
Software Version 2022.4
Document Revision 27

SIEMENS EDA

Tessent™ Scan and ATPG
User’s Manual

Unpublished work. © 2022 Siemens

This Documentation contains trade secrets or otherwise confidential information owned by Siemens Industry
Software Inc. or its affiliates (collectively, “Siemens”), or its licensors. Access to and use of this Documentation is
strictly limited as set forth in Customer’s applicable agreement(s) with Siemens. This Documentation may not be
copied, distributed, or otherwise disclosed by Customer without the express written permission of Siemens, and may
not be used in any way not expressly authorized by Siemens.

This Documentation is for information and instruction purposes. Siemens reserves the right to make changes in
specifications and other information contained in this Documentation without prior notice, and the reader should, in
all cases, consult Siemens to determine whether any changes have been made.

No representation or other affirmation of fact contained in this Documentation shall be deemed to be a warranty or
give rise to any liability of Siemens whatsoever.

If you have a signed license agreement with Siemens for the product with which this Documentation will be used,
your use of this Documentation is subject to the scope of license and the software protection and security provisions
of that agreement. If you do not have such a signed license agreement, your use is subject to the Siemens Universal
Customer Agreement, which may be viewed at https://www.sw.siemens.com/en-US/sw-terms/base/uca/, as
supplemented by the product specific terms which may be viewed at https://www.sw.siemens.com/en-US/sw-
terms/supplements/.

SIEMENS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS DOCUMENTATION INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. SIEMENS SHALL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES, LOST DATA OR
PROFITS, EVEN IF SUCH DAMAGES WERE FORESEEABLE, ARISING OUT OF OR RELATED TO THIS
DOCUMENTATION OR THE INFORMATION CONTAINED IN IT, EVEN IF SIEMENS HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

TRADEMARKS: The trademarks, logos, and service marks (collectively, "Marks") used herein are the property of
Siemens or other parties. No one is permitted to use these Marks without the prior written consent of Siemens or the
owner of the Marks, as applicable. The use herein of third party Marks is not an attempt to indicate Siemens as a
source of a product, but is intended to indicate a product from, or associated with, a particular third party. A list of
Siemens' Marks may be viewed at: www.plm.automation.siemens.com/global/en/legal/trademarks.html. The
registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a world-wide basis.

About Siemens Digital Industries Software

Siemens Digital Industries Software is a leading global provider of product life cycle management (PLM) software
and services with 7 million licensed seats and 71,000 customers worldwide. Headquartered in Plano, Texas,
Siemens Digital Industries Software works collaboratively with companies to deliver open solutions that help them
turn more ideas into successful products. For more information on Siemens Digital Industries Software products and
services, visit www.siemens.com/plm.

Support Center: support.sw.siemens.com
Send Feedback on Documentation: support.sw.siemens.com/doc_feedback_form

https://www.sw.siemens.com/en-US/sw-terms/base/uca/
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://www.siemens.com/plm
https://support.sw.siemens.com/
https://support.sw.siemens.com/doc_feedback_form
https://www.sw.siemens.com/en-US/sw-terms/supplements/
https://www.sw.siemens.com/en-US/sw-terms/supplements/

Revision History ISO-26262

Author: In-house procedures and working practices require multiple authors for documents. All
associated authors for each topic within this document are tracked within the Siemens
documentation source. For specific topic authors, contact the Siemens Digital Industries
Software documentation department.

Revision History: Released documents include a revision history of up to four revisions. For
earlier revision history, refer to earlier releases of documentation on Support Center.

Revision Changes Status/
Date

27 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Dec 2022

26 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Sept 2022

25 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Jun 2022

24 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Mar 2022
Tessent™ Scan and ATPG User’s Manual, v2022.4

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.44

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table of Contents

Revision History ISO-26262

Chapter 1
Overview . 29

What is Design-for-Test?. 30
DFT Strategies . 30

Top-Down Design Flow With DFT. 31

Chapter 2
Scan and ATPG Basics . 33

Scan Design Overview. 34
About Scan Design Methodology. 36
About Wrapper Chains . 37
Test Structure Insertion With Tessent Scan . 39

ATPG Overview . 41
The ATPG Process . 42

Random Pattern Test Generation . 42
Deterministic Pattern Test Generation . 42
External Pattern Test Generation . 43

Tessent ATPG Applications . 43
Scan Sequential ATPG With the ATPG Tool . 43

Overview of Test Types and Fault Models . 45
Test Types. 46

Functional Test . 46
IDDQ Test . 46
At-Speed Test . 48

Fault Modeling Overview. 49
Test Types and Associated Fault Models. 49
Fault Locations . 49
Fault Collapsing . 50
Supported Fault Model Types . 51

Fault Manipulation . 56
Overview of Fault Manipulation . 56
Fault Manipulation Functionality . 56

About User-Defined Fault Modeling . 59
User-Defined Fault Modeling Usage Notes . 59
UDFM File Format. 61
Creating a User-Defined Fault Model . 66
Generating UDFM Test Patterns . 68

Multiple Detect . 70
Bridge Coverage Estimate . 70

Embedded Multiple Detect . 72
Tessent™ Scan and ATPG User’s Manual, v2022.4 5

Table of Contents
Fault Detection . 73
Fault Classes . 76

Untestable (UT) . 76
Testable (TE) . 79
Fault Class Hierarchy . 81
Fault Sub-Classes . 82

Fault Reporting . 89
Testability Calculations . 90

Chapter 3
Common Tool Terminology and Concepts. 91

Scan Terminology . 93
Scan Cells . 93
Master Element . 94
Remote Element . 94
Shadow Element . 95
Copy Element . 96
Extra Element . 96
Scan Chains. 97
Scan Groups . 97
Scan Clocks. 99

Scan Architectures . 100
Multi-Bit Cells . 100

Test Procedure Files. 105
Model Flattening . 107

Design Object Naming . 107
The Flattening Process . 108
Simulation Primitives of the Flattened Model . 109

Learning Analysis . 113
Equivalence Relationships . 113
Logic Behavior . 113
Implied Relationships . 114
Forbidden Relationships . 115
Dominance Relationships . 115

ATPG Design Rules Checking . 116
General Rules Checking . 116
Procedure Rules Checking . 116
Bus Mutual Exclusivity Analysis . 117
Scan Chain Tracing. 118
Shadow Latch Identification . 118
Data Rules Checking . 119
Transparent Latch Identification. 119
Clock Rules Checking . 120
RAM Rules Checking. 120
Bus Keeper Analysis. 120
Extra Rules Checking . 121
Scannability Rules Checking . 121
Constrained/Forbidden/Block Value Calculations . 121
6 Tessent™ Scan and ATPG User’s Manual, v2022.4

Table of Contents
Clock Terminology . 123
Programmable Clock Chopper . 123

Chapter 4
Testability Issues . 125

Synchronous Circuitry . 125
Asynchronous Circuitry . 126
Scannability Checking . 126
Support for Special Testability Cases . 128

Feedback Loops . 128
Structural Combinational Loops and Loop-Cutting Methods . 128
Structural Sequential Loops and Handling . 134
Redundant Logic. 135
Asynchronous Sets and Resets . 135
Gated Clocks. 136
Tri-State Devices . 137
Non-Scan Cell Handling . 137
Clock Dividers . 141
Pulse Generators . 142
JTAG-Based Circuits . 143
RAM and ROM Test Overview . 144

RAM/ROM Support . 145
RAM/ROM Support Commands . 148
Basic ROM/RAM Rules Checks . 149

Incomplete Designs. 150

Chapter 5
Test Point Analysis and Insertion . 151

What Are Test Points? . 153
Why You Use Test Points. 153
Control Points and Observe Points . 155

Control Points. 155
Observe Points . 156

Test Point Insertion Flows . 158
Analyze and Insert Test Points in a Pre-Scan Design. 159
Analyze and Insert Test Points in a Post-Scan Design . 161
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools 166

How to Insert Test Points for DC or Genus . 166
How to Create a Test Points and OST Scan Insertion Script for DC or Genus 169

Test Point Usage Scenarios . 172
Test Points for ATPG Pattern Count Reduction. 173

Test Points for Reducing Pattern Count . 174
Requirements for Test Point Analysis and Insertion . 174
Specify Test Point Type . 174
Inserting Test Points When Using the EDT Skeleton IP Flow . 176

Test Points for LBIST Test Coverage Improvement . 177
Test Point Analysis and Insertion Step Overview . 177
Test Point Analysis With Small LBIST Pattern Counts. 178
Tessent™ Scan and ATPG User’s Manual, v2022.4 7

Table of Contents
Test Coverage Reporting During Test Point Analysis for LogicBIST Coverage Improvement
179

Test Points for Hybrid TK/LBIST Design . 182
Improving Test Coverage and Pattern Count Reduction . 182

Test Points for ATPG Test Coverage Improvement. 184
Test Points for Improving the Test Coverage of Deterministic Patterns 184

Test Points Special Topics . 188
Control Point and Observe Point Enable Signal Handling . 188
Test Point Analysis With Multiple Power Domains. 189
Test Point Analysis Multicycle and False Path Handling. 190
Test Point Analysis Critical Path Handling . 192

PrimeTime and Tempus Scripts for Preventing Test Points on Critical Paths. 193
User-Defined Test Points Handling . 197
Test Point Deletion . 199

delete_test_points Command . 199
Modifying the Test Point Dofile. 199

Back to Back Command Handling . 200
Static Timing Analysis for Test Points . 200
Test Points and At-Speed Testing. 201
Clock Selection for Test Point Flops . 202
Example of Test Point Insertion With Custom Prefix for Inserted Logic 203
Test Point Sharing. 203

Chapter 6
Internal Scan and Test Circuitry Insertion . 209

Introduction to Tessent Scan . 211
Tessent Scan Inputs and Outputs . 212
Invoking Tessent Scan . 214
Example Dofile Using Tessent Scan . 214
Test Structures Supported by Tessent Scan . 215

Tool Terminology and Concepts . 217
Scan Element . 217
Scan Chain Family . 219
Scan Mode . 220
Unwrapped Cores Versus Wrapped Cores . 221
Pre-Existing Scan Segments . 222
Verification of Pre-Existing Scan Segments . 225
Pre-Existing Scan Chains . 226

Preparation for Test Structure Insertion. 228
Test Logic Insertion . 228
User Clock Signals . 232
How to Specify Existing Scan Information . 233
How to Handle Existing Boundary Scan Circuitry. 235
How to Run Rules Checking . 236
How to Manually Include and Exclude Cells for Scan. 236
Cell Library Models With Multiple Scan Paths . 238
Automatic Recognition of Existing Shift Registers . 240
Scan Cell Identification and Reporting. 243
8 Tessent™ Scan and ATPG User’s Manual, v2022.4

Table of Contents
DFT Test Logic Attributes no_control_point and no_observe_point. 243
Multi-Mode Chains . 247

Introduction to Multi-Mode Chains . 247
Multi-Mode Gating Logic. 248
Multi-Mode Scan Insertion . 249

Chain Port Sharing . 250
Population Control . 251

Scan Insertion Flows . 253
How to Report Scannability Information . 253
Scan Insertion Flow Steps. 254
How to Control Scan Insertion . 255

Scan Insertion for Unwrapped Core . 255
Scan Insertion for Wrapped Core . 259
Scan Insertion at the Parent Level . 264
Dedicated Wrapper Cell Placement After Loading UPF/CPF File 266
Limiting Core Power Usage During External Test . 268

Wrapper Cells Analysis . 269
Wrapper Chains Generation . 274
Dedicated and Shared Wrapper Logic . 276
Clock Selection for Dedicated Wrapper Cells . 280
Dedicated Wrapper Cell Placement . 280
Identification of Clock and Reset Ports . 282
Tessent Instruments With keep_active_during_scan_test . 283

Clock Gaters and Scan Insertion . 285
Types of Clock Gaters . 285
Identification of Clock Gaters. 286
Identification of Pin Functions . 287
Fixing Clock Gaters . 288
Clock Gaters and Wrapper Analysis. 289

Test Point and Scan Insertion . 291
Scan Enable Pipelining . 293

Introduction to Scan Enable Pipelining . 293
Scan Enable Pipelining Scenarios. 294

Chapter 7
Running ATPG Patterns . 299

Running ATPG Patterns After Tessent Scan . 299
Running ATPG Patterns Without Tessent Scan . 302

Core Mapping for ATPG Process Overview . 302
Core Mapping Examples . 311
Limitations of Core Mapping for ATPG . 317

Chapter 8
Test Pattern Generation. 319

ATPG Basic Tool Flow . 321
ATPG Tool Inputs and Outputs . 323
ATPG Process Overview . 325

Basic ATPG Process. 325
Tessent™ Scan and ATPG User’s Manual, v2022.4 9

Table of Contents
ATPG Tool Timing Model. 326
ATPG Tool Pattern Types . 326

ATPG Procedures . 329
Tool Invocation. 329
Circuit Behavior Setup . 330

Equivalent or Inverted Primary Input Definition . 330
Primary Inputs and Outputs Addition. 330
Bidirectional Pins as Primary Inputs or Outputs . 331
How to Tie Undriven Signals . 334
Primary Input Constraints. 334
How to Mask Primary Outputs. 334
Slow Pad Addition . 335

Tool Behavior Setup . 336
Bus Contention Checks . 336
Multi-Driven Net Behavior Setup . 337
Z-State Handling Setup . 337
The ATPG Learning Process . 338
Capture Handling Setup . 338
Transient Detection Setup . 339

Scan Data Definition. 340
Scan Clocks Definition. 340
Scan Groups Definition . 340
Scan Chains Definition. 341
Clock Restriction Setup . 341
How to Add Constraint to Scan Cells. 341
Nofault Settings . 342

Rules Checks and Violations . 342
Good/Fault Simulation With Existing Patterns . 343

Fault Simulation . 343
Good-Machine Simulation . 345

Random Pattern Simulation . 346
Tool Setup for Random Pattern Simulation . 346
Faults List Addition . 346
Running Random Pattern Simulation . 346

Fault Information Setup for ATPG . 347
Tool Setup for ATPG . 347
Faults List Creation. 348
Faults Addition to an Existing List . 348
How to Load Faults From an External List . 348
How to Write Faults to an External File . 349
Fault Sampling Percentage Setup . 349
Fault Mode Setup . 349
Possible-Detect Credit Setup . 349

ATPG Operations . 350
ATPG Setup . 351

ATPG Constraints Definition . 351
Power and Ground Ports Exclusion From the Pattern Set . 353
ATPG Limits Setup . 354
Event Simulation for DFFs and Latches . 354
10 Tessent™ Scan and ATPG User’s Manual, v2022.4

Table of Contents
Flattened Model Saves Time and Memory . 356
Pattern Buffer Area Creation . 356
Fault Sampling to Save Processing Time. 357
Checkpointing Setup . 357

Pattern Creation With Default Settings . 358
Approaches for Improving ATPG Efficiency. 360

Reasons for Low Test Coverage. 360
Analysis of a Specific Fault . 361
Aborted Faults Report . 362
Abort Limit Setup. 362

How to Save the Test Patterns . 362
Low-Power ATPG . 363

Low-Power Capture . 364
Low-Power Shift. 365
Weighted Switching Activity . 365
Setting Up Low-Power ATPG . 367

IDDQ Test Set Creation. 369
IDDQ Test Set Generation . 370

When to Perform the Measures . 370
Pattern Generation . 370
Running ATPG for IDDQ . 370

Leakage Current Checks . 371
Delay Test Set Creation . 372

Transition Delay Test Set Creation. 373
Transition Fault Detection . 374
Generating a Transition Test Set . 376
Timing for Transition Delay Tests . 377
Transition Fault Detection and Multiple Clocks. 379
Pattern Failures Due to Timing Exception Paths . 383

Types of Timing Exception Paths . 384
Timing Exception Paths From an SDC File . 386
Does the SDC File Contain Valid SDC Information? . 387
Manual Definition of False Paths . 388

SDC Timing Exception Effects . 389
Debugging Test Coverage With Timing Exceptions . 393
Path Delay Test Set Creation . 395

Path Delay Fault Detection. 395
The Path Definition File . 399
Path Definition Checks. 402
Generating a Path Delay Test Set . 403
Path Delay Testing Limitations . 404

At-Speed Test With Named Capture Procedures . 405
Support for On-Chip Clocks (PLLs) . 406
Internal and External Modes Definition . 406
Named Capture Procedures Display. 409
Achieving the Test Coverage Goal Using Named Capture Procedures 410
Debugging Low Test Coverage Using Pre-Defined Named Capture Procedures 411
At-speed Fault Simulation Clocking Considerations . 411
Internal Signals and Clocks . 411
Tessent™ Scan and ATPG User’s Manual, v2022.4 11

Table of Contents
How to Save Internal and External Patterns. 412
Mux-DFF Example . 413
Support for Internal Clock Control . 419

Per-Cycle Clock Control . 419
Sequence Clock Control . 422
Capture Cycle Determination . 423
Applying Internal Clock Control . 424

Generating Test Patterns for Different Fault Models and Fault Grading 426
Timing-Aware ATPG . 439

Slack Calculation . 439
Synopsys Design Constraint Derived Clock Timing . 443
Delay Test Coverage Calculation. 444
Timing-Aware ATPG Versus Transition ATPG . 444
Timing-Aware ATPG Limitations . 445
Inaccuracies in Timing Calculations . 446
Running Timing-Aware ATPG . 446
Troubleshooting Topics . 450

Bridge and Open, and Cell Neighborhood Defects UDFM Creation 456
Interconnect Bridge and Open Extraction and UDFM Creation . 457

Viewing Extracted Bridge and Open Defects . 458
Bridge and Open Extraction Output Files . 462
Critical Area-Based Bridge Pattern Generation . 466
Critical Area-Based Open Pattern Generation . 469

Cell Neighborhood Defects UDFM Creation . 471
Inter-Cell Data File. 474
The Marker File . 477

Pattern Generation for a Boundary Scan Circuit . 479
About Dofile . 479
TAP Controller State Machine . 480
About the Test Procedure File . 481

MacroTest Overview . 487
The MacroTest Process Flow . 488
Macro Qualification for MacroTest . 490
When to Use MacroTest . 491
Macro Boundary Definition . 494

Macro Boundary Definition by Instance Name . 494
Macro Boundary Definition Without Using an Instance Name . 495
Observation Site Specification and Reporting . 496
Macro Boundary Definition With Trailing Edge Inputs . 496

Test Values Definition . 498
Recommendations for MacroTest Use . 500
MacroTest Examples . 502

Verifying Test Patterns . 509
Design Simulation With Timing. 510

The Verilog Testbench . 511
Parallel Versus Serial Patterns . 520

Potential Causes of Simulation Mismatches. 521
Simulation Mismatch Investigation . 522
DRC Issues . 523
12 Tessent™ Scan and ATPG User’s Manual, v2022.4

Table of Contents
Shadow Cells . 523
Library Problems . 523
Timing Violations. 524
Simulation Data Analysis . 524
Simulation Mismatch Analysis. 530

Chapter 9
Multiprocessing for ATPG and Simulation . 541

Definition of Multiprocessing Terms . 541
Multiprocessing to Reduce Runtime . 543

Multiprocessing Requirements . 543
Procedures for Multiprocessing . 546

Using Multiprocessing for ATPG and Simulation . 546
Using Multiprocessing to Write Patterns . 547
SSH Environment and Passphrase Errors . 548
How to Disable Multithreading Functionality . 550
Threads Addition to the Primary Process . 550
Processor Addition in Manual Mode . 551
Processor Addition in Grid Mode . 553
Processor Addition to the LSF Grid . 554
Manual Mode Processor Deletion. 555
Grid Mode Processor Deletion . 556

Recommendations For Utilizing Multiprocessing. 557

Chapter 10
Scan Pattern Retargeting . 561

Tools and Licensing Required for Scan Retargeting . 562
Scan Pattern Retargeting Process Overview . 562
Core-Level Pattern Generation . 565
Scan Pattern Retargeting of Test Patterns . 568

Chip-Level Test Procedures . 568
External_capture Procedure . 569
Test Procedure Retargeting for Scan Pattern Retargeting . 569
Scan Pattern Retargeting Without a Netlist . 572

Retargeting Support For Patterns Generated at the Top Level. 573
Generating Patterns at the Core Level . 576
Retargeting Patterns in Internal Mode . 577
Extracting Connectivity Between the Top Level and the Core Boundary. 578
Retargeting Patterns Without a Top-Level Netlist . 579
Generating Patterns in External Mode. 580
Retargeting Example . 582

Core-level Pattern Generation for CPU Cores . 583
Core-level Pattern Generation for NB Core . 584
Retargeting of Patterns at the Chip Level . 584
Retargeting of Patterns at the Chip Level Without a Netlist . 585

Core-in-Core Pattern Retargeting . 587
Core-in-Core Pattern Retargeting Flow . 588
Generation of Child Core Internal Mode Patterns . 590
Tessent™ Scan and ATPG User’s Manual, v2022.4 13

Table of Contents
Retargeting Child Core Internal Mode Patterns . 590
Generation of Parent Internal Mode Patterns . 591
Retargeting of Parent Internal Mode Patterns. 592

multiple loadScan Pattern Retargeting Limitations . 592

Chapter 11
Test Pattern Formatting and Timing . 595

Test Pattern Timing Overview. 596
Timing Terminology . 596
General Timing Issues . 597
Generating a Procedure File . 598
Defining and Modifying Timeplates . 599
Delaying Clock Pulses in Shift and Capture to Handle Slow Scan Enable Transitions 600

Delaying Clocks After All Scan Enable Transitions (Recommended). 600
Transitions From Shift to Capture . 602
Transition from Capture to Shift. 605

Saving Timing Patterns . 608
Features of the Formatter . 608
Pattern Formatting Issues . 610

Serial Versus Parallel Scan Chain Loading . 610
Parallel Scan Chain Loading . 610
Reduce Serial Loading Simulation Time With Sampling . 612
Test Pattern Data Support for IDDQ . 612

Basic Test Data Formats for Patterns . 613
Text Format . 613
Comparing the Text Format With Other Test Data Formats . 613
Binary . 616
Verilog . 616
Wave Generation Language (ASCII) . 616
Standard Test Interface Language (STIL) . 617

ASIC Vendor Data Formats . 618
TI TDL 91. 618
Fujitsu FTDL-E . 618
Mitsubishi TDL . 619
Toshiba TSTL2. 619

Vector Creation and Modification . 620
Port List Modification. 620
Vector Data Callbacks . 621
Used Ports and Vector Callback Examples . 626

Chapter 12
Test Pattern File Formats . 631

ASCII File Format . 632
Header_Data . 632
ASCII Setup_Data . 632
Functional_Chain_Test . 635
Scan_Test . 636
Scan_Cell . 639
14 Tessent™ Scan and ATPG User’s Manual, v2022.4

Table of Contents
BIST Pattern File Format. 641
BIST Pattern Setup_Data . 641
Scan_Test for BIST . 642

Chapter 13
Power-Aware DRC and ATPG . 645

Power-Aware Overview. 646
Assumptions and Limitations . 646
Multiple Power Mode Test Flow . 647
Power-Aware ATPG for Traditional Fault Models . 647

CPF and UPF Parser . 648
Power-Aware ATPG Procedure. 650
Power-Aware Flow Examples . 652

Chapter 14
Low-Power Design Test . 657

Low-Power Testing Overview. 658
Low-Power Assumptions and Limitations . 658
Low-Power CPF/UPF Parameters . 658

Scan Insertion . 660
Power-Aware Design Rule Checks . 661

Low-Power DRCs. 661
Low-Power DRC Troubleshooting . 661

Power State-Aware ATPG. 663
Power Domain Testing . 663
Low-Power Cell Testing . 665

Level Shifters . 665
Isolation Cells. 665

Chapter 15
Defect-Oriented Test . 667

Cell-Internal Defects and Port Faults. 669
Interconnect Bridge Defects . 670
Interconnect Open Defects. 670
Cell Neighborhood Bridge Defects . 671
Critical Area Calculation . 673

Critical Area Calculation Formula for Bridges. 675
Critical Area Calculation Formula for Opens and Vias . 677
Alternative Critical Area Calculation Formula for Bridges . 679

Timing-Aware Pattern Generation for Cell-Internal Defects . 680
UDFM . 681
License Information . 682
Example Designs . 683

ls169 . 683
cat_chip . 685
Tessent™ Scan and ATPG User’s Manual, v2022.4 15

Table of Contents
Chapter 16
Using MTFI Files . 687

MTFI File Format . 688
MTFI Features . 691

Support of Fault Classes and Sub-Classes . 691
Support of Stuck and Transition Fault Information . 693
Support of N-Detect Values . 693
Support of Different Fault Types in the Same File. 695
Support for Hierarchical Fault Accounting . 695

Commands that Support MTFI . 697

Chapter 17
Graybox Overview . 699

What Is a Graybox? . 699
Graybox Process Overview . 702

Example dofile for Creating a Graybox Netlist . 703
Graybox Netlist Generation for EDT Logic Inserted Blocks . 704

Chapter 18
Tessent On-Chip Clock Controller . 707

General OCC Overview. 708
Primary OCC Functions . 708

Tessent OCC Overview . 710
Design Placement . 710
Operating Modes. 711
Timing Diagrams . 716
OCC Interface . 718

IJTAG Interface . 719
Inserting the Tessent OCC . 721

Inserting the OCC. 721
occ.dft_spec . 722
OCC Insertion When Using an Existing Clock as the test_clk DFT Signal 723

Recommendations. 724
Miscellaneous Overview Topics. 728

OCC With Capture Enable . 728
Slow Clock Driving Sequential Elements . 729
Scan Enable Synchronization . 729
Slow Clock Pulses in Capture . 729
Fast Clock With Slower Frequency Than Slow Clock. 730
Fast Capture . 734
Bypass Shift Path . 734

Tessent OCC Types and Usage . 735
The Standard OCC . 736

Parent-Mode Operation . 737
Child-Mode Operation . 739

The Synchronous OCC . 741
Introduction . 741
Launch and Capture Aligned Clocking . 741
16 Tessent™ Scan and ATPG User’s Manual, v2022.4

Table of Contents
Synchronous OCC Functionality . 744
Usage Scenarios . 750
Synchronous OCC Generation and Insertion . 753
DftSpecification Examples. 757
Synchronous OCC Simulations . 759
Limitations . 761

The Mini-OCC . 762

Appendix A
Clock Gaters . 763

Basic Clock Gater Cell . 763
Two Types of Embedding . 765

Non-DRC Violation Clock Gater Embedding (Type-A) . 766
Potential DRC Violation Clock Gater Embedding (Type-B) . 767

Type-B Scan Chain Tracing Failures (T3 Violations) . 767
Scan Cell Data Captures When Clocks are Off . 768
Driving LE Flops With Type-B Clock Gaters . 768

Cascaded Clock Gaters . 771
Level-2 Clock Gater . 771
Example Combinations of Cascaded Clock Gaters . 771

Clock Gater Configuration Support Summary . 772

Appendix B
State Stability Issues . 773

Display of State Stability Data. 773
State Stability Data Format . 774
State Stability Examples . 777

Example 1 — Basic Example . 780
Example 2 — Multiple Cycles in Load_unload Prior to Shift . 783
Example 3 — Drc_pattern Reporting for Pulse Generators . 785
Example 4 — Single Post Shift . 786
Example 5 — Single Post Shift With Cycles Between Main and Post Shift 787
Example 6 — Cycles After Apply Shift Statement in Load_unload 789
Example 7 — No Statements in Load_unload Prior to Apply Shift. 791
Example 8 — Basic With Specified Capture Clock . 791
Example 9 — Setting Stability Check to Off and All_shift . 792
Example 10 — Pin Constraints, Test_setup, and State Stability . 793
Example 11 — Single Pre Shift . 794
Example 12 — Basic With Enhanced Stability Check for NCPs. 796

Appendix C
Tessent Shell Batch Jobs . 797

Commands and Variables for the dofile . 797
Command Line Options. 800

Scheduling a Batch Job for Running Later . 800
Tessent™ Scan and ATPG User’s Manual, v2022.4 17

Table of Contents
Appendix D
Net Pair Identification With Calibre for Bridge Fault Test Patterns 801

The Static Bridge Fault Model. 801
Four-Way Dominant Fault Model . 802
Top-level Bridging ATPG . 802
Incremental Multi-Fault ATPG . 803
The Bridge Parameters File . 805

Appendix E
Getting Help . 809

The Tessent Documentation System . 809
Global Customer Support and Success . 810

Index

Third-Party Information
18 Tessent™ Scan and ATPG User’s Manual, v2022.4

List of Figures

Figure 1-1. Top-Down Design Flow Tasks and Products . 32
Figure 2-1. Design Before and After Adding Scan . 35
Figure 2-2. Scan Representation . 36
Figure 2-3. Example of Partitioned Design . 38
Figure 2-4. Wrapper Chains Added to Partition A . 39
Figure 2-5. Manufacturing Defect Space for a Design . 45
Figure 2-6. Internal Faulting Example. 50
Figure 2-7. Single Stuck-At Faults for AND Gate . 51
Figure 2-8. IDDQ Fault Testing . 53
Figure 2-9. Transition Fault Detection Process . 54
Figure 2-10. Fault Selection Cone . 57
Figure 2-11. Fault Selection Cone . 58
Figure 2-12. Fault Detection Process. 74
Figure 2-13. Path Sensitization Example. 74
Figure 2-14. Example of Unused Fault in Circuitry . 77
Figure 2-15. Example of Tied Fault in Circuitry . 78
Figure 2-16. Example of Blocked Fault in Circuitry . 78
Figure 2-17. Example of Redundant Fault in Circuitry . 79
Figure 3-1. Generic Scan Cell . 93
Figure 3-2. Generic Mux-DFF Scan Cell Implementation . 94
Figure 3-3. Dependently-Clocked Mux-DFF/Shadow Element Example. 95
Figure 3-4. Independently-Clocked Mux-DFF/Shadow Element Example 95
Figure 3-5. Mux-DFF/Copy Element Example . 96
Figure 3-6. Generic Scan Chain. 97
Figure 3-7. Scan Group — Two Scan Inputs. 98
Figure 3-8. Scan Group — One Scan Input. 98
Figure 3-9. Scan Clocks Example . 99
Figure 3-10. Mux-DFF Replacement. 100
Figure 3-11. Single-Bit Library Cell and Scan Equivalent . 101
Figure 3-12. Multi-Bit Library Cell and Scan Equivalent . 102
Figure 3-13. Multi-Scan Segment Library Cell and Scan Equivalent 103
Figure 3-14. Design Before Flattening . 108
Figure 3-15. Design After Flattening. 108
Figure 3-16. 2x1 MUX Example . 110
Figure 3-17. LA, DFF Example. 110
Figure 3-18. TSD, TSH Example . 111
Figure 3-19. PBUS, SWBUS Example . 111
Figure 3-20. Equivalence Relationship Example . 113
Figure 3-21. Example of Learned Logic Behavior . 114
Figure 3-22. Example of Implied Relationship Learning . 114
Tessent™ Scan and ATPG User’s Manual, v2022.4 19

List of Figures
Figure 3-23. Forbidden Relationship Example . 115
Figure 3-24. Dominance Relationship Example . 115
Figure 3-25. Bus Contention Example . 117
Figure 3-26. Bus Contention Analysis. 117
Figure 3-27. Simulation Model With Bus Keeper . 120
Figure 3-28. Constrained Values in Circuitry . 122
Figure 3-29. Forbidden Values in Circuitry. 122
Figure 3-30. Blocked Values in Circuitry . 122
Figure 3-31. Programmable Clock Chopper . 123
Figure 4-1. Structural Combinational Loop Example . 129
Figure 4-2. Loop Naturally-Blocked by Constant Value. 129
Figure 4-3. Cutting Constant Value Loops . 130
Figure 4-4. Cutting Single Multiple-Fanout Loops . 130
Figure 4-5. Loop Candidate for Duplication . 131
Figure 4-6. TIE-X Insertion Simulation Pessimism . 131
Figure 4-7. Cutting Loops by Gate Duplication . 132
Figure 4-8. Cutting Coupling Loops . 133
Figure 4-9. Sequential Feedback Loop . 134
Figure 4-10. Test Logic Added to Control Asynchronous Reset . 135
Figure 4-11. Test Logic Added to Control Gated Clock . 136
Figure 4-12. Tri-State Bus Contention . 137
Figure 4-13. Requirement for Combinationally Transparent Latches 138
Figure 4-14. Example of Sequential Transparency . 139
Figure 4-15. Clocked Sequential Scan Pattern Events . 140
Figure 4-16. Clock Divider . 142
Figure 4-17. Example Pulse Generator Circuitry . 142
Figure 4-18. Long Path Input Gate Must Go to Gates of the Same Type 143
Figure 4-19. Design With Embedded RAM . 144
Figure 4-20. RAM Sequential Example . 146
Figure 5-1. Uncontrollable and Unobservable Circuitry . 153
Figure 5-2. AND Control Point . 155
Figure 5-3. OR Control Point . 155
Figure 5-4. Observe Point Sharing . 157
Figure 5-5. Test Point Analysis & Insertion Starting With a Gate-Level Netlist 158
Figure 5-6. Test Point Sharing Across Power Domains . 190
Figure 5-7. Control Points (a) AND-Type and (b) OR-Type . 204
Figure 5-8. Flip-Flop Shared by Three Control Points . 204
Figure 5-9. Control Points on the Same Path. 205
Figure 5-10. Control Points Converge to the Same Gates. . 206
Figure 5-11. Observe Point Sharing . 206
Figure 6-1. Generic Usage of Tessent Scan on a Synthesized Netlist 211
Figure 6-2. The Inputs and Outputs of Tessent Scan. 213
Figure 6-3. A Generic Representation of a Scan Element Object . 217
Figure 6-4. Single Bit Scan Element . 218
Figure 6-5. Multi-Bit Scan Element . 218
20 Tessent™ Scan and ATPG User’s Manual, v2022.4

List of Figures
Figure 6-6. Scan Element Memory With Sub-Chains / Segments . 219
Figure 6-7. Unwrapped Core Versus Wrapped Core. 222
Figure 6-8. Unconfined Scan Chains . 224
Figure 6-9. Test Logic Insertion . 229
Figure 6-10. power domain name and power domain island. 231
Figure 6-11. Hierarchical Test Logic Insertion Example . 244
Figure 6-12. Simple Example of Two Modes . 247
Figure 6-13. Scan Insertion Flow for Unwrapped Core . 256
Figure 6-14. Scan Insertion Flow for Wrapped Core . 260
Figure 6-15. Shifting Dedicated Wrapper Cell . 277
Figure 6-16. Shifting Shared Wrapper Cell . 277
Figure 6-17. Holding Dedicated Wrapper Cell . 278
Figure 6-18. Holding Shared Wrapper Cell. 279
Figure 6-19. Timing Friendly Shared Wrapper Cell Implementation for Non-Dividable

Hierarchical Scan Elements . 279
Figure 6-20. Dedicated Output Wrapper Cell With X-Bounding . 280
Figure 6-21. Latch-Free AND Clock Gater . 285
Figure 6-22. Pre-Latch AND Clock Gater. 285
Figure 6-23. Post-Latch AND Clock Gater . 286
Figure 6-24. Two-Latch AND Clock Gater. 286
Figure 6-25. Faults Detectable in Internal Mode . 290
Figure 6-26. Faults Detectable in External Mode . 291
Figure 6-27. Pseudo-Launch-Off-Shift Timing . 293
Figure 6-28. Generic Pipelined scan_enable Architecture . 294
Figure 6-29. Controllable scan_enable Pipelining Logic for Active-High (SE) and Active-Low

(SEB) Signals. 295
Figure 6-30. Controllable scan_enable Pipelining Logic for Negative Edge-Triggered Scan

Elements. 295
Figure 6-31. Timing With Scan Enable Pipelining . 296
Figure 7-1. Generation of Core Description Files . 306
Figure 7-2. Core Mapping to Top Level . 307
Figure 7-3. Generation of Top-Level TCD File for Top-Level Logic 308
Figure 7-4. Alternate Process for Core Mapping to Top Level . 310
Figure 7-5. Mapping of Cores to Chip Level. 312
Figure 8-1. Overview of ATPG Tool Usage . 321
Figure 8-2. ATPG Tool Inputs and Outputs . 323
Figure 8-3. Data Capture Handling Example . 339
Figure 8-4. Efficient ATPG Flow . 350
Figure 8-5. Circuitry With Natural “Select” Functionality . 352
Figure 8-6. Simulation Frames . 355
Figure 8-7. Waveform Modeling for DFFs and Latches . 355
Figure 8-8. Flow for Creating a Delay Test Set. 372
Figure 8-9. Transition Delay . 373
Figure 8-10. Transition Launch and Capture Events . 374
Figure 8-11. Basic Broadside Timing . 375
Tessent™ Scan and ATPG User’s Manual, v2022.4 21

List of Figures
Figure 8-12. Pseudo Launch-Off-Shift Timing . 375
Figure 8-13. Broadside Timing Example . 377
Figure 8-14. Launch Off Shift (Skewed) Timing Example . 378
Figure 8-15. Same Clocks Between Loads “On” . 380
Figure 8-16. Compatible Clocks Between Loads “On”. 380
Figure 8-17. domain_clock . 382
Figure 8-18. Multicycle Path Example . 383
Figure 8-19. Setup Time and Hold Time Exceptions . 384
Figure 8-20. Across Clock Domain Hold Time Exception . 385
Figure 8-21. Effect Cone of a Non-Specific False Path Definition . 388
Figure 8-22. SDC No Masking . 390
Figure 8-23. SDC False Path Hold Time Effect . 391
Figure 8-24. SDC False Path Setup Time Effect . 392
Figure 8-25. SDC Multicycle Path Effect . 393
Figure 8-26. Path Delay Launch and Capture Events . 395
Figure 8-27. Hazard-Free Detection Example . 396
Figure 8-28. Robust Detection Example . 397
Figure 8-29. Non-Robust Detection Example . 398
Figure 8-30. Functional Detection Example . 398
Figure 8-31. Example Use of transition_condition Statement . 400
Figure 8-32. Example of Ambiguous Path Definition . 402
Figure 8-33. Example of Ambiguous Path Edges . 402
Figure 8-34. On-Chip Clock Generation . 406
Figure 8-35. PLL-Generated Clock and Control Signals . 407
Figure 8-36. Cycles Merged for ATPG . 410
Figure 8-37. Cycles Expanded for ATPG . 410
Figure 8-38. Mux-DFF Example Design. 414
Figure 8-39. Mux-DFF Broadside Timing, Cell to Cell . 414
Figure 8-40. Broadside Timing, Clock Pulses in Non-Adjacent Cycles 416
Figure 8-41. Mux-DFF Cell to PO Timing . 417
Figure 8-42. Mux-DFF PI to Cell Timing . 418
Figure 8-43. Simplified Per-Cycle Clock Control Model . 420
Figure 8-44. Per-Cycle Clock Control Waveform. 421
Figure 8-45. Simplified Counter-Based Clock Control Example . 422
Figure 8-46. Counter-Based Clock Control Capture Waveform . 423
Figure 8-47. Clock Control Capture Cycles . 424
Figure 8-48. Timing Slack . 439
Figure 8-49. Example Circuit . 440
Figure 8-50. Example Circuit With Calculated Values . 441
Figure 8-51. Slack Calculation With False Path . 442
Figure 8-52. Testcase 1 Logic . 448
Figure 8-53. Timing-Aware ATPG Example Dofile . 448
Figure 8-54. Timing-Aware ATPG Example Reports. 449
Figure 8-55. Glitch Detection Case . 454
Figure 8-56. Tessent Bridge and Open Extraction Flow . 457
22 Tessent™ Scan and ATPG User’s Manual, v2022.4

