=0, #readoff_0=0,
#readoff_1=0.

#RAMS

Indicates the total number of memory primitives that behave as RAMs.

#clock_unstable

Indicates the total number of RAM memory primitives that are unstable when
clocks are off.

#load_unstable

Indicates the total number of RAM memory primitives that do not hold state
during a load operation.

#read_only

Indicates the total number of RAM memory primitives that qualify for read_only
treatment.

#ROMS

Indicates the total number of memory primitives that behave as ROMs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1355

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_memory Command

Feedback

#hot_read

Indicates the total number of ROM memory primitives that have their read line
always active.

#readoff_X

Indicates the total number of ROM memory primitives that have their read_off
state set to X.

#readoff_0

Indicates the total number of ROM memory primitives that have their read_off
state set to 0.

#readoff_1

Indicates the total number of ROM memory primitives that have their read_off
state set to 1.

Standard Format
type gate_ID instance_path memory_file
---- ------- --------------------------------------- ----------------
RAM 76 /withram ram2file.i

type

This indicate the type of memory primitive. The type can be either RAM or ROM.

gate_id

Indicates the primitive ID number of the memory primitive.

instance_path

Indicates the instance name of memory primitive.

memory_file

Indicates the name of the memory_file that defined the memory contents.

Verbose Format
 #ports width address stable off
type gate_ID wrt/rd addr/data min/max clk/load value instance_type
---- ------- ------ --------- ---------- -------- ----- -------------
RAM 76 2 3 4 8 0 15 no yes 0 _MEMORY

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1356

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_memory Command

Feedback

type

Indicates the type of memory primitive. The type is either RAM or ROM.

gate_id

Indicates the primitive ID number of the memory primitive.

#ports wrt/rd

Indicates the number of ports associated with the memory primitive. The first
field is the number of write ports contained in the memory primitive. The second
field is the number of read ports it is connected to.

width addr/data

Indicates the number of address lines of the memory primitive followed by its
number of data lines.

address min/max

Indicates the valid range of addresses for the memory primitive. The first field is
the minimum address value and the second field is the maximum address value.

stable clk/load

Indicates the write stability behavior of the memory gate. The first field indicates
if it is stable when all clocks are placed at their off state. The second field
indicates if it holds state during the scan load operation.

off value

Indicates the value to be placed on the read port outputs when the read line is
inactive. Possible choices are X, 0, or 1.

instance_type

The indicates the module type from which the memory primitive was derived.

Standard Format With Constants
type gate_ID instance_path memory_file
---- ------- ---------------------------------------
Description
RAM 76 /withram ram2file.i
0 : 0000XXXX
1 : 11101111
2 : 11001101
3 : 10101011
4 : 0000XXXX
5 : 11101111
6 : 11001101

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1357

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_modules Command

Feedback

7 : 10101011
8 : 0010XXXX
9 : 11101111
a : 11001101
b : 10101011
c : 0000XXXX
d : 11101111
e : 11001101
f : 10101011

Description

The contents data can be selected to be added to either the standard format or the
verbose format and is placed after the data for each reported memory primitive. One line
per reported address is displayed which contains two fields. The first field is the address
value in hex and the second field is a string of values for each data line of that address.

See Also

• report_memory

• Memory Gate

Output From the report_modules Command
You can use output from the report_modules command to analyze data associated with
selected netlist modules.

report_modules [name | -unreferenced | -undefined | -errors | -summary |
 -all] [-verbose]

Summary Format
 Modules: #UNKNOWN_FORMAT=19 #STRUCT_VERILOG=474
#BEH_VERILOG=24(#unsupported_beh=24)

Description

The summary report indicates the number of modules in each used category. Possible
categories include:

unknown format (UNKNOWN_FORMAT)

structural Verilog (STRUCT_VERILOG)

behavioral Verilog (BEH_VERILOG)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1358

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_modules Command

Feedback

Verilog UDPs (UDP_VERILOG)

Standard Format
 pins
 module name tot(i/ o/ io) inst refs(def'd) used
 -------------------------------- ---------------- ---- ----------- ----
 FJK3 7(5/ 2/ 0) 6 0 (Y) 0

module name

Indicates the name of the reported module.

pins tot(i/ o/ io)

This gives the counts for the external pin usage of the module. The first field
reports the total number of pins in the module. Inside the parentheses are given
the number of module input pins, number of module output pins, and number of
module bidi pins.

inst

Indicates the number of instances inside the module.

refs(def'd)

Indicates the number of times this module was referenced from other modules.
The field inside the parentheses indicates if the module was defined (y indicates
module was defined, N indicates module was not defined).

used

Indicates the total number of instantiations of the module that was used in the
simulation model.

Verbose Format
 pins
 module name tot(i/ o/ io) inst refs(def'd) used
 -------------------------------- ---------------- ---- ----------- ----
 FJK3 7(5/ 2/ 0) 6 0 (Y) 0
 Inputs : J () K () CP () CD () SD ()
 Outputs : Q () QN ()
 U1 : _INV conn=(I:SD O:n2)
 U2 : _INV conn=(I:Q O:QN)
 U3 : _INV conn=(I:CD O:n3)
 U4 : _MUX conn=(I:Q I:J I:n1 O:n4)
 U5 : _INV conn=(I:K O:n1)
 FJK3 : _DFF conn=(I:n2 I:n3 I:CP I:n4 O:Q)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1359

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_net_connections Command

Feedback

 --

Description

The verbose format for a module includes the all standard format data plus reports all of its
input, output, inout, and instance data.

Inputs

The input line reports all the input pins of the module. Each input entry gives its
pin name and any attributes of the pin placed in parentheses.

Outputs

The output line reports all the output pins of the module. Each output entry gives
its pin name and any attributes of the pin placed in parentheses.

Inouts

The inout line reports all the bidi pins of the module. Each inout entry gives its
pin name and any attributes of the pin placed in parentheses.

Instance lines

The data for each module instance is given on separate lines. The first field of
an instance entry gives the instance name. The second field is the instance
type. The next field identifies all the connections of the instance pins. For each
pin connection, the pin type is given first ("I" indicates input pin and "O" indicates
output pin), followed by a colon, and ending with the name of the net (or pin) it is
connected to.

See Also

• report_modules

Output From the report_net_connections Command
You can use output from the report_net_connections command to view data associated
with all net connections added with the add_net_connections command.The syntax for this
command is as follows:

report_net_connections

Standard Format
 Connection PI, net gwx12z/amd/dp/uto_reg_0/D, -disconnect
 Connection PO, net gwx12z/amd/dp/U943/Z

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1360

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_nets Command

Feedback

 Connection TIEX, net dout[4], module RGB_ctrl
 Connection TIE0, net GND

The report indicates the type of connection PI, PO, TIEX, and so forth., the name of the
net to which the connection is made, and the keyword -disconnect if the original driver
is to be disconnected, or the module name, if the net reference is within a specific module
only.

See Also

• report_net_connections

Output From the report_nets Command
You can use output from the report_nets command to analyze data associated with
specific nets.

report_nets net_name [-module name]

Standard Format
TEST> report_nets /core/rgb/pwm/n6
 /core/rgb/pwm/n6 _INTERN ()
 I PM3/test_sei
 I PR1/test_sei
 I PR2/test_sei
 I PR3/test_sei
 I PREGS/test_sei
 O U5/N01

TEST> report_nets n56 -module hash
 hash/n56 _INTERN ()
 I U16/H02
 I U17/H02
 I U22/H01
 O U23/N01

TEST> report_nets PIN_ENA -module hash
 hash/PIN_ENA _PI ()
 I U17/H01

TEST> report nets pwm_dout[0] -module hash
 hash/pwm_dout[0] _PO ()
 O U16/N01

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1361

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_nofaults Command

Feedback

The standard net report lists the net pathname; the type of connection of _PI, _PO, _PIO,
or _INTERN; and each connection for which the net is an input "I" or an output "O".

See Also

• report_nets

Output From the report_nofaults Command
You can use output from the report_nofaults command to analyze all faults with the nofault
attribute. The syntax for this command is as follows:

report_nofaults <instance_name | pin_pathname [-stuck<0|1|01>] | -all>

Standard Format
sa1 ** /mux0/SL

sa0 ** /buf0/Y

sa1 ** /mux1/SL

Description

Each line gives information for a single nofaulted fault and contains the three standard
fault fields. This first field indicates the stuck value for the fault. The second field is an
ignored fault class field and is always displayed as two asterisks "**". The third field
indicates the pin pathname associated with the fault site.

See Also

• report_nofaults

Output From the report_nonscan_cells Command
You can use the output from the report_nonscan_cells command to analyze behavioral
data on nonscan flip-flops and latches. The syntax for this command is as follows:

report_nonscan_cells

<-summary | -all | c0 | c1 | cu | l0 | l1

| tla | le | te | ls | ram_out | unstable_set_resets | load | nonx_load>

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1362

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_nonscan_cells Command

Feedback

[-max d] [-tlas [no_clock | hot_clock | x_clock]]
[-unique] [-verbose]

Summary Format
 Nonscan cell summary: #DFF=416 #DLAT=227
tla_usage_type=no_clock_tla
 Nonscan behavior: #CU=64 #TLA=131 #LE=407 #TE=9 #LS=32
 Load disturbs : #CU=64 #TLA=131 #LE=407 #TE=9 #LS=32
 TLA behavior: #no_clock=131, #hot_clock=0, #X_clock=0

Nonscan cell summary:

This line indicates the total number of nonscan flip-flops (#DFF) and nonscan
latches (#DLAT) in the simulation model. The line also indicates the global
transparent latch (TLA) behavior. Possible TLA behaviors include "none" (no
TLAs), "no_clock_tla" (no TLAs are connected to clocks), "hot_clock_tla" (TLAs
are connected to clocks but all clock inputs of TLAs are active when clocks are
off), and "X_clock_tla" (at least one TLA is connected to a clock and is not a
hot_clock_tla).

Nonscan behavior:

This line lists the number of nonscan cells in each used nonscan cell category.
Possible categories are C0 (constant 0), C1 (constant 1), CU (clock unstable),
L0 (load 0), L1 (Load 1), TLA (transparent latch), LE (clock-off stable leading
edge DFF), RAM_out (Macro Out bit of a memory cell), TE (clock-off stable
trailing edge DFF), and LS (clock-off stable DLAT).

Load disturbs:

This line lists the number of nonscan cells in each used nonscan cell category
that could not hold state during the scan load process.

TLA behavior:

This line lists the number of transparent latches in each TLA category. Possible
TLA categories include TLAs not connected to clocks (#no_clock), TLAs whose
clock port is always active when clocks are off (#hot_clock), and TLAs which are
connected to clocks with the clock input being at an indeterminate state when all
clocks are off (#X_clock).

Standard Format
type behavior_data gate_id instance_name (type)
-------- ------------- ------- -------------------------------
CU load_unstable 89286 /core/gum/boo/reg42 (LD1)
L0 load_unstable 2315 /core/NFF1 (FD2)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1363

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_patterns Command

Feedback

L1 load_unstable 2416 /core/NFF2 (FD4)
TE load_stable 43220 /core/gum/reg2 (FD1)

type

Indicates the nonscan behavior that is used for scan based simulation and test
generation. This type is one of: C0, C1, CU, L0, L1, TLA , LE, RAM_out, TE, or
LS.

behavior_data

This lists behavior data associated with the nonscan cell. If the type is TLA, this
is the TLA category as described above. Otherwise, it will indicate whether it is
stable (load_stable) or unstable (load_unstable) during the scan load process.

gate_id

Indicates the primitive ID number of the nonscan cell.

instance_name

Indicates the instance name for the nonscan cell.

(type)

Indicates the module type from which the nonscan cell was derived.

See Also

• report_nonscan_cells

Output From the report_patterns Command
The output report produced by the report_patterns command helps you analyze
pattern data from the internal or external pattern buffer. This report can be displayed in the
following formats:

• Summary Format

• Standard Format

• Pattern Type Format

Summary Format
The -summary option produces a summary report that displays the number of patterns
in the active internal pattern set. If there are active external patterns, the name of the

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1364

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_patterns Command

Feedback

external pattern file and the number of external patterns are also included, as shown in the
following example:

TEST-T> report_patterns -summary
 Pattern Summary Report

 #internal patterns 448
 #basic_scan patterns 448
 #external patterns (chk2_fifo.vcde) 218

Standard Format
If the starting pattern number is the only parameter specified with the report_patterns
command, the standard format report is printed, as shown in the following example:

TEST-T> report_patterns 0
Pattern 0 (basic_scan)
Time 0: load chain1 =
 0100000000 1101000000 0101111101 1000000000 1010100011 0001010100

 1011000010 0100110111 0010010100 0001000010 1011001000 1001010001

Time 0: load chain2 =
 1110001011 0110001110 1011101011 0100110111 111100
Time 1: force_all_pis =
 0101110100 0000100011 1110100010 0001110010 0ZZZZZZZZZ ZZZZZZZZZZ

Time 2: measure_all_pos =
 1011XXXXX1 1000110100 0111001111 1111111011 0101000001
Time 3: pulse clocks /iigclk2x (69)
Time 4: unload chain1 =
 1111111110 1001111111 1111111101 1000000000 1010100011 0001010101

 1011000000 1111010110 0100100100 1001000010 10001001XX XXXX100011

Time 4: unload chain2 =
 1110001011 0110001110 1011101011 0100110111 111100

The following parameters are included in this report:

Time

Indicates the time of the applied pattern event. Possible pattern events include:
load, force_all_pis, measure_all_pos, pulse clocks, applied procedures (master
observe or shadow observe), and unload.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1365

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_patterns Command

Feedback

load chain_name

Displays the load values of a scan chain. The values are placed on the chain
input pin in the same order as they appear for each shift cycle.

force_all_pis

Displays the respective values for placing the primary inputs and bidirectional
ports. The inputs and bidirectional ports are sequentially ordered based upon
their primitive ID numbers. Use the report_primitives -pis -pio command
to determine the order of the characters.

measure_all_pos

Displays the respective values for measuring the primary outputs and
bidirectional ports. The inputs and bidirectional ports are sequentially ordered
based upon their primitive ID numbers. Use the report_primitives -pos
-pios command to determine the order of the characters.

pulse clocks

Identifies the pulse clocks, including their associated port name and gate ID
number.

apply procedure <procedure_name> (ID=%d) number times

Displays the number of times a master observe or shadow observe procedure is
applied.

unload chain_name

Identifies an unloaded scan chain. The chain output port values are measured in
the same order in which they appear for each shift cycle.

Pattern Type Format
Pattern type-based data is printed for all patterns when you specify both the -type and
-all options of the report_patterns command.

TEST-T> report_patterns -type -all

Patn Pattern Cycle Load Observe Clocks
num type count count proc used
----- ---------- ----- ----- ------- -----------------------
0 basic_scan 1/0 1 - -
1 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
2 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
3 basic_scan 1/1 1 - sdr_clk,prst_n
4 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
5 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
6 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1366

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_patterns Command

Feedback

7 basic_scan 1/1 1 - sdr_clk,prst_n
8 basic_scan 1/1 1 - sys_clk,pclk
9 basic_scan 1/1 1 - prst_n
10 basic_scan 1/1 1 - prst_n
11 basic_scan 1/1 1 - prst_n
12 basic_scan 1/1 1 - prst_n
13 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
14 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
15 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
16 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
17 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
18 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
19 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
20 basic_scan 1/1 1 - prst_n
21 basic_scan 1/1 1 - sdr_clk,sys_clk,pclk
22 basic_scan 1/1 1 - sdr_clk,sys_cl
23 basic_scan 1/1 1 - sdr_clk
24 basic_scan 1/1 1 - sdr_clk,pclk
25 basic_scan 1/1 1 - sys_clk

The following parameters are included in this report:

Patn num

Identifies the pattern number.

Pattern type

Identifies the type of pattern (basic scan, fast-sequential, or full-sequential).
A basic scan pattern is a combinational pattern that uses one scan load, one
capture clock (optional), and one scan unload. A fast-sequential pattern can use
up to 10 scan loads and 10 captures.

Cycle count

The cycle count is comprised of two values: N1/N2. The N1 value is the number
of force-measure pairs in a pattern. This value corresponds to the number
of tester cycles used by the pattern. The N2 value is the number of capture
procedures with a clock pulse. Since force-measure pairs do not always include
a clock pulse, the N2 value is usually less than or equal to the N1 value.
However, for designs with on-chip clocks (OCCs), the N2 value can be larger
than the N1 value (for details, see the "Understanding the Cycle Count for
Designs with OCCs" section).

Load count

Indicates the number of scan loads used by the pattern.

Observe proc

Identifies a master observe or shadow observe procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1367

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_patterns Command

Feedback

Clocks used

Identifies the active clock used by the pattern. The order of the clocks is the
same as the order used by the pattern.

Understanding the Cycle Count for Designs with OCCs
In the clock format report created by the report_patterns command, the cycle count
(N1/N2) is comprised of force-measure pairs (N1) and capture procedures with a clock
pulse (N2). In most cases, the N2 value is less than or equal to the N1 value. However,
for designs with OCCs, the N2 value can be greater than the N1 value, as shown in the
following example:

Patn Pattern Cycle Load Observe Clocks num type count count proc
used ----- ---------- ----- ----- ------- ----------------------- 0
fast_seq 2/8 2 - CLK1,CLK2,RefClk CLK1,CLK2,RefClk CLK1,CLK2,RefClk
CLK1,CLK2,RefClk CLK1,CLK2,RefClk CLK1,CLK2,RefClk CLK1,CLK2,RefClk
CLK1,CLK2,RefClk1 fast_seq 2/8 2 - CLK1,CLK2,RefClk CLK1,CLK2,RefClk
CLK1,CLK2,RefClk CLK1,CLK2,RefClk CLK1,CLK2,RefClk CLK1,CLK2,RefClk
CLK1,CLK2,RefClk CLK1,CLK2,RefClk
Designs with OCCs typically have a different cycle count than standard designs because
the cycle count is computed in a different manner:

• In the example, the N1 value is reported as 2 because both patterns are multiple load
patterns (the load count is 2).

• The N2 value is equal to the N1 value multiplied by the greater of the value specified by
either the set_atpg-min_ateclock_cycles command or the set_drc-num_pll_cycles
command.

The set_atpg -min_ateclock_cycles command specifies the minimum number of
system cycles for each pattern. By default, the number of ATE Clock cycles is the same
as the value of the set_drc -num_pll_cycles command. In this case, the set_drc
-num_pll_cycles command is set to 4. As a result, N2 is equal to 8: the N1 value (2)
multiplied by the PLL cycles value (4)

See Also

• Reporting Patterns

• Specifying the Pattern Source

• Summaries Report

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1368

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_pi_constraints Command

Feedback

Output From the report_pi_constraints Command
You can use output from the report_pi_constraints command to identify all primary input
and bidirectional ports that have been constrained. The syntax for this command is as
follows:

report_pi_constraints

Standard Format
pin_name constrain_value
---------------- ---------------
/TEST_MODE 1

pin_name

Indicates the port name of the primary input or bidi pin on which the constraint is
placed.

constrain_value

Indicates the value of the PI constraint. It is "0", "1", "X", or "Z".

See Also

• report_pi_constraints

Output From the report_pi_equivalences Command
You can use output from the report_pi_equivalences command to view all primary
input and bidirectional ports that have been constrained to be equivalent with the
add_pi_equivalences command. The syntax for this command is as follows:

report_pi _equivalences

Standard Format
pin_name equivalent pins
---------------- ----------------------------------
/NL0 /NL1 ~/NL2
/ENA_P ~/ENA_N

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1369

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_po_masks Command

Feedback

pin_name

Indicates the port name of the primary input or BIDI pin on which the
equivalence relationships have been defined.

equivalent pins

This lists all ports which have been specified to be equivalent (or inverted) with
the original port. A "~" character that precedes a port name indicates that the
port is inverted relative to the original port.

See Also

• report_pi_equivalences

Output From the report_po_masks Command
You can use output from the report_po_masks command to view all primary outputs that
have been constrained to be masked with the add_po_masks command.

report_po_masks

Standard Format
output pin_name

/D0
/D1

output pin_name

Indicates the port name of the primary output or bidi port whose measured value
is to be masked.

See Also

• report_po_masks

Output From the report_primitives Command
You can use output from the report_primitives command to analyze data on ATPG
primitives in the model created by the run_build_model command. The syntax for this
command is as follows:

report_primitives

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1370

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_primitives Command

Feedback

< id | instance_name | net_name | pin_pathname |

-ports | -pis | -pos | -pios | -type gate_type | -summary >

[-max d]

Summary Format
 Gate Summary Report

 #primitives 101071
 #primary_inputs 251
 #primary_outputs 148
 #primary_bidis 128
 #DLATs 227
 #TLAs 195
 #nonscan 32
 #DFFs 11369
 #nonscan 416
 #scan 10953
 #BUSs 577
 #contention_fails 289
 #BUFs 4108
 #INVs 6425
 #ANDs 9740
 #NANDs 21086
 #ORs 5689
 #NORs 2981
 #XORs 2207
 #XNORs 944
 #TIE0s 11357
 #MUXs 20017
 #WIREs 23
 #BUFZs 138
 #TSDs 3656

Description

The summary reports the total number of gates in the simulation model and the number of
gates for each primitive type. The data for a primitive type is on a single line and includes
two fields. The first field identifies the primitive type and the second field gives the number
of gates of that primitive type in the simulation model. For the DLAT primitive type, a lower
level primitive type TLA (transparent latch) is also give.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1371

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_primitives Command

Feedback

Standard Format
/gate2/U4 (24) DFF (FD1S)
 --- I () (/TIE_0)
 --- I () (/TIE_0)
 CP I (010) 13-/gate2/A1/Z
 --- I (XXX) 17-
 Q O (XXX) 32-q4
scan_behavior: MASTER(LE/-) chain=c1 cell_id=0 invert_data=NN obs=noproc

First Line

The first line of the standard primitive report contains 4 fields. The first field
is the instance name of the gate, the second field is the primitive ID number
enclosed in parentheses, the third field is the primitive type, and the fourth field
is the module type from which the primitive was derived in parentheses.

Pin Lines

The next lines of the primitive report are the pin lines. These lines are indented
and each pin contains 3 required fields with an optional pin data field. The
first field is the name of the pin ("---" indicates no netlist pin name exists). A
"!" character preceding an input pin name indicates the pin is inverted. The
second field indicates the pin type. It might be I (input pin), O (output pin), or B
(bidirectional pin). A "W" character preceding an input/bidi pin type indicates a
weak pin. If primitive report is not set off, the next field is the pin data enclosed
in parentheses. The pin data is selected using the set_pindata command. The
final field indicates the connections of the pin. The pin connection gives the ID
number of the connecting primitive and its pin pathname if it exists. An output
pin can have multiple pin connections and the additional connections is placed
on separate lines. The number of reported output pin connections might be
selected with the default set to 2. Connections to global tie gates are indicated
by a tied primitive type placed in parentheses.

Usage Lines

The final lines of a primitive report are unindented usage lines. These include
scan behavior, nonscan behavior, external pin behavior (clock, scanin, scanout,
constrained, masked, and equivalence), BUS behavior, BUS keeper behavior,
MEMORY primitive behavior, READP primitive behavior, and MOUT primitive
behavior.

Note that the scan_behavior line contains an invert_data statement, as
shown in bold in the following example:

scan_behavior: MASTER(LE/-) chain=big_chain cell_id=2
invert_data=NI obs=noproc

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1372

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_primitives Command

Feedback

The invert_data statement in the example displays net inversion data in a two-
character format: the "N" character refers to normal (non-inverting) behavior,
and the "I" character refers to inverting behavior. The first character of the
sequence corresponds to the area of the scan cell between the scan-in port and
the _DFF primitive. The second character corresponds to the area of the scan
cell between the primitive to the scan-out port.

In the following example, net inversion occurs from the scan-in port to the _DFF
primitive of the scan cell, and the scan cell behavior is normal (non-inverting)
from the primitive to the scan-out port:

invert_data=IN
The behavior can be the same in both locations of the scan cell, as shown in the
following examples:

invert_data=NN
invert_data=II

Verbose Format
/gate2/U4 (24) DFF (FD1S)
 --- I () (/TIE_0)
 --- I () (/TIE_0)
 CP I (010) 13-/gate2/A1/Z
 --- I (XXX) 17-
 Q O (XXX) 32-q4
scan_behavior: MASTER(LE/-) chain=c1 cell_id=0 invert_data=NN obs=noproc
Connection data: to=REGPO from=TLA

Description

The verbose primitive report (selected by using the -verboseoption of the
set_primitive_report command) displays the standard primitive report plus all learned
data associated with the gate. This includes connectivity to/from special points, learned
implications, learned equivalences, wire primitive blockage, common input behavior, and
learned functional behavior.

Pin/PI/PO/PIO Format
gate_id type pin_name (behavior_data)
------- ---- -------------------------------
 0 PI /clk clock(off=0,master,shift)
 1 PI /a

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1373

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the report_rules Command

Feedback

gate_id

Indicates the primitive ID number for the pin gate.

type

Indicates the primitive type of the pin gate. It might be "PI", "PO", or "PIO".

pin_name

Indicates the pin name of the pin gate.

(behavior_data)

This lists any behavior data associated with the pin gate. This will include clock
data, scanin/scanout data, constrain pin data, and equivalence data.

See Also

• report_primitives

Output From the report_rules Command
You can use output from the report_rules command to view data associated with rule
violations. The syntax for this command is as follows:

report_rules [rule_id | rule_type | -all] [fail]

Standard Format
 rule severity #fails description
 ---- -------- ------ ---------------------------------
 B6 warning 2 undriven module inout pin
 B7 warning 178 undriven module output pin
 B10 warning 32 unconnected module internal net
 B13 warning 2 undriven instance input pin
 S23 warning 64 unobservable potential TLA
 S29 warning 1 invalid dependent slave operation
 C3 warning 32 no latch transparency when clocks off
 C6 warning 1 TE port captured data affected by
new capture
 Z1 warning 289 bus contention ability check
 Z2 warning 289 Z-state ability check
 Z4 warning 360 bus contention in test procedure

rule

Indicates the name of the rule to be reported.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1374

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_build_model Command

Feedback

severity

Indicates the current severity of the reported rule. Possible severity choices
include ignore, warning, error, and fatal. Fatal is a special kind of error severity
whose severity cannot be changed.

#fails

Indicates the current number of failures for the reported rule.

description

This gives a brief textual description of the reported rule.

See Also

• report_rules

Output From the run_build_model Command
The run_build_model command builds an in-memory simulation model from the design
modules that have been read in. You can view the results of this process in the output. The
syntax for the run_build_model command is as follows:

run_build_model [top_module] [-weakgates]

Standard Format
 run_build_model RGB2

 Begin build model for topcut = RGB2 ...

 There were 38494 primitives and 6007 faultable pins removed during model
 optimizations
 Warning: Rule B6 (undriven module inout pin) was violated 2 times.
 Warning: Rule B7 (undriven module output pin) was violated 178 times.
 Warning: Rule B8 (unconnected module input pin) was violated 923 times.
 Warning: Rule B10 (unconnected module internal net) was violated 32
 times.
 Warning: Rule B12 (undriven instance input pin) was violated 2 times.
 End build model: #primitives=93831, CPU_time=5.03 sec, Memory=27MB

 Begin learning analyses...
 End learning analyses, total learning CPU time=11.00

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1375

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_build_model Command

Feedback

#primitives=

This indicates the total number of primitives in the simulation model that was
built. Each primitive in this model is assigned a unique ID number between 0
and one less than #primitives.

CPU_time=

This indicates the cumulative number of CPU seconds that was used for the
model build process.

Memory=

This indicates the amount of memory that is used to store the simulation model.

Verbase Format
 run_build_model RGB2
 --
 Begin build model for topcut = RGB2 ...

 Begin flattening of 211306 instantiated modules, Memory=24MB...
 Flattened 100000 instantiated modules, Memory=47MB.
 Flattened 200000 instantiated modules, Memory=77MB.
 Unused primitives eliminated: 19154, pins lost: 13565
 Buffers eliminated: 160443, pins lost: 0
 Inverters eliminated: 25444, pins lost: 0
 Primitives eliminated due to cascaded gate structures: 1255, pins lost:
 0
 There were 206296 primitives and 13565 faultable pins removed during
 model optimizations
 Number common input primitives=37990
 Ranking completed: #ranked_gates=226851, #feedback_paths=0
 Build memory summary: peak=103MB (10.0% final freed), final=90MB,
 bytes/primitive=161
 Build memory usage: primitives=65.7%, instances=30.9%, others=3.4%
 End build model: #primitives=244759, Memory=90MB
--
 Begin learning analyses...
 Fanout-free region identification completed: #regions=94366
 Begin common input learning...
 Learned tied gates: #XOR=11981
 Learned gate types: #BUF=401 #INV=318 #XOR=12048 #XNOR=42
 Learned relations: #equivalence=10893 (classes=4360)
 Common input analysis completed:
 Tied analysis completed: #tied_gates=14739, #blocked_gates=88/0,
 #blocked_inputs=12772
 End learning analyses, total learning CPU time=23.2
--

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1376

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_build_model Command

Feedback

Flattening of Instantiated Models results:

These are status messages that indicate the progress of flattening the total
number of instantiated modules.

Primitive elimination results:

This is an expert level message that occurs during the building of the simulation
model. It indicates the number of gates that were removed from the simulation
model due to the following reasons:

Unused primitives eliminated: All primitives whose outputs have no path to either
a top level output or an internal state element are removed. They are unused
and do not affect circuit operation.

Buffers eliminated: Inverters eliminated:

All buffers and inverters are removed unless they are required as placeholders
for fault sites. In addition, an inverter can only be removed if the inverters output
connects to an ATPG primitive's input which has a selectable inversion control
for it's inputs.

Primitives eliminated due to cascaded gate structures:

Cascaded gate optimization is performed by identifying two gates in series that
can be merged into a single gate. An example of this would be two 2-input AND
gates in series which could be replaced by a single 3-input AND gate.

Number common input primitives:

Primitives with inputs in common, such as a 2-input NAND gate driven from the
same net are replaced with their equivalent INV function.

Ranking completed:

This is an expert level message that occurs during the building of the simulation
model. It indicates the number of ranked gates, the number of feedback path
networks, and the CPU time in seconds that was used to perform the ranking
and feedback path analysis.

Fanout-free region identification

This is an expert level message that occurs during the building of the simulation
model. It indicates the number of fanout free regions which were identified and
the CPU time in seconds that was used to perform the analysis.

Begin common input learning...

This is an expert level message that occurs during the building of the simulation
model. It indicates the beginning of the common input gate analysis.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1377

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_build_model Command

Feedback

Learned tied gates:

This is an expert level message that occurs during the building of the simulation
model. It indicates the number of learned tied gates for various gate types that
were learned during the common input gate analysis.

Learned gate types:

This is an expert level message that occurs during the building of the simulation
model. It indicates the number of learned learned gate functions for various gate
types that were learned during the common input gate analysis.

Learned relations:

This is an expert level message that occurs during the building of the simulation
model. It indicates the number of gates with equivalence relationships and the
total number of equivalence relationships that were learned during the common
input gate analysis.

Common input analysis completed

This is an expert level message that occurs during the building of the simulation
model. It indicates the end of the common input gate analysis and the CPU time
in seconds that was used to perform the analysis.

Begin ATPG equivalence analysis...

These are expert level messages that occur during the building of the simulation
model.

The first message indicates the beginning of the ATPG analysis and the settings
that determine how much effort will attempted. The number of simulation passes
indicate the number of random patterns that is simulated to create a list of tie
and equivalence candidates. The maximum number of test passes indicated
the maximum allowed number of test generation attempts before the process is
terminated.

The second message summarizes the results of the random pattern simulation.
These results include the number of potential tie gates (first number is for tie0
and the second number is tie1), the number of potential equivalence gates
(and number of associated equivalence groups), and the CPU time in seconds
that was used for simulation. If the ATPG analysis is aborted due to hitting the
maximum allowed test generation attempts, a message is given indicating the
process was prematurely aborted.

The last message indicates the end of the ATPG analysis and summarizes
the results. The results include the number of learned tie gates, the number
of learned equivalence gates, the number of aborted ATPG attempts (the first
number is during the tie learning and the second number is the equivalence
learning), and the CPU time in seconds that has been used for ATPG analyses.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1378

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_fault_sim Command

Feedback

Tied analysis completed:

This is an expert level message that occurs during the building of the simulation
model. It indicates the end of the tied gate analysis and summarizes the results.
The results include the number tied gates, the number of gates whose fault
effects are blocked due to tied gates, and the number of gate inputs whose fault
effect is blocked due to tied values on other inputs.

See Also

• set_atpg

• set_learning

• set_messages

• Understanding Flattening Optimizations

• Building the ATPG Model

Output From the run_fault_sim Command
The run_fault_sim command performs fault simulation using the current fault list and the
current selection of the pattern source. The syntax for this command is as follows:

run_fault_sim [-fast_pattern d] [-store] [-sequential]

Standard Format
run fault_sim -sequential
 --

 Begin sequential fault simulation of 17447 faults on 500 external
 patterns.

 #faults pass #faults cum. #faults test process
 simulated detect/total detect/active coverage CPU time
 --------- ------------- ------------- -------- --------
 1023 89 1023 89 17358 0.53% 501.00
 2047 12 1024 101 17346 0.60% 1002.00
 3070 49 1023 150 17297 0.90% 1503.00
 4093 44 1023 194 17253 1.16% 2004.00
 5116 29 1023 223 17224 1.34% 2505.00
 6141 26 1025 249 17198 1.49% 3006.00
 7164 1 1023 250 17197 1.49% 3507.00
 8187 19 1023 269 17178 1.60% 4008.00
 9211 5 1024 274 17173 1.63% 4509.00
 10234 1 1023 275 17172 1.64% 5010.00
 11257 2 1023 277 17170 1.65% 5511.00

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1379

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_fault_sim Command

Feedback

 12280 11 1023 288 17159 1.72% 6012.00
 13303 0 1023 288 17159 1.72% 6513.00
 14326 9 1023 297 17150 1.77% 7014.00
 15349 0 1023 297 17150 1.77% 7515.00
 16372 4 1023 301 17146 1.79% 8016.00
 17395 13 1023 314 17133 1.89% 8517.00
 17447 3 52 317 17130 1.91% 9018.00
 Fault simulation completed: #faults_simulated=17447,
 test_coverage=1.91%, CPU time=9019.00

#faults simulated

This indicates the cumulative number of faults which are simulated in this run.
This count can be either uncollapsed (default) or collapsed depending on the
current fault report selection.

pass #faults detect/total

This indicates the number of faults which are detected in the current pass
followed by the number of faults simulated in this pass. These counts can be
either uncollapsed (default) or collapsed depending on the current fault report
selection.

cum #faults detect/active

This indicates the cumulative number of faults which are detected in the current
run followed by the number of faults which are still active. These counts can be
either uncollapsed (default) or collapsed depending on the current fault report
selection.

test coverage

This indicates the test coverage after the current pass was completed. The
test coverage is calculated using either uncollapsed (default) fault counts or
collapsed fault counts depending on the current fault report selection.

process CPU time

The indicates the cumulative CPU time in seconds that has been used for the
current run.

See Also

• run_simulation

• set_simulation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1380

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_justification Command

Feedback

Output From the run_justification Command
The run_justification command creates a pattern that satisfies user-specified conditions
placed on any number of internal (or external) circuit nodes. The syntax for this command
is as follows:

run_justification [-set <<id | pin_pathname> <0|1|z>>...]

[-verbose] [-store] [-previous] [-noconstraints] [-noprevention]

Standard Format (Examples)
 TEST> run_justification -set 1000 0 -store
 Justification required 0 remade decisions.
 Successful justification: pattern values available in pattern 0.
 Warning: 1 patterns rejected due to 1 constraint violations (ID=1,
 pat1=0). (M179)
 Justification pattern is stored in internal pattern set.

 TEST> run_justification -set /dac/ramdp/U46/B 1
 Successful justification: pattern values available in pattern 0.

 TEST> run_justification -set /dac/ramdp/U98/A 0 -store
 Successful justification: pattern values available in pattern 0.
 Justification pattern is stored in internal pattern set.

 TEST> run_justification -set /dac/ramdp/U46/B 1 -store -previous
 Unsuccessful justification: test status was atpg_untestable.

 TEST> run_justification -set BIDI_EN 1 host/dram/U67/E 0 dram/U166/E 0
 Successful justification: pattern values available in pattern 0.
 Warning: 1 patterns rejected due to 8 bus contentions (ID=83341,
 pat1=0). (M181)

Justification Status

The first line of the report indicates the status of the test generation effort that
attempted to simultaneously satisfy all the specified conditions. If the justification
was successful, then the message will also indicate a pattern number. When
the pindata is set to that pattern number, the logic simulation values for the
justification pattern can be displayed in the schematic viewer or by use of the
report_primitives command. If the justification is not successful, the message will
indicate why test generation failed. Possible explanations are abort, redundant,
and ATPG untestable. These terms have the same meaning as the standard
fault classes.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1381

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_simulation Command

Feedback

Store Message

If the justification was successful and the -store option was used, the created
pattern is stored in the current internal pattern set and a message displayed
indicating that the pattern was stored. The pattern is typically stored as internal
pattern 0, but can also be the special "Fast-Sequential" pattern. More than one
pattern can be created.

Warning Messages

If the justification was successful, the resulting pattern is fully simulated. If this
pattern has a bus contention condition or it fails to satisfy a constraint, then a
warning message (M181) is given. Normally, the justification process will also
satisfy ATPG constraints and contention prevention. However, bidirectional pins
are purposely left at X if they were not necessary for satisfying the justification
conditions. This can result in bus contention conditions and the warning
messages should be ignored. The contention checking or constraints checking
cah be adjusted or disabled using the set_contention command. Disabling
the contention checks will avoid the extra justification effort to satisfy those
conditions and any corresponding warning messages.

See Also

• Fault Classes

• report_primitives

• set_contention

• set_pindata

Output From the run_simulation Command
The run_simulation command performs simulation of the current pattern source
determined by the set_patterns command and reports any differences between simulated
and expected values. The syntax for this command is as follows:

run_simulation [-sequential] [-store] [-max_fails d]
[-nocompare] [-nox_difference]
[[pin_pathname <0|1>] | [chain_name <position> <0|1>]][-failure_file
 file_name] [-replace] [-last_pattern d]

Standard Format
 run_simulation -sequential
 Begin sequential simulation of 16 external patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1382

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_simulation Command

Feedback

 Simulation completed: #patterns=16/56, #fail_pats=0(0),
 #failing_meas=0(0), CPU time=34.27

#patterns=N1/N2

This indicates the number of patterns in the entire pattern set followed by the
total number of time periods in the pattern set. A pattern can have multiple times
at which measures are performed.

#fail_pats=N1(N2)

This indicates the number of patterns which experiences simulation mismatches
followed by the number of patterns which only had possible mismatches
(simulated value at X for an expected measure).

#failing_meas=N1(N2)

This indicates the number of measures at POs or scan cells which experienced
simulation mismatches followed by the number of measures which were
possible mismatches (simulated value at X for an expected measure).

CPU time

This indicates the total amount of CPU time in seconds required to perform the
simulation.