List of Figures
Figure 8-57. GDS View With Calibre RVE . 458
Figure 8-58. Calibre RVE View for Bridges . 459
Figure 8-59. Calibre RVE View for Opens . 460
Figure 8-60. Highlighted Bridge Fault B1. 461
Figure 8-61. Open Fault Model — Static and Delay . 469
Figure 8-62. Neighborhood Cell Layout . 471
Figure 8-63. Cell Neighborhood Defects. 472
Figure 8-64. Neighborhood UDFM Generation Flow . 472
Figure 8-65. Complete Neighborhood Flow . 473
Figure 8-66. Marker File . 478
Figure 8-67. State Diagram of TAP Controller Circuitry . 480
Figure 8-68. Conceptual View of MacroTest . 487
Figure 8-69. Basic Scan Pattern Creation Flow With MacroTest . 489
Figure 8-70. Mismatch Diagnosis Guidelines . 521
Figure 8-71. Simulation Transcript . 525
Figure 8-72. Comparing Simulation and Tessent Visualizer (Before Mismatch) 528
Figure 8-73. Comparing Simulation and Tessent Visualizer (After Mismatch) 529
Figure 8-74. Automatic Simulation Mismatch Analysis Flow . 532
Figure 8-75. Manual Simulation Mismatch Analysis Flow. 535
Figure 8-76. Clock-Skew Example . 539
Figure 9-1. Multiprocessing General Recommendations . 557
Figure 10-1. Core-Level Pattern Generation Process . 563
Figure 10-2. Scan Pattern Retargeting — Internal Mode . 564
Figure 10-3. Pattern Generation — External Mode. 565
Figure 10-4. Merging Patterns for Multiple Views of a Core at the Top Level 575
Figure 10-5. Merging Patterns for Top Level and Core at the Top Level 576
Figure 10-6. Retargeting of Core-Level Patterns. 582
Figure 10-7. Three Levels of Wrapped Cores . 588
Figure 10-8. Core-in-Core Retargeting Process Overview . 589
Figure 11-1. Defining Basic Timing Process Flow . 595
Figure 11-2. Clock Pulses Requiring Additional Delay . 600
Figure 11-3. Stretched Waveform . 601
Figure 11-4. Stretched Timeplate in Capture. 602
Figure 11-5. Extended Capture Procedure. 603
Figure 11-6. Extended Capture Procedure (Clock Sequential) . 603
Figure 11-7. Extended Capture Procedure (Dead Cycle Removed) 604
Figure 11-8. External Capture Procedure (Dead Cycles Added). 605
Figure 11-9. Stretched Timeplate (load_unload) . 606
Figure 11-10. Capture to Shift . 607
Figure 11-11. Example Vector Callback . 622
Figure 12-1. Example Scan Circuit . 640
Figure 13-1. PON Reporting in Tessent Visualizer . 651
Figure 15-1. Defect-Oriented Test Flow Overview. 668
Figure 15-2. Possible Intra-Cell Defects and Port Faults . 669
Figure 15-3. Possible Interconnect Bridge Defects . 670
Tessent™ Scan and ATPG User’s Manual, v2022.4 23

List of Figures
Figure 15-4. Possible Interconnect Open Defects . 671
Figure 15-5. Cell Neighborhood Bridge Defect . 672
Figure 15-6. Probability and Critical Area . 673
Figure 15-7. Bridge Area Calculation . 673
Figure 15-8. Critical Area Calculation . 674
Figure 15-9. High Bridge Probability . 674
Figure 15-10. Low Bridge Probability. 674
Figure 15-11. High Open Probability . 675
Figure 15-12. Low Open Probability . 675
Figure 15-13. Critical Area Calculation Formula for Bridges . 675
Figure 15-14. Critical Area Example — Side-to-Side Bridges . 676
Figure 15-15. Critical Area Example — Corner-to-Corner Bridge. 677
Figure 15-16. Critical Area Calculation Formula for Opens and Vias 677
Figure 15-17. Open Example — Net With Seven Layout Segments 678
Figure 15-18. One Via . 678
Figure 15-19. Four Vias. 679
Figure 15-20. Alternative Critical Area Calculation Formula for Bridges 679
Figure 16-1. Using MTFI With Hierarchical Designs . 697
Figure 17-1. Full Hierarchical Block Netlist . 700
Figure 17-2. Graybox Version of Block Netlist . 701
Figure 18-1. OCC Clock Control Components . 709
Figure 18-2. Clock Control Logic Design Placement . 711
Figure 18-3. Functional Mode Operation . 712
Figure 18-4. Shift Mode Operation . 712
Figure 18-5. OCC Shift Clocking . 713
Figure 18-6. Slow Capture Mode Operation . 713
Figure 18-7. Fast Capture Mode Operation . 714
Figure 18-8. Kill Clock Mode Operation. 715
Figure 18-9. Active Upstream Parent Mode Operation . 715
Figure 18-10. Slow Speed Capture Timing Diagram . 716
Figure 18-11. Fast Capture Timing Diagram. 717
Figure 18-12. Standard OCC With IJTAG Interface . 720
Figure 18-13. OCC With IJTAG Interface: ijtag_tck Injected for Slow Clock. 720
Figure 18-14. Original Clocking . 723
Figure 18-15. Incorrect OCC Placement . 724
Figure 18-16. Correct OCC Placement . 724
Figure 18-17. Child OCC in Core . 725
Figure 18-18. Standard OCC in Core . 726
Figure 18-19. OCC With capture_en . 728
Figure 18-20. Sample Dofile Variables . 731
Figure 18-21. Fast Capture, Serial Load . 734
Figure 18-22. Slow Capture, Serial Load . 734
Figure 18-23. Standard OCC Example . 736
Figure 18-24. On-Chip Clock Controller Logic Schematic. 736
Figure 18-25. OCC Operating in Parent-Mode (Extest Mode) . 737
24 Tessent™ Scan and ATPG User’s Manual, v2022.4

List of Figures
Figure 18-26. OCC Operating in Parent-Mode (Intest Mode). 737
Figure 18-27. Parent-Mode OCC Logic Schematic. 738
Figure 18-28. Child-Mode OCC Gates and Creates Clocks With Parent-Mode OCC 739
Figure 18-29. Child-Mode OCC Logic Schematic . 739
Figure 18-30. Child-Mode OCC Enable for Clock Gaters With Parent-Mode OCC 740
Figure 18-31. Child-Mode OCC Logic Schematic, No Clock-Gater 740
Figure 18-32. Regular OCC Capture Mode With Synchronous Divided Clocks 742
Figure 18-33. Clock Edge Alignment With Sync-OCC for Different Configurations 743
Figure 18-34. Impact of pulse_to_align values on generated waveforms 744
Figure 18-35. Sync-OCC Schematic . 745
Figure 18-36. Sync-OCC Control Logic . 746
Figure 18-37. Sync-OCC Slowest Fast Clock . 746
Figure 18-38. Sync-OCC Faster Clocks . 746
Figure 18-39. Sync-OCC With Multiple Clocks of Same Frequency 747
Figure 18-40. Sync-OCC Handles Multiple Clocks and Undivided Clocks 748
Figure 18-41. Bypass Shift Register . 749
Figure 18-42. Flat ATPG . 750
Figure 18-43. Hierarchical ATPG With Clock Source Inside Core 750
Figure 18-44. Hierarchical ATPG With Clock Source At Top Level 751
Figure 18-45. pulse_to_align in the OCC Interface Wrapper . 754
Figure 18-46. pulse_to_align in the OCC Connections Wrapper . 755
Figure 18-47. pulse_to_align in the OCC Controller/Connections Wrapper 755
Figure 18-48. Sync-OCC Interface Generated With DftSpecification 757
Figure 18-49. DFTSpecification for OCC With Mixed Clocks for Insertion 758
Figure 18-50. DftSpecification for OCC With Mixed Clocks for RTL Generation 758
Figure 18-51. Sync-OCC Only Supports Clock Dividers Feeding Into OCC 761
Figure A-1. Basic Clock Gater Cell. 763
Figure A-2. Two Types of Embedding for the Basic Clock Gater . 765
Figure A-3. Type-B Clock Gater Causes Tracing Failure . 767
Figure A-4. Sample EDT Test Procedure Waveforms . 768
Figure A-5. Two-Level Clock Gating . 771
Figure B-1. Design Used in State Stability Examples . 778
Figure B-2. Typical Initialization Problem . 781
Figure B-3. Three-Bit Shift Register . 782
Figure B-4. Initialization With a Non-Shift Clock . 783
Figure B-5. Clocking ff20 With a Pulse Generator . 785
Tessent™ Scan and ATPG User’s Manual, v2022.4 25

List of Figures
26 Tessent™ Scan and ATPG User’s Manual, v2022.4

List of Tables

Table 2-1. Test Type/Fault Model Relationship . 49
Table 2-2. UDFM Keywords . 61
Table 2-3. Fault Class Hierarchy . 82
Table 2-4. Fault Sub-Classes . 83
Table 4-1. RAM/ROM Commands . 148
Table 6-1. Scan Direction and Active Values . 230
Table 8-1. ATPG Inputs . 323
Table 8-2. ATPG Outputs . 324
Table 8-3. ATPG Constraint Conditions . 353
Table 8-4. Testcase 2 Data . 445
Table 8-5. Static Four-Way Bridge Model . 466
Table 8-6. Static Two-Way Bridge Model . 466
Table 8-7. Delay Four-Way Bridge Model . 467
Table 8-8. Delay Two-Way Bridge Model . 467
Table 13-1. Power Data Commands Directly Related to ATPG and DRC 648
Table 13-2. Example Design With Four Power Domains and Power Modes 652
Table 14-1. Power Data Commands Directly Related to ATPG . 659
Table 15-1. Command Overview . 668
Table 15-2. UDFM Generation . 682
Table 15-3. Tessent TestKompress ATPG . 682
Table 15-4. Common ATPG Runs . 684
Table 16-1. MTFI Command Summary . 697
Table 17-1. Graybox Command Summary . 699
Table 18-1. Clock Controller I/O Signals . 718
Table 18-2. Parent-Mode OCC I/O Signals . 738
Table A-1. Clock Gater Configuration Support Summary . 772
Table D-1. Bridge Definition File Keywords . 805
Tessent™ Scan and ATPG User’s Manual, v2022.4 27

List of Tables
28 Tessent™ Scan and ATPG User’s Manual, v2022.4

Tessent™ Scan and ATPG User’s Manual, v2022.4 29

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 1
Overview

The following is an overview of ASIC/IC Design-for-Test (DFT) strategies and shows how to
use Siemens EDA ASIC/IC DFT products as part of typical DFT design processes. This
overview discusses the Tessent products that use Scan and ATPG technology.

• Tessent Scan, which is Tessent Shell operating in “dft -scan” context

• Tessent FastScan, which is Tessent Shell operating in “patterns -scan” context

• Tessent TestKompress (with EDT off), which is Tessent Shell operating in “patterns
-scan” context

This manual uses the term “ATPG tool” to refer to any of the following products: Tessent
FastScan, Tessent TestKompress (with EDT off), or Tessent Shell operating in the “patterns
-scan” context.

For information about contexts in Tessent Shell, refer to “Contexts and System Modes” in the
Tessent Shell User’s Manual. For information about any of the commands mentioned in this
manual, refer to the Tessent Shell Reference Manual.

What is Design-for-Test?. 30
DFT Strategies . 30

Top-Down Design Flow With DFT. 31

Tessent™ Scan and ATPG User’s Manual, v2022.430

Overview
What is Design-for-Test?

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

What is Design-for-Test?
Testability is a design attribute that measures how easy it is to create a program to
comprehensively test a manufactured design’s quality. Traditionally, design and test processes
were kept separate, with test considered only at the end of the design cycle. But in contemporary
design flows, test merges with design much earlier in the process, creating what is called a
design-for-test (DFT) process flow.
Testable circuitry is both controllable and observable. In a testable design, setting specific
values on the primary inputs results in values on the primary outputs that indicate whether or not
the internal circuitry works properly. To ensure maximum design testability, designers must
employ special DFT techniques at specific stages in the development process.

DFT Strategies . 30

DFT Strategies
At the highest level, there are two main approaches to DFT: ad hoc and structured. The
following subsections discuss these DFT strategies.

Ad Hoc DFT
Ad hoc DFT implies using good design practices to enhance the testability of a design without
making major changes to the design style.

Some ad hoc techniques include:

• Minimizing redundant logic

• Minimizing asynchronous logic

• Isolating clocks from the logic

• Adding internal control and observation points

Using these practices throughout the design process improves the overall testability of your
design. However, using structured DFT techniques with the Siemens EDA DFT tools yields far
greater improvement. Thus, the remainder of this document concentrates on structured DFT
techniques.

Structured DFT
Structured DFT provides a more systematic and automatic approach to enhancing design
testability.

Structured DFT’s goal is to increase the controllability and observability of a circuit. Various
methods exist for accomplishing this. The most common is the scan design technique, which
modifies the internal sequential circuitry of the design. You can also use the Built-in Self-Test

Overview
Top-Down Design Flow With DFT

Tessent™ Scan and ATPG User’s Manual, v2022.4 31

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

(BIST) method, which inserts a device’s testing function within the device itself. Another
method is boundary scan, which increases board testability by adding circuitry to a chip. “Scan
and ATPG Basics” describes these methods in detail.

Top-Down Design Flow With DFT
The following text and figure shows the basic steps and the Tessent tools you would use during
a typical ASIC top-down design flow.
This document discusses those steps shown in gray; it also mentions certain aspects of other
design steps, where applicable. This flow is just a general description of a top-down design
process flow using a structured DFT strategy.

As Figure 1-1 shows, the first task in any design flow is creating the initial RTL-level design,
through whatever means you choose. In the Tessent environment, you may choose to create a
high-level Verilog description using Questa™ SIM or a schematic using Design Architect™. You
then verify the design’s functionality by performing a functional simulation, using Questa SIM
or another vendor's Verilog simulator.

At this point in the flow you are ready to insert internal scan circuitry into your design using
Tessent Scan. You may then want to re-verify the timing because you added scan circuitry.
Once you are sure the design is functioning as needed, you can generate test patterns. You can
use the ATPG tool to generate a test pattern set in the appropriate format.

Now you should verify that the design and patterns still function correctly with the proper
timing information applied. You can use Questa SIM or some other simulator to achieve this
goal. You may then have to perform a few additional steps required by your ASIC vendor
before handing the design off for manufacture and testing.

Note
It is important for you to check with your vendor early on in your design process for specific
requirements and restrictions that may affect your DFT strategies. For example, the vendor's

test equipment may only be able to handle single scan chains (see “Scan Design Overview” on
page 34), have memory limitations, or have special timing requirements that affect the way you
generate scan circuitry and test patterns.

Tessent™ Scan and ATPG User’s Manual, v2022.432

Overview
Top-Down Design Flow With DFT

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-1. Top-Down Design Flow Tasks and Products

Tessent™ Scan and ATPG User’s Manual, v2022.4 33

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 2
Scan and ATPG Basics

Before you begin the testing process, you must first have an understanding of certain testing
concepts. Once you understand these concepts, you can determine the best test strategy for your
particular design.
Scan circuitry facilitates test generation and can reduce external tester usage. There are two
main types of scan circuitry: internal scan and boundary scan. Internal scan (also referred to as
“scan design”) is the internal modification of your design’s circuitry to increase its testability.

While scan design modifies circuitry within the original design, boundary scan adds scan
circuitry around the periphery of the design to make internal circuitry on a chip accessible via a
standard board interface. The added circuitry enhances board testability of the chip, the chip I/O
pads, and the interconnections of the chip to other board circuitry.

Scan Design Overview . 34
About Scan Design Methodology. 36
About Wrapper Chains . 37
Test Structure Insertion With Tessent Scan . 39

ATPG Overview. 41
The ATPG Process . 42
Tessent ATPG Applications . 43
Scan Sequential ATPG With the ATPG Tool . 43

Overview of Test Types and Fault Models . 45
Test Types. 46
Fault Modeling Overview. 49
Fault Manipulation . 56
About User-Defined Fault Modeling . 59
Multiple Detect . 70
Embedded Multiple Detect . 72
Fault Detection . 73
Fault Classes . 76
Fault Reporting . 89
Testability Calculations . 90

Tessent™ Scan and ATPG User’s Manual, v2022.434

Scan and ATPG Basics
Scan Design Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Design Overview
Internal scan (or scan design) is the internal modification of your design’s circuitry to increase
its testability.
The goal of scan design is to make a difficult-to-test sequential circuit behave (during the testing
process) like an easier-to-test combinational circuit. Achieving this goal involves replacing
sequential elements with scannable sequential elements (scan cells) and then stitching the scan
cells together into scan registers, or scan chains. You can then use these serially-connected scan
cells to shift data in and out when the design is in scan mode.

The design shown in Figure 2-1 contains both combinational and sequential portions. Before
adding scan, the design had three inputs, A, B, and C, and two outputs, OUT1 and OUT2. This
“Before Scan” version is difficult to initialize to a known state, making it difficult to both
control the internal circuitry and observe its behavior using the primary inputs and outputs of
the design.

Scan and ATPG Basics
Scan Design Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 35

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-1. Design Before and After Adding Scan

After you add scan circuitry, the design has two additional inputs, sc_in and sc_en, and one
additional output, sc_out. Scan memory elements replace the original memory elements so that
when you have enabled shifting (the sc_en line is active), the tool reads in scan data from the
sc_in line.

The operating procedure of the scan circuitry is as follows:

1. Enable the scan operation to permit shifting (to initialize scan cells).

2. After loading the scan cells, hold the scan clocks off and then apply stimulus to the
primary inputs.

Tessent™ Scan and ATPG User’s Manual, v2022.436

Scan and ATPG Basics
About Scan Design Methodology

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Measure the outputs.

4. Pulse the clock to capture new values into scan cells.

5. Enable the scan operation to unload and measure the captured values while
simultaneously loading in new values via the shifting procedure (as in step 1).

About Scan Design Methodology . 36
About Wrapper Chains . 37
Test Structure Insertion With Tessent Scan . 39

About Scan Design Methodology
Scan is a scan design methodology that replaces all memory elements in the design with their
scannable equivalents and then stitches (connects) them into scan chains. The idea is to control
and observe the values in all the design’s storage elements so you can make the sequential
circuit’s test generation and fault simulation tasks as simple as those of a combinational circuit.
Figure 2-2 gives a symbolic representation of a scan design.

Figure 2-2. Scan Representation

The black rectangles in Figure 2-2 represent scan elements. The line connecting them is the scan
path. Because this is a scan design, all storage elements were converted and connected in the
scan path. The rounded boxes represent combinational portions of the circuit.

For information on implementing a scan strategy for your design, refer to “Test Structures
Supported by Tessent Scan” on page 215.

Scan Benefits
The following are benefits of employing a scan strategy:

• Highly automated process

When you use scan insertion tools, the process for inserting scan circuitry into a design
is highly automated, thus requiring very little manual effort.

Scan and ATPG Basics
About Wrapper Chains

Tessent™ Scan and ATPG User’s Manual, v2022.4 37

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Highly-effective, predictable method

Scan design is a highly effective, well understood, and well accepted method for
generating high test coverage for your design.

• Ease of use

Using scan methodology, you can insert both scan circuitry and run ATPG without the
aid of a test engineer.

• Assured quality

Scan assures quality because parts containing such circuitry can be tested thoroughly
during chip manufacture. If your end products are going to be used in market segments
that demand high quality, such as aircraft or medical electronics—and you can afford
the added circuitry—then you should take advantage of the scan methodology.

About Wrapper Chains
The ATPG process on very large, complex designs can often be unpredictable. This problem is
especially true for large sequential or partial scan designs. To reduce this unpredictability, a
number of hierarchical techniques for test structure insertion and test generation are beginning
to emerge. Creating wrapper chains is one of these techniques. Large designs that are split into a
number of design blocks benefit most from wrapper chains.
Wrapper chains add controllability and observability to the design via a hierarchical wrapper
scan chain. A wrapper chain is a series of scan cells connected around the boundary of a design
partition that is accessible at the design level. The wrapper chain improves both test coverage
and run time by converting sequential elements to scan cells at inputs (outputs) that have low
controllability (observability) from outside the block.

The following two figures illustrate architecture of wrapper chains. Figure 2-3 shows a design
with three partitions, A, B, and C.

Tessent™ Scan and ATPG User’s Manual, v2022.438

Scan and ATPG Basics
About Wrapper Chains

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-3. Example of Partitioned Design

The bold lines in Figure 2-3 indicate inputs and outputs of partition A that are not directly
controllable or observable from the design level. Because these lines are not directly accessible
at the design level, the circuitry controlled by these pins can cause testability problems for the
design.

Figure 2-4 shows how adding wrapper chain structures to partition A increases the
controllability and observability (testability) of partition A from the design level.

Note
Only the first elements that are directly connected to the uncontrollable (unobservable)
primary inputs (primary outputs) become part of the wrapper chain.

Scan and ATPG Basics
Test Structure Insertion With Tessent Scan

Tessent™ Scan and ATPG User’s Manual, v2022.4 39

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-4. Wrapper Chains Added to Partition A

The wrapper chain consists of two types of elements: sequential elements connected directly to
uncontrolled primary inputs of the partition, and sequential elements connected directly to
unobservable (or masked) outputs of the partition. The partition also acquires two design-level
pins, scan in and scan out, to give direct access to the previously uncontrollable or unobservable
circuitry.

You can also use wrapper chains in conjunction with scan structures. Sequential elements not
eligible for wrapper chains become candidates for internal scan.

For information on implementing a scan strategy for your design, refer to “Wrapper Cells
Analysis” on page 269.

Test Structure Insertion With Tessent Scan
Tessent Scan, the Siemens EDA internal scan synthesis tool, can identify sequential elements
for conversion to scan cells and then stitch those scan cells into scan chains.
Tessent Scan contains the following features:

• Verilog format

Reads and writes a Verilog gate-level netlist.

• Multiple scan types

Supports insertion of two different scan types, or methodologies: mux-DFF and
clocked-scan.

• Multiple test structures

Tessent™ Scan and ATPG User’s Manual, v2022.440

Scan and ATPG Basics
Test Structure Insertion With Tessent Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supports identification and insertion of scan (both sequential ATPG-based and scan
sequential procedure-based), wrapper chains, and test points.

• Scannability checking

Provides powerful scannability checking/reporting capabilities for sequential elements
in the design.

• Design rules checking

Performs design rules checking to ensure scan setup and operation are correct—before
you actually insert scan. This rules checking also guarantees that the scan insertion done
by Tessent Scan produces results that function properly in an ATPG tool.

• Interface to ATPG tools

Automatically generates information for the ATPG tools on how to operate the scan
circuitry Tessent Scan creates.

• Flexible scan configurations

Enables flexibility in the scan stitching process, such as stitching scan cells in fixed or
random order, creating either single- or multiple-scan chains, and using multiple clocks
on a single-scan chain.

• Test logic

Provides capabilities for inserting test logic circuitry on uncontrollable set, reset, clock,
tri-state enable, and RAM read/write control lines.

• User specified pins

Enables user-specified pin names for test and other I/O pins.

• Multiple model levels

Handles gate-level, as well as gate/transistor-level models.

• Online help

Provides online help for every command along with online manuals.

For information about using Tessent Scan to insert scan circuitry into your design, refer to
“Internal Scan and Test Circuitry Insertion” on page 209.

Scan and ATPG Basics
ATPG Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 41

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Overview
ATPG stands for Automatic Test Pattern Generation. Test patterns, sometimes called test
vectors, are sets of 1s and 0s placed on primary input pins during the manufacturing test process
to determine if the chip is functioning properly. When you apply the test pattern, the Automatic
Test Equipment (ATE) determines if the circuit is free from manufacturing defects by
comparing the fault-free output—which is also contained in the test pattern—with the actual
output measured by the ATE.
The ATPG Process. 42
Tessent ATPG Applications . 43
Scan Sequential ATPG With the ATPG Tool . 43

Tessent™ Scan and ATPG User’s Manual, v2022.442

Scan and ATPG Basics
The ATPG Process

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The ATPG Process
The goal of ATPG is to create a set of patterns that achieves a given test coverage, where test
coverage is the total percentage of testable faults the pattern set actually detects.
For a more precise definition of test coverage, see “Testability Calculations” on page 90.

ATPG consists of two main steps: 1) generating patterns and, 2) performing fault simulation to
determine which faults the patterns detect. Tessent ATPG tools automate these two steps into a
single operation or ATPG process. This ATPG process results in patterns you can then save
with added tester-specific formatting that enables a tester to load the pattern data into a chip’s
scan cells and otherwise apply the patterns correctly.

The two most typical methods for pattern generation are random and deterministic.
Additionally, the ATPG tools can fault simulate patterns from an external set and place those
patterns detecting faults in a test set.

For information on the fault simulation process see “Fault Classes” on page 76. For details on
each type of test pattern generation, see the following:

Random Pattern Test Generation . 42
Deterministic Pattern Test Generation . 42
External Pattern Test Generation . 43

Random Pattern Test Generation
An ATPG tool uses random pattern test generation when it produces a number of random
patterns and identifies only those patterns that detect faults. It then stores only those patterns in
the test pattern set.
The type of fault simulation used in random pattern test generation cannot replace deterministic
test generation because it can never identify redundant faults. Nor can it create test patterns for
faults that have a very low probability of detection. However, it can be useful on testable faults
terminated by deterministic test generation. As an initial step, using a small number of random
patterns can improve ATPG performance.

Deterministic Pattern Test Generation
An ATPG tool uses deterministic test pattern generation when it creates a test pattern intended
to detect a given fault. The procedure is to pick a fault from the fault list, create a pattern to
detect the fault, fault simulate the pattern, and check to make sure the pattern detects the fault.
More specifically, the tool assigns a set of values to control points that force the fault site to the
state opposite the fault-free state, so there is a detectable difference between the fault value and
the fault-free value. The tool must then find a way to propagate this difference to a point where
it can observe the fault effect. To satisfy the conditions necessary to create a test pattern, the test

Scan and ATPG Basics
Tessent ATPG Applications

Tessent™ Scan and ATPG User’s Manual, v2022.4 43

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

generation process makes intelligent decisions on how best to place the value you want on a
gate. If a conflict prevents the placing of those values on the gate, the tool refines those
decisions as it attempts to find a successful test pattern.

If the tool exhausts all possible choices without finding a successful test pattern, it must perform
further analysis before classifying the fault. Faults requiring this analysis include redundant,
ATPG-untestable, and possible-detected-untestable categories (see “Fault Classes” on page 76
for more information on fault classes). Identifying these fault types is an important by-product
of deterministic test generation and is critical to achieving high test coverage. For example, if
the tool proves a fault redundant, it may then safely mark the fault as untestable. Otherwise, it is
classified as a potentially detectable fault and counts as an untested fault when calculating test
coverage.

External Pattern Test Generation
An ATPG tool uses external pattern test generation when the preliminary source of ATPG is a
pre-existing set of external patterns.
The tool analyzes this external pattern set to determine which patterns detect faults from the
active fault list. It then places these effective patterns into an internal test pattern set. The
“generated patterns,” in this case, include the patterns (selected from the external set) that can
efficiently obtain the highest test coverage for the design.

Tessent ATPG Applications
Tessent FastScan and Tessent TestKompress (EDT off) are the Tessent scan sequential ATPG
products, and are the same thing as Tessent Shell operating in “patterns -scan” context. This
manual refers to all three of these products as the “ATPG tool.”
The following subsections introduce the features of Tessent Shell operating in “patterns -scan”
context. “Test Pattern Generation” on page 319 discusses the ATPG products in greater detail.

Scan Sequential ATPG With the ATPG Tool
Siemens EDA ATPG products include many features that support scan sequential ATPG.
Scan sequential ATPG features included in the tool:

• Deliver high performance ATPG for designs with structured scan

• Reduce run time with no effect on coverage or pattern count using distributed ATPG

• Maximize test coverage by minimizing the impact of X’s caused by false and multicycle
paths

• Identify testability problems early using comprehensive design rule checking

Tessent™ Scan and ATPG User’s Manual, v2022.444

Scan and ATPG Basics
Scan Sequential ATPG With the ATPG Tool

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Reduce test validation time with automatic simulation mismatch debugging

• Ensure shorter time to market with integration into all design flows and foundry support

• Have extensive fault model support, including stuck-at, IDDQ, transition, path delay and
bridge

• Have on-chip PLL support for accurate at-speed test

• Automate testing small embedded memories and cores with scan

• Supported in the Tessent SoCScan hierarchical silicon test environment

Scan and ATPG Basics
Overview of Test Types and Fault Models

Tessent™ Scan and ATPG User’s Manual, v2022.4 45

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Overview of Test Types and Fault Models
A manufacturing defect is a physical problem that occurs during the manufacturing process,
causing device malfunctions of some kind. The purpose of test generation is to create a set of
test patterns that detect as many manufacturing defects as possible.
Figure 2-5 gives an example of possible device defect types.

Figure 2-5. Manufacturing Defect Space for a Design

Each of these defects has an associated detection strategy. The following subsection discusses
the three main types of test strategies.

Test Types . 46
Fault Modeling Overview . 49
Fault Manipulation . 56
About User-Defined Fault Modeling . 59
Multiple Detect . 70
Embedded Multiple Detect . 72
Fault Detection . 73
Fault Classes . 76
Fault Reporting . 89
Testability Calculations . 90

Tessent™ Scan and ATPG User’s Manual, v2022.446

Scan and ATPG Basics
Test Types

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Types
The previous figure shows three main categories of defects and their associated test types:
functional, IDDQ, and at-speed. Functional testing checks the logic levels of output pins for a
“0” and “1” response. IDDQ testing measures the current going through the circuit devices. At-
speed testing checks the amount of time it takes for a device to change logic states. The
following subsections discuss each of these test types in more detail.
Functional Test. 46
IDDQ Test. 46
At-Speed Test . 48

Functional Test
Functional test continues to be the most widely-accepted test type. Functional test typically
consists of user-generated test patterns, simulation patterns, and ATPG patterns.
Functional testing uses logic levels at the device input pins to detect the most common
manufacturing process-caused problem, static defects (for example, open, short, stuck-on, and
stuck-open conditions). Functional testing applies a pattern of 1s and 0s to the input pins of a
circuit and then measures the logical results at the output pins. In general, a defect produces a
logical value at the outputs different from the expected output value.

IDDQ Test
IDDQ testing measures quiescent power supply current rather than pin voltage, detecting device
failures not easily detected by functional testing—such as CMOS transistor stuck-on faults or
adjacent bridging faults. IDDQ testing equipment applies a set of patterns to the design, lets the
current settle, then measures for excessive current draw. Devices that draw excessive current
may have internal manufacturing defects.
Because IDDQ tests do not have to propagate values to output pins, the set of test vectors for
detecting and measuring a high percentage of faults may be very compact. The ATPG tool
efficiently creates this compact test vector set.

In addition, IDDQ testing detects some static faults, tests reliability, and reduces the number of
required burn-in tests. You can increase your overall test coverage by augmenting functional
testing with IDDQ testing.

IDDQ test generation methodologies break down into these categories:

• Every-vector

This methodology monitors the power-supply current for every vector in a functional or
stuck-at fault test set. Unfortunately, this method is relatively slow—on the order of 10-

Scan and ATPG Basics
Test Types

Tessent™ Scan and ATPG User’s Manual, v2022.4 47

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

100 milliseconds per measurement—making it impractical in a manufacturing
environment.

• Supplemental

This methodology bypasses the timing limitation by using a smaller set of IDDQ
measurement test vectors (typically generated automatically) to augment the existing
test set.

Three test vector types serve to further classify IDDQ test methodologies:

• Ideal

Ideal IDDQ test vectors produce a nearly zero quiescent power supply current during
testing of a good device. Most methodologies expect such a result.

• Non-ideal

Non-ideal IDDQ test vectors produce a small, deterministic quiescent power supply
current in a good circuit.

• Illegal

If the test vector cannot produce an accurate current component estimate for a good
device, it is an illegal IDDQ test vector. You should never perform IDDQ testing with
illegal IDDQ test vectors.

IDDQ testing classifies CMOS circuits based on the quiescent-current-producing circuitry
contained inside as follows:

• Fully static

Fully static CMOS circuits consume close to zero IDDQ current for all circuit states.
Such circuits do not have pull-up or pull-down resistors, and there can be one and only
one active driver at a time in tri-state buses. For such circuits, you can use any vector for
ideal IDDQ current measurement.

• Resistive

Resistive CMOS circuits can have pull-up or pull-down resistors and tristate buses that
generate high IDDQ current in a good circuit.

• Dynamic

Dynamic CMOS circuits have macros (library cells or library primitives) that generate
high IDDQ current in some states. Diffused RAM macros belong to this category.

Some designs have a low current mode, which makes the circuit behave like a fully static
circuit. This behavior makes it easier to generate ideal IDDQ tests for these circuits.

The ATPG tool currently supports only the ideal IDDQ test methodology for fully static,
resistive, and some dynamic CMOS circuits. The tools can also perform IDDQ checks during

Tessent™ Scan and ATPG User’s Manual, v2022.448

Scan and ATPG Basics
Test Types

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG to ensure the vectors they produce meet the ideal requirements. For information on
creating IDDQ test sets, refer to “IDDQ Test Set Creation”.

At-Speed Test
Timing failures can occur when a circuit operates correctly at a slow clock rate, and then fails
when run at the normal system speed. Delay variations exist in the chip due to statistical
variations in the manufacturing process, resulting in defects such as partially conducting
transistors and resistive bridges.
The purpose of at-speed testing is to detect these types of problems. At-speed testing runs the
test patterns through the circuit at the normal system clock speed.

Scan and ATPG Basics
Fault Modeling Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 49

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fault Modeling Overview
Fault models are a means of abstractly representing manufacturing defects in the logical model
of your design. Each type of testing—functional, IDDQ, and at-speed—targets a different set of
defects.
Test Types and Associated Fault Models. 49
Fault Locations. 49
Fault Collapsing . 50
Supported Fault Model Types . 51

Test Types and Associated Fault Models
There is a relationship between test types, fault models, and the types of manufacturing defects
targeted for detection.
Table 2-1 lists those relationships.

Fault Locations
By default, faults reside at the inputs and outputs of library models. However, faults can instead
reside at the inputs and outputs of gates within library models if you turn internal faulting on.
Figure 2-6 shows the fault sites for both cases.

Table 2-1. Test Type/Fault Model Relationship
Test Type Fault Model Examples of Mfg. Defects Detected
Functional Stuck-at, toggle Some opens/shorts in circuit interconnections
IDDQ Pseudo stuck-at CMOS transistor stuck-on/some stuck-open

conditions, resistive bridging faults, partially
conducting transistors

At-speed Transition, path
delay

Partially conducting transistors, resistive bridges

Tessent™ Scan and ATPG User’s Manual, v2022.450

Scan and ATPG Basics
Fault Modeling Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-6. Internal Faulting Example

To locate a fault site, you need a unique, hierarchical instance pathname plus the pin name.

You can also use Verilog `celldefine statements to extend cell boundaries beyond library
models. Using this technique has several implications:

• The default fault population changes. By default, all fault locations are at library
boundary pins. However, when the library boundary moves from the ATPG library level
up to the `celldefine level, the fault locations and fault population change as a result.

• The flattened model can be different because the logic inside `celldefine module might
be optimized to reduce the flattened model size.

• Hierarchical instance/pin names inside `celldefine module are not treated as legal
instance/pin names.

Fault Collapsing
A circuit can contain a significant number of faults that behave identically to other faults. That
is, the test may identify a fault, but may not be able to distinguish it from another fault. In this
case, the faults are said to be equivalent, and the fault identification process reduces the faults to
one equivalent fault in a process known as fault collapsing.
For performance reasons, early in the fault identification process the ATPG tool singles out a
member of the set of equivalent faults and use this “representative” fault in subsequent
algorithms. Also for performance reasons, these applications only evaluate the one equivalent
fault, or collapsed fault, during fault simulation and test pattern generation. The tools retain
information on both collapsed and uncollapsed faults, however, so they can still make fault
reports and test coverage calculations.

Scan and ATPG Basics
Fault Modeling Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 51

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Supported Fault Model Types
The ATPG tool supports stuck-at, pseudo stuck-at, toggle, and transition fault models. In
addition to these, the tool supports static bridge and path delay fault models. The following
subsections discuss these supported fault models, along with their fault collapsing rules.
In addition to the above standard fault models, the ATPG tool supports User-Defined Fault
Models (UDFM). For more information, refer to About User-Defined Fault Modeling.

Functional Testing and the Stuck-At Fault Model . 51
Functional Testing and the Toggle Fault Model . 52
IDDQ Testing and the Pseudo Stuck-At Fault Model . 52
At-Speed Testing and the Transition Fault Model . 54
At-Speed Testing and the Path Delay Fault Model . 55

Functional Testing and the Stuck-At Fault Model
Functional testing uses the single stuck-at model, the most common fault model used in fault
simulation, because of its effectiveness in finding many common defect types. The stuck-at
fault models the behavior that occurs if the terminals of a gate are stuck at either a high (stuck-
at-1) or low (stuck-at-0) voltage. The fault sites for this fault model include the pins of primitive
instances.
Figure 2-7 shows the possible stuck-at faults that could occur on a single AND gate.

Figure 2-7. Single Stuck-At Faults for AND Gate

For a single-output, n-input gate, there are 2(n+1) possible stuck-at errors. In this case, with
n=2, six stuck-at errors are possible.

The ATPG tool uses the following fault collapsing rules for the single stuck-at model:

• Buffer — Input stuck-at-0 is equivalent to output stuck-at-0. Input stuck-at-1 is
equivalent to output stuck-at-1.

Tessent™ Scan and ATPG User’s Manual, v2022.452

Scan and ATPG Basics
Fault Modeling Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Inverter — Input stuck-at-0 is equivalent to output stuck-at-1. Input stuck-at-1 is
equivalent to output stuck-at-0.

• AND — Output stuck-at-0 is equivalent to any input stuck-at-0.

• NAND — Output stuck-at-1 is equivalent to any input stuck-at-0.

• OR — Output stuck-at-1 is equivalent to any input stuck-at-1.

• NOR — Output stuck-at-0 is equivalent to any input stuck-at-1.

• Net between single output pin and single input pin — Output pin stuck-at-0 is
equivalent to input pin stuck-at-0. Output pin stuck-at-1 is equivalent to input pin stuck-
at-1.

Functional Testing and the Toggle Fault Model
Toggle fault testing ensures that a node can be driven to both a logical 0 and a logical 1 voltage.
This type of test indicates the extent of your control over circuit nodes. Because the toggle fault
model is faster and requires less overhead to run than stuck-at fault testing, you can experiment
with different circuit configurations and get a quick indication of how much control you have
over your circuit nodes.
The ATPG tool uses the following fault collapsing rules for the toggle fault model:

• Buffer — A fault on the input is equivalent to the same fault value at the output.

• Inverter — A fault on the input is equivalent to the opposite fault value at the output.

• Net between single output pin and multiple input pin — All faults of the same value
are equivalent.

IDDQ Testing and the Pseudo Stuck-At Fault Model
IDDQ testing, in general, can use several different types of fault models, including node toggle,
pseudo stuck-at, transistor leakage, transistor stuck, and general node shorts.
The ATPG tool supports the pseudo stuck-at fault model for IDDQ testing. Testing detects a
pseudo stuck-at model at a node if the fault is excited and propagated to the output of a cell
(library model instance or primitive). Because library models can be hierarchical, fault
modeling occurs at different levels of detail.

The pseudo stuck-at fault model detects all defects found by transistor-based fault models—if
used at a sufficiently low level. The pseudo stuck-at fault model also detects several other types
of defects that the traditional stuck-at fault model cannot detect, such as some adjacent bridging
defects and CMOS transistor stuck-on conditions.

Scan and ATPG Basics
Fault Modeling Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 53

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The benefit of using the pseudo stuck-at fault model is that it lets you obtain high defect
coverage using IDDQ testing, without having to generate accurate transistor-level models for all
library components.

The transistor leakage fault model is another fault model commonly used for IDDQ testing.
This fault model models each transistor as a four terminal device, with six associated faults. The
six faults for an NMOS transistor include G-S, G-D, D-S, G-SS, D-SS, and S-SS (where G, D,
S, and SS are the gate, drain, source, and substrate, respectively).

You can only use the transistor level fault model on gate-level designs if each of the library
models contains detailed transistor level information. Pseudo stuck-at faults on gate-level
models equate to the corresponding transistor leakage faults for all primitive gates and fanout-
free combinational primitives. Thus, without the detailed transistor-level information, you
should use the pseudo stuck-at fault model as a convenient and accurate way to model faults in
a gate-level design for IDDQ testing.

Figure 2-8 shows the IDDQ testing process using the pseudo stuck-at fault model.

Figure 2-8. IDDQ Fault Testing

The pseudo stuck-at model detects internal transistor shorts, as well as “hard” stuck-ats (a node
actually shorted to VDD or GND), using the principle that current flows when you try to drive
two connected nodes to different values. While stuck-at fault models require propagation of the
fault effects to a primary output, pseudo stuck-at fault models enable fault detection at the
output of primitive gates or library cells.

IDDQ testing detects output pseudo stuck-at faults if the primitive or library cell output pin goes
to the opposite value. Likewise, IDDQ testing detects input pseudo stuck-at faults when the
input pin has the opposite value of the fault and the fault effect propagates to the output of the
primitive or library cell.

Tessent™ Scan and ATPG User’s Manual, v2022.454

Scan and ATPG Basics
Fault Modeling Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By combining IDDQ testing with traditional stuck-at fault testing, you can greatly improve the
overall test coverage of your design. However, because it is costly and impractical to monitor
current for every vector in the test set, you can supplement an existing stuck-at test set with a
compact set of test vectors for measuring IDDQ. This set of IDDQ vectors can be generated
automatically. Refer to section “IDDQ Test Set Creation” on page 369 for information.

The fault collapsing rule for the pseudo stuck-at fault model is as follows: for faults associated
with a single cell, pseudo stuck-at faults are considered equivalent if the corresponding stuck-at
faults are equivalent.

set_transition_holdpi — Freezes all primary inputs values other than clocks and RAM controls
during multiple cycles of pattern generation.

At-Speed Testing and the Transition Fault Model
Transition faults model large delay defects at gate terminals in the circuit under test. The
transition fault model behaves as a stuck-at fault for a temporary period of time. The slow-to-
rise transition fault models a device pin that is defective because its value is slow to change
from a 0 to a 1. The slow-to-fall transition fault models a device pin that is defective because its
value is slow to change from a 1 to a 0.
Figure 2-9 demonstrates the at-speed testing process using the transition fault model. In this
example, the process could be testing for a slow-to-rise or slow-to-fall fault on any of the pins of
the AND gate.

Figure 2-9. Transition Fault Detection Process

A transition fault requires two test vectors for detection: an initialization vector and a transition
propagation vector. The initialization vector propagates the initial transition value to the fault
site. The transition vector, which is identical to the stuck-at fault pattern, propagates the final
transition value to the fault site. To detect the fault, the tool applies proper at-speed timing
relative to the second vector, and measures the propagated effect at an external observation
point.

Scan and ATPG Basics
Fault Modeling Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 55

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool uses the following fault collapsing rules for the transition fault model:

• Buffer — a fault on the input is equivalent to the same fault value at the output.

• Inverter — a fault on the input is equivalent to the opposite fault value at the output.

• Net between single output pin and single input pin — all faults of the same value are
equivalent.

set_fault_type — Specifies the fault model for which the tool develops or selects ATPG
patterns. The transition option for this command specifies the tool to develop or select ATPG
patterns for the transition fault model.

For more information on generating transition test sets, refer to “Transition Delay Test Set
Creation” on page 373.

At-Speed Testing and the Path Delay Fault Model
Path delay faults model defects in circuit paths. Unlike the other fault types, path delay faults do
not have localized fault sites. Rather, they are associated with testing the combined delay
through all gates of specific paths (typically critical paths).
Path topology and edge type identify path delay faults. The path topology describes a user-
specified path from beginning, or “launch point,” through a combinational path to the end, or
“capture point.” The launch point is either a primary input or a state element. The capture point
is either a primary output or a state element. State elements used for launch or capture points are
either scan elements or non-scan elements that qualify for clock-sequential handling. A path
definition file defines the paths for which you want patterns generated. The add_faults
command specifies the edge type for path delay faults.

The edge type defines the type of transition placed on the launch point that you want to detect at
the capture point. A “0” indicates a rising edge type, which is consistent with the slow-to-rise
transition fault and is similar to a temporary stuck-at-0 fault. A “1” indicates a falling edge type,
which is consistent with the slow-to-fall transition fault and is similar to a temporary stuck-at-1
fault.

The ATPG tool targets multiple path delay faults for each pattern it generates. Within the
(ASCII) test pattern set, patterns that detect path delay faults include comments after the pattern
statement identifying the path fault, type of detection, time and point of launch event, time and
point of capture event, and the observation point. The pattern set also includes information
about which paths were detected by each pattern.

For more information on generating path delay test sets, refer to “Path Delay Test Set Creation”
on page 395.

Tessent™ Scan and ATPG User’s Manual, v2022.456

Scan and ATPG Basics
Fault Manipulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fault Manipulation
Fault manipulation is also known as fault bucketing. You manipulate faults when you group
faults of different regions into different classes and then remove them from the list or avoid
targeting them during ATPG.
Overview of Fault Manipulation . 56
Fault Manipulation Functionality . 56

Overview of Fault Manipulation
Fault manipulation (report/write/delete faults) is based upon a user-specified region so certain
faults can be excluded from ATPG or be re-classified into a user-defined AU or DI fault
subclass.
The user-specified region is defined by a logic cone using at least one of these options:

• start pins — A list of pins that are the start points of the region

• through pins — A list of pins that are the through pins of the region

• end pins — A list of pins that are the end points of the region.

When you specify more than one of the above options, the region is the intersection cone of all
the options specified. The tool enables you to trace the region either only within the
combinational cone, or trace through the non-scan cells.

Note
The options for fault manipulation support all pin-based fault models, such as stuck-at and
transition fault models, except user-defined fault models (UDFM). They also do not support

path-delay and bridging fault models.

Fault Manipulation Functionality
Manipulate faults with the report_faults, write_faults, and delete_faults commands, using
additional options to identify the start, through, and stop pins of the fault selection cone. You
can also specify an option to indicate whether the cone trace should stop at any sequential or
scan cells.

Examples of Fault Manipulation

Example 1
This example writes the faults in the user-specified region as a new user defined AU subclass,
AU.USR1. It then reads the faults back so the selected faults are treated as AU.USR1 and
excluded from the create_patterns target.

Scan and ATPG Basics
Fault Manipulation

Tessent™ Scan and ATPG User’s Manual, v2022.4 57

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// the first command changes default for the fanin/fanout switches
add_faults -all
write_faults faults.usr1 -from inst1/* -to flop*/D \

-change_classification_to AU.USR1
read_faults faults.usr1 -retain // these faults are changed into AU.USR1
set_capture_procedure on cap1
create_patterns // ATPG does not target the AU.USR1 faults
reset_au_faults // AU.USR1 faults remain as AU.USR1
set_capture_procedure off -all
set_capture_procedure on cap2
create_patterns // ATPG does not target the AU.USR1 faults

Example 2
This example demonstrates the “report_faults -through pins…” command. The -through switch
enables the tool to trace forwards and backwards through the specified pin or pins. The tool
traces the fan-in and fanout until it reaches an instance driving or driven by an instance outside
of the fault selection cone.

Figure 2-10. Fault Selection Cone

The preceding figure shows the fault selection cone in green, with the through point, G3/Y, in
blue.

report_faults -through G3/Y

The forward trace stops at G5/A, because G5/B is driven by pin Y on gate G8 (shown in
orange), which is outside the cone. The backward trace of the fault selection cone includes pins
on G3, G2, and G1. While it includes the pin G6/Y, the fault selection cone stop point is the gate
G6, because it fans out to G7, which is outside of the fault selection cone.

Tessent™ Scan and ATPG User’s Manual, v2022.458

Scan and ATPG Basics
Fault Manipulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 3
This example demonstrates the “report_faults -fanout_off_path_stop …” command by adding
this argument to the previous example. The -fanout_off_path_stop provides further stop
conditions during a trace when reaching a multiple fanout gate.

Figure 2-11. Fault Selection Cone

This figure shows the fault selection cone in green, with the through point, G3/Y, in blue.

report_faults -through G3/Y -fanin_off_path_stop on -fanout_off_path_stop on

The forward trace stops at G5/A, because G5/B is driven by pin Y on gate G8, shown in orange,
which is outside the cone. The backward trace of the fault selection cone includes pins on G3,
G2, and G1. While it includes the pin G6/Y, the fan-in cone stop point is the gate G6, because it
fans out to G7, which is outside of the fault selection cone.

Scan and ATPG Basics
About User-Defined Fault Modeling

Tessent™ Scan and ATPG User’s Manual, v2022.4 59

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

About User-Defined Fault Modeling
The standard fault models supported by the tool are typically sufficient to create a highly
efficient pattern set that detects the majority of potential defects. However, a number of defects
are not covered by these models and are detected only by accident; these defects require specific
conditions that cannot be defined for the existing fault models.
User-Defined Fault Modeling Usage Notes . 59
UDFM File Format . 61
Creating a User-Defined Fault Model . 66
Generating UDFM Test Patterns . 68

User-Defined Fault Modeling Usage Notes
You can use user-defined fault models (UDFMs) to define custom fault models. UDFMs extend
the natively-supported fault models (primarily stuck-at, transition, and IDDQ) by adding
combinational or sequential constraints on other pins/nets. These custom models enable you to
generate specific test patterns for process-related defects like intra-cell bridges or any different
kind of defect that requires further constraints. You can also use UDFMs to define conditions
needed in an additional fault model to reduce the need for functional test patterns.
Specifically, UDFMs provide the following capabilities:

• Support for generating high compact pattern sets.

• Close integration with the existing ATPG flow.

• Support of static (stuck-at), delay (transition), and IDDQ fault models.

• Definition of test alternatives.

• Definition of additional single or multiple-cycle conditions.

• Definition on library or hierarchy levels.

• Definition on specific instances.

• Write and load of fault status information using the MTFI format. For more information,
refer to “Using MTFI Files” on page 687.

• Generate gate-exhaustive UDFM files without running cell-aware characterization. For
more information, refer to the -gate_exhaustive switch for cellmodelgen in the Tessent
CellModelGen Tool Reference manual.

The following restrictions apply to UDFMs:

• No support for multiple detection during pattern generation (refer to the
set_multiple_detection command in the Tessent Shell Reference manual).

Tessent™ Scan and ATPG User’s Manual, v2022.460

Scan and ATPG Basics
About User-Defined Fault Modeling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Separation of static and delay fault models. The tool cannot handle both fault types
together in one pattern generation step. It must consider the definitions in different
pattern generation runs, which leads to multiple pattern sets.

• The tool supports IDDQ pattern generation for static UDFM fault models only.

Note
UDFM requires additional memory. The amount of additional memory needed depends on
the number of UDFM definitions and their complexity.

Scan and ATPG Basics
About User-Defined Fault Modeling

Tessent™ Scan and ATPG User’s Manual, v2022.4 61

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UDFM File Format
Input for: read_fault_sites
The User-Defined Fault Model (UDFM) file is an ASCII file that models custom fault sites.
Create the UDFM file manually or using Tessent CellModelGen. UDFM provides a method for
expanding native ATPG faults such as stuck-at to exhaustively test library cell models.

Format
A UDFM file must conform to the following syntax rules:

• Precede each line of comment text with a pair of slashes (//).

• Keywords are not case-sensitive.

• Use a colon (:) to define a value for a keyword.

• Enclose all string values in double quotation marks (" ").

• Enclose all UDFM declarations in braces ({}).

• Separate each entry within the UDFM declaration with a semicolon (;).

Parameters
In a UDFM file, use keywords to define the fault models you are creating and their behavior.

Table 2-2. UDFM Keywords
Keyword Description
UDFM Required. Specifies the version of the UDFM syntax. The syntax version

number must precede the UDFM declaration.
UdfmType Required. Specifies a user-defined identifier for all faults declared within the

UDFM file. This identifier enables you to target the group of faults declared in
a UDFM file for an ATPG run or other test pattern manipulations. The
following commands permit you to use the UdfmType identifier as an
argument:

• add_faults
• delete_faults
• report_fault_sites
• report_faults
• write_faults

Cell Optional. Maps a set of defined faults to a specified library cell. When the tool
loads the UDFM, it applies the defined faults to all instances of the specified
library cell. The cell definition supports only input and output ports.

Module Optional. Maps a set of defined faults to a specified module. When the tool
loads the UDFM, it applies the defined faults to all instances of the specified
module. The specified value can be a library cell or a module at any level of
hierarchy in the design.

Tessent™ Scan and ATPG User’s Manual, v2022.462

Scan and ATPG Basics
About User-Defined Fault Modeling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples
Intra-cell Bridge Fault Example

The following is an example that tests for a cell internal bridge fault of a 2-to-1 multiplexer
(MUX21) from the CMOS123_std library. This example specifies two tests with the required
activation conditions on the input pins for observing on pin Z the effects of the bridge fault.

Instance Optional. Maps a set of defined faults to a specified instance. When the tool
loads the UDFM, it applies the defined faults to the specified instance. A
complete pathname must be specified: either the full hierarchical path
(starting with “/”) or relative to the instance path.

Fault Required. Defines one or more faults. The definition contains two parts:
• Fault identification string — Name used to reference the fault.
• List of test alternatives — When more than one test is listed, the fault is

tested if any test alternatives are satisfied.
Test Required. Specifies the fault conditions to test for. You must minimally

specify the defect type with the faulty value and, optionally, a list of
conditions. For more information, see the StaticFault or DelayFault keyword.

Conditions Optional. Defines the nodes and values that represent all fault conditions. To
fulfill a condition, the specified node must be set to the specified value:

• 0: state low
• 1: state high
• —: no condition

StaticFault or
DelayFault

One of these keywords is required, except when you also use the
“Observation” keyword set to “false.” Specifies the faulty value at the
specified location. If this statement applies to a cell, you can specify only cell
ports; if it applies to module definitions, you can specify only ports and
module internal elements.

Observation Optional. Enables you to disable fault propagation as required by fault models
like toggle bridge. By default, fault propagation is enabled. Valid arguments
are “true” or “false”.
When you disable observation (observation:false), the definition of the UDFM
faulty value (StaticFault or DelayFault) becomes optional. The format
supports this attribute only at the “UDFMType” level. The attribute disables
the fault propagation for all fault models that follow.

Properties Optional. Stores information for future uses or by external user tools.
EncryptedTest Optional. Automatically used by Tessent CellModelGen to protect the IP. For

more information, refer to the Tessent CellModelGen Tool Reference.

Table 2-2. UDFM Keywords (cont.)
Keyword Description

Scan and ATPG Basics
About User-Defined Fault Modeling

Tessent™ Scan and ATPG User’s Manual, v2022.4 63

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UDFM {
version : 1;
Properties {

"library-name" : "CMOS123_std";
"create-by" : "my tool 1.0";

}
UdfmType ("intra-cell-bridges") {

Cell ("MUX21") {
Fault ("myFlt-N1-Z") {

Test {
StaticFault {"Z" : 1;}
Conditions {"D0" : 0; "D1" : 0; "S" : 0;}

}
Test {

 StaticFault {"Z" : 0;}
 Conditions {"D0" : 0; "D1" : 1; "S" : 0;}

}
}

}
}

}

Delay Fault Example
The following is an example that tests for delay faults on the input pins of a 2-to-1 multiplexer
(MUX21, shown in the previous example). This example specifies a test where the D0 input
transitions from 1 to 0 while observing that the Z output is faulty if it remains at 1.

UDFM {
version : 1;
UdfmType ("Special-delay") {

Cell ("MUX21") {
Fault ("myFlt-D0") {

Test {
DelayFault {"Z" : 1;}
Conditions {"D0" : 10; "D1" : 00; "S" : 00;}

}
}

}
}

}

Tessent™ Scan and ATPG User’s Manual, v2022.464

Scan and ATPG Basics
About User-Defined Fault Modeling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Instance-based Fault Example
The following is an example that tests for a bridge fault on the input pins of a single generic
2-input instance. This example specifies two tests for observing on pin Z the effects of a bridge
fault on the input pins.

UDFM {
 version : 1;
 UdfmType ("intra-cell-bridges") {
 Instance ("/top/mod1/inst4") {
 Fault ("f001") {
 Test{ StaticFault{"Z":0;} Conditions{"A":0;"B":1;} }
 }
 Fault ("f002") {
 Test{ StaticFault{"Z":1;} Conditions{"A":1;"B":1;} }
 }
 }
 }
}

Toggle Bridges Example
The following is an example that tests for two specific toggle bridge faults within an entire
design. This example tests for bridge faults between the following two sets of nets:

Bridge1: /top/mod2/i3/y /top/mod2/i5/a

Bridge2: /top/mod1/i47/z /top/mod1/iop/c

This example specifies two tests to detect each bridge fault by ensuring that each net pair can be
set to different values simultaneously.

Scan and ATPG Basics
About User-Defined Fault Modeling

Tessent™ Scan and ATPG User’s Manual, v2022.4 65

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UDFM {
Version:2;
UdfmType("toggle-bridges") {

Observation:false;
Instance("/") {

Fault("Bridge1") {
Test{Conditions{"top/mod2/i3/y":1; "top/mod2/i5/a":0;}}
Test{Conditions{"top/mod2/i3/y":0; "top/mod2/i5/a":1;}}

}
Fault("Bridge2") {

Test{Conditions{"top/mod1/i47/z":1; "top/mod1/iop/c":0;}}
Test{Conditions{"top/mod1/i47/z":0; "top/mod1/iop/c":1;}}

}
}

}
}

IDDQ Example
The UDFM IDDQ model is restricted to static fault sites only. In general, existing UDFM files
with static fault site definitions used for static patterns generation can be used for IDDQ in the
same way.The following is an example that tests for one specific bridge fault within an entire
design, by applying the four-way model. This example tests for the bridge fault between the
following two nets:

Bridge1: /top/mod2/i3/y /top/mod2/i5/a

This example specifies four fault sites to detect a bridge between the two nets by ensuring that
the net pair is set to different values simultaneously.

Fault sites:

• Bridge1_A_B_dom0 — Net A is set to 1 and net B to 0. The fault effect is observed at
net A.

• Bridge1_A_B_dom1 — Net A is set to 0 and net B to 1. The fault effect is observed at
net A

• Bridge1_B_A_dom0 —Net B is set to 1 and net A to 0. The fault effect is observed at
net B

• Bridge1_B_A_dom1 — Net B is set to 0 and net A to 1. The fault effect is observed at
net B

Tessent™ Scan and ATPG User’s Manual, v2022.466

Scan and ATPG Basics
About User-Defined Fault Modeling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UDFM {
 Version:2;
 UdfmType("bridges") {
 Instance("/") {
 Fault("Bridge1_A_B_dom0"){Test{StaticFault{"top/mod2/i3/y":0;}
 Conditions{"top/mod2/i5/a":0;}}}
 Fault("Bridge1_A_B_dom1"){Test{StaticFault{"top/mod2/i3/y":1;}
 Conditions{"top/mod2/i5/a":1;}}}
 Fault("Bridge1_B_A_dom0"){Test{StaticFault{"top/mod2/i5/a":0;}
 Conditions{"top/mod2/i3/y":0;}}}
Fault("Bridge1_B_A_dom1"){Test{StaticFault{"top/mod2/i5/a":1;}
 Conditions{"top/mod2/i3/y":1;}}}
 }
 }
}

This UDFM definition would be in a file read by the read_fault_sites command. These
commands are an example of how you use the UDFM definition for IDDQ pattern generation:

set_fault_type UDFM –iddq_faults
read_fault_sites <UDFM file name>
add_faults –all
create_patterns

Creating a User-Defined Fault Model
You can manually define your own fault models to detect faults that are not included in standard
fault models supported by the tool.

Prerequisites
• Text editor

Procedure
Note

In this procedure, entries added in the current step are shown in bold.

1. In a text editor, enter the UDFM statement as shown:

UDFM { }

All of the additional statements you use to define all fault models are contained within
the braces ({ }) of this statement.

2. Add the UDFM version number statement.

UDFM {
version : 1;

}

3. Add the UdfmType keyword to the ASCII file under the version number statement to
create a fault model name.

Scan and ATPG Basics
About User-Defined Fault Modeling

Tessent™ Scan and ATPG User’s Manual, v2022.4 67

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UDFM {
version : 1; // Syntax version ensures future compatibility
UdfmType ("udfm_fault_model") {
}

}

4. Specify the type of object you want to attach the fault to using the Cell, Module, and
Instance keywords. For more information on these keywords, see UDFM Keywords.

UDFM {
version : 1;
UdfmType ("udfm_fault_model") {

Cell ("MUX21") {
}

}
}

5. Define a unique fault model name using the Fault keyword. You can define multiple
faults.

UDFM {
version : 1;
UdfmType ("udfm_fault_model") {

Cell ("MUX21") {
Fault ("myFlt-D0") {
}

}
}

}

6. Define how the defect can be tested using the Test, StaticFault or DelayFault, and
Conditions keywords. The following example also shows how to use the “Conditions”
statement for a single assignment or a list of assignments. See “UDFM Keywords” for
the complete list of keywords.

UDFM {
version : 1;
UdfmType ("udfm_fault_model") {

Cell ("MUX21") {
Fault ("myFlt-N1-Z") {

 Test {
 StaticFault {"Z": 1;}
 Conditions {"D0": 0; "D1" : 0; "S" : 0;}

}
Test {

StaticFault {"Z" : 0;}
Conditions {"D0" : 0; "D1": 1; "S" : 0;}

}
}

}
}

}

7. Save the file using a .udfm extension.

Tessent™ Scan and ATPG User’s Manual, v2022.468

Scan and ATPG Basics
About User-Defined Fault Modeling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating UDFM Test Patterns
UDFM test pattern generation is similar to pattern generation for bridge logic faults. In both
cases, the tool accesses fault definitions from an external file and builds the internal fault list
using that data. It is important to understand what is required for UDFM pattern generation.
UDFM test pattern generation for static fault models is similar to test pattern generation for
stuck-at faults. As a result, most ATPG settings for stuck-at faults can be used for UDFM faults.
However, because UDFM fault definitions must be imported, the following commands work
slightly differently than they do for stuck-at faults:

Note
The process for generating cell-aware test patterns uses the same flow and commands
described in this section.

Prerequisites
• UDFM file that contains fault definitions.

Procedure
1. Set the fault type to UDFM using the set_fault_type command with the UDFM option:

set_fault_type udfm

Note
When you change the fault type, the current fault list and internal test pattern set are
deleted.

2. Load the fault definitions from a specified UDFM file into your current tool session
using the read_fault_sites command:

read_fault_sites <filename>.udfm

3. Create the internal fault list using all of the fault definitions from the UDFM file with the
add_faults command:

add_faults -All

4. Generate test patterns using the create_patterns command:

create_patterns

For more information, refer to the Tessent Shell Reference Manual.

5. Print out the resulting statistics using the report_statistics command.

report_statistics

• add_fault • delete_fault_site • report_faults • set_fault_type
• delete_faults • read_fault_sites • report_udfm_statistics • write_faults

Scan and ATPG Basics
About User-Defined Fault Modeling

Tessent™ Scan and ATPG User’s Manual, v2022.4 69

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information, refer to the Tessent Shell Reference Manual.

Related Topics
create_patterns [Tessent Shell Reference Manual]
report_statistics [Tessent Shell Reference Manual]

Tessent™ Scan and ATPG User’s Manual, v2022.470

Scan and ATPG Basics
Multiple Detect

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple Detect
The basic idea of multiple detect (n-detect) is to randomly target each fault multiple times. By
changing the way the fault is targeted and the other values in the pattern set, the potential to
detect a bridge increases.
This approach starts with a standard stuck-at or transition pattern set. It grades each fault for
multiple detect. Then it performs additional ATPG and creates patterns targeting the faults that
have lower than the multiple detect target threshold.

Bridge Coverage Estimate. 70

Bridge Coverage Estimate
Bridge coverage estimate (BCE) is a metric for reporting the ability of the multiple detect
strategy to statistically detect a bridge defect.
If a bridge fault exists between the target fault site and another net, there is a 50% chance of
detecting the fault with one pattern. If a second randomly different pattern targets the same
fault, the probability of detecting the bridge is 1 - 0.52. BCE performs this type of calculation
for all faults in the target list and is always lower than the test coverage value.

Scan and ATPG Basics
Multiple Detect

Tessent™ Scan and ATPG User’s Manual, v2022.4 71

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following shows an example of the statistics report that the tool automatically produces
when multiple detection or embedded multiple detect is enabled:

Statistics Report
Transition Faults

Fault Classes #faults
 (total)
---------------------------- ---------------------------------
 FU (full) 1114
 -------------------------- ---------------------------------
 DS (det_simulation) 1039 (93.27%)
 UU (unused) 30 (2.69%)
 TI (tied) 4 (0.36%)
 RE (redundant) 3 (0.27%)
 AU (atpg_untestable) 38 (3.41%)

Coverage

 test_coverage 96.47%
 fault_coverage 93.27%
 atpg_effectiveness 100.00%

#test_patterns 130
 #clock_sequential_patterns 130
#simulated_patterns 256
CPU_time (secs) 0.5

Multiple Detection Statistics

 Detections DS Faults Test Coverage
 (N) (Detection == N) (Detection >= N)
---------------------------- ---------------- ----------------
 1 0 (0.00%) 1039 (96.47%)
 2 0 (0.00%) 1039 (96.47%)
 3 93 (8.35%) 1039 (96.47%)
 4 56 (5.03%) 946 (87.84%)
 5 54 (4.85%) 890 (82.64%)
 6 56 (5.03%) 836 (77.62%)
 7 50 (4.49%) 780 (72.42%)
 8 46 (4.13%) 730 (67.78%)
 9 54 (4.85%) 684 (63.51%)
 10+ 630 (56.55%) 630 (58.50%)

bridge_coverage_estimate 94.71%

The report includes the BCE value and the number of faults with various detects less than the
target detection value.

Related Topics
The Bridge Parameters File
read_fault_sites [Tessent Shell Reference Manual]

Tessent™ Scan and ATPG User’s Manual, v2022.472

Scan and ATPG Basics
Embedded Multiple Detect

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_diagnosis_options [Tessent Shell Reference Manual]
report_fault_sites [Tessent Shell Reference Manual]

Embedded Multiple Detect
Embedded multiple detect (EMD) is a method of improving the multiple detect of a pattern set
without increasing the number of patterns within that pattern set. Essentially, EMD produces the
same quality patterns as a standard pattern set but adds improved multiple detection. The only
cost for the extra multiple detection is a longer run time during pattern creation of about 30 to 50
percent. As a result, EMD is often considered a no-cost additional value and is used for ATPG.
When performing ATPG, the tool tries to detect as many previously undetected faults in parallel
within the same pattern as possible. However, even though ATPG maximizes the number of
previously undetected faults detected per pattern, only a small percentage of scan cells have
specific values necessary for the detection. These specified bits that need to be loaded in scan
cells for that pattern are referred to as the “test cube.” The remaining scan cells that are not
filled with test cube values are randomly filled for fortuitous detection of untargeted faults.
EMD uses the same ATPG starting point to produce a test cube but then determines if there are
some faults that previously had a low number of detections. For these faults, EMD puts
additional scan cell values added to the test cube to improve multiple detection on top of the
new detection pattern.

EMD has a multiple detection that is better than normal ATPG but might not be as high a BCE
as n-detect with additional patterns could produce. In a design containing EDT circuitry, the
amount of detection depends on the how aggressive the compression is. The more aggressive
(higher) compression, the lower the encoding capacity and the fewer test cube bits can be
specified per pattern. If a design is targeting 200x compression, the available test cube bits
might be mostly filled up for many of the patterns with values for the undetected fault detection.
As a result, the additional EMD multiple detection might not be significantly higher than BCE
for the standard pattern set.

Standard multiple detect has a cost of additional patterns but also has a higher multiple detection
than EMD. How much difference between EMD and multiple detect depends on the particular
design’s pattern set and the level of compression used1.

1. J. Geuzebroek, et al., “Embedded Multi-Detect ATPG and Its Effect on the Detection of Unmodeled
Defects”, Proceedings IEEE Int. Test Conference, 2007

Scan and ATPG Basics
Fault Detection

Tessent™ Scan and ATPG User’s Manual, v2022.4 73

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple Detect for EMD
You can enable either EMD or multiple detect using the set_multiple_detection command. The
tool supports either approach with stuck-at and transition patterns. You can use the following
arguments with the set_multiple_detection command:

• -Guaranteed_atpg_detection — Sets the multiple detect target for each fault. ATPG
tries to target each fault the specified number of times. ATPG does not guarantee that it
detects the fault in a completely different path but randomly changes the way it excites
and propagates the fault. In addition, the random fill is different so values around the
target fault are likely to be randomly different than previous detections.

• -Desired_atpg_detections — Sets the EMD target. Users often set this target to 5 or a
similar value.

• -Simulation_drop_limit — This is the accuracy of the BCE calculation. In general,
there is no reason to change this value from the default of 10. This means that the BCE
simulations stop once a fault is learned to be detected 10 times. A fault multiple detected
10 times has a BCE and statistical chance of detecting a defect of 1 - 1/2e10 or 0.99902.
This is only a 0.0009 percent inaccuracy, which is slightly conservative but
insignificant.

Logic BIST
Logic BIST has a natural very high multiple detection. The faults that are detected with logic
BIST would often have multiple detection well above 10. This is in part due to the very large
number of patterns typically used for logic BIST. In addition, many of the hard-to-detect areas
of a circuit are made randomly testable and easier to produce high multiple detect coverage with
test logic inserted during logic BIST.

Multiple Detect and AU Faults
During multiple detect ATPG, the AU (ATPG_untestable) fault count changes only at the
beginning of each ATPG loop rather than during the loop. This is normal behavior when using
NCPs (named capture procedures) for ATPG. The tool updates AU faults after going through all
the NCPs at the end of the loop.

Fault Detection
Faults detection works by comparing the response of a known-good version of the circuit to that
of the actual circuit, for a given stimulus set. A fault exists if there is any difference in the
responses. You then repeat the process for each stimulus set.
Figure 2-12 shows the basic fault detection process.

Tessent™ Scan and ATPG User’s Manual, v2022.474

Scan and ATPG Basics
Fault Detection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-12. Fault Detection Process

Path Sensitization and Fault Detection
One common fault detection approach is path sensitization. The path sensitization method,
which is used by the tool to detect stuck-at faults, starts at the fault site and tries to construct a
vector to propagate the fault effect to a primary output. When successful, the tools create a
stimulus set (a test pattern) to detect the fault. They attempt to do this for each fault in the
circuit's fault universe.

Figure 2-13 shows an example circuit for which path sensitization is appropriate.

Figure 2-13. Path Sensitization Example

Scan and ATPG Basics
Fault Detection

Tessent™ Scan and ATPG User’s Manual, v2022.4 75

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-13 has a stuck-at-0 on line y1 as the target fault. The x1, x2, and x3 signals are the
primary inputs, and y2 is the primary output. The path sensitization procedure for this example
follows:

1. Find an input value that sets the fault site to the opposite of the required value. In this
case, the process needs to determine the input values necessary at x1 and x2 that set y1
to a 1, because the target fault is s-a-0. Setting x1 (or x2) to a 0 properly sets y1 to a 1.

2. Select a path to propagate the response of the fault site to a primary output. In this case,
the fault response propagates to primary output y2.

3. Specify the input values (in addition to those specified in step 1) to enable detection at
the primary output. In this case, in order to detect the fault at y1, the x3 input must be set
to a 1.

Tessent™ Scan and ATPG User’s Manual, v2022.476

Scan and ATPG Basics
Fault Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fault Classes
The tool categorizes faults into fault classes, based on how the faults were detected or why they
could not be detected. Each fault class has a unique name and two character class code. When
reporting faults, the tool uses either the class name or the class code to identify the fault class to
which the fault belongs.

Note
The tools may classify a fault in different categories, depending on the selected fault type.

Untestable (UT) . 76
Testable (TE) . 79
Fault Class Hierarchy . 81
Fault Sub-Classes . 82

Untestable (UT)
Untestable (UT) faults are faults for which no pattern can exist to either detect or possible-detect
them. Untestable faults cannot cause functional failures, so the tools exclude them when
calculating test coverage. Because the tools acquire some knowledge of faults prior to ATPG,
they classify certain unused, tied, or blocked faults before ATPG runs. When ATPG runs, it
immediately places these faults in the appropriate categories. However, redundant fault
detection requires further analysis.
The following list discusses each of the untestable fault classes.

1. Unused (UU)

The unused fault class includes all faults on circuitry unconnected to any circuit
observation point and faults on floating primary outputs. For information about UU fault
sub-classes, refer to Table 2-4 on page 83. Figure 2-14 shows the site of an unused fault.

Scan and ATPG Basics
Fault Classes

Tessent™ Scan and ATPG User’s Manual, v2022.4 77

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-14. Example of Unused Fault in Circuitry

2. Tied (TI)

The tied fault class includes faults on gates where the point of the fault is tied to a value
identical to the fault stuck value. These are possible causes of tied circuitry:

o Tied signals

o AND and OR gates with complementary inputs

o Exclusive-OR gates with common inputs

o Line holds due to primary input pins held at a constant logic value during test by
CT0 or CT1 pin constraints you applied with the add_input_constraints command

Note
The tools do not use line holds set by the “add_input_constraints -C0” (or C1)
command to determine tied circuitry. C0 and C1 pin constraints (as distinct from

CT0 and CT1 constraints) result in ATPG_untestable (AU) faults, not tied faults. For
more information, refer to the add_input_constraints command.

Figure 2-15 shows the site of a tied fault.

Tessent™ Scan and ATPG User’s Manual, v2022.478

Scan and ATPG Basics
Fault Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-15. Example of Tied Fault in Circuitry

Because tied values propagate, the tied circuitry at A causes tied faults at A, B, C, and D.

3. Blocked (BL)

The blocked fault class includes faults on circuitry for which tied logic blocks all paths
to an observable point. These are possible causes of tied circuitry:

o Tied signals

o AND and OR gates with complementary inputs.

o Exclusive-OR gates with common inputs.

o Line holds due to primary input pins held at a constant logic value during test by
CT0 or CT1 pin constraints you applied with the add_input_constraints command.

Note
The tools do not use line holds set by the “add_input_constraints -C0” (or C1)
command to determine tied circuitry. C0 and C1 pin constraints (as distinct from

CT0 and CT1 constraints) result in ATPG_untestable (AU) faults, not blocked
faults. For more information, refer to the add_input_constraints command.

This class also includes faults on selector lines of multiplexers that have identical data
lines. Figure 2-16 shows the site of a blocked fault.

Figure 2-16. Example of Blocked Fault in Circuitry

Scan and ATPG Basics
Fault Classes

Tessent™ Scan and ATPG User’s Manual, v2022.4 79

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Tied faults and blocked faults can be equivalent faults.

4. Redundant (RE)

The redundant fault class includes faults the test generator considers undetectable. After
the test pattern generator exhausts all patterns, it performs a special analysis to verify
that the fault is undetectable under any conditions. Figure 2-17 shows the site of a
redundant fault.

Figure 2-17. Example of Redundant Fault in Circuitry

In this circuit, signal G always has the value of 1, no matter what the values of A, B, and
C. If D is stuck at 1, this fault is undetectable because the value of G can never change,
regardless of the value at D.

Testable (TE)
Testable (TE) faults are all those faults that cannot be proven untestable.
These are the testable fault classes:

1. Detected (DT)

The detected fault class includes all faults that the ATPG process identifies as detected.
The detected fault class contains two groups:

o det_simulation (DS) — faults detected when the tool performs fault simulation.

o det_implication (DI) — faults detected when the tool performs learning analysis.

The det_implication group normally includes faults in the scan path circuitry, as well
as faults that propagate ungated to the shift clock input of scan cells. The scan chain
functional test, which detects a binary difference at an observation point, guarantees
detection of these faults. The tool also classifies scan enable stuck-in-system-mode
faults on the multiplexer select line of mux-DFFs as DI.

Tessent™ Scan and ATPG User’s Manual, v2022.480

Scan and ATPG Basics
Fault Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool provides the update_implication_detections command, which lets you
specify additional types of faults for this category. Refer to the
update_implication_detections command description in the Tessent Shell Reference
Manual.

For path delay testing, the detected fault class includes two other groups:

o det_robust (DR) — robust detected faults.

o det_functional (DF) — functionally detected faults.

For detailed information on the path delay groups, refer to “Path Delay Fault Detection”
on page 395.

2. Posdet (PD)

The posdet, or possible-detected fault class includes all faults that fault simulation
identifies as possible-detected but not hard detected. A possible-detected fault results
from a good-machine simulation observing 0 or 1 and the faulty machine observing X.
A hard-detected fault results from binary (not X) differences between the good and
faulty machine simulations. The posdet class contains two groups:

o posdet_testable (PT) — potentially detectable posdet faults. PT faults result when
the tool cannot prove the 0/X or 1/X difference is the only possible outcome. A
higher abort limit may reduce the number of these faults.

o posdet_untestable (PU) — proven ATPG_untestable during pattern generation and
hard undetectable posdet faults. Typically, faults may be classified as PU during
ATPG or when you use the “compress_patterns -reset_au” command.

By default, the calculations give 50 percent credit for posdet faults. You can adjust the
credit percentage with the set_possible_credit command.

3. ATPG_untestable (AU)

The ATPG_untestable fault class includes all faults for which the test generator is
unable to find a pattern to create a test, and yet cannot prove the fault redundant.
Testable faults become ATPG_untestable faults because of constraints, or limitations,
placed on the ATPG tool (such as a pin constraint or an insufficient sequential depth).
These faults may be possible-detectable, or detectable, if you remove some constraint,
or change some limitation, on the test generator (such as removing a pin constraint or
changing the sequential depth). You cannot detect them by increasing the test generator
abort limit.

The tools place faults in the AU category based on the type of deterministic test
generation method used. That is, different test methods create different AU fault sets.
Likewise, the tool can create different AU fault sets even using the same test method.
Thus, if you switch test methods (that is, change the fault type) or tools, you should reset
the AU fault list using the reset_au_faults command.

Scan and ATPG Basics
Fault Classes

Tessent™ Scan and ATPG User’s Manual, v2022.4 81

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
During multiple detect ATPG, the AU fault count changes only at the beginning of
each ATPG loop rather than during the loop. This is normal behavior when using

NCPs (named capture procedures) for ATPG. The tool updates AU faults after going
through all the NCPs at the end of the loop.

AU faults are categorized into several predefined fault sub-classes, as listed in Table 2-4
on page 83.

4. Undetected (UD)

The undetected fault class appears in reports as UC+UO. It includes undetected faults
that are not yet proven ATPG_untestable by the tool. The undetected class contains
groups:

o uncontrolled (UC) — undetected faults, which during pattern simulation, never
achieve the value at the point of the fault required for fault detection—that is, they
are uncontrollable.

o unobserved (UO) — faults whose effects do not propagate to an observable point.

Note
Uncontrolled and unobserved faults can be equivalent faults. If a fault is both
uncontrolled and unobserved, the tool categorizes it as UC.

All testable faults prior to ATPG are put in the UD (UC+UO) category. Faults that
remain classified as UC+UO after ATPG runs were either aborted, meaning that a
higher abort limit may reduce the number of UC or UO faults, or the ATPG terminated
early due to the termination condition set when running pattern generation. See
“Reasons for Low Test Coverage” on page 360 to understand how to detect more of the
undetected faults.

Fault Class Hierarchy
Fault classes are hierarchical. The highest level, Full, includes all faults in the fault list.
Within Full, faults are classified into untestable and testable fault classes, and so on, as shown in
Table 2-3.