With Simulation Mismatches
 set_patterns -external pat.bin
 End parsing binary file pat.bin with 0 errors.
 End reading 3 patterns, CPU_time = 0.00 sec, Memory = 0MB
 run_simulation flop5/TE 0
 Warning: The added fault(s) affect scan chain load/unload operation.
 (M453)
 Begin simulation of 3 external patterns with cell chain1-1 stuck at 0.
 0 test_so[1] 2 (exp=1, got=0)
 0 test_so[1] 3 (exp=1, got=0)
 1 test_so[1] 1 (exp=1, got=0)
 1 test_so[1] 2 (exp=1, got=0)
 2 test_so[1] (exp=1, got=0)
 Simulation completed: #patterns=3, #fail_pats=3(0), #failing_meas=5(0),
 CPU time=0.00

The first column identifies the pattern number. The second column identifies the failing
output pin. The third column identifies the scan cell position in the chain. This column
exists only if the failure occurred during scan chain unload. The fourth column is made up
of two fields. The first field indicates the expected value to be measured from the pattern
source, and the second field indicates the simulated value.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1383

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_simulation Command

Feedback

If the patterns are read in the external pattern buffer using the -split_patterns option,
you should note the following: When there are simulation mismatches (for example, due
to using the -stuck or -slow options), if the output of the run_simulation command is
stored in a file using the -failure_file option, the failure file contains all the necessary
directives to run the split diagnosis.

For example:

 run_simulation –stuck {0 CHIP_TOP/FIFO/U45/Z}
 .pattern_file_name chain_test_pat.stil
 .pattern_file_name test_0.stil
 .first_pattern continue
 3 test_so1 6 (exp=1, got=0) // Compressor failure
 3 test_so2 6 (exp=1, got=0) // Compressor failure
 3 test_so3 6 (exp=0, got=1) // Compressor failure
 4 test_so1 6 (exp=0, got=1) // Compressor failure
 4 test_so2 6 (exp=0, got=1) // Compressor failure
 4 test_so3 6 (exp=1, got=0) // Compressor failure
 .pattern_file_name test_1.stil
 .first_pattern continue
 .pattern_file_name test_2.stil
 .first_pattern continue
 15 test_so1 6 (exp=0, got=1) // Compressor failure
 15 test_so2 6 (exp=0, got=1) // Compressor failure
 15 test_so3 6 (exp=1, got=0) // Compressor failure
 .pattern_file_name test_3.stil
 .first_pattern continue
 22 test_so1 6 (exp=1, got=0) // Compressor failure
 22 test_so2 6 (exp=1, got=0) // Compressor failure
 22 test_so3 6 (exp=0, got=1) // Compressor failure
 Simulation completed: #patterns=30, #fail_pats=4(0),
 #failing_meas=12(0), CPU time=0.02

Using the -max_fails Option
This section describes the output of the run_simulation command using the -max_fails
option.

For example if the first seven failures in the file are:

1 so 1 (exp=1, got=0)
1 so 3 (exp=0, got=1)
2 so 1 (exp=1, got=0)
2 so 3 (exp=0, got=1)
5 so 0 (exp=1, got=0)

If you use -max_fails 3, TestMAX ATPG does not merely generate:

1 so 1 (exp=1, got=0)
1 so 3 (exp=0, got=1)
2 so 1 (exp=1, got=0)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1384

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_simulation Command

Feedback

This would only be a partial set of failures for pattern 2, which contains the third failure.

If this data was given to diagnosis, it might not be able to diagnose it with the partial
failures. Therefore, TestMAX ATPG does not stop at the third failure. Instead of generating
incomplete failures for pattern 2, it generates the complete failures for the last pattern
(pattern 2) as follows:

1 so 1 (exp=1, got=0)
1 so 3 (exp=0, got=1)
2 so 1 (exp=1, got=0)
2 so 3 (exp=0, got=1)

Therefore, -max_fails values of 2, 3, 4, and 5 all generate the same result.

If you use the -max_fails 6 option, TestMAX ATPG generates:

0 po0 (exp=0, got=1)
1 po0 (exp=0, got=1)
1 so 0 (exp=1, got=0)
1 so 2 (exp=0, got=1)
1 so 3 (exp=0, got=1)
2 so 2 (exp=1, got=0)
2 so 3 (exp=1, got=0)

Using the -progress_message Option of the set_simulation
Command
You can use the -progress_message option of the set_simulation command to print a
progress message for every specified number of simulation passes. A simulation pass is
32 basic scan patterns, or from 1 to 10 (but usually 3) fast-sequential patterns.

The following example shows a simulation of 107 patterns, of which 69 are basic scan
patterns and the remainder are fast-sequential patterns. When the simulation of basic
scan patterns completes, the count of simulation passes has to restart, which causes a
larger gap at that point.

TEST-T> set_simulation -progress_message 2
TEST-T> run_simulation
Begin good simulation of 107 internal patterns.
Simulated 64 patterns, CPU time=0.00 sec.
Simulated 75 patterns, CPU time=0.01 sec.
Simulated 81 patterns, CPU time=0.02 sec.
Simulated 87 patterns, CPU time=0.02 sec.
Simulated 93 patterns, CPU time=0.03 sec.
Simulated 99 patterns, CPU time=0.03 sec.
Simulated 105 patterns, CPU time=0.04 sec.
Simulation completed: #patterns=107, #fail_pats=0(0), #failing_meas=0(0),
 CPU time=0.04
TEST-T> set_simulation -progress_message 4
TEST-T> run_simulation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1385

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 35: Types of Reports
Output From the run_simulation Command

Feedback

Begin good simulation of 107 internal patterns.
Simulated 81 patterns, CPU time=0.02 sec.
Simulated 93 patterns, CPU time=0.03 sec.
Simulated 105 patterns, CPU time=0.04 sec.
Simulation completed: #patterns=107, #fail_pats=0(0), #failing_meas=0(0),
 CPU time=0.04

See Also

• set_simulation

• run_fault_sim

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1386

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

36
Glossary

At-speed Clock

ATPG Primitive ID

Primitive Name

Black Box

Bus Keeper

Capture Clock

Capture Clock Edge

Capture Vector

Circuit Path

Clock

Clock Cone

Clock Unstable - CU

Command Abbreviation

Command Comments

Command Repeat

Constant 0 - C0

Constant 1 - C1

Continuation Character

Copy Paste

Delay Path

Effect Cone

Empty Box

False Path

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1387

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary

Feedback

Fanin Number

Fanout Number

Head of Path

Instance Name

Launch Clock

Launch Clock Edge

Leading Edge - LE

Level Sensitive - LS

Load 0 - L0

Load 1 - L1

Loop ID

Majority Gate

Module Name

Module Pinname

Net Name

Non-robust Detection of a Path Delay Fault

Non-robust Test (For a Path Delay Fault)

Null Module

Off-path Input

Off State

Output Redirection

Path Delay Fault

Pin Pathname

Port Name

Primitive ID

RAM_out

Robust Detection of a Path Delay Fault

Robust Test (For a Path Delay Fault)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1388

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
At-speed Clock

Feedback

Scan Clock

SCOAP

Sequential Model Port Priorities

Setup Vector

Shift Position

Simulation Events

Tail of the Path

Test For a Path Delay Fault

Trailing Edge - TE

Transparent Latch - TLA

Set / Resets

At-speed Clock
An at-speed clock is the pair of clock edges applied at the same effective cycle time as the
specified operating frequency for the design.

ATPG Primitive ID
The ATPG primitive ID is a numeric value that TestMAX ATPG assigns to a primitive that
has been added to the simulation model by the add_atpg_primitives command. This ATPG
primitive ID is used wherever a regular primitive ID can be used. It is most often used in
the add_atpg_constraints command.

In the following example, an ATPG primitive is added, which is the "Equiv" function with
four input pins. The new primitive is assigned the ID of 20201.

 DRC> add_atpg_primitives my_atpg_gate equiv \

 /BLASTER/MAIN/CPU/TP/CYCL/CDEC/U1936/in1 \

 /BLASTER/MAIN/ALU/TP/CYCL/CDEC/U6/in1 \

 /BLASTER/MAIN/ALU/TP/CYCL/CDEC/U16/in2 \

 /BLASTER/MAIN/ALU/TP/CYCL/CDEC/U13/in0

 Gate with ID#=20201 has been added to the ATPG
primitive list.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1389

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
ATPG Primitive Name

Feedback

 DRC> report_atpg_primitives -all

 name id# type inputs

 ------------- ------- ----- -----------------------

 my_atpg_gate 20201 EQUIV 861 990 1431 902

See Also

• add_atpg_primitives

• ATPG Primitive Name

• Primitive ID

• report_atpg_primitives

ATPG Primitive Name
The ATPG primitive name is a symbolic label you assign to a primitive that you are adding
to the simulation model with the add_atpg_primitives command. This ATPG primitive name
is used in the add_cell_constraints or remove_atpg_constraints command.

In the following example, an ATPG primitive is added, which is the "Equiv" function with
four input pins. The new primitive is assigned the name "my_atpg_prim".

DRC> add atpg primitives my_atpg_prim equiv \
 /BLASTER/MAIN/CPU/TP/CYCL/CDEC/U1936/in1 \
 /BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U1936/in1 \
 /BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U16/in2 \
 /BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U13/in0
 Gate with ID#=20201 has been added to the ATPG primitive
list.
DRC> report atpg primitives -all
name id# type inputs
---------------- ------- ----- ----------------------
my_atpg_prim 20201 EQUIV 861 990 1431 902

See Also

• add_atpg_constraints

• add_atpg_primitives

• ATPG Primitive ID

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1390

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Black Box

Feedback

• EQUIV Primitive

• remove_atpg_constraints

• report_atpg_primitives

Black Box
A black box is a module or block whose function and internal contents are unknown.
Only the port names and perhaps port directions are known. When a module is treated
as a black box, its input ports are unattached, and its output and bidirectional ports are
attached to TIEX primitives.

When you declare a module that does not have a module definition as a black box,
TestMAX ATPG must guess the pin directions based on connectivity in the design. This is
not always possible with 100% accuracy. To eliminate the possibility of an error, consider
defining a NULL MODULE. This null module would list the module header, the pins and
their defined directions, but would have an empty gate list for the internal definition.

See Also

• Null Module

Bus Keeper
A bus keeper is a cell, usually with a single pin attached to a bus net and designed to hold
the last driven state on that net. A bus keeper always has a weak drive strength so that it
does not compete with a strong driver. The bus keeper is initialized to a 1 or 0 by a strong
driver, and when all drivers on the net are off, the bus keeper continues to drive the last
value (with weak drive). Bus keepers are often used to avoid floating net conditions on
internal buses.

Capture Clock
The capture clock is the clock used to capture the final value resulting from V2 at the tail of
the path.

See Also

• Capture Vector

• Tail of the Path

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1391

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Capture Clock Edge (Capture Edge)

Feedback

Capture Clock Edge (Capture Edge)
The capture clock edge (or capture edge) is the clock edge used to capture the final value
resulting from V2 at the tail of the path.

See Also

• Capture Vector

• Tail of the Path

Capture Vector
A capture vector refers to the set of values on PIs and sequential devices during the
second of the two vectors required for a test for a path delay fault. The shorthand notation
V2 is often used to refer to this set of values.

See Also

• Test for a Path Delay Fault

Circuit Path
A circuit path is a series of gates in a circuit where each gate in the circuit path (with the
possible exception of the gate at the tail of the path) has its output pin connected to the
input pin of another gate in the circuit path, and each gate in the circuit path (with the
possible exception of the gate at the head of the path) has one of its input pins connected
to the output pin of another gate in the circuit path.

See Also

• Head of the Path

• Tail of the Path

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1392

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Clock

Feedback

Clock
A clock is any primary input that can affect the stored values of sequential devices,
including flip-flops, latches, and RAMS. The following principles apply to this definition:

• RAM write-control is considered a clock.

• Synchronous set or reset is considered a clock.

• Asynchronous set or reset is considered a clock

In addition to these conditions, a clock must be defined using the add_clocks command
or the DRC Test Procedure File. Also see the set_drc -allow_unstable_set_resets
command.

Clock Cone
A clock cone is the cone of combinational logic fanning out from a single clock input port
and extending to one or more sequential device input pins or primary output ports.

Comment Lines
Command files can contain comments in the form of:

• blank lines

• lines beginning with "##"

• lines beginning with "#"

• text following any "##"

For example,

 this is a comment that transcripts
 # this is a comment that does not transcript
 add_clocks 0 clk
this is a comment

 ## the preceding blank line was a comment

Repeating Commands
To repeat execution of the most recent command, enter !! in the command line.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1393

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Continuation Character

Feedback

To repeat execution of a previous command beginning with a particular text string, enter
an exclamation character followed by the first few characters of that string. For example,
!rep repeats execution of the most recent command beginning with "rep" (probably a
report command).

Note that both !! and !xyz work only for interactive command entry (not from within a
command file), and searches are performed only on commands stored in the command
history buffer.

Continuation Character
If you have a long command, it can be continued over multiple lines by ending each
successive line with a backslash character ("\"). If the backslash is the last character in a
line, it indicates that the command is continued on the following line.

The following example of the add_atpg_primitives command defines an ATPG primitive
connected to four design pins. Each pin pathname is presented on a separate line using
the continuation character.

 DRC> add_atpg_primitives my_atpg_primitive1 equiv \
 { /BLASTER/MAIN/CPU/TP/CYCL/CDEC/U1936/in1 \
 /BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U1936/in1 \
 /BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U16/in2 \
 /BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U13/in0 }

Delay Path
A delay path is a circuit path that:

• begins with either a sequential device or a circuit PI, and

• ends with either a sequential device or a circuit PO

With an indicated parity (relative to the head of the path) for each gate, such that there
are no sequential devices in the path other than the beginning and ending gates (possibly
excepting one or more transparent latches).

See Also

• Circuit Path

• Head of the Path

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1394

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Effect Cone

Feedback

Effect Cone
An effect cone is the cone of combinational logic fanning out from the output pin
of a sequential device (clocked by "CLK1", for example) and extending through all
combinational logic until it reaches other sequential devices or primary output ports. An
effect cone is always relative to a specific clock attached to a clock/set/reset port of the
originating sequential cell (in other words, "CLK1" in this example).

Empty Box
An empty box is the same as a black box, except that its outputs are floating (connected
to TIEZ primitives) rather than tied to an X value. This allows the outputs of multiple empty
boxes to be connected together without triggering a contention condition. This should be
done only if the empty box outputs are actually in the Z state during test.

When you declare a module that does not have a module definition as an empty box,
TestMAX ATPG must guess the pin directions based on connectivity in the design. This is
not always possible with 100% accuracy. To eliminate the possibility of an error, consider
defining a NULL MODULE. This null module would list the module header, the pins and
their defined directions, but would have an empty gate list for the internal definition.

See Also

• Black Box

• Null Module

False Path
A false path is a delay path that does not affect the functionality of the circuit, either
because it is impossible to propagate a transition down the path (topologically false path)
or because the design of the circuit does not make use of transitions down the path
(functionally false path).

See Also

• Delay Path

Fanin Number
A fanin number can be used in the backward command to specify from which input to
trace back to obtain a report on a connected primitive.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1395

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
backward

Feedback

You can use the report_primitives command to find out what is connected to the inputs and
outputs of a specified primitive. After you get such a report, using the Backwardcommand
(just entering "b" is sufficient) traverses back along the first input pin listed to find
the connected primitive, and displays a report on that primitive, just like using the
report_primitives command.

To traverse backward from an input pin other than the first one listed, specify a fanin
number in the backward command. For example, specify 2 for the second input or 3 for
the third input.

Consider the following example:

 DRC> report_primitives 130
 /i22/reg2/lat1 (130) DLAT (P_LAT_RS)
 !SB I (/TIE_1)
 RB I 28-
 CK I 17-
 D I 105-/i22/reg2/MX1/Q
 Q O 131-/i22/reg2/r/D
 DRC> backward 2
 /i22/reg2/MX1 (105) OR (SCANINP_UDP_1)
 --- I 45-
 --- I 104-
 Q O 130-/i22/reg2/lat1/D

The first command generates a report on primitive ID 130. The backward 4 command
traverses back from the fourth input listed, which is the "D" input pin, to find the connected
device, primitive ID 50, and generates a similar report on that primitive.

See Also

• Primitive ID

• report_primitives

backward
Overview

This command displays the gate connected to the selected input of the last reported gate.

Syntax

backward [fanin_number]

Arguments

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1396

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Fanout Number

Feedback

fanin_number

Indicates the input number (1-based) of the previously reported gate whose
connecting gate is to be reported. The default is the first input.

Allowed Command Modes

DRC, Test

Description

This command displays the gate connected to the selected input of the last reported gate.

Examples

The following example uses the report_primitives command to display information
associated with primitive ID 135, a DLAT primitive. Then the backward 3 command is
issued which navigates backward through the third input. In this example, this is the "CK"
pin, which is driven from ID = 14. So the bacwkard command does a "report_primitive"
on ID 14. A second backward command navigates backward one more time to ID = 2, a
primary input port called "/CLK".

 TEST> report_primitives 135
 reg4/r (135) DLAT (N_LATCH)
 !SB I (TIE_1)
 !RB I (TIE_1)
 CK I 14-
 D I 134-reg4/lat1/Q
 Q O 125-
 scan_behavior: MASTER(LS/-) chain=c1 cell_id=0 invert_data=IN
 obs=noproc
 TEST> backward 3
 reg4 (14) BUF (DFFP)
 CK I 2-CLK
 --- O 135-reg4/r/CK
 19-
 TEST> backward
 CLK (2) PI (_PI)
 CLK O 10-reg0/CK
 11-reg1/CK ...
 PI usage: clock(off=0,master,shift)
 TEST>

Fanout Number
A fanout number can be used in the forward command to specify from which output to
trace forward to obtain a report on a connected primitive.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1397

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
forward

Feedback

You can use the report_primitives command to find out what is connected to the
inputs and outputs of a specified primitive. After you get such a report, using the forward
command (just entering "f" is sufficient) traverses forward along the first output pin listed
to find the connected primitive, and displays a report on that primitive, just like using the
report_primitives command.

To traverse forward from an output pin other than the first one listed, specify a fanout
number in the forward command. For example, specify 2 for the second output or 3 for
the third output.

Consider the following example:

 TEST> report_primitives /i22/reg0
 /i22/reg0 (48) INV (DFFRLP)
 --- I 127-/i22/reg0/r/Q
 Q O 49-/i22/reg4/D
 QB O 50-/i22/reg1/MX1/SDI

 TEST> forward 2
 /i22/reg1/MX1 (50) AND (SCANINP_UDP_1)
 SDI I 48-/i22/reg0/QB
 --- I 40-
 --- O 85-

The first command generates a report on instance "/i22/reg0." The forward 2 command
traverses forward from the second output listed, which is the "QB" output pin, to find the
connected device, Primitive ID 50, and generates a similar report on that primitive.

See Also

• Primitive ID

• forward

forward
This command displays the gate connected to the selected fanout of the last reported
gate.

Syntax

forward [fanout_number]

Arguments

fanout_number

Indicates the fanout number (1 based) of the previously reported gate whose
connecting gate is reported. The default is the first fanout.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1398

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
report_primitives

Feedback

Allowed Command Modes

DRC, Test

Description

This command displays the gate connected to the selected fanout of the last reported
gate.

Examples

In this example the report primitivescommand is used to display information about
gate ID = 12, a BUF primitive. Then the fcommand is issued that navigates forward
through the first (and only) output pin, which is connected to primitive ID 131. The result of
the f command is a report primitives on primitive ID = 131, a DLAT primitive.

 TEST> report_primitives 12
 reg2 (12) BUF (DFFRLP)
 CK I 0-CLK
 --- O 131-reg2/r/CK
 17-
 TEST> forward
 reg2/r (131) DLAT (N_LATCH)
 !SB I (TIE_1)
 RB I 29-
 CK I 12-
 D I 130-reg2/lat1/Q
 Q O 87-
 86-
 scan_behavior: MASTER(LS/-) chain=c1 cell_id=2 invert_data=NI obs=noproc

report_primitives
Use this command to report data on ATPG primitives in the model created by the run
build_model command.

Syntax

report_primitives
< id | instance_name | net_name | pin_pathname
| -ports | -pis | -pos | -pios | -type type
| -summary | -all > [-max d]

Arguments

id | instance_name | net_name | pin_pathname

Selects display of pin data for the specified object. The type of pin data is
specified by a prior set_pindata command. An object is identified by its primitive
ID number, its instance name, a net name connected to the object, or a pin

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1399

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
report_primitives

Feedback

pathname of a pin of the instance. You can use a wildcard character with an
instance name. However, when TestMAX ATPG reads an image file, the object
cannot be identified by its instance name.

-all

Reports all primitives. The pin data, as specified by a prior set_pindata
command, is displayed for each primitive.

-ports

Reports all external (top-level) ports; equivalent to -pis -pos -pios.

-pis

Reports all input ports (Primary Inputs).

-pos

Reports all output ports (Primary Outputs).

-pios

Reports all bidirectional ports (Primary I/O ports).

-type type

Reports all primitives of a specific classification type. The pin data, as specified
by a prior set_pindata command, is displayed for each primitive.

Priority indicator "p" on an input shows that the input (which must be the set
or reset of a DLAT or DFF) has priority over the other set or reset of the same
primitive. Priority indicator "P" on an input shows that the input (which must be
the set, reset, or clock input of a DLAT or DFF) has priority over other clocks
non-set/reset) of the same primitive.

These indicators allow correlating the attributes of gate pins in the flattened
model with the attributes of module ports in the netlist data (see the
report_modules command).

The recognized types include simulation primitives and ATPG functions as well
as learned behavior analysis:

Simulation and ATPG Function Types:

ADRBUS, AND, BUF, BUFZ, BUS, BUSK, DATABUS, DFF, DLAT, EQUIV, INV,
MEMORY, MOUT, MUX, NAND, NOR, OR, PI, PIO, PO, RPORT, SEL01, SEL1,
SW, TIE0, TIE1, TIEX, TIEZ, TSD, WBUF, WIRE, XNOR, XOR

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1400

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
report_primitives

Feedback

Learned Behavior Types:

blocked, common_input, common_tied_input, conblocked, constrained,
equivalences, implications, invert_inputs, learn_buf, learn_inv, learn_tied_gate,
tied, weak.

-summary

Displays a summary of primitives used in the ATPG simulation model. This
summary includes the total number of primitives as well as a count of each
primitive type used in the ATPG model.

-max d

Limits the number of primitives reported to specified maximum. This option does
not work with the -summary or -all options. To report a specific number out of
all primitives, use the report_primitives * -max d command.

Allowed Command Modes

DRC, Test

Description

Use this command to report data on ATPG primitives in the model created by the run
build_model command.

Examples

 TEST> report primitives -summary
 Primitive Summary Report

 #primitives 20201
 #primary_inputs 49
 #primary_outputs 41
 #primary_bidis 40
 #DFFs 1713
 #nonscan 201
 #scan 1512
 #BUSs 40
 #BUFs 1573
 #INVs 1963
 #ANDs 2384
 #NANDs 5381
 #ORs 3298
 #NORs 972
 #XORs 208
 #XNORs 141
 #TIE0s 55
 #TIE1s 3
 #MUXs 2259
 #TSDs 81

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1401

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
report_primitives

Feedback

 # by instance pathname
 DRC> report_primitives reg0
 reg0 (48) INV (DFFRLP)
 --- I 127-reg0/r/Q
 QB O 50-reg1/MX1/SDI
 # by pin pathname
 DRC> report_primitives /reg1/MX1/SDI
 reg1/MX1 (50) AND (SCANINP_UDP_1)
 SDI I 48-reg0/QB
 --- I 40-
 --- O 85-

 # by primitive ID number
 DRC> report_primitives 128
 reg1/lat1 (128) DLAT (P_LAT_RS)
 !SB I (TIE_1)
 RB I 26-
 CK I 16-
 D I 85-reg1/MX1/Q
 Q O 129-reg1/r/D

 # by type of modeling primitive
 DRC> report_primitives -type XOR

 List of XOR gates

 adder (53) XOR (INC4)
 --- I 51-
 --- I 47-
 S0 O 56-mux0/B
 adder (71) XOR (INC4)
 --- I 69-
 --- I 54-
 S1 O 74-mux1/B
 adder (91) XOR (INC4)
 --- I 89-
 --- I 72-
 S2 O 94-mux2/B
 adder (110) XOR (INC4)
 --- I 107-
 --- I 92-
 S3 O 113-mux3/B
 Total number of reported XOR gates = 4

 DRC> report_primitives -type dlat
 --

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1402

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
report_primitives

Feedback

 List of dlat gates
 --
 (6) DLAT (_DLAT)
 --- pP I 4-SET
 !--- P I 5-RESET
 --- I 0-CLK1
 --- I 2-DATA1
 --- I 1-CLK2
 --- I 3-DATA2
 --- O 7-LOUT
 Total number of reported dlat gates = 1

 TEST> report_primitives -pis
 gate_id type port_name (behavior_data)
 ------- ---- -------------------------------
 0 PI CLK clock(off=0,master,shift)
 1 PI RSTB clock(off=1,master,reset)
 2 PI SDI2 scanin(c1)
 3 PI SDI1 scanin(c2)
 4 PI INC
 5 PI SCAN

 TEST> report_primitives -pos
 gate_id type port_name (behavior_data)
------- ---- -------------------------------
 62 PO SDO2 scanout(c1)
 63 PO COUT

 TEST> report_primitives -pios
 gate_id type port_name (behavior_data)
 ------- ---- -------------------------------
 6 PIO D0
 7 PIO D1 scanout(c2)
 8 PIO D2
 9 PIO D3

 TEST> report_primitives -ports
 gate_id type port_name (behavior_data)
 ------- ---- -------------------------------
 0 PI CLK clock(off=0,master,shift)
 1 PI RSTB clock(off=1,master,reset)
 2 PI SDI2 scanin(c1)
 3 PI SDI1 scanin(c2)
 4 PI INC
 5 PI SCAN
 6 PIO D0
 7 PIO D1 scanout(c2)
 8 PIO D2
 9 PIO D3

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1403

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Primitive ID

Feedback

 62 PO SDO2 scanout(c1)
 63 PO COUT

 # for a RAM or ROM
 TEST> report_primitives u4
 u4 (149) MEMORY (ram512x8)
 --- I (TIE_0)
 --- I (TIE_0)
 wclk I 15-
 --- I (TIE_1)
 --- I 102-
 --- I 120-
 --- O 103-
 Memory data: #data_lines=8, #address_lines=9/0, range=0-499,
 file=ram512x8.dat
 Read port usage: #read_ports=1, #cam_ports=0, read_off=X
 Write port usage: #write_ports=1, edge_trigger=yes, type=stable_low
 Stability results: clock_off=yes, load=yes, read_only_ability=no
 Conflict behavior: write_write=XBIT, read_write=READ_NEW,
 read_read=READ_NORMAL

Primitive ID
The primitive ID is a unique identification number assigned to each primitive in the design.
TestMAX ATPG assigns these numbers to all primitives, starting with 0, during the build
process.

The primitive ID (sometimes called the Gate ID) is displayed in many of the messages that
the ATPG tool generates, especially rule violation messages. In the graphical schematic
viewer (GSV), the primitive ID is displayed below each primitive symbol.

For the following example, the report_atpg_primitives command displays information
associated with instance "/i22/reg0/r". The report shows that the primitive ID associated
with this instance is 127, and that pins RB, CK, and D are connected to primitives 25, 10,
and 126, respectively. Pin Q has two connections, to primitives 48 and 49.

 DRC> report_atpg_primitives /i22/reg0/r
 /i22/reg0/r (127)
 DLAT (N_LAT_RS) !SB I (/TIE_1)
 RB I 25-
 CK I 10-
 D I 126-
 /i22/reg0/lat1/Q
 Q O
 48- 49-
 DRC>

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1404

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Gray Box

Feedback

See Also

• report_atpg_primitives

Gray Box
A gray box is a module or block whose function and internal contents are partially known.
This include access to the internal data structures and algorithms. It is a combination of a
white box model and a black box model.

Verification coverage can be greatly increased when using a gray box.

Head of the Path
The head of the path is the gate at the beginning of a circuit path.

See Also

• Circuit Path

How to Copy and Paste
To copy text, select the range of text with the left mouse button. The selected text
becomes reverse-highlighted. Then use Ctrl-C to copy the selected text, or use the right
mouse button to display the popup menu and select Copy.

To paste text, use Ctrl-V if you are pasting a single line, or use the right mouse button to
display the popup menu and select Paste.

To paste multiple lines of text into the command input field, use either the popup menu
from the right mouse button or Ctrl-V, then paste the multiple lines into the command input
field.

Cut/Paste between X11 window and TestMAX ATPG GUI window
The TestMAX ATPG GUI window environment is based on a third party product called Qt
from a company called TrollTech.

Inside the TestMAX ATPG window the TrollTech user model applies your X11 window
environment and Ctrl-C and Ctrl-V are the keys programmed for cut/paste.

Outside of the TestMAX ATPG window, your X11 window environment applies and
whatever is standard for your hot keys or mouse keys is controlled by your customizations
to X11 defaults.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1405

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Instance Name

Feedback

The Qt cut/paste buffer and the X11 cut/paste buffer are the same buffer.

Instance Name
An instance name uniquely identifies an instance in the design. Each instance name
consists of a sequence of hierarchical block names separated by slashes. It does not
include pin path names. Here are some examples:

 /i22/reg4/lat1
 /top_asic/ADDER2/bitreg/reg[2]
 /I$1/I$672/I$4/I$2

In the graphical schematic viewer (GSV), you can choose whether to display instance
names. By default, no instance names are shown. To make instance names visible,
use the Edit > Environment > Viewer menu command and check the box next to
"Display Instance Names". Alternatively, you can enter the set_environment_viewer
-instance_names command at the shell prompt.

See Also

• set_environment_viewer

Launch Clock
A launch clock is the clock used to change from V1 to V2.

See Also

• Capture Vector

• Setup Vector

Launch Clock Edge (Launch Edge)
The launch clock edge (or launch edge) is the clock edge used to change from V1 to
V2.

See Also

• Capture Vector

• Setup Vector

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1406

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Feedback Path ID

Feedback

Feedback Path ID
When TestMAX ATPG recognizes a combinational feedback path during analysis of
the design, it assigns an identification number to the loop and records the instances
included in the feedback path. To obtain a list of the feedback path IDs, use the
report_feedback_paths-all command. See the following example.

 TEST> report_feedback_paths -all
 id# #gates #sources sensitization_status
 --- ------ -------- --------------------
 0 2 1 pass
 1 10 1 pass
 2 5 1 pass
 3 8 1 pass

See Also

• report_feedback_paths

Majority Gate
A majority gate is a circuit structure identified during the learning process that has the
majority function — for example, a three-input structure with an output that has the same
value as the majority of the inputs. In this case, if two or three inputs have a value of 0,
then the output is 0. Majority gates can enhance the ATPG process by enabling better test
coverage and using fewer patterns. Cascaded majority gates are several majority gates
implemented in a row, with only buffers or inverters in between each gate.

Measure Scan Chain Output
Also measure_sco. Refers to strobing of the output port of a scan chain.

Modifying Timing Data in an Existing STL Procedures File
If you want to modify timing data in an existing STIL procedure file, you must use the
following command sequence:

read_drc original_STL procedure_file
update_wft (with desired options)
update_clock (with desired options)
update_scale(with desired options)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1407

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Module Name

Feedback

write_drc_file new_STL procedure_file
...
run_drc new_STL procedure_file
After specifying the timing modification commands, it is critical that you use the
write_drc_file command to write out the modified data. It is also critical that you specify the
run_drc command with this newly produced file to incorporate these changes.

Module Name
A module name is the name assigned to a hierarchical unit in a design hierarchy. A
module can represent the lowest-level function such as a buffer, a very complex function
such as the entire circuit, or a hierarchical unit somewhere between these levels.

Module naming conventions are flexible and each netlist format such as Verilog, EDIF, or
VHDL has its own set of rules. Here are some examples of module names:

F318N1

NandTree

portadr

alu_cntrl

ALU_test_1

bus_cntrl_test_1

rd_wr_test_1

ad_counter_DW01_cmp2_6_1

JTAG_TAP

my_asic

Module Pin Name
A module_pinname is the name of an input, output, or bidirectional port as defined
in the original module definition. To obtain a list of pins for a specific module, use the
report_modules-verbose command.

In the following example, H01 through H10, and N01 through N04 are pin names.

 TEST> report_modules L572 -verbose
 pins

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1408

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Net Name

Feedback

 module name tot(i/ o/ io) inst refs(def'd) used
 --------------- --------------- ---- ----------- ----
 L572 14(10/ 4/ 0) 9 0 (Y) 0
 Inputs : H01 () H02 () H03 () H04 () H05 () H06 () H07 ()
 : H08 () H09 () H10 ()
 Outputs: N01 () N02 () N03 () N04 ()
 U1 : _NAND conn=(I:n1 I:n2 O:N04)
 U2 : _NAND conn=(I:n3 I:n2 O:N03)
 U3 : _NAND conn=(I:n4 I:n2 O:N02)
 U4 : _NAND conn=(I:n5 I:n2 O:N01)
 U5 : _INV conn=(I:H10 O:n2)
 U6 : _MUX conn=(I:H09 I:H07 I:H08 O:n1)
 U7 : _MUX conn=(I:H09 I:H05 I:H06 O:n3)
 U8 : _MUX conn=(I:H09 I:H03 I:H04 O:n4)
 U9 : _MUX conn=(I:H09 I:H01 I:H02 O:n5)
 --

See Also

• report_modules

Net Name
A net name is the name assigned to a set of interconnected wires in a design. A net name
might require an instance name, even when referring to a net in the topmost module.
TestMAX ATPG uses the net name defined in the original module, when possible. When
a module consists of a truth table that is converted into a gate-equivalent representation,
TestMAX ATPG constructs its own net names.

Here are some typical net names:

 n56

 \pla

 \mux_cnt[0]

 my_chip/reset_b

See Also

• report_nets

Non-robust Detection of a Path Delay Fault
A path delay fault is said to be non-robustly detected by a pattern if that pattern provides a
non-robust test for the fault.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1409

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Non-robust Test (For a Path Delay Fault)

Feedback

See Also

• Path Delay Fault

Non-robust Test (For a Path Delay Fault)
A nonrobust test is a test for a path delay fault that is guaranteed to detect excessive delay
on the delay path if no other timing faults exist in the circuit.

See Also

• Delay Path

Nonscan Behavior: C0
The nonscan cell behavior C0 stands for Constant 0. This means that the nonscan cell
attains a value of 0 by the end of the load procedure and remains stable with this value,
independent of any clocking activity in the design.

Nonscan Behavior: C1
The nonscan cell behavior C1 stands for Constant 1. This means that the nonscan cell
attains a value of 1 by the end of the load procedure and remains stable with this value,
independent of any clocking activity in the design.

Nonscan Behavior: CU
The nonscan cell behavior CU stands for Clock Unstable. This means that the cell is
clocked by a signal whose state is not known (such as the output of a sequential element,
a nonclock primary input, or some logical combination of these signals), or has a state that
might be disturbed during scan shift; and the cell does not behave as a transparent latch
(behavior TLA). The Full-Sequential ATPG algorithm can sometimes control and observe
this type of nonscan cell.

See Also

• Nonscan Behavior: TLA

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1410

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Nonscan Behavior: L0

Feedback

Nonscan Behavior: L0
The nonscan cell behavior L0 stands for Load 0. This means that the nonscan cell attains
a value of 0 by the end of the load procedure and remains stable with this value during the
application of the next FORCE PIs event and up to the next clock event.

Nonscan Behavior: L1
The nonscan cell behavior L1 stands for Load 1. This means that the nonscan cell attains
a value of 1 by the end of the load procedure and remains stable with this value during the
application of the next FORCE PIs event and up to the next clock event.

Nonscan Behavior: LE
The nonscan cell behavior LE stands for Leading Edge. This means that the nonscan cell
is a flip-flop that is stable when all top-level clocks are at the "off" state and the clock at
the DFF primitive is also at the "off" state. The cell captures data on the leading edge of a
clock pulse at the DFF primitive.

Nonscan Behavior: LS
The nonscan cell behavior LS stands for Level Sensitive. This means that the nonscan
cell is a latch whose clock ports are inactive when the defined top-level clock ports of the
design are at the "off" state.

Nonscan Behavior: RAM_out
The nonscan cell behavior RAM-out stands for Macro Out bit of a memory cell. This is a
placeholder representing an output pin of a memory cell. When a memory instance has
multiple outputs, each output is reported as a separate RAM_out, but all have the same
instance name. The RAM_out can be load_stable or load_unstable, depending on whether
the memory it represents is load stable or not.

Nonscan Behavior: TE
The nonscan cell behavior TE stands for Trailing Edge. This means that the nonscan cell
is a flip-flop that is stable when all top-level clocks are at the "off" state and the clock at
the DFF primitive is at the "on" state. The cell captures data on the trailing edge of a clock
pulse at the DFF primitive.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1411

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Nonscan Behavior: TLA

Feedback

Nonscan Behavior: TLA
The nonscan cell behavior TLA stands for Transparent Latch. This means that the
nonscan cell is a latch with the ability to become transparent when all top-level clock ports
of the design are at the "off" state. In other words, the latch might be unstable with all
clocks off. A latch is not classified as TLA if it has a clock path to a data input.

Null Module
A Null Module is a module definition with no internal gates. Its primary purpose is to define
the list of module pins and their proper direction of input/output/inout.

An example null module:

 module PLL (clkin, enable, testmode, vco_out,
phasedet, out);
 input clkin, enable, testmode;
 input phasedet;
 output vco_out, out;
 # no gates
 endmodule

Off-path Input
An off-path input, also called side input, is any input to a gate on a delay path that is not an
on-path input.

See Also

• Delay Path

• On-path Input

Off State
The off state of a clock is the value, either 0 or 1, at which the sequential cell driven by the
clock is stable. The sequential cell can be a latch or a flip-flop.

A "clock" is any pulsed port, including a port used for asynchronous set or reset. See the
following examples.

DRC> add_clocks 0 CLK # rising-edge clock

DRC> add_clocks 1 RESETB # asynchronous reset

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1412

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
On-path Input

Feedback

See Also

• add_clocks

On-path Input
An on-path input is the input to a gate on a delay path that comes from another gate on
the delay path.

See Also

• Delay Path

Output Redirection
You can save the output of a command to a file, instead of having the output displayed
in the TestMAX ATPG window. This feature is called output redirection. You can use
this feature with manually entered commands and in command files. To invoke output
redirection, end the command with one of the following:

 > filename
 >> filename
 >? filename

> - Replace mode. The command output replaces the contents of the specified file if the
file already exists and is not write protected. If the file does not already exist, a new file is
created.

>> - Append mode. The command output is appended to the specified file if the file already
exists. If the file does not already exist, a new file is created.

>? - Safe mode. The output is placed in a new file with the specified name. If the file
already exists, it is left unchanged and you get an error message.

Note: THERE MUST BE A SPACE CHARACTER BEFORE AND AFTER the redirection
symbols (after the command and before the file name).

Output redirection can be used with almost all types of commands, except for commands
that already produce an output file such as the write commands. See the following
examples.

 TEST> analyze_faults -class AN > an_faults.txt
 TEST> report_memory -all -contents all >? memory_images.txt
 TEST> report_modules ADDER -verbose > module_dump.txt
 TEST> report_modules MULT -verbose >> module_dump.txt
 TEST> report_modules PHADE -verbose >> module_dump.txt

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1413

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Path Delay Fault

Feedback

Path Delay Fault
A path delay fault consists of a delay path, along with a direction of transition for the
sequential device at the head of the path.