Tessent™ Scan and ATPG User’s Manual, v2022.482

Scan and ATPG Basics
Fault Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For any given level of the hierarchy, the tool assigns a fault to one—and only one—class. If the
tool can place a fault in more than one class of the same level, the tool places the fault in the
class that occurs first in the list of fault classes.

Fault Sub-Classes
The DI, AU, UD, and UU fault classes are further categorized into fault sub-classes.
Table 2-4 lists the fault sub-classes. For more information about each AU and UD fault sub-
classes, click the hyperlinks in the table.

The DI and AU fault classes can also contain user-defined sub-classes, which you create by
grouping a set of faults into one sub-class and assigning a name to the group.

You can use the reset_di_faults command to reclassify the DI faults to the uncontrolled (UC)
category. Note that the tool does not reclassify DI faults defined by other Tessent plugins, for
example DI.MBIST and DI.MBISR, which are defined by Tessent MemoryBIST.

Table 2-3. Fault Class Hierarchy
1. Full (FU)
 1.1 TEstable (TE)
 a. DETEcted (DT)
 i. DET_Simulation (DS)
 ii. DET_Implication (DI)
 iii. DET_Robust (DR)—Path Delay Testing Only
 iv. DET_Functional (DF)—Path Delay Testing Only
 b. POSDET (PD)
 i. POSDET_Untestable (PU)
 ii. POSDET_Testable (PT)
 c. Atpg_untestable (AU)
 d. UNDetected (UD)
 i. UNControlled (UC)
 ii. UNObserved (UO)
 1.2 UNTestable (UT)
 a. UNUsed (UU)
 b. TIed (TI)
 c. Blocked (BL)
 d. Redundant (RE)

Scan and ATPG Basics
Fault Classes

Tessent™ Scan and ATPG User’s Manual, v2022.4 83

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 2-4. Fault Sub-Classes
Fault
Class

Fault Sub-class Code Description

DI EDT_LOGIC EDT Faults in EDT logic detected by implication when
EDT Finder is On (EDT Finder is on by default).
Supported for stuck and transition fault types

• Includes faults implicitly tested when applying
the EDT patterns

• Excludes redundant faults in EDT logic, faults
in bypass logic or other dual configurations

• Excludes faults already identified as implicitly
tested

BSCAN BSCAN DI faults that are detected during the Boundary
Scan operation, but not by the ATPG scan chains.
Run the BSCAN patterns during manufacturing test
to cover these faults.

SCAN_PATH SCAN DI faults that are directly in the scan path.
SCAN_ENABLE SEN DI faults that can propagate to and disrupt scan

shifting.
CLOCK CLK DI faults that are in either the scan or functional

clock cone of state elements.
SET_RESET SR DI faults that are in the SET/RESET cone of state

elements.
DATA_IN DIN DI faults in the data inputs of non-scan state

elements if the output fault is DS and there is no set/
reset port for these non-scan elements.

MEMORY MEM DI faults that are in read_enable, read_clock,
write_enable, write_clock, or set/reset ports of
RAM/ROMs.

MEMORY BIST MBIST Faults in the fan-in and fan-out of the memory
detected during Tessent MemoryBIST test. These
faults are not detectable by ATPG when you bypass
the memory but might be detectable using multiple
load patterns.

MEMORY BISR MBISR Faults in the fan-in and fanout of the Tessent
MemoryBIST BISR registers. These faults are
detected during BISR chain operations. Faults are
not detectable by ATPG because BISR registers are
not part of the ATPG scan chains.

User-defined none User-defined DI fault subclass.

Tessent™ Scan and ATPG User’s Manual, v2022.484

Scan and ATPG Basics
Fault Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

AU AU.BB — BLACK_BOXES BB Fault untestable due to black box
AU.EDT — EDT_BLOCKS EDT AU faults in EDT block
AU.LBIST —
HYBRID_LBIST

LBIST AU faults in the hybrid IP controller

AU.PC —
PIN_CONSTRAINTS

PC Tied or blocked by input constraint

AU.TC — TIED_CELLS TC Tied or blocked by tied non-scan cell
AU.OCC —
ON_CHIP_CLOCK_-
CONTROL

OCC AU faults in the OCC

AU.IJTAG — IJTAG IJTAG AU faults in the IJTAG instrument
AU.LPCT —
LOW_PIN_COUNT_TEST

LPCT AU faults in the low pin count test controller

AU.CC —
CELL_CONSTRAINTS

CC Tied or blocked by cell constraint

AU.FP — FALSE_PATHS FP Fault untestable due to false path
AU.HPI — HOLD_PI HPI Faults in the fanout cone of the hold PIs
AU.MCP —
MULTICYCLE_PATHS

MCP Fault untestable due to multicycle path

AU.MPO — MASK_PO MPO Faults in the fan-in cone of the masked POs
AU.SEQ —
SEQUENTIAL_DEPTH

SEQ Untestable due to insufficient sequential depth

AU.SSN — SSN SSN AU faults in the SSH instruments

AU.UDN — UNDRIVEN UDN Undetectable faults caused by undriven input pins
AU.WIRE — WIRE WIRE Faults that drive a WIRE gate with more than one

input
User-defined none User-defined AU fault subclass

UD
(UC+
UO)

UD.AAB — ATPG_ABORT AAB Fault aborted by ATPG tool
UD.UNS — UNSUCCESS UNS Fault undetected due to unsuccessful test
UD.EAB — EDT_ABORT EAB Fault aborted due to insufficient EDT encoding

capacity
UD.Unclassified none Unclassified due to insufficient run time or aborted

Table 2-4. Fault Sub-Classes (cont.)
Fault
Class

Fault Sub-class Code Description

Scan and ATPG Basics
Fault Classes

Tessent™ Scan and ATPG User’s Manual, v2022.4 85

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

AU.BB — BLACK_BOXES
These are faults that are untestable due to a black box, which includes faults that need to be
propagated through a black box to reach an observation point, as well as faults whose control or
observation requires values from the output(s) of a black box. You can use the
report_black_boxes command to identify the black boxes in your design. Your only potential
option for resolving AU.BB faults is to create a model for each black box, although this may not
fix the entire problem.

AU.EDT — EDT_BLOCKS
These are faults inside an instance identified as an EDT instance using the set_edt_instances
command. If EDT Finder is turned on (EDT Finder is on by default), most of those faults
(regardless of the use of set_edt_instances) are classified as DI.EDT faults.

To further reduce the number of AU.EDT faults, you must either use default naming for EDT
blocks, or you must use the add_edt_blocks command to explicitly name EDT blocks. Note that
the tool excludes AU.EDT faults from the relevant fault coverage by default because the chain
and IP test actually checks most of the EDT logic in addition to the scan chains, so other than
properly naming EDT blocks, you need not do anything more. For more information about
relevant coverage, refer to the description of the set_relevant_coverage command in the Tessent
Shell Reference Manual.

AU.LBIST — HYBRID_LBIST
These are faults located within the hybrid IP controller when you are using the hybrid TK/
LBIST flow. This is the default fault classification for faults found within the hybrid IP
controller if they have not already been identified with another designator, such as unused (UU),
tied (TI), or blocked (BL). These faults cannot be detected or improved upon. Refer to “Fault
Coverage Report for the Hybrid IP” in the Hybrid TK/LBIST Flow User’s Manual for more
information.

AU.PC — PIN_CONSTRAINTS
These are faults that are uncontrollable or that cannot be propagated to an observation point, in
the presence of a constraint value. That is, because the tool cannot toggle the pin, the tool cannot
test the fanout. The only possible solution is to evaluate whether you really need the input
constraint, and if not, to remove the constraint. To help troubleshoot, you can use the
“report_statistics -detailed_analysis” command to report specific pins.

UU CONNECTED CON Fault in the logic cone but with no observation point
FLOATING FL Fault on the unconnected output of a cell

Table 2-4. Fault Sub-Classes (cont.)
Fault
Class

Fault Sub-class Code Description

Tessent™ Scan and ATPG User’s Manual, v2022.486

Scan and ATPG Basics
Fault Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

AU.TC — TIED_CELLS
These are faults associated with cells that are always 0 (TIE0) or 1 (TIE1) or X (TIEX) during
capture. One example is test data registers that are loaded during test_setup and then
constrained so as to preserve that value during the rest of scan test. The only possible solution is
to verify that the tied state is really required, and if not, modify the test_setup procedure. To
help troubleshoot, you can use the “report_statistics -detailed_analysis” command to report
specific cells.

AU.OCC — ON_CHIP_CLOCK_-CONTROL
These are faults located within the On-Chip Clock Controller (OCC). This is the default
classification for the faults found within the OCC if they have not already been identified with
another designator.

For more information, see “Tessent On-Chip Clock Controller” on page 707.

AU.IJTAG — IJTAG
These are faults located within the IJTAG instruments. This is the default classification for the
faults found within the IJTAG instrument if they have not already been identified with another
designator.

Specifically for AU.IJTAG, the tool only identifies faults in ICL instances that have either of
the following attributes:

• The keep_active_during_scan_test ICL module attribute explicitly set to “true”.

• The keep_active_during_scan_test ICL module attribute is not set, and the
tessent_instrument_type ICL module attribute equals: “mentor::ijtag_node”.

For more information, refer to “A Detailed IJTAG ATPG Flow” in the Tessent IJTAG User's
Manual.

AU.LPCT — LOW_PIN_COUNT_TEST
These are faults located within the Low Pin Count Test (LPCT) controller. This is the default
classification for the faults found within the LPCT if they have not already been identified with
another designator.

See “Reduced Pin Count Requirements” in the Tessent TestKompress User’s Manual for
complete information.

AU.CC — CELL_CONSTRAINTS
These are faults that are uncontrollable or that cannot be propagated to an observation point, in
the presence of a constraint value. That is, because the tool cannot toggle a state within the cell,
the tool cannot test the fanout or the faults along the input path that need to propagate through

Scan and ATPG Basics
Fault Classes

Tessent™ Scan and ATPG User’s Manual, v2022.4 87

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the cell. The only possible solution is to evaluate whether you really need the cell constraint,
and if not, to remove the constraint. To help troubleshoot, you can use the “report_statistics
-detailed_analysis” command to report specific cells.

For more information about cell constraints and their affect on ATPG, refer to the
add_cell_constraints command description in the Tessent Shell Reference Manual.

AU.FP — FALSE_PATHS
These are faults that can be tested only through a false path. However, if there is any other path
possible that is not false in which the fault exists, then the fault remains in the fault list.
Therefore, many faults along false paths might not be classified as AU.FP. For example, assume
that the end of a long false path is connected to both a flop A and a flop B. If flop B is not in a
false path, then the tool can test all the setup faults using flop B and can therefore classify none
as AU.FP.

In the case of hold-time false paths, the tool cannot classify them as AU.FP because a test is
almost always possible that does not cause a hold-time violation. For example, consider a circuit
with a hold-time false path that contains a flop A that feeds a buffer connected to flop B. If a
pattern places a 1 on flop A’s D input and a 0 on Q, then ATPG simulation would capture X in
flop B because the tool cannot be certain the capture cycle would appropriately capture 0 in flop
B. That is, the hold-time violation could cause flop A to update and then propagate to flop B
before the clock captures at flop B. However, if flop A’s D input is 0 and Q is 0, then the 0
would be properly captured regardless of the hold-time false path. This is why the tool cannot
remove the faults in this circuit from the fault list and define them as AU.FP.

Note that the tool excludes AU.FP faults from the relevant fault coverage by default. For more
information about relevant coverage, refer to the description of the set_relevant_coverage
command in the Tessent Shell Reference Manual.

AU.HPI — HOLD_PI
These are faults for transition fault models with launch off-shift disabled that can only be
controlled by hold PIs.They are marked AU.HPI because there is no way to launch such a
transition from the fault site.

The tool performs AU.HPI analysis at any of these events:

• At the end of system mode transition, when the tool performs static AU analysis of other
subclasses.

• When you change holdpi settings in non-setup mode.

• When you issue the “set_capture_procedure” command in non-setup mode, and the
named capture procedure holdpi is different. Analysis is performed because the named
capture procedure might override hold PI values.

Tessent™ Scan and ATPG User’s Manual, v2022.488

Scan and ATPG Basics
Fault Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• When you issue the “read_procedure” command in non-setup mode, and the named
capture procedure holdpi is different. Analysis occurs because the named capture
procedure might override hold PI values.

AU.MCP — MULTICYCLE_PATHS
These are faults that can be tested only through a multicycle path, which means that the fault
cannot propagate between the launch and capture point within a single clock cycle. For
information about resolving multicycle path issues, refer to “Pattern Failures Due to Timing
Exception Paths” on page 383.

AU.MPO — MASK_PO
These are faults that exist in the fan-in cone of the masked POs and have no path to other
observation points. The tool updates this category of faults when you make changes to the PO
masks by using commands such as add_output_masks, delete_output_masks, and
set_output_masks.

AU.SEQ — SEQUENTIAL_DEPTH
These are faults associated with non-scan cells that require multiple clock cycles to propagate to
an observe point. One possible solution is to increase the sequential depth using the
“set_pattern_type -sequential” command. Another solution is to ensure that you have defined all
clocks in the circuit using the add_clocks command.

AU.SSN — SSN
These are faults located within the SSH if you use SSN. This is the default fault classification
for faults found within the SSH if the tool has not already identified them in another sub-class,
such as unused (UU), tied (TI), or blocked (BL). These faults cannot be detected. The tool
excludes AU.SSN faults from the relevant fault coverage by default.

AU.UDN — UNDRIVEN
These are faults that cannot be tested due to undriven input pins. For the purpose of this
analysis, undriven input pins include inputs driven by X values. Faults on undriven pins and on
pins that are untestable due to other pins being undriven are classified as AU.UDN. This
analysis occurs by default.

AU.WIRE — WIRE
WIRE faults are identified during AU analysis if they drive WIRE gates with more than one
input and it is in a fanout free region dominated by any WIRE gate input.

Scan and ATPG Basics
Fault Reporting

Tessent™ Scan and ATPG User’s Manual, v2022.4 89

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UD.AAB — ATPG_ABORT
These are faults that are undetected because the tool reached its abort limit. You can gain
additional information about UD.AAB faults using the report_aborted_faults command. You
can raise the abort limit to increase coverage using the set_abort_limit command.

UD.UNS — UNSUCCESS
These are faults that are undetected for unknown reasons. A test for the fault was generated but
it was unsuccessful in detecting the fault. There is nothing you can do about faults in this sub-
class.

UD.EAB — EDT_ABORT
These are faults that are undetected for one of these reasons:

• Your design’s chain:channel ratio is insufficient to detect the fault. One solution is to
run compression analysis on your design to determine the most aggressive chain:channel
ratio using the analyze_compression command, and then re-create the EDT logic in your
design. Another solution is to insert test points to improve the compressibility of faults.

• The tool cannot compress the test due to the scan cells being clustered (which the tool
reports at the end of ATPG). The solution is to insert test points to improve the
compressibility of faults.

UD.Unclassified
These are faults for which the tool determined the coverage benefit does not outweigh the run
time. If you do not want the tool to take a return-on-run-time analysis into consideration, you
can run “create_patterns -no_terminate_ineffective_atpg”. Setting abort limits can also increase
the number of faults listed as Unclassified.

Note
Using “create_patterns -no_terminate_ineffective_atpg” increases the run time and pattern
count and may do so for little coverage gain.

Fault Reporting
When reporting faults, the tool identifies each fault by three ordered fields.

• Fault value (0 for stuck-at-0 or “slow-to-rise” transition faults; 1 for stuck-at-1 or “slow-
to-fall” transition faults)

• Two-character fault class code

Tessent™ Scan and ATPG User’s Manual, v2022.490

Scan and ATPG Basics
Testability Calculations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Pin pathname of the fault site

If the tools report uncollapsed faults, they display faults of a collapsed fault group together, with
the representative fault first followed by the other members (with EQ fault codes).Use the
report_faults command to report faults.

Testability Calculations
The tool reports several measures of testability. Three important measures are test coverage,
fault coverage, and ATPG effectiveness.

• Test Coverage

Test coverage, which is a measure of test quality, is the percentage of faults detected
from among all testable faults. Typically, this is the number of most concern when you
consider the testability of your design.

The tool calculates test coverage using the formula:

#DT + (#PD * posdet_credit)
——————————————————————————— x 100

#testable

In this formula, posdet_credit is the user-selectable detection credit (the default is 50
percent) given to possible detected faults with the set_possible_credit command.

• Fault Coverage

Fault coverage consists of the percentage of faults detected from among all faults that
the test pattern set tests—treating untestable faults the same as undetected faults.

The tool calculates fault coverage using the formula:

#DT + (#PD * posdet_credit)
——————————————————————————— x 100

#full

• ATPG Effectiveness

ATPG effectiveness measures the ATPG tool’s ability to either create a test for a fault,
or prove that a test cannot be created for the fault under the restrictions placed on the
tool.

The tool calculates ATPG effectiveness using the formula:

#DT + #UT + #AU + #PU +(#PT *posdet_credit)
——— x 100

#full

Tessent™ Scan and ATPG User’s Manual, v2022.4 91

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 3
Common Tool Terminology and Concepts

Once you understand the basic ideas behind DFT, scan design, and ATPG, you can concentrate
on the Siemens EDA DFT tools and how they operate. Tessent Scan and the ATPG tools not
only work toward a common goal (to improve test coverage), they also share common
terminology, internal processes, and other tool concepts, such as how to view the design and the
scan circuitry.
These are subjects common to the tools:

Scan Terminology . 93
Scan Cells . 93
Master Element . 94
Remote Element . 94
Shadow Element . 95
Copy Element . 96
Extra Element . 96
Scan Chains. 97
Scan Groups . 97
Scan Clocks. 99

Scan Architectures . 100
Multi-Bit Cells . 100

Test Procedure Files . 105
Model Flattening . 107

Design Object Naming . 107
The Flattening Process . 108
Simulation Primitives of the Flattened Model . 109

Learning Analysis . 113
Equivalence Relationships . 113
Logic Behavior . 113
Implied Relationships . 114
Forbidden Relationships . 115
Dominance Relationships . 115

ATPG Design Rules Checking . 116
General Rules Checking . 116
Procedure Rules Checking . 116
Bus Mutual Exclusivity Analysis . 117
Scan Chain Tracing. 118
Shadow Latch Identification . 118
Data Rules Checking . 119

Tessent™ Scan and ATPG User’s Manual, v2022.492

Common Tool Terminology and Concepts

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Transparent Latch Identification. 119
Clock Rules Checking . 120
RAM Rules Checking. 120
Bus Keeper Analysis. 120
Extra Rules Checking . 121
Scannability Rules Checking . 121
Constrained/Forbidden/Block Value Calculations . 121

Clock Terminology . 123
Programmable Clock Chopper . 123

Common Tool Terminology and Concepts
Scan Terminology

Tessent™ Scan and ATPG User’s Manual, v2022.4 93

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Terminology
You need to become familiar with the scan terminology common to Tessent Scan and the ATPG
tools.
Scan Cells . 93
Master Element . 94
Remote Element . 94
Shadow Element. 95
Copy Element . 96
Extra Element . 96
Scan Chains . 97
Scan Groups . 97
Scan Clocks. 99

Scan Cells
A scan cell is the fundamental, independently-accessible unit of scan circuitry, serving both as a
control and observation point for ATPG and fault simulation. You can think of a scan cell as a
black box composed of an input, an output, and a procedure specifying how data gets from the
input to the output. The circuitry inside the black box is not important as long as the specified
procedure shifts data from input to output properly.
Because scan cell operation depends on an external procedure, scan cells are tightly linked to
the notion of test procedure files. “Test Procedure Files” on page 105 discusses test procedure
files in detail. Figure 3-1 illustrates the black box concept of a scan cell and its reliance on a test
procedure.

Figure 3-1. Generic Scan Cell

A scan cell contains at least one memory element (flip-flop or latch) that lies in the scan chain
path. The cell can also contain additional memory elements that may or may not be in the scan
chain path, as well as data inversion and gated logic between the memory elements.

Figure 3-2 gives one example of a scan cell implementation (for the mux-DFF scan type).

Tessent™ Scan and ATPG User’s Manual, v2022.494

Common Tool Terminology and Concepts
Master Element

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-2. Generic Mux-DFF Scan Cell Implementation

Each memory element may have a set or reset line, or both, in addition to clock-data ports. The
ATPG process controls the scan cell by placing either normal or inverted data into its memory
elements. The scan cell observation point is the memory element at the output of the scan cell.
Other memory elements can also be observable, but may require a procedure for propagating
their values to the scan cell’s output. The following subsections describe the different memory
elements a scan cell may contain.

Master Element
The master element (master cell) is the primary memory element of a scan cell. It captures data
directly from the output of the previous scan cell. Each scan cell must contain one and only one
master element.
For example, Figure 3-2 shows a mux-DFF scan cell, which contains only a master element.
However, scan cells can contain memory elements in addition to the master. Figures 3-3
through 3-5 illustrate examples of master elements in a variety of other scan cells.

The shift procedure in the test procedure file controls the master element. If the scan cell
contains no additional independently-clocked memory elements in the scan path, this procedure
also observes the master. If the scan cell contains additional memory elements, you may need to
define a separate observation procedure (called master_observe) for propagating the master
element’s value to the output of the scan cell.

Remote Element
The remote element (remote cell), an independently-clocked scan cell memory element, resides
in the scan chain path. It cannot capture data directly from the previous scan cell. When used, it

Common Tool Terminology and Concepts
Shadow Element

Tessent™ Scan and ATPG User’s Manual, v2022.4 95

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

stores the output of the scan cell. The shift procedure both controls and observes the remote
element. The value of the remote may be inverted relative to the master element.

Shadow Element
The shadow element (shadow cell), either dependently- or independently-clocked, resides
outside the scan chain path. It can be inside or outside of a scan cell.
Figure 3-3 gives an example of a scan cell with a dependently-clocked, non-observable shadow
element with a non-inverted value.

Figure 3-3. Dependently-Clocked Mux-DFF/Shadow Element Example

Figure 3-4 shows a similar example where the shadow element is independently-clocked.

Figure 3-4. Independently-Clocked Mux-DFF/Shadow Element Example

Load a data value into the dependently-clocked shadow element with the shift procedure. If the
shadow element is independently clocked, use a separate procedure called shadow_control to
load it. You can optionally make a shadow observable using the shadow_observe procedure. A
scan cell may contain multiple shadows but only one may be observable, because the tools
permit only one shadow_observe procedure. A shadow element’s value may be the inverse of
the master’s value.

Tessent™ Scan and ATPG User’s Manual, v2022.496

Common Tool Terminology and Concepts
Copy Element

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The definition of a shadow element is based on the shadow having the same (or inverse) value
as the master element it shadows. A variety of interconnections of the master and shadow
accomplishes this. In Figure 3-3, the shadow’s data input is connected to the master’s data
input, and both FFs are triggered by the same clock edge. The definition would also be met if
the shadow’s data input connected to the master’s output and the shadow triggered on the
trailing edge, while the master triggered on the leading edge, of the same clock.

Copy Element
The copy element (copy cell) is a memory element that lies in the scan chain path and can
contain the same (or inverted) data as the associated master or remote element in the scan cell.
Figure 3-5 gives an example of a copy element within a scan cell in which a master element
provides data to the copy.

Figure 3-5. Mux-DFF/Copy Element Example

The clock pulse that captures data into the copy’s associated scan cell element also captures data
into the copy. Data transfers from the associated scan cell element to the copy element in the
second half of the same clock cycle.

During the shift procedure, a copy contains the same data as that in its associated memory
element. However, during system data capture, some types of scan cells permit copy elements
to capture different data. When the copy’s value differs from its associated element, the copy
becomes the observation point of the scan cell. When the copy holds the same data as its
associated element, the associated element becomes the observation point.

Extra Element
The extra element is an additional, independently-clocked memory element of a scan cell. An
extra element is any element that lies in the scan chain path between the master and remote
elements. The shift procedure controls data capture into the extra elements. These elements are
not observable. Scan cells can contain multiple extras. Extras can contain inverted data with
respect to the master element.

Common Tool Terminology and Concepts
Scan Chains

Tessent™ Scan and ATPG User’s Manual, v2022.4 97

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Chains
A scan chain is a set of serially linked scan cells. Each scan chain contains an external input pin
and an external output pin that provide access to the scan cells.
Figure 3-6 shows a scan chain, with scan input “sc_in” and scan output “sc_out”.

Figure 3-6. Generic Scan Chain

The scan chain length (N) is the number of scan cells within the scan chain. By convention, the
scan cell closest to the external output pin is number 0, its predecessor is number 1, and so on.
Because the numbering starts at 0, the number for the scan cell connected to the external input
pin is equal to the scan chain length minus one (N-1). The minimum number of cells in a scan
chain is one.

Scan Groups
A scan chain group is a set of scan chains that operate in parallel and share a common test
procedure file.
The test procedure file defines how to access the scan cells in all of the scan chains of the group.
For more information on the test procedure file, see the chapter “Test Procedure File” in the
Tessent Shell User’s Manual.

Normally, all of a circuit’s scan chains operate in parallel and are thus in a single scan chain
group.

You can have two clocks, clk1 and clk2, as shown in Figure 3-7, each of which clocks different
scan chains. You can also have a single clock to operate the scan chains. Regardless of
operation, all defined scan chains in a circuit must be associated with a scan group. A scan
group is a concept used by Tessent tools.

Tessent™ Scan and ATPG User’s Manual, v2022.498

Common Tool Terminology and Concepts
Scan Groups

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-7. Scan Group — Two Scan Inputs

Scan groups are a way to group scan chains based on operation. All scan chains in a group must
be able to operate in parallel, which is normal for scan chains in a circuit. However, when scan
chains cannot operate in parallel, the operation of each must be specified separately. This means
the scan chains belong to different scan groups.

For example, in the following figure, the two scan chains share a single scan input, sci1.

Figure 3-8. Scan Group — One Scan Input

When these scan chains operate in parallel, their dependency on the same scan input has an
impact on test coverage. You can remedy this situation by defining another scan group and
assigning one of the scan chains to it. Another reason to define multiple scan groups is when

Common Tool Terminology and Concepts
Scan Clocks

Tessent™ Scan and ATPG User’s Manual, v2022.4 99

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

you want to perform sequential loads for low-power situations. EDT does not permit multiple
scan groups.

Scan Clocks
Scan clocks are external pins capable of capturing values into scan cell elements. Scan clocks
include set and reset lines, as well as traditional clocks. Any pin defined as a clock can act as a
capture clock during ATPG.
Figure 3-9 shows a scan cell whose scan clock signals are shown in bold.

Figure 3-9. Scan Clocks Example

In addition to capturing data into scan cells, scan clocks, in their off state, ensure that the cells
hold their data. Design rule checks ensure that clocks perform both functions. A clock’s off-
state is the primary input value that results in a scan element’s clock input being at its inactive
state (for latches) or state prior to a capturing transition (for edge-triggered devices). In the case
of Figure 3-9, the off-state for the CLR signal is 1, and the off-states for CK1 and CK2 are both
0.

Tessent™ Scan and ATPG User’s Manual, v2022.4100

Common Tool Terminology and Concepts
Scan Architectures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Architectures
Tessent Scan supports the insertion of mux-DFF (mux-scan) architecture. Additionally, Tessent
Scan supports all standard scan types, or combinations thereof, in designs containing pre-
existing scan circuitry.
Each scan style provides different benefits. Mux-DFF or clocked-scan are generally the best
choice for designs with edge-triggered flip-flops.

A mux-DFF cell contains a single D flip-flop with a multiplexed input line that enables
selection of either normal system data or scan data.

Figure 3-10 shows the replacement of an original design flip-flop with mux-DFF circuitry.

Figure 3-10. Mux-DFF Replacement

Multi-Bit Cells . 100

Multi-Bit Cells
Tessent ScanPro can perform scan replacement and stitching for a wide variety of library cells.
This section describes how the tool handles library cells of different levels of complexity.
In the simplest case, the pre-scan netlist contains library cells that instantiate a single-bit flop.
You can easily describe this cell, and the corresponding non-scan to scan mapping, in the
Tessent cell library. Figure 3-11 shows an example of this type of cell.

Common Tool Terminology and Concepts
Multi-Bit Cells

Tessent™ Scan and ATPG User’s Manual, v2022.4 101

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-11. Single-Bit Library Cell and Scan Equivalent

The following is an example of a Tessent cell library description of this type of cell:

// DFF
model dff(D, CLK, Q, QB) (
 cell_type = DFF;
 input (D, CLK) ()
 output(Q, QB) (primitive = _dff(, , CLK, D, Q, QB);)
)

// SFF
model sff(D, SI, SE, CLK, Q, QB) (
 nonscan_model = xdff;
 input (CLK) (posedge_clock)
 input (SI) (scan_in)
 input (SE) (scan_enable)
 input (D) ()
 output(Q) ()
 output(QB) (scan_out_inv)
 intern(_D) (primitive = _mux (D, SI, SE, _D);
 primitive = _dff(, , CLK, _D, Q, QB);
)
)

The next level of complexity is a library cell that has multiple memory elements. A simple
multi-bit cell is one that the tool stitches all the memory elements into a single SI to SO path in
the scan equivalent version of the cell. The most efficient way to handle this type of cell is to
simply use the Tessent cell library to describe the behavior. However, the Tessent cell library
only supports cells where a single clock controls all the memory elements, and the cell only has
a single scan enable. Figure 3-12 shows an example of this type of cell.

Tessent™ Scan and ATPG User’s Manual, v2022.4102

Common Tool Terminology and Concepts
Multi-Bit Cells

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-12. Multi-Bit Library Cell and Scan Equivalent

The following example is a Tessent cell library description of a multi-bit cell:

// 2-bit flop
model mdff (D1, D2, CLK, Q1, Q2)
(
 input(D1,D2) ()
 input(CLK) (posedge_clock;)
 output(Q1) (primitive = _dff x1 (,,CLK,D1,Q1,);)
 output(Q2) (primitive = _dff x2 (,,CLK,D2,Q2,);)
)

// scan version of 2-bit flop
model msff (D1, D2, CLK, Q1, Q2, SO, SI, SE)

 nonscan_model = mdff;

 input(D1,D2) ()
 output(Q1,Q2) ()
 input(CLK) (posedge_clock;)
 input(SI) (scan_in;)
 output(SO) (scan_out;)
 input(SE) (scan_enable;)
 intern(n1,n2,n3) ()
 (primitive = _mux u1 (D1,SI,SE,n1);
 primitive = _dff u2 (,,CLK,n1,Q1,n2);
 primitive = _mux u3 (D2,n2,SE,n3);
 primitive = _dff u4 (,,CLK,n3,Q2,SO);
)
)

The following example shows how you can define a multi-bit cell using the add_scan_segments
command:

add_scan_segments multibit -on_module library_model_name -si_connections SI \
-so_connections SO -scan_enable SE -clock_pins {CLK} -clock_update_edge {leading}

Common Tool Terminology and Concepts
Multi-Bit Cells

Tessent™ Scan and ATPG User’s Manual, v2022.4 103

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows how you can define a multi-bit cell using tcd_scan:

MultiBitModule(module_name) {
 tessent_tool_version : version_string;
 tessent_meta_version : version_number;
 Scan {
 type : internal;
 ScanEn(SE) {
 active_polarity : all_ones;
 }
 ScanChain {
 length : 2;
 scan_in_clock : CLK;
 scan_out_clock : CLK;
 scan_in_port : SI;
 scan_out_port : SO;
 }
 Clock(CLK) {
 off_state : all_zeros;
 }
 }
}

The final level of complexity is a multi-bit cell where the scan_equivalent version has more than
one SI to SO path. This type of cell is also best handled using the Tessent cell library. Each SI to
SO path can have a separate clock, but all the memory elements for that particular path must be
controlled by the same clock. Each SI to SO path can be controlled by a different scan_enable,
but the cell must have only one scan_enable for each SI to SO path. Figure 3-13 shows an
example of this type of cell.

Figure 3-13. Multi-Scan Segment Library Cell and Scan Equivalent

Tessent™ Scan and ATPG User’s Manual, v2022.4104

Common Tool Terminology and Concepts
Multi-Bit Cells

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is an example of a Tessent cell library description of a multi-scan segment cell:

// 2 bit flop (same as xmdff) - but will target with multi-si pin
// version
model msidff (D1, D2, CLK, Q1, Q2)
(
 input(D1,D2) ()
 input(CLK) (posedge_clock;)
 output(Q1) (primitive = _dff x1 (,,CLK,D1,Q1,);)
 output(Q2) (primitive = _dff x2 (,,CLK,D2,Q2,);)
)

// multi-scan segment version of 2-bit flop

model msisff (D1, D2, CLK, Q1, Q2, SO, SI, SE)
 nonscan_model = xmsidff;

 input(D1,D2) ()
 output(Q1,Q2) ()
 input(CLK) (posedge_clock;)
 input (SI) (array = 1:0; scan_in)
 output (SO) (array = 1:0; scan_out_inv)
 input(SE) (scan_enable;)
 intern(n1,n2) ()
 (primitive = _mux u1 (D1,SI[0],SE,n1);
 primitive = _dff u2 (,,CLK,n1,Q1,SO[0]);
 primitive = _mux u3 (D2,SI[1],SE,n2);
 primitive = _dff u4 (,,CLK,n2,Q2,SO[1]);
)
)

For more examples see “Example Scan Definitions” in the Cell Library chapter of the Tessent
Cell Library Manual.

Library cells that do not meet the requirements listed above can also be modeled using a TCD
file to describe the behavior, or by directly defining scan_segments using the
"add_scan_segments" command. However, the tool does not support “replacement” for these
cells unless the scan segments are specified the Tessent cell library scan segment syntax. In
other words, if the scan_equivalent cell has already been instantiated in the netlist, then you can
stitch these cells into chains based on the description from the TCD file, or from the
add_scan_segments command.

The following example shows how you can define a multi-scan segment cell using the
add_scan_segments command:

add_scan_segments multi1 -on_module library_model_name -si_connections SI0 \
-so_connections SO0 -scan_enable SE -clock_pins {CLK} -clock_update_edge {leading}

add_scan_segments multi2 -on_module library_model_name -si_connections SI1 \
-so_connections SO1 -scan_enable SE -clock_pins {CLK} -clock_update_edge {leading}

Common Tool Terminology and Concepts
Test Procedure Files

Tessent™ Scan and ATPG User’s Manual, v2022.4 105

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows how you can define a multi-scan segment cell using tcd_scan:

MultiBitModule(<module_name>) {
 tessent_tool_version : version_number;
 tessent_meta_version : version_number;
 Scan {
 type : internal;
 ScanEn(SE) {
 active_polarity : all_ones;
 }
 ScanChain {
 length : 1;
 scan_in_clock : CLK;
 scan_out_clock : CLK;
 scan_in_port : SI0;
 scan_out_port : SO0;
 }
 ScanChain {
 length : 2;
 scan_in_clock : CLK;
 scan_out_clock : CLK;
 scan_in_port : SI1;
 scan_out_port : SO1;
 }
 Clock(CLK) {
 off_state : all_zeros;
 }
 }

Note
This example tcd_scan file shows a single (common) scan enable that is defined in the Scan
section. If each segment has a different scan enable, then you should NOT define ScanEn in

the Scan section. Instead, define a unique ScanEn name inside each ScanChain block.

Test Procedure Files
Test procedure files describe, for the ATPG tool, the scan circuitry operation within a design.
Test procedure files contain cycle-based procedures and timing definitions that tell the ATPG
tool how to operate the scan structures within a design.
In order to use the scan circuitry in your design, you must do the following:

• Define the scan circuitry for the tool.

• Create a test procedure file to describe the scan circuitry operation. Tessent Scan can
create test procedure files for you.

• Perform DRC process. This occurs when you exit from setup mode.

Once the scan circuitry operation passes DRC, the ATPG tool processes assume the scan
circuitry works properly.

Tessent™ Scan and ATPG User’s Manual, v2022.4106

Common Tool Terminology and Concepts
Test Procedure Files

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If your design contains scan circuitry, the ATPG tool requires a test procedure file. You must
create one before running ATPG.

For more information about the test procedure file format, see “Test Procedure File” in the
Tessent Shell User’s Manual, which describes the syntax and rules of test procedure files, give
examples for the various types of scan architectures, and outline the checking that determines
whether the circuitry is operating correctly.

Common Tool Terminology and Concepts
Model Flattening

Tessent™ Scan and ATPG User’s Manual, v2022.4 107

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Model Flattening
To work properly, the ATPG tool and Tessent Scan must use their own internal representations
of the design. The tools create these internal design models by flattening the model and
replacing the design cells in the netlist (described in the library) with their own primitives. The
tools flatten the model when you initially attempt to exit setup mode, just prior to design rules
checking. The ATPG tool also provides the create_flat_model command, which enables
flattening of the design model while still in setup mode.
If a flattened model already exists when you exit setup mode, the tools only reflattens the model
if you have since issued commands that would affect the internal representation of the design.
For example, adding or deleting primary inputs, tying signals, and changing the internal faulting
strategy are changes that affect the design model. With these types of changes, the tool must re-
create or re-flatten the design model. If the model is undisturbed, the tool keeps the original
flattened model and does not attempt to reflatten.

For a list of the specific Tessent Scan commands that cause flattening, refer to the
set_system_mode description in the Tessent Shell Reference Manual.

These commands are also useful for this task:

• create_flat_model — Creates a primitive gate simulation representation of the design.

• report_flattener_rules — Displays either a summary of all the flattening rule violations
or the data for a specific violation.

• set_flattener_rule_handling — Specifies how the tool handles flattening violations.

Design Object Naming. 107
The Flattening Process . 108
Simulation Primitives of the Flattened Model . 109

Design Object Naming
Tessent Scan and the ATPG tool use special terminology to describe different objects in the
design hierarchy.
The following list describes the most common:

• Instance — A specific occurrence of a library model or functional block in the design.

• Hierarchical instance — An instance that contains additional instances, gates, or both
underneath it.

• Module — A Verilog functional block (module) that can be repeated multiple times.
Each occurrence of the module is a hierarchical instance.

Tessent™ Scan and ATPG User’s Manual, v2022.4108

Common Tool Terminology and Concepts
The Flattening Process

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Flattening Process
The flattened model contains only simulation primitives and connectivity, which makes it an
optimal representation for the processes of fault simulation and ATPG.
Figure 3-14 shows an example of circuitry containing an AND-OR-Invert cell and an AND
gate, before flattening.

Figure 3-14. Design Before Flattening

Figure 3-15 shows this same design once it has been flattened.

Figure 3-15. Design After Flattening

After flattening, only naming preserves the design hierarchy; that is, the flattened netlist
maintains the hierarchy through instance naming. Figures 3-14 and 3-15 show this hierarchy
preservation. “/Top” is the name of the hierarchy’s top level. The simulation primitives (two
AND gates and a NOR gate) represent the flattened instance AOI1 within /Top. Each of these
flattened gates retains the original design hierarchy in its naming—in this case, “/Top/AOI1”.

Common Tool Terminology and Concepts
Simulation Primitives of the Flattened Model

Tessent™ Scan and ATPG User’s Manual, v2022.4 109

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tools identify pins from the original instances by hierarchical pathnames as well. For
example, “/Top/AOI1/B” in the flattened design specifies input pin B of instance AOI1. This
naming distinguishes it from input pin B of instance AND1, which has the pathname “/Top/
AND1/B”. By default, pins introduced by the flattening process remain unnamed and are not
valid fault sites. If you request gate reporting on one of the flattened gates—the NOR gate, for
example—you see a system-defined pin name shown in quotes. If you want internal faulting in
your library cells, you must specify internal pin names within the library model. The flattening
process then retains these pin names.

In some cases, the design flattening process can appear to introduce new gates into the design.
For example, when flattening decomposes a DFF gate into a DFF simulation primitive, the Q
and Q’ outputs require buffer and inverter gates, respectively. If your design wires together
multiple drivers, flattening would add wire gates or bus gates. Bidirectional pins are another
special case that requires additional gates in the flattened representation.

Simulation Primitives of the Flattened Model
Tessent Scan and the ATPG tool select from a number of simulation primitives when they
create the flattened circuitry. The simulation primitives are multiple-input (zero to four), single-
output gates, except for the RAM, ROM, LA, and DFF primitives.
The following list describes these simulation primitives:

• PI, PO — Primary inputs are gates with no inputs and a single output, while primary
outputs are gates with a single input and no fanout.

• BUF — A single-input gate that passes the value 0, 1, or X through to the output.

• FB_BUF — A single-input gate, similar to the BUF gate, that provides a one iteration
delay in the data evaluation phase of a simulation. The tools use the FB_BUF gate to
break some combinational loops and provide more optimistic behavior than when TIEX
gates are used.

Note
There can be one or more loops in a feedback path. In analysis mode, you can
display the loops with the report_loops command. In setup mode, use

report_feedback_paths.

The default loop handling is simulation-based, with the tools using the FB_BUF to
break the combinational loops. In setup mode, you can change the default with the
set_loop_handling command. Be aware that changes to loop handling have an impact
during the flattening process.

• ZVAL — A single-input gate that acts as a buffer unless Z is the input value. When Z is
the input value, the output is an X. You can modify this behavior with the
set_z_handling command.

Tessent™ Scan and ATPG User’s Manual, v2022.4110

Common Tool Terminology and Concepts
Simulation Primitives of the Flattened Model

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• INV— A single-input gate whose output value is the opposite of the input value. The
INV gate cannot accept a Z input value.

• AND, NAND— Multiple-input gates (two to four) that act as standard AND and NAND
gates.

• OR, NOR— Multiple-input (two to four) gates that act as standard OR and NOR gates.

• XOR, XNOR— 2-input gates that act as XOR and XNOR gates, except that when either
input is X, the output is X.

• MUX — A 2x1 mux gate whose pins are order dependent, as shown in Figure 3-16.

Figure 3-16. 2x1 MUX Example

The sel input is the first defined pin, followed by the first data input and then the second
data input. When sel=0, the output is d1. When sel=1, the output is d2.

• LA, DFF — State elements, whose order dependent inputs include set, reset, and clock/
data pairs, as shown in Figure 3-17.

Figure 3-17. LA, DFF Example

Set and reset lines are always level sensitive, active high signals. DFF clock ports are
edge-triggered while LA clock ports are level sensitive. When set=1, out=1. When
reset=1, out=0. When a clock is active (for example C1=1), the output reflects its
associated data line value (D1). If multiple clocks are active and the data they are trying
to place on the output differs, the output becomes an X.

• TLA, STLA, STFF— Special types of learned gates that act as, and pass the design rule
checks for, transparent latch, sequential transparent latch, or sequential transparent flip-
flop. These gates propagate values without holding state.

• TIE0, TIE1, TIEX, TIEZ— Zero-input, single-output gates that represent the effect of
a signal tied to ground or power, or a pin or state element constrained to a specific value
(0, 1, X, or Z). The rules checker may also determine that state elements exhibit tied
behavior and replace them with the appropriate tie gates.

• TSD, TSH — A 2-input gate that acts as a tri-state driver, as shown in Figure 3-18.

Common Tool Terminology and Concepts
Simulation Primitives of the Flattened Model

Tessent™ Scan and ATPG User’s Manual, v2022.4 111

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-18. TSD, TSH Example

When en=1, out=d. When en=0, out=Z. The data line, d, cannot be a Z. The ATPG tool
uses the TSD gate for the same purpose.

• SW, NMOS— A 2-input gate that acts like a tri-state driver but can also propagate a Z
from input to output. The ATPG tool uses the SW gate uses the NMOS gate for the same
purpose.

• BUS — A multiple-input (up to four) gate whose drivers must include at least one TSD
or SW gate. If you bus more than four tri-state drivers together, the tool creates cascaded
BUS gates. The tool considers the last bus gate in the cascade to be the dominant bus
gate.

• WIRE — a multiple-input gate that differs from a bus in that none of its drivers are
tri-statable.

• PBUS, SWBUS — A 2-input pull bus gate, for use when you combine strong bus and
weak bus signals together, as shown in Figure 3-19.

Figure 3-19. PBUS, SWBUS Example

The strong value always goes to the output, unless the value is a Z, in which case the
weak value propagates to the output. These gates model pull-up and pull-down resistors.
The ATPG tool uses the PBUS gate.

• ZHOLD — A single-input buskeeper gate (see “Bus Keeper Analysis” on page 120 for
more information on buskeepers) associated with a tri-state network that exhibits
sequential behavior. If the input is a binary value, the gate acts as a buffer. If the input
value is a Z, the output depends on the gate’s hold capability. There are three ZHOLD
gate types, each with a different hold capability:

o ZHOLD0 - When the input is a Z, the output is a 0 if its previous state was 0. If its
previous state was a 1, the output is a Z.

Tessent™ Scan and ATPG User’s Manual, v2022.4112

Common Tool Terminology and Concepts
Simulation Primitives of the Flattened Model

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o ZHOLD1 - When the input is a Z, the output is a 1 if its previous state was a 1. If its
previous state was a 0, the output is a Z.

o ZHOLD0,1 - When the input is a Z, the output is a 0 if its previous state was a 0, or
the output is a 1 if its previous state was a 1.

In all three cases, if the previous value is unknown, the output is X.

• RAM, ROM— Multiple-input gates that model the effects of RAM and ROM in the
circuit. RAM and ROM differ from other gates in that they have multiple outputs.

• OUT — Gates that convert the outputs of multiple output gates (such as RAM and ROM
simulation gates) to a single output.

Common Tool Terminology and Concepts
Learning Analysis

Tessent™ Scan and ATPG User’s Manual, v2022.4 113

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Learning Analysis
After design flattening, the ATPG tool performs extensive analysis on the design to learn
behavior that may be useful for intelligent decision making in later processes, such as fault
simulation and ATPG. You have the ability to turn learning analysis off, which may be
desirable if you do not want to perform ATPG during the session.
For more information on turning learning analysis off, refer to the set_static_learning
description in the Tessent Shell Reference Manual.

The ATPG tools perform static learning only once—after flattening. Because pin and ATPG
constraints can change the behavior of the design, static learning does not consider these
constraints. Static learning involves gate-by-gate local simulation to determine information
about the design. The following subsections describe the types of analysis performed during
static learning.

Equivalence Relationships . 113
Logic Behavior . 113
Implied Relationships . 114
Forbidden Relationships . 115
Dominance Relationships . 115

Equivalence Relationships
During this analysis, simulation traces back from the inputs of a multiple-input gate through a
limited number of gates to identify points in the circuit that always have the same values in the
good machine.
Figure 3-20 shows an example of two of these equivalence points within some circuitry.

Figure 3-20. Equivalence Relationship Example

Logic Behavior
During logic behavior analysis, simulation determines a circuit’s functional behavior.

Tessent™ Scan and ATPG User’s Manual, v2022.4114

Common Tool Terminology and Concepts
Implied Relationships

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For example, Figure 3-21 shows some circuitry that, according to the analysis, acts as an
inverter.

Figure 3-21. Example of Learned Logic Behavior

During gate function learning, the tool identifies the circuitry that acts as gate types TIE (tied 0,
1, or X values), BUF (buffer), INV (inverter), XOR (2-input exclusive OR), MUX (single select
line, 2-data-line MUX gate), AND (2-input AND), and OR (2-input OR). For AND and OR
function checking, the tool checks for busses acting as 2-input AND or OR gates. The tool then
reports the learned logic gate function information with the messages:

Learned gate functions: #<gatetype>=<number> ...
Learned tied gates: #<gatetype>=<number> ...

If the analysis process yields no information for a particular category, it does not issue the
corresponding message.

Implied Relationships
This type of analysis consists of contrapositive relation learning, or learning implications, to
determine that one value implies another. This learning analysis simulates nearly every gate in
the design, attempting to learn every relationship possible.
Figure 3-22 shows the implied learning the analysis derives from a piece of circuitry.

Figure 3-22. Example of Implied Relationship Learning

The analysis process can derive a very powerful relationship from this circuitry. If the value of
gate A=1 implies that the value of gate B=1, then B=0 implies A=0. This type of learning
establishes circuit dependencies due to reconvergent fanout and buses, which are the main

Common Tool Terminology and Concepts
Forbidden Relationships

Tessent™ Scan and ATPG User’s Manual, v2022.4 115

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

obstacles for ATPG. Thus, implied relationship learning significantly reduces the number of
bad ATPG decisions.

Forbidden Relationships
During forbidden relationship analysis, which is restricted to bus gates, simulation determines
that one gate cannot be at a certain value if another gate is at a certain value.
Figure 3-23 shows an example of such behavior.

Figure 3-23. Forbidden Relationship Example

Dominance Relationships
During dominance relationship analysis, simulation determines which gates are dominators. If
all the fanouts of a gate go to a second gate, the second gate is the dominator of the first.
Figure 3-24 shows an example of this relationship.

Figure 3-24. Dominance Relationship Example

Tessent™ Scan and ATPG User’s Manual, v2022.4116

Common Tool Terminology and Concepts
ATPG Design Rules Checking

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Design Rules Checking
Tessent Scan and the ATPG tool perform design rules checking (DRC) after design flattening.
While not all of the tools perform the exact same checks, design rules checking generally
consists of the following processes, done in the order shown:

General Rules Checking . 116
Procedure Rules Checking . 116
Bus Mutual Exclusivity Analysis . 117
Scan Chain Tracing . 118
Shadow Latch Identification. 118
Data Rules Checking . 119
Transparent Latch Identification. 119
Clock Rules Checking . 120
RAM Rules Checking . 120
Bus Keeper Analysis . 120
Extra Rules Checking . 121
Scannability Rules Checking . 121
Constrained/Forbidden/Block Value Calculations . 121

General Rules Checking
General rules checking searches for very-high-level problems in the information defined for the
design. For example, it checks to ensure the scan circuitry, clock, and RAM definitions all make
sense. General rules violations are errors and you cannot change their handling.
The “General Rules” section in the Tessent Shell Reference Manual describes the general rules
in detail.

Procedure Rules Checking
Procedure rules checking examines the test procedure file. These checks look for parsing or
syntax errors and ensure adherence to each procedure’s rules. Procedure rules violations are
errors and you cannot change their handling.
The “Procedure Rules” section in the Tessent Shell Reference Manual describes the procedure
rules in detail.

Common Tool Terminology and Concepts
Bus Mutual Exclusivity Analysis

Tessent™ Scan and ATPG User’s Manual, v2022.4 117

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Bus Mutual Exclusivity Analysis
Buses in circuitry can cause problems for ATPG. For example, bus contention during ATPG
and stuck-at faults on tri-state bus drivers.

• Bus contention during ATPG

• Testing stuck-at faults on tri-state drivers of buses.

This section addresses the first concern, that ATPG must place buses in a non-contending state.
For information on how to handle testing of tri-state devices, see “Tri-State Devices” on
page 137.

Figure 3-25 shows a bus system that can have contention.

Figure 3-25. Bus Contention Example

Many designs contain buses, but good design practices usually prevent bus contention. As a
check, the learning analysis for buses determines if a contention condition can occur within the
given circuitry. Once learning determines that contention cannot occur, none of the later
processes, such as ATPG, ever check for the condition.

Buses in a Z-state network can be classified as dominant or non-dominant and strong or weak.
Weak buses and pull buses are permitted to have contention. Thus the process only analyzes
strong, dominant buses, examining all drivers of these gates and performing full ATPG analysis
of all combinations of two drivers being forced to opposite values. Figure 3-26 demonstrates
this process on a simple bus system.

Figure 3-26. Bus Contention Analysis

Tessent™ Scan and ATPG User’s Manual, v2022.4118

Common Tool Terminology and Concepts
Scan Chain Tracing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If ATPG analysis determines that either of the two conditions shown can be met, the bus fails
bus mutual-exclusivity checking. Likewise, if the analysis proves the condition is never
possible, the bus passes these checks. A third possibility is that the analysis aborts before it
completes trying all of the possibilities. In this circuit, there are only two drivers, so ATPG
analysis need try only two combinations. However, as the number of drivers increases, the
ATPG analysis effort grows significantly.

You should resolve bus mutual-exclusivity before ATPG. Extra rules E4, E7, E9, E10, E11,
E12, and E13 perform bus analysis and contention checking. Refer to “Extra Rules” in the
Tessent Shell Reference Manual for more information on these bus checking rules.

Scan Chain Tracing
The purpose of scan chain tracing is for the tool to identify the scan cells in the chain and
determine how to use them for control and observe points.
Using the information from the test procedure file (which has already been checked for general
errors during the procedure rules checks) and the defined scan data, the tool identifies the scan
cells in each defined chain and simulates the operation specified by the load_unload procedure
to ensure proper operation. Scan chain tracing takes place during the trace rules checks, which
trace back through the sensitized path from output to input. Successful scan chain tracing
ensures that the tools can use the cells in the chain as control and observe points during ATPG.

Trace rules violations are either errors or warnings, and for most rules you cannot change the
handling. The “Scan Chain Trace Rules” section in the Tessent Shell Reference Manual
describes the trace rules in detail.

Shadow Latch Identification
Shadows are state elements that contain the same data as an associated scan cell element, but do
not lie in the scan chain path. So while these elements are technically non-scan elements, their
identification facilitates the ATPG process. This is because if a shadow element’s content is the
same as the associated element’s content, you always know the shadow’s state at that point.
Thus, a shadow can be used as a control point in the circuit.
If the circuitry permits, you can also make a shadow an observation point by writing a
shadow_observe test procedure. The section entitled “Shadow Element” on page 95 discusses
shadows in more detail.

The DRC process identifies shadow latches under the following conditions:

1. The element must not be part of an already identified scan cell.

Common Tool Terminology and Concepts
Data Rules Checking

Tessent™ Scan and ATPG User’s Manual, v2022.4 119

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Plus any one of the following:

o At the time the clock to the shadow latch is active, there must be a single sensitized
path from the data input of the shadow latch up to the output of a scan latch.
Additionally the final shift pulse must occur at the scan latch no later than the clock
pulse to the shadow latch (strictly before, if the shadow is edge triggered).

o The shadow latch is loaded before the final shift pulse to the scan latch is identified
by tracing back the data input of the shadow latch. In this case, the shadow is a
shadow of the next scan cell closer to scan out than the scan cell identified by
tracing. If there is no scan cell close to scan out, then the sequential element is not a
valid shadow.

o The shadow latch is sensitized to a scan chain input pin during the last shift cycle. In
this case, the shadow latch is a shadow of the scan cell closest to scan in.

Data Rules Checking
Data rules checking ensures the proper transfer of data within the scan chain. Data rules
violations are either errors or warnings, however, you can change the handling.
The “Scan Cell Data Rules” section in the Tessent Shell Reference Manual describes the data
rules in detail.

Transparent Latch Identification
Transparent latches need to be identified because they can propagate values but do not hold
state.
A basic scan pattern contains the following events.

1. Load scan chain

2. Force values on primary inputs

Note
Latch must behave as transparent between events 2 and 3.

3. Measure values on primary outputs

4. Pulse the capture clock

5. Unload the scan chain

Between the PI force and PO measure, the tool constrains all pins and sets all clocks off. Thus,
for a latch to qualify as transparent, the analysis must determine that it can be turned on when
clocks are off and pins are constrained. TLA simulation gates, which rank as combinational,
represent transparent latches.

Tessent™ Scan and ATPG User’s Manual, v2022.4120

Common Tool Terminology and Concepts
Clock Rules Checking

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Rules Checking
After the scan chain trace, clock rules checking is the next most important analysis. Clock rules
checks ensure data stability and capturability in the chain. Clock rules violations are either
errors or warnings, however, you can change the handling.
The “Clock Rules” section in the Tessent Shell Reference Manual describes the clock rules in
detail.

RAM Rules Checking
RAM rules checking ensures consistency with the defined RAM information and the chosen
testing mode. RAM rules violations are all warnings, however, you can change their handling.
The “RAM Rules” section in the Tessent Shell Reference Manual describes the RAM rules in
detail.

Bus Keeper Analysis
Bus keepers model the ability of an undriven bus to retain its previous binary state. You specify
bus keeper modeling with a bus_keeper attribute in the model definition. When you use the
bus_keeper attribute, the tool uses a ZHOLD gate to model the bus keeper behavior during
design flattening.
In this situation, the design’s simulation model becomes that shown in Figure 3-27.

Figure 3-27. Simulation Model With Bus Keeper

Rules checking determines the values of ZHOLD gates when clocks are off, pin constraints are
set, and the gates are connected to clock, write, and read lines. ZHOLD gates connected to
clock, write, and read lines do not retain values unless the clock off-states and constrained pins
result in binary values.

During rules checking, if a design contains ZHOLD gates, messages indicate when ZHOLD
checking begins, the number and type of ZHOLD gates, the number of ZHOLD gates connected

Common Tool Terminology and Concepts
Extra Rules Checking

Tessent™ Scan and ATPG User’s Manual, v2022.4 121

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

to clock, write, and read lines, and the number of ZHOLD gates set to a binary value during the
clock off-state condition.

Note
Only the ATPG tool requires this type of analysis, because of the way it “flattens” or
simulates a number of events in a single operation.

For information on the bus_keeper model attribute, refer to “bus_keeper” in the Tessent Cell
Library Manual.

Extra Rules Checking
Excluding rule E10, which performs bus mutual-exclusivity checking, most extra rules checks
do not have an impact on Tessent Scan and the ATPG tool processes. However, they may be
useful for enforcing certain design rules. By default, most extra rules violations are set to
ignore, which means they are not even checked during DRC. However, you may change the
handling.
For more information, refer to “Extra Rules” in the Tessent Shell Reference Manual for more
information.

Scannability Rules Checking
Each design contains a certain number of memory elements. Tessent Scan examines all these
elements and performs scannability checking on them, which consists mainly of the audits
performed by rules S1, S2, S3, and S4. Scannability rules are all warnings, and you cannot
change their handling, except for the S3 rule.
For more information, refer to “Scannability Rules (S Rules)” in the Tessent Shell Reference
Manual.

Constrained/Forbidden/Block Value Calculations
This analysis determines constrained, forbidden, and blocked circuitry. The checking process
simulates forward from the point of the constrained, forbidden, or blocked circuitry to
determine its effects on other circuitry. This information facilitates downstream processes, such
as ATPG.
Figure 3-28 gives an example of a tie value gate that constrains some surrounding circuitry.

Tessent™ Scan and ATPG User’s Manual, v2022.4122

Common Tool Terminology and Concepts
Constrained/Forbidden/Block Value Calculations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-28. Constrained Values in Circuitry

Figure 3-29 gives an example of a tied gate, and the resulting forbidden values of the
surrounding circuitry.

Figure 3-29. Forbidden Values in Circuitry

Figure 3-30 gives an example of a tied gate that blocks fault effects in the surrounding circuitry.

Figure 3-30. Blocked Values in Circuitry

Common Tool Terminology and Concepts
Clock Terminology

Tessent™ Scan and ATPG User’s Manual, v2022.4 123

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Terminology
The following text discusses clock-related concepts.
Programmable Clock Chopper. 123

Programmable Clock Chopper
A programmable clock chopper is a type of clock controller that shapes the outgoing clock
signal by permitting or suppressing (chopping) specific clock pulses.
The programmable OCC (On-Chip Controller) in Figure 3-31 is a simple example of a clock
chopper. You can program the OCC to generate up to four clock pulses based on an input clock,
and you can also chop out up to four pulses from the output. You would typically program a
clock controller during scan chain loading by loading specific control data into a shift register
that controls a clock gating cell on the output of the OCC. Figure 3-31 shows an example of
this, where each bit in the shift register controls the clock in each of the four cycles.

Figure 3-31. Programmable Clock Chopper

Tessent™ Scan and ATPG User’s Manual, v2022.4124

Common Tool Terminology and Concepts
Programmable Clock Chopper

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 125

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 4
Testability Issues

Testability naturally varies from design to design. Some features and design styles make a
design difficult, if not impossible, to test, while others enhance the testability of a design.
The following subsections discuss these design features and describe their effect on the
testability of a design:

Synchronous Circuitry . 125
Asynchronous Circuitry . 126
Scannability Checking. 126
Support for Special Testability Cases . 128

Feedback Loops . 128
Structural Combinational Loops and Loop-Cutting Methods . 128
Structural Sequential Loops and Handling . 134
Redundant Logic. 135
Asynchronous Sets and Resets . 135
Gated Clocks. 136
Tri-State Devices . 137
Non-Scan Cell Handling . 137
Clock Dividers . 141
Pulse Generators . 142
JTAG-Based Circuits . 143
RAM and ROM Test Overview . 144
Incomplete Designs. 150

Synchronous Circuitry
Using synchronous design practices, you can help ensure that your design is both testable and
manufacturable. In the past, designers used asynchronous design techniques with TTL and
small PAL-based circuits. Today, however, designers can no longer use those techniques
because the organization of most gate arrays and FPGAs necessitates the use of synchronous
logic in their design.
A synchronous circuit operates properly and predictably in all modes of operation, from static
DC up to the maximum clock rate. Inputs to the circuit do not cause the circuit to assume
unknown states. And regardless of the relationship between the clock and input signals, the
circuit avoids improper operation.

Tessent™ Scan and ATPG User’s Manual, v2022.4126

Testability Issues
Asynchronous Circuitry

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Truly synchronous designs are inherently testable designs. You can implement many scan
strategies and run the ATPG process with greater success if you use synchronous design
techniques. Moreover, you can create most designs following these practices with no loss of
speed or functionality.

Synchronous Design Techniques
Your design’s level of synchronicity depends on how closely you observe the following
techniques:

• The system has a minimum number of clocks—optimally only one.

• You register all design inputs and account for metastability. That is, you should treat the
metastability time as another delay in the path. If the propagation delay plus the
metastability time is less than the clock period, the system is synchronous. If it is greater
than or equal to the clock period, you need to add an extra flip-flop to ensure the proper
data enters the circuit.

• No combinational logic drives the set, reset, or clock inputs of the flip-flops.

• No asynchronous signals set or reset the flip-flops.

• Buffers or other delay elements do not delay clock signals.

• Do not use logic to delay signals.

• Do not assume logic delays are longer than routing delays.

If you adhere to these design rules, you are much more likely to produce a design that is
manufacturable and testable, and operates properly over a wide range of temperature, voltage,
and other circuit parameters.

Asynchronous Circuitry
A small percentage of designs need some asynchronous circuitry due to the nature of the
system. Because asynchronous circuitry is often very difficult to test, you should place the
asynchronous portions of your design in one block and isolate it from the rest of the circuitry. In
this way, you can still utilize DFT techniques on the synchronous portions of your design.

Scannability Checking
Tessent Scan performs the scannability checking process on a design’s sequential elements. For
the tool to insert scan circuitry into a design, it must replace existing sequential elements with
their scannable equivalents. Before beginning substitution, the original sequential elements in
the design must pass scannability checks; that is, the tool determines if it can convert sequential
elements to scan elements without additional circuit modifications.

Testability Issues
Scannability Checking

Tessent™ Scan and ATPG User’s Manual, v2022.4 127

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scannable sequential elements pass the following checks:

1. When all clocks are off, all clock inputs (including set and reset inputs) of the sequential
element must be in their inactive state (initial state of a capturing transition). This
prevents disturbance of the scan chain data before application of the test pattern at the
primary input. If the sequential element does not pass this check, its scan values could
become unstable when the test tool applies primary input values. This checking is a
modification of rule C1. For more information on this rule, refer to “C1” in the Tessent
Shell Reference Manual.

2. Each clock input (not including set and reset inputs) of the sequential element must be
capable of capturing data when a single clock primary input goes active while all other
clocks are inactive. This rule ensures that this particular storage element can capture
system data. If the sequential element does not meet this rule, some loss of test coverage
could result. This checking is a modification of rule C7. For more information on this
rule, refer to “C7” in the Tessent Shell Reference Manual.

When a sequential element passes these checks, it becomes a scan candidate, meaning that
Tessent Scan can insert its scan equivalent into the scan chain. However, even if the element
fails to pass one of these checks, it may still be possible to convert the element to scan. In many
cases, you can add additional logic, called “test logic,” to the design to remedy the situation. For
more information on test logic, refer to “Test Logic Insertion” on page 228.

Note
If TIE0 and TIE1 nonscan cells are scannable, they are considered for scan. However, if
these cells are used to hold off sets and resets of other cells so that another cell can be

scannable, you must use the add_nonscan_instances command to make them nonscan.

Scannability Checking of Latches
By default, Tessent Scan performs scannability checking on all flip-flops and latches.

When latches do not pass scannability checks, Tessent Scan considers them non-scan elements
and then classifies them into one of the categories explained in “Non-Scan Cell Handling” on
page 137. However, if you want Tessent Scan to perform transparency checking on the non-
scan latches, you must turn off checking of rule D6 prior to scannability checking. For more
information on this rule, refer to “D6” in the Tessent Shell Reference Manual.

Tessent™ Scan and ATPG User’s Manual, v2022.4128

Testability Issues
Support for Special Testability Cases

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Support for Special Testability Cases
Certain design features can pose design testability problems. Tessent DFT tools can handle
special testability cases.
Each topic in this section describes how the Tessent DFT tools support design testability cases:

Feedback Loops . 128
Structural Combinational Loops and Loop-Cutting Methods . 128
Structural Sequential Loops and Handling. 134
Redundant Logic . 135
Asynchronous Sets and Resets . 135
Gated Clocks . 136
Tri-State Devices . 137
Non-Scan Cell Handling . 137
Clock Dividers . 141
Pulse Generators . 142
JTAG-Based Circuits . 143
RAM and ROM Test Overview . 144
Incomplete Designs . 150

Feedback Loops
Designs containing loop circuitry have inherent testability problems. A structural loop exists
when a design contains a portion of circuitry whose output, in some manner, feeds back to one
of its inputs. A structural combinational loop occurs when the feedback loop, the path from the
output back to the input, passes through only combinational logic. A structural sequential loop
occurs when the feedback path passes through one or more sequential elements.
The ATPG tool and Tessent Scan all provide some common loop analysis and handling.
However, loop treatment can vary depending on the tool. The following subsections discuss the
treatment of structural combinational and structural sequential loops.

Structural Combinational Loops and Loop-Cutting
Methods

Structural combinational loops are hardwired feedback paths in combinational circuits that
make that circuit difficult to test.
Figure 4-1 shows an example of a structural combinational loop. Notice that the A=1, B=0, C=1
state causes unknown (oscillatory) behavior, which poses a testability problem.

Testability Issues
Structural Combinational Loops and Loop-Cutting Methods

Tessent™ Scan and ATPG User’s Manual, v2022.4 129

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-1. Structural Combinational Loop Example

The flattening process, which each tool runs as it attempts to exit setup mode, identifies and
cuts, or breaks, all structural combinational loops. The tools classify and cut each loop using the
appropriate methods for each category.

The following list presents the loop classifications, as well as the loop-cutting methods
established for each. The order of the categories presented indicates the least to most pessimistic
loop cutting solutions.

1. Constant value

This loop cutting method involves those loops blocked by tied logic or pin constraints.
After the initial loop identification, the tools simulate TIE0/TIE1 gates and constrained
inputs. Loops containing constant value gates as a result of this simulation, fall into this
category.

Figure 4-2 shows a loop with a constrained primary input value that blocks the loop’s
feedback effects.

Figure 4-2. Loop Naturally-Blocked by Constant Value

These types of loops lend themselves to the simplest and least pessimistic breaking
procedures. For this class of loops, the tool inserts a TIE-X gate at a non-constrained
input (which lies in the feedback path) of the constant value gate, as Figure 4-3 shows.

Tessent™ Scan and ATPG User’s Manual, v2022.4130

Testability Issues
Structural Combinational Loops and Loop-Cutting Methods

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-3. Cutting Constant Value Loops

This loop cutting technique yields good circuit simulation that always matches the actual
circuit behavior, and thus, the tools employ this technique whenever possible. The tools
can use this loop cutting method for blocked loops containing AND, OR, NAND, and
NOR gates, as well as MUX gates with constrained select lines and tri-state drivers with
constrained enable lines.

2. Single gate with “multiple fanout”

This loop cutting method involves loops containing only a single gate with multiple
fanout.

Figure 4-1 on page 129 shows the circuitry and truth table for a single multiple-fanout
loop. For this class of loops, the tool cuts the loop by inserting a TIE-X gate at one of the
fanouts of this “multiple fanout gate” that lie in the loop path, as Figure 4-4 shows.

Figure 4-4. Cutting Single Multiple-Fanout Loops

3. Gate duplication for multiple gate with multiple fanout

This method involves duplicating some of the loop logic—when it proves practical to do
so. The tools use this method when it can reduce the simulation pessimism caused by
breaking combinational loops with TIE-X gates. The process analyzes a loop, picks a
connection point, duplicates the logic (inserting a TIE-X gate into the copy), and
connects the original circuitry to the copy at the connection point.

Testability Issues
Structural Combinational Loops and Loop-Cutting Methods

Tessent™ Scan and ATPG User’s Manual, v2022.4 131

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-5 shows a simple loop that the tools would target for gate duplication.

Figure 4-5. Loop Candidate for Duplication

Figure 4-6 shows how TIE-X insertion would add some pessimism to the simulation at
output P.

Figure 4-6. TIE-X Insertion Simulation Pessimism

The loop breaking technique proves beneficial in many cases. Figure 4-7 provides a
more accurate simulation model than the direct TIE-X insertion approach.

Tessent™ Scan and ATPG User’s Manual, v2022.4132

Testability Issues
Structural Combinational Loops and Loop-Cutting Methods

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-7. Cutting Loops by Gate Duplication

However, it also has some drawbacks. While less pessimistic than the other approaches
(except breaking constant value loops), the gate duplication process can still introduce
some pessimism into the simulation model.

Additionally, this technique can prove costly in terms of gate count as the loop size
increases. Also, the tools cannot use this method on complex or coupled loops—those
loops that connect with other loops (because gate duplication may create loops as well).

4. Coupling loops

The tools use this technique to break loops when two or more loops share a common
gate. This method involves inserting a TIE-X gate at the input of one of the components
within a loop. The process selects the cut point carefully to ensure the TIE-X gate cuts as
many of the coupled loops as possible.

For example, assume the SR latch shown in Figure 4-5 was part of a larger, more
complex, loop coupling network. In this case, loop circuitry duplication would turn into
an iterative process that would never converge. So, the tools would have to cut the loop
as shown in Figure 4-8.

Testability Issues
Structural Combinational Loops and Loop-Cutting Methods

Tessent™ Scan and ATPG User’s Manual, v2022.4 133

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-8. Cutting Coupling Loops

The modified truth table shown in Figure 4-8 demonstrates that this method yields the
most pessimistic simulation results of all the loop-cutting methods. Because this is the
most pessimistic solution to the loop cutting problem, the tools only use this technique
when they cannot use any of the previous methods.

ATPG-Specific Combinational Loop Handling Issues
By default, the ATPG tool performs parallel pattern simulation of circuits containing
combinational feedback networks. Control this by using the set_loop_handling command.

A learning process identifies feedback networks after flattening, and the feedback network uses
an iterative simulation. For an iterative simulation, the ATPG tool inserts FB_BUF gates to
break the combinational loops.

The ATPG tool also has the ability to insert TIE-X gates to break the combinational loops. The
gate duplication option reduces the impact that a TIE-X gate places on the circuit to break
combinational loops. By default, this duplication switch is off.

Tessent Scan-Specific Combinational Loop Handling Issues
Tessent Scan identifies combinational loops during flattening. By default, it performs TIE-X
insertion using the methods specified in “Structural Combinational Loops and Loop-Cutting
Methods” on page 128 to break all loops detected by the initial loop analysis. You can turn loop
duplication off using the “set_loop_handling -duplication off” command.

You can report on loops using the report_loops or the report_feedback_paths commands. While
both involved with loop reporting, these commands behave somewhat differently. You can
write all identified structural combinational loops to a file using the write_loops command.

You can use the loop information Tessent Scan provides to handle each loop in the most
desirable way. For example, assuming you wanted to improve the test coverage for a coupling

Tessent™ Scan and ATPG User’s Manual, v2022.4134

Testability Issues
Structural Sequential Loops and Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

loop, you could use the add_control_points/add_observe_points commands within Tessent Scan
to insert a test point to control or observe values at a certain location within the loop.

Structural Sequential Loops and Handling
Sequential feedback loops occur when the output of a latch or flip-flop feeds back to one of its
inputs, either directly or through some other logic.
Figure 4-9 shows an example of a structural sequential feedback loop.

Figure 4-9. Sequential Feedback Loop

Note
The tools model RAM and ROM gates as combinational gates, and thus, they consider loops
involving only combinational gates and RAMs (or ROMs) as combinational loops–not

sequential loops.

The following sections provide tool-specific issues regarding sequential loop handling.

ATPG-Specific Sequential Loop Handling
While the ATPG tool can suffer some loss of test coverage due to sequential loops, these loops
do not cause the tool the extensive problems that combinational loops do. By its very nature, the
ATPG tool re-models the non-scan sequential elements in the design using the simulation
primitives described in “ATPG Handling of Non-Scan Cells” on page 137. Each of these
primitives, when inserted, automatically breaks the loops in some manner.

Within the ATPG tool, sequential loops typically trigger C3 and C4 design rules violations.
When one sequential element (a source gate) feeds a value to another sequential element (a sink
gate), the tool simulates old data at the sink. For more information on the C3 and C4 rules, refer
to “Clock Rules” in the Tessent Shell Reference Manual.

Testability Issues
Redundant Logic

Tessent™ Scan and ATPG User’s Manual, v2022.4 135

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Redundant Logic
In most cases, you should avoid using redundant logic because a circuit with redundant logic
poses testability problems. First, classifying redundant faults takes a great deal of analysis
effort.
Additionally, redundant faults, by their nature, are untestable and therefore lower your fault
coverage. Figure 2-17 on page 79 gives an example of redundant circuitry.

Some circuitry requires redundant logic; for example, circuitry to eliminate race conditions or
circuitry that builds high reliability into the design. In these cases, you should add test points to
remove redundancy during the testing process.

Asynchronous Sets and Resets
Scannability checking treats sequential elements driven by uncontrollable set and reset lines as
unscannable. You can remedy this situation in one of two ways: you can add test logic to make
the signals controllable, or you can use initialization patterns during test to control these
internally-generated signals. Tessent Scan provides capabilities to aid you in both solutions.
Figure 4-10 shows a situation with an asynchronous reset line and the test logic added to control
the asynchronous reset line.

Figure 4-10. Test Logic Added to Control Asynchronous Reset

In this example, Tessent Scan adds an OR gate that uses the test_mode (not scan_enable) signal
to keep the reset of flip-flop B inactive during the testing process. You would then constrain the
test_mode signal to be a 1, so flip-flop B could never be reset during testing. To insert this type
of test logic, you can use the Tessent Scan command set_test_logic (see “Test Logic Insertion”
on page 228 for more information).

Tessent™ Scan and ATPG User’s Manual, v2022.4136

Testability Issues
Gated Clocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Scan also enables you to specify an initialization sequence in the test procedure file to
avoid the use of this additional test logic. For additional information, refer to the
add_scan_groups description in the Tessent Shell Reference Manual.

Gated Clocks
Primary inputs typically cannot control the gated clock signals of sequential devices. In order to
make some of these sequential elements scannable, you may need to add test logic to modify
their clock circuitry.
For example, Figure 4-11 shows an example of a clock that requires some test logic to control it
during test mode.

Figure 4-11. Test Logic Added to Control Gated Clock

In this example, Tessent Scan makes the element scannable by adding a test clock, for both scan
loading/unloading and data capture, and multiplexing it with the original clock signal. It also
adds a signal called test_mode to control the added multiplexer. The test_mode signal differs
from the scan_mode or scan_enable signals in that it is active during the entire duration of the
test—not just during scan chain loading/unloading. To add this type of test logic into your
design, you can use the set_test_logic and set_scan_signals commands

Testability Issues
Tri-State Devices

Tessent™ Scan and ATPG User’s Manual, v2022.4 137

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tri-State Devices
Tri-state™ buses are another testability challenge. Faults on tri-state bus enables can cause one
of two problems: bus contention, which means there is more than one active driver, or bus float,
which means there is no active driver. Either of these conditions can cause unpredictable logic
values on the bus, which permits the enable line fault to go undetected.
Figure 4-12 shows a tri-state bus with bus contention caused by a stuck-at-1 fault.

Figure 4-12. Tri-State Bus Contention

Tessent Scan can add gating logic that turns off the tri-state devices during scan chain shifting.
The tool gates the tri-state device enable lines with the scan_enable signal so they are inactive
and thus prevent bus contention during scan data shifting. To insert this type of gating logic, you
can use the Tessent Scan command set_tristate_gating (see “Test Logic Insertion” on page 228
for more information).

In addition, the ATPG tool lets you specify the fault effect of bus contention on tri-state nets.
This capability increases the testability of the enable line of the tri-state drivers. Refer to the
set_net_dominance description in the Tessent Shell Reference Manual for details.

Non-Scan Cell Handling
During rules checking and learning analysis, the ATPG tool learns the behavior of all state
elements that are not part of the scan circuitry. This learning involves how the non-scan element
behaves after the scan loading operation. As a result of the learning analysis, the ATPG tool
categorizes each of the non-scan cells.

ATPG Handling of Non-Scan Cells
The ATPG tool places non-scan cells in one of the following categories:

• TIEX — In this category, the ATPG tool considers the output of a flip-flop or latch to
always be an X value during test. This condition may prevent the detection of a number
of faults.

Tessent™ Scan and ATPG User’s Manual, v2022.4138

Testability Issues
Non-Scan Cell Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• TIE0 — In this category, the ATPG tool considers the output of a flip-flop or latch to
always be a 0 value during test. This condition may prevent the detection of a number of
faults.

• TIE1 — In this category, the ATPG tool considers the output of a flip-flop or latch to
always be a 1 value during test. This condition may prevent the detection of a number of
faults.

• Transparent (combinational) — In this category, the non-scan cell is a latch, and the
latch behaves transparently. When a latch behaves transparently, it acts, in effect, as a
buffer—passing the data input value to the data output. The TLA simulation gate models
this behavior. Figure 4-13 shows the point at which the latch must exhibit transparent
behavior.

Figure 4-13. Requirement for Combinationally Transparent Latches

Transparency occurs if the clock input of the latch is inactive during the time between
the force of the primary inputs and the measure of the primary outputs. If you set up
your latch to behave transparently, you should not experience any significant fault
detection problems (except for faults on the clock, set, and reset lines). However, only in
limited cases do non-scan cells truly behave transparently. For the tool to consider the
latch transparent, it must meet the following conditions:

o The latch must not create a potential feedback path, unless the path is broken by scan
cells or non-scan cells (other than transparent latches).

o The latch must have a path that propagates to an observable point.

o The latch must be able to pass a data value to the output when all clocks are off.

o The latch must have clock, set, and reset signals that can be set to a determined
value.

For more information on the transparent latch checking procedure, refer to “D6” in the
Tessent Shell Reference Manual.

• Sequential transparent — Sequential transparency extends the notion of transparency
to include non-scan elements that can be forced to behave transparently at the same
point in which natural transparency occurs. In this case, the non-scan element can be
either a flip-flop, a latch, or a RAM read port. A non-scan cell behaves as sequentially

Testability Issues
Non-Scan Cell Handling

Tessent™ Scan and ATPG User’s Manual, v2022.4 139

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

transparent if, given a sequence of events, it can capture a value and pass this value to its
output, without disturbing critical scan cells.

Sequential transparent handling of non-scan cells lets you describe the events that place
the non-scan cell in transparent mode. You do this by specifying a procedure, called
seq_transparent, in your test procedure file. This procedure contains the events
necessary to create transparent behavior of the non-scan cell(s). After the tool loads the
scan chain, forces the primary inputs, and forces all clocks off, the seq_transparent
procedure pulses the clocks of all the non-scan cells or performs other specified events
to pass data through the cell “transparently”.