See Also

• Delay Path

• Head of the Path

Pin Pathname
A pin pathname specifies a particular pin in the design. It can be a port_name representing
a top-level port of the model, or it could be the path to a pin buried within the hierarchy of
the design.

The following example uses the pin pathname "/i22/reg2/r/D" in an add cell constraint
command. This corresponds to pin "D" of instance "/i22/reg2/r".

 DRC> report_primitives 130
 /i22/reg2/lat1 (130) DLAT (P_LAT_RS)
 !SB I (/TIE_1)
 RB I 28-
 CK I 17-
 D I 105-/i22/reg2/MX1/Q
 Q O 131-/i22/reg2/r/D
 DRC> add_cell_constraints ox /i22/reg2/r/D

Port Name
A port name is the name of a top-level port (also called a pin pathname) of the module
that is having ATPG performed. Each port name is usually a simple string, sometimes
preceded with a forward slash character (/). Only rarely does a port name have any
hierarchy.

To get a list of port names, use the report_primitives -ports command, as in the following
example.

 DRC> add_clocks 0 /CLK
 DRC> report_primitives -ports
 0 PI /CLK
 1 PI /RSTB
 2 PI /SDI2
 3 PI /SDI1
 4 PI /INC

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1414

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Primitive ID

Feedback

 5 PI /SCAN
 6 PIO /D0
 7 PIO /D1
 8 PIO /D2
 9 PIO /D3
 136 PO /SDO2
 137 PO /COUT

See Also

• Pin Pathname

• report_primitives

Primitive ID
The primitive ID is a unique identification number assigned to each primitive in the design.
TestMAX ATPG assigns these numbers to all primitives, starting with 0, during the build
process.

The primitive ID (sometimes called the Gate ID) is displayed in many of the messages that
the ATPG tool generates, especially rule violation messages. In the graphical schematic
viewer (GSV), the primitive ID is displayed below each primitive symbol.

For the following example, the report_atpg_primitives command displays information
associated with instance "/i22/reg0/r". The report shows that the primitive ID associated
with this instance is 127, and that pins RB, CK, and D are connected to primitives 25, 10,
and 126, respectively. Pin Q has two connections, to primitives 48 and 49.

 DRC> report_atpg_primitives /i22/reg0/r
 /i22/reg0/r (127)
 DLAT (N_LAT_RS) !SB I (/TIE_1)
 RB I 25-
 CK I 10-
 D I 126-
 /i22/reg0/lat1/Q
 Q O
 48- 49-
 DRC>

See Also

• report_atpg_primitives

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1415

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Sequential Model Port Priorities

Feedback

Sequential Model Port Priorities
The priority_setreset is an attribute that can appear on an input port used for set or
reset in a sequential model. It indicates that the port has priority over the other reset/set
port. In UDP syntax, this means that if the set/reset with priority is ON (1 or 0 if inverted
input), and the other reset/set is ? (any value), and all other clocks are OFF (0, or 1 if
inverted input), then the set or reset action with priority takes effect.

The priority_otherclocks is an attribute that can appear on an input port used for
set or reset, or for the clock. It indicates that the port has priority over other non-set/reset
clocks. This means that if the clock with priority is ON, and all other set/resets are OFF,
and all other clocks are ?, and all other data are ?, then the action of the clock with priority
takes effect.

Note the following:

• The priority_setreset and priority_otherclocks attributes are independent, so
the set and reset ports can have any combination of the two properties.

• You cannot ATTACH a priority_setreset or priority_otherclocks attribute. They
are only inferred from an analysis of the UDP table.

Reconverging Path
A path in which the transition from some on-path node can reconverge to the off-path input
of a later node on the path. The -allow_reconverging_paths option of the set_delay
command makes allowance for this; as a result, (for example) two falling transitions on the
inputs to a NAND gate don’t count as blocking the detection of the path delay fault if both
come from the path itself.

Robust Detection of a Path Delay Fault
A path delay fault is said to be robustly detected by a pattern if that pattern provides a
robust test for the fault.

See Also

• Path Delay Fault

Robust Test (For a Path Delay Fault)
A robust test is a test for a path delay fault that is guaranteed to detect excessive delay on
the http://popup_delay_path.htm/ regardless of the timing of other signals in the circuit.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1416

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://popup_delay_path.htm/

Chapter 36: Glossary
Scan Clock

Feedback

Scan Clock
A scan clock is the clock applied to shift scan chains. Typically, this clock is applied at a
slower rate than the specified operating frequency of the design.

SCOAP
SCOAP is an acronym for "Sandia Controllability and Observability Analysis Program."
The -scoap_data option of the set_pindata command displays a set of SCOAP numbers
that provide a limited metric to identify the difficulty for controlling or observing a pin.

In ideal circumstances (that is, with no reconvergent fanout) SCOAP numbers provide
an estimate of the number of circuit inputs that must be controlled to produce a particular
value on a pin or to observe its value at an output. However, in many situations the
number of inputs is irrelevant because they would all require the same effort set to their
required values. Also, SCOAP numbers do not account for dependencies between the
input and output side of a pin, which can make test generation more difficult. Because of
these factors, SCOAP is better described as a random pattern testability measure – even
when it is accurate. Random patterns are more likely to detect a fault that requires 5 inputs
to be set than a fault that requires 10 inputs.

The inevitable presence of reconvergent fanout means that the SCOAP numbers are
misleading. Reconvergent fanout also means that a pin that requires only 2 inputs to
be set might actually be more difficult to control than a pin that requires 10 inputs. The
primary dependency is the effort required to control those inputs and the extent to which
the required values conflict with other required values in the circuit. Generally, computing
accurate testability is an NP-complete problem. SCOAP is a linear computation, so it
cannot provide accurate testability estimates.

The key issue for the applicability of this metric is to determine the level of inaccuracy of
SCOAP numbers. In the presence of reconvergent fanout, SCOAP numbers can be highly
misleading. However, SCOAP numbers can be useful as a general guidance mechanism
for test generation – their primary use in the test world.

For additional information on SCOAP, you can order published papers from IEEE.
Related papers can be found under the VLSI Test topic. This is the IEEE web site: http://
www.ieee.org/

Setup Vector (Launch Vector)
A setup vector (or launch vector) refers to the set of values on PIs and sequential devices
during the first of the two vectors required for a test for a path delay fault. The shorthand
notation V1 is often used to refer to this set of values.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1417

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://www.ieee.org/
http://www.ieee.org/

Chapter 36: Glossary
Shift Position

Feedback

Shift Position
A shift position is considered a row of scan cells. A position exists for every scan chain
that is shifted out. For a compressed block, if the chains contain 40 scan cells and there
are 100 chains, then there are 40 shift positions.

set_simulation

Simulation Events
The simulation of test procedures and patterns produces one or more simulation events
for each test cycle. The number of events per test cycle depends on the complexity of the
simulation data.

For example, consider the following sequence of test cycles defined in a test_setup macro.
These four test cycles are translated into eight simulation events.

 test_setup {
 V { clk=0; data=Z; reset=0;}
 V { reset=P;}
 V { data=1; reset=0;}
 V { clk=P;}
 }

If you look at internal design nets or pins attached to any of the input ports following a
set_pindata command, you should see the following test setup data sequence:

 clk: 0-000-0-010

 reset: 0-010-0-000

 data: Z-ZZZ-1-111

Note: The "-" separators have been added here to show how the test cycles are translated
into simulation events. These separators do not appear in normal pin data displays.

Tail of the Path
The tail of the path is the gate at the end of a circuit path.

See Also

• Circuit Path

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1418

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 36: Glossary
Test For A Path Delay Fault

Feedback

Test For A Path Delay Fault
A test for a path delay fault is a sequence of circuit inputs that result in an incorrect value
appearing at a specified circuit observation point if the transition specified by the path
delay fault is late arriving at the tail of the path. A test for a path delay fault involves at
least two vectors, since the head of the path must undergo a transition.

See Also

• Head of the Path

• Path Delay Fault

• Tail of the Path

Unstable Set / Resets
An unstable set/reset condition exists when the control net is internally generated. The
default is to consider an unstable set/reset a DRC violation. Using internally generated
set/resets allows Fast-Sequential ATPG to use set/reset-unstable nonscan cells to further
improve test coverage. This is especially useful in at least two situations:

1) When a primary input is used as both a synchronous and asynchronous set or reset,
and

2) When the scan-enable line is used to gate internal set/reset lines during scan load.

In either case, for better test coverage, the scan-enable input and the primary input acting
as both asynchronous and synchronous reset should not be defined as clocks.

WFCMap
A WFCMap is an optional statement that, when used, indicates that any pattern data
assigning from_wfc to the signal or signalgroup, should be interpreted as having assigned
to_wfc instead.

Ungated Circuitry
Ungated circuitry refers to a signal path that is not constrained through a logic element.
Instead, the signal passes through the logic unaffected by the logic due to the state of all
other pins on that logic element. For example, for an AND gate, if all the other pins are a
logic-1, the signal passes through that logic element on the one input that isn’t held at a
logic-1.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1419

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

37
Limitations

This section describes all known limitations and possible workarounds in TestMAX ATPG.

LIM-01: Full-Sequential ATPG Features Not Supported

• Fault models: slack-based transition, cell-ware, static and dynamic bridging, IDDQ, and
hold-time

• Clocking: synchronous OCC and internal clocking procedures

• SDC: stuck-at fault model using SDC with set_simulation
-timing_exceptions_for_stuck_at

• Masking: PO masks in affect using the add_po_masks command are ignored during
the generation of Full-Sequential ATPG patterns

• Commands

◦ set_simulation command options -measure and -verbose

◦ set_buses command with the -fault_contention option

◦ set_contention command options:

-retain_bidi
-nocapture (always -capture)
-nopreclock (always -preclock)

◦ report_power command or power-aware settings

• Codecs: DFTMAX and DFTMAX Ultra

• Diagnosis: invoked with the run_diagnosis command

• Full-sequential ATPG and full-sequential simulation cannot be run using multithreading.
Process switches to non-threaded.

LIM-02: Read New Behavior Of Synchronous RAMS Supported For ATPG Only

TestMAX ATPG now supports read/write contention behavior of read new for RAMS with
edge triggered read and write ports. This allows the modeling of a RAM with clocked read
and write ports to have the write data appear on the read port outputs during the write

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1420

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 37: Limitations

Feedback

cycle (write-through). However, this behavior is supported for ATPG pattern generation
only and not for sequential fault simulation (run_simulation-sequential, run_fault_sim
-sequential). This means that attempting to fault simulate functional patterns which rely
on the read new (write through) behavior give misleading results.

LIM-03: TestMAX ATPG Not a Formal Language Syntax Checker

Although TestMAX ATPG does identify many errors and inconsistencies found in the
incoming design and library files, it should not be considered a Verilog, EDIF, or VHDL
syntax checker. In some cases, the tool can ignore illegal syntax rather than report it.

LIM-04: Behavioral Syntax Not Supported

With the exception of the limited behavioral syntax used to describe RAMs and ROMs,
TestMAX ATPG ATPGdoes not support behavioral syntax in Verilog or VHDL input.
TestMAX ATPG ATPGdoes not understand analog blocks modeled behaviorally for
simulators (that is VCS), such as analog or behavioral Verilog used to model a PLL. PLL
modules are typically modeled with behavioral techniques and TestMAX ATPG ATPGdoes
not support behavioral modeling outside of its RAM/ROM syntax.

LIM-05: Not All Verilog Structural Syntax Supported

TestMAX ATPG does not support every variation and nuance of the Verilog hardware
description language. Rather, the tool supports the syntax most commonly produced
by the Synopsys synthesis product flows. If your design methodology includes hand-
generated Verilog, you can encounter syntax that gets rejected as a "parse error". Contact
your Synopsys support center if you encounter unsupported Verilog variations.

LIM-06: Partial Support of Designs Using Multibit Library Cells

The support of designs that contain multibit library cells is dependent on the required
pattern output format. You can generate STIL serial and Unified STIL format patterns for
direct test application. You can perform parallel simulation of modeled multibit cells, but
the models must be reviewed. Without this review, problematic multibit cells might cause
incomplete fault coverage. MAX Testbench does not support multi bit cells when there are
inversions inside the multi bit cell.

Serial simulation is enforced if parallel forms of MAX Testbench are not supported.

Note that parallel STIL flows with multibit support are currently being tested. If a particular
unsupported format is critical for your application, you should contact Synopsys. The
recommended option for optimal quality of results is to review the modeling of multibit
cells.

LIM-07: No VHDL Library Support

TestMAX ATPG does not support reading libraries in VHDL format using either generics
or VITAL syntax. However, it does support reading designs in VHDL format as long as the
description is structural and simple signal types of either std_logic or std_ulogic are used.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1421

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 37: Limitations

Feedback

LIM-08: TestMAX ATPG is Not a Functional Pattern Reformatting Tool

TestMAX ATPG does not officially support reading functional patterns in one format such
as WGL, and writing them out in the same or another format such as STIL. You can try
this, however there is no guarantee that patterns created are correct or what you expect.
However, you can reformat TestMAX ATPG-generated ATPG patterns.

LIM-09: TestMAX ATPG is Not a Design Netlist Translation Tool

TestMAX ATPG does not officially support reading a design in one netlist format, such as
EDIF, and writing them out in another format, such as Verilog or VHDL. You can try this,
however there is no guarantee that the design created is correct.

LIM-10: GUI Version Has Limitations

The GUI version of TestMAX ATPG has a number of limitations. It is intended that the GUI
version be used to develop command scripts and to debug DRC violations. The non-GUI
(shell) version is then used to run a final command script when the GUI is not required.
The GUI command pull-downs are often missing options that are supported from the
command line.

LIM-11: Two-dimensional Arrays Not Supported

Use of 2 dimensional arrays of nets in Verilog, VHDL, or EDIF are not supported. Nets are
allowed to be 1 dimensional arrays (busses), however arrays of arrays are not supported.

LIM-12: Cross-module Net Referencing Not Supported

In Verilog, referencing nets in other modules without passing those nets through the port
list is not supported. This syntax involves referencing the net pathname using the period
as a hierarchical separator: and I1 (temp1, in1, top.blockA.vdd); and I2 (temp2, in2,
top.blockB.gnd);

LIM-13: Read Netlist Order Wrong For Multifile Browse

When selecting multiple files to read using the file browser via the Ctrl+LMB approach,
the read order of the files is random. This is related to a Microsoft coding problem, and
there is currently no workaround available. If the order with which you are reading files is
important, you should read them one at a time.

LIM-14: Reading Encrypted Verilog Not Supported

TestMAX ATPG cannot read encrypted Verilog modules. So when it encounters the
protected directive it issues an N1 violation.

LIM-15: DEL Key on Numeric Keypad Cannot Work

When using the native display on some UNIX platforms the DEL key on the numeric
keypad does not function properly. This is not reported to occur if TestMAX ATPG is run
from an Xterm session to a remote CPU.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1422

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 37: Limitations

Feedback

LIM-16: 2.1GB File Limit

Limits testing has shown that many 32-bit UNIX operating systems impose a limit on the
maximum file size that can be created. When writing a pattern file on a design with a large
number of scan cells or a large number of patterns, this 2.1GB limit can be easily reached.
Writing the file in compressed gzip format provides some relief with 32-bit executables.
Switch to a 64-bit executable if you continue to have problems.

LIM-17: Pattern Timing Limitation

The definition of pattern timing in the STIL procedure file supports timing units in
ms (milliseconds), us (microseconds), ns (nanoseconds), ps (picoseconds), and fs
(femtoseconds), but you must not mix units and the values must be expressed as integers.
This means that you must pick one time unit and use it consistently throughout the DRC
file.

LIM-18: MUXClock Options

MUXClock options (D,E WFCs) are not applied with scan compression designs.

LIM-19: Verilog TRANIF*, RTRAN* Primitives Not Supported

The TRANIF* and RTRAN* primitives represent a bidirectional data flow that is not
supported by TestMAX ATPG . In some cases, the actual usage is a unidirectional flow
and the cell might be remodeled with a unidirectional Verilog primitive such as NMOS. For
other situations you need to create a custom ATPG model.

LIM-20: Dynamic and Disturb Clock Grouping

Dynamic and disturb clock grouping is not supported by Full-Sequential ATPG.

LIM-21: Paths Through Memories in DSMTest Not Supported

Paths that write through memories, including those modeled using TestMAX ATPG , are
not supported and are declared untestable. Paths to or from memories are supported.

LIM-22: Differential Scan Inputs Not Supported

The TDL91, FTDL, TSTL2, and VHDL pattern outputs do not support differential scan
inputs.

LIM-23: Utility ltran_shell Limitations (write_patterns -format tdl91 | tstl2 | ftdl | wgl_flat)

• Output from the options -compress <Gzip | Binary> are not supported. This
behavior follows the tdl91, tstl2, and ftdl proprietary formats, which do not support
compressed formats.

• Differential scan-in designs and relationships are not supported.

• The wgl_flat format does not support Scan-in pad information. Because this format is
generated from a STIL file, it follows STIL padding behavior.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1423

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 37: Limitations

Feedback

• A log file is not generated when generating stil2wgl vectors.

• The -config option is not supported for writing the wgl_flat format.

• Be careful when using 3-cycle capture procedures; single-cycle captures minimize
translation issues.

• Reading wgl_flat patterns results in full-sequential pattern data which cannot be used
by the run_diagnosis command.

LIM-24: Reporting Violations in Tcl GUI Mode

If you run the report_violations -all command in Tcl GUI mode, you cannot stop the
reporting of warnings by clicking the "Stop" button, or by entering Ctrl-C.

LIM-25: Three-Cycle Generic Capture Procedures Limitation

The WGL format does not support three-cycle generic capture procedures.

LIM-26: Reading Parallel Patterns

TestMAX ATPG cannot read back parallel patterns because the format for this data is not
the native format generated for normal scan compression operation.

LIM-27: Reading MAX Testbench-Produced Data in TestMAX ATPG

TestMAX ATPG cannot read files produced from MAX Testbench or files generated from
the write_testbench command.

LIM-28: Generating Parallel Patterns From Image Files

You must use either or both the -netlist_data and -design_view options of the
write_image command to create image files that generate parallel patterns. Otherwise, the
image file incurs a loss of design information that affects the patterns, and TestMAX ATPG
issues an M269 message.

LIM-29: Fault Analysis Not Supported for DFTMAX Ultra

The analyze_faults command is not supported when using DFTMAX Ultra with threaded or
non-threaded ATPG.

LIM-30: Cell Constraint Ignored with Shared Scan-In Ports

The add_cell_constraints on a specific cell is not honored unless the same shift position
for shared chains is also constrained.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1424

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

A
Test Concepts

When you perform manufacturing testing, you ensure high-quality integrated circuits by
screening out devices with manufacturing defects. You can thoroughly test your integrated
circuit when you adopt structured design-for-test (DFT) techniques. The DFT techniques
currently supported by TestMAX ATPG consist of internal scan (both full scan and partial
scan) and boundary scan. This appendix covers the background you need to understand
these techniques.

The following sections of this appendix describe test concepts:

• Why Perform Manufacturing Testing?

• Understanding Fault Models

• Coverage Calculations

• Internal Scan

• What Is Boundary Scan?

Why Perform Manufacturing Testing?
Functional testing verifies that your circuit performs as it was intended to perform. For
example, assume you have designed an adder circuit. Functional testing verifies that this
circuit performs the addition function and computes the correct results over the range
of values tested. However, exhaustive testing of all possible input combinations grows
exponentially as the number of inputs increases. To maintain a reasonable test time, you
must focus functional test patterns on the general function and corner cases.

Manufacturing testing verifies that your circuit does not have manufacturing defects by
focusing on circuit structure rather than functional behavior. Manufacturing defects include
the following problems:

• Power or ground shorts

• Open interconnect on the die caused by dust particles

• Short-circuited source or drain on the transistor caused by metal spike-through

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1425

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Understanding Fault Models

Feedback

Manufacturing defects might remain undetected by functional testing yet cause
undesirable behavior during circuit operation. To provide the highest-quality products,
development teams must prevent devices with manufacturing defects from reaching the
customers. Manufacturing testing enables development teams to screen devices for
manufacturing defects.

A development team usually performs both functional and manufacturing testing of
devices.

Understanding Fault Models
A manufacturing defect has a logical effect on the circuit behavior. An open connection can
appear to float either high or low, depending on the technology. A signal shorted to power
appears to be permanently high. A signal shorted to ground appears to be permanently
low. Many of these manufacturing defects can be represented using the industry-standard
stuck-at fault model. Other faults can be modeled using the transition fault model, or
IDDQ, which is the quiescent current fault model.

The following sections describe fault models:

• Stuck-At Fault Models

• Detecting Stuck-At Faults

• Transition Delay Fault Models

• Detecting Transition Delay Faults

• Using Fault Models to Determine Test Coverage

• IDDQ Fault Model

• Fault Simulation

• Automatic Test Pattern Generation

• Translation for the Manufacturing Test Environment

Stuck-At Fault Models
The stuck-at-0 model represents a signal that is permanently low regardless of the other
signals that normally control the node. The stuck-at-1 model represents a signal that is
permanently high regardless of the other signals that normally control the node.

For example, the following figure shows a two-input AND gate that has a stuck-at-0 fault
on the output pin. Regardless of the logic level of the two inputs, the output is always 0.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1426

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Understanding Fault Models

Feedback

Figure 204 Stuck-at-0 Fault on Output Pin of 2-input AND Gate

   

Detecting Stuck-At Faults
The node of a stuck-at fault must be controllable and observable for the fault to be
detected.

A node is controllable if you can drive it to a specified logic value by setting the primary
inputs to specific values. A primary input is an input that can be directly controlled in the
test environment.

A node is observable if you can predict the response on it and propagate the fault effect to
the primary outputs where you can measure the response. A primary output is an output
that can be directly observed in the test environment.

To detect a stuck-at fault on a target node, you must perform the following steps:

• Control the target node to the opposite of the stuck-at value by applying data at the
primary inputs.

• Make the node’s fault effect observable by controlling the value at all other nodes
affecting the output response, so the targeted node is the active (controlling) node.

The set of logic 0s and 1s applied to the primary inputs of a design is called the input
stimulus. The set of resulting values at the primary outputs, assuming a fault-free design,
is called the expected response. The set of actual values measured at the primary outputs
is called the output response.

If the output response does not match the expected response for a given input stimulus,
the input stimulus has detected the fault. To detect a stuck-at-0 fault, you need to apply an
input stimulus that forces that node to 1. For example, to detect a stuck-at-0 fault at the
output the two-input AND gate shown in the preceding figure, you need to apply a logic
1 at both inputs. The expected response for this input stimulus is logic 1, but the output
response is logic 0. This input stimulus detects the stuck-at-0 fault.

This method of determining the input stimulus to detect a fault uses the single stuck-at
fault model. The single stuck-at fault model assumes that only one node is faulty and that
all other nodes in the circuit are good. This type of model greatly reduces the complexity of
fault modeling and is technology independent.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1427

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Understanding Fault Models

Feedback

In a more complex situation, you might need to control all other nodes to ensure
observability of a particular target node. The following figure shows a circuit with a
detectable stuck-at-0 fault at the output of cell G2.

Figure 205 Simple Circuit With Detectable Stuck-At Fault

   

To detect the fault, you need to control the output of cell G2 to logic 1 (the opposite of the
faulty value) by applying a logic 0 value at primary input C. To ensure that the fault effect
is observable at primary output Z, you need to control the other nodes in the circuit so that
the response value at primary output Z depends only on the output of cell G2.

For this example, you can accomplish the following goals:

• Apply a logic 1 at primary input D so that the output of cell G3 depends only on the
output of cell G2. The output of cell G2 is the controlling input of cell G3.

• Apply logic 0s at primary inputs A and B so that the output of cell G4 depends only on
the output of cell G2.

Given the input stimuli of A = 0, B = 0, C = 0, and D = 1, a fault-free circuit produces a
logic 1 at output port Z. If the output of cell G2 is stuck-at-0, the value at output port Z is a
logic 0 instead. Thus, this input stimulus detects a stuck-at-0 fault on the output of cell G2.

This set of input stimuli and expected response values is called a test vector. Following
the process previously described, you can generate test vectors to detect stuck-at-1 and
stuck-at-0 faults for each node in the design.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1428

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Understanding Fault Models

Feedback

Transition Delay Fault Models
A transition delay fault is a delay defect concentrated at one logical node; any signal
transition that passes through this node is delayed beyond the intended clock period. Two
types of transition faults are associated with each node:

• A slow-to-rise (str) fault represents a node with a 0-to-1 transition that is delayed so
much it is not captured by the next clock cycle.

• A slow-to-fall (stf) fault represents a node with a 1-to-0 transition that is delayed so
much it is not captured by the next clock cycle.

This definition of a transition delay fault does not assume a particular magnitude of the
delay defect and does not take into account the timing of the circuit or the clocks. The
delay defect is assumed to be large enough to be detected along any logical path.

Slack-based transition fault testing further enhances the use of transition delay fault
models by using timing information for both targeting and detecting faults. For more
information, see Slack-Based Transition Fault Testing.

Detecting Transition Delay Faults
Detecting transition delay faults requires two steps:

1. This step sets the fault location to its initial value. For a slow-to-rise fault, the node is
set to 0.

2. This step tests the node for the stuck-at fault to its initial value. For a slow-to-rise fault,
this is a test for the stuck-at-zero (sa0) fault.

Because testing the stuck-at-zero fault requires that the node is set to 1, a transition
must take place at that node. However, there is no requirement for the transition to
propagate beyond that node. This is different than the requirement for path delay faults
(see Path Delay Fault Theory). This means the signal conditioning requirements for
transition delay faults are also different than those for path delay faults. For example,
off-path signals along the propagation paths of transition delay faults are care bits after
the transition, but can be at any value before the transition.

In transition delay ATPG terminology, the launch cycle causes the transition and the
capture cycle stores the result.

In a two-cycle transition test, the initial state is the scan-in value, the launch cycle causes
the transition, and the capture cycle stores the result in a scan cell which is then scanned
out. Non-scan registers and memories might require additional cycles before the launch
cycle to set up the transition; additional cycles might be required after the capture cycle if
the result is stored in a non-scan register and must be propagated to a scan cell.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1429

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Understanding Fault Models

Feedback

Using Fault Models to Determine Test Coverage
One definition of a design’s testability is the extent to which that design can be tested for
the presence of manufacturing defects, as represented by the single stuck-at fault model.
Using this definition, the metric used to measure testability is test coverage. For a precise
explanation of how test coverage is calculated in TestMAX ATPG, see Test Coverage.

For larger designs, it is not feasible to analyze the test coverage results for existing
functional test vectors or to manually generate test vectors to achieve high test coverage
results. Fault simulation tools determine the test coverage of a set of test vectors. ATPG
tools generate manufacturing test vectors. Both of these automated tools require models
for all logic elements in your design to calculate the expected response correctly. Your
semiconductor vendor provides these models.

IDDQ Fault Model
For CMOS circuits, an alternative testing method is available, called IDDQ testing. IDDQ
testing is based on the principle that a CMOS circuit does not draw a significant amount of
current when the device is in the quiescent (quiet, steady) state. The presence of even a
single circuit fault, such as a short from an internal node to ground or to the power supply,
can be detected by the resulting excessive current drain at the power supply pin. IDDQ
testing can detect faults that are not observable by stuck-at fault testing.

For the IDDQ testing, the ATPG process uses an IDDQ fault model rather than a stuck-at
fault model. The generated test patterns only need to control internal nodes to 0 and 1 and
comply with quiescence requirements. The patterns do not need to propagate the effects
of faults to the device outputs. The ATPG tool attempts to maximize the toggling of internal
states and minimize the number of patterns needed to control each node to both 0 and 1
for IDDQ testing.

TestMAX ATPG has an optional IDDQ pattern generation/verification capability called
IddQTest. It uses the following criteria for IDDQ pattern generation:

• No current should flow through resistors.

• There must not be contention on any bus or node.

• No nodes can be allowed to float. A floating node could cause some CMOS transistors
to turn on and draw current.

• RAM modules must be disabled so that they do not draw any current.

For more information on IddQTest, see the Test Pattern Validation User Guide.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1430

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Understanding Fault Models

Feedback

Fault Simulation
Fault simulation determines the test coverage of a set of test vectors. It performs several
logic simulations concurrently: one simulation represents the fault-free circuit (a good
machine simulation) and several simulations represent the circuits containing single stuck-
at faults (a faulty machine simulation). Fault simulation detects a fault each time the output
response of the faulty machine is a non-X value and is different from the output response
of the good machine for a given vector.

Fault simulation determines all faults detected by a test vector. By fault simulating the test
vector that is generated to detect the stuck-at-0 fault on the output of G2 in Figure 205, it is
apparent that this vector also detects the following single stuck-at faults:

• Stuck-at-1 on all pins of G1 (and ports A and B)

• Stuck-at-1 on the input of G2 (and port C)

• Stuck-at-0 on the inputs of G3 (and port D)

• Stuck-at-1 on the output of G3

• Stuck-at-1 on the inputs of G4

• Stuck-at-0 on the output of G4 (and port Z)

You can generate manufacturing test vectors by manually generating test vectors and
then fault-simulating them to determine the test coverage. For large or complex designs,
however, this process is time consuming and often does not result in high test coverage.

Automatic Test Pattern Generation
ATPG generates test patterns and provides test coverage statistics for the generated
pattern set. The difference between test vectors and test patterns is defined in Internal
Scan. For now, consider the term “test vector” to be the same as “test pattern.”

ATPG for combinational circuits is well understood; it is usually possible to generate test
vectors that provide high test coverage for combinational designs.

Combinational ATPG tools can use both random and deterministic techniques to generate
test patterns for stuck-at faults. By default, TestMAX ATPG only uses deterministic pattern
generation; using random pattern generation is optional.

During random pattern generation, the tool assigns input stimuli in a pseudo-random
manner, then fault-simulates the generated vector to determine which faults are detected.
As the number of faults detected by successive random patterns decreases, ATPG can
change to a deterministic technique.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1431

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Coverage Calculations

Feedback

During deterministic pattern generation, the tool uses a pattern generation process based
on path-sensitivity concepts to generate a test vector that detects a specific fault in the
design. After generating a vector, the tool fault-simulates the vector to determine the
complete set of faults detected by the vector. Test pattern generation continues until all
faults either have been detected or have been identified as undetectable by the process.

Because of the effects of memory and timing, ATPG is much more difficult for sequential
circuits than for combinational circuits. It is often not possible to generate high test
coverage test vectors for complex sequential designs, even when you use sequential
ATPG. Sequential ATPG tools use deterministic pattern generation algorithms based on
extended applications of the path-sensitivity concepts.

Structured DFT techniques (for example, internal scan) simplify the test pattern generation
task for complex sequential designs, resulting in higher test coverage and reduced testing
costs. For more information about internal scan techniques, see Internal Scan.

Translation for the Manufacturing Test Environment
To test for manufacturing defects in your chips, you need to translate the generated test
patterns into a format acceptable to the automated test equipment (ATE). On the ATE, the
logic 0s and 1s in the input stimuli are translated into low and high voltages to be applied
to the primary inputs of the device under test. The logic 0s and 1s in the output response
are compared with the voltages measured at the primary outputs. For combinational
ATPG, one test vector corresponds to one ATE cycle.

You might use more than one set of test vectors for manufacturing testing. The term “test
program” means the collection of all test vector sets used to test a design.

Coverage Calculations
Coverage calculations are used to measure the effectiveness of test patterns and test
generation for a given set of faults. The coverage calculations are for either the collapsed
or uncollapsed faults. This is controlled with the -report option of the set_faults
command.

Coverage formulas are given using fault counts for fault classes identified by their
standard class code. PT_credit is the selectable detection credit given to possible detected
faults and AU_credit is the selectable credit given to ATPG untestable faults. These credits
are adjustable using the set faults command.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1432

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Internal Scan

Feedback

Test Coverage
The Test Coverage (TC) is the percentage of detected faults for all detectable faults, and
gives the most meaningful measure of test pattern quality. It is calculated by using the
following formula:

TC = (DT+(NP+AP)*PT_credit)/(all_faults-UD-(AN*AU_credit)-(AX*AX_credit))

Fault Coverage
The Fault Coverage (FC) is the percentage of detected faults for all faults. It gives no
credit for undetectable faults, and is calculated by using the following formula:

FC = (DT+(NP+AP)*PT_credit)/all_faults
Note: By default, unused gates in the design are deleted to save RAM usage and their
corresponding faults are missing from the fault population. As a result, the UD class of
faults is nearly empty. If you wish to see an accurate fault coverage you must also turn
off unused gate deletion during circuit flattening. See the set_build command for more
details.

ATPG Effectiveness
The ATPG Effectiveness (AE) is the percentage of faults that are resolvable by the ATPG
process. Full credit is given to faults which are detected and faults which are proven to be
untestable. It is calculated by using the following formula:

AE = (DT+UD+AN+AX+(AP+NP)*PT_credit)/all_faults

See Also

• Fault Classes

Internal Scan
Internal scan design is the most common DFT technique and has the greatest potential
for high test coverage. The principle of this technique is to modify the existing sequential
elements in the design to support serial shift capability, in addition to their normal
functions; and to connect these elements into serial chains to make, in effect, long shift
registers.

Each scan chain element can operate like a primary input or primary output during ATPG
testing, greatly enhancing the controllability and observability of the internal nodes of the
device. This technique simplifies the pattern generation problem by effectively dividing

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1433

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Internal Scan

Feedback

complex sequential designs into fully isolated combinational blocks (full-scan design) or
semi isolated combinational blocks (partial-scan design).

The following sections describe internal scan:

• Example

• Applying Test Patterns

• Scan Design Requirements

• Full-Scan Design

• Partial-Scan ATPG Design

Example
The following figure shows an example of the multiplexed flip-flop scan style, where a D
flip-flop has been modified to support internal scan by the addition of a multiplexer. Inputs
to the multiplexer are the data input of the flip-flop (d) and the scan-input signal (scan_in).
The active input of the multiplexer is controlled by the scan-enable signal (scan_enable).
Input pins are added to the cell for the scan_in and scan_enable signals. One of the data
outputs of the flip-flop (q or qn) is used as the scan-output signal (scan_out). The scan_out
signal is connected to the scan_in signal of another scan cell to form a serial scan (shift)
capability.

Figure 206 D Flip-Flop With Scan Capability

   

The modified sequential cells are chained together to form one or more large shift
registers. These shift registers are called scan chains or scan paths. The sequential cells
connected in a scan chain are scan controllable and scan observable. A sequential cell is
scan controllable when you can set it to a known state by serially shifting in specific logic
values. ATPG tools treat scan controllable cells as pseudo-primary inputs to the design. A
sequential cell is scan observable when you can observe its state by serially shifting out
data. ATPG tools treat scan-observable cells as pseudo-primary outputs of the design.

Most semiconductor vendor libraries include pairs of equivalent nonscan and scan cells
that support a given scan style. One special test cell is a scan flip-flop that combines a D

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1434

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Internal Scan

Feedback

flip-flop and a multiplexer. You can also implement the scan function of this special test cell
with discrete cells, such as the separate flip-flop and multiplexer shown in the preceding
figure.

Adding scan circuitry to a design usually has the following effects:

• Design size and power increases slightly because scan cells are usually larger than the
nonscan cells they replace, and the nets used for the scan signals occupy additional
area.

• Design performance (speed) decreases marginally because of changes in the electrical
characteristics of the scan cells that replace the nonscan cells.

• Global test signals that drive many sequential elements might require buffering to
prevent electrical design rule violations.

The effects of adding scan circuitry vary depending on the scan style and the
semiconductor vendor library you use. For some scan styles, such as level-sensitive
scan design (LSSD), introducing scan circuitry produces a negligible local change in
performance.

The Synopsys scan DFT synthesis capabilities fully optimize for the user’s design
rules and constraints (timing, area, and power) in the context of scan. These scan
synthesis capabilities are available in TestMAX DFT, the Synopsys test-enabled synthesis
configuration. For information about how TestMAX DFT minimizes the impact of inserting
scan logic in your design, see the TestMAX DFT Scan User Guide.

For scan designs, an ATPG tool generates input stimuli for the primary inputs and pseudo-
primary inputs and expected responses for the primary outputs and pseudo-primary
outputs. The set of input stimuli and output responses is called a test pattern or scan
pattern. This set includes the data at the primary inputs, primary outputs, pseudo-primary
inputs, and pseudo-primary outputs.

A test pattern represents many test vectors because the pseudo-primary-input data must
be serialized to be applied at the input of the scan chain, and the pseudo-primary-output
data must be serialized to be measured at the output of the scan chain.

Applying Test Patterns
Test patterns are applied to a scan-based design through the scan chains. The process is
the same for a full-scan or partial-scan design.

Scan cells operate in one of two modes: parallel mode or shift mode. In the multiplexed
flip-flop scan style shown in Figure 206, the mode is controlled by the scan_enable pin.
When the scan_enable signal is inactive, the scan cells operate in parallel mode; the input
to each scan element comes from the combinational logic block. When the scan_enable
signal is asserted, the scan cells operate in shift mode; the input comes from the output

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1435

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Internal Scan

Feedback

of the previous cell in the scan chain (or from the scan input port, if it is the first chain
element). Other scan styles work similarly.

The target tester applies a scan pattern in the following sequence:

1. Select shift mode by setting the scan-enable port. This test signal is connected to all
scan cells.

2. Shift in the input stimuli for the scan cells (pseudo-primary inputs) at the scan input
ports.

3. Select parallel mode by disabling the scan-enable port.

4. Apply the input stimuli to the primary inputs.

5. Check the output response at the primary outputs after the circuit has settled and
compare it with the expected fault-free response. This process is called parallel
measure.

6. Pulse one or more clocks to capture the steady-state output response of the nonscan
logic blocks into the scan cells. This process is called parallel capture.

7. Select shift mode by asserting the scan-enable port.

8. Shift out the output response of the scan cells (pseudo-primary outputs) at the scan
output ports and compare the scan cell contents with the expected fault-free response.

Scan Design Requirements
You achieve the best test coverage results when all nodes in your design are controllable
and observable. Adding scan logic to your design enhances its controllability and
observability. The rules governing the controllability and observability of scan cells are
called test design rules.

Controllability of Sequential Cells
For sequential cells, design rules require that all state elements can be controlled, by
scan or other means, to required state values from the boundary of the design. These
requirements are primarily involved with the shift operations in scan test.

In an ideal full-scan design, the scan chain contains all state elements, the circuit is fully
controllable, and any circuit state can be achieved.

Using a partial-scan methodology, not all state elements need to be in the scan chain.
As long as the nonscan state elements can be brought to any required state predictably
through sequential operation, the circuit remains sufficiently controllable.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1436

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
Internal Scan

Feedback

Observability of Sequential Cells
For sequential cells, test design rules require predictable capture of the next state of the
circuit and visibility at the boundary of the design. In the context of scan design, you can
ensure that sequential cells are observable if you successfully clock the scan cells in the
circuit, and then shift their state to the scan outputs.

The following operations define circuit observability:

1. Observe the primary outputs of the circuit after scan-in.

Normally, this does not involve DFT and does not present problems.

2. Reliably capture the next state of the circuit.

If the functional operation is impaired, unpredictable, or unknown, the next state is
unknown. This unknown state makes at least part of the circuit unobservable.