Figure 4-14 shows an example of a scan design with a non-scan element that is a
candidate for sequential transparency.

Figure 4-14. Example of Sequential Transparency

The DFF shown in Figure 4-14 behaves sequentially transparent when the tool pulses its
clock input, clock2. The sequential transparent procedure shows the events that enable
transparent behavior.

Note
To be compatible with combinational ATPG, the value on the data input line of the
non-scan cell must have combinational behavior, as depicted by the combinational

Region 1. Also, the output of the state element, in order to be useful for ATPG, must
propagate to an observable point.

Benefits of sequential transparent handling include more flexibility of use compared to
transparent handling, and the ability to use this technique for creating “structured partial
scan” (to minimize area overhead while still obtaining predictable high test coverage).
Also, the notion of sequential transparency supports the design practice of using a cell
called a transparent remote. A transparent remote is a non-scan latch that uses the
remote clock to capture its data. Additionally, you can define and use up to 32 different,
uniquely-named seq_transparent procedures in your test procedure file to handle the
various types of non-scan cell circuitry in your design.

Rules checking determines if non-scan cells qualify for sequential transparency via these
procedures. Specifically, the cells must satisfy rules P5, P6, P41, P44, P45, P46, D3, and

Tessent™ Scan and ATPG User’s Manual, v2022.4140

Testability Issues
Non-Scan Cell Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

D9. For more information on these rules, refer to “Design Rule Checking” in the Tessent
Shell Reference Manual. Clock rules checking treats sequential transparent elements the
same as scan cells.

Limitations of sequential transparent cell handling include the following:

o Impaired ability to detect AC defects (transition fault type causes sequential
transparent elements to appear as tie-X gates).

o Cannot make non-scan cells clocked by scan cells sequentially transparent without
“condition” statements.

o Limited usability of the sequential transparent procedure if applying it disturbs the
scan cells (contents of scan cells change during the seq_transparent procedure).

o Feedback paths to non-scan cells, unless broken by scan cells, prevent treating the
non-scan cells as sequentially transparent.

• Clock sequential — If a non-scan cell obeys the standard scan clock rules—that is, if
the cell holds its value with all clocks off—the tool treats it as a clock sequential cell. In
this case, after the tool loads the scan chains, it forces the primary inputs and pulses the
clock/write/read lines multiple times (based on the sequential depth of the non-scan
cells) to set up the conditions for a test. A normal observe cycle then follows.
Figure 4-15 shows a clock sequential scan pattern.

Figure 4-15. Clocked Sequential Scan Pattern Events

This technique of repeating the primary input force and clock pulse enables the tool to
keep track of new values on scan cells and within feedback paths.

When DRC performs scan cell checking, it also checks non-scan cells. When the
checking process completes, the rules checker issues a message indicating the number of
non-scan cells that qualify for clock sequential handling.

You instruct the tool to use clock sequential handling by selecting the -Sequential option
to the set_pattern_type command. During test generation, the tool generates test patterns
for target faults by first attempting combinational, and then RAM sequential techniques.

Testability Issues
Clock Dividers

Tessent™ Scan and ATPG User’s Manual, v2022.4 141

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If unsuccessful with these techniques, the tool performs clock sequential test generation
if you specify a non-zero sequential depth.

Note
Setting the -Sequential switch to either 0 (the default) or 1 results in patterns with a
maximum sequential depth of one, but the tool creates clock sequential patterns only

if the setting is 1 or higher.

To report on clock sequential cells, you use the report_nonscan_cells command. For
more information on setting up and reporting on clock sequential test generation, refer to
the set_pattern_type and report_nonscan_cells descriptions in the Tessent Shell
Reference Manual.

Limitations of clock sequential non-scan cell handling include:

o The maximum permissible sequential depth is 255 (a typical depth would range from
2 to 5).

o Copy and shadow cells cannot behave sequentially.

o The tool cannot detect faults on clock/set/reset lines.

o You cannot use the read-only mode of RAM testing with clock sequential pattern
generation.

o The tool simulates cells that capture data on a trailing clock edge (when data changes
on the leading edge) using the original values on the data inputs.

o Non-scan cells that maintain a constant value after load_unload simulation are
treated as tied latches.

o This type of testing has high memory and performance costs.

Clock Dividers
Some designs contain uncontrollable clock circuitry; that is, internally-generated signals that
can clock, set, or reset flip-flops. If these signals remain uncontrollable, Tessent Scan does not
consider the sequential elements controlled by these signals “scannable”. Consequently, they
could disturb sequential elements during scan shifting. Thus, the system cannot convert these
elements to scan.
Figure 4-16 shows an example of a sequential element (B) driven by a clock divider signal and
with the appropriate circuitry added to control the divided clock signal.

Tessent™ Scan and ATPG User’s Manual, v2022.4142

Testability Issues
Pulse Generators

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-16. Clock Divider

Tessent Scan can assist you in modifying your circuit for maximum controllability (and thus,
maximum scannability of sequential elements) by inserting special circuitry, called “test logic,”
at these nodes when necessary. Tessent Scan typically gates the uncontrollable circuitry with
chip-level test pins. In the case of uncontrollable clocks, Tessent Scan adds a MUX controlled
by the test_clk and test_en signals.

For more information on test logic, refer to “Test Logic Insertion” on page 228.

Pulse Generators
A pulse generator is circuitry that creates a pulse at its output when active.
Figure 4-17 gives an example of pulse generator circuitry.

Figure 4-17. Example Pulse Generator Circuitry

When designers use this circuitry in clock paths, there is no way to create a stable on state.
Without a stable on state, the fault simulator and test generator have no way to capture data into
the scan cells. Pulse generators also find use in write control circuitry, a use that impedes RAM
testing.

By default, the ATPG tool identifies the reconvergent pulse generator sink (PGS) gates, or
simply “pulse generators”, during the learning process. For the tools to provide support, a
“pulse generator” must satisfy the following requirements:

• The “pulse generator” gate must have a connection (at C in Figure 4-17) to a clock input
of a memory element or a write line of a RAM.

Testability Issues
JTAG-Based Circuits

Tessent™ Scan and ATPG User’s Manual, v2022.4 143

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The “pulse generator” gate must be an AND, NAND, OR, or NOR gate.

• Two inputs of the “pulse generator” gate must come from one reconvergent source gate.

• The two reconvergent paths may only contain inverters and buffers.

• There must be an inversion difference in the two reconvergent paths.

• The two paths must have different lengths (propagation times).

• In the long path, the inverter or buffer that connects to the “pulse generator” input must
only go to gates of the same gate type as shown in (a) in Figure 4-18. A fanout to gates
of different types as in (b) in the figure is not supported. The tools model this input gate
as tied to the non-controlling value of the “pulse generator” gate (TIE1 for AND and
NAND gates, TIE0 for OR and NOR gates).

Figure 4-18. Long Path Input Gate Must Go to Gates of the Same Type

Rules checking includes some checking for “pulse generator” gates. Specifically, Trace rules
#16 and #17 check to ensure proper usage of “pulse generator” gates. Refer to “T16” and “T17”
in the Tessent Shell Reference Manual for more details about these rules.

The ATPG tool supports pulse generators with multiple timed outputs. For detailed information
about this support, refer to “Pulse Generators With User-Defined Timing” in the Tessent Cell
Library Manual.

JTAG-Based Circuits
Boundary scan circuitry, as defined by IEEE standard 1149.1, can result in a complex
environment for the internal scan structure and the ATPG process. The two main issues with
boundary scan circuitry are 1) connecting the boundary scan circuitry with the internal scan
circuitry, and 2) ensuring that the boundary scan circuitry is set up properly during ATPG.

Tessent™ Scan and ATPG User’s Manual, v2022.4144

Testability Issues
RAM and ROM Test Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RAM and ROM Test Overview
The three basic problems of testing designs that contain RAM and ROM are modeling the
behavior, passing rules checking to enable testing, and detecting faults during ATPG.
The “RAM and ROM” section in the Tessent Cell Library User’s Manual discusses modeling
RAM and ROM behavior. The “RAM Rules” section in the Tessent Shell Reference Manual
discusses RAM rules checking. This section primarily discusses the techniques for detecting
faults in circuits with RAM and ROM during ATPG. The “RAM Summary Results and Test
Capability” section of the Tessent Shell Reference Manual discusses displayed DRC summary
results upon completion of RAM rules checking.

The ATPG tool does not test the internals of the RAM/ROM, although MacroTest (separately
licensed but available in the ATPG tool) lets you create tests for small memories such as register
files by converting a functional test sequence or algorithm into a sequence of scan tests. For
large memories, built-in test structures within the chip itself are the best methods of testing the
internal RAM or ROM.

However, the ATPG tool needs to model the behavior of the RAM/ROM so that tests can be
generated for the logic on either side of the embedded memory. This enables the tool to generate
tests for the circuitry around the RAM/ROM, as well as the read and write controls, data lines,
and address lines of the RAM/ROM unit itself.

Figure 4-19 shows a typical configuration for a circuit containing embedded RAM.

Figure 4-19. Design With Embedded RAM

ATPG must be able to operate the illustrated RAM to observe faults in logic block A, as well as
to control the values in logic block B to test faults located there. The ATPG tool has unique
strategies for operating the RAMs.

RAM/ROM Support . 145

Testability Issues
RAM and ROM Test Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 145

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RAM/ROM Support Commands . 148
Basic ROM/RAM Rules Checks . 149

RAM/ROM Support
The tool treats a ROM as a strictly combinational gate. Once a ROM is initialized, it is a simple
task to generate tests because the contents of the ROM do not change. Testing RAM however, is
more of a challenge, because of the sequential behavior of writing data to and reading data from
the RAM.
The tool supports the following strategies for propagating fault effects through the RAM:

• Read-only mode — The tool assumes the RAM is initialized prior to scan test and this
initialization must not change during scan. This assumption enables the tool to treat a
RAM as a ROM. As such, there is no requirement to write to the RAM prior to reading,
so the test pattern only performs a read operation. Important considerations for read-
only mode test patterns include the following:

o Read-only testing mode of RAM only tests for faults on data out and read address
lines, just as it would for a ROM. The tool does not test the write port I/O.

o To use read-only mode, the circuit must pass rules A1 and A6.

o Values placed on the RAM are limited to initialized values.

o Random patterns can be useful for all RAM configurations.

o You must define initial values and assume responsibility that those values are
successfully placed on the correct RAM memory cells. The tool does not perform
any audit to verify this is correct, nor do the patterns reflect what needs to be done
for this to occur.

o Because the tester may require excessive time to fully initialize the RAM, it is
permitted to do a partial initialization.

• Pass-through mode — The tool has two separate pass-through testing modes:

o Static pass-through — To detect faults on data input lines, you must write a known
value into some address, read that value from the address, and propagate the effect to
an observation point. In this situation, the tool handles RAM transparently, similar to
the handling of a transparent latch. This requires several simultaneous operations.
The write and read operations are both active and thus writing to and reading from
the same address. While this is a typical RAM operation, it enables testing faults on
the data input and data output lines. It is not adequate for testing faults on read and
write address lines.

o Dynamic pass-through — This testing technique is similar to static pass-through
testing, except one pulse of the write clock performs both the write and read
operation (if the write and read control lines are complementary). While static pass-

Tessent™ Scan and ATPG User’s Manual, v2022.4146

Testability Issues
RAM and ROM Test Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

through testing is comparable to transparent latch handling, dynamic pass-through
testing compares to sequential transparent testing.

• Sequential RAM test mode — This is the recommended approach to RAM testing.
While the previous testing modes provide techniques for detecting some faults, they
treat the RAM operations as combinational. Thus, they are generally inadequate for
generating tests for circuits with embedded RAM. In contrast, this testing mode tries to
separately model all events necessary to test a RAM, which requires modeling
sequential behavior. This enables testing of faults that require detection of multiple
pulses of the write control lines. These faults include RAM address and write control
lines.

RAM sequential testing requires its own specialized pattern type. RAM sequential
patterns consist of one scan pattern with multiple scan chain loads. A typical RAM
sequential pattern contains the events shown in Figure 4-20.

Note
For RAM sequential testing, the RAM’s read_enable/write_enable control(s) can be
generated internally. However, the RAM’s read/write clock should be generated

from a PI. This ensures RAM sequencing is synchronized with the RAM sequential
patterns.

Figure 4-20. RAM Sequential Example

In this example of an address line test, assume that the MSB address line is stuck at 0.
The first write writes data into an address whose MSB is 0 to match the faulty value,

Testability Issues
RAM and ROM Test Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 147

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

such as 0000. The second write operation writes different data into a different address
(the one obtained by complementing the faulty bit). For this example, it writes into
1000. The read operation then reads from the first address, 0000. If the highest order
address bit is stuck-at-0, the 2nd write would have overwritten the original data at
address 0, and faulty circuitry data would be read from that address in the 3rd step.

Another technique that may be useful for detecting faults in circuits with embedded RAM is
clock sequential test generation. It is a more flexible technique, which effectively detects faults
associated with RAM.“Clock Sequential Patterns” on page 327 discusses clock sequential test
generation in more detail.

Common Read and Clock Lines
Ram_sequential simulation supports RAMs whose read line is common with a scan clock. The
tool assumes that the read and capture operation can occur at the same time and that the value
captured into the scan cell is a function of the value read out from the RAM.

If the clock that captures the data from the RAM is the same clock used for reading, the tool
issues a C6 clock rules violation. This indicates that you must set the clock timing so that the
scan cell can successfully capture the newly read data.

If the clock that captures the data from the RAM is not the same clock used for reading, you
likely need to turn on multiple clocks to detect faults. The default “set_clock_restriction On”
command is conservative, so the tool does not permit these patterns, resulting in a loss in test
coverage. If you issue the “set_clock_restriction Off” command, the tool permits these patterns,
but there is a risk of inaccurate simulation results because the simulator does not propagate
captured data effects.

Common Write and Clock Lines
The tool supports common write and clock lines. The following shows the support for common
write and clock lines:

• You can define a pin as both a write control line and a clock if the off-states are the same
value. the tool then displays a warning message indicating that a common write control
and clock has been defined.

• The rules checker issues a C3 clock rule violation if a clock can propagate to a write line
of a RAM, and the corresponding address or data-in lines are connected to scan latches
that have a connection to the same clock.

• The rules checker issues a C3 clock rule violation if a clock can propagate to a read line
of a RAM, and the corresponding address lines are connected to scan latches that have a
connection to the same clock.

• The rules checker issues a C3 clock rule violation if a clock can capture data into a scan
latch that comes from a RAM read port that has input connectivity to latches that have a
connection to the same clock.

Tessent™ Scan and ATPG User’s Manual, v2022.4148

Testability Issues
RAM and ROM Test Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• If you set the simulation mode to Ram_sequential, the rules checker does not issue an
A2 RAM rule violation if a clock is connected to a write input of a RAM. Any clock
connection to any other input (including the read lines) continues to be a violation.

• If a RAM write line is connected to a clock, you cannot use the dynamic pass through
test mode.

• Patterns that use a common clock and write control for writing into a RAM are in the
form of ram_sequential patterns. This requires you to set the simulation mode to
Ram_sequential.

• If you change the value of a common write control and clock line during a test
procedure, you must hold all write, set, and reset inputs of a RAM off. The tool
considers failure to satisfy this condition as an A6 RAM rule violation and disqualifies
the RAM from being tested using read_only and ram_sequential patterns.

RAM/ROM Support Commands
The tool requires certain knowledge about the design prior to test generation. For circuits with
RAM, you must define write controls, and if the RAM has data hold capabilities, you must also
define read controls. Just as you must define clocks so the tool can effectively write scan
patterns, you must also define these control lines so it can effectively write patterns for testing
RAM. And similar to clocks, you must define these signals in setup mode, prior to rules
checking.
The commands in Table 4-1 support testing designs with at least one of RAM or ROM.

Table 4-1. RAM/ROM Commands
Command Name Description
add_read_controls Defines a PI as a read control and specifies its off value.
add_write_controls Defines a PI as a write control and specifies its off value.
create_initialization_
patterns

Creates RAM initialization patterns and places them in the internal
pattern set.

delete_read_controls Removes the read control line definitions from the specified primary
input pins.

delete_write_controls Removes the write control line definitions from the specified primary
input pins.

read_modelfile Initializes the specified RAM or ROM gate using the memory states
contained in the specified modelfile.

report_read_controls Displays all of the currently defined read control lines.
report_write_controls Displays all of the currently defined write control lines.
set_pattern_type Specifies whether the ATPG simulation run uses combinational or

sequential RAM test patterns.

Testability Issues
RAM and ROM Test Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 149

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Basic ROM/RAM Rules Checks
It is important the tool provides basic ROM/RAM rules checks.
The rules checker performs the following audits for RAMs and ROMs:

• The checker reads the RAM/ROM initialization files and checks them for errors. If you
selected random value initialization, the tool gives random values to all RAM and ROM
gates without an initialized file. If there are no initialized RAMs, you cannot use the
read-only test mode. If any ROM is not initialized, an error condition occurs. A ROM
must have an initialization file but it may contain all Xs. Refer to the read_modelfile
description in the Tessent Shell Reference Manual for details on initialization of RAM/
ROM.

• The RAM/ROM instance name given must contain a single RAM or ROM gate. If no
RAM or ROM gate exists in the specified instance, an error condition occurs.

• If you define write control lines and there are no RAM gates in the circuit, an error
condition occurs. To correct this error, delete the write control lines.

• When the write control lines are off, the RAM set and reset inputs must be off and the
write enable inputs of all write ports must be off. You cannot use RAMs that fail this
rule in read-only test mode. If any RAM fails this check, you cannot use dynamic pass-
through. If you defined an initialization file for a RAM that failed this check, an error
condition occurs. To correct this error, properly define all write control lines or use
lineholds (pin constraints).

• A RAM gate must not propagate to another RAM gate. If any RAM fails this check, you
cannot use dynamic pass-through.

• A defined scan clock must not propagate directly (unbroken by scan or non-scan cells)
to a RAM gate. If any RAM fails this check, you cannot use dynamic pass-through.

• The tool checks the write and read control lines for connectivity to the address and data
inputs of all RAM gates. It gives a warning message for all occurrences and if
connectivity fails, there is a risk of race conditions for all pass-through patterns.

• A RAM that uses the edge-triggered attribute must also have the read_off attribute set to
hold. Failure to satisfy this condition results in an error condition when the design
flattening process is complete.

set_ram_initialization Specifies whether to initialize RAM and ROM gates that do not have
initialization files.

write_modelfile Writes all internal states for a RAM or ROM gate into the file that
you specify.

Table 4-1. RAM/ROM Commands (cont.)
Command Name Description

Tessent™ Scan and ATPG User’s Manual, v2022.4150

Testability Issues
Incomplete Designs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• If the RAM rules checking identifies at least one RAM that the tool can test in read-only
mode, it sets the RAM test mode to read-only. Otherwise, if the RAM rules checking
passes all checks, it sets the RAM test mode to dynamic pass-through. If it cannot set the
RAM test mode to read-only or dynamic pass-through, it sets the test mode to static
pass-through.

• A RAM with the read_off attribute set to hold must pass Design Rule A7 (when read
control lines are off, place read inputs at 0). The tool treats RAMs that fail this rule as:

o A TIE-X gate, if the read lines are edge-triggered.

o A read_off value of X, if the read lines are not edge-triggered.

• The read inputs of RAMs that have the read_off attribute set to hold must be at 0 during
all times of all test procedures, except the test_setup procedure.

• The read control lines must be off at time 0 of the load_unload procedure.

• A clock cone stops at read ports of RAMs that have the read_off attribute set to hold,
and the effect cone propagates from its outputs.

For more information on the RAM rules checking process, refer to “RAM Rules” in the Tessent
Shell Reference Manual.

Incomplete Designs
The ATPG tool and Tessent Scan can read incomplete Verilog designs due to their ability to
generate black boxes. The Verilog parser can blackbox any instantiated module or instance that
is not defined in either the ATPG library or the design netlist.
The tool issues a warning message for each blackboxed module similar to the following:

// WARNING: Following modules are undefined:
// ao21
// and02
// Use "add_black_box -auto" to treat these as black boxes.

If the tool instantiates an undefined module, it generates a module declaration based on the
instantiation. If ports are connected by name, the tool uses those port names in the generated
module. If ports are connected by position, the parser generates the port names. Calculating port
directions is problematic and must be done by looking at the other pins on the net connected to
the given instance pin. For each instance pin, if the connected net has a non-Z-producing driver,
the tool considers the generated module port an input, otherwise the port is an output. The tool
never generates inout ports because they cannot be inferred from the other pins on the net.

Modules that are automatically blackboxed default to driving X on their outputs. Faults that
propagate to the black box inputs are classified as ATPG_untestable (AU). To change the
output values driven, refer to the add_black_box description in the Tessent Shell Reference
Manual.

Tessent™ Scan and ATPG User’s Manual, v2022.4 151

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 5
Test Point Analysis and Insertion

Test points are an important feature of the Tessent product portfolio. This chapter introduces
VersaPointTM test point technology and explains how to use Tessent ScanPro or Tessent
LogicBIST to insert test points in your design.

Note
Netlists with nonscan cells already replaced by scan cells must still have scan attributes in
the scan cells. For each cell scan segment (subchain), there must be a scan_in, scan_enable

or scan_enable_inv, and scan_out or scan_out_inv (or both) declared as port attributes on each
scan cell in the netlist.

• You can populate these attributes from the test_cell group of the cell group in the
Liberty file containing those scan cells using the read_liberty command. See “Create
Tessent Insertion Attributes Using Liberty” in the Tessent Cell Library Manual for more
details.

• Alternatively, you can use a regexp in the model_attributes section using the naming
pattern of scan cells for the technology. See the “How to Define a Cell Library” section
in the Tessent Cell Library Manual for more details.

What Are Test Points? . 153
Why You Use Test Points. 153
Control Points and Observe Points . 155

Test Point Insertion Flows . 158
Analyze and Insert Test Points in a Pre-Scan Design. 159
Analyze and Insert Test Points in a Post-Scan Design . 161
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools 166

Test Point Usage Scenarios . 172
Test Points for ATPG Pattern Count Reduction. 173
Test Points for LBIST Test Coverage Improvement . 177
Test Points for Hybrid TK/LBIST Design . 182
Test Points for ATPG Test Coverage Improvement. 184

Test Points Special Topics . 188
Control Point and Observe Point Enable Signal Handling . 188
Test Point Analysis With Multiple Power Domains. 189
Test Point Analysis Multicycle and False Path Handling. 190
Test Point Analysis Critical Path Handling . 192
User-Defined Test Points Handling . 197
Test Point Deletion . 199

Tessent™ Scan and ATPG User’s Manual, v2022.4152

Test Point Analysis and Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Back to Back Command Handling . 200
Static Timing Analysis for Test Points . 200
Test Points and At-Speed Testing. 201
Clock Selection for Test Point Flops . 202
Example of Test Point Insertion With Custom Prefix for Inserted Logic 203
Test Point Sharing. 203

Test Point Analysis and Insertion
What Are Test Points?

Tessent™ Scan and ATPG User’s Manual, v2022.4 153

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

What Are Test Points?
Designs contain a number of internal modes that are difficult to control or observe. This is true
even in designs that are fully scan inserted. By adding special test circuitry called test points to
these locations, it is possible to increase the testability of the design.
For example, Figure 5-1 shows a portion of circuitry with a controllability and observability
problem.

Figure 5-1. Uncontrollable and Unobservable Circuitry

In this example, one input of an OR gate is tied to a 1 - this value may come from a tied primary
input or it may be a learned static value internal to the circuit. This static value blocks the ability
to propagate the faults effects of the second path through this OR gate. Thus, an observe test
point is needed on the second input of the OR gate to improve observation. The tied input also
causes a constant 1 at the output of the OR gate. This means any circuitry downstream from that
output is uncontrollable. The pin at the output of the gate becomes a test point to improve
controllability. Once identification of these points occurs, added circuitry can improve the
controllability and observability problems.

Why You Use Test Points . 153
Control Points and Observe Points . 155

Why You Use Test Points
There are three distinct purposes for using test points, all of which are addressed by Tessent's
VersaPoint test point technology.

• To reduce deterministic pattern counts. In some cases test coverage may also improve,
however improvements are generally minimal.

• To improve test coverage for random pattern resistant faults. Test points are inserted to
improve the probability of random patterns to control a given fault site, observe it, or
both.

Tessent™ Scan and ATPG User’s Manual, v2022.4154

Test Point Analysis and Insertion
Why You Use Test Points

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• To improve coverage of undetected faults during ATPG. ATPG coverage loss may be
due to various factors, including untestable circuitry or aborted faults.

Test Point Analysis and Insertion
Control Points and Observe Points

Tessent™ Scan and ATPG User’s Manual, v2022.4 155

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Control Points and Observe Points
The inserted test points consist of control points and observe points.
Refer to the Control Points and Observe Points sections for details. During test point analysis
and insertion, the tool inserts these test points at gate inputs or outputs—see also "User-Defined
Test Points Handling."

Control Points . 155
Observe Points . 156

Control Points
You can insert two types of control points, AND Control Points or OR Control Points.

• AND Control Points

Figure 5-2. AND Control Point

• OR Control Points

Figure 5-3. OR Control Point

Control points do not change during capture cycles. The AND and OR control points are
mutually exclusive: specifically, the tool does not insert both an AND and an OR control point
on the same net.

Tessent™ Scan and ATPG User’s Manual, v2022.4156

Test Point Analysis and Insertion
Control Points and Observe Points

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Control Point Clocking
The tool looks at all the flops in the fan-out cone of the test point and picks the clock that drives
the largest number of scan flops in the fan-out cone. If no scan flops are found in the fan-out
cone, it picks the clock that drives the largest number of scan flops in the fan-in cone.

Once the tool identifies target clock, the tool again processes the fanout cone and taps the target
clock from the clock port of the scan flop that requires crossing the least number of levels in the
Verilog design hierarchy and is in the same power domain as the test point. Once again, if it
cannot find any scan flops in the fan-out cone, it picks the closest one in the fan-in cone.

In the event that there are no scan flops in either cone, the tool performs a hierarchical search for
a scan cell that is driven by the target clock and is in the same power domain as the test point.

If this fails, the tool checks to see if the clock is an input of the instance where the test point flop
is located. If this fails, it performs the same check for parent instances as long as the parent
instance is still in the correct power domain.

Finally, if everything else fails, it uses the test clock by tapping the source of the test clock
signal (either at the primary input pin, or at the source of the clock signal defined using the
add_clocks command).

Note
Potentially scannable flops are also considered as “scan flops” during the clock selection
analysis. Non-scan flops are ignored during the test point clock selection processing.

Observe Points
The tool inserts observe points in the form of new scan cells at gate outputs to improve the
observability of the netlist. The tool supports both a dedicated scan cell per observation point or
a scan cell shared by multiple observation points. When sharing the new scan cell among
several observation points, the tool inserts an XOR tree.
Figure 5-4 shows an example of two stems connected through an XOR gate and observed with
the same observation point.

Test Point Analysis and Insertion
Control Points and Observe Points

Tessent™ Scan and ATPG User’s Manual, v2022.4 157

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-4. Observe Point Sharing

Observe Point Clocking
The tool looks at all the flops in the fan-in cone of the test point and picks the clock that drives
the largest number of scan flops in the fan-in cone. If no scan flops are found in the fan-in cone,
it picks the clock that drives the largest number of scan flops in the fan-out cone.

Once the tool identifies the target clock, the tool again processes the fan-in cone and taps the
target clock from the clock port of the scan flop that requires crossing the least number of levels
in the Verilog design hierarchy and is in the same power domain as the test point. Once again, if
it cannot find any scan flops in the fan-in cone, it picks the closest one in the fanout cone.

In the event that there are no scan flops in either cone, the tool performs a hierarchical search for
a scan cell that is driven by the target clock and is in the same power domain as the test point.

If this fails, the tool checks to see if the clock is an input of the instance where the test point flop
is located. If this fails, it performs the same check for parent instances as long as the parent
instance is still in the correct power domain.

Finally, if everything else fails, it uses test clock by tapping the source of the test clock signal
(either at the primary input pin, or at the source of the clock signal defined via the add_clocks
command).

Note
Potentially scannable flops are also considered as “scan flops” during the clock selection
analysis. Non-scan flops are ignored during the test point clock selection processing.

Tessent™ Scan and ATPG User’s Manual, v2022.4158

Test Point Analysis and Insertion
Test Point Insertion Flows

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Point Insertion Flows
This section describes the VersaPoint test point insertion flows for pre-scan and post scan
designs.
Figure 5-5 shows the typical design flows for inserting test points in a Pre-scan or Post-scan
gate level netlist.

Figure 5-5. Test Point Analysis & Insertion Starting With a Gate-Level Netlist

Note
Test point analysis and insertion done on a wrapped core may place test points outside of
core isolation, if present.

Analyze and Insert Test Points in a Pre-Scan Design. 159
Analyze and Insert Test Points in a Post-Scan Design . 161
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools 166

How to Insert Test Points for DC or Genus . 166

Test Point Analysis and Insertion
Analyze and Insert Test Points in a Pre-Scan Design

Tessent™ Scan and ATPG User’s Manual, v2022.4 159

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Create a Test Points and OST Scan Insertion Script for DC or Genus 169

Analyze and Insert Test Points in a Pre-Scan
Design

You can analyze and insert test points into a pre-scan design using Tessent Shell.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

 tessent -shell

After invocation, the tool is in unspecified setup mode. You must set the context before
you can invoke the test point insertion commands.

2. Set the tool context to test point analysis using the set_context command as follows:

SETUP> set_context dft -test_points -no_rtl

3. Load the pre-scan gate-level Verilog netlist using the read_verilog command.

SETUP> read_verilog my_netlist.v

4. Load one or more cell libraries into the tool using the read_cell_library command.

SETUP> read_cell_library tessent_cell.lib

5. Set the top level of the design using the set_current_design command.

SETUP> set_current_design

6. Set additional parameters as necessary. Examples include the following: black boxes,
pin constraints, defining clocks, and declaring any additional settings that are required to
pass DRCs to enable the transition to Analysis system mode. This example uses the
assumption that these additional setup constraints are made available in a separate dofile
that you read during this step.

SETUP> dofile set_up_constraints.do

Note
To continue with test point analysis and insertion, the design must pass scan DRC
rules, including S1 and S2 rules. If it is not possible to set up the design to pass all

DRC rules for flattening, it is recommended as part of this setup step that any cells that
produce errors during the system mode transition be defined as non-scan instances to the
tool. You can do this using either of the following two methods:

• If only S1 and S2 rule violations are present — “set_drc_handling S1 Warning”
and “set_drc_handling S2 Warning”.

• If there are other additional cells preventing the system-mode transition —
define those as non-scan by using the add_nonscan_instances command.

Tessent™ Scan and ATPG User’s Manual, v2022.4160

Test Point Analysis and Insertion
Analyze and Insert Test Points in a Pre-Scan Design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. If required, read in the SDC file containing the multicycle and false path information
using the read_sdc command—see Test Point Analysis Multicycle and False Path
Handling.

SETUP> read_sdc sdc_file_name

8. Set the test point type using the set_test_point_type command. This example
demonstrates the usage of the edt_pattern_count option. For other test point types,
please see the set_test_point_types command.

SETUP> set_test_point_type edt_pattern_count

9. The following example specifies the flop type “dflopx2” from the Tessent Cell Library.
This ensures this specific flop type is used as test point flop. If you do not do this, the
Tessent software uses the first defined flop available in the Tessent Cell Library as the
test point flop. See the command add_cell_models for further usage information.

SETUP> add_cell_models dflopx2 -type DFF CK D

10. Change the tool’s system mode to analysis using the set_system_mode command.

SETUP> set_system_mode analysis

During the transition from setup to analysis modes, the tool flattens the netlist and
performs Scannability Rules (S Rules) checking. You must resolve any DRC rule
violations that result in an error before you can move to analysis mode. The
set_test_logic command determines if cells with S-rule DRC violations are converted to
scan cells or remain non-scan. The DRC performed when going to analysis mode helps
the tool to identify potential scan cells that are necessary during test point analysis. The
DRC warnings and errors should be addressed to ensure that the tool identifies all the
potential scan cells in the netlist.

11. This step may be performed in setup or analysis system mode, up to the time you
call analyze_test_points. Set up the test point analysis options using the
set_test_point_analysis_options command. This usage example sets one of the options
that pertains to the above test point type. For an explanation of other test point analysis
options and how they apply to the different test point types, please refer to the command
documentation.

ANALYSIS> set_test_point_analysis_options -total_number 1000

In analysis mode, the tool retains the enabled commands that you set to characterize the
analysis of test points.

12. Display the analysis options you have set. For example, specifying the command
without any arguments shows the default settings within the tool.

ANALYSIS> set_test_point_analysis_options

Test Point Analysis and Insertion
Analyze and Insert Test Points in a Post-Scan Design

Tessent™ Scan and ATPG User’s Manual, v2022.4 161

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// command: set_test_point_analysis_options –total_number 1000
// command: set_test_point_analysis_options
// Maximum Number of Test Points : 1000
// Maximum Number of Control Points : 1000
// Maximum Number of Observe Points : 1000
// Maximum Control Points per Path : 5
// Exclude Cross Domain Paths : off

13. This step may be performed in setup or analysis system mode, up to the time you
call insert_test_logic. Specify the test point insertion options using the
set_test_point_insertion_options command. For example, this step shows how you can
specify to the tool to generate separate enable signals for control and observe points.

ANALYSIS> set_test_point_insertion_options \
-control_point_enable cp_en -observe_point_enable op_en

This example specifies cp_en to be the control_point_enable port. Similarly, it specifies
op_en to be the observe_point_enable port. If either of these ports does not already exist
in the design, then the tool creates the respective port at the root of the design.

14. Perform the test point analysis using the analyze_test_points command:

ANALYSIS> analyze_test_points

You have now generated the test points.

15. Add test points to your design using the insert_test_logic command. Running this
command transitions the tool to INSERTION mode.

ANALYSIS> insert_test_logic

16. If needed, report the test points that have been analyzed and inserted into your design
using the report_test_points command. The file testpoints.txt provides the ordered list of
observe and control test points analyzed for the design.

INSERTION> report_test_points > testpoints.txt

17. Write out the modified design netlist containing the test points using the write_design
command as in the following example:

INSERTION> write_design -output_file my_modified_design.v

18. Write out the dofile containing all the necessary steps for scan insertion using the
write_scan_setup command.

INSERTION> write_scan_setup -prefix scan_setup

Analyze and Insert Test Points in a Post-Scan
Design

You can analyze and insert test points into a post-scan design using Tessent Shell, however, this
flow is not recommended if you are attempting to insert test points into a design with

Tessent™ Scan and ATPG User’s Manual, v2022.4162

Test Point Analysis and Insertion
Analyze and Insert Test Points in a Post-Scan Design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

pre-existing wrapper chains. You can insert test point flops outside of core isolation logic, and
the tool stitches them into separate scan chains as part of the incremental scan insertion step.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell

After invocation, the tool is in unspecified setup mode. You must set the context before
you can invoke the test point insertion commands.

2. Set the tool context to test point analysis using the set_context command as follows:

SETUP> set_context dft -test_points -no_rtl

3. Load the post-scan gate-level Verilog netlist using the read_verilog command.

SETUP> read_verilog my_netlist.v

4. Load one or more cell libraries into the tool using the read_cell_library command.

SETUP> read_cell_library tessent_cell.lib

5. Set the top level of the design using the set_current_design command.

SETUP> set_current_design

6. Load the setup_constraints.dofile, which has all the clock definitions, input constraints,
and other parameters affecting the setup of the design in test mode.

SETUP> dofile set_up_constraints.do

7. If required, read in the SDC file containing the multicycle and false path information
using the read_sdc command — see Test Point Analysis Multicycle and False Path
Handling.

SETUP> read_sdc <sdc_filename>

8. Read in the scan_chains.do file that describes the scan chains that are already stitched in
the design.

SETUP> dofile scan_chains.do

Note
This is a design with pre-existing scan chains. As such, those chains must be defined
to the tool along with associated setup procedures in order to pass scan DRC rules.

The scannability rules S1 and S2 must be error-free in order to successfully make the
system-mode transition into analysis mode. There are cases where a scanned design may
have had specific instances defined as non-scan. Those instances likely fail the S1 and
S2 DRC rules. Those rules can be set to warning using the set_drc_handling command,
and by doing so, those instances are, internally, defined as non-scan.

Test Point Analysis and Insertion
Analyze and Insert Test Points in a Post-Scan Design

Tessent™ Scan and ATPG User’s Manual, v2022.4 163

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

9. Set the test point type using the set_test_point_type command. This example
demonstrates the usage of the lbist_test_coverage option. For other test point types,
please see the set_test_point_types command.

SETUP> set_test_point_type lbist_test_coverage

10. The following example specifies the flop type “dflopx2” from the Tessent Cell Library.
This ensures this specific flop type is used as test point flop. If you do not do this, the
Tessent software uses the first defined flop available in the Tessent Cell Library as the
test point flop. See the command add_cell_models for further usage information.

11. You may perform this step in setup or analysis system mode, up to the time you
call analyze_test_points. Set up the test point analysis options using the
set_test_point_analysis_options command. This usage example sets options that pertain
to the test point type mentioned previously. For an explanation of other test point
analysis options and how they apply to the different test point types, refer to the
command reference page.

SETUP> set_test_point_analysis_options -total_number 2500 \
-test_coverage_target 99.90 –pattern_count_target 10000

12. You may perform this step in setup or analysis system mode, up to the time you
call insert_test_logic. Specify the test point analysis options using the
set_test_point_insertion_options command. For example:

ANALYSIS> set_test_point_insertion_options \
-control_point_enable <cp_en> -observe_point_enable <op_en>

This example specifies cp_en as the control_point_enable port. Similarly, it specifies
op_en as the observe_point enable port. If either of these ports does not already exist in
the design, the tool creates the respective port at the root of the design.

13. Change the tool’s system mode to analysis using the set_system_mode command.

SETUP> set_system_mode analysis

In this case, the tool runs drc to validate that the scan chains specified can be traced
properly.

14. Perform the test point analysis using the analyze_test_points command:

ANALYSIS> analyze_test_points

You have no generated the test points.

15. Add test points to your design using the insert_test_logic command. Running this
command transitions the tool to INSERTION mode.

ANALYSIS> insert_test_logic

16. Report the test points that have been analyzed and inserted into your design using the
report_test_points command. The file testpoints.txt provides the list of observe and
control test points analyzed for the design.

Tessent™ Scan and ATPG User’s Manual, v2022.4164

Test Point Analysis and Insertion
Analyze and Insert Test Points in a Post-Scan Design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

INSERTION> report_test_points > testpoints.txt

17. Write out the modified design netlist containing the test points using the write_design
command as in the following example:

INSERTION> write_design -output scan_design_name_tp_inserted.v

18. Write out a test procedure file and the dofile file for the existing scan chains.

INSERTION> write_scan_setup -prefix <scan_top>

19. Perform incremental scan chain stitching for just the test point flops. The test point flops
must be stitched into scan chains by transitioning into dft -scan context.

INSERTION>set_context dft -scan

20. Start with deleting the current design.

SETUP> delete_design

21. Read in the dofile written out in the previous steps when write_scan_setup was run. This
dofile has the clocks, sets, resets, input constraints and pre-existing scan chains
information from the scan_tp.do file. All the flops in the design are made non-scan and
only the test point flops that need to be stitched into scan chains are added as scannable
elements.

SETUP> dofile scan_top.dofile

22. Change the tool’s system mode to analysis using the set_system_mode command.

SETUP> set_system_mode analysis

23. Incremental scan insertion – adding these new elements into pre-existing chains in the
design – is not supported in Tessent Scan. New chains must be added for the test points
and these chains are added to a new scan mode, separate from other, pre-defined scan
modes. The following set of commands specifies the new mode, analyzes the scan
chains, and finally inserts the new scan chains.

ANALYSIS> add_scan_mode unwrapped_test_points \
-type unwrapped \
-chain_length 500 \
-enable_connections unwrapped_tp_chain_mode

The add_scan_mode command in the previous example performs the following tasks:

• Defines a new scan mode named “unwrapped_test_points” that is independent from
all other scan modes

• Sets the maximum chain length to “500”

• Defines a new top-level enable signal for the enabling of this scan mode.

ANALYSIS> analyze_scan_chains

The analyze_scan_chains command in the previous example analyzes the available,
scannable cells and organizes them into scan chains for insertion. View the defined

Test Point Analysis and Insertion
Analyze and Insert Test Points in a Post-Scan Design

Tessent™ Scan and ATPG User’s Manual, v2022.4 165

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

setup with report_scan_chains; you can change the setup by deleting and re-adding the
scan mode and re-analyzing the scan chains until you run insert_test_logic.

ANALYSIS> insert_test_logic

24. Write out an updated netlist along with the atpg_tp test procedure file and dofile that the
tool uses during pattern generation.

INSERTION> write_design -output scan_design_name_tp.v

INSERTION> write_design <basename> -replace

INSERTION> exit

Tessent™ Scan and ATPG User’s Manual, v2022.4166

Test Point Analysis and Insertion
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Insert Test Points and Perform Scan
Stitching Using Third-Party Tools

You can perform test point analysis with Tessent Shell. The insertion as well as scan chain
stitching of these test points can be done using third-party tools.
After test points are analyzed, write out a report using report_test_points.

ANALYSIS> analyze_test_points

ANALYSIS> report_test_points > test_points.list

The following is a sample report:

The TestPoint Location column specifies where the functional net needs to be intercepted. The
ScanCell Clock column specifies the instance name of the test point flop to be inserted. The
TestPoint Type column specifies what type of test point it is. The ScanCell Clock column
specifies the clock that must be connected to the test point flop.

Refer to “Control Points and Observe Points” for information on how to implement AND
control points, OR control points and observe points.

The test points can be inserted as compressed scan chains connected to the Decompressor and
the Compactor. Siemens EDA recommends that you stitch the test points into their own separate
scan chains for more efficient low power EDT pattern generation.

How to Insert Test Points for DC or Genus . 166
How to Create a Test Points and OST Scan Insertion Script for DC or Genus 169

How to Insert Test Points for DC or Genus
You can use the Tessent Shell script generation feature to generate stitching scripts for test point
insertion for Design Compiler or Genus Synthesis Solution.
The “insert_test_logic -write_insertion_script” command generates a Tcl stitching script that
mirrors the Tessent inserted test points into the DC or Genus environment.

Test Point Analysis and Insertion
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools

Tessent™ Scan and ATPG User’s Manual, v2022.4 167

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example
> set_system_mode analysis
> set_test_point analysis_options -total_number 200
> analyze_test_point
> write_test_point_dofile -output_file generated/output -200.dofile -replace
> insert_test_logic -write_insertion_script dc_stitch_script.tcl -replace

The insert_test_logic command inserts the Tessent analyzed test points into the current design
and generates an equivalent Tcl stitch script to use in a DC shell. You can take the Tcl script and
source it from a DC shell. For example:

dc> source dc_stitch_script.tcl

Note that the DC insertion script contains create_cell DC operations for the instantiation of cell
instances. The create_cell command requires a library name specification that is not known
during script generation time. As such, the generated DC script contains library query
operations to attempt to resolve the cell library name currently loaded in DC shell. If the library
query fails or you want to define the library to use, you can do so using a Tcl variable
specification prior to sourcing the script. For example:

dc> set insertion_cell_library_name myCellLib
dc> source dc_stitch_script.tcl

If your target insertion tool is the Cadence Genus Synthesis Solution, use the following
command:

> insert_test_logic –write_insertion_script genus_stitch_script.tcl –replace –insertion genus

Then, source the Tcl stitch from a Genus shell. For example:

genus> source genus_stitch_script.tcl

Tessent™ Scan and ATPG User’s Manual, v2022.4168

Test Point Analysis and Insertion
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example of a Generated DC Insertion Script output File
#--

File created by: Tessent Shell

Version: 2019.2

Created on: Tue May 7 10:38:40 PDT 2019

#--

#--

Variables

#--

Use insertion_cell_library_name variable if specified

set ts_library_name ""

if { [info exists insertion_cell_library_name] } {

 set ts_library_name $insertion_cell_library_name

}

set ts_path_prefix ""

#--

Utilities Procs

#--

Procedures sourced from

'<tessent_home>/dft_insertion_dc_utility_procedures.tcl':

Prepares a destination pin for connection.

Remove existing net connection if found.

proc ts_prepDestPin { destPin } {

 set destPins [get_pins $destPin]

 if { [sizeof_collection $destPins] } {

 set destNets [get_nets -of_objects $destPins]

 if { [sizeof_collection $destNets] } {

 disconnect_net $destNets $destPins

 }

 }

}

...

Test Point Analysis and Insertion
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools

Tessent™ Scan and ATPG User’s Manual, v2022.4 169

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

#--

Insertion Command Mapping Procs

#--

proc ts_create_port { path port dir } {

 set dirVal ""

 switch -exact -- $dir {

 "input" { set dirVal "in" }

 "output" { set dirVal "out" }

 "inout" { set dirVal "inout" }

 } create_port [ts_hier_path $path $port] -direction $dirVal}

proc ts_delete_port { path port } {

 remove_port [ts_hier_path $path $port]

}

proc ts_insert_instance { path libName cellName instName } {

 global ts_library_name

 if { $ts_library_name eq "" } {

 set cell_libs [get_libs] foreach_in_collection cell_lib $cell_libs {

 set cell_lib_name [get_object_name $cell_lib]

 set lib_cells [get_lib_cells -quiet $cell_lib_name/$cellName]

 if { [sizeof_collection $lib_cells] } {

 create_cell [ts_hier_path $path $instName] $cell_lib_name/$cellName

 break

 }

 }

 } else {

 create_cell [ts_hier_path $path $instName] $ts_library_name/$cellName

 }

}

...

#---

Generated Insertion Operations for Design "sparc"

#--

ts_insert_instance {test_stub/scan_ctls} work SDFF_X1 ts_cp_0sffp1_i

ts_create_port {test_stub/scan_ctls} {ts_clkc0} input

ts_connect_port_to_pin {test_stub/scan_ctls} {ts_clkc0} \

{test_stub/scan_ctls} {ts_cp_0sffp1_i/CK}

ts_connect_constant_net {test_stub/scan_ctls} {1'b0} {ts_cp_0sffp1_i/SE}

ts_connect_constant_net {test_stub/scan_ctls} {1'b0} {ts_cp_0sffp1_i/SI}

How to Create a Test Points and OST Scan Insertion
Script for DC or Genus

You can use the Tessent Shell script generation feature to create insertion scripts for test points
and Observation Scan Technology (OST) scan chains stitching for Design Compiler or Genus™
Synthesis Solution.
This section explains how to create a dofile that generates the insertion scripts.

For more information about OST, see the “Observation Scan Technology” chapter in the Hybrid
TK/LBIST Flow User’s Manual.

Tessent™ Scan and ATPG User’s Manual, v2022.4170

Test Point Analysis and Insertion
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Dofile Considerations
Generating a third-party insertion script in combined “dft -scan -test_points” context requires
you to run a dofile similar to the Dofile Example. When creating your dofile, keep in mind the
following:

• When generating an insertion script in “dft -scan -test_points” context, you can only
insert test points, and optionally, stitch the OST scan chain. You cannot use the
analyze_xbounding and analyze_wrapper_cells commands.

• Neither non-OST Test Points or other sequential elements are part of scan chains created
using the generated script. You must use a third-party scan insertion tool to prepare
regular scan chains in your design. Tessent Shell automatically limits the scan element
population to OST scan cells. The S8 DRC rule automatically downgrades to Warning
because no OCC is part of created scan chains.

• Use of set_test_logic, set_bidi_gating, and set_tristate_gating commands is allowed but
does not result in respective test logic insertion. In other words, the created insertion
script does not contain logic fixes requested by specifying those commands. You must
make sure that the third-party tool implements the logic fixes when performing scan
stitching.

After you have run the dofile, you can run the insertion script as documented in “How to Insert
Test Points for DC or Genus” on page 166.

Dofile Example
The following dofile shows how to generate a simple test point insertion and optional scan
insertion script.

// Set the context for both test point insertion and scan insertion.
set_context dft -test_points -scan -no_rtl
set_tsdb_output_directory tsdb_outdir

read_verilog piccpu_gate.v
read_cell_library ../tessent/adk.tcelllib ../data/picdram.atpglib
read_cell_library ../libs/mgc_cp.lib
read_design piccpu -design_id rtl -no_hdl
set_current_design

// Optionally, activate OST mode.
set_test_point_analysis_options -capture_per_cycle_observe_points on
set_test_point_analysis_options -minimum_shift_length 50

// Specify the third-party tool for which to target the script.
set_insert_test_logic_options -generate_third_party_script dc
set_test_point_type lbist_test_coverage

set_system_mode analysis

Test Point Analysis and Insertion
How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools

Tessent™ Scan and ATPG User’s Manual, v2022.4 171

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_test_point_analysis -pattern_count_target 10 \
-test_coverage_target 99.9 -total_number 10

analyze_test_points

// Optionally, and only if the tool identifies OST test points, use these
// commands to create the OST scan chains of desired length and count.
// Attach OST chains to buffers or primary inputs to later connect them to
// the EDT block with other chains in the third-party scan insertion tool.
create_scan_chain_family obs_scan -include_elements \

[get_scan_elements -of_test_points [get_test_points -type observe]]
add_scan_mode OST_chains -si_connections ost_si_buf/Y -so_connections \

ost_so_buf/A -include_chain_families obs_scan
analyze_scan_chains

// Use this command once for both test points and scan chains. If you also
// use -write_in_tsdb on, the tool also writes the script in TSDB.
insert_test_logic -write_insertion_script piccpu_dc.tcl -replace

Tessent™ Scan and ATPG User’s Manual, v2022.4172

Test Point Analysis and Insertion
Test Point Usage Scenarios

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Point Usage Scenarios
There are four distinct purposes for using test points. This section describes these purposes in
further detail.
Test Points for ATPG Pattern Count Reduction . 173

Test Points for Reducing Pattern Count . 174
Requirements for Test Point Analysis and Insertion . 174
Specify Test Point Type . 174
Inserting Test Points When Using the EDT Skeleton IP Flow. 176

Test Points for LBIST Test Coverage Improvement . 177
Test Point Analysis and Insertion Step Overview . 177
Test Point Analysis With Small LBIST Pattern Counts . 178
Test Coverage Reporting During Test Point Analysis for LogicBIST Coverage Improvement
179

Test Points for Hybrid TK/LBIST Design. 182
Improving Test Coverage and Pattern Count Reduction . 182

Test Points for ATPG Test Coverage Improvement . 184
Test Points for Improving the Test Coverage of Deterministic Patterns 184

Test Point Analysis and Insertion
Test Points for ATPG Pattern Count Reduction

Tessent™ Scan and ATPG User’s Manual, v2022.4 173

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Points for ATPG Pattern Count Reduction
You can use test points in your design to improve compression and test coverage.
Figure 5-5 shows the typical design flows for inserting test points in a Pre-scan or Post-scan
gate level netlist.

Test Points for Reducing Pattern Count . 174
Requirements for Test Point Analysis and Insertion . 174
Specify Test Point Type. 174
Inserting Test Points When Using the EDT Skeleton IP Flow . 176

Tessent™ Scan and ATPG User’s Manual, v2022.4174

Test Point Analysis and Insertion
Test Points for ATPG Pattern Count Reduction

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Points for Reducing Pattern Count
The test points are targeted primarily to reduce the EDT pattern counts. The test points may
improve test coverage as well but the impact may be minimal.
You must first analyze and insert test points into the netlist to achieve reduction in pattern
count, hence improving compression. Either a pre-scan design or post-scan stitched netlist can
be used.

Note
You generate and insert the test points as a separate step from scan insertion — you cannot
perform the two operations at the same time, although they can be done sequentially with a

single invocation of the tool.

After test point analysis has been completed, you can report the number of test points you ant
and can also insert them into the design. The modified netlist with the test points already
inserted and the dofile containing all the necessary information for the next steps of the design
flow can be written out.

Requirements for Test Point Analysis and Insertion
Performing test point analysis and insertion has certain requirements.
You must adhere to the following:

• Test point insertion needs a gate-level Verilog netlist and a Tessent Cell Library.

• You can read in functional SDC so the tool omits adding any test points to multicycle
paths or false paths—see the read_sdc command.

• The tool identifies potential scan candidates for correct controllability/observability
analysis. To ensure that eventual non-scan cells are not used as the destination for
observe points or source for control points, you should declare all the non-scan memory
elements during test point insertion using the add_nonscan_instances command.

• You should define black boxes using the add_black_boxes command so that test point
analysis can incorporate this information.

• If you are performing test point analysis on a pre-scan netlist that has unconnected clock
gaters, you should add the “set_clock_gating on” command to your dofile.

Specify Test Point Type
By default the tool generates test points that are specifically targeted to reducing deterministic
pattern count.You can specify the test point type.

Test Point Analysis and Insertion
Test Points for ATPG Pattern Count Reduction

Tessent™ Scan and ATPG User’s Manual, v2022.4 175

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• The tool must be in SETUP mode to specify the test point type.

Procedure
set_test_point_type edt_pattern_count

Results
The tool inserts test points to improve EDT pattern count. For more information regarding the
command, refer to the command description for set_test_point_types.

Tessent™ Scan and ATPG User’s Manual, v2022.4176

Test Point Analysis and Insertion
Test Points for ATPG Pattern Count Reduction

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Inserting Test Points When Using the EDT Skeleton IP
Flow

The EDT skeleton flow is unique in that you create the EDT IP before having a proper netlist.
This means that the tool makes certain estimates, including the chain length and chain count.
When you create the EDT skeleton IP, it is important to account for test points if they are to be
used. That means that you must account for the total number of test points in the estimates for
chain length and chain count when creating the skeleton netlist.

After you have created skeleton IP and inserted it into the netlist, follow either the pre- or post-
scan test point insertion flow. See “Analyze and Insert Test Points in a Pre-Scan Design” on
page 159 or “Analyze and Insert Test Points in a Post-Scan Design” on page 161.The most
important aspect to having EDT IP pre-existing in the netlist is that you must ensure that the test
points are not inserted into the EDT IP. Accomplish this by issuing a command similar to the
following in Analysis system mode:

catch_output { add_notest_points [get_instances -of_module [get_module *_edt_*]] }

Once the Verilog gate-level netlist is available, you can insert test points on the pre-scan
inserted netlist or post-scan inserted netlist as shown in Figure 5-5 on page 158.

Test Point Analysis and Insertion
Test Points for LBIST Test Coverage Improvement

Tessent™ Scan and ATPG User’s Manual, v2022.4 177

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Points for LBIST Test Coverage Improvement
You can use test points to improve test coverage for random pattern resistant faults.
Test Point Analysis and Insertion Step Overview. 177
Test Point Analysis With Small LBIST Pattern Counts . 178
Test Coverage Reporting During Test Point Analysis for LogicBIST Coverage
Improvement . 179

Incremental Relevant Test Coverage Report . 179
False Paths and Test Coverage . 179
Fault Classes and Fault Analysis . 180
“Blocked by xbounding” Faults . 180
Uncontrollable/Unobservable Faults . 180
Example Test Report . 180

Test Point Analysis and Insertion Step Overview
In the test point analysis and insertion step of the hybrid TK/LBIST flow, you generate and
insert test points into the netlist to achieve high test coverage.
During test point analysis and insertion, you add random pattern test points to certain locations
in your design. By adding these test points, you can increase the testability of the design by
improving controllability or observability.

Figure 5-5 illustrates this step.

Note
You generate and insert the test points as a separate step from scan insertion—you cannot
perform the two operations together.

At the conclusion of test point analysis and insertion, you write out both the modified design
netlist containing the test points and a dofile containing all the necessary steps for the next step
of the flow, Scan Insertion and X-Bounding.

Requirements
Performing test point analysis and insertion has certain requirements. You must adhere to the
following:

• Test point insertion needs a gate-level Verilog netlist and a Tessent Cell Library.

• You can read in functional SDC so the tool omits adding any test points to multicycle
paths or false paths—see the read_sdc command.

• The tool identifies potential scan candidates for correct controllability/observability
analysis. To ensure that eventual non-scan cells are not used as the destination for

Tessent™ Scan and ATPG User’s Manual, v2022.4178

Test Point Analysis and Insertion
Test Points for LBIST Test Coverage Improvement

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

observe points or source for control points, you should declare all the non-scan memory
elements during test point insertion using the add_nonscan_instances command.

• You should define black boxes using the add_black_boxes command so that test point
analysis can incorporate this information.

Specify Test Point Type
By default the tool generates test points that are specifically targeted to reduce the deterministic
pattern counts. You can specify the test point type.

Prerequisite
The tool must be in SETUP mode to specify the test point type.

Procedure
set_test_point_type lbist_test_coverage

Results
The tool inserts test points to improve random pattern testability of a design. For more
information regarding the command, refer to the command description for set_test_point_types.

For more information, refer to What Are Test Points?

Test Point Analysis With Small LBIST Pattern Counts
The estimated test coverage when inserting test points for LBIST coverage is based on detection
probabilities of faults for the specified number of patterns (using the
“set_test_point_analysis_options -pattern_count_target” command option).
Just as for statistical samples, the margin of error increases when the number of patterns is
smaller. If the target pattern set is less than 20k patterns and you require an accurate figure for
the test coverage, it is recommended to fault simulate the netlist with test points rather than rely
on the coverage estimate of the test point analysis run.

Test Point Analysis and Insertion
Test Points for LBIST Test Coverage Improvement

Tessent™ Scan and ATPG User’s Manual, v2022.4 179

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Coverage Reporting During Test Point Analysis for
LogicBIST Coverage Improvement

Test point analysis uses a fault population of all possible collapsed stuck-at faults. The tool
calculates the test coverage by assessing, for each fault, the probability that a set of random
patterns as specified by the -pattern_count_target option of the set_test_point_analysis_options
command detects the fault.
Common terms associated with test coverage are:

• Total Number of Faults — The sum total of all possible stuck-at faults.

• Testable Faults — Faults that can be detected by externally applied patterns.

• Logic BIST Testable Faults — Testable Faults that can be detected by Logic BIST
patterns. Testable Faults that are not “Logic Bist Testable” are either faults that are
“Blocked by xbounding” or Uncontrollable/Unobservable faults.

• Estimated Test Coverage — The (estimated) coverage of the “Testable Faults.”

• Estimated Maximum Test Coverage — The upper limit of the test coverage that might
be achieved if enough test points were inserted.

• Estimated Relevant Test Coverage — The (estimated) coverage of the “Logic Bist
Testable” faults.

Incremental Relevant Test Coverage Report . 179
False Paths and Test Coverage . 179
Fault Classes and Fault Analysis . 180
“Blocked by xbounding” Faults . 180
Uncontrollable/Unobservable Faults . 180
Example Test Report . 180

Incremental Relevant Test Coverage Report
The Incremental Relevant Test Coverage Report shows the progress that the tool makes while
selecting test points. This report updates after every 50 test points. The report shows the total
number of test points that have been selected (TPs), and the breakdown in number of control
points (CP) and observe points (OP), as well as the relevant test coverage for that number of test
points (TC).

False Paths and Test Coverage
A false path is considered an X-source and is bound when it reaches a scan flop. Therefore, false
paths can increase the number of faults reported as “Blocked by xbounding.”

Tessent™ Scan and ATPG User’s Manual, v2022.4180

Test Point Analysis and Insertion
Test Points for LBIST Test Coverage Improvement

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool does not insert a test point on a false path. This may or may not impact the coverage
after test point analysis. The tool tries to find other locations for test points that may not be at
the most optimal locations. This would result in a smaller increase in the test coverage, and the
tool may insert more test points, if necessary, to reach the requested target coverage.

Fault Classes and Fault Analysis
Test point analysis does not perform fault analysis in the same way ATPG does. Test point
analysis does not classify individual faults or use fault classes. Rather, test point analysis
calculates the probability that a set of random patterns detects each fault, and, from these
probabilities, test point analysis calculates a test coverage estimate.

“Blocked by xbounding” Faults
An X-source is bound by an X-bounding mux. The faults on gates that are blocked by the X-
bounding mux, as well as the faults at the “blocked” input of the X-bounding mux cannot be
detected by Logic BIST patterns and are reported as “Blocked by xbounding.”

Uncontrollable/Unobservable Faults
Logic gates that are constant due to constraints do not toggle during Logic BIST. Therefore,
many faults on these gates cannot be detected because the gate cannot be controlled to the
opposite value. These constant gates may also block fault propagation. Faults that cannot be
observed because they are blocked by gates that are constant are reported as “Uncontrollable/
Unobservable.”

Example Test Report
The number of “Testable Faults” and the number of “Logic Bist Testable” faults is larger after
test point insertion as these numbers include the (testable) faults at the new test point logic.
The following is a snippet of a log file showing the test coverage reporting before and after
selecting test points.

Test Point Analysis and Insertion
Test Points for LBIST Test Coverage Improvement

Tessent™ Scan and ATPG User’s Manual, v2022.4 181

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Test Coverage Report before Test Point Analysis
// ---
// Target number of random patterns 10000
//
// Total Number of Faults 1876994
// Testable Faults 1850623 (98.60%)
// Logic Bist Testable 1788912 (95.31%)
// Blocked by xbounding 44 (0.00%)
// Uncontrollable/Unobservable 61667 (3.29%)
//
// Estimated Maximum Test Coverage 96.67%
// Estimated Test Coverage (pre test points) 89.13%
// Estimated Relevant Test Coverage (pre test points) 87.98%
//
//
// Incremental Test Point Analysis
// ---
// TPs 100 = 43 (CP) + 57 (OP), Est_RTC 92.21
// TPs 200 = 55 (CP) + 145 (OP), Est_RTC 92.98
// TPs 300 = 79 (CP) + 221 (OP), Est_RTC 93.39
// TPs 400 = 105 (CP) + 295 (OP), Est_RTC 93.60
// TPs 500 = 139 (CP) + 361 (OP), Est_RTC 94.01
// TPs 600 = 149 (CP) + 451 (OP), Est_RTC 94.25
// TPs 700 = 168 (CP) + 532 (OP), Est_RTC 94.46
// TPs 800 = 205 (CP) + 595 (OP), Est_RTC 94.61
// TPs 900 = 235 (CP) + 665 (OP), Est_RTC 94.70
// TPs 1000 = 252 (CP) + 748 (OP), Est_RTC 94.79
// TPs 1100 = 282 (CP) + 818 (OP), Est_RTC 94.85
// TPs 1200 = 306 (CP) + 894 (OP), Est_RTC 94.87
// TPs 1300 = 332 (CP) + 968 (OP), Est_RTC 94.94
// TPs 1400 = 353 (CP) + 1047 (OP), Est_RTC 95.02
// TPs 1500 = 437 (CP) + 1063 (OP), Est_RTC 95.07
//
// Incremental optimization to find more effective test points is in
// progress. The final distribution of control and observe points may
// change.
//
// Test Coverage Report after Test Point Analysis
// --
// Target number of random patterns 10000
//
// Total Number of Faults 1876994
// Testable Faults 1850623 (98.60%)
// Logic Bist Testable 1788912 (95.31%)
// Blocked by xbounding 44 (0.00%)
// Uncontrollable/Unobservable 61667 (3.29%)
//
// Estimated Test Coverage (post test points) 95.31%
// Estimated Relevant Test Coverage (post test points) 97.84%

Tessent™ Scan and ATPG User’s Manual, v2022.4182

Test Point Analysis and Insertion
Test Points for Hybrid TK/LBIST Design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Points for Hybrid TK/LBIST Design

Improving Test Coverage and Pattern Count Reduction . 182

Improving Test Coverage and Pattern Count Reduction
For some designs, you may require test coverage improvement as well as pattern count
reduction. For these designs, you need test points that target both requirements. VersaPoint test
points should be enabled to target both edt_pattern_count and lbist_test_coverage.
Test points may be inserted in either a pre- or post-scan netlist, as described in Figure 5-5 on
page 158.

Requirements
Performing test point analysis and insertion has certain requirements. You must adhere to the
following:

• Test point insertion needs a gate-level Verilog netlist and a Tessent Cell Library.

• You can read in functional SDC so the tool omits adding any test points to multicycle
paths or false paths—see the read_sdc command.

• The tool identifies potential scan candidates for correct controllability/observability
analysis. To ensure that eventual non-scan cells are not used as the destination for
observe points or source for control points, you should declare all the non-scan memory
elements during test point insertion using the add_nonscan_instances command.

• You should define black boxes using the add_black_boxes command so that test point
analysis can incorporate this information.

Specify Test Point Type
By default the tool generates test points that are specifically targeted to reduce the deterministic
pattern counts. You can specify the test point type.

Prerequisite
The tool must be in SETUP mode to specify the test point type.

Procedure
set_test_point_type edt_pattern_count lbist_test_coverage

Results
The tool inserts test points to both reduce both pattern count and improve random pattern
testability. For more information regarding the command, refer to the command description for
set_test_point_types.

Test Point Analysis and Insertion
Test Points for Hybrid TK/LBIST Design

Tessent™ Scan and ATPG User’s Manual, v2022.4 183

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information, refer to What Are Test Points?

Tessent™ Scan and ATPG User’s Manual, v2022.4184

Test Point Analysis and Insertion
Test Points for ATPG Test Coverage Improvement

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Points for ATPG Test Coverage Improvement
This section describes how you can insert test points to improve ATPG test coverage.
Test Points for Improving the Test Coverage of Deterministic Patterns 184

Test Points for Improving the Test Coverage of
Deterministic Patterns

Test points for BIST coverage improvements are typically used for improving random pattern
testability of a design, however they may also be used to improve ATPG coverage of undetected
faults after ATPG has been run. They are based on algorithms that use gate-level testability
measures to identify random pattern resistant faults and insert control and observe points to
improve the overall testability of a design.
Test points can be also used to improve coverage of certain hard-to-detect, or ATPG-untestable
faults targeted by deterministic patterns. This section describes how to use test points to
improve the overall deterministic test coverage.

The example below describes how to perform test point analysis for a set of target faults that are
left undetected (AU, UC, UO, PT or PU) after performing ATPG. In some cases, if the major
source of undetected faults is ATPG aborted faults (UD.AAB), test points may help without the
need to read in the fault list to target test points for coverage. The following steps illustrate the
process:

1. When atpg has completed, write out the fault list. For example:

ANALYSIS> write_faults fault_list

2. In the dft -test_points context, in analysis mode, read this fault list and perform test point
analysis. The fault list from ATPG must be read with the -retain switch to target
coverage of undetected faults, otherwise test points defaults to all faults, which means
targeting the specific test points type selected (not for coverage improvement). The test
point type must be set to only “set_test_point_type lbist_test_coverage” to target
undetected faults from the retained fault list, otherwise test points defaults to all faults
for the specified test point type (for example, if you use edt_pattern_count or combine it
with lbist_test_coverage). See the following example:

SETUP> set_context dft -test_points -no_rtl

SETUP> set_test_point_type lbist_test_coverage

SETUP> set_system_mode analysis

ANALYSIS> read_faults fault_list -retain

ANALYSIS> analyze_test_points

Test point analysis only considers the undetected faults in the fault population and
generates test points specifically for those faults.

Test Point Analysis and Insertion
Test Points for ATPG Test Coverage Improvement

Tessent™ Scan and ATPG User’s Manual, v2022.4 185

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

See Analyze and Insert Test Points in a Pre-Scan Design or Analyze and Insert Test
Points in a Post-Scan Design for full information.

3. After inserting the test points in the netlist, run atpg again. Because of the test points, the
atpg command can likely generate patterns for many of the previously undetected faults.

By default, test point analysis uses a fault population of all possible stuck-at faults. You can
create a custom set of target faults in analysis mode with any or all of the add_faults,
delete_faults, and read_faults commands. When you use a custom set of target faults then the
fault coverage that analyze_test_points reports is based on that fault set. The tool calculates test
coverage by assessing, for each fault, the probability that a random pattern set as specified by
the “-pattern_count_target” option of the “set_test_point_analysis_options” command detects it.

Only stuck-at fault sets are supported for test point analysis. Faults in a fault list read with the
“read_faults” command are interpreted as stuck-at faults, if possible. When the fault set contains
faults that cannot be interpreted as stuck-at faults (such as bridging faults or UDFM faults) then
an error occurs. The set_fault_type command is not supported in the “dft -testpoints” context.
The default fault type in this context is “stuck.”

The fault set that you create in the analysis system mode of the “dft -test_points” context is not
modified by the analyze_test_points command. Specifically, this command does not modify the
class of any of the faults in the fault set. The tool clears the fault set when you transition it out of
the analysis system mode. That is, when you run the insert_test_logic command, the system
mode transitions to insertion mode and the tool clears the fault set. Also, if you transition the
tool back to the setup system mode from the analysis mode, it clears the fault set. The
report_faults and write_faults commands can be used to print out the target fault set before
transitioning out of analysis mode.

Targeted Test Faults Example
In the following example, the faults in the fault file targetFault.list are read in and the tool
retrains the fault class for each of these faults.

The command analyze_test_points identifies test points for improving the testability of the
undetected faults in the fault set and tries to achieve 100 percent coverage of these faults with a
maximum of 700 test points.

SETUP> set_test_point_type lbist_test_coverage

SETUP> set_system_mode analysis

ANALYSIS> read_faults targetFault.list -retain

ANALYSIS> set_test_point_analysis_options -total 700 -test_coverage_target 100

ANALYSIS> analyze_test_points

Because the tool retains the fault class of each fault in the file, test point analysis targets only
undetected faults. It ignores faults that have been detected already.

Tessent™ Scan and ATPG User’s Manual, v2022.4186

Test Point Analysis and Insertion
Test Points for ATPG Test Coverage Improvement

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is a snippet from the log file of a run with targeted faults after the
analyze_test_points command:

// Test Coverage Report before Test Point Analysis
// ---
// Target number of random patterns 1000
//
// Total Number of Targeted Faults 10682
// Testable Faults 10682 (100.00%)
// Logic Bist Testable 9995 (93.57%)
// Blocked by xbounding 0 (0.00%)
// Uncontrollable/Unobservable 687 (6.43%)
//
// Estimated Maximum Test Coverage 93.57%
// Estimated Test Coverage (pre test points) 36.31%
// Estimated Relevant Test Coverage (pre test points) 38.81%
//
//
// Inserted 6 observe points for unobserved gates.
//
.......
.......
.......
.......
//
// Test point analysis completed: maximum number of test points has been
// reached.
//
// Inserted Test Points 700
// Control Points 347
// Observe Points 353
//
//
// Test Coverage Report after Test Point Analysis
// --
// Target number of random patterns 1000
//
// Total Number of Faults 10682
// Testable Faults 10682 (100.00%)
// Logic Bist Testable 10169 (95.20%)
// Blocked by xbounding 0 (0.00%)
// Uncontrollable/Unobservable 422 (3.95%)
//
// Estimated Test Coverage (post test points) 95.12%
// Estimated Relevant Test Coverage (post test points) 99.91%

Note
The Test Coverage Report only includes the target faults and not other faults such as
detected faults (DI, DS). Also note that the “before” and “after” test coverage reports show

that the (random pattern) “Estimated Test Coverage” has dramatically been improved by
inserting test points (from 35.88 percent to 94.04 percent).

Test Point Analysis and Insertion
Test Points for ATPG Test Coverage Improvement

Tessent™ Scan and ATPG User’s Manual, v2022.4 187

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The number of “Uncontrollable/Unobservable” faults (422) in the report after test point
analysis is lower than the number of these faults before test point analysis (687). This is due

to the “6 observe points for unobserved gates”. These six observe points are not counted in the
total of 700 test points, but are over and above the 353 observe points that together with 347
control points make up the total of 700 test points.

Tessent™ Scan and ATPG User’s Manual, v2022.4188

Test Point Analysis and Insertion
Test Points Special Topics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Points Special Topics
This section describes additional topics related to test points.
Control Point and Observe Point Enable Signal Handling . 188
Test Point Analysis With Multiple Power Domains . 189
Test Point Analysis Multicycle and False Path Handling . 190
Test Point Analysis Critical Path Handling . 192

PrimeTime and Tempus Scripts for Preventing Test Points on Critical Paths 193
User-Defined Test Points Handling . 197
Test Point Deletion. 199

delete_test_points Command . 199
Modifying the Test Point Dofile . 199

Back to Back Command Handling. 200
Static Timing Analysis for Test Points. 200
Test Points and At-Speed Testing. 201
Clock Selection for Test Point Flops . 202
Example of Test Point Insertion With Custom Prefix for Inserted Logic 203
Test Point Sharing . 203

Control Point and Observe Point Enable Signal
Handling

By default, the tool uses the test_point_en signal for enabling the control and observe points.
It is recommended that you use separate enable signals for control and observe points just to
keep their controls independent and flexible across pattern sets.

Note
If you used the add_dft_signals command in a previous step to define the
control_test_point_en and observe_test_point_en signals, the tool uses the specified primary

input or internal connection point instead of the default, which is to create a new primary input
called “test_point_en”.

You can use the set_test_point_insertion_options command to specify different enable signals
for the control and observe points as follows:

• The following example uses separate control point enable and observe point enable
signals:

set_test_point_insertion_options -control_point_enable control_tp_enable
set_test_point_insertion_options -observe_point_enable obs_tp_enable

Test Point Analysis and Insertion
Test Point Analysis With Multiple Power Domains

Tessent™ Scan and ATPG User’s Manual, v2022.4 189

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The following example uses separate control point enable and observe point enable
signals coming from different internal register outputs:

set_test_point_insertion_options -control_point_enable CR_reg/Q \
 -observe_point_enable TR_reg[0]/Q

Test Point Analysis With Multiple Power Domains
If your design contains multiple power domains, you should not share test points across power
domains.
By loading power data with the read_cpf or read_upf file, you prevent any test point sharing
across power domains.

The following is an example of a (partial) CPF file:

set_design design_top
create_power_domain -name PD1 -default
create_power_domain -name PD2 -instances {b1}
create_power_domain -name PD3 -instances {b2}

Figure 5-6 shows an example of two blocks, b1 and b2, that are in different power domains. In
this case, the test point at \b1\u1\z never merges with any of the test points in the \b2 block.

Tessent™ Scan and ATPG User’s Manual, v2022.4190

Test Point Analysis and Insertion
Test Point Analysis Multicycle and False Path Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-6. Test Point Sharing Across Power Domains

Test Point Analysis Multicycle and False Path
Handling

During test point analysis and insertion, you identify multicycle paths and false paths in a
functional SDC file that you read into the tool using the read_sdc command. The tool does not
insert observe points or control points on these paths.
For more information about the read_sdc command, refer to the command descriptions in the
Tessent Shell Reference Manual

If you want to add test points in the MCP (Multicycle Path)/false paths for slow-speed tests,
then do not read in the functional SDC in the tool.

Test Point Analysis and Insertion
Test Point Analysis Multicycle and False Path Handling

Tessent™ Scan and ATPG User’s Manual, v2022.4 191

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

On the other hand, if you do not have a functional SDC and would like to exclude test points
from MCP/FP, then you use the following command,

set_test_point_analysis_options -exclude_cross_domain_paths on

If you exclude a large portion of the design from test point insertion through the MCP/false path
timing exceptions listed in the SDC file, the tool generates a warning message when you run the
analyze_test_points command. For example:

// command: analyze_test_points
// Analyzing false and multicycle paths ...
// False and multicycle path summary : 112 false paths, 25 multicycle
// paths
// Warning: The paths have 5 errors.
// Use the commands "report_false_paths -debug_error" and
// "report_multicycle_paths -debug_error" to
// report the causes of the errors/warnings.
// Warning: Test points cannot be inserted at 1534865 (20.6%) gate-pins.
// This may increase the number of test points needed to reduce
// pattern counts.
// 1302614 (17.5%) gate-pins are located on clock lines or on the
// scan path.

If you see the above warning message, and the portion of the design excluded from insertion of
test points is more than about 20 percent, this may impact the ability to insert test points that
improve test coverage during slow-speed tests. To avoid this, do not read the SDC file during
test point analysis. During at-speed transition tests, however, you should read the SDC file for
ATPG so that the MCP/false paths are excluded.

During transition tests, the control points capture themselves during the capture cycle and do
not create transitions, but the observe points in the timing exceptions paths may capture invalid
values. To prevent this, turn off the observe points by setting the observe control enable to 0
during transition at-speed tests. For stuck-at tests, both the observe and control points can be
used. Make sure you have separate enables for the observe and control points that are inserted
by the tool so you can independently manage the control and observe points.

Tessent™ Scan and ATPG User’s Manual, v2022.4192

Test Point Analysis and Insertion
Test Point Analysis Critical Path Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Point Analysis Critical Path Handling
During test point analysis, a critical path that not specified by reading a functional SDC file may
be excluded so that the tool does not add no observe or control test points along such a path.
To exclude specific instances or specific paths from test point analysis and insertion, use the
add_notest_points command:

add_notest_points {pin_pathname…
| instance_pathname… | instance_expression \ [-Observe_scan_cell]}
| -Path filename

For more information about this command, refer to add_notest_points in the Tessent Shell
Reference Manual.

The command report_notest_points can be used to report paths and instances that are excluded
from test point analysis and insertion. For more information about this command, refer to
report_notest_points in the Tessent Shell Reference Manual.

PrimeTime and Tempus Scripts for Preventing Test Points on Critical Paths 193

Test Point Analysis and Insertion
Test Point Analysis Critical Path Handling

Tessent™ Scan and ATPG User’s Manual, v2022.4 193

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PrimeTime and Tempus Scripts for Preventing Test
Points on Critical Paths

The tessent_write_no_tpi_paths.pt_tcl Tcl script reads a list of critical paths extracted by
PrimeTime and marks them as not valid test point locations. The
tessent_write_no_tpi_paths.tempus_tcl Tcl script reads a list of critical paths extracted by
Tempus and marks them as not valid test point locations
One way to minimize problems during timing closure is to identify critical paths prior to test
point analysis and insertion. This approach depends on accurately identifying the critical paths,
and this typically requires placement and global routing information. The provided PrimeTime
and Tempus scripts can be used to extract a list of critical paths based on the current PrimeTime
or Tempus environment (preferably with placement information) and generate Tessent Shell
commands that mark these paths with the appropriate attributes to avoid inserting test points on
them.

PrimeTime Script Usage . 194
Tempus Script Usage . 196

Tessent™ Scan and ATPG User’s Manual, v2022.4194

Test Point Analysis and Insertion
Test Point Analysis Critical Path Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PrimeTime Script Usage
The PrimeTime script translates a list of critical paths extracted by PrimeTime into a list of
set_attribute_value commands that mark all the pins on the critical paths with the appropriate
attributes.

Usage
tessent_write_no_tpi_paths.pt_tcl $paths filename

Description
The tessent_write_no_tpi_paths.pt_tcl script translates a list of critical paths extracted by
PrimeTime into a list of set_attribute_options commands that mark all the pins on the critical
paths with the appropriate attributes.

The script is located at <Tessent_Tree_Path>/share/TestPoints/
tessent_write_no_tpi_paths.pt_tcl.

You typically do this before Test Point Analysis and Insertion.

Arguments
• $paths

Environmental variable that points to the critical paths extracted by PrimeTime.
• filename

Specifies the file name for the Tessent Shell dofile generated by the script.

Examples
The following example illustrates typical usage of this script..

Step 1: From PrimeTime:

set paths [get_timing_path -delay_type max -max_paths 10 -nworst 1 -slack_lesser_than 4]

tessent_write_no_tpi_paths $paths critical_paths

First, use the PrimeTime “get_timing_path” command to extract the critical paths. This
command requires a number of important parameters described below which you should tune
for your design.

Next, run the “tessent_write_no_tpi_paths” script to read in the critical paths extracted by
PrimeTime and write out a Tessent Shell dofile.