3. Extract the next state through a scan-out operation.

This process is similar to scan-in. The additional requirement is that the shift registers
pass data reliably to the output ports.

Full-Scan Design
With a full-scan design technique, all sequential cells in the design are modified to perform
a serial shift function. Sequential elements that are not scanned are treated as black box
cells (cells with unknown function).

Full scan divides a sequential design into combinational blocks as shown in the following
figure. Ovals represent combinational logic; rectangles represent sequential logic. The full-
scan diagram shows the scan path through the design.

Figure 207 Scan Path Through a Full-Scan Design

   

Through pseudo-primary inputs, the scan path enables direct control of inputs to all
combinational blocks. The scan path enables direct observability of outputs from
all combinational blocks through pseudo-primary outputs. You can use the efficient

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1437

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
What Is Boundary Scan?

Feedback

combinational capabilities of TestMAX ATPG to achieve high test coverage results on a
full-scan design.

Partial-Scan ATPG Design
With a partial-scan design technique, the scan chains contain some, but not all, of the
sequential cells in the design. A partial-scan technique offers a tradeoff between the
maximum achievable test coverage and the effect on design size and performance.

The default ATPG mode of TestMAX ATPG, called Basic-Scan ATPG, performs
combinational ATPG. To get good test coverage in partial-scan designs, you need to
use Fast-Sequential or Full-Sequential ATPG. The sequential ATPG processes perform
propagation of faults through nonscan elements. For more information, see ATPG Modes.

Partial scan divides a complex sequential design into simpler sequential blocks as
shown in the following figure. Ovals represent combinational logic; rectangles represent
sequential logic. The partial-scan diagram shows the scan path through the design after
sequential ATPG has been performed.

Figure 208 Scan Path Through a Partial-Scan Design

   

Typically, a partial-scan design does not allow test coverage to be as high as for a similar
full-scan design. The level of test coverage for a partial-scan design depends on the
location and number of scan registers in that design, and the ATPG effort level selected for
the Fast-Sequential or Full-Sequential ATPG process.

What Is Boundary Scan?
Boundary scan is a DFT technique that simplifies printed circuit board testing using a
standard chip-board test interface. The industry standard for this test interface is the IEEE
Standard Test Access Port and Boundary Scan Architecture (IEEE Std 1149.1).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1438

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
What Is Boundary Scan?

Feedback

The boundary-scan technique is often referred to as JTAG. JTAG is the acronym for Joint
Test Action Group, the group that initiated the standardization of this test interface.

Boundary scan enables board-level testing by providing direct access to the input and
output pads of the integrated circuits on a printed circuit board. Boundary scan modifies
the I/O circuitry of individual ICs and adds control logic so the input and output pads of
every boundary scan IC can be joined to form a board-level serial scan chain.

The boundary-scan technique uses the serial scan chain to access the I/O ports of chips
on a board. Because the scan chain comprises the input and output pads of a chip’s
design, the chip’s primary inputs and outputs are accessible on the board for applying and
sampling data. Boundary scan supports the following board-level test functions:

• Testing of the interconnect wiring on a printed circuit board for shorts, opens, and
bridging faults

• Testing of clusters of non-boundary-scan logic

• Identification of missing, misoriented, or wrongly selected components

• Identification of fixture problems

• Limited testing of individual chips on a board

Although boundary scan addresses several board-test issues, it does not address chip-
level testability. To provide testability at both the chip and board level, combine chip-
test techniques (such as internal scan) with boundary scan.

The following figure shows a simple printed circuit board with several boundary scan ICs
and illustrates some of the failures that boundary scan can detect.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1439

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Test Concepts
What Is Boundary Scan?

Feedback

Figure 209 Board Testing With IEEE Std 1149.1 Boundary Scan

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1440

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

B
ATPG Design Guidelines

This section presents some design guidelines to facilitate successful ATPG and suggests
sources of extra ports for test I/O. The design topics are discussed first in textual form.
Next, selected design guidelines are illustrated with schematics. Finally, concise checklists
for the design guidelines and port suggestions provide you with a quick reference as you
implement your design.

The following topics describe the ATPG design guidelines:

• ATPG Design Guidelines

• Checklists for Quick Reference

ATPG Design Guidelines
This section provides guidelines for ATPG testing and offers suggestions for identifying
ports to use for test I/O. The provided guidelines are not exhaustive, but if implemented,
they can prevent many problems that commonly occur during ATPG testing.

Guidelines are provided for the following design entities:

• Internally Generated Pulsed Signals

• Clock Control

• Pulsed Signals to Sequential Devices

• Multidriver Nets

• Bidirectional Port Controls

• Clocking Scan Chains: Clock Sources, Trees, and Edges

• Protection of RAMs During Scan Shifting

• RAM and ROM Controllability During ATPG

• Pulsed Signal to RAMs and ROMs

• Bus Keepers

• Bus Keepers

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1441

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Internally Generated Pulsed Signals
While TestMAX ATPG is in ATPG test mode, ensure that clocks and asynchronous set
or reset signals come from primary inputs. Your design should not include internally
generated clocks or asynchronous set or reset signals.

Do not use clock dividers in ATPG test mode. If your design contains clock dividers,
bypass them in ATPG test mode. A scan chain must shift one bit for one scan clock. Use
the TEST signal to control the source of the internal clocks, so that in ATPG test mode you
can bypass the clock divider and source the internal clocks from the primary CLK output.

Do not use gated clocks such as the one shown in Figure 210 in ATPG test mode. If your
design contains clock gating, constrain the control side of the gating element while in
ATPG test mode.

Figure 211 and Figure 212 show two solutions. In Figure 211, the TEST input blocks the
path from CLK to register B. However, B cannot be used in a scan chain.

Figure 210 Gated Clock: A Problem

   

Figure 211 Gated Clock: Solution 1

   

In the following figure, the TEST input controls a MUX that changes the clock source for
register B. Optionally adding gates C1 and C2 provides observability for the output of gate
A; otherwise, gate A is unobservable and all faults into A are ATPG untestable.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1442

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 212 Gated Clock: Solution 2

   

Do not use phase-locked loops (PLLs) as clock sources in ATPG test mode. If your design
contains PLLs, bypass the clocks while in ATPG test mode.

Do not use pulse generators in ATPG test mode, such as the one shown in Figure 213.
If your design contains pulse generators, bypass them using a MUX with the select
line constrained to a constant value or shunted with AND or OR logic so that the pulse
generators do not pulse while in ATPG test mode, as shown in Solution 1 and Solution 2 in
Figure 214.

In Solution 1, the TEST input disables the pulse generator. However, using this solution,
any sequential elements that use N2 as a clock source no longer have a clock source. In
Solution 2, the TEST input multiplexes out the original pulse and replaces it with access
from a top-level input port.

Figure 213 Pulse Generators: A Problem

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1443

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 214 Pulse Generators: Two Solutions

   

Do not use a power-on reset circuit in ATPG test mode. A power-on reset circuit is
essentially an uncontrolled internal clock source that operates when the power is initially
applied to the circuit. See Figure 215.

To prevent a power-on reset circuit from operating during test, you can perform either of
the following steps:

Use the test mode control signal to multiplex the power-on reset signal so that it comes
from an existing reset input or some other primary input during test. See Figure 216.

Use the test mode control signal to block the power-on reset source so that it has no effect
during test. See Figure 217.

The first of these two methods is usually better because it is less likely to cause a
reduction in test coverage.

Figure 215 Power-On Reset Circuit Configuration to Avoid

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1444

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 216 Power-On Reset Circuit Test Method 1

   

Figure 217 Power-On Reset Circuit Test Method 2

   

Clock Control
While TestMAX ATPG is in ATPG test mode, provide complete control of clock paths
to scan chain flip-flops. The clock/set/reset paths to scan chain elements must be fully
controlled.

If a clock passes through a MUX, constrain the select line of the MUX to a constant value
while in ATPG test mode.

If a clock passes through a combinational gate, constrain the other inputs of the gate to a
constant value while in ATPG test mode. See Figure 218 and Figure 219.

Pass clock signals directly through JTAG I/O cells without passing through a MUX, unless
the MUX control can be constrained. This typically involves using a special JTAG input
cell. Figure 220 shows a JTAG input cell with a MUX through which the signal passes; it
is difficult to hold the MUX control constant. Figure 221 shows a modified JTAG input cell
that has no MUX in the path.

Avoid using bidirectional clocks or asynchronous set or reset ports while in ATPG test
mode. If your design supports bidirectional clocks or asynchronous set or reset ports,
force them to operate as unidirectional ports while in ATPG test mode. See Figure 222 and
Figure 223.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1445

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 218 Clock Paths Through Combinational Gates

   

Figure 219 Clock Paths Through Combinational Gates

   

Figure 220 Clock/Set/Reset Inputs and JTAG I/O Cells

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1446

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 221 Clock/Set/Reset Inputs and JTAG I/O Cells

   

Figure 222 Bidirectional Clock/Set/Reset

   

Figure 223 Bidirectional Clock/Set/Reset

   

Pulsed Signals to Sequential Devices
While TestMAX ATPG is in ATPG test mode, do not allow an open path from a pulsed
input signal (clock, asynchronous set/reset) to the data input of a sequential device.

• Do not allow a path from a pulsed input to both the data input and clock of the same
flip-flop while TestMAX ATPG is in ATPG test mode. As shown in Figure 224, the value
of the data captured cannot be determined in the absence of timing analysis. If your
design contains such a path, then while in ATPG test mode, shunt the path to either
the data or clock pin with AND or OR logic, or with a MUX, as shown by Solution 1 and
Solution 2 in Figure 225. In Solution 1, a controllable top-level input is used to replace

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1447

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

the path of the clock/set/reset into the combinational cloud. In Solution 2, the TEST
input blocks the path of the clock/set/reset into the combinational cloud so that it does
not pass the clock pulse while in ATPG test mode.

• Do not allow a path from a pulsed input to both the data input and the asynchronous
set or reset input of the same flip-flop while TestMAX ATPG is in ATPG test mode. If
your design contains such a path, while in ATPG test mode, shunt the path to either the
data pin or the set/reset pin with AND logic, OR logic, or a MUX.

Figure 224 Sequential Device Pulsed Data Inputs

   

Figure 225 Sequential Device Pulsed Data Inputs

   

Multidriver Nets
For multidriver nets, ensure that exactly one driver is enabled during the shifting of scan
chains in ATPG test mode. Plan this guideline into your design. For most designs with

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1448

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

multidriver nets, there is danger of internal driver contention because shifting a scan chain
has a random effect on the design state. See Figure 226.

Here are two methods for satisfying this design guideline:

• Have a primary input port that acts as a global override on internal driver enable
signals in ATPG test mode, disabling all but one driver of the net and forcing that driver
to an on state, as shown in Figure 227. This primary input port should be asserted
during the scan chain load and unload operation. This design guideline is supported by
TestMAX DFT and is the default behavior of TestMAX DFT.

• Use deterministic decoding on the driver enables. Use a 1-of-n logic to ensure that only
one driver is enabled at all times and that at least one driver is enabled at all times,
as shown in Figure 228. Deterministic decoding might not be appropriate for some
designs. For example, for a design with hundreds of potential drivers, a 1-of-n decoder
would be too large or would add too much delay to the circuit.

Figure 226 Multidriver Nets

   

Figure 227 Multidriver Nets: Global Override Input

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1449

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 228 Multidriver Nets: Deterministic Decoding

   

Bidirectional Port Controls
Force all bidirectional ports to input mode while shifting scan chains in ATPG test mode,
using a top-level port as control. See Figure 229 and Figure 230. In Figure 230, TEST
controls the disabling logic and SCAN_EN ensures that the scan chain outputs are turned
on.

The top-level port is often tied to a scan enable control port. However, there are
advantages to performing this function on a different port, if extra ports are available,
because keeping the control of the bidirectional ports separate from the scan enable gives
the ATPG process more flexibility in generating patterns.

Figure 229 Bidirectional Port Controls

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1450

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 230 Solution: Bidirectional Port Controls

   

If you follow this guideline along with Guideline 3, you can easily ensure that no internal or
I/O contention can occur during scan chain load/unload operations.

This guideline is supported by TestMAX DFT (using a single pin) and is the default
behavior.

Exception
Force scan chain outputs that use bidirectional or three-state ports into an output
mode while shifting scan chains in ATPG test mode, using a top-level port (usually
SCAN_ENABLE), as shown in Figure 230.

This guideline is the exception to Guideline 5 and is automatically supported by TestMAX
DFT if you specify a bidirectional port for use as a scan chain output.

Clocking Scan Chains: Clock Sources, Trees, and Edges
Use a single clock tree to clock all flip-flops in the same scan chain. If the design contains
multiple clock trees, insert resynchronization latches in the scan data path between scan
cell flip-flops that use different clock sources.

In the following figure, the two clock sources can cause a race condition. For example, if
CK1 leads CK2 because of jitter or differences in clock tree delays, then R2 clocks before
R3. Because R2’s output is changing while R3 is clocking, a race condition results.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1451

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 231 Problem: Multiple Clock Trees

   

In the following figure, there is a resynchronization register or latch (SYNC) between R2
and R3, which is clocked by the opposite phase of the clock used for R2.

This design guideline is supported by TestMAX DFT and is the default behavior of
TestMAX DFT.

Figure 232 Solution: Multiple Clock Trees

   

Clock Trees
Treat each clock tree as a separate clock source in designs that have a single clock input
port but multiple clock tree distributions.

Sometimes a design has a single clock input port but uses multiple clock tree distributions
to produce “early” and “standard” clocks, as shown in Figure 233. Under these conditions,
treat each clock tree as a separate clock source. Insert resynchronization latches between
scan cells where the clock source switches from one clock tree to another, as shown in
Figure 234.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1452

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

This design style is supported by TestMAX DFT but is not the default method of TestMAX
DFT.

Figure 233 Problem: Single Clock With Multiple Clock Trees

   

Figure 234 Solution: Single Clock With Multiple Clock Trees

   

Clock Flip-Flops
If possible, clock all flip-flops on the same scan chain on the same clock edge. If this is
not possible, then group together all flip-flops that are clocked on the trailing clock edge
and place them at the front of the scan chain (closest to the scan chain input); and group
together all flip-flops that are clocked on the leading clock edge and place them closest to
the scan chain output.

In Figure 235, B1 and B2 are always loaded with the same data as A1 and A4,
respectively, during scan chain loading, because they are clocked on the trailing edges.
Thus, parts of the circuit that require A1 and B1 (or A4 and B2) to have opposite values
are untestable.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1453

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

In Figure 236, the scan chain registers are ordered so that all of the trailing-edge cells are
grouped together at the front of the scan chain. B1 and B2 can be set independently of A1
and A4.

This design guideline is automatically implemented by DFT Compiler if you allow it to mix
clock edges on a scan chain.

Figure 235 Problem: Mixed Clock Edges on a Scan Chain

   

Figure 236 Solution: Mixed Clock Edges on a Scan Chain

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1454

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

XNOR Clock Inversion and Clock Trees
Do not mix XNOR clock inversion techniques and clock trees.

A common design technique when both edges of the same clock are used for normal
operation of scan chain flip-flops is to use an XNOR in place of an INV to form the
opposite clock polarity. Then, in test mode, the XNOR can be switched from an inverter
into a buffer.

This technique is not advisable unless you can analyze the timing during test mode to
ensure that no timing violations can occur during the application of any clocks. While in
normal operation, there are essentially two clock zones of opposite phase. The phasing
of the two clocks is such that reasonable timing is achieved between flip-flops that are on
opposite phases of the clock. When one of the clocks is no longer inverted, two clock tree
distributions are driven by the same-phase signal, resulting in timing-critical configurations
in ATPG mode that do not exist in normal functional mode. See the following figure.

Figure 237 Problem: XNOR Clock Inversion and Clock Trees

   

To prevent this problem, replace the XNOR gate with an inverter, as shown in the following
figure. If you need the XNOR function, use it locally in the vicinity of the affected gates,
rather than on the input side of a clock tree.

Figure 238 Solution: XNOR Clock Inversion and Clock Trees

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1455

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Protection of RAMs During Scan Shifting
To protect RAMs from random write cycles, disable the RAM write clock or write enable
lines while shifting scan chains in ATPG test mode.

In ATPG test mode, RAMs must remain undisturbed by random write cycles while the
scan chains are being shifted. You can accomplish this by disabling the write clock or write
enable line to each data write port during ATPG test mode. Often, the SCAN_ENABLE
control is used for this function, coupled with an AND or OR gate, as appropriate.

However, to also achieve controllability over the write port, use a separate top-level input
other than SCAN_ENABLE. The RAM write control is usually used as a pulsed port (RZ/
RO), while the SCAN_ENABLE is a constant value (NRZ/NRO). Trying to achieve both
simultaneously usually presents problems that can be avoided by using separate ports.

RAM and ROM Controllability During ATPG
If you want controllability of RAMs and ROMs for ATPG generation, connect their read
and write control pins directly to a top-level input during ATPG test mode. This is most
conveniently accomplished by using a MUX, which switches control from an internal to a
top-level port. Multiple RAMs can share the same control port for the write port.

In Figure 239, if the registers are in scan chains, random patterns that occur while loading
and unloading scan chains are written to the RAMs. Thus, the RAM contents are unknown
and treated as X.

In Figure 240, MUX controls activated by TEST mode bring the write control signals up to
the top-level input ports.

For achieving controllability and higher test coverage, direct control of write ports is more
important than control of read ports.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1456

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 239 Problem: RAM/ROM Control

   

Figure 240 Solution: RAM/ROM Control

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1457

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Pulsed Signal to RAMs and ROMs
Do not allow an open path from a pulsed signal to a data, address, or control input of a
RAM or ROM (except read/write control) while in ATPG test mode.

If a combinational path exists from a defined clock or asynchronous set or reset port to
a data, address, or control pin of a RAM or ROM, the ATPG process treats the memory
device as filled with X. The exceptions are the read clock and write clock signals, which
are operated in a pulsed fashion but should not be mixed with a defined clock.

In Figure 241, the address or data inputs are coupled with a clock/set/reset port, so their
values are not constant while capture clocks are occurring elsewhere in the design. The
result is that RAM read and write data cannot be determined; Xs are used instead.

In Figure 242, the TEST input disables pulsed paths during ATPG test mode.

Figure 241 Problem: RAMs/ROMs and Pulsed Signals

   

Figure 242 Solution: RAMs/ROMs and Pulsed Signals

   

Bus Keepers
While in ATPG test mode, do not allow a combinational gate path from any pulsed port
to drive the enable controls of three-state drivers that contribute to a multidriver net, as

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1458

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

illustrated in Figure 243. In Figure 244, the TEST input redirects the control to a top-level
port, and the port is constrained to a value that does not affect the driver enables. Then,
on the tester and during simulation, the port is driven with the same signal as that on the
original CLK port.

A common practice is to gate all internal driver enables with some phase of a clock so that
all drivers are off during the first half of each cycle and one driver is on during the second
half. This practice solves some contention problems that occur during the transition of one
driver off to another driver on, but it renders bus keeper usage impossible in ATPG test
mode.

Figure 243 Problem: Bus Keepers

   

Figure 244 Solution: Bus Keepers

   

Non-Z State on a Multidriver Net
When using bus keepers, ensure a non-Z state on a multidriver net by the end of the
load_unload procedure.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1459

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Non-Clocked Events
When using bus keepers, do not allow the non-clocked events that occur before the
system capture clock to disturb the multidriver net.

The system capture cycle should not disturb the multidriver net, at least not until after the
clock/set/reset pulse, unless a change on a primary input enables one of the drivers and
drives a known value on the net.

When you use a bus keeper, you expect it to retain the last value driven on the bus.
Therefore, you do not need to design the driver enable controls so that one driver is
always on. However, if the DRC analysis of the bus keeper finds violations, the beneficial
effects possible with a bus keeper are ignored.

When no driver is enabled on the multidriver net, the bus assumes a Z or X state.
When a Z passes through some other internal gate, it becomes an X; thus, an internal
source generates and propagates a multitude of X states to observe points (for example,
output ports and scan cells), which must be masked off in the ATPG patterns. There is a
significant increase in the number of pattern bits that the tester must mask off; thus, you
can obtain patterns that are legal and generate high test coverage but are unusable on
many testers because of the excessive number of compare masks required.

In Figure 245, the address or data inputs are coupled with a clock/set/reset port, so their
values are not constant while capture clocks are occurring elsewhere in the design. The
result is that RAM read and write data cannot be determined; Xs are used instead.

In Figure 246, the TEST input disables pulsed paths during ATPG test mode.

Figure 245 Problem: RAMs/ROMs and Pulsed Signals

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1460

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 246 Solution: RAMs/ROMs and Pulsed Signals

   

Bus Keepers
While in ATPG test mode, do not allow a combinational gate path from any pulsed port
to drive the enable controls of three-state drivers that contribute to a multidriver net, as
illustrated in Figure 247. In Figure 248, the TEST input redirects the control to a top-level
port, and the port is constrained to a value that does not affect the driver enables. Then,
on the tester and during simulation, the port is driven with the same signal as that on the
original CLK port.

A common practice is to gate all internal driver enables with some phase of a clock so that
all drivers are off during the first half of each cycle and one driver is on during the second
half. This practice solves some contention problems that occur during the transition of one
driver off to another driver on, but it renders bus keeper usage impossible in ATPG test
mode.

Figure 247 Problem: Bus Keepers

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1461

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
ATPG Design Guidelines

Feedback

Figure 248 Solution: Bus Keepers

   

Non-Z State on a Multidriver Net
When using bus keepers, ensure a non-Z state on a multidriver net by the end of the
load_unload procedure.

Non-Clocked Events
When using bus keepers, do not allow the non-clocked events that occur before the
system capture clock to disturb the multidriver net.

The system capture cycle should not disturb the multidriver net, at least not until after the
clock/set/reset pulse, unless a change on a primary input enables one of the drivers and
drives a known value on the net.

When you use a bus keeper, you expect it to retain the last value driven on the bus.
Therefore, you do not need to design the driver enable controls so that one driver is
always on. However, if the DRC analysis of the bus keeper finds violations, the beneficial
effects possible with a bus keeper are ignored.

When no driver is enabled on the multidriver net, the bus assumes a Z or X state.
When a Z passes through some other internal gate, it becomes an X; thus, an internal
source generates and propagates a multitude of X states to observe points (for example,
output ports and scan cells), which must be masked off in the ATPG patterns. There is a
significant increase in the number of pattern bits that the tester must mask off; thus, you
can obtain patterns that are legal and generate high test coverage but are unusable on
many testers because of the excessive number of compare masks required.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1462

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
Checklists for Quick Reference

Feedback

Checklists for Quick Reference
This section provides checklists of the design guidelines and port redefinition suggestions.
Use the following checklists as a convenient reminder as you implement your design:

• ATPG Design Guideline Checklist

• Ports for Test I/O Checklist

ATPG Design Guideline Checklist
Follow these guidelines during ATPG test mode:

1. Ensure that clocks and asynchronous set/reset signals come from a primary input.

a. Do not use clock dividers.

b. Do not use gated clocks.

c. Do not use phase-locked loops (PLLs) as clock sources.

d. Do not use pulse generators.

2. Provide complete control of clock paths to scan chain flip-flops.

a. If a clock passes through a MUX, constrain the select line of the MUX to a constant
value.

b. If a clock passes through a combinational gate, constrain the other inputs of the
gate to a constant value.

c. Pass clock signals directly through JTAG I/O cells without passing through a MUX,
unless the MUX control can be constrained.

d. Avoid using bidirectional clocks and asynchronous set/reset ports.

3. Do not allow an open path from a pulsed input signal (clock or asynchronous set/reset)
to a data-capture input of a sequential device.

a. Do not allow a path from a pulsed input to both the data input and the clock of the
same flip-flop.

b. Do not allow a path from a pulsed input to both the data input and the asynchronous
set or reset input of the same flip-flop.

4. For multidriver nets, ensure that only one driver is enabled during the shifting of scan
chains.

5. Force all bidirectional ports to input mode while shifting scan chains, using a top-level
port as control.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1463

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
Checklists for Quick Reference

Feedback

6. Force scan chain outputs that use bidirectional or three-state ports into output mode
while shifting scan chains, using a top-level port (usually SCAN_ENABLE).

7. Use a single clock tree to clock all flip-flops in the same scan chain.

8. Treat each clock tree as a separate clock source in designs that have a single clock
input port but multiple clock tree distributions.

9. Use the same clock edge for all flip-flops in the same scan chain.

10. Do not mix XNOR clock inversion techniques and clock trees.

11. To protect RAMs from random write cycles, disable RAM write clock or write enable
lines while shifting scan chains.

12. Connect RAM and ROM read and write control pins directly to a top-level input while in
ATPG test mode.

13. Do not allow an open path from a pulsed signal to a RAM’s or ROM’s data, address, or
control inputs (except read/write control).

14. Do not allow a combinational gate path from any pulsed port to drive the enable
controls of three-state drivers that contribute to the multidriver net.

15. When using bus keepers, ensure a non-Z state on multidriver nets by the end of the
scan chain load/unload.

16. When using bus keepers, do not allow the nonclocked events that occur before the
system capture clock to disturb the multidriver net.

Ports for Test I/O Checklist
Follow these port usage guidelines:

1. A port that already feeds the input of a flip-flop in a scan chain is the best port to
redefine as a scan chain input.

2. A port that already comes directly from the output of a flip-flop in a scan chain is the
best port to redefine as a scan chain output.

3. A three-state output can be redefined as a bidirectional port and used in input mode
while TEST is asserted.

4. A standard output can be redefined as a bidirectional port and used in input mode while
TEST is asserted.

5. An input port that feeds directly into the input of a flip-flop in a scan chain can be
redefined as a shared port.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1464

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: ATPG Design Guidelines
Checklists for Quick Reference

Feedback

6. An output port that comes directly from the output of a flip-flop in a scan chain can be
redefined as a bidirectional port and used in input mode while TEST is asserted.

7. An output port that is a derived clock or pass-through clock can be redefined as a
bidirectional port and used in input mode while TEST is asserted.

8. An input port that has a small amount of fanout before entering a flip-flop is a good
choice to be redefined for use as a test-related input while TEST is asserted.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1465

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

C
Importing Designs From TestMAX DFT

This appendix provides a brief overview of how to take a design from TestMAX DFT to
TestMAX ATPG to generate ATPG patterns.

Before you begin, you should be aware of the differences between TestMAX DFT and
TestMAX ATPG in the treatment of your design. These are the main differences:

• Bidirectional port timing

• Ordering of events within an ATE cycle

• Latch models

• Support for TestMAX DFT commands in TestMAX ATPG

These differences are explained in detail in the section “Exporting a Design To TestMAX
ATPG” in the TestMAX DFT Scan User Guide (provided with the TestMAX DFT tool).

Before you import a design from TestMAX DFT to TestMAX ATPG, you need to ensure that
the design has valid scan chains and does not have design rule violations. These are the
steps to import the design:

1. Before doing any work with TestMAX DFT (including scan insertion), set the test timing
variables to the values specified by your ASIC vendor.

2. Identify the netlist format that you are exporting to TestMAX ATPG, using the
test_stil_netlist_format environment variable.

3. To guide netlist formatting, set the environment variables that affect how designs are
written out.

4. If you want to pass capture clock group information to TestMAX ATPG, set the
test_stil_multiclock_capture_procedures variable to true, and use the
check_test (not check_scan) command in the next step.

5. Check for design rule violations and fix any violations.

6. Write out the netlist.

7. Write out the STL procedure file.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1466

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Importing Designs From TestMAX DFT

Feedback

After you perform these steps, you can read in the design with TestMAX ATPG. For more
information on performing these steps, see the section “Exporting a Design To TestMAX
ATPG” in the DFT Compiler Scan User Guide.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1467

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

D
Utilities

The following sections of this appendix describe the utility programs supplementing
TestMAX ATPG:

• Ltran Translation Utility

• Generating PrimeTime Constraints

• Converting Timing Violations Into Timing Exceptions

• Importing PrimeTime Path Lists

• stilgen Utility and Configuration Files

Ltran Translation Utility
When you use the Write Patterns dialog box or the write_patterns command to write
patterns in the FTDL, TDL91, TSTL2, or WGL_FLAT format, TestMAX ATPG invokes a
separate translation process called Ltran. This translation process runs independently
in a new window. You can optionally launch Ltran in the shell mode or use an Ltran
configuration file to control the output format.

The following sections provide basic information on starting Ltran in the shell mode, and
specifying and modifying Ltran configuration files:

• Ltran in the Shell Mode

• FTDL, TDL91, and TSTL2 Configuration Files

• Understanding the Configuration File

• Configuration File Syntax

If there is a problem with your Ltran installation, the following error message might appear:

sh: /stil2wgl.sh: No such file or directory

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1468

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

In this case, you should make sure the following files are in your $installation/$platform/
syn/ltran directory:

• Ltran

• Ltran.sh

• gzip stil2wgl

• stil2wgl.sh

• vread.bin

• vread3.bin

• vread5.bin

If these files are not in this directory, you should go to the SolvNet Download Center,
obtain the download instructions for TestMAX ATPG, and perform the installation.

Ltran in the Shell Mode
Ltran launches in the shell mode one of two ways:

• If you have not set the DISPLAY environment variable (which is common when you use
a telnet session

• If you have set the LTRAN_SHELL environment variable to 1

When using Ltran in the shell mode, the execution of TestMAX ATPG stops until Ltran
finishes. This is different than the xterm version that kept TestMAX ATPG running and
allowed parallel Ltran runs; for example, if you try writing files with the -split option of
the write_patterns command, which causes the intermediate file created and passed
to the external translator to use the STIL pattern format (the default is to use WGL as the
intermediate file). Now, each Ltran runs sequentially.

Since this is a third-party interface, any output from Ltran in GUI or shell mode might
appear in the UNIX transcript in which TestMAX ATPG was started, but that output will not
be captured in the TestMAX ATPG log file.

Linux platforms need the path to the xterm executables. These are located in the /usr/
X11R6/bin directory. After you add this to your search path, you can write out TDL91,
TSTL2, and FTDL pattern formats from the TestMAX ATPG Linux shell. This is especially
true if you receive a "sh: xterm: command not found" message.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1469

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

FTDL, TDL91, and TSTL2 Configuration Files
If you select FTDL, TDL91, or TSTL2 as the format in the Write Patterns dialog box or in
the write_patterns command, a separate Ltran translation process is executed. This
process begins as an independent operation in the new window. You can perform other
tasks while the translation process is carried out.

The Write Patterns dialog box and write_patterns command optionally let you specify
an Ltran configuration file to be used for controlling the output format. If you do not specify
a configuration file, a default file is used from the following directory:

$SYNOPSYS/auxx/syn/ltran
For a discussion about the use of the SYNOPSYS_TMAX environment variable, see
Specifying the Location for TestMAX ATPG Installation.

The configuration files contained in this directory are:

• stil2ftdl : STIL to FTDL

• stil2tdl91 : STIL to TDL91

• stil2tstl2 : STIL to TSTL2

• wgl2ftdl : WGL to FTDL

• wgl2tdl91 : WGL to TDL91

• wgl2tstl2 : WGL to TSTL2

By default, when you use the write_patterns command and specify FTDL, TDL91,
and TSTL2 as the pattern format, the pattern generator first generates patterns in
an intermediate STIL format file. Ltran then translates the STIL patterns to the target
format using the conversion parameters specified in the stil2ftdl, stil2tdl91, or
still2tstl2 configuration file.

You can also use the -wgl option to generate an intermediate WGL format file, and Ltran
will use the provided WGL-related configuration files. However, in most cases, writing a
STIL intermediate file is much faster than writing WGL file; this can save minutes of time
for large pattern files.

The default files are adequate for most translations. However, you can modify a number of
fields in the files to customize the output results. These user-editable fields are part of the
simulator command and are identified with comments in the Ltran configuration files. All of
these fields are optional and can be commented out with curly braces “{ }”. Most of these
fields provide a way to specify header information in the output file, as summarized in the
sections that follow.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1470

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

To use a customized configuration file, copy one of the existing files to your own local
directory, and then edit your copy to adjust the user-editable fields and controls. In the
Write Patterns dialog box or write_patterns command, specify the name of your
modified configuration file.

Understanding the Configuration File
Each configuration file contains two mandatory command blocks (OVF_BLOCK
andTVF_BLOCK) and one optional command block (PROC_BLOCK).

The commands in the mandatory command block OVF_BLOCK describe the format
of data in the original vector file. The commands in the mandatory command block
TVF_BLOCKprovide instructions for formatting vectors in the target vector file. The
commands in the optional command block PROC_BLOCKdescribe other processing required
to translate the data in the original vector file into the target vector file.

The configuration file structure can be summarized as shown in the following example.

Example 1 Translation Configuration File Structure

OVF_BLOCK
BEGIN
OVF_BLOCK_COMMANDS
END
PROC_BLOCK {Optional}
BEGIN
PROC_BLOCK_COMMANDS
END
TVF_BLOCK
BEGIN
TVF_BLOCK_COMMANDS
END
END

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1471

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

The configuration file is not case-sensitive. Pin names retain their case in the translation
to the target vector file. Pin names can be contain any printable ASCII characters (but not
spaces), including any of the following characters:

, ; < > [] { } () = \ & | @
For the full syntax of the OVF_BLOCK, PROC_BLOCK, and TBF_BLOCKcommand blocks, see
Configuration File Syntax.

Customizing the FTDL Configuration File
For FTDL output, the write_patterns command uses the wgl2ftdlconfiguration file. You
can customize the configuration file by editing the following parameters:

• -AUTO_GROUP
This optional switch tells the write_patterns command to algorithmically identify
similar signals and group them in the FTDL output file.

• Revision number

REVISION = "0001", { edit "0001" as required }
• Designer name

DESIGNER = "Designer", { edit "Designer" as required }
• Test vector function

TNAME = "FUNC", { edit "FUNC" as required }
• Test vector name

CNAME = "TEST", { edit "TEST" as required }
• Date of design file creation

DATE = "99/10/05" ; { edit DATE as required }

Customizing the TDL91 Configuration File
For TDL91 output, the write_patterns command uses the wgl2tdl91 configuration file.
You can customize the configuration file by editing the following parameters:

• Library

LIBRARY_TYPE = "Library", { edit "Library" as required }
• Customer

CUSTOMER = "Customer", { edit "Customer" as required }
• Part number

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1472

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

TI_PART_NUMBER = "PartNum", { edit "PartNum" as required }
• Pattern set name

PATTERN_SET_NAME = "SetName", { edit "SetName" as required}
• Pattern set type

PATTERN_SET_TYPE = "SetType", { edit "SetType" as required}
• Revision number

REVISION = "1.00", { edit REVISION as required }
• Date of design file creation

DATE = "10/5/2009" ; { edit DATE as required }
You can also do the following:

• Specify the following general Ltran configuration commands:

◦ -AUTO_GROUP — Enables Ltran to algorithmically identify similar signals and group
them in the TDL_91 pattern output file.

◦ SD_PORT = "SD" — Enables you to specify a port name to be added to the end
of each scan cell name to form the scan cell shift input pin name. The default port
name is "SD". If you set this to a null string, then no text is added.

• Reference your custom configuration file when creating patterns with the
write_patterns command. Exclude the scan chain test when writing TDL91 patterns,
for example:

TEST-T> write_patterns <pattern_file_name> -format tdl91 \
-config_file spec_CUSTOM_FILE -exclude chain_test -replace

• When translating STIL/WGL files an additional flag can be set in the
TABULAR_FORMAT statement which instructs Ltran to look for Header information at
the beginning of the STIL/WGL file and pass it through to the TDL_91 output file. This
flag is -TDL91_INFO and is used as follows:

TABULAR_FORMAT stil -cycle, -scan, -include_cells, -TDL91_INFO ;
OR

TABULAR_FORMAT wgl -cycle, -scan, -include_cells, -keep_annotations,
-TDL91_INFO ;
Note that this only applicable to translations from STIL/WGL files generated by
TestMAX ATPG to TDL_91 format.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1473

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

Customizing the TSTL2 Configuration File
For TSTL2 output, the write_patterns command uses the wgl2tstl2 configuration file.
You can customize this configuration file by editing the following parameters:

• Title

TITLE = "TITLE", { edit "TITLE" as required }
• Function Test

FUNCTEST = "FC1" { edit "FC1" as required }
• Scale

scale 1000;
Place the scale statement in the PROC_BLOCK section of the stil2tstl2 or wgl2tstl2
configuration file. The scale 1000 statement in the previous example adjusts the
scaling and resolution from the default, in nanoseconds (ns), to picoseconds (ps).

For example, take a signal defined as follows:

"rst" { P { '0ps' U; '50006ps' D; '52400ps' U; } } "rst" { P { '0ps'
 U; '50001ps' D; '52600ps' U; } } "rst" { P { '0ps' U; '45000ps' D;
 '55000ps' U; } }

With the scale value set to 1000, the TSTL2 output is as follows:

TIMESET(2) NP, 50006, 2394 ; TIMESET(2) NP, 50001, 2599 ; TIMESET(2)
 NP, 45000, 10000 ;

Additional Controls
In addition to the simulator adjustments just described, most of the configuration files have
two Ltran controls that you can use to further customize the format of the pattern output
files:

• rename_bus_pins

• header nn
If these controls are supported, they appear commented out by default but can be
activated by removing the curly braces “{ }” surrounding them.

This is the syntax of the rename_bus_pins control:

rename_bus_pins busvec;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1474

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

The rename_bus_pins control flattens bused signal names. With this command, a bus
signal name like bus[5] becomes bus5 . The form of the mapped name can be controlled
by changing the busvec string. For example:

rename_bus_pins $bus_$vec_;
This example maps bus[5] into bus_5_ .

The header control tells Ltran to place the names of signals in a vertical list as comments
above their column position in the vectors. This control has the following syntax

header nn;
where nn is an integer that specifies how often to repeat the pin header listing, expressed
as a number of lines.

Configuration File Syntax
The following sections describe the syntax of the statements in the OVF_BLOCK,
PROC_BLOCK, and TVF_BLOCK command blocks.

OVF_BLOCK Statements
AUX_FILE [=]"filename";
Used to specify an auxiliary file for some canned readers.

BEGIN_LINE [=] n;
Used to define the line number in the OVF file at which VTRAN should begin processing
vectors.

BEGIN_STRING [=] "string";
Used to define a unique text string in the OVF file after which VTRAN should begin
processing vectors.

BIDIRECTS [=] pin_list;
Defines the names and order of pins in the OVF file that are bidirectional.

BUSFORMAT radix; or BUSFORMAT pin_list = radix;
Specifies the radix of buses in the OVF file.

CASE_SENSITIVE;
Allows there to be more than one signal with the same name spelling but differing only in
case of letters in the name.

GROUP n [=] pin_list;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1475

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

Together with the $gstatesn keyword, it tells VTRAN how the pin states are organized.

INPUTS [=] pin_list;
Defines the names and order of input pins in OVF file.

MAX_UNMATCHED [=] n [verbose]:
Specifies the number of, and information contained in, warnings for lines in the OVF file
that does not a format_string.

ORIG_FILE [=] "filename";
Used to specify the OVF file name to be translated.

OUTPUTS [=] pin_list;
Defines the names and order of output pins in the OVF file.

SCRIPT_FORMAT [=] "format#1" [, . ."format#n"] ;
Format descriptors for User-Programmed reader.

TABULAR _FORMAT [=] "format #1" [, . . "format#n"] ;
Format descriptors for User-Programmed reader.

TERMINATE TIME [=] n; or
TERMINATE LINE [=] m; or
TERMINATE STRING [=] "string";
Defines where in the OVF to stop processing, at a certain time, line number or when a
string is reached.

WAVE_FORMAT [=] "format #1" [, . . "format#n"] ;
Format descriptors for User-Programmed reader.

WHITESPACE [=] 'a','b', 'c', . . ,'n';
Defines characters in the OVF file that are to be treated as though they are space (they
are ignored).

PROC_BLOCK Statements
ADD_PIN pinname = state1 [WHEN expr=state2, OTHERWISE
state3];
Tells VTRAN to add a new pin to the TVF file, and allows you to define the state of this pin.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1476

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

ALIGN_TO_CYCLE [-warnings] cycle pin_list @ time, . . . ,
pin_list
@ time ;
Vectors can be mapped to a set of cycle data, the state of each pin in a given cycle is
determined by its state at a specified strobe time in the OVF file.

ALIGN_TO_STEP [-warnings] step [offset];
Forces a minimum time resolution in the TVF file.

AUTO_ALIGN [-warnings] cycle;
Collapses print-on-change data in the OVF file to cycle data by computing strobe points
from information given in the PINTYPE commands.

BIDIRECT_CONTROL pin_list = dir WHEN expr = state ;
Separates input data from output data on bidirectionals under control of a pin state or
logical combination of pin states.

BIDIRECT_CONTROL pin_list = direction @ time ;
Separates input data from output data on bidirectionals based upon when the state
transitions occur.

BIDIRECT_STATES INPUT state_list, OUTPUT state_list ;
Separates input data from output data on bidirectionals where unique state characters
identify pin direction.

CYCLE [=] n;
Specifies the time step between vectors in the OVF when the format of the vectors does
not include a time stamp.

DISABLE_VECTOR_FILTER;
Disables filtering of redundant vectors.

DONT_CARE 'X';
Defines the character state to which output pins should be set outside of their check
windows.

EDGE_ALIGN pinlist @ rtime [,ftime] [xtime];
Modifies pin transition times by snapping them to predefined positions within each cycle.

EDGE_SHIFT pinlist @ rtime [,ftime] [,xtime];

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1477

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

Modifies pin transition times by shifting them by fixed amounts.

MASK_PINS [mask_character ='X'] [pin_list] @ t1, t2 [-CYCLE]
; or
MASK_PINS [mask_character ='X'] [pin_list] @ CONDITION expr =
state ;
Masks the state of specified pins to the mask_character within the time range between t1
and t2, or when a specified logic condition exists on other pins.

MERGE_BIDIRECTS state_list ; or
MERGE_BIDIRECTS rules = n ;
Merges the input and output state information of a bidirectional pin to a single pin after it
has been split and processed.

PINTYPE pintype pin_list @ start1 end1 [start2, end2] ;
Defines the behavior and timing to be applied to input or output pins during translation.

POIC;
Specifies that vectors in the OVF file should be translated to the TVF only when at least 1
input pin has changed in the vector.

SCALE [=] nn;
Linearly expands or reduces the time line of the OVF. Happens before any timing
modifications.

STATE_TRANS [=] [dir] 'from1'->'to1', . . ;
Tells VTRAN not to incorporate pin timing and behavior into the vectors themselves.

SEPARATE_TIMING;
Defines a mapping from pin states in the OVF file to states in the TVF file.

STATE_TRANS_GROUP pin_list = 'from1'->'to1', . . ;
Supplements the STATE_TRANS command by providing state translations on an individual
pin or group basis.

TIME_OFFSET [=] n ;
When reading the vectors from the OVF file, the time stamp can be offset by an arbitrary
amount.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1478

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Ltran Translation Utility

Feedback

TVF_BLOCK Statements
ALIAS ovf_name = tvf_name, . . . ; or
ALIAS "ovf_string"="tvf_string";
Provides a way to change the names of pins listed in the OVF file, for listing in the TVF
file.

BIDIRECTS [=] pin_list;
Defines the names and order of pins to be listed in the TVF file which are bidirectional.

BUSFORMAT radix; or
BUSFORMAT pin_list = radix;
Specifies the radix of buses in the TVF file.

COMMAND_FILE [=] "filename";
Specifies the name of a separate output command file for the target simulator, in addition
to the vector data file.

DEFINE_HEADER [=] "text string";
Inhibits the automatic generation of headers and replaces it with a custom text string.

HEADER [=] n;
Causes a vertical list of the pin names to appear as comments in the TVF every n vector
lines.

INPUTS [=] pin_list ;
Defines the names and order of pins to be listed in the TVF file which are inputs.

INPUTS_ONLY;
Causes only input and the input versions of bidirectional pins to be listed in the TVF.

LOWERCASE;
Forces all pin names in the TVF file to use lowercase letters.

OUTPUTS [=] pin_list ;
Defines the names and order of pins to be listed in the TVF file that are outputs.

OUTPUTS_ONLY;
Causes only output and the output versions of bidirectional pins to be listed in the TVF file.

RENAME_BUS_PINS format;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1479

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

Provides a way of globally modifying all bus names in the TVF file.

RESOLUTION [=] n;
Specifies the resolution of time stamps in the output vector file (n = 1.0, 0.1, 0.01 or
0.001).

SCALE [=] nn ;
Linearly scales all times to the TVF file.

SIMULATOR [=] name [param_list];
Defines the target vector file format to be compatible with the simulator named.

STOBE_WIDTH [=] n;
Used with several of the simulator interfaces to define the width of an output strobe
window.

SYSTEM_CALL ". . .text . . . ";
Upon completion of translating vectors from the OVF file to the TVF file, VTRAN sends this
text string to the system just before termination.

TARGET_FILE [=] "filename";
Specifies the name of the output file.

TITLE [=] "title";
Specifies a special character string to be placed in the header of certain simulator vector
files.

UPPERCASE;
Forces all pin names in the TVF to be listed with uppercase letters.

Generating PrimeTime Constraints
You can use the tmax2pt.tcl script to generate PrimeTime constraints for performing static
timing analysis of a design under test. This script extracts relevant data and creates a
PrimeTime script that constrains the design in test mode.

Although this flow simplifies the process of performing static timing analysis with
PrimeTime, it is no substitute for the experienced user to validate timing analysis. See the
PrimeTime Fundamentals User Guide and the PrimeTime Advanced Timing Analysis User
Guide for these details.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1480

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

The following sections describe how to generate PrimeTime Constraints:

• Input Requirements

• Starting the Tcl Command Parser Mode

• Setting Up TestMAX ATPG

• Making Adjustments for OCC Controllers

• Performing an Analysis for Each Mode

• Implementation

Input Requirements
The TestMAX ATPG input data requirements are:

• Netlists

• Library

• STIL procedure file

• Tcl command script for build, run_drc commands, and so on.

• An image file can only be used if it is written using the command write_image
-netlist_data.

The PrimeTime input data requirements are:

• Netlists

• Technology library (.db files)

• Command scripts to read design, link, and so on

• Timing models

• Layout data (for example, SDF)

Starting the Tcl Command Parser Mode
To use this flow, you must run the tool in Tcl command parser mode, which is the default
mode for TestMAX ATPG starting with the C-2009.06 release.

The command files must be in Tcl format and not in the native format. You can use the
TestMAX ATPG command translation script, native2tcl.pl to convert native mode TestMAX
ATPG command scripts into Tcl command scripts. For instructions on how to download this
script, see Converting TestMAX ATPG Command Files to Tcl.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1481

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

Setting Up TestMAX ATPG
The normal flow of configuring the design and TestMAX ATPG for ATPG is required.
However, ATPG does not have to be run. After you run DRC and set the configuration,
TestMAX ATPG has enough data to support generating the PrimeTime script.

The tmax2pt.tcl script is located in the $SYNOPSYS/auxx/syn/tmax directory. This script
must be sourced from TestMAX ATPG (see the following figure); for example:

TEST-T> source $env(SYNOPSYS)/auxx/syn/tmax/tmax2pt.tcl

Figure 249 Shift Mode Analysis Example

   

The write_timing_constraints procedure is part of the tmax2pt.tcl script. Use this procedure
to create a PrimeTime Tcl script. For example:

TEST-T> write_timing_constraints pt_shift.tcl -mode shift
...
The syntax for the write_timing_constraints procedure is as follows:

write_timing_constraints output_pt_script_file [-debug] [-man] [-mode shift |
capture | last_shift | update] [-no_header] [-only_constrain_scanouts]
[-replace] [-wft wft_name | default | launch | capture| launch_capture

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1482

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

[-wft wft_name | default | launch | capture | launch_capture]] [-unit ns
| ps]

Argu
ment

Description

-
debug

Writes additional debug data into the output file. This is useful if you are attempting to
modify this script.

-man Displays a detailed description of the write_timing_contraints options.

-mode
mode_
name

Specifies the mode in which to perform timing analysis.

-
no_he
ader

Suppresses header information in the output file. This is useful for comparing the results of
different versions.

-
only_
const
rain_
scano
uts

Sets output delay constraints only on scanout ports. By default, all outputs are constrained.
This option is only compatible with the -mode shift option.

-
repla
ce

Overwrites the output PrimeTime script file, if it exists.

-wft
wft_na
me

Specifies the WaveformTable as defined in the STIL protocol file from which the timing
data is gathered. If well-known WFT names are defined, they can be abbreviated as
follows: default (_default_WFT_), launch (_launch_WFT_), capture (_capture_WFT_),
launch_capture (_launch_capture_WFT_). This option can be specified two times, if
necessary.

-unit
unit

Specifies ps (picoseconds) if the protocol uses ps. The default is ns (nanoseconds).

The write_timing_constraints procedure and options accept abbreviations.

The mode_name can be either shift, capture, last_shift, or update. Shift mode uses
the constraints from the load_unload procedure and configures the design to analyze
timing during scan chain shifting. Capture mode (the default) uses constraints from the
capture procedures and configures the design to analyze timing during the capture cycles.
Last_shift mode analyzes the timing of the last shift cycle and the subsequent capture
cycle. This is normally used for analyzing the last shift launch transition pattern timing.
Update mode analyzes the timing of the last shift cycle, capture cycle, and first shift cycle
to determine the timing of the DFTMAX Ultra cache registers or the DFTMAX shift power
groups control chain latches.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1483

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

The -wft option causes the timing used for the analysis to be specified separately from
the mode specification. The argument to the -wft option must be a valid WaveformTable
in the SPF. Well-known WFT names can be abbreviated . You can use the -wft option
one or two times in a single command. If two WFTs are specified, two cycles are timed.
The first WFT is used for the first cycle timing and the second WFT is used for the second
cycle. Two-cycle analysis is done by superimposing two cycles, offset by a period, for each
clock The default WFT name is ._default_WFT_.

You should call the write_timing_constraints procedure for each mode. A separate
script is created for each mode, and sourced in PrimeTime during separate sessions.

The following examples show the usage of the -mode and -wft options.

To validate shifting:

-mode shift -wft _slow_WFT_

To validate stuck-at capture cycles:

-mode capture -wft default

To validate system clock launch capture cycles for transition faults:

-mode capture -wft launch -wft capture

To validate the timing between shift and capture for transition faults:

-mode last_shift -wft default -wft _fast_WFT_

Note the following:

• The 'force PI' and 'measure PO' times are relative to virtual clocks in PrimeTime. The
'force PI' virtual clock rises at 0, and the 'measure PO' clock falls at the earliest PO
measure time. Input and output delays are specified relative to these clocks.

• For the two WFT modes, all the clock ports will have two superimposed clocks
representing the two cycles that need to be analyzed.

• The end-of-cycle measures produce cycle times of double the normal cycles to account
for the expansion of vectors into multiple vectors.

• You should carefully review the generated PrimeTime script to ensure the static timing
analysis configuration is as expected.

• In PrimeTime, the flow of setting up the design does not change. The
design, SDF, parasitics, and so forth are read. Next, the script generated by
write_timing_constraints in TestMAX ATPG is sourced in PrimeTime; for example:

pt_shell> source pt_shift.tcl

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1484

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

Making Adjustments for OCC Controllers
If you source the script written by the write_timing_constraints procdure inside the
pt_shell, and an internal clock source (for example, OCC_controller_clock_root) is
included, the following message is echoed:

TMAX2PT WARNING: Internal clock OCC_controller_clock_root timing is
defaulted
Adjust this timing to correct values before checking.
In this case, the script written by the write_timing_constraints procedure does not
include all of the information required to perform the clock gating check in PrimeTime.
The clock gating check is important and should be done for both maximum and minimum
timing.

The following steps show you how to create a clock gating check script from the script
written by the write_timing_constraints procedure:

1. Locate the create_clock commands for each OCC clock, and change the
source_object to the PLL source for the OCC.

2. In each corresponding create_generated_clock command, change the -source
argument to match the PLL source.

3. Add the following command to the clock gating check script:

set_clock_gating_check -high OCC_clock_inst

In this case, OCC_clock_inst is the instance name (without the pin name) of the
OCC clock source. This step is required for OCC controllers that use multiplexors or
combinational gating. However, you must skip this step for OCC controllers that use
integrated clock-gating latches, since they already have clock gating checks defined for
them in the library.

4. Add the following commands to enable the clock gating check to verify the slow (shift)
clock gating in addition to the fast (capture) clock gating:

remove_case_analysis scan_enable

set_false_path -from scan_enable -to [get_clocks OCC_clock]
In this case, OCC_clock refers to all OCC clocks defined by the create_clock or
create_generated_clock commands.

After you make these changes, the clock gating check is performed when you run the
report_timing command. For more discussion of static timing analysis with OCC
clocks, see SolvNet Article #022490: Static Timing Analysis Constraints for On-Chip
Clocking Support.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1485

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/022490.html
https://solvnet.synopsys.com/retrieve/022490.html

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

Performing an Analysis for Each Mode
As discussed previously, the flow involves performing a separate timing analysis for each
mode. This is illustrated in the following figure. Example usages for various common
modes are given in the following paragraphs.

Figure 250 Analysis of Three Modes Flow Example

   

To analyze timing for when the scan chain is shifting, the following is suggested:

TEST-T> write_timing_constraints pt_shift.tcl –mode shift \
 –wft wft_name

You must select the WaveFormTable defined in the STL procedure file to be used during
the shift cycle and specify it by using the -wft option.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1486

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

For capture cycles for stuck-at faults, the following usage is suggested:

TEST-T> write_timing_constraints pt_capture.tcl \
 -mode capture -wft <wft_name>

You must select the WaveFormTable defined in the STL procedure file to be used during
the capture cycles and specify it by using the -wft option.

For analysis of transition fault patterns using system clock launch, the following usage is
suggested:

TEST-T> write_timing_constraints pt_trans_sys_clk.tcl \
 -mode capture -wft <launch_wft_name> -wft <capture_wft_name>

You must select the WaveFormTables defined in the STL procedure file to be used for
the launch and capture cycles and specify them by using the -wft option. The first WFT
is used as the launch WFT and the second WFT is used as the capture WFT. Launch-
capture can be done in the same way as the stuck-at capture analysis above, with the
WFT being the launch_capture.

For analysis of transition fault timing for last-shift launch, the following usage is suggested:

TEST-T> write_timing_constraints pt_last_shift.tcl \
 -mode last_shift -wft <shift_wft_name> -wft <capture_wft_name>

You must select the WaveFormTables defined in the STL procedure file to be used for
the shift and capture cycles and specify them by using -wft option. The first WFT is
used in the launch cycle and the second WFT is used in the capture cycle. Constraints
are specified only as set_case_analysis if both cycles have the same TestMAX ATPG
constraints. Exceptions, such as false_path, are specified only for the capture cycle. You
should check that scan-enable transitioning in the second cycle meets the setup time for
the capture clock in the second cycle. The same mode can time both the shift to capture
transition, and the capture to shift transition.

You can use the -mode update option to analyze timing for the DFTMAX Ultra cache
registers or the DFTMAX shift power groups control chain latches. The suggested usage is
as follows:

TEST-T> write_timing_constraints pt_update.tcl –mode update

With this mode, the constraints file defines either a $dftmax_ultra_cache_cells
variable or a $spcc_cache_cells variable, depending on the compression architecture. In
PrimeTime, use this variable to check the cache register timing, as shown in the following
example:

pt_shell> report_timing –to $dftmax_ultra_cache_\
 cells -delay min_max
pt_shell> report_timing –from $dftmax_ultra_cache_cells \
 -delay min_max

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1487

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

This analysis mode is intended only for analyzing the DFTMAX Ultra cache registers or
the DFTMAX shift power groups control chain latches. You should still perform full-design
analysis with constraints generated for the shift and capture modes.

If you are generating separate constraints for transition and stuck-at timing, you do not
need to do this for update mode because the stuck-at timing is the worst case for updating
the cache registers due to the shorter capture cycle. If on-chip clocking is used, the
constraints should not be used for any other purpose than checking timing to and from the
variables, because the clock definitions must be modified in this case.

Implementation
The timing waveforms for clocks and signals reflect what is used on the tester. Input and
output timing are relative to virtual clocks with prefixes "forcePI" and "measurePO" (see
the following figure). These clocks are impulse clocks with 0 percent duty cycles. The
forcePI virtual clocks pulse at the beginning of the cycle. The measurePO clocks pulse at
the earliest measure PO time. The timing data is that used for the TestMAX ATPG DRC
run.

Figure 251 Waveforms Used For Timing

   

Each PI, PO, and PIO is listed individually, because each can have a separate input or
output delay. Also, each clock is individually listed.

For delay test timing analysis, a single clock net can have clock waveforms that vary due
to different waveform tables. For example, the waveform might change between the last
shift cycle and the capture cycle. PrimeTime has some facilities to handle this situation.
This involves superimposing two clock cycles on top of each other, offset by the period of
the first cycle. Each cycle will have its own set of forcePI and measurePO virtual clocks.
This is shown in the following figure. The WFTs used are based on the order specified.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1488

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Generating PrimeTime Constraints

Feedback

Figure 252 Superimposed Cycles For Two WFTs

   

Note:
The create_generated_clocks command is used to allow clock
reconvergence pessimism reduction to work on the two pulses.

Note that the analysis with superimposed clocks is specific to the two cycles specified.
They do not cover other cycles, such as setup and propagation cycles around the launch
and capture cycles of a system clock launch pattern.

The write_timing_constraints script attempts to apply a minimal set of timing
exceptions to aid accurate timing analysis. For the last_shift mode, false and multicycle
paths from the capture cycle are used. Case analysis exceptions are applied for multiple
cycle modes only if both cycles have the same PI constraints during ATPG.

For capture cycles of end-of-cycle measures, the waveforms are expanded into a two-
cycle period to adjust for the expansion of each capture vector into multiple vectors (see
the following figure). Shift cycles remain single cycle.

Figure 253 End of Cycle Pattern Expansion

   

Another check is the update mode timing requirement. In the update mode, the cache
registers in the decompressor must capture data at the conclusion of the scan shift
operation. When the next scan shift operation starts, the data from the cache registers
must meet setup time requirements at their destinations. This means that the cache
register data propagates in the entire capture operation. The time window for this check is
the last scan shift of one pattern, followed by the capture operation, and completed by the
first scan shift of the next pattern.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1489

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Converting Timing Violations Into Timing Exceptions

Feedback

Figure 254 Update Mode Timing Requirement

   

Along with the scan clocks, the scan enable (test_se in the preceding figure) is defined
as a clock. This is required because the scan enable is used as the clock of the cache
registers, which means the update mode can’t be combined with other static timing
analysis modes. The lower waveforms show a typical bit of the cache register and the
position in which the bit is updated during the check.

Converting Timing Violations Into Timing Exceptions
Timing exceptions can negatively impact ATPG efficiency. You can ensure ATPG efficiency
by using only those timing exceptions that apply directly to the current ATPG environment
and ignoring others that are irrelevant to tester timing. The following flow describes how to
convert timing violations into timing exceptions:

1. Set up TestMAX ATPG in the appropriate mode.

2. Follow the steps described in Generating PrimeTime Constraints.

3. Use the write_exceptions_from_violations PrimeTime Tcl procedure described in
this section.

4. Read the results into TestMAX ATPG using the read_sdc command. (Don't read the
results of step 2 at this time, since they are implicit in the TestMAX ATPG setup and will
reduce efficiency if applied again.)

The write_exceptions_from_violations procedure is part of the $SYNOPSYS/auxx/
syn/tmax/pt2tmax.tcl script. To use this Tcl script, source it into pt_shell, set up the
timing environment, and then run it. This script converts all timing violations into timing
exceptions, then applies them to ensure that timing is clean. When the timing isn’t clean,
the newly found timing violations are converted. Each update check conversion process is
considered an iteration. The new exceptions are written in SDC format.

The syntax for the write_exceptions_from_violations procedure is as follows:

write_exceptions_from_violations
[-output filename]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1490

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Converting Timing Violations Into Timing Exceptions

Feedback

[-specific_start_pin]
[-max_iterations number]
[-delay_type <max | min | min_max>]
[-full_update_timing]
[-pba]
[-slack crit_slack]
[-man]

Argum
ent

Description

-
output
filena
me

Writes the output to a specific file name. The default is tmax_exceptions.sdc.

-
specif
ic_sta
rt_pin

Writes separate exceptions for different outputs of a violating cell. The default is one
exception per startpoint cell. This switch can improve the efficiency of the timing
exceptions on some designs, especially designs in which some memory paths violate
timing but other paths with the same memories do not. However, this analysis requires
multiple iterations, which can dramatically increase the runtime.

-
max_it
eratio
ns
number

Iterates the specified number of times before placing blanket exceptions on endpoints to
ensure that timing is met. The default is 40.

-
delay_
type
<max |
min |
min_ma
x>

Specifies which violations to convert to timing exceptions.
The max argument converts setup time violations to exceptions.
The min argument converts hold time violations to exceptions.
The min_max argument (the default) converts both setup and hold time violations to
exceptions.

-
full_u
pdate_
timing

Forces a full timing update for the second iteration, and all later iterations, of the update
check conversion process. You should use this option when violating paths cause
excessive runtime during timing updates.

-pba Runs timing analysis using the "Path" mode of path-based analysis. In most cases, this
option reduces the number of violating paths. However, this additional analysis affects
the runtime.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1491

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Importing PrimeTime Path Lists

Feedback

Argum
ent

Description

-slack
crit_s
lack

Sets the minimum non-violating slack. The critical slack can be positive or negative.
The default is 0.0. You can use this option to reduce the number of timing exceptions
when testing several paths with small timing violations. In this case, use a small negative
number as the critical slack. This option can be used for other purposes since the critical
slack can be positive or negative.

-man Prints the syntax message.

Importing PrimeTime Path Lists
The pt2tmax.tcl file included with TestMAX ATPG consists of a Tcl procedure, called
write_delay_paths, which is used for both internal and I/O path selection. This Tcl
procedure generates a list of critical paths in the required DSMTest format according to the
criteria you specify.

You will need to set the case analysis in PrimeTime to correspond with the device in test
mode and operating on the tester. This can be done automatically using the script written
by the write_timing_constraints command in the tmax2pt.tcl utility (see Appendix D).

You should never use negative-slack (failing) paths for hold time ATPG. For path
delay ATPG, you might want to exclude negative-slack paths, depending on the
application of the patterns. To prevent negative-slack paths from being included in the
path file, you should first run the write_exceptions_from_violations pt2tmax.tcl
command, then run the write_delay_paths command. One of the effects of the
write_exceptions_from_violations command is that it sets all violating paths as false
paths in PrimeTime, so they will not be considered by the write_delay_paths command.
When running the write_exceptions_from_violations command, make sure to use
either the –delay_type min or -delay_type min_max switches for hold paths, and either
the -delay_type max or -delay_type min_max switches for delay paths.

The write_delay_paths procedure is used for both delay paths and hold time paths.
Note that it isn’t necessary to write out hold time paths to or from I/O ports, or use different
launch and capture clocks, since ATPG will not attempt to detect these paths.

The syntax for write_delay_paths procedure is as follows:

write_delay_paths
filename

[-capture clock_name]
[-cell pin_name]
[-clock clock_name]

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1492

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Importing PrimeTime Path Lists

Feedback

[-delay_type <max | min>]
[-group group_name]
[-help]
[-IO [-each]]
[-launch clock_name]
[-man]
[-max_paths num_paths]
[-net pin_name]
[-noZ]

[-nworst num_per]
[-pba]
[-slack crit_time]
[-version]

Argument Definition

filename Name of the file where the paths are written.

-capture clock_name Selects the paths ending at the clock_name domain. The
-capture
option is incompatible with the
-clock
,
-group
, and
-IO
options.

-cell pin_name Selects the path(s) for each input of a cell connected to the
pin_name
. The
-cell
option is incompatible with the
-each
and
-net
options.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1493

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Importing PrimeTime Path Lists

Feedback

Argument Definition

-clock clock_name Selects the paths in
clock_name
domain.

-delay_type <max |
min>

The
max
argument (the default) writes paths suitable for path delay ATPG. The
min
switch writes paths suitable for hold time ATPG.

-each Selects the path(s) for each I/O. The
-IO
option must also be specified. The
-each
option is incompatible with the
-cell
and
-net
options.

-group group_name Selects paths from the existing
group_name
or selects a list of path groups and writes delay paths for every path group
in the list. -The
-max_paths
option is applied separately to each group. The -group option is
incompatible with the
-capture
,
-clock
, -IO, and
-launch
options.

-help Prints syntax information for this procedure.

-IO Writes I/O paths. The default is to only write internal paths.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1494

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Importing PrimeTime Path Lists

Feedback

Argument Definition

-launch clock_name Selects paths starting from the specified clock domain. The
-launch
option is incompatible with the
-clock
,
-group
, and
-IO
options.

-man Prints help information for this procedure.

-max_paths
num_paths

Specifies the maximum number of paths to be written. The default is 1.

-net pin_name Selects the path(s) for each fanout connected to the specified pin_name.
The
-net
option is incompatible with the -cell and
-each
options.

-noZ Suppresses paths through three-state enables. Note that this option is
case-sensitive.

-nworst num_per Specifies the number of paths to each endpoint. The default is 1.

-pba Uses the exhaustive-effort level of path-based analysis to gather paths.

-slack crit_time Writes paths with a slack less than the specified
crit_time
. The default is 1,000,000.

-version Reports the version number.

Note that the write_delay_paths procedure and options accept abbreviations. The
pt2tmax.tcl file, found under $SYNOPSYS/auxx/syn/tmax, must first be sourced:

pt_shell> source pt2tmax.tcl
To select a set of target critical paths, use the write_delay_paths command:

pt_shell> write_delay_paths -slack 6 -max_paths 100 \
paths.import

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1495

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Importing PrimeTime Path Lists

Feedback

Path Definition Syntax
The following syntax is used to define critical delay paths. Keywords are shown in bold
and arguments are shown in italics. Brackets ([]) enclose optional blocks, and a vertical
bar (|) indicates that one of several fields must be specified.

$path {
[$name path_name ;]
[$cycle required_time ;]
[$slack slack_time ;]
[$launch clock_name ;]
[$capture clock_name ;]
$transition {
pin_name1 ^ | v | = | ! ;
pin_name2 ^ | v | = | ! ;
…
pin_nameN ^ | v | = | ! ;
]+
}
[$condition {
pin_name1 0 | 1 | Z | 00 | 11 | ZZ | ^ | v ;
pin_name2 0 | 1 | Z | 00 | 11 | ZZ | ^ | v ;
…
pin_nameN 0 | 1 | Z | 00 | 11 | ZZ | ^ | v ;
}]
}
Where,

• $name - Assigns a name to the delay path

• $cycle - Time between launch and capture clock edges

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1496

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
Importing PrimeTime Path Lists

Feedback

• $slack - Available time margin between the $cycle time and calculated delay of the
path

• $launch - Launch clock primary input to be used

• $capture - Capture clock primary input to be used

• $transition - (Required) Describes the expected transitions of path_startpoint, output
pins of path cells, and path_endpoint.

• $condition - (Optional) allows the user to add more constraint for testing the
associated path.

• Argument signal notation: V - falling transition ^ - rising transition = - transition same as
previous node ! - transition inverted with respect to first node in the path 0 - node must
be set to "0" during V2 1 - node must be set to "1" during V2 Z - node must be set to
"Z" during V2 00 - node must be set to "0" during V1 and remain during V2 11 - node
must be set to "1" during V1 and remain during V2 ZZ - node must be set to "Z" during
V1 and remain during V2

The following example of a path definition file shows two path delay faults that can be
created manually or by a third-party timing analysis tool:

$path {
$name path_1 ;
$transition {
P201/C4/DESCTL/EN_REG/Q ^ ;
P201/C4/DESCTL/C0/U62/CO ^ ;
P201/C4/DESCTL/C0/U66/X v ;
P201/C4/DESCTL/C0/Q2_REG/D v ;
}
}
$path {
$name path_2 ;
$transition {
. ;
. ;
. ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1497

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

}

stilgen Utility and Configuration Files
The stilgen utility can be used for either pattern porting or protocol generation. You can
access this utility at the following location:

$SYNOPSYS/linux64/syn/bin/stilgen
The stilgen syntax and configuration file syntax for pattern porting and protocol generation
are different and are described in the following sections:

• Using stilgen for Pattern Porting

• Using stilgen for Protocol Generation

• Pattern Porting Example

• Protocol Generation Notes

• Supported Configurations

• Limitations

Using stilgen for Pattern Porting
The following stilgen sytnax is used for pattern porting:

stilgen -config_file config.txt [-top_spf file_name] [-core_stil file_name]
[-output_ported_stil file_name] [-verbose] [-check_only] [-print_include]
[-exclude option_name] [-gzip] [-help]

Argument Description

-config_file
config.txt

This is a required configuration file. For details, see stilgen Configuration File
Syntax for Pattern Porting.

-top_spf
file_name

Overwrites the top-level protocol file specified in the configuration file.

-core_stil
file_name

Overwrites the core patterns file specified in the configuration file.

-
output_porte
d_stil
file_name

Specifies the file name or overwrites the file name in the configuration file for
output ported patterns file.

-verbose Prints verbose information on processed sections.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1498

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

Argument Description

-check_only Checks the accuracy of the configuration file information.

-
print_includ
e

Prints the sections identified by the include files.

-exclude
option_name

Excludes printing the information pointed to by an option in the pattern section.
Accepted options: setup, patterns and all.

-gzip Saves the output file in .gz format.

-help Prints command usage and configuration file syntax.

stilgen Configuration File Syntax for Pattern Porting
The configuration file for pattern porting describes the input files and output files, and the
relationship between the core-level test ports and top-level test ports. The syntax for this
file is as follows:

Field Description

.TOP_SPF Specifies the top-level STIL protocol file with the top-level design name and the
pattern_exec to be used.
Example:
.TOP_SPF top_tmax.spf des_unit wrp_if

.CORE_STI
L

Specifies the core-level STIL-based pattern file and its port mapping file, the instance
name of the core, the core design, and the pattern exec in the same order for all
cores.
Example:
.CORE_STIL
U1_core.stil u1_portmap.txt U1 CORE1 wrp_if
U2_core.stil u2_portmap.txt U2 CORE2 wrp_if
U2_core.stil u2_portmap.txt U3 CORE3 wrp_if

.OUTPUT_P
ORTED_STI
L

Specifies the output top-level ported STIL-based patterns.
Example:
.OUTPUT_PORTED_STIL ported.stil

.MAP_FORM
AT

Specifies the mapping format: core2top or top2core. The default is top2core. This
format defines the scan-in ports, scan-out ports, clocks, and scan-enable signals.
Example:
.MAP_FORMAT top2core

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1499

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

Field Description

.TMAX_SPF Specifies the source of the top-level protocol. Use 1 if generated by TestMAX ATPG
and 0 otherwise.
Example:
 .TMAX_SPF 1

Port-Mapping File Syntax
The port-mapping file for pattern porting describes the top-level and corresponding core-
level scan-in, scan-out, scan clock, and scan-enable/wrapper-shift ports:

Field Description

.SCAN_
IN

Specifies the mapping list or file names of top-level and corresponding core-level scan-in
ports.

.SCAN_
OUT

Specifies the mapping list or file names of top-level and corresponding core-level
scan-out ports.

.CLOCK Specifies the mapping list or file names of top-level and corresponding core-level clock
ports.

.SCAN_
EN

Specifies the mapping list or file names of top-level and corresponding core-level
scan-enable/wrapper-shift ports.

Using stilgen for Protocol Generation
The following stilgen syntax is used for protocol generation:

stilgen -config_file config.txt -protocol

Argument Description

-
config_fil
e
config.txt

This is a required configuration file. For details, see stilgen Configuration File Syntax
for Protocol Generation.

-protocol This option is required for protocol generation.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1500

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

stilgen Configuration File Syntax for Protocol Generation
The syntax for the configuration file used for protocol generation is as follows:

INPUT_SPF Specifies the input protocol file with optional port mapping file and pattern_exec.
Example:
INPUT_SPF input.spf port_map -patternexec Internal_scan

OUTPUT_SPF Specifies the name of the generated protocol file.
Example:
OUTPUT_SPF output.spf

DFTMAX_SPF Specifies the name of DFTMAX CODEC protocol files to be ported into the output
protocol.
Syntax:
DFTMAX_SPF SPF_file [port_map_file] [-shared_si] [-uniquify_string
string]
-exclude_chain chain_name
Excludes specified chain that exists in DFTMAX_SPF
-uniquify_string string
Specifies the string used to uniquify each codec.
-shared_si
Specify this option when using shared inputs and dedicated outputs protocol
generation flows.

LOAD_UNLOAD_
SPF

Replaces the load_unload section of INPUT_SPF file with the load_unload
specified protocol file.
Syntax:
LOAD_UNLOAD_SPF SPF_file [-patternexec name]

TEST_SETUP_S
PF

Replaces the test_setup section of INPUT_SPF file with the test_setup section
in the specified protocol file.
Syntax:
TEST_SETUP_SPF SPF_file [-patternexec name]

CLOCKSTRUCTU
RES_SPF

Replaces the ClockStructures section of the INPUT_SPF file with the
clockstructures section in the specified protocol file.
Syntax:
CLOCKSTRUCTURES_SPF SPF_file [-patternexec name] [-patternexec
name] [-prefix name]

ADD_CLOCK_PO
RT

Adds the specified port in the clock list with user-specified waveform structure.
Syntax:
ADD_CLOCK_PORT port_name -period float_value -rise_time float_value
-fall_time float_value -signalgroup name

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1501

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

ADD_PORT Adds the port in the generated protocol file.
Syntax:
ADD_ PORT port_name -direction <in|out|inout>
[-signalgroup<_si|_so>]

REMOVE_PORT Removes the port from the protocol file from all sections, including constraints.
Syntax:
REMOVE_PORT port_name1 port_name2

TOGGLE_CONST
RAINT

Toggles the specified port constraint in the specified sections.
Syntax:
TOGGLE_CONSTRAINT port_name [-section
<all(default)|capture|load_unload|master_observe|test_setup>]

LOAD_PIPELIN
ESTAGES

Specifies the total load pipeline stages in the design.
Syntax:
LOAD_PIPELINESTAGES integer_value

UNLOAD_PIPEL
INESTAGES

Specifies the total unload pipeline stages in the design.
Syntax:
UNLOAD_PIPELINESTAGES integer_value

MAP_FORMAT Specifies the format used in the port mapping file. Accepted strings are core2top
or top2core

SIMILAR_PORT Specifies the file with the list of ports which are similar. The file format uses two
columns:
• The first column is the new port name listed in ADD_PORT field or

ADD_CLOCK_PORT field.
• The second column is the old port name of the INPUT_SPF field.
This will assign the old port values to the new port in TIMING, PROCEDURES,
MACRO sections.
Syntax:
SIMILAR_PORT file_name

CHANGE_SIGNA
L_GROUP

Changes either:
• The port from one signal group to another
• Adds a port to a specified signal group
• Removes a port from a specified signal group
Syntax:
CHANGE_SIGNAL_GROUP port_name [-from signal_group_name] [-to
signal_group_name]

TEST_SETUP_W
AVEFORM

Specifies a waveform definition to be used with TEST_SETUP_SPF.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1502

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

CAPTURE_PROC
_SPF

Replaces the capture procedure from the file specified by the INPUT_SPF field to
the capture procedure from the specified protocol file.
Syntax:
CAPTURE_PROC_SPF SPF_file [-patternexec name]

UNIQUIFY_STR
ING

Specifies a uniquifying string to uniquify the DFTMAX codecs.
Syntax:
UNIQUIFY_STRING name

CHANGE_CONST
RAINT

Changes the constraint of a specified port in the user-specified sections.
Syntax:
CHANGE_CONSTRAINT 01XNZP port_name [-section
<all(default)|capture|load_unload|master_observe|test_setup>]

REMOVE_CONST
RAINT

Removes the constraint of a specified port in the user-specified sections.
Syntax:
REMOVE_CONSTRAINT port_name [-section
<all(default)|capture|load_unload|master_observe|test_setup>]

ADD_CONSTRAI
NT

Adds the constraint of a specified port in the user-specified sections.
Syntax:
ADD_CONSTRAINT 01XNZPport_name [-section
<all(default)|capture|load_unload|master_observe|test_setup>]

ADD_SCAN_CHA
IN

Adds a scan chain with the specified scan signals in the protocol file.
Syntax:
ADD_SCAN_CHAIN chain_name scan_in_port scan_out_port

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1503

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

Pattern Porting Example

   

The example figure shows two cores U1 and U2 and their scan-clocks, scan-inputs, and
scan-outputs. Each core has dedicated scan-ins and dedicated scan-outs.

The following is an example of a configuration file for pattern porting:

.OUTPUT_PORTED_STIL top_ported.stil

.TOP_SPF top_tmax.spf TOP

.CORE_STIL
core1.stil u1_portmap.txt U1 core1 ScanCompression_mode_occ_bypass
core2.stil u2_portmap.txt U2 core2 ScanCompression_mode_occ_bypass
.TMAX_SPF 1

The following is an example of port-mapping files of cores U1 and U2.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1504

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

   

Protocol Generation Notes
Note the following when using stilgen for generating a STIL protocol file:

• When a STIL protocol file is used for updating procedures, you must use the complete
protocol and cannot use sections of the protocol file.

Example:

TEST_SETUP_SPF spf_file

• There are cases when using DFTMAX serializer or DFTMAX Ultra. The following
example is not supported by the stilgen utility:

"CORE_0_U_deserializer_ScanCompression_mode[26]" = 1
To correct the protocol, do one of the following steps:

1. Use the following syntax:

"CORE_0_U_deserializer_ScanCompression_mode"[26] = 1
2. Use the stilgen utility to generate the protocol.

3. Specify set test_serializer_pseudo_signals_change true in the TestMAX
DFT scripts to regenerate correct protocol files.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1505

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

Supported Configurations
The following are some of the configurations supported by STILGen:

1. Dedicated scan-ins and dedicated scan-outs.

   

2. Dedicated scan-ins and dedicated scan-outs with pipelines at the top-level.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1506

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

   

3. Shared scan-in and dedicated scan-outs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1507

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1508

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix D: Utilities
stilgen Utility and Configuration Files

Feedback

4. Shared scan-in and dedicated scan-outs with pipelines at the top-level.

   

Limitations
STILGen has the following limitations:

1. OCC insertion is not supported at the top-level.

2. Mixing modes like uncompressed mode with compressed mode is not supported.

3. The top-level pipeline number needs to be the same across the cores.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1509

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

E
STIL Language Support

The following sections of this appendix provide a brief overview of the Standard Test
Interface Language (STIL), and identifies how TestMAX ATPG uses the STIL constructs.

• STIL Overview

• TestMAX ATPG and STIL

• STIL Conventions in TestMAX ATPG

• IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

• Elements of STIL Not Used by TestMAX ATPG

• Testing the STIL Procedure File

STIL Overview
The STIL language is an emerging standard for simplifying the number of test vector
formats that automated test equipment (ATE) vendors and computer-aided engineering
(CAE) tool vendors must support.

As an emerging standard, STIL is evolving with additional standardization efforts. TestMAX
ATPG makes use of both the current STIL standard (IEEE Std. 1450-1999 Standard Test
Interface Language (STIL) for Digital Test Vectors), and the IEEE Std. 1450.1 Design
Extensions. Many of the extensions were developed in support of TestMAX ATPG users
and subsequently proposed to the IEEE Std. 1450.1 working group. Both of these efforts
are detailed in the following sections:

• IEEE Std. 1450-1999

• IEEE Std. 1450.1 Design Extensions to STIL

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1510

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
STIL Overview

Feedback

IEEE Std. 1450-1999
The Standard Test Interface Language (STIL) provides an interface between digital test
generation tools and test equipment. The following defines a test description language:

• Facilitates the transfer of digital test vector data from CAE to ATE environments

• Specifies pattern, format, and timing information sufficient to define the application of
digital test vectors to a DUT

• Supports the volume of test vector data generated from structured tests

STIL is a representation of information needed to define digital test operations in
manufacturing tests. STIL is not intended to define how the tester implements that
information. While the purpose of STIL is to pass test data into the test environment, the
overall STIL language is inherently more flexible than any particular tester. Constructs
might be used in a STIL file that exceed the capability of a particular tester. In some
circumstances, a translator for a particular type of test equipment might be capable of
restructuring the data to support that capability on the tester; in other circumstances,
separate tools might operate on that data to provide that restructuring.

The STIL language can be used for defining the test protocol input and the pattern input
and output. STIL test protocol input is used for various design rule checking (and tester
rules checking) and drives the test generation process. ATPG-generated STIL patterns
might be structured such that intra cycle timing, cyclization of test and raw data are
separated into, respectively, Timing, Procedure,s and Pattern Blocks. This structure
simplifies various rules checking, maintenance, and pattern mapping for system-on-chip
testing.

To understand more about STIL, refer to the IEEE Std. 1450.0-1999 Standard Test
Interface Language (STIL) for Digital Test Vectors. For general information about the
STIL standard, click the Executive Overview link on the STIL home page at http://
grouper.ieee.org/groups/1450/index.html.

IEEE Std. 1450.1 Design Extensions to STIL
TestMAX ATPG makes use of several IEEE Std. 1450.1 Design Extensions to support both
test program definition and internal tool behaviors. Many of the extensions were developed
in support of TestMAX ATPG users and subsequently proposed to the 1450.1 working
group. While these extensions are used by TestMAX ATPG, they are not generated or
present when stil99-compliant patterns are written, as described in the next section.
The presence of 1450.1 extensions allows for a more flexible definition of STIL data.
Without these constructs, STIL is more restrictive in its application, requiring complete
regeneration when certain expected constructs are modified, which in turn can lead to a
usage environment that is less flexible and is more likely to fail than an environment with
the 1450.1 extensions present.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1511

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
TestMAX ATPG and STIL

Feedback

The documentation for these extensions is being developed by the IEEE working group
and is expected to go to ballot during 2002. After ballot, the document is available through
the normal IEEE channels. Until the ballot is complete, copies might be obtained by
contacting the working group. See this IEEE web site for information on this development
effort:http://grouper.ieee.org/groups/1450/dot1/index.html

TestMAX ATPG and STIL
TestMAX ATPG uses STIL in several different contexts. Design information can be
provided to TestMAX ATPG through the STIL procedure file . TestMAX ATPG supports
a subset of STIL syntax for input to describe scan chains, clocks, constrained ports, and
pattern/response data as part of the STL procedure file definitions. Complete test sets
can be written out in STIL format. Also, Tester Rules Checking is provided through STIL-
formatted files.

In constructing a STL procedure file, you can define the minimum information needed by
TestMAX ATPG. However, any STIL files written as TestMAX ATPG output contain an
expanded form of the minimum information and may also contain pattern/response data
that the ATPG process produces. TestMAX ATPG reads and writes in STIL, so after a STIL
file is generated for a design, TestMAX ATPG can read it again at a later time to recover
the clock/constraint/chain data, the pattern/response data, or both.

TestMAX ATPG can read some constructs that it does not generate. For example, an
external pattern source can be read into TestMAX ATPG for fault simulation but it cannot
be written out with the same constructs as were read in.

The generation of the 1450.1 extensions is controlled by the -stilor -stil99 option to
the write_patterns command. When the -stil99 option is used, then only standard
IEEE-1450 syntax is used without, of course, the benefit of the added functionality enabled
by the extensions. Full flexibility and robust STIL definitions are supported via the -stil
option.

STIL Conventions in TestMAX ATPG
STIL supports a very flexible data representation. TestMAX ATPG has defined conventions
in the use of STIL to represent data in a uniform manner yet maintain this flexibility. These
conventions are discussed in the following sections:

• Use of STIL Procedures

• Context of Partial Signal Sets in Procedure Definitions

• Use of STIL SignalGroups

• WaveFormCharacter Interpretation

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1512

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
STIL Conventions in TestMAX ATPG

Feedback

Use of STIL Procedures
When possible, TestMAX ATPG generates calls to STIL procedures from the pattern
body. STIL procedures are used in general by TestMAX ATPG because a STIL procedure
is self-contained; that is, the state of all signals used in a procedure is established and
maintained only during that procedure execution. On return at the end of a procedure,
the state of the signals is restored to the values they maintained before the call. This is
in contrast to the STIL macro construct, where the final state of these signals must be
returned and applied in the patterns before continuing to process STIL data.

By using STIL procedures, the sequence of pattern operations are insensitive to the
procedure operations. If macros were used, the next set of pattern activity would be based
on information returned from the last macro operation. Also, the execution/behavior of a
STIL macro might be different depending on the value of the signals present at the start
of the macro, whereas the behavior of the procedure is always the same. The effort both
to start a macro with the current state at the call, and to return the right information to the
calling context at the return of macro adds significant processing overhead of STIL data
when macros are present.

Also, procedure constructs are defined by the STIL standard to be maintained through
processing. Macro constructs are defined by the STIL standard to be expanded or
“flattened” during processing, and are defined to not be present after processing. While
specific processing environments might be able to maintain macro constructs, in general
(and to follow the STIL specification) macros would be processed-out or “in-lined” by tools
reading STIL data, while procedure constructs would remain in a processed stream.

Finally, because procedures are defined as standalone constructs, it is possible to
manipulate the contents of a STIL procedure (within certain constraints such as not
changing the functionality of that procedure), to manipulate the procedure without concern
of affecting the rest of the pattern operation. While this can be done with some macros as
well, because macro behavior is not constrained to the execution of that macro, changes
inside a macro can affect data in the rest of the pattern set.

Context of Partial Signal Sets in Procedure Definitions
Another consideration of TestMAX ATPG’s application of procedures is its ability to
define values for only those signals used in the procedure. While the capture procedures
reference all signals in the design (generally through application of the _pi and _po
groups), the load_unload procedure can leverage a partial signal set context.

The load_unload procedure requires establishing values only on the signals necessary
to support the scan-shift operation on the design. In addition, TestMAX ATPG supports
the definition of a load_unload procedure in the STL procedure file that references
signals later in the procedure (for example, during the shift block) that might not have been
assigned a value by the first Vector of the procedure. These capabilities allow maximum

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1513

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
STIL Conventions in TestMAX ATPG

Feedback

flexibility in interpreting the load_unload operation during test generation. When STIL test
patterns are generated by TestMAX ATPG, the load_unload procedure is “completed”
to contain all signals used in the procedure, in the first Vector (or Condition) of that
procedure, to create a standards-compliant definition. However, unspecified signals that
do not affect the scan-shift operation will not be present in this procedure.

The STIL standard defines that unused signals in a procedure are assigned DefaultState
values when the procedure is called. This is a valid state for these signals, because they
cannot affect the procedure operation. This is not a requirement of the standard, however
(requirements contain the word “shall”), and TestMAX ATPG leverages the flexibility of an
incomplete definition for generating other test formats, in particular WGL.

TestMAX ATPG uses the flexibility of deferred and unspecified signal assignment in
procedure definitions to maintain the last assigned state on these signals for WGL
generation. This option of maintaining the last-assigned-state generates a WGL test
program that minimizes transitions on signals at test, particularly transitions that don’t
affect the test behavior and might have other adverse effects.

In test contexts where STIL is being applied and procedure operations are being
“expanded” or “in-lined” in the final test program, it might be valuable to consider the
“default” handling of unused signals in the procedure to allow generation of a test that
behaves similarly to the TestMAX ATPG-generated WGL test.

Use of STIL SignalGroups
TestMAX ATPG makes use of STIL SignalGroups to simplify creation of STIL protocol
information. The STIL procedures file might be a complete set of information for certain
sections of the final STIL file, or it might be an incomplete file completed by TestMAX
ATPG when the final test file is generated.

SignalGroups are used in this context to simplify referencing to sets of signals, without
needing to define these signal collections for a specific design, which simplifies STL
procedure file creation. In order to support this operation, however, TestMAX ATPG
must assume certain naming conventions. Also, the grouping conventions that TestMAX
ATPG supports relate directly to the operations that are performed by ATPG operations to
generate test sequences.

By using STIL SignalGroups, the output pattern data generated by TestMAX ATPG is more
compact than the equivalent by-Signal constructs, and the output format is more general.
For example, it can be easier to modify a signal name when that name occurs only inside
the SignalGroups, than if that signal reference is used throughout the pattern data.

TestMAX ATPG defines two primary groups, “_pi” and “_po”, which contain an overlapping
set of InOut (bidirectional) Signal references. While this can be confusing in some
situations, by maintaining these groups this way, the context of test generation as
performed internally in TestMAX ATPG is maintained in the output patterns. This supports

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1514

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
STIL Conventions in TestMAX ATPG

Feedback

direct correspondence of the test set with the internal operations performed by TestMAX
ATPG, which in turn reduces confusion between TestMAX ATPG-based analysis of test
behaviors and the actual information present in the test. However, this information can
only be maintained completely through the use of P14501 extensions.

When only IEEE Std. 1450-1999 constructs are used, some loss of information can be
expected in STIL programs, causing test programs to be written in a way that is dependent
on the presence of constructs used. For example, bidirectional signal behavior, supported
by complete representation of both the input behavior and the output behavior in the
_pi and _po groups, respectively, allows for the potential modification of the capture
procedures without changing the pattern data, in the P14501 context. This opportunity is
much more limited under IEEE Std. 1450 constructs, as the pattern data might be written
dependent on the capture procedure constructs, and the capture procedures might not be
changed without changing the functionality of the pattern.

WaveFormCharacter Interpretation
TestMAX ATPG supports a fixed context for WaveFormCharacter (WFC) interpretation in
STIL data. A minimum set of requirements are validated against the waveforms associated
with these WFCs to avoid undue constraints and support test behaviors as necessary.
See the following table for a description of the WFC interpretations supported by TestMAX
ATPG.

Table 26 Supported WaveFormCharacter Interpretations

W
F
C

Interpretation

0 Drive-low during the waveform.

1 Drive-high during the waveform.

Z Drive-inactive (typically implemented on ATE as a driver-off operation) during the waveform.

N Drive-unknown during the waveform. This waveform, if used in the patterns, can be mapped to
any of the drive operations above without affecting the test.

P Drive an active pulse during the waveform. The pulse is either a high-going pulse or a low-going
pulse as appropriate for the type of clock. This waveform is supported only for signals identified
as clocks in the design. In path-delay contexts, the timing of this pulse must match the second
pulse of the D waveform, if the D waveform is defined.

D Drive two pulses during the waveform. This definition is supported only for path-delay MUX
operation.

E Drive an active pulse during the waveform. This definition is supported only for path-delay
MUX operation, and the timing of this pulse must match the timing of the first pulse of the D
waveform.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1515

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

Table 26 Supported WaveFormCharacter Interpretations (Continued)

W
F
C

Interpretation

H Measure-high (STIL “CompareHigh”, or “CompareHighWindow” followed by
“CompareUnknown”) during the waveform. In bidirectional contexts, this waveform must also
define a drive-inactive (STIL Z) state before performing the measure.

L Measure-low (STIL “CompareLow”, or “CompareLowWindow” followed by “CompareUnknown”)
during the waveform. In bidirectional contexts, this waveform must also define a drive-inactive
(STIL Z) state before performing the measure.

T Measure-inactive (STIL “CompareOff”, or “CompareOffWindow” followed by
“CompareUnknown”) during the waveform. In bidirectional contexts, this waveform must also
define a drive-inactive (STIL Z) state before performing the measure.

X This waveform is used by TestMAX ATPG to indicate a no-measure operation. From a STIL
perspective, the contents of this waveform can be empty; the absence of activity might imply
ATE operations to inhibit previous output measures. This waveform assumes the previous drive
state continues to be asserted when used in bidirectional contexts; TestMAX ATPG will define
a drive state before specifying an X that continues to be applied here. Note this waveform
should not contain a P state to provide the drive state because the P state does not maintain a
drive-inactive value.

IEEE Std. 1450.1 Extensions Used in TestMAX ATPG
The IEEE Std. 1450.1 extensions used by TestMAX ATPG are identified and described in
the following sections:

• Vector Data Mapping Using \m

• Vector Data Mapping Using \j

• Signal Constraints Using Fixed and Equivalent

• ScanStructures Block

Vector Data Mapping Using \m
The vector data mapping function allows for a new waveform definition to be selected for a
given waveform character in a vector. This is most useful in the case of parameter passing
to a macro or procedure; however, it can be used anywhere a waveform character string is
formed.

In certain scan test styles (such as the LSI “LNI” protocol), it is necessary to measure the
output of the design under test’s (DUT) bidirectional signals in one cycle and then drive
the same logical values on the same bidirectional signals from the tester in the next cycle,

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1516

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

while also turning the internal bidirectional signal drivers off. A test pattern thus has the
following format:

1. Load scan chains.

2. Force values on primary inputs (all clocks are off, bidirectional signals are driven by
design under test (DUT).

3. Measure primary outputs and bidirectional signals (all clocks are off).

4. Force values on primary inputs (values are the same as in cycle 2, except the internal
bidi drivers are turned off by asserting a special bidi_control input), force values on
bidirectional signals (same logical values as measured in previous cycle).

5. Pulse capture clock.

6. Unload scan chains.

Turning off the internal bidirectional drivers in cycle 4 avoids possible contentions that can
result in cycle 5 due to capturing new data into the state elements. The additional data to
be applied on bidirectional signals in cycle 4 is redundant (can be computed from the data
of cycle 3.) This test style needs to be supported without adding extra data to the STIL
patterns and without changing the waveformcharacters in the patterns. Also, ATPG rules
checking can verify the correctness of the patterns (for example, the internal bidirectional
signals are turned off in cycle 4) before actually generating test data.

Note that ATPG-generated patterns are typically guaranteed to be contention-free on all
bidirectional signals, both pre- and post-capture. Thus, the example protocol might not be
required to avoid bidi contentions. However, ATPG tools might support this protocol for
customers that have already designed their test flow with this protocol.

It is important that the bidi_control input turns off ALL internal bidi drivers in cycle 4 above.
Otherwise, a contention-free pattern could be transformed into a pattern with contentions
by the very protocol that attempts to avoid bidi contentions! For example, consider the
following example, where BIDI1 and BIDI2 are bidirectional signals, and BIDI_CTRL is an
input that, when 0, turns off the internal driver of BIDI1, but not of BIDI2:

ATPG-generated contention-free pattern:

1. Load scan chains.

2. Force values on primary inputs and bidirectional signals (force BIDI_CTRL=1; BIDI1
= Z; BIDI2 = Z;).

3. Measure primary outputs and bidirectional signals (measure BIDI1=L; BIDI2=H;).

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1517

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

4. Pulse capture clock (this has the effect of switching the internal drivers such as now
both the BIDI1 and BIDI2 internal drivers are driving 0. There is no contention,
because the tester continues to drive Z on both bidirectional signals, as in cycle 2.).

5. Unload scan chains.

The pattern above is changed, after it has been generated, to match the LNI protocol:

1. Load scan chains.

2. Force values on primary inputs and bidirectional signals (force BIDI_CTRL=1; BIDI1
= Z; BIDI2 = Z;).

3. Measure primary outputs and bidirectional signals (measure BIDI1=L; BIDI2=H;).

4. Force values on primary inputs (force BIDI_CTRL=0; BIDI1=0; BIDI2=1;).

5. Pulse capture clock (this has the effect of switching the internal drivers such as now
both the BIDI1 and BIDI2 internal drivers are driving 0. This causes a contention on
BIDI2: its internal driver, not turned off, drives 0 while the tester drives 1, as in cycle 4).

6. Unload scan chains.

Syntax
The mapping operation is specified in either the Signals or the SignalGroups block as
follows:

Signals {
sig_name < In | Out | InOut | Pseudo > {
(WFCMap (from_wfc)* -> to_wfc;)*
}
}
SignalGroups (domain_name) {
groupname = sigref_expr {
(WFCMap (from_wfc)* -> to_wfc;)*
}
}
WFCMap is an optional statement that, when used, indicates that any pattern data assigning
from_wfc to the signal or signalgroup, should be interpreted as having been assigned
from to_wfc instead.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1518

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

To use the mapping of a signal or signalgroup, a new flag is added to the cyclized pattern
data: \m Indicates that the defined mapping should be used.

If the vector mapping \m is used, but no WFCMap has been defined for the
waveformcharacter to be mapped, the same waveformcharacter is used unchanged.

Example
In the following example, the vectors are labeled to correspond to the LNI-protocol cycles
above. Cycle 3 uses the arguments passed in for _io first (HL), then cycle 4 uses them
again, this time mapped to (10), which remain in effect for cycle 5 as well.

Signals {
a In; ck In; bidi_enable In; b Out; q1 InOut; q2 InOut;
}
Procedures procdomain {
"capture_sysclk" {
W specWFT; // where all waveformchars are defined
“cycle 2": V { a=#; ck=0; bidi_enable=1; b=X; _io=ZZ ; }
"cycle 3": V { b=#; _io=%%; }
"cycle 4": V { bidi_enable=0; b=X; _io=\m ##; }
"cycle 5": V { ck=P; }
}
}
Pattern "__pattern__" {
W specWFT;
"cycle 1": Call "load_unload" { ... }
Call "capture_sysclk" { a=0; b=H; _io=HL; }
"cycle 6": Call "load_unload" { ... }
}

Vector Data Mapping Using \j
The “join” function allows you to have multiple waveform characters against the same
signal in one vector. This enables structuring of STIL pattern output using procedures.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1519

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

Syntax
Refer to “Vector Data Mapping Using \m” for the syntax definition of the WFCMap
statement.

General Example
The following is an example usage of the join function.

Signals {
b InOut { WFCMap 0x -> k; }
}
Pattern p {
V { b = 0; b = x; }
}
The following table shows examples of “two data” conditions on an InOut.

Table 27 “Two
Data” Conditions

Force Measure

0, 1, Z, N X

Z L, H, T

0 L

1 H

0 H

1 H, T

The rules for handling multiple definitions of a signal are

• The normal behavior of a WFC-assignment to a signal is to replace the last-assigned
WFC value.

• This behavior might be OVERRIDDEN on a per-vector bases, through the use of
a “join” escape sequence. The “join” allows both WFCs to be evaluated, using the
WFCMap, to resolve or specify a single new WFC that is the required effect of these
two WFCs.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1520

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

For instance, take the case where two SignalGroups have a common element in them
(signal 'b'):

_pi = '...+b';
_po = '...+b';
A procedure might “join” these two groups in a vector:

proc { cs { V { _pi=#; _po= \j #; }}}
Signal 'b' needs to be resolved based on the combinations of WFCs that might be seen by
these two groups. It might have a WFCMap declaration like

WFCMap 0x -> 0;
WFCMap 1x -> 1;
... etc. ...
This mechanism provides for the explicit resolution of “joined” data without creating new
combinations of waveforms on-the-fly.

“Joining” requires the WFCMap to define two WFCs to equate to a single new resolved
WFC. The WFCMap never requires more than two WFCs as the following figure presents:

Figure 1 WFC Example

   

Usage Example
Consider a design with one input, one output and two bidirectional signals. STIL would
declare them like this:

Signals { i:In; o:Out; b1:InOut; b2:InOut; }
STIL also defines signal groups:

Signalgroups {
"_pi" = 'i + b1 + b2';
"_po" = 'o + b1 + b2';

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1521

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

}
STIL patterns are written out using capture procedures. Unlike a “flat” vector-only STIL
output, using capture procedures has many advantages:

• Pattern cyclization is encapsulated in the capture procedures; timing in the Timing
block and data in the Pattern block. This allows easy understanding and maintenance
of the three separately.

• Rules checking (DRC) is done only on the small Procedures block, independent of the
huge Pattern block.

• Patterns are CTL (P1500) ready: only the procedures need to be modified, not the
Patterns.

Capture procedures are defined like this:

Procedures {
"capture" {
V { "_pi"=### ; "_po"=###; }
}
}
All of the previous examples are fully STIL 1450-1999 compliant.

Now let's consider a STIL pattern that includes the following:

force_all_pis { i=0; b1=Z; b2=1; }
measure_all_pos (o=H; b1=H; b2=X; }
The STIL output would translate the previous example into the following:

Call capture { "_pi"=0Z1; "_po"=HHX; }
Because of how STIL is interpreted by the consumer of the patterns, the actual arguments
are substituted for the formal arguments # in the body of the procedure, and the
signalgroups _pi and _po are expanded to their signals, resulting in:

V { i=0; b1=Z; b2=1; o=H; b1=H; b2=X; }
However, STIL also specifies that if multiple waveform characters are assigned to the
same signal in a given vector, all but the last one are ignored. Thus, the previous example
vector is equivalent to:

V { i=0; o=H; b1=H; b2=X; }
Now, how should the bidirectional assignments be interpreted? The first one, b1=H, means
“measure High on b1”. This is consistent with the intention of the ATPG pattern, although

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1522

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
IEEE Std. 1450.1 Extensions Used in TestMAX ATPG

Feedback

it leaves the ambiguity of also implying that the tester driver should be tri-stated (b1 driven
to Z) to take a measure. The STIL consumer application is supposed to take this into
account.

The second bidirectional, b2=X, means “measure X (no measure) on b2”. Unfortunately,
the drive part (b2 driven to 1) is lost. This is a real problem.

The 1450.1 solution is very simple and general: Provide a mapping to explicitly explain
what to do with two waveform character assignment. Thus, the 1450.1 procedure would be
written as:

Procedures {
"capture" {
V { "_pi"= \j ### ; "_po"= \j ###; }
}
}
Notice the addition of the “join” modifier \j. The \j refers to the WFCMap mapping table that
would be defined as:

Signalgroups {
"_pi" = 'i + b1 + b2';
"_po" = 'o + b1 + b2' {
WFCMap 0X -> 0; WFCMap 1X -> 1; WFCMap ZX -> Z; WFCMap NX -> N;
}
}
This provides an unambiguous interpretation of the previous example:

V { i=0; b1=Z; b2=1; o=H; b1=H; b2=X; }
to the required:

force_all_pis { i=0; b1=Z; b2=1; }
measure_all_pos (o=H; b1=H; b2=X; }

Signal Constraints Using Fixed and Equivalent
Structured test patterns often have signals constrained to have a certain value or
waveform during a pattern sequence. This might be required, for example, for ATPG scan
rules checking (such as a test mode signal always active) or for differential scan or clock

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1523

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
Elements of STIL Not Used by TestMAX ATPG

Feedback

inputs. The Fixed STIL construct defines signals that must have a constant waveform
character and the Equivalent construct defines signals that are linked to other signals.
These constructs help reduce pattern volume, because the value of a constraint signal
does not need to be specified explicitly in the pattern data. Also, ATPG rules checking
requires signal constraint information as input.

ScanStructures Block
Simulation of scan patterns outside the test-pattern generator is often performed to verify
timing, design functionality, or the library used to generate the patterns. The speed of
the simulator is limited by simulating the load/unload (Shift) operation of scan chains.
Optimal simulation performance is achieved with no shifts, bypassing scan chain logic and
asserting/verifying the scan data directly on the scan cells.

The ScanStructures block is extended to include additional information required for
efficient simulation of scan patterns, that is, eliminating the need to simulate load/unload
(shift) cycles. Additional constructs are defined on the ScanCell statement inside the
ScanChain block. In addition, the capability is added to the ScanStructures block to
support referencing previous ScanChain definitions from other ScanStructure blocks.

Elements of STIL Not Used by TestMAX ATPG
The following sections list the STIL output and input constructs that are not used in this
version of TestMAX ATPG:

• TestMAX ATPG STIL Output

• TestMAX ATPG STIL Input

Note that this list is provided to you as a guide for tools that are designed to read the STIL
output file generated from TestMAX ATPG.

The only elements of 1450.1 used by TestMAX ATPG are identified previously in 1450.1
Extensions Used in TestMAX ATPG; all other elements of 1450.1 are not used by TestMAX
ATPG.

This information is provided specifically from the context of TestMAX ATPG as a
standalone tool. TestMAX ATPG-generated STIL output is applied in several contexts and
tool flows, for example as part of the CoreTest environment (CoreTest is in development).
These contexts will use additional STIL constructs and behaviors not used by TestMAX
ATPG alone.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1524

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
Elements of STIL Not Used by TestMAX ATPG

Feedback

TestMAX ATPG STIL Output
Here is a list of output constructs that TestMAX ATPG does not currently support. To
understand more about these constructs, refer to the numbered paragraph in IEEE Std.
1450-1999 as indicated in the list.

The TestMAX ATPG internal pattern source will not write or produce STIL with the
constructs described in this section. Future versions might make use of these constructs
as necessary.

11. UserKeywords

TestMAX ATPG does not generate any UserKeywords. All keywords used are
those defined in the standard.

12. UserFunctions

TestMAX ATPG does not generate any UserFunctions. All timing expressions
use expressions that are defined in the standard.

17. PatternBurst > SignalGroups, MacroDefs, Procedures, ScanStructures (named
domains)

TestMAX ATPG does not generate any references to named domains from
within a PatternBurst. All references are to the globally defined blocks only.
Other contexts of STIL generation may provide named domain blocks.

17. PatternBurst > Start, Stop

TestMAX ATPG does not generate any start/stop information within a
PatternBurst. All patterns are expected to execute from the beginning to the end
of the pattern.

17. PatternBurst > PatList > pat_name {...} (optional statements per pattern)

TestMAX ATPG does not generate any pattern names in a PatList that contain
block information. The default generation of STIL data will rely on definitions in
a global SignalGroups, MacroDefs, Procedures, and ScanStructure blocks only.
Named block reference statements can be specified from other STIL contexts

18. Timing > WaveformTable > Inherit...

TestMAX ATPG does not use the Inherit statement within WaveformTables. All
waveform tables are completely self-contained.

18. Timing > WaveformTable > SubWaveforms

TestMAX ATPG does not use the SubWaveform block within the Timing
definition. All waveforms are composed of single drive and compare events.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1525

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
Elements of STIL Not Used by TestMAX ATPG

Feedback

18. Timing > WaveformTable > event_label

TestMAX ATPG does not generate any event labels. All timing information is
composed of timing values that are relative to the beginning of the period.

18. Timing -> WaveformTable > [event_num]

TestMAX ATPG does not use multiple events in a waveform. All data from a
pattern is made up of single waveform character references.

18. Timing -> WaveformTable > @ label references in timing expressions

TestMAX ATPG does not generate any relative timing. All timing values are
specified as absolute times from the start of the period.

18.2 Waveform event definitions > expect events

TestMAX ATPG does not generate any expect events. Only drive and compare
events are used.

19. Spec, Selector

TestMAX ATPG does not generate either Spec or Selector blocks. All timing
values are specified as absolute numbers.

21.1 Cyclized data > \d

TestMAX ATPG does not generate data using the decimal notation, which is
selected by use of the \d escape sequence.

21.2 Multiple-bit cyclized data

TestMAX ATPG does not generate any multiple bit vector information. All vectors
contain only one wfc per signal.

21.3 Non-cyclized data

TestMAX ATPG does not generate any non-cyclized data. All vectors are made
up of WFC data that refers to cyclized waveform data in a Timing block.

22.6 Loop statement

TestMAX ATPG support of Loop operations is very restrictive to certain contexts.
Generally, all pattern vectors are executed in a straight-line sequence.

22.7 MatchLoop statement

TestMAX ATPG does not generate any MatchLoop conditions. All patterns
vectors are executed in a straight-line sequence.

22.8 Goto statement

TestMAX ATPG does not generate any Goto statements. All patterns vectors are
executed in a straight-line sequence.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1526

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
Testing the STIL Procedure File

Feedback

22.9 Breakpoint

TestMAX ATPG does not generate any Breakpoint statements. It is assumed
that all vectors will fit into available ATE memory.

22.11 Stop

TestMAX ATPG does not generate any Stop statements within a pattern. All
patterns are expected to execute from the beginning through to the last vector.

23.1 Pattern > TimeUnit

TestMAX ATPG does not generate the TimeUnit statement. This statement is
only used with uncyclized data, which is not generated by TestMAX ATPG.

TestMAX ATPG STIL Input
Here is a list of constructs that TestMAX ATPG can read, but ignores. These will not be
written out. To understand more about these constructs, refer to the numbered paragraph
in IEEE Std. 1450-1999 as indicated in the list.

10. Include Statement

Supported (by the reader, not produced by the writer).

11. UserKeywords Statement

Ignored (by the reader, not produced by the writer).

12. UserFunctions Statement

Ignored (by the reader, not produced by the writer).

17. PatternBurst block syntax

References to named SignalGroups, MacroDefs, Procedures, and
ScanStructures statements are supported (by the reader, not produced by the
writer). Start, Stop and Termination statements are not supported by the reader.

Testing the STIL Procedure File
After creating or editing an SPF, you can reread the file and perform syntax checking of
your procedures by executing the following run_drc command:

DRC-T> run_drc filename.spf

During DRC, TestMAX ATPG simulates each procedure and checks it against a number of
rules. If you encounter a DRC violation that requires editing the STIL procedure file, you

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1527

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix E: STIL Language Support
Testing the STIL Procedure File

Feedback

can edit and save the file and use just the run_drc command (without the file name) to
test your changes, as follows:

DRC-T> run_drc

TestMAX ATPG rereads the STIL procedure file each time the run_drc command is
executed.

Not all DRC violations are severe enough to stop TestMAX ATPG from entering TEST
command mode. To rerun DRC when in TEST command mode, first return to SETUP
command mode, as follows:

TEST-T> drc
DRC-T> run_drc

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1528

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

F
STIL99 Versus STIL

This appendix provides an overview of the differences between the STIL99 and STIL
pattern formats.

Table 28 STIL 99 Versus STIL

STIL 99 STIL

statement
STIL 1.0;
STIL 1.0 { TRC 2006; } (only if
<<>>resource_tags present)

statement
STIL 1.0 { Design 2005; }
STIL 1.0 { TRC 2006; } (only if
<<>>resource_tags present)

Header {
Title " TestMAX ATPG …";
Date "Tue Feb …";
Source "comment";
History {
Ann {* …previous Annotations in the History
section *}
Ann {* ...fault, pattern, drc reports, clocks
and constrained pins *}
}
}

Header {
Title " TestMAX ATPG …";
Date "Tue Feb …";
Source "comment";
History {
Ann {* …previous
Annotations in the History
section *}
Ann {* ...fault, pattern, drc
reports, clocks and constrained
pins *}
}
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1529

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

UserKeywords
ScanChainGroups (conditionally)
ActiveScanChains (conditionally) ;
Conditionally means with respect to the type of the design
being parsed through TestMAX ATPG.
ObserveValue (seq-comp only)
ScanChainPartition (seq-comp only)
SeqCompressorStructures (seq-comp only)
SerializerStructures (dftmax with serializer
only)

UserKeywords BistStructures
(conditionally)
ClockStructures (conditionally)
FreeRunning (conditionally)
DontSimulate
ScanChainGroups and
ActiveScanChains are keywords
in 1450.1. They are used as
UserKeywords only in -stil99 format.
Conditionally means with respect to
the type of the design being parsed
through TestMAX ATPG.
ObserveValue (seq-comp only)
ScanChainPartition (seq-comp
only)
SeqCompressorStructures
(seq-comp only)
SerializerStructures (dftmax
with serializer only)

Ann {* ANNOTATION *}
Used only in the Header History section
STL procedure file flow has options to preserve Ann in
output STIL for top-section of the STIL data (not patterns).
Special blocks for Ann {* load_unload <var> <cnt> *}
and Ann{* end load_unload *},
reseed_partial_overlapfound in stil99 patterns for
sequential compressor.

Ann {* ANNOTATION *}
Used only in the Header History
section
STL procedure file flow has options
to preserve Ann in output STIL for
top-section of the STIL data (not
patterns).

Variables { (seq-comp only,
-stil only)
Integer "var_name"; (seq-comp
only)
}
(seq-compr only)

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1530

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

Signals {
"sig":
1. Always quoted
2. Does not use [] array notation; used for Pseudo only in
seq-comp
In
Out
InOut
Pseudo
(Used for internal chain scan references on some BIST
environments)

Signals {
"sig":
1. Always quoted
2. Does not use [] array notation; used
for Pseudo only in seq-comp
In
Out
InOut
Pseudo
(Used for internal chain scan
references on some BIST
environments)

;
Instead of using semicolon, { } bracket format used if the
following attributes are present:
ScanIn; (no integer number)
ScanOut; (no integer number)

;
Instead of using semicolon, { } bracket
format used if the following attributes
are present:
ScanIn; (no integer number)
ScanOut; (no integer number)
WFCMap {
0X->0; 1X->1; ZX->Z;
NX->N;PX->P; P[0|1]->P;})* //
end WFCMap
]
}
See Appendix E for more details on
WFCMap. The mapping operation is
specified in either the Signals or the
SignalGroups.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1531

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

SignalGroups {
(No signalgroups domain name)
Supports user names and generates specific groups:
_pi lists all inputs+bidirections, _po lists all
outputs+bidirectionals.
{ } format used if the following attributes are present:
ScanIn; (no integer number)
ScanOut;
(no integer number)

SignalGroups “user_name" {
(No signalgroups domain name)
Supports user names and generates
specific groups:
_pi lists all inputs+bidirections, _po
lists all outputs+bidirectionals.
{ } format used if the following
attributes are present:
ScanIn; (no integer number)
ScanOut; (no integer number)
WFCMap {
0X->0; 1X->1; ZX->Z; NX->N;
(_pi _po, -stil only)PX->P;
}
FreeRunning{
Period time;
LeadingEdge time;
TrailingEdge time;
OffState <D|U>;
}

TestMAX ATPG will accept the followingPredefined
SignalGroups:
• _in = input pins
• _out = output pins
• _io = bidirectional pins
• _pi = inputs + bidirectional pins
• _po = outputs + bidirectional pins
• _si = scan chain inputs
• _so = scan chain output

PatternExec { (optionally named)
Patternburst "_burst_"; (Fixed burst name)
}

PatternExec “user_name
{ (optionally named)
Patternburst "_burst_"; (Fixed
burst name)
}

Default generation if no input
patternexecs is a single unnamed
patternexec. If named patternexecs
are input, you must identify one
patternexec to be used by TestMAX
ATPG, and only this patternexec is
written out.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1532

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

Patternburst "_burst_" {
(SignalGroups "user_name" ;)* (user spec'ed)
(MacroDefs "user_name" ;)* (user spec'ed)
(Procedures "user_name" ;)* (user spec'ed)
(ScanStructures "user_name" ;)* (user spec'ed)
PatList {
user_specified_pattern_name -or-
"_pattern_"; (Fixed pattern name)
(ParallelPatList (SyncStart |
Independent | LockStep) {
(PAT_NAME_OR_BURST_NAME {
(Extend;)
})* // end ParallelPatList}
// end of PatternBurst

Patternburst "_burst_" {
(SignalGroups "user_name" ;)*
(user spec'ed)
(MacroDefs "user_name" ;)*
(user spec'ed)
(Procedures "user_name" ;)*
(user spec'ed)
(ScanStructures
"user_name" ;)* (user spec'ed)
PatList {
"_pattern_"; (Fixed pattern
name)
user_specified_pattern_name -or-
"_pattern_"; (fixed pattern
name), *and*independent async.
freerunning clock bursts
Extend; (conditionally; async.
freerunning clocks)
}

Default generation if no patternbursts
are specified on input will use the
name "_burst_".

Timing { (No name generated)
WaveformTable user_name {
(Default name: _default_WFT_")
fixed names for features: "_launch_WFT_", and so forth.
<< resource_tag >> preserved and passed through. No
generation. Supported in 2008.09-sp2.
Period integer_time_units;

Timing { (No name generated)
WaveformTable user_name {
(Default name: _default_WFT_")
fixed names for features:
"_launch_WFT_", and so forth.
<< resource_tag >> preserved
and passed through. No generation.
Supported in 2008.09-sp2.
Period integer_time_units;

Note current environment supports
integer units of time only.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1533

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

Waveforms {
groups_or_signal_names {
<< resource_tag >> preserved and passed through. No
generation. Supported in 2008.09-sp2.
WFC usage in tmax is fixed to the following:
inputs: 01 Z N
outputs: H L T X
clocks:PD E
(Always single-WFC references, separated)

Waveforms {
groups_or_signal_names {
<< resource_tag >> preserved
and passed through. No generation.
Supported in 2008.09-sp2.
WFC usage in tmax is fixed to the follo
wing:
inputs: 01 Z N
outputs: H L T X
clocks: PD E
(Always single-WFC references,
separated)

ScanStructures { (Unnamed)
ScanChain name {
ScanLength integer ;
ScanCells name_list ;
ScanIn signal_name ;
ScanOut signal_name ;
ScanMasterClock signals ;
ScanSlaveClock signals ;
ScanInversion 0,1 ;
}
ObserveValue {
vectored_pseudo_sig_assignment }
(userkeyword statement, seq-comp only)

ScanStructures
"user_name" { (user spec'ed)
-or-
ScanStructures { (Unnamed)
ScanChain name {
ScanLength integer ;
ScanCells name_list ;
ScanIn signal_name ;
ScanOut signal_name ;
ScanMasterClock signals ;
ScanSlaveClock signals ;
ScanInversion 0,1 ;
}
ObserveValue {
vectored_pseudo_sig_assignment
 }
(userkeyword statement, seq-comp
only)

ScanChainGroups {
(Used for some BIST designs)
Generates groups of chains AND groups of groups.
Groups are used in UserKeyword blocks and
ActiveScanChains statements.
}
ScanChainPartition "name" { … }
(userkeyword statement, seq-comp only)
}

ScanChainGroups {
(Used for some BIST designs)
Generates groups of chains AND
groups of groups.
Groups are used in UserKeyword
blocks and ActiveScanChains
statements.
}
ScanChainPartition "name" { … }
(userkeyword statement, seq-comp
only)
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1534

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

sigref_expr = vec_data;
//STIL Cyclized Pattern data LIST OF WFCs — for
example "_po" = HHHL
In STIL, only assignment of WFC characters is allowed,
except \r to repeat one WFC character. No \h for hex or
other options used in the data.
No Base statement in declarations; all assignments are by
WFC.
\r(integer) WFC — only one from the list of choices…

sigref_expr = vec_data;
//STIL Cyclized Pattern data LIST OF
WFCs — for example "_po" = HHHL
In STIL, only assignment of WFC
characters is allowed, except \r to
repeat one WFC character. No \h for
hex or other options used in the data.
No Base statement in declarations; all
assignments are by WFC.
\r(integer) WFC — only one from
the list of choices…

TestMAX ATPG supports a fixed context for
WaveFormCharacter (WFC) interpretation in STIL data.
A minimum set of requirements are validated against the
waveforms associated with these WFCs to avoid undue
constraints and support test behaviors as necessary.
For a listing of WFC Support, see WaveFormCharacter
Interpretation.

\m
\j Usage change for dot-1
compliance
See Appendix E for details on:
Vector Data Mapping Using \m
Vector Data Mapping Using \j

sigref_expr = serial_data; sigref_expr = serial_data;
variable_expr := variable_data;
(-stil only, seq-comp only)

(LABEL :)
"precondition all signals": on initial C in Pattern"pattern N":
used in patterns.
User labels allowed in procedures and macros

(LABEL :)
"precondition all signals": on initial C
in Pattern"pattern N": used in patterns.
User labels allowed in procedures and
macros

V(ector) { (cyclized data)
V { cyclized_data_assignments_only }

V(ector) { (cyclized data)
V
{ cyclized_data_assignments_onl
y }

}W(aveformTable) NAME ;
W name ;

}W(aveformTable) NAME ;
W name ;

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1535

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

C { cyclized_data_assignments_only } C
{ cyclized_data_assignments_onl
y }

Call name ;
Call name {
scan_and_cyclized_arguments }

Call name ;
Call name {
scan_and_cyclized_arguments }

Macro name ;
Macro name { scan_and_cyclized_arguments }

Macro name ;
Macro name
{ scan_and_cyclized_arguments }

Loop integer { … }
Allowed in setup procedures & some BIST procs; also
used in seq-comp -stil99 Pattern blocks

Loop integer { … }
Allowed in setup procedures & some
BIST procs; also used in seq-comp
-stil99 Pattern blocks

LoopData { … } (-stil only,
seq-comp only)
Loop "var_name" { … } (-stil
only, seq-comp only)

Vector statements only with constant WFC assignments
}

Vector statements only with constant
WFC assignments
}

IDDQ TestPoint; IDDQ TestPoint;

ScanChain CHAINNAME ;
ActiveScanChains group_or_chain_names ;
Used around Shift blocks; also in seq-comp load_unload
procedures (without Shift)

ScanChain CHAINNAME ;
ActiveScanChains
group_or_chain_names ;
Used around Shift blocks; also in
seq-comp load_unload procedures
(without Shift)

F(ixed) { (cyclized-data)*
(non-cyclized-data)* }
F { cyclized_data_assignments }
Used in procedures

E(quivalent) ((\m)
sigref_expr)* ;
E sig \m sig ;
Used in procedures
See Appendix E under "Signal
Constraints Using Fixed and
Equivalent"

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1536

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

Pattern "_pattern_" {
Standard pattern structure:
"precondition all signals": C { _po = … _pi =
… }
Structure change to this for proper bidi representation:
W default_WaveformTable_name ;
Macro "test_setup";
"pattern 0": … pattern sequences follow
}

Pattern user_specified_pattern_name
{ -or-
Pattern "_pattern_" {
(fixed name by default)
Standard pattern structure:
"precondition all signals": C
{ _po = … _pi = … }
Assignment change to this for proper
bidi representation:
W default_WaveformTable_name ;
Macro "test_setup";
"pattern 0": … pattern
sequences follow
}

Procedures { (Unnamed Procedures block)
Procedures "diagnosis" { (In some BIST contexts)
(PROCEDURE_NAME {
TestMAX ATPG flow uses fixed name to identify
application.
(pattern-statements)*
support # and % assignment to specific types of groups:
_po, _pi, and in some circumstances groups of bidi-only
and clock-only signals.
}
}

Procedures "user_name" ; (user
spec'ed) -or-
Procedures { (Unnamed Procedures
block)
Procedures "diagnosis" { (In
some BIST contexts)
(PROCEDURE_NAME {
TestMAX ATPG flow uses fixed name
to identify application.
(pattern-statements)*
support # and % assignment to
specific types of groups: _po, _pi,
and in some circumstances groups of
bidi-only and clock-only signals.
}
}

MacroDefs { (Unnamed MacroDefs block)
(MACRO_NAME {
TestMAX ATPG flow uses fixed name to identify
application test_setup, bist_setup macros do not use
parameters
W { }, C { }, V { } statements
}
}

MacroDefs "user_name" ; (user
spec'ed) -or
MacroDefs { (Unnamed MacroDefs
block)
(MACRO_NAME {
TestMAX ATPG flow uses fixed name
to identify application test_setup,
bist_setup macros do not use
parameters
W { }, C { }, V { } statements
}
}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1537

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

Table 28 STIL 99 Versus STIL (Continued)

STIL 99 STIL

PROCEDURE_OR_MACRO_NAME {
"load_unload" {
(Scan procedure has fixed name)
W { }, C { }, V { } statements
Scan parameters can be specified before the Shift.
Shift {
W { }, C { }, V { } statements
Scan parameters applied.
}
W { }, C { }, V { } statements
Scan parameters can be specified after the Shift.
}

PROCEDURE_OR_MACRO_NAME {
"load_unload" {
(Scan procedure has fixed name)
W { }, C { }, V { } statements
Scan parameters can be specified
before the Shift.
Shift {
W { }, C { }, V { } statements
Scan parameters applied.
}
W { }, C { }, V { } statements
Scan parameters can be specified
after the Shift.
}

Parameters Supported in Specific Contexts Only

In TestMAX ATPG the # sign is primarily used — not the % sign. You should only use the
sign in very specific situations within certain procedure types. With a fixed name, like
load_unload, the # sign is associated with groups associated as scanin and scanoutputs.
The # references the scanins and scanouts. You can paramenterized the _pi group on
last_shift_launch. The parameters are constrained to _so _si _po _pi.

Predefined Signal Groups in STIL

To minimize typing that you can have to perform to define a DRC file by hand,TestMAX
ATPG has a number of predefined signal groups it recognizes. A SignalGroup is a method
in STIL for describing a list of pins using a symbolic label. Symbolic labels allow a large
number of pins to be referenced without a large amount of typing.

TestMAX ATPG will accept the following predefined SignalGroups that:

• _in = input pins

• _out = output pins

• _io = bidirectional pins

• _pi = inputs + bidirectional pins

• _po = outputs + bidirectional pins

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1538

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix F: STIL99 Versus STIL

Feedback

• _si = scan chain inputs

• _so = scan chain outputs

If your STIL DRC description defines a symbolic group with the same name as the
predefined TestMAX ATPG groups, then your definition supersedes the predefined
definition.

There is not a predefined signal group called _clks. TestMAX ATPG does not create an
_clks group the user needs to define the signals they want to be clocks in the flow, and put
those signals into the _clks group. If the user is using the extended capture procedures
with multiple cycles, then the user needs to create and define this group and reference
that signal group in these procedures.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1539

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

G
Defective Chain Masking for DFTMAX

The following sections of this appendix describe the flow for masking defective scan
chains in DFTMAX compression:

• Introduction

• Running the Flow

• Examples

• Limitation

Introduction
Prior to the introduction of this feature, the flow for masking defective scan chains in
DFTMAX compression was extremely inefficient. For example, if you found a scan hold
violation on a chain from a chip returned from fabrication, you would want to generate
patterns as if the entire compression chain was masked. The old flow for masking the
defective chain used the add_cell_constraints command to place a constraint of “XX”
on all the cells in the chain. However, this flow was problematic when the chain contained
padding bits (the additional shift cycles required for every pattern; this situation occurs
when the chain is either shorter than the longest compression mode chain or if the chain
contains pipeline stages). The existing cells of the chain can be easily masked using the
add_cell_constraints command. However, there’s no simple way to mask the padding
bits. These additional bits, which also require masking, had to be manually identified. In
order to resolve the patterns, the constraints were externally read in via a separate file.

In the solution described in this appendix, the external file is not required. Instead,
TestMAX ATPG identifies defective scan chains based on cell constraints during DRC.
If every scan cell of a particular scan chain has a cell constraint of X or XX or OX,
then the scan chain is treated as a defective scan chain when you specify both the
run_simulation and run_atpg commands. As a result, padding measures originating
from the defective chain is masked.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1540

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix G: Defective Chain Masking for DFTMAX
Running the Flow

Feedback

Running the Flow
The following sections describe the various processes for masking defective scan chains
in DFTMAX compression:

• Placing Constraints on the Defective Chain

• Generating Patterns

• Regenerating Patterns

Both the run_simulation and run_atpg commands support this flow.

Placing Constraints on the Defective Chain
Before running DRC, you need to use the add_cell_constraints command to place
the constraints on the defective chain. This solution uses a more relaxed condition for
identifying defective chains during DRC. Before, every cell of the chain had to have
cell constraint “XX” in order for it to completely mask it out. Now, to identify a chain as
defective, every cell in a chain needs to have a cell constraint of “X,” “OX,” or “XX.”

Some examples are as follows:

Example 1:

add_cell_constraints XX c2 –all

Note that the whole chain is constrained at once.

Example 2:

add_cell_constraints X c3 -position {0 2}
add_cell_constraints XX c3 -position {3}
add_cell_constraints OX c3 -position {4 20}

Note that in Example 2, different positions get different constraints and complete chain is
constrained by using position fields.

It is important to note that any new add_cell_constraints commands you specify do not
override the previous add_cell_constraints commands you specified if cells overlap
between the two commands. A S16 error is issued in this case:

Error: Multiple cell constraints defined for chain1-2. (S16-1)

During the next step, DRC and TestMAX ATPG identifies one or more defective scan
chains, and the following message appears:

Scan chain c2 has been identified as a defective chain

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1541

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix G: Defective Chain Masking for DFTMAX
Examples

Feedback

There are several different flow options available for generating or regenerating patterns.
These flows are described in the following sections.

Generating Patterns
For generating patterns, you can use any of the following four flows:

• Option 1:

set_patterns external <pat_file> run_simulation -store write_patterns
 <new_pat_file>

• Option 2 (Note that the simulation model needs to be complete):

set_patterns external <pat_file> run_simulation –resolve |
 -override write_patterns <new_pat_file> -external

• Option 3:

set_patterns external <pat_file> run_simulation –failure_file
 <fail_file> set_patterns external <pat_file> -resolve
 <fail_file> write_patterns <new_pat_file> -external

• Option 4:

set_patterns external <pat_file> run_atpg –resolve write_patterns
 <new_pat_file> -external

Regenerating Patterns
For regenerating patterns, use the following set of commands:

set_patterns –external <old_patterns>
add_faults –all
run_atpg –auto
write_patterns <new_pat_file> -internal

After generating or regenerating the patterns, the following report message will appear:

<number> scan chains have been completely masked

Examples
This section shows several flow examples.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1542

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix G: Defective Chain Masking for DFTMAX
Examples

Feedback

Figure 255 Generating Patterns

   

Figure 256 Regenerating Patterns

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1543

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix G: Defective Chain Masking for DFTMAX
Limitation

Feedback

Figure 257 Re-Simulation and Updating Pattern Values

   

Limitation
This flow does not include support for Full-Sequential patterns.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1544

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

H
Simulation Debug Using MAX Testbench and
Verdi

Verdi is an advanced automated open platform for debugging designs. It offers a full-
featured waveform viewer and enables you to quickly process and debug simulation data.

When you use combine MAX Testbench, VCS, and Verdi for simulation debug, you can
perform a variety of tasks, including displaying the current pattern number, the cycle count,
and the active STIL statement, and adding input and output signals.

The following topics describe the process for setting up and running Verdi with MAX
Testbench and VCS:

• Setting the Environment

• Preparing MAX Testbench

• Linking Novas Object Files to the Simulation Executable

• Running VCS and Dumping an FSDB File

• Running Verdi

Setting the Environment
To set up the install path for Verdi, specify the following settings:

setenv NOVAS_HOME path_to_verdi_installation
set path = ($NOVAS_HOME/bin $path)

To set up the license file for Verdi, use one of the following environment variables:

setenv NOVAS_LICENSE_FILE license_file:$NOVAS_LICENSE_FILE
setenv SPS_LICENSE_FILE license_file:$SPS_LICENSE_FILE
setenv SNPSLMD_LICENSE_FILE license_file

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1545

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix H: Simulation Debug Using MAX Testbench and Verdi
Preparing MAX Testbench

Feedback

The license search priority is as follows:

1. SPS_LICENSE_FILE

2. NOVAS_LICENSE_FILE

3. LM_LICENSE_FILE

To set up the install path and license file for VCS, specify the following:

setenv VCS_HOME path_to_vcs_installation
set path=($VCS_HOME/bin $path)
setenv SNPSLMD_LICENSE_FILE license_file:

Preparing MAX Testbench
To prepare MAX Testbench to run with VCS and Verdi, you need to add a series of FSDB
dump tasks to the testbench file. Some of the common FSDB dump tasks include:

• $fsdbDumpfile – Specifies the filename for the FSDB database.

• $fsdbDumpvars – Dumps signal value changes of specified instances and depth. To
use this command, specify the FSDB file name. The default file name is novas.fsdb.
You can specify several different FSDB file names in each fsdbDumpvars command

• $fsdbDumpvarsByFile - Uses a text file to select which scopes and signals to dump
to the FSDB file. The contents of the file can be modified for each simulation without
recompiling the simulation database.

The following example sets the $fsdbDumpfile and $fsdbDumpvarsByFile tasks in the
MAX Testbench file (make sure you insert the 'ifdef WAVES statement just before the
'ifdef tmax_vcde statement):

`ifdef WAVES
 $fsdbDumpfile("../patterns/(YourPatternFileName).fsdb");
 $fsdbDumpvars(0);
`endif

For complete information on all FSDBdump tasks, refer to the following document:

$NOVAS_HOME/doc/linking_dumping.pdf

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1546

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix H: Simulation Debug Using MAX Testbench and Verdi
Linking Novas Object Files to the Simulation Executable

Feedback

Linking Novas Object Files to the Simulation Executable
When you compile the VCS executable, you need to add a pointer to the Novas object
files. You can do this using either of the following methods:

• Use the -fsdb option to automatically point to the novas.tab and pli.a files

% vcs [design_files] [other_desired_vcs_options] -fsdb
• Use the -P option to point to the novas.tab and pli.a files provided by Verdi, as shown

in the following example:

% vcs -debug_pp \ –P $NOVAS_HOME/share/PLI/VCS/$PLATFORM/novas.tab
 \ $NOVAS_HOME/share/PLI/VCS/$PLATFORM/pli.a \ +vcsd +vpi +memcbk
 [design_files] [other_desired_vcs_options]

For interactive mode, you need to add the -debug_all option. If you need to include
model-driven architecture signals (MDAs) or SystemVerilog assertions (SVAs), use the
-debug_pp option or the +vcsd+vpi+memcbk option.

Running VCS and Dumping an FSDB File
The following example shows how to use VCS to compile a simulation executable with
links to Novas object files, run the simulation, and dump an FSDB file:

LIB_FILES=" -v ../design/class.v" DEFINES="+define+WAVES"
 DEBUG_OPTIONS="-debug_pp -P $NOVAS_HOME/share/PLI/VCS/LINUX64/novas.tab
 $NOVAS_HOME/share/PLI/VCS/LINUX64/pli.a“
OPTIONS="-full64 +tetramax +delay_mode_zero +notimingcheck +nospecify
 ${DEBUG_OPTIONS}" NETLIST_FILES="../design/snps_micro_dftmax_net.v.sa1"
 TBENCH_FILE="../patterns/pats.v" SIMULATOR="vcs“
${SIMULATOR} -R ${DEFINES} ${OPTIONS} ${TBENCH_FILE} ${NETLIST_FILES}
 ${LIB_FILES} -l parallel_sim_verdiwv.log

Running Verdi
The following example shows how to set up and run Verdi:

LIB_FILES=" -v ../design/class.v"
DEFINES=""
ANALYZE_OPTIONS=""
GUI_OPTIONS="-top snps_micro_test -ssf ../patterns/pats.fsdb"
NETLIST_FILES="../design/snps_micro_dftmax_net.v.sa1"
 TBENCH_FILE="../patterns/pats.v"
ANALYZER="verdi"
GUI="verdi"
${ANALYZER} ${DEFINES} ${ANALYZE_OPTIONS} ${TBENCH_FILE} ${NETLIST_FILES}
 ${LIB_FILES}

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1547

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix H: Simulation Debug Using MAX Testbench and Verdi
Running Verdi

Feedback

The following topics describe several scenarios for using Verdi for debugging:

• Debugging MAX Testbench and VCS

• Changing Radix to ASCII

• Displaying the Current Pattern Number

• Displaying the Vector Count

• Using Search in the Signal List

Debugging MAX Testbench and VCS
The following figure shows an example of how to use Verdi to debug MAX Testbench and
VCS.

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1548

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix H: Simulation Debug Using MAX Testbench and Verdi
Running Verdi

Feedback

Changing Radix to ASCII
The following example shows how to change Radix-formatted signal values to an ASCII
format:

   

Displaying the Current Pattern Number
The following example shows how to display the current pattern number.

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1549

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix H: Simulation Debug Using MAX Testbench and Verdi
Running Verdi

Feedback

   

Displaying the Vector Count
The following example shows how to display the vector count.

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1550

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix H: Simulation Debug Using MAX Testbench and Verdi
Running Verdi

Feedback

Using Search in the Signal List
The following example shows how to add input and output signals by searching the signal
list.

   

TestMAX ATPG and TestMAX Diagnosis User Guide
S-2021.06

1551

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20TestMAX%20ATPG%20and%20TestMAX%20Diagnosis%20User%20Guide&body=Version%20information:%20S-2021.06,%20June%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This User Guide
	New in This Release
	Related Products, Publications, and Trademarks
	1 TestMAX ATPG and TestMAX Diagnosis Overview
	Launching TestMAX ATPG and TestMAX Diagnosis
	Setting the Thread Count in TestMAX ATPG
	Multithreading in TestMAX ATPG and TestMAX Diagnosis
	Multithreading Limitations
	TestMAX ATPG Multithreading Command Option Support
	run_atpg
	run_fault_sim
	run_simulation
	set_atpg
	set_delay
	set_drc

	ATPG Capabilities
	TestMAX ATPG Modes
	Features and Benefits
	Operation Modes

	2 Getting Started
	Basic TestMAX ATPG Processes
	Installing TestMAX ATPG
	Specifying the Location for TestMAX ATPG Installation

	Setting the Environment
	Launching TestMAX ATPG
	Executable Commands
	Setup Command Files
	Using Command Files
	Batch Files
	Launching TestMAX ATPG Using Command Files

	Using Variables
	Tcl Mode
	Native Mode

	Running the TestMAX ATPG GUI
	Starting and Stopping the TestMAX ATPG GUI
	Interrupting a Long Process
	Discarding Pending Output

	Setting Preferences
	Saving GUI Preferences

	Basic ATPG Flow
	Reference Methodology
	Getting Started for TestMAX DFT Users
	Design Flow Using TestMAX DFT and TestMAX ATPG

	3 ATPG Design Flow
	ATPG Design Flow Overview
	Basic ATPG Run Script

	Running the Basic ATPG Design Flow
	Preparing a Netlist
	Configuring to Read a Netlist
	Reading a Netlist
	Reading Library Models
	Preparing to Build the ATPG Model
	Building the ATPG Model
	Performing Design Rule Checking (DRC)
	Specifying STIL Procedures
	Specifying DRC Settings
	Options for Specifying DRC Settings

	Starting DRC
	Reviewing the DRC Results
	Understanding Rule Violations
	Viewing DRC Violations in the GSV

	Preparing for ATPG
	Specifying General ATPG Settings
	Options for Specifying ATPG Settings

	Specifying Fault Lists
	Selecting an Existing Fault List File
	Generating a Fault List Containing All Fault Sites
	Including Specific Faults in a Fault List
	Writing Faults to a File
	Example Fault Lists

	Specifying Fault Models
	Selecting a Fault Model

	Specifying the Pattern Source
	Scan and Nonscan Functional Patterns
	STIL Functional Pattern Input
	Verilog Functional Pattern Input
	WGL Functional Pattern Input
	VCDE Functional Pattern Input
	Options for Selecting the Pattern Source

	Specifying the ATPG Mode
	Basic Scan Mode Settings
	Fast-Sequential Mode Settings
	Setting Full-Sequential Mode

	Running ATPG
	Running ATPG in Basic Scan or Fast-Sequential Mode
	Using Automatic Mode to Generate Optimized Patterns
	Setting Automatic Mode

	Quickly Estimating Test Coverage
	Specifying a Test Coverage Target Value
	Increasing ATPG Effort Over Multiple Passes
	Multiple Session Test Pattern Generation
	Splitting Patterns
	Extracting a Pattern Sub-Range
	Merging Multiple Pattern Files
	Using Pattern Files Generated Separately

	Compressing Patterns
	Balancing Pattern Compaction and CPU Runtime
	Compression Reports

	Analyzing ATPG Output
	Standard Format
	Expert Format
	Verbose Format with Merge (without -auto_compression)
	Verbose Format with Merge and -auto_compression

	Reviewing Test Coverage
	Writing ATPG Patterns

	4 ATPG Modeling
	Modeling Topics
	ATPG Modeling Primitive Summary
	TestMAX ATPG Memory Modeling
	Basic Template
	Defining Write Ports
	Edge-Sensitive Write Port
	Level-Sensitive Write Port

	Defining Read Ports
	Edge-Sensitive Read Port
	Level-Sensitive Read Port

	Read Off Behavior
	Complete Example
	Memory Address Range
	Multiple Read or Write Ports
	Rules and Limitations
	Controlling Contention Behavior
	Read-Read Contention
	Read-Write Contention
	Write-Write Contention
	Set Contention Controls
	Memory Image Initialization
	ROM Modeling
	Decoded Address Support
	Memory Set/Reset Capability
	Debugging Your Models

	Memory Modeling Syntax in Backus-Naur Form (BNF)
	RAM and ROM Modeling Examples
	Memory Data File Examples
	Interpreting UDP Messages
	Variant #1
	Variant #2
	Variant #3
	Variant #4
	Debugging UDP-based Models

	Modeling Examples
	Optimistic MUX
	MUX, 4-to-1
	Latch
	Latch With Active Low Asynchronous Set/Reset
	Latch With Asynchronous Set/Reset
	Latch With Asynchronous Set/Reset Dominant Over EN
	Latch With Asynchronous Set/Reset Dominant Over EN, Reset Dominant
	Latch With Asynchronous Set/Reset Dominant Over EN, Set Dominant
	Dual Port Latch
	Positive-edge Clocked DFF With Notify
	DFF With Active Low Asynchronous Set/Reset and Notify
	DFF With Active Low Asynchronous Reset and Notify
	DFF With Active High Asynchronous Set/Reset
	DFF With Synchronous Reset and Notify
	Negative-Edge Clocked DFF With Active Low Asynchronous Clear and Notify
	DFF and Latch
	JK Flip-Flop With Active Low Asynchronous Set/Reset and Notify
	Bus Keeper Examples

	Scan Cell Models
	Scan Cell Models - MUX Flop Scan
	Scan Cell Models - Master Slave Latch
	Scan Cell Models - MUX Latch Scan
	Scan Cell Models - Clocked Scan Flip-Flop
	Scan Cell Models - Clocked Scan Latch
	Scan Cell Models - Single Latch LSSD
	Scan Cell Models - Double Latch LSSD
	Scan Cell Models - Clocked LSSD
	Scan Cell Models - Auxiliary Clocked LSSD
	Scan Cell Models - Retention Cell

	ATPG Simulation Primitives
	AND Primitive
	Simulation Behavior
	Verilog Netlist Usage

	ADRBUS Primitive (Address Bus)
	Simulation Behavior
	Verilog Netlist Usage

	BUF Primitive (Buffer)
	Simulation Behavior
	Verilog Netlist Usage

	BUS Primitive
	Simulation Behavior
	Verilog Netlist Usage

	BUSK Primitive (Bus Keeper)
	Simulation Behavior
	Verilog Netlist Usage

	CMUX Primitive (Conservative Multiplexer)
	Simulation Behavior
	Verilog Netlist Usage

	DATABUS Primitive (Data Bus)
	Simulation Behavior
	Verilog Netlist Usage

	DFF Primitive
	Approximate Simulation Behavior
	Textual Simulation Behavior
	Verilog Netlist Usage

	DLAT Primitive
	Simulation Behavior
	Verilog Netlist Usage

	EQUIV Primitive (Equivalence)
	Simulation Behavior
	Verilog Netlist Usage

	INV Primitive (Inverter)
	Simulation Behavior
	Verilog Netlist Usage

	MEMORY Primitive (RAM/ROM Memory)
	Simulation Behavior
	Verilog Netlist Usage

	MOUT Primitive (Macro Output)
	Simulation Behavior
	Verilog Netlist Usage

	MUX Primitive (Multiplexer)
	Simulation Behavior
	Verilog Netlist Usage

	NAND Primitive
	Simulation Behavior
	Verilog Netlist Usage

	NOR Primitive
	Simulation Behavior
	Verilog Netlist Usage

	OR Primitive
	Simulation Behavior
	Verilog Netlist Usage

	PI Primitive (Primary Input)
	Simulation Behavior
	Verilog Netlist Usage

	PIO Primitive (Primary Input/Output)
	Simulation Behavior
	Verilog Netlist Usage

	PO Primitive (Primary Output)
	Simulation Behavior
	Verilog Netlist Usage

	RPORT Primitive (Read Port)
	Simulation Behavior
	Verilog Netlist Usage

	SEL01 Primitive
	Simulation Behavior
	Verilog Netlist Usage

	SEL1 Primitive
	Simulation Behavior
	Verilog Netlist Usage

	SW Primitive (Switch)
	Simulation Behavior
	Verilog Netlist Usage

	TIE0 Primitive
	Simulation Behavior
	Verilog Netlist Usage

	TIE1 Primitive
	Simulation Behavior
	Verilog Netlist Usage

	TIEX Primitive
	Simulation Behavior
	Verilog Netlist Usage

	TIEZ Primitive
	Simulation Behavior
	Verilog Netlist Usage

	TSD Primitive (tristate Device)
	Simulation Behavior
	Verilog Netlist Usage

	WIRE Primitive
	Simulation Behavior
	Verilog Netlist Usage

	XNOR Primitive (Exclusive NOR)
	Simulation Behavior
	Verilog Netlist Usage

	XOR Primitive (Exclusive OR)
	Simulation Behavior
	Verilog Netlist Usage

	5 Command Interface
	TestMAX ATPG GUI
	Command Entry
	Menu Bar
	Command Toolbar and GSV Toolbar
	Command-Line Window
	Command Mode Indicator
	Command-Line Entry Field
	Command Continuation
	Command History
	Stop Button

	Commands From a Command File
	Command Logging

	Transcript Window
	Setting the Keyboard Focus
	Using the Transcript Text
	Selecting Text in the Transcript
	Copying Text From the Transcript
	Finding Commands and Messages in the Transcript
	Saving or Printing the Transcript
	Clearing the Transcript Window

	Interacting with the TestMAX ATPG GUI
	Using Keys in the Command Line
	Using the Graphical Schematic Viewer
	Using the Transcript Window
	Saving Preferences

	Using Online Help
	Browser-Based Online Help
	Setting Up Online Help in Linux
	Launching Online Help
	Installing and Running Stand-Alone Online Help in Windows
	How to Browse, View, and Copy Scripts

	Text-Only Help

	6 Using the Graphical Schematic Viewer
	Getting Started With the GSV
	Using the SHOW Button to Start the GSV
	Starting the GSV From a DRC Violation or Specific Fault
	Navigating, Selecting, Hiding, and Finding Data
	Navigating Within the GSV
	Selecting Objects in the GSV Schematic
	Hiding Objects in the GSV Schematic
	Using the Block ID Window

	Expanding the Display From Net Connections
	Hiding Buffers and Inverters in the GSV Schematic
	ATPG Model Primitives
	Tied Pins
	Primary Inputs and Outputs
	Basic Gate Primitives
	Additional Visual Characteristics
	RAM and ROM Primitives

	Displaying Symbols in Primitive or Design View
	Displaying Instance Path Names

	Displaying Pin Data
	Using the Setup Dialog Box to Display Pin Data
	Pin Data Types
	Displaying Clock Cone Data
	Displaying Clock Off Data
	Displaying Constrain Values
	Displaying Load Data
	Displaying Shift Data
	Displaying Test Setup Data
	Displaying Pattern Data
	Displaying Tie Data

	Analyzing a Feedback Path
	Checking Controllability and Observability
	Using the Run Justification Dialog Box
	Using the run_justification Command

	Analyzing DRC Violations in the GSV
	Troubleshooting a Scan Chain Blockage
	Troubleshooting a Bidirectional Contention Problem

	Analyzing Buses
	BUS Contention Status
	Understanding the Contention Checking Report
	Reducing Aborted Bus and Wire Gates
	Using the Analyze Buses Dialog Box
	Using the set_atpg and analyze_buses Commands

	Causes of Bus Contention

	Analyzing ATPG Problems
	Analyzing an AN Fault
	Analyzing a UB Fault
	Analyzing a NO Fault

	Printing a Schematic to a File

	7 Using the Hierarchy Browser
	Launching the Hierarchy Browser
	Basic Components of the Hierarchy Browser
	Using the Hierarchy Pane
	Viewing Data in the Instance Pane
	Copying an Instance Name

	Viewing Data in the Lib Cells/Tree Map Pane

	Performing Fault Coverage Analysis
	Understanding the Types of Coverage Data
	Expanding the Design Hierarchy
	Viewing Library Cell Data
	Adjusting the Threshold Slider Bar
	Identifying Fault Causes
	Displaying Instance Information in the GSV

	Exiting the Hierarchy Browser

	8 Using the Simulation Waveform Viewer
	Getting Started With the SWV
	Understanding the SWV Color Codes
	Supported Pin Data Types and Definitions
	Invoking the SWV
	Using the SWV Interface
	Understanding the SWV Layout
	Refreshing the View

	Manipulating Signals
	Using the Signal List Pane
	Adding Signals
	Deleting Signals
	Inserting Signals

	Identifying Signal Types in the Graphical Pane
	Using the Time Scales
	Using the Marker Header Area
	Adding and Deleting Pointers
	Moving a Marker Pointer
	Measuring Between Two Pointers

	Using the SWV With the GSV
	Using the SWV Without the GSV
	Example Flow
	Example 2
	Example 3

	SWV Inputs and Outputs
	Analyzing Violations

	9 Using Tcl With TestMAX ATPG
	Converting TestMAX ATPG Command Files to Tcl Mode
	Converting a Collection to a List in Tcl Mode
	Tcl Syntax and TestMAX ATPG Commands
	Specifying Lists in Tcl Mode
	Tcl Mode and Backslashes
	Using Positional Arguments

	Abbreviating Commands and Options in Tcl Mode
	Using Tcl Special Characters
	Using the Result of a Tcl Command
	Using Built-In Tcl Commands
	TestMAX ATPG Extensions and Restrictions in Tcl Mode

	Redirecting Output in Tcl Mode
	Using the redirect Command in Tcl Mode
	Getting the Result of Redirected Tcl Commands
	Using Redirection Operators in Tcl Mode

	Using Command Aliases in Tcl Mode
	Interrupting Tcl Commands
	Using Command Files in Tcl Mode
	Adding Comments
	Controlling Command Processing When Errors Occur
	Using a Setup Command File

	An Introduction to the TestMAX ATPG Tcl API
	Retrieving Information
	Using the -filter Option
	Using the -regexp Option

	10 Design Netlists and Library Models
	Netlist Format Requirements
	EDIF Netlist Requirements
	Logic 1/0 Using Global Nets
	Logic 1/0 by Special Library Cell

	Verilog Netlist Requirements
	VHDL Netlist Requirements

	About Reading a Netlist
	Using Wildcards to Read Netlists
	About Reading Library Models
	Controlling Case-Sensitivity
	Setting Parameters for Learning
	Learned Behavior Types
	Controlling the ATPG Learning Algorithm

	About Building the ATPG Model
	Processes That Occur When Building the ATPG Model
	Flattening Optimization for Hierarchical Designs
	Identifying Missing Modules
	Removing Unused Logic
	Using Black Box and Empty Box Models
	Declaring Black Boxes and Empty Boxes
	Behavior of RAM Black Boxes
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Troubleshooting Unexplained Behavior

	Handling Duplicate Module Definitions
	Creating Custom ATPG Models
	Condensing ATPG Libraries
	Assertions
	Implementing Assertions
	Using Assertions with PLLs and Memories
	Assertion Descriptions
	Limitations

	Memory Modeling
	Memory Model Functions
	Basic Memory Modeling Template
	Initializing RAM and ROM Contents
	The Memory Initialization File
	Default Initialization
	Instance-Specific Initialization

	Improving Test Coverage for RAMs

	11 STIL Procedures
	STIL Procedure File Guidelines
	Creating a New STIL Procedure File
	Declaring Primary Input Constraints
	Using the Add PI Constraints Dialog Box
	Using the add_pi_constraints Command

	Declaring Clocks
	Using the Edit Clocks Dialog Box
	Using the add_clocks Command
	Asynchronous Set and Reset Ports

	Declaring Scan Chains and Scan Enables
	Using the DRC Dialog Box
	Declaring Scan Chains at the Command Line

	Writing the SPF Template
	Example SPF Template File

	Defining STIL Procedures
	Defining Scan Chains
	Defining the load_unload Procedure
	Controlling Bidirectional Ports
	Defining the Shift Procedure

	Defining the test_setup Procedure
	Using Loop Statements

	Predefined Signal Groups in STIL
	Defining Basic Signal Timing
	Defining Pulsed Ports
	Selecting Strobed or Windowed Measures in STIL
	Supporting Clock ON Patterns in STIL
	Defining the End-of-Cycle Measure

	Defining Capture Procedures in STIL
	Limiting Clock Usage

	Defining Constrained Primary Inputs
	Defining Equivalent Primary Inputs
	Defining PO Masks
	Defining System Capture Procedures
	Creating Generic Capture Procedures
	Generating Generic Capture Procedures
	WaveformTables
	Generating QuickSTIL File Flows

	Controlling Multiple Clock Capture
	Multiple Clock Capture for a Single Vector
	Multiple Clock Capture for Multiple Vectors
	Using Multiple Capture Procedures

	Using Allclock Procedures
	Specifying a Typical Allclock Procedure
	Interaction of the Allclock and Multiple Clock Procedures
	Interaction of Allclock Procedures and Named Waveform Tables

	Using load_unload for Last Shift-Launch Transition
	Example Post-Scan Protocol
	Generic Capture Procedures Limitations

	Defining Sequential Capture Procedures
	Using Default Capture Procedures
	Using a Sequential Capture Procedure
	Sequential Capture Procedure Syntax

	Defining Reflective I/O Capture Procedures
	Using the master_observe Procedure
	Using the shadow_observe Procedure
	Using the delay_capture_start Procedure
	Using the delay_capture_end Procedure
	Using the test_end Procedure
	Scan Padding Behavior
	Using the Condition Statement in STIL
	Excluding Vectors From Simulation
	Using the DontSimulate Statement for Loops and Reference Clocks
	Syntax and Example for Excluding Vectors

	Defining Internal Clocks for PLL Support
	Specifying an On-Chip Clock Controller Inserted by DFT Compiler

	Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller
	ClockTiming Block Syntax
	Timing and Clock Pulse Overlapping
	Controlling Latency for the PLLStructures Block
	ClockTiming Block Selection
	ClockTiming Block Example

	Specifying Internal Clocking Procedures
	ClockConstraints and ClockTiming Block Syntax
	Specifying the Clock Instruction Register
	Specifying External Clocks
	Example 1
	Example 2

	JTAG/TAP Controller Variations for the load_unload Procedure
	Multiple Scan Groups
	DFTMAX Compression with Serializer

	12 Design Rule Checking
	Understanding the DRC Process
	Contention Analysis
	BUS Contention Ability Checking
	BUS Z State Ability Checking
	Contention Prevention Checking
	Simulation Contention Detection
	ATPG Contention Prevention
	Post-Capture Contention Checking

	Scan Chain Tracing
	Clock Grouping
	Reducing the Pattern Count Through Clock Grouping
	Clock Grouping Analysis
	Generating a Clock Group Report
	Clock Grouping Limitations

	Declaring Equivalent and Differential Input Ports
	Using the Add PI Equivalences Dialog Box
	Using the add_pi_equivalences Command

	Cells With Asynchronous Set/Reset Inputs
	Masking Input and Output Ports
	Masking Scan Cell Inputs and Outputs
	Specifying Cell Constraints Locations and Scan Cell Controls
	Using the Add Cell Constraints Dialog Box
	Using the add_cell_constraints Command

	Previewing Potential Scan Cells
	Scan Cell Types
	Identifying Scan Cells
	Reporting Scan Cells
	Scan Cell Inversion Data

	Using the set_scan_ability Command
	Using the Set Scan Ability Dialog Box

	Transparent Latches
	Shadow Register Analysis
	Feedback Paths Analysis
	Procedure Simulation
	Changing the Design Rule Severity
	Using the Set Rules Dialog Box
	Using the set_rules Command

	Understanding the DRC Summary Report
	Binary Image Files
	Creating and Reading Image Files
	Creating a Non-Secure Image File
	Creating a Secure Image File

	Save/Restore in TEST Mode

	13 Optimizing ATPG
	Optimizing Basic Scan Patterns
	Using ATPG Constraints
	Adding ATPG Constraints to Block a Timing-Sensitive Path
	Defining, Reporting, and Removing No Detection Credit Cells
	Using ATPG Constraints to Control ATPG Assertions

	Using the Random Decision Option
	Obtaining Target Test Coverage Using Fewer Patterns
	Maximizing Test Coverage Using Fewer Patterns
	Improving Test Coverage With Test Points
	Test Points Analysis Options
	Running the Test Points Analysis Flow
	Limitation

	Limiting the Number of Patterns
	Limiting the Number of Aborted Decisions
	Using ATPG Checkpoint Files
	Creating Test Patterns for Diagnosing Scan Chain Failures
	Understanding DFTMAX Unload Modes and Chain Diagnosis Patterns
	Generating Pattern Sets

	Performing Scan Chain Diagnosis
	Running Scan Chain Diagnosis
	Understanding the Scan Chain Diagnosis Report
	Diagnosing Defects Related to Power Issues

	Creating End-of-Cycle Measures in ATPG Patterns
	Drawbacks of Using End-of-Cycle Measures
	Requirements Needed to Produce End-of-Cycle Measures

	Deleting Top-Level Ports From Output Patterns
	Detecting Faults Multiple Times Using N-Detect
	WGL Pattern Generation Options
	Creating LSI-Compatible WGL Patterns
	Creating NEC-Compatible WGL Patterns
	WGL Scan Chain Padding
	WGL Scan Chain Definitions
	Macro Usage in WGL
	Grouping Bidirectional Port Data in WGL
	Controlling Port Data Order in WGL
	Specifying Windowed Measures in WGL
	Delayed Input Force Timing and Force Prior in WGL
	Balancing Vector and Scan Statements in WGL
	Mapping Bidirectional Ports Within Vector Statements in WGL
	Mapping Bidirectional Ports Within Scan Statements in WGL
	Adjusting Pattern Data for Serial Versus Parallel Interpretation in WGL
	Selecting Scan Chain Inversion Reference in WGL
	Effect of CELLDEFINE in WGL
	Ambiguity of the Master Cell in WGL

	Running Multicore ATPG
	Comparing Multicore ATPG and Distributed ATPG
	Invoking Multicore ATPG
	Typical Multicore ATPG Run
	Multicore Interrupt Handling
	Understanding the Processes Summary Report
	Multicore Limitations

	Running Logic Simulation
	Comparing Simulated and Expected Values
	Patterns in the Simulation Buffer
	Sequential Simulation Data
	Single-Point Failure Simulation
	GSV Display of a Single-Point Failure

	Data Volume and Test Application Time Reduction Calculations
	Test Data Volume Calculations
	Test Application Time Calculations

	Pattern Porting
	Pattern Porting Flow
	Core-Level DFTMAX Insertion
	Core-Level TestMAX ATPG Generation
	Top-Level Requirements
	Pattern Generation Requirements at Core Level
	Top-Level Pattern Simulation

	14 Fault Lists and Faults
	Working with Fault Lists
	Using Fault List Files
	Collapsed and Uncollapsed Fault Lists
	Random Fault Sampling
	Fault Dictionary

	Fault Categories and Classes
	Fault Class Hierarchy
	DT (Detected) = DR + DS + DI + D2 + TP
	PT (Possibly Detected) = AP + NP + P0 + P1
	UD (Undetectable) = UU + UO + UT + UB + UR
	AU (ATPG Untestable) = AN
	AE (ATPG Untestable) = AE
	ND (Not Detected) = NC + NO

	Fault Summary Reports
	Fault Summary Report Examples
	Test Coverage
	Fault Coverage
	ATPG Effectiveness

	Using Clock Domain-Based Faults
	Using Signals That Conflict With Reserved Keywords
	Finding Particular Untested Faults Per Clock Domain

	15 Fault Simulation
	Supported Fault Models
	Fault Simulation Design Flow
	Preparing Functional Test Patterns for Fault Simulation
	Pattern Compliance with ATE
	Checking Patterns for Timing Insensitivity
	Timing Sensitivity

	Preparing Your Design for Fault Simulation
	Preprocessing the Netlist
	Reading the Design and Libraries
	Building the ATPG Design Model
	Declaring Clocks
	Running DRC
	DRC for Nonscan Operation
	DRC for Scan Operation

	Reading Functional Test Patterns
	Using the Set Patterns Dialog Box
	Using the set_patterns Command
	Specifying Strobes for VCDE Pattern Input

	Initializing the Fault List
	Using the Add Faults Dialog Box
	Using the add_faults Command

	Performing Good Machine Simulation
	Using the Run Simulation Dialog Box
	Using the set_simulation and run_simulation Commands

	Performing Fault Simulation
	Using the Run Fault Simulation Dialog Box
	Using the run_fault_sim Command
	Writing the Fault List

	Combining ATPG and Functional Test Patterns
	Creating Independent Functional and ATPG Patterns
	Creating ATPG Patterns After Functional Patterns
	Creating Functional Patterns After ATPG Patterns
	Using TestMAX ATPG with Z01X
	Transition Fault Flow

	Running Multicore Simulation
	Invoking Multicore Simulation
	Interrupt Handling
	Processes Summary Report
	Resimulating ATPG Patterns
	Limitations

	Per-Cycle Pattern Masking
	Flow Options
	Masks File
	Running the Flow
	Limitations

	16 On-Chip Clocking Support
	OCC Background
	OCC Definitions, Supported Flows, Supported Patterns
	OCC Limitations
	TestMAX DFT to TestMAX ATPG Flow
	OCC Support in TestMAX ATPG
	Design Set Up
	OCC Scan ATPG Flow
	Waveform and Capture Cycle Example
	Using Synchronized Multi Frequency Internal Clocks
	Enabling Internal Clock Synchronization
	Clock Chain Reordering
	Clock Chain Resequencing
	Finding Clock Chain Bit Requirements
	Reporting Clocks
	Reporting Patterns

	Using Internal Clocking Procedures
	Enabling Internal Clocking Procedures
	Performing DRC with Internal Clocking Procedures
	Reporting Clocks
	Performing ATPG with Internal Clocking Procedures
	Grouping Patterns By ClockingProcedure Blocks
	Forcing a Single Group Per Clocking Procedure
	Enabling ATPG to Achieve Better Efficiency

	Writing Patterns Grouped by Clocking Procedure
	Reporting Patterns
	Limitations

	OCC-Specific DRC Rules

	17 TestMAX Diagnosis
	Understanding Diagnosis
	Diagnosis Reporting

	Running Diagnosis
	Using the Run Diagnosis Dialog Box
	Using the run_diagnosis Command

	Running the TestMAX Diagnosis Flow
	Script Example

	Writing and Reading Binary Image Files
	Reading Pattern Files
	Reading Patterns
	Reading Multiple Pattern Files
	Translating DFTMAX Compressed Patterns Into Normal Scan Patterns
	Example Flow
	Translation Limitations

	Failure Data Files
	Pattern-Based Failure Data File
	Pattern-Based Failure Data File for DFTMAX Serialized Adaptive Scan

	Cycle-Based Failure Data File
	Cycle-Based Failure Data File Format

	Failure Data File Extensions
	Adding Header Information to a Failure Data File
	Creating a Header Section
	Creating a Header Schema File
	Examples
	Example A: Header Schema File for Split Pattern Set With Two Pattern Files
	Example B: Header Schema File for Split Pattern Set With Three Pattern Files
	Example C: Flow for Handling Custom Columns in the YDF File

	Failure Data File Limitations

	Class-Based Diagnosis Reporting
	Filtering Candidates
	Filtering Bridge Candidates
	Resetting User-Specified Filters
	Reporting Detailed Candidate Information
	Example Flow
	Understanding the Class-Based Diagnosis Report
	Class-Based Cell-Aware Diagnosis

	Fault-Based Diagnosis Reporting
	Verbose Format
	Physical Diagnosis Format
	Scan Chain Diagnosis Format

	Using a Dictionary for Diagnosis
	Example Flow
	Diagnosis Dictionary Commands
	Limitations

	Failure Mapping Report for DFTMAX Patterns
	Composite Fault Model Data Report
	Parallel Diagnosis
	Specifying Parallel Diagnosis
	Converting Serial Scripts to Parallel Scripts
	Using Split Datalogs to Perform Parallel Diagnosis for Split Patterns
	Diagnosis Log Files
	Parallel Diagnosis Limitations

	18 Using Physical Data for Diagnosis
	Physical Diagnosis Flow Overview
	Creating and Validating a PHDS Database
	Reading a PHDS Database into TestMAX ATPG
	Starting and Stopping the DAP Server Process
	Setting Up a Connection to the PHDS Database

	Name Matching Using a PHDS Database
	Name Matching Overview
	Understanding the Name Matching Coverage Report
	Reporting the Name Matching Coverage
	Using Name Matching Results for Diagnosis

	Setting Up and Running Physical Diagnosis
	Running Physical Diagnosis

	Static Subnet Extraction Using a PHDS Database
	Reporting Physical Subnet ID Data
	Understanding Physical Subnet ID Data

	Writing Physical Data for Yield Explorer

	19 Power Aware ATPG
	Input Data Requirements
	Setting a Power Budget
	Preparing Your Design
	Reporting Clock-Gating Cells
	Constraining Clock-Gating Cells for Power Aware ATPG
	Setting a Strict Power Budget

	Running Power Aware ATPG
	Applying Quiet Chain Test Patterns
	Testing with Asynchronous Primary Inputs
	Power Reporting By Clock Domain
	Setting a Capture Budget for Individual Clocks
	Testing for Partitions
	Specifying a Test Coverage Target for Partitions
	Specifying Capture Power for Partitions
	Specifying Shift Power for Partitions
	Reporting Power Per Partition
	Example
	Limitations

	Retention Cell Testing
	Typical Retention Cell Used for Testing by TestMAX ATPG
	Creating the chain_capture Procedure
	Identifying Retention Cells for Testing
	Pattern Generation for Retention Cells
	Pattern Formatting for Retention Cells
	Pattern Formatting by Masking Non-Retention Cells
	Retention Cell Testing Limitations

	Power Aware ATPG Limitations

	20 Bridging Fault ATPG
	Bridging Fault ATPG Flow Overview
	Running the Bridging Fault ATPG Flow
	Setup
	Input Faults
	Manipulating the Fault List
	Examining the Fault List
	Fault Simulation
	Running ATPG
	Analysis
	Example Script

	Detecting Bridging Faults
	Defining Bridging Faults
	Bridge Locations
	Strength-Based Patterns

	Bridging Fault Model Limitations
	Running the Dynamic Bridging Fault ATPG Flow
	Dynamic Bridging Fault Model Introduction
	Preparing to Run Dynamic Bridging Fault ATPG
	Specifying a List of Input Faults
	Manipulating the Fault List
	Examining the Fault List

	Fault Simulation
	Running ATPG
	Analyzing Fault Detection
	Example Script
	Limitations

	21 Cell-Aware Test
	Cell-Aware Test Flow
	Targeting lnternal Cell Defects
	Cell Test Models
	Generating Cell Test Models
	Running Cell-Aware ATPG
	Example Script

	Running Cell-Aware Simulation
	Cell-Aware Diagnosis
	Identifying a Defect Within a Cell
	Running Cell-Aware Physical Diagnosis

	22 Transition Delay Fault ATPG
	Using the Transition Delay Fault Model
	Transition Delay Fault ATPG Flow
	Typical Transition Delay Fault ATPG Run

	Transition Delay Fault ATPG Timing Modes
	Launch-On Shift Mode Versus System Clock Launch Mode
	Launch-On Extra Shift Timing

	STIL Protocol for Transition Faults
	Creating Transition Fault Waveform Tables
	DRC for Transition Faults
	Limitations of Transition Delay Fault ATPG

	Specifying Transition Delay Faults
	Selecting the Fault Model
	Adding Faults to the Fault List
	Reading a Fault List File

	Pattern Generation for Transition Delay Faults
	Using the set_atpg Command
	Using the set_delay Command
	Using the run_atpg Command
	Pattern Compression for Transition Faults
	Using the report_faults Command
	Using the write_faults Command

	Pattern Formatting for Transition-Delay Faults
	MUXClock Support for Transition Patterns

	Specifying Timing Exceptions From an SDC File
	Reading an SDC File
	Interpreting an SDC File
	How TestMAX ATPG Interprets SDC File Commands
	Controlling Clock Timing, ATPG, and Timing Exceptions for SDC
	Reporting SDC Results

	Slack-Based Transition Fault Testing
	Basic Usage Flow
	Extracting Slack Data from PrimeTime
	Utilizing Slack Data in the TestMAX ATPG Flow
	How TestMAX ATPG Integrates Slack Data

	Command Support

	Special Elements of Slack-Based Transition Fault Testing
	Allowing Variation From the Minimum-Slack Path
	Defining Faults of Interest
	Reporting Faults

	Limitations
	Engine and Flow Limitations
	ATPG Limitations
	Limitations in Support for Bus Drivers

	23 Path Delay Fault and Hold Time Testing
	Path Delay Fault Theory
	Path Delay Fault Term Definitions
	Models for Manufacturing Tests
	Models for Characterization Tests
	Testing I/O Paths
	Path Delay Test Patterns

	Path Delay Testing Flow
	Obtaining Delay Paths
	Hold Time ATPG Test Flow
	Generating Path Delay Tests
	Flow for Generating Path Delay Tests
	Using set_delay Options
	Reading and Reporting Path Lists
	Analyzing Path Rule Violations
	Viewing Delay Paths
	Path Delay ATPG Options
	Internal Loopback and False/Multicycle Paths
	Creating At-Speed WaveformTables
	Maintaining At-Speed Waveform Table Information
	MUXClock Support for Path Delay Patterns
	Enabling MUXClock Functionality
	Delay Test Vector Format
	Limitations of MUXClock Support for Path Delay Patterns
	ATPG Requirements to Support MUXClock

	Handling Untested Paths
	Understanding False Paths
	Understanding Untestable Paths
	Reporting Untestable Paths
	Analyzing Untestable Faults
	TestMAX ATPG Commands for Path Delay Fault Testing Example

	24 Quiescence Test Pattern Generation
	Why Do IDDQ Testing?
	CMOS Circuit Characteristics
	IDDQ Testing Methodology
	Types of Defects Detected
	Number of IDDQ Strobes

	About IDDQ Pattern Generation
	Fault Models
	DRC Rule Violations
	Generating IDDQ Test Patterns
	IDDQ Test Pattern Generation Flow
	Using the iddq_capture Procedure
	Off-Chip IDDQ Monitor Support
	Specifying Additional Signals in the Netlist
	Defining the iddq_capture Procedure to Support Additional Signals

	Using IDDQ Commands
	Using the set_faults Command
	Using the set_iddq Command
	Using the add_atpg_constraints Command

	IDDQ Bridging
	Design Principles for IDDQ Testability
	I/O Pads
	Buses
	RAMs and Analog Blocks
	Free-Running Oscillators
	Circuit Design
	Power and Ground
	Models With Switch/FET Primitives
	Connections
	IDDQ Design-for-Test Rule Summary
	Additional System-on-a-Chip Rules

	25 Running Distributed ATPG
	Debugging Name Matching Errors
	Debugging Missing Instances
	Debugging Hierarchical Mismatches

	Checking Your Environment for Distributed Processing
	Machine Access and Setup for Distributed ATPG
	Preparing to Run Distributed Processing
	Setting Up the Distributed Environment
	Setting Up the Distributed Environment With Load Sharing
	Verifying Your Environment
	Remote Shell Considerations
	Tuning Your .cshrc File
	Checking the Load Sharing Setup

	Starting Distributed ATPG
	Saving Results
	Distributed Processor Log Files

	Starting Distributed Fault Simulation
	Events After Starting A Distributed Run
	Interpreting Distributed Fault Simulation Results

	Debugging Distributed ATPG Issues
	Distributed ATPG Limitations

	26 Persistent Fault Model Support
	Persistent Fault Model Overview
	Persistent Fault Model Operations
	Switching Fault Models
	Working With Internal Pattern Sets
	Manipulating Fault Lists
	Automatically Saving Fault Lists
	Automatically Restoring Fault Lists
	Removing Fault Lists
	Adding Faults

	Reporting Persistent Fault Models

	Direct Fault Crediting
	Example Commands Used in Persistent Fault Model Flow

	27 Using TestMAX ATPG and DFTMAX Ultra Compression
	Generating Patterns for DFTMAX Ultra Designs
	Pattern Types Required by DFTMAX Ultra
	Script Example for Generating Patterns for DFTMAX Ultra
	Manipulating Patterns for DFTMAX Ultra
	Controlling the Peak and Average Power During Shifting
	Increasing the Maximum Shift Length of Patterns
	Optimizing Padding Patterns
	Performing Padding Pattern Optimization

	Removing and Reordering Patterns

	High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnosis
	Identifying Defective Chains
	Generating High Resolution Patterns
	Rerunning Diagnosis
	Flow Example

	Test Validation and VCS Simulation for DFTMAX Ultra Designs
	Limitations for Using DFTMAX Ultra

	28 Troubleshooting
	Reporting Port Names
	Reviewing a Module Representation
	Rerunning Design Rule Checking
	Troubleshooting Netlists
	Troubleshooting STIL Procedures
	Opening the STL Procedure File
	STIL load_unload Procedure
	STIL Shift Procedure
	STIL test_setup Macro
	Correcting DRC Violations by Changing the Design

	Analyzing the Cause of Low Test Coverage
	Where Are the Faults Located?
	Why Are the Faults Untestable or Difficult to Test?
	Using Justification

	Completing an Aborted Bus Analysis
	Using Pipeline Guidance
	Specifying the Head Pipeline Structures in the SPF
	Using set_drc -pipeline_structures

	29 ATPG FAQ
	What is the Difference Between Multicore Processing and Multithreading?
	How Can I Avoid Generating Patterns With Floating BIDI Ports?
	How Do I Abbreviate Commands?
	Tcl Mode
	Example

	Native Mode

	What Special Characters Are Used in Tcl Mode?
	What Are Limited Regular Expressions?
	Regular Expression Meta-Characters
	Usage Notes:

	Examples
	Using Escape Characters With Wildcards and Regular Expressions

	What are the Compressor Connections in report_scan_chains Output?
	What are Some Examples of Pin Data?
	Bidi Control Value
	Clock Cone
	Clock On
	Clock Off
	Constraint Data
	Debug Sim Data
	Delay Data
	Error Data
	Fault Data
	Fault Sim Result
	FULL_SEQ_Scoap_data
	Full Sequential TG Data
	Good Sim Results
	Load
	Master Observe
	None
	Pattern
	SCOAP Data
	SDC Case Analysis
	Seq Sim Data
	Shadow Observe
	Shift
	Stability Patterns
	Test Setup
	Tie Data

	How Do I Use the write_testbench Command to Customize MAX Testbench Output?
	Example

	Validating Simulation Libraries Used For ATPG
	How Do I Customize Ltran Output for FTDL, TSTL2, or TDL91?
	Customizing Ltran Configuration Files
	Customizing Simulator Format-Specific Controls
	Common Ltran Controls
	Character Padding

	How TestMAX ATPG Processes Setup and Hold Violations
	Example of How TestMAX ATPG Handles an Ambiguous Case

	Interpreting UDP Messages
	Variant #1
	Variant #2
	Variant #3
	Variant #4
	Debugging UDP-based Models

	What is the Difference between the add_capture_masks vs add_cell_constraints Commands?
	Masking a Scan Cell by Instance Name
	Masking a Nonscan Cell by Instance Name

	JTAG Support
	Common Tasks for Supporting JTAG
	Initializing TAP Using test_setup
	Keeping the TAP Controller from Changing State
	When to Constrain TMS
	Controlling TAP using load_unload
	Accessing Internal Scan Chains Through the TAP
	Limiting Clocks during ATPG
	TAP controllers with no reset pin

	Node File Format for Bridging Faults
	Star-RCXT Format
	Node File Format

	Optimizing Basic Scan Patterns
	Design and ATPG Usage Tips for Designs with Phase Lock Loops (PLLs)
	Design Considerations:
	ATPG Tool Considerations:

	Shared Scan-In Designs
	Creating End-of-Cycle Measures in ATPG Patterns
	Drawbacks of Using End-of-Cycle Measures
	Requirements Needed to Produce End-of-Cycle Measures

	Troubleshooting Pattern Simulation Failures
	Your ATPG Patterns are Failing: What Next?
	Interpreting the Simulation Failure Messages
	Isolating a Failing Pattern to Assist in Troubleshooting
	Eliminating a Few Failing Patterns from a Larger Set
	Locating the Target Fault Site for the Failing Pattern
	Isolating a Fault List to Assist in Troubleshooting
	Interpreting the report_patterns Command
	Viewing Pattern Data in the Graphical Schematic Viewer
	Using the analyze_simulation_data Command

	WGL Pattern Generation Options
	Creating LSI-Compatible WGL Patterns
	Creating NEC-Compatible WGL Patterns
	WGL Scan Chain Padding
	WGL Scan Chain Definitions
	Macro Usage in WGL
	Grouping Bidirectional Port Data in WGL
	Controlling Port Data Order in WGL
	Specifying Windowed Measures in WGL
	Delayed Input Force Timing and Force Prior in WGL
	Balancing Vector and Scan Statements in WGL
	Mapping Bidirectional Ports Within Vector Statements in WGL
	Mapping Bidirectional Ports Within Scan Statements in WGL
	Adjusting Pattern Data for Serial Versus Parallel Interpretation in WGL
	Selecting Scan Chain Inversion Reference in WGL
	Effect of CELLDEFINE in WGL
	Ambiguity of the Master Cell in WGL

	Subnet Formats for Diagnosis
	Net Topology Definition
	Subnets Fault Format

	Handling Escape Characters in Tcl Mode
	Using Escape Characters with Wildcards and Regular Expressions
	Specifying Escaped Names for a List Argument
	Specifying Escaped Names for a String Argument

	Passing Complex Options to LSF/GRID

	30 Scripts
	Basic ATPG Run Script
	Basic TestMAX ATPG Run
	ATPG Run No SPF
	Bridging Fault ATPG
	Cell-Aware ATPG
	Dynamic Bridging Fault ATPG
	Low Power ATPG
	Multicore ATPG
	Scan-Through-TAP ATPG Flow
	Transition Delay Fault ATPG
	Transition Delay Fault ATPG Using LOES Timing
	Basic TestMAX ATPG Diagnosis Run
	Distributed Processing Fault Simulation Flow
	DFTMAX What-If Analysis
	DFTMAX Ultra High Resolution Pattern Flow
	Fault Coverage of Combined ATPG and JTAG Test Vectors
	Generating Patterns for DFTMAX Ultra
	IDDQ Bridging Flow
	Slack-Based Testing

	31 Validating Test Patterns
	TestMAX ATPG Pattern Format Overview
	Writing STIL Patterns
	Design to Test Validation Flow

	32 Using MAX Testbench
	Overview
	Installation
	Obtaining Help

	Running MAX Testbench
	write_testbench Command Syntax
	MAX Testbench Command-Line Parameters Used With the write_testbench Command
	stil2Verilog Command Syntax
	Setting the Run Mode

	Configuring MAX Testbench
	Understanding the Failures File
	MAX Testbench and Legacy Scan Failures
	MAX Testbench and DFTMAX Compression Failures
	MAX Testbench and Serializer Scan Failures

	Using the Failures File
	Using Split STIL Pattern Files
	Execution Flow for -split_in Option

	Splitting Large STIL Files
	Why Split Large STIL Files?
	Executing the Partition Process
	Example Test

	Controlling the Timing of a Parallel Check/Assert Event
	Using MAX Testbench to Report Failing Scan Cells
	Flow Overview
	Flow Example

	MAX Testbench Runtime Programmability
	Basic Runtime Programmability Simulation Flow
	Runtime Programmability for Patterns
	Using the -generic_testbench Option
	Using the -patterns_only Option
	Executing the Flow
	Using Split Patterns

	Example: Using Runtime Predefined VCS Options
	MAX Testbench Runtime Programmability Limitations

	MAX Testbench Support for IDDQ Testing
	Compile-Time Options for IDDQ
	IDDQ Configuration File Settings
	Generating a VCS Simulation Script

	How MAX Testbench Works
	Predefined Verilog Options
	MAX Testbench Limitations
	Example of the Configuration Template

	MAX Testbench Error Messages and Warnings
	Error Message Descriptions
	Warning Message Descriptions
	Informational Message Descriptions

	Troubleshooting MAX Testbench
	Introduction
	Troubleshooting Compilation Errors
	FILELENGTH Parameter
	NAMELENGTH Parameter
	Memory Allocation
	MDEPTH Parameter

	Troubleshooting Miscompares
	Handling Miscompare Messages
	Miscompare Message 1
	Miscompare Message 2
	Miscompare Message 3
	Miscompare Message 4

	Understanding MAX Testbench Parallel Miscompares
	Localizing a Failure Location
	Resolving the First Failure
	Miscompare Fingerprints
	Expected versus Actual States
	Current Waveform Table
	Labels and Calling Stack

	Additional Troubleshooting Help

	Adding More Fingerprints

	Debugging Simulation Mismatches Using the write_simtrace Command
	Overview
	Debugging Flow
	Input Requirements
	Using the write_simtrace Command
	Understanding the Simtrace File
	Error Conditions and Messages
	Example Debug Flow
	Restrictions and Limitations

	Debugging Parallel Simulation Failures Using Combined Pattern Validation
	Overview
	Understanding the PSD File
	Creating a PSD File
	Using the run_atpg Command to Create a PSD File
	Using the run_simulation Command to Create a PSD File

	Flow Configuration Options
	Example Simulation Miscompare Messages
	Example 1
	Example 2
	Example 3
	Verbosity Setting Examples

	Displaying the Instance Names of Failing Cells
	Debug Modes for Simulation Miscompare Messages
	Pattern Splitting
	Splitting Patterns Using TestMAX ATPG
	Examples Using TestMAX ATPG For Pattern Splitting
	Set Up Example
	Example Using Pattern File From write_patterns Command
	Example Using Split USF STIL Pattern Files

	Splitting Patterns Using MAX Testbench
	Specifying a Range of Split Patterns Using MAX Testbench

	MAX Testbench and Consistency Checking
	Using the PSD File with DFTMAX Ultra Compression
	Script Example

	Limitations for Debugging Simulation Failures Using CPV

	33 Using Loadable Nonscan Cells in TestMAX ATPG
	Simulation Support
	ATPG Support
	Multithreading ATPG
	Fault Simulation Support
	Reporting Loadable Nonscan Cells
	Analyzing
	Limitations

	34 PowerFault
	PowerFault Simulation
	PowerFault Simulation Technology
	IDDQ Testing Flows
	IDDQ Test Pattern Generation
	IDDQ Strobe Selection From an Existing Pattern Set

	Licensing

	Verilog Simulation with PowerFault
	Preparing Simulators for PowerFault IDDQ
	Using PowerFault IDDQ With Synopsys VCS
	Using PowerFault IDDQ With Cadence NC-Verilog
	Setup
	32-bit Setup
	64-bit Setup

	Creating the Static Executable
	Running Simulation
	Creating a Dynamic Library
	Running Simulation

	Using PowerFault IDDQ With Cadence Verilog-XL
	Setup
	Running Simulation
	Running Verilogxl

	Using PowerFault IDDQ With Model Technology ModelSim

	PowerFault PLI Tasks
	Getting Started
	PLI Task Command Summary Table
	PLI Task Command Reference
	Conventions
	Special-Purpose Characters
	Module Instances and Entity Models
	Cell Instances
	Port and Terminal References

	Simulation Setup Commands
	dut
	output
	ignore
	io
	statedep_float
	measure
	verb

	Leaky State Commands
	allow
	disable SepRail
	disallow

	Fault Seeding Commands
	seed SA
	seed B
	scope
	read_bridges
	read_tmax
	read_verifault
	read_zycad
	exclude

	Fault Model Commands
	model SA
	model B

	Strobe Commands
	strobe_try
	strobe_force
	strobe_limit
	cycle

	Circuit Examination Commands
	status
	summary

	Disallowed/Disallow Value Property
	Can Float Property

	Faults and Fault Seeding
	Fault Models
	Fault Models in TestMAX ATPG
	Fault Models in PowerFault
	Stuck-At Faults
	Bridging Faults

	Fault Seeding
	Seeding From a TestMAX ATPG Fault List
	Seeding From an External Fault List
	PowerFault-Generated Seeding

	Options for PowerFault-Generated Seeding
	Stuck-At Fault Model Options
	Default Stuck-At Fault Seeding
	all_mods
	cell_mods
	leaf_mods
	prims
	seed_inside_cells

	Bridging Faults
	cell_ports
	fet_terms
	gate_IN2IN
	gate_IN2OUT
	vector
	seed_inside_cells

	PowerFault Strobe Selection
	Overview of IDDQPro
	Invoking IDDQPro
	ipro Command Syntax
	Strobe Selection Options
	-strb_lim
	-cov_lim
	-strb_set
	-strb_unset
	-strb_all

	Report Configuration Options
	-prnt_fmt
	-prnt_nofrpt
	-prnt_full, -prnt_times, and -path_sep
	-ign_uncov

	Log File and Interactive Options

	Interactive Strobe Selection
	cd
	desel
	exec
	help
	ls
	prc
	prf
	prs
	quit
	reset
	sela
	selm
	selall

	Strobe Selection Tutorial
	Simulation and Strobe Selection
	Examine the Verilog File
	Run the doit Script
	Examine the Output Files

	Interactive Strobe Selection
	Select Strobes Automatically
	Select All Strobes
	Select Strobes Manually
	Cumulative Fault Selection

	Understanding the Strobe Report
	Example Strobe Report
	Fault Coverage Calculation
	Faults Detected by Previous Runs
	Undetected Faults Excluded From Simulation
	Faults Detected at Uninitialized Nodes

	Adding More Strobes
	Deleting Low-Coverage Strobes

	Fault Report Formats
	TestMAX ATPG Fault Report Format
	Verifault Fault Report Format
	Listing Seeded Faults

	Verifault Interface
	Iterative Simulation

	Using PowerFault Technology
	PowerFault Verification and Strobe Selection
	Verifying TestMAX ATPG IDDQ Patterns for Quiescence
	Selecting Strobes in TestMAX ATPG Stuck-At Patterns
	Selecting Strobe Points in Externally Generated Patterns

	Testbenches for IDDQ Testability
	Separate the Testbench From the Device Under Test
	Drive All Input Pins to 0 or 1
	Try Strobes After Scan Chain Loading
	Include a CMOS Gate in the Testbench for Bidirectional Pins
	Model the Load Board
	Mark the I/O Pins
	Minimize High-Current States
	Maximize Circuit Activity

	Combining Multiple Verilog Simulations
	Improving Fault Coverage
	Determine Why the Chip Is Leaky
	Evaluate Solutions
	Use the allow Command
	Configure the Verilog Testbench
	Drive All Input Pins to 0 or 1
	Use Pass Gates
	Model the Load Board
	Mark the I/O Pins

	Configure the Verilog Models
	Drive All Buses Possible
	Gate Buses That Cannot Be Driven
	Use Keeper Latches
	Enable Only One Driver
	Avoid Active Pullups and Pulldowns
	Avoid Bidirectional Switch Primitives

	Floating Nodes and Drive Contention
	Floating Node Recognition
	Leaky Floating Nodes
	Floating Nodes Ignored by PowerFault
	State-Dependent Floating Nodes
	Configuring Floating Node Checks
	Floating Node Reports
	Nonfloating Nodes

	Drive Contention Recognition

	Status Command Output
	Status Command Overview
	Leaky Reasons
	Nonleaky Reasons
	Driver Information

	Behavioral and External Models
	Disallowing Specific States
	Disallowing Global States

	Multiple Power Rails
	Testing I/O and Core Logic Separately

	35 Types of Reports
	Output From the report_scan_ability Command
	Standard Format

	Output From the report_scan_cells Command
	Standard Format
	-Pin Format
	Verbose Format

	Output From the report_scan_chains Command
	Standard Format
	Verbose Format

	Output From the report_scan_path Command
	Standard Format
	Verbose Format

	Output From the report_settings Command
	Standard Format

	Output From the report_summaries Command
	Standard Format
	Verbose Format
	Primitives Report
	Library Cells Report
	Optimizations Report
	Sequential Depths Report

	Output From the report_version Command
	Standard Format
	Full Format
	Short Format
	Address Format
	Banner Format
	Verbose Format

	Output From the report_violations Command
	Standard Format

	Output From the report_wires Command
	Summary Format
	Standard Format
	Verbose Format

	Output From the analyze_buses Command
	Standard Format - defaults
	Standard Format - zstate
	Standard Format - exclusive
	Standard Format - prevention

	Output From the analyze_faults Command
	Standard Format for Blocked pin_pathname
	Standard Format for Successful pin_pathname
	Standard Format for Class
	Blockage and Constraint Value Source Points Format
	Verbose Format

	Output From the report_atpg_constraints Command
	Summary Format
	Standard Format

	Output From the report_atpg_primitives Command
	Summary Format
	Standard Format
	Verbose Format

	Output From the report_buses Command
	Summary Format
	Standard Format
	Verbose Format

	Output From the report_cell_constraints Command
	Standard Format

	Output From the report_clocks Command
	Standard Format
	Matrix Format
	Internal Clocks Format
	Verbose Format

	Output From the report_commands Command
	Summary Format
	Standard Format
	Usage Format

	Output From the report_memory Command
	SUMMARY FORMAT
	Standard Format
	Verbose Format
	Standard Format With Constants

	Output From the report_modules Command
	Summary Format
	Standard Format
	Verbose Format

	Output From the report_net_connections Command
	Standard Format

	Output From the report_nets Command
	Standard Format

	Output From the report_nofaults Command
	Standard Format

	Output From the report_nonscan_cells Command
	Summary Format
	Standard Format

	Output From the report_patterns Command
	Summary Format
	Standard Format
	Pattern Type Format
	Understanding the Cycle Count for Designs with OCCs

	Output From the report_pi_constraints Command
	Standard Format

	Output From the report_pi_equivalences Command
	Standard Format

	Output From the report_po_masks Command
	Standard Format

	Output From the report_primitives Command
	Summary Format
	Standard Format
	Verbose Format
	Pin/PI/PO/PIO Format

	Output From the report_rules Command
	Standard Format

	Output From the run_build_model Command
	Standard Format
	Verbase Format

	Output From the run_fault_sim Command
	Standard Format

	Output From the run_justification Command
	Standard Format (Examples)

	Output From the run_simulation Command
	Standard Format
	With Simulation Mismatches
	Using the -max_fails Option
	Using the -progress_message Option of the set_simulation Command

	36 Glossary
	At-speed Clock
	ATPG Primitive ID
	ATPG Primitive Name
	Black Box
	Bus Keeper
	Capture Clock
	Capture Clock Edge (Capture Edge)
	Capture Vector
	Circuit Path
	Clock
	Clock Cone
	Comment Lines
	Repeating Commands
	Continuation Character
	Delay Path
	Effect Cone
	Empty Box
	False Path
	Fanin Number
	backward
	Fanout Number
	forward
	report_primitives
	Primitive ID
	Gray Box
	Head of the Path
	How to Copy and Paste
	Cut/Paste between X11 window and TestMAX ATPG GUI window

	Instance Name
	Launch Clock
	Launch Clock Edge (Launch Edge)
	Feedback Path ID
	Majority Gate
	Measure Scan Chain Output
	Modifying Timing Data in an Existing STL Procedures File
	Module Name
	Module Pin Name
	Net Name
	Non-robust Detection of a Path Delay Fault
	Non-robust Test (For a Path Delay Fault)
	Nonscan Behavior: C0
	Nonscan Behavior: C1
	Nonscan Behavior: CU
	Nonscan Behavior: L0
	Nonscan Behavior: L1
	Nonscan Behavior: LE
	Nonscan Behavior: LS
	Nonscan Behavior: RAM_out
	Nonscan Behavior: TE
	Nonscan Behavior: TLA
	Null Module
	Off-path Input
	Off State
	On-path Input
	Output Redirection
	Path Delay Fault
	Pin Pathname
	Port Name
	Primitive ID
	Sequential Model Port Priorities
	Reconverging Path
	Robust Detection of a Path Delay Fault
	Robust Test (For a Path Delay Fault)
	Scan Clock
	SCOAP
	Setup Vector (Launch Vector)
	Shift Position
	Simulation Events
	Tail of the Path
	Test For A Path Delay Fault
	Unstable Set / Resets
	WFCMap
	Ungated Circuitry

	37 Limitations
	A Test Concepts
	Why Perform Manufacturing Testing?
	Understanding Fault Models
	Stuck-At Fault Models
	Detecting Stuck-At Faults
	Transition Delay Fault Models
	Detecting Transition Delay Faults
	Using Fault Models to Determine Test Coverage
	IDDQ Fault Model
	Fault Simulation
	Automatic Test Pattern Generation
	Translation for the Manufacturing Test Environment

	Coverage Calculations
	Test Coverage
	Fault Coverage
	ATPG Effectiveness

	Internal Scan
	Example
	Applying Test Patterns
	Scan Design Requirements
	Controllability of Sequential Cells
	Observability of Sequential Cells

	Full-Scan Design
	Partial-Scan ATPG Design

	What Is Boundary Scan?

	B ATPG Design Guidelines
	ATPG Design Guidelines
	Internally Generated Pulsed Signals
	Clock Control
	Pulsed Signals to Sequential Devices
	Multidriver Nets
	Bidirectional Port Controls
	Exception

	Clocking Scan Chains: Clock Sources, Trees, and Edges
	Clock Trees
	Clock Flip-Flops
	XNOR Clock Inversion and Clock Trees

	Protection of RAMs During Scan Shifting
	RAM and ROM Controllability During ATPG
	Pulsed Signal to RAMs and ROMs
	Bus Keepers
	Non-Z State on a Multidriver Net
	Non-Clocked Events

	Bus Keepers
	Non-Z State on a Multidriver Net
	Non-Clocked Events

	Checklists for Quick Reference
	ATPG Design Guideline Checklist
	Ports for Test I/O Checklist

	C Importing Designs From TestMAX DFT
	D Utilities
	Ltran Translation Utility
	Ltran in the Shell Mode
	FTDL, TDL91, and TSTL2 Configuration Files
	Understanding the Configuration File
	Customizing the FTDL Configuration File
	Customizing the TDL91 Configuration File
	Customizing the TSTL2 Configuration File
	Additional Controls

	Configuration File Syntax
	OVF_BLOCK Statements
	PROC_BLOCK Statements
	TVF_BLOCK Statements

	Generating PrimeTime Constraints
	Input Requirements
	Starting the Tcl Command Parser Mode
	Setting Up TestMAX ATPG
	Making Adjustments for OCC Controllers
	Performing an Analysis for Each Mode
	Implementation

	Converting Timing Violations Into Timing Exceptions
	Importing PrimeTime Path Lists
	Path Definition Syntax

	stilgen Utility and Configuration Files
	Using stilgen for Pattern Porting
	stilgen Configuration File Syntax for Pattern Porting
	Port-Mapping File Syntax

	Using stilgen for Protocol Generation
	stilgen Configuration File Syntax for Protocol Generation

	Pattern Porting Example
	Protocol Generation Notes
	Supported Configurations
	Limitations

	E STIL Language Support
	STIL Overview
	IEEE Std. 1450-1999
	IEEE Std. 1450.1 Design Extensions to STIL

	TestMAX ATPG and STIL
	STIL Conventions in TestMAX ATPG
	Use of STIL Procedures
	Context of Partial Signal Sets in Procedure Definitions
	Use of STIL SignalGroups
	WaveFormCharacter Interpretation

	IEEE Std. 1450.1 Extensions Used in TestMAX ATPG
	Vector Data Mapping Using \m
	Syntax
	Example

	Vector Data Mapping Using \j
	Syntax
	General Example
	Usage Example

	Signal Constraints Using Fixed and Equivalent
	ScanStructures Block

	Elements of STIL Not Used by TestMAX ATPG
	TestMAX ATPG STIL Output
	TestMAX ATPG STIL Input

	Testing the STIL Procedure File

	F STIL99 Versus STIL
	G Defective Chain Masking for DFTMAX
	Introduction
	Running the Flow
	Placing Constraints on the Defective Chain
	Generating Patterns
	Regenerating Patterns

	Examples
	Limitation

	H Simulation Debug Using MAX Testbench and Verdi
	Setting the Environment
	Preparing MAX Testbench
	Linking Novas Object Files to the Simulation Executable
	Running VCS and Dumping an FSDB File
	Running Verdi
	Debugging MAX Testbench and VCS
	Changing Radix to ASCII
	Displaying the Current Pattern Number
	Displaying the Vector Count
	Using Search in the Signal List