Step 2: From Tessent Shell:

dofile critical_paths.no_tpi

The dofile adds appropriate attributes to all the pins on the critical paths to prevent test points
from being placed there.

Test Point Analysis and Insertion
Test Point Analysis Critical Path Handling

Tessent™ Scan and ATPG User’s Manual, v2022.4 195

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Parameters for the “get_timing_paths” command include the following:

• -delay_type max

Specify “-delay_type max” to target setup violations (not hold violations).

• -max_paths number

The parameter “-max_paths <number>” specifies the maximum number of paths that
are reported per domain. For example, if your design has two clock domains (clk1 and
clk2), and there are no false-path statements, you might have four domains (clk1, clk2,
clk1->clk2, and clk2->clk1).

• -nworst

The –nworst parameter avoids listing many “similar” paths. For example, if there are
many relatively long paths between <src> and <dest>, then setting “-nworst 1” means
only the path with the least slack are reported. Set “-nworst 9999” to avoid adding test
points to any path that does not have enough slack to absorb it.

• -slack_lesser_than number

The “-slack_less_than <number>” parameter controls which paths get reported. Tune
this parameter based on the slack in your design.

Tessent™ Scan and ATPG User’s Manual, v2022.4196

Test Point Analysis and Insertion
Test Point Analysis Critical Path Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tempus Script Usage
The Tempus script translates a list of critical paths extracted by Tempus into a list of
set_attribute_options commands that mark all the pins on the critical paths with the appropriate
attributes.

Usage
tessent_write_no_tpi_paths.tempus_tcl $paths filename

Description
The tessent_write_no_tpi_paths.tempus_tcl script translates a list of critical paths extracted by
Tempus into a list of set_attribute_options commands that mark all the pins on the critical paths
with the appropriate attributes.

You typically do this before Test Point Analysis and Insertion.

The script is located at <Tessent_Tree_Path>/share/TestPoints/
tessent_write_no_tpi_paths.tempus_tcl.

Arguments
• $paths

Environmental variable that points to the critical paths extracted by Tempus.
• filename

Specifies the file name for the Tessent Shell dofile generated by the script.

Examples
Example 1

Below is an example of how to use this script.

Step 1: From Tempus:

set paths [report_timing -late -collection -max_paths 5 -nworst 2 -max_slack 10.0]

tessent_write_no_tpi_paths $paths critical_paths

First, use the Tempus “report_timing” command to extract the critical paths. This command
requires a number of important parameters described below which you should tune for your
design.

Next, run the “tessent_write_no_tpi_paths” script to read in the critical paths extracted by
PrimeTime and write out a Tessent Shell dofile.

Step 2: From Tessent Shell:

dofile critical_paths.no_tpi

Test Point Analysis and Insertion
User-Defined Test Points Handling

Tessent™ Scan and ATPG User’s Manual, v2022.4 197

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The dofile adds appropriate attributes to all the pins on the critical paths to prevent test points
from being placed there.

Parameters for the “report_timing” command include the following:

• -late | early max

This parameter generates the timing report for late paths (setup checks) or early paths
(hold checks).

• -collection

This parameter returns a collection of timing paths.

• -max_paths number

The parameter “-max_paths <number>” reports the specified number of worst paths in
the design, with a maximum of nworst paths to any single endpoint.

• -nworst

The –nworst parameter specifies the maximum number of paths that can be reported for
a particular endpoint. (The -max_paths parameter specifies the total number of paths
reported.)

• -max_slack

The “-max_slack” parameter reports only those paths with slack less than the specified
value.

Example 2
Step 1: From Tempus:

set paths_1 [report_timing -late -collection -max_paths 5 -nworst 2 -max_slack 10.0]

tessent_write_no_tpi_paths $paths_1 critical_paths_1_tempus

set paths_2 [report_timing -early -collection -max_paths 5 -nworst 2 -max_slack 10.0]

tessent_write_no_tpi_paths $paths_2 critical_paths_2_tempus

Step 2: From Tessent Shell:

dofile critical_paths_1_tempus.no_tpi

dofile critical_paths_2_tempus.no_tpi

User-Defined Test Points Handling
You can specify user-defined test points using the add_control_points and add_observe_points
commands.

Tessent™ Scan and ATPG User’s Manual, v2022.4198

Test Point Analysis and Insertion
User-Defined Test Points Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information, see the add_control_points and add_observe_points command
descriptions in the Tessent Shell Reference Manual.

How the tool handles your user-defined test points depends on whether you have already
inserted tool-generated test points as follows:

• Adding Test Points Before Test Point Analysis— The following command sequence
demonstrates this:

ANALYSIS> add_control_point -location OY4 -type and
// Adds a user-defined control point

ANALYSIS> analyze_test_points
// Performs the analysis and generates test points

ANALYSIS> insert_test_logic

...

When you issue the analyze_test_points command, then the tool takes the user-defined
test points in account.

• Adding Test Points After Test Point Analysis — The following command sequence
demonstrates this:

ANALYSIS> analyze_test_points
// Performs the analysis and generates test points

 ANALYSIS> add_control_point -location OY4 -type and
// Tool gives preference to the user-defined test points

ANALYSIS> insert_test_logic

...

If you specify user-defined test points using the add_control_points or
add_observe_points commands after analysis but prior to insertion, then the tool inserts
these test points into the design. If the user-defined test points are in the same location as
the tool-generated test points then the user-defined test points are given preference.

Note
If you define test points in a restricted notest_point region, the tool ignores them and
issues a warning.

Use the add_control_points and add_observe_points commands to specify individual control
points and observe points with different enable signals as follows:

add_control_points -enable enable_pin/port
add_observe_points -enable enable_pin/port

Test Point Analysis and Insertion
Test Point Deletion

Tessent™ Scan and ATPG User’s Manual, v2022.4 199

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Point Deletion
This section explains the methods for deleting test points.
After you have issued the analyze_test_points command, you cannot reduce the number of test
points with the set_test_point_analysis_options command. However, you can delete the test
points using one of the following methods: delete_test_points Command or Modifying the Test
Point Dofile.

delete_test_points Command . 199
Modifying the Test Point Dofile . 199

delete_test_points Command
You can delete a subset of the tool-generated test points.
Use the delete_test_points command to specify the locations that you want to remove from the
list of identified test points.

You should use this method if you only have a small number of test points to delete.

Modifying the Test Point Dofile
If you have a large number of test points you need to delete, then you can do so by modifying
the dofile.

Procedure
1. Use the write_test_point_dofile command to write out the dofile that contains the test

points. For example:

ANALYSIS> write_test_point_dofile -output_file my_test_points.dofile

2. Edit this dofile and remove the test points you do not want.

3. From within Tessent Shell, delete all of the test points using the delete_test_points
command as follows:

ANALYSIS> delete_test_points -all

4. Use the dofile command to read the modified test point dofile back into the tool. For
example:

ANALYSIS> dofile my_test_points_modified.dofile

Tessent™ Scan and ATPG User’s Manual, v2022.4200

Test Point Analysis and Insertion
Back to Back Command Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Back to Back Command Handling
The analyze_test_points command generates test points based on the default settings or any
analysis options you specify. If you run the analyze_test_points command a second time, it does
not generate any new test points.

ANALYSIS> analyze_test_points

// Performs the analysis and generates test points

ANALYSIS> analyze_test_points

// Does note generate new test points

If you change any of the analysis options before running the analyze_test_points command a
second time, the tool generates new test points based on the current options. For example:

ANALYSIS> analyze_test_points

// Performs the analysis and generates test points

ANALYSIS> set_test_point_analysis_options -total_number 2000

ANALYSIS> analyze_test_points

// Generates new test points

Use the delete_test_points command to delete all existing test points and generate new test
points with the analyze_test_points command.

ANALYSIS> delete_test_points -all

// Deletes all existing test points

ANALYSIS> analyze_test_points

// Generates new test points

If you run any command between back-to-back analyze_test_points commands that does not
impact test point analysis, the tool reports the same test points again.

Static Timing Analysis for Test Points
This section describes how to run Static Timing Analysis (STA) with Test Points.
For control points there is no timing impact as the control point flop captures itself during
capture cycle.

For the “control_point_en” signal that reaches the control test points, use a “set_case_analysis”,
which ensures that:

• The source flop’s holding path is not relaxed.

Test Point Analysis and Insertion
Test Points and At-Speed Testing

Tessent™ Scan and ATPG User’s Manual, v2022.4 201

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The scan path from that source flop to the next SI pin is also not relaxed.

> set_case_analysis control_point_en 0

If you use observe points during at-speed tests, they must meet single-cycle timing from the
point where the data gets sourced. During STA, the signal used as “observe_point_en” is left
unconstrained to enable the STA tool to check timing for both the capture and shift paths of
these cells.

If you are not closing timing to meet single-cycle timing on the observe points during at-speed
test, you must disable that path during at-speed ATPG by using “add_input_constraints
observe_point_en -C0”.

Static Timing Analysis and Place and Route tools operate differently. It is for this reason that
the “set_case_analysis” used during STA to prevent checking timing on a given path would
prevent a Place and Route tool from fixing timing on the same path. During slow-speed tests,
the hold-path for these cells must meet timing, so instead, a command such as “set_false_path –
setup –to <all observe point flops>” should be used.

Test Points and At-Speed Testing
This section describes how to use test points during at-speed testing. Siemens EDA
recommends to close timing on observe points during timing closure.

Impact on Transition-Delay Fault
Test points can safely be used for at-speed testing for transition patterns that target gross delay
defects. By definition, transition patterns use the transition fault model that targets a “gross”
delay at every fault site. A transition pattern detects faults by triggering a transition from a scan
flop and capturing the result at a downstream scan flop. The fault model does not care about the
path used. This is why test points used during transition patterns do not interfere with detection
of transition faults.

Control points remain static once you place the circuit in functional mode for capture. This
means that control points only help to sensitize a path and do not shorten a functional path to be
smaller than the function of the circuit. The one exception is if LoS (launch off shift) patterns
are used. In such a case, an at-speed transition from the control test point can be launched as
scan enable drops. You can easily prevent this either by defining a false path from the test point
or the test point can use a non-pipelined scan enable signal while the functional logic uses a
pipelined scan enable.

Impact on Timing-Aware ATPG
Unlike the transition-delay fault model, timing aware ATPG, used to detect small delay defects,
considers the actual paths used during the tests. During timing-aware ATPG, the tool reads in
the timing of the circuit and ATPG automatically finds and uses the longest sensitizable paths

Tessent™ Scan and ATPG User’s Manual, v2022.4202

Test Point Analysis and Insertion
Clock Selection for Test Point Flops

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

around a fault site when creating patterns. Therefore, the addition of test points does not hinder
the ability to target and detect timing-aware ATPG tests.

In cases where timing was not closed on observe points during place-and-route timing closure,
it may be necessary to turn off the observe points. Set the observe-point enable signal to the
off-state and continue with timing-aware ATPG as before.

Impact on Path-Delay ATPG
Path-delay testing targets specific paths, extracted from a static-timing analysis program, with
specific fault sites read in to ATPG for targeting. It launches stimulus and response down a
specific path, often in a specific manner. It is for this reason that observe points should have no
impact on path delay tests. When inserting test points, false and multicycle paths can be ignored
during analysis by calling read_sdc or add_false_path commands during the test point insertion
process.

Other Considerations
All test points inserted by Tessent software have enable signals. For more conservative results
test points may be disabled to ensure only functional paths are tested during at-speed test. Even
for conservative cases, it makes sense to permit control points because these are only static
signals that make the functional paths more easily sensitized. In such cases, you have the option
to have separate control point and observe point enable signals when inserting the test points.

Clock Selection for Test Point Flops
If you do not explicitly specify the clock for a test point flop, the tool first selects the
appropriate clock domain based on the top level clocks that control the flops in the fan-in,
fanout, or both.
During the clock domain selection, the tool ignores any flops that are not either already existing
scan cells or targeted for scan insertion. In addition, it limits the initial search to flops that are in
the same power_domain_island as the test point location. When it finds only a single clock
domain in the fanout or fan-in, the tool uses that domain. Otherwise, it uses the most referenced
clock domain in the fanout of the control point (or fan-in of the observe point).

Next, it chooses a connection point as described below:

• It connects to the clock port of one of the flops in the fanout (for a control point), or fan-
in (for an observe point). If the clock port of the connected scan cell is not directly
accessible, then it traces through sensitized paths in the clock network to find the closest
possible connection point.

• If it finds no valid connection point as described previously, it tries to connect to the
identified clock at the closest module input port moving up the hierarchy.

• Otherwise, it connects to the clock source.

Test Point Analysis and Insertion
Example of Test Point Insertion With Custom Prefix for Inserted Logic

Tessent™ Scan and ATPG User’s Manual, v2022.4 203

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example of Test Point Insertion With Custom Prefix
for Inserted Logic

To define a custom prefix for use during test point insertion, overriding the default prefix “ts_”,
use the set_insert_test_logic_options command.
The following example prefixes all inserted nets and instances in the output_lbist_ready.v
netlist with “demo_”:

SETUP> set_context dft -test_points -no_rtl

SETUP> read_verilog non_scan_design_name

SETUP> read_cell_library library_name

SETUP> set_current_design

SETUP> set_system_mode analysis

ANALYSIS> analyze_test_points

ANALYSIS> set_insert_test_logic_options -inserted_object_prefix demo_

ANALYSIS> insert_test_logic

ANALYSIS> write_design output_netlist.v

ANALYSIS> exit

Test Point Sharing
This section describes sharing of control points and observe points.

Control Point Sharing
Figure 5-7 shows the basic AND-type and OR-type control points. A single control point
consists of an AND or OR gate that sets a controlled net to a requested value, an enabling gate,
and a flip-flop acting as a test point driver. To avoid long propagation paths between control
points in a group, test point analysis only groups together “logically” adjacent control points. It
also ensures control points in a group are in the same clock and power domain.

Tessent™ Scan and ATPG User’s Manual, v2022.4204

Test Point Analysis and Insertion
Test Point Sharing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-7. Control Points (a) AND-Type and (b) OR-Type

To optimize the area taken up by control points, you can group them to share a single flip-flop
instead of adding a flip-flop per new test point, as illustrated in Figure 5-8.

Figure 5-8. Flip-Flop Shared by Three Control Points

Even though grouping the control points can significantly reduce the area required, aggressive
sharing may lead to conflicts due to simultaneous requests to set and reset certain flip-flops at
the same time. This may reduce the effectiveness of many control points. The following two
examples illustrate how the sharing of flip-flops can affect fault propagation paths.

Figure 5-9 shows a circuit with two control points, CP1 and CP2, placed on the same
propagation path. CP1 and CP2 are to improve observability of faults in cones C1 and C2,
respectively.

Test Point Analysis and Insertion
Test Point Sharing

Tessent™ Scan and ATPG User’s Manual, v2022.4 205

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-9. Control Points on the Same Path

In Figure 5-9a, flip-flops are not shared, whereas Figure 5-9b depicts the opposite case. As you
can in Figure 5-9a, CP1 has to assume its dominant value, while CP2 needs to be off to
propagate faults from C1. However, if these two control points share a flip-flop (Figure 5-9b)
with CP1 still assuming its dominant value, then the path through CP2 is blocked. If this path is
the only one to propagate faults from C1, both control points CP1 and CP2 need to be off,
which, in turn, reduces their effectiveness. To alleviate this problem, the tool ensures that there
is no path between control points sharing a flip-flop.

In another scenario, control points may have propagation paths that converge on the same gate,
as shown in Figure 5-10. In this case, to propagate faults from C1, the tool must set control point
CP1 to its off value. Moreover, control point CP2 should be set to its dominant value to improve
observability of faults from C1 by making them easier to test (Figure 5-10a). However, if CP1
and CP2 share a flip-flop (Figure 5-10b), then CP2 cannot be turned on while propagating faults
from C1. This could affect observability of faults, because there is a lesser likelihood of setting
the off-path value of the OR gate. In this scenario, the tool does not share control points.

Tessent™ Scan and ATPG User’s Manual, v2022.4206

Test Point Analysis and Insertion
Test Point Sharing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-10. Control Points Converge to the Same Gates.

Observe Point Sharing
To optimize the area taken up by observe points, they can be grouped to share a single flip-flop
instead of adding a flip-flop per new test point as shown in Figure 5-11. The tool performs
analysis to group observe points in the same clock and power domain that are also logically
adjacent to avoid long propagation paths between observe points in a group.

Figure 5-11. Observe Point Sharing

To find logically adjacent observe points, beginning with every scan cell, the tool traces its cone
of logic (both forward and backward) to find adjacent observe points inside these cones. Then
for a given observe point, the tool selects a list of adjacent observe points with the same clock
and power domains from forward and backward cones of scan cells where the original observe
point was located.

How to Share Test Points
To enable test point sharing, use the set_test_point_analysis_options command with the
following switches:

set_test_point_analysis_options [-shared_control_points_per_flop num] \
 [-shared_observe_points_per_flop num]

For more information, see the set_test_point_analysis_options command description in the
Tessent Shell Reference Manual.

Test Point Analysis and Insertion
Test Point Sharing

Tessent™ Scan and ATPG User’s Manual, v2022.4 207

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Sharing User-Added Test Points
To share user-added test points, you must specify the total number of tool-added test points to 0
and also issue the analyze_test_points command to facilitate the sharing of user-added test
points without inserting any new test points.

Examples
Example 1

This example shows the test point analysis report when control point sharing is on:

SETUP> set_test_point_analysis_options -shared_control_points_per_flop 4
...
ANALYSIS> analyze_test_points

// Test Coverage Report after Test Point Analysis
// --
// Target number of random patterns 10000
//
// Total Number of Faults 436550
// Testable Faults 435830 (99.84%)
// Logic Bist Testable 426407 (97.68%)
// Blocked by xbounding 4673 (1.07%)
// Uncontrollable/Unobservable 4750 (1.09%)
//
// Estimated Test Coverage (post test points) 75.67%
// Estimated Relevant Test Coverage (post test points) 69.15%
//
//
// Test point analysis completed: specified number of test points has
been identified.
// Total number of test points 300
// Control Points 78
// Observe Points 222
// Total Control Point Flops 31
// Maximum shared control points 4
// Maximum control point per path 4
// CPU_time (secs) 316.8

Example 2
This example shows the test point analysis report when observe point sharing is on:

SETUP> set_test_point_analysis_options -shared_observe_points_per_flop 4
...
ANALYSIS> analyze_test_points

Tessent™ Scan and ATPG User’s Manual, v2022.4208

Test Point Analysis and Insertion
Test Point Sharing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Test Coverage Report after Test Point Analysis
// --
// Target number of random patterns 10000
//
// Total Number of Faults 436550
// Testable Faults 435830 (99.84%)
// Logic Bist Testable 426407 (97.68%)
// Blocked by xbounding 4673 (1.07%)
// Uncontrollable/Unobservable 4750 (1.09%)
//
// Estimated Test Coverage (post test points) 95.67%
// Estimated Relevant Test Coverage (post test points) 89.15%
//
// Test point analysis completed: specified number of test points has
been identified.
// Total number of test points 250
// Control Points 130
// Observe Points 120
// Total Observe Point Flops 31
// Maximum shared observe points 4

Example 3
This example shows how to use test point sharing for user-added observe points:

ANALYSIS> set_test_point_analysis_options -shared_observe_points_per_flop 8
ANALYSIS> set_test_point_analysis_options –total_number 0
ANALYSIS> add_observe_points –location op1
…
ANALYSIS> add_observe_points –location op100
ANALYSIS> analyze_test_points

// Test Coverage Report after Test Point Analysis
// --
// Target number of random patterns 10000
//// Total Number of Faults 436550
// Testable Faults 435830 (99.84%)
// Logic Bist Testable 426407 (97.68%)
// Blocked by xbounding 4673 (1.07%)
// Uncontrollable/Unobservable 4750 (1.09%)
//
// Estimated Test Coverage (post test points) 75.67%
// Estimated Relevant Test Coverage (post test points) 69.15%
// Total number of test points (tool identified + user defined) 100
// Control Points (tool identified, user defined) (0,0)
// Observe Points (tool identified, user defined) (0,100)
// Total Observe Point Flops (tool identified, user defined) (0, 15)
// Maximum shared observe points 8
// Maximum control point per path 0
// CPU_time (secs) 316.8

Tessent™ Scan and ATPG User’s Manual, v2022.4 209

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 6
Internal Scan and Test Circuitry Insertion

Tessent Scan inserts scan circuitry in your design. The following sections describe the process
of inserting scan and other test circuitry in you your design using Tessent Scan or Tessent Shell
operating in “dft -scan” context.
Introduction to Tessent Scan . 211

Tessent Scan Inputs and Outputs . 212
Invoking Tessent Scan . 214
Example Dofile Using Tessent Scan . 214
Test Structures Supported by Tessent Scan . 215

Tool Terminology and Concepts . 217
Scan Element . 217
Scan Chain Family . 219
Scan Mode . 220
Unwrapped Cores Versus Wrapped Cores . 221
Pre-Existing Scan Segments . 222
Verification of Pre-Existing Scan Segments . 225
Pre-Existing Scan Chains . 226

Preparation for Test Structure Insertion . 228
Test Logic Insertion . 228
User Clock Signals . 232
How to Specify Existing Scan Information . 233
How to Handle Existing Boundary Scan Circuitry. 235
How to Run Rules Checking . 236
How to Manually Include and Exclude Cells for Scan. 236
Cell Library Models With Multiple Scan Paths . 238
Automatic Recognition of Existing Shift Registers . 240
Scan Cell Identification and Reporting. 243
DFT Test Logic Attributes no_control_point and no_observe_point. 243

Multi-Mode Chains . 247
Introduction to Multi-Mode Chains . 247
Multi-Mode Gating Logic. 248
Multi-Mode Scan Insertion . 249

Scan Insertion Flows . 253
How to Report Scannability Information . 253
Scan Insertion Flow Steps. 254
How to Control Scan Insertion . 255

Wrapper Cells Analysis. 269
Wrapper Chains Generation . 274

Tessent™ Scan and ATPG User’s Manual, v2022.4210

Internal Scan and Test Circuitry Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Dedicated and Shared Wrapper Logic . 276
Clock Selection for Dedicated Wrapper Cells . 280
Dedicated Wrapper Cell Placement . 280
Identification of Clock and Reset Ports . 282
Tessent Instruments With keep_active_during_scan_test . 283

Clock Gaters and Scan Insertion . 285
Types of Clock Gaters . 285
Identification of Clock Gaters. 286
Identification of Pin Functions . 287
Fixing Clock Gaters . 288
Clock Gaters and Wrapper Analysis. 289

Test Point and Scan Insertion. 291
Scan Enable Pipelining . 293

Introduction to Scan Enable Pipelining . 293
Scan Enable Pipelining Scenarios. 294

Internal Scan and Test Circuitry Insertion
Introduction to Tessent Scan

Tessent™ Scan and ATPG User’s Manual, v2022.4 211

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Introduction to Tessent Scan
Tessent Scan is extremely flexible to use and has various options and features that this
documentation describes in detail.
With Tessent Scan, you can analyze the design, allocate new scan chains based on design and
user constraints, and introspect the scan chain distribution and balancing before performing the
actual scan insertion on the design.

Another valuable feature of Tessent Scan is multi-mode scan insertion capabilities. With multi-
mode, you can specify any number of scan modes or scan configurations.

Figure 6-1. Generic Usage of Tessent Scan on a Synthesized Netlist

Tessent™ Scan and ATPG User’s Manual, v2022.4212

Internal Scan and Test Circuitry Insertion
Tessent Scan Inputs and Outputs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-1 shows how to use a netlist out of synthesis tools with Tessent Scan. The netlist can
have scan cells replaced and not stitched or just non-scan cells that can be replaced with scan-
cells while performing scan stitching. The Design Rule Checks are the S-Rules that the tool runs
when transitioning from Setup to Analysis system mode.

Identification of wrapper cells is required and used only when performing scan insertion on a
hierarchical region where hierarchical DFT is to be implemented, where the test patterns to test
the logic for this block/module can be run stand-alone or are planned to be retargeted from the
next level, or both. If you are using hierarchical test application, then you must identify wrapper
cells before specifying Scan Configuration. This is described in the Scan Insertion for Wrapped
Core section.

You can provide input to specify the required Scan Configuration to analyze the scan chains
before the tool inserts it and stitches it up. This is very powerful, because you change the scan
configuration specification to see how the scan chains end up after they are stitched just by
performing analysis. After inserting the scan chains, the tool writes out the netlist and TCD
(Tessent Core Description), which has details of how the scan changes have been stitched.

Tessent Scan includes the following features:

• It supports multi-mode scan insertion with optimal scan chain lengths across all modes.

• It enables you to separate the scan analysis phase from the actual stitching of scan chains
and provides the scan chain map prior to stitching.

• It enables introspection of the scan data model and enables you to specify how scan cells
should be grouped during scan stitching.

Refer to the following topics for more information about Tessent Scan:

Tessent Scan Inputs and Outputs. 212
Invoking Tessent Scan . 214
Example Dofile Using Tessent Scan . 214
Test Structures Supported by Tessent Scan . 215

Tessent Scan Inputs and Outputs
Tessent Scan uses multiple inputs and produces several outputs during the scan insertion
process.
Figure 6-2 shows the inputs used and the outputs produced by Tessent Scan.

Internal Scan and Test Circuitry Insertion
Tessent Scan Inputs and Outputs

Tessent™ Scan and ATPG User’s Manual, v2022.4 213

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-2. The Inputs and Outputs of Tessent Scan

Tessent Scan uses the following inputs:

• Design (netlist) — A Verilog gate-level netlist needs to be provided as input.

• Circuit Setup (or Dofile or Tcl file) — This is the set of commands that gives the tool
information about the circuit and how to insert test structures. You can issue these
commands interactively in the tool session or place them in a dofile or Tcl file.

• Library — The Tessent Cell library contains descriptions of all the cells the design
uses. The library also includes information that the tool uses to map non-scan cells to
scan cells and to select components for added test logic circuitry.

• Input TCD File — If there are pre-existing scan segments that are described in a
*.tcd_scan file, you need to provide them as input to Scan Insertion. You can read them
in using the set_design_sources command. The full syntax of the tcd_scan file appears
in the Scan section of the Tessent Shell Reference Manual. Also, if there are CTL
models for pre-existing scan segments, you can convert these using stil2tessent before
reading them in.

• Test Procedure File — This file defines the stimulus for shifting scan data through the
defined scan chains. This input is only necessary on designs containing pre-existing scan
circuitry or requiring initialization for test mode (test setup).

Tessent Scan produces the following outputs:

• Design (Netlist) — This netlist contains the original design modified with the inserted
test structures. The output netlist format is gate-level Verilog.

Tessent™ Scan and ATPG User’s Manual, v2022.4214

Internal Scan and Test Circuitry Insertion
Invoking Tessent Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• TCD (Tessent Core Description) — This file contains all the Scan modes that were
specified during scan insertion. The ATPG tool uses this file to generate patterns. If you
read in any .tcd files from a previous insertion pass or from a lower level core, the scan
modes are appended to the input *.tcd file and written out into the tsdb_outdir directory.

Invoking Tessent Scan
Access Tessent Scan functionality by invoking Tessent Shell and then setting the context to
“dft -scan.”

Procedure
Enter the following:

% tessent -shell

SETUP> set_context dft -scan

The tool invokes in setup mode, ready for you to begin loading or working on your
design. Use this setup mode prepare the tool to define the circuit and scan data, which is
the next step in the process.

Example Dofile Using Tessent Scan
The following sample dofile uses Tessent Scan.

Internal Scan and Test Circuitry Insertion
Test Structures Supported by Tessent Scan

Tessent™ Scan and ATPG User’s Manual, v2022.4 215

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP
Set the context
>set_context dft -scan

Read the verilog
>read_verilog ../design/cpu.v

Read the library
>read_cell_library ../library/adk.tcelllib
>read_cell_library ../library/ram.lib
>set_current_design cpu

Add clocks in the design
>add_clock 0 clk1
>add_clock 0 clk2
>add_clock 0 clk3
>add_clock 0 clk4
>add_clock 0 ramclk

//RUN DRC
>set_system_mode analysis

Specify constraints to stitch up scan chains
>set_scan_insertion_options -chain_count 100
>analyze_scan_chains
>report_scan_chains
>insert_test_logic -write_in_tsdb On
>report_scan_chains

The insert_test_logic -write_in_tsdb on command creates the following:

1. The scan stitched and inserted design.

2. TCD file containing the Scan Configurations to be used during ATPG.

Test Structures Supported by Tessent Scan
Tessent Scan can identify and insert a variety of test structures, including several different scan
architectures and test points.
The tool supports the following test structures:

• Scan— A flow where the tool converts all sequential elements that pass scannability
checking into scan cells. About Scan Design Methodology discusses the full scan style.

• Wrapper chains— A flow where the tool identifies sequential elements that interact
with input and output pins. These memory elements are converted into scan chains, and
the remaining sequential elements are not affected. For more information, see About
Wrapper Chains.

• Scan and Wrapper— A flow where the tool converts into scan cells those sequential
elements that interact with primary input and output pins, and then stitches the scan cells

Tessent™ Scan and ATPG User’s Manual, v2022.4216

Internal Scan and Test Circuitry Insertion
Test Structures Supported by Tessent Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

into dedicated wrapper chains. The tool converts the remaining sequential elements into
scan cells and stitches them into separate chains, which are called core chains.

• Test points — A flow where the tool inserts control and observe points at user specified
locations. “What Are Test Points?” on page 153 discusses the test points method.

Tessent Scan provides the ability to insert test points at user specified locations. If both scan and
test points are enabled during an identification run, the tool performs scan identification
followed by test point identification.

Internal Scan and Test Circuitry Insertion
Tool Terminology and Concepts

Tessent™ Scan and ATPG User’s Manual, v2022.4 217

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tool Terminology and Concepts
This section introduces and describes some terminology that facilitates understanding how to
view the design and how the scan chains are to be stitched.
Scan Element . 217
Scan Chain Family. 219
Scan Mode . 220
Unwrapped Cores Versus Wrapped Cores . 221
Pre-Existing Scan Segments . 222
Verification of Pre-Existing Scan Segments . 225
Pre-Existing Scan Chains . 226

Scan Element
A scan element, in simple terms, can be either a library cell (lowest level model) called leaf cell
or a sub-chain / segments. A library cell/leaf cell can either be single-bit (for example, a flip-
flop) or a multi-bit scan element.

Figure 6-3. A Generic Representation of a Scan Element Object

Figure 6-4 is an example of a scan element with a single bit library / leaf cell.

Tessent™ Scan and ATPG User’s Manual, v2022.4218

Internal Scan and Test Circuitry Insertion
Scan Element

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-4. Single Bit Scan Element

Figure 6-5 is an example of a scan element with multi-bit library / leaf cell.

Figure 6-5. Multi-Bit Scan Element

Figure 6-6 is an example of a scan element with sub-chain/segments that are described inside a
memory module. This scan element can be described using the input tcd_scan file or using the
add_scan_segments command.

Internal Scan and Test Circuitry Insertion
Scan Chain Family

Tessent™ Scan and ATPG User’s Manual, v2022.4 219

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-6. Scan Element Memory With Sub-Chains / Segments

A description of the Scan Element Object Type appears in the Scan Data Model section of the
Tessent Shell Reference Manual. You can introspect it in the design, and it is attribute friendly.
This aids in describing the required scan configuration.

Most scan element leaves are populated from DRC results, but some get inferred by the planned
insertion of certain types of modules like dedicated wrapper cells; these scan elements are
deemed "virtual" as they do not exist yet but are assumed to exist for analysis and planning
purposes.

Scan Chain Family
A scan_chain_family is an intelligent container that controls the allocation of new scan chains
from a specific population of scan elements.
Use the create_scan_chain_family command to generate new chain families. The related
commands delete_scan_chain_families and get_scan_chain_families are also available.

Examples
Example 1

The following example shows how a new scan chain family can be created using the
create_scan_chain_family command. This example creates the scan_chain_family called
family_clk1 for all the scan_elements in clock domain clk1. It creates the scan_chain_family
named family_clk23 for clock domains clk2 and clk3 below. The example also shows how to
use get_scan_chain_families to report the two new scan_chain_families that were created.

>create_scan_chain_family family_clk1 -include_elements \
[get_scan_element -filter "clock_domain == clk1”]

>create_scan_chain_family family_clk23 -include_elements \
[get_scan_element -filter "clock_domain == clk2 || clock_domain == clk3"]

Tessent™ Scan and ATPG User’s Manual, v2022.4220

Internal Scan and Test Circuitry Insertion
Scan Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

>get_scan_chain_families

Example 2
The command create_scan_chain_family enables more advanced users to control how a specific
scan element sub-population gets allocated into chains. For instance, if you want to use special
naming only for the external chain ports, this could be achieved by creating a scan chain family
for the sub-population of external scan elements as follows:

> analyze_wrapper_cells
> create_scan_chain_family ext_chains \

-si_port_format { ext_si[%d]} \
-so_port_format { ext_so[%d]} \
-include_elements [get_scan_elements -class wrapper]

These scan_chain_family objects constitute larger and more complex building blocks than
scan_element objects when allocating scan chains.

Scan Mode
Hierarchical Scan Insertion enables you to specify up to 64 scan modes.
A mode typically applies to an entire scan element population or a large subset (for example,
wrapper elements) and is populated by including scan_element objects directly or
scan_chain_family objects, or both. The Scan Mode built-in attributes are described in the Scan
Data Model section of the Tessent Shell Reference Manual.

Include scan_element and scan_chain_family objects to define the population of each scan
mode. If you do not explicitly add at least one scan mode, the tool infers a default mode that
includes every scan_element and scan_chain_family object (if present).

Implicit to the definition of a scan mode is the inclusion of a scan element population particular
for that mode. The mode definition also enables you to override general scan insertion options
with some specific to the mode’s requirement. Scan_mode objects selectively include
scan_element and scan_chain_family objects to create the best chain allocation building block.

Examples

Example 1
This example creates a scan mode mode1 with chain_count of up to 100 chains.

> add_scan_mode mode1 -chain_count 100

Example 2
This example creates a scan mode mode2 with a maximum chain length of 300 scan elements
per chain.

> add_scan_mode mode2 -chain_length 300

Internal Scan and Test Circuitry Insertion
Unwrapped Cores Versus Wrapped Cores

Tessent™ Scan and ATPG User’s Manual, v2022.4 221

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 3
This example finds sub_chains inside OCCs and keeps them in a separate scan chain from the
remaining scan elements:

1. Using the -single_cluster_chains option:

>set_attribute_value [get_scan_elements -below_instances *_occ_*] \
-name cluster_name -value is_occ

>set edt_instance [get_instances -of_icl_instances \
[get_icl_instances -filter tessent_instrument_type==mentor::edt]]

>add_scan_mode edt -single_cluster_chains on -edt_instance $edt_instance

2. Using chain families:

>register_attribute -name is_occ -obj_type scan_element -value_type boolean
>set_attribute_value [get_scan_elements -below_instances *_occ_*] -name is_occ
>create_scan_chain_family occ_chain -include_elements \

[get_scan_elements -filter is_occ]
>create_scan_chain_family not_occ -include_elements \

[get_scan_elements -filter !is_occ]
>set edt_instance [get_instances -of_icl_instances \

[get_icl_instances -filter tessent_instrument_type==mentor::edt]]
>add_scan_mode edt -include_chain_families {occ_chain not_occ} \

-edt_instance $edt_instance

Unwrapped Cores Versus Wrapped Cores
Unwrapped cores are physical blocks that do not contain wrapper cells. Wrapped cores are
physical blocks that contain wrapper cells. Wrapped cores are used for the RTL and scan DFT
insertion flow for hierarchical designs.
For more information, refer to “Tessent Shell Flow for Hierarchical Designs” in the Tessent
Shell User’s Manual.

For unwrapped cores, the tool performs scan insertion as a single view of the core. For wrapped
cores, scan insertion in performed for two views of the core: internal mode and external mode.
During scan insertion, the wrapper cells get stitched into separate scan chains called wrapper
chains. The logic inside the wrapper chains is called the internal mode of the core, and the logic
outside the wrapper chains is called external mode of the core.

The following figure shows an unwrapped core and a wrapped core.

Tessent™ Scan and ATPG User’s Manual, v2022.4222

Internal Scan and Test Circuitry Insertion
Pre-Existing Scan Segments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-7. Unwrapped Core Versus Wrapped Core

Wrapper cells may be of type dedicated cell or shared wrapper cell with functional flop.

Use a wrapped core if the ATPG patterns that are generated are to be retargeted at the next
parent level where the core is instantiated. Wrapped cores are also necessary when a number of
wrapped cores are combined or grouped at the next parent level to generate ATPG patterns.

If you are not going to retarget the ATPG patterns, then an unwrapped core may be sufficient.

For details about pattern retargeting, refer to “Scan Pattern Retargeting.”

Pre-Existing Scan Segments
A scan segment is a portion of scan chain that exists inside lower level instances or sub-
modules. The segment may be confined to one instance of a module or it may span multiple
module instances. The unconnected scan input and scan output of the scan segment are at the
boundaries of the lower level sub-modules. The tool concatenates pre-existing scan segments
with other scan elements during analyze_scan_chains to form new scan chains.
You must specify the scan input, scan output, and scan enable pins for each pre-existing scan
segment. The pins specified with the add_scan_segments command (such as scan in, scan out,
clocks, and scan enable) do not have to be pins on a single module instance. In addition to
stitching the segment into a chain by connecting the scan_in and scan_out, the tool connects the
scan_enable port to the appropriate signal depending on the type of scan chain. If a connection
to the port already exists, the tool removes and replaces that connection as previously described.

Note
For scan_segments that are part of a Tessent OCC (as defined by the ICL), the tool assumes
the existing connection to be correct and therefore does not modify it.

Internal Scan and Test Circuitry Insertion
Pre-Existing Scan Segments

Tessent™ Scan and ATPG User’s Manual, v2022.4 223

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You must describe scan segments using one of the following methods:

• Using tcd_scan:

You can describe the scan segment using the input tcd_scan file of the sub-module. The
complete syntax of the input tcd_scan file appears in the Scan section of the Tessent
Shell Reference Manual. This method is independent of the dofile and requires only that
the tcd_scan file be read in along with the design. This works well for IPs that come with
pre-existing scan segments or for memories that have built-in bypass scan chains.

This example demonstrates reading in a TCD file:

>set_context dft -scan -hierarchical_scan_insertion
>read_cell_library ../library/adk.tcell_library
>read_verilog ../from_synthesis/piccpu.v
>set_design_sources -format tcd_scan -Y ../for_sub_modules -extensions tcd_scan
>set_current_design piccpu

The following is a sample tcd_scan file:

Core(display_header_sync__10) {
 Scan {
 allow_internal_pins : 1;
 is_hard_module : 1;
 internal_scan_only : 0;
 Mode(mode1) {
 type : unwrapped;
 traceable : 1;
 ScanChain {
 length : 8;
 scan_in_clock : ~cmp_gclk;
 scan_out_clock : cmp_rclk;
 scan_in_port : ts_si[0];
 scan_out_port : ts_so[0];
 }
 ScanEn(scan_en) {
 active_polarity : all_ones;
 }
 Clock(cmp_gclk) {
 off_state : 1'b0;
 }
 Clock(cmp_rclk) {
 off_state : 1'b0;
 }
 }
 }
}

• Using add_scan_segments:

In every design where sub-modules with pre-existing scan segment are present, you
must use the add_scan_segments command to describe those scan segments. You must
also provide a load/unload testproc file to aid the tool in tracing these sub chains.

Tessent™ Scan and ATPG User’s Manual, v2022.4224

Internal Scan and Test Circuitry Insertion
Pre-Existing Scan Segments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example using add_scan_segments:

>dofile trace.testproc
>add_scan_segments mychain1 -length 8 -on_module display_header_sync__10 \

-si_connections ts_si[0] -so_connections ts_so[0] \
-clock_pins {cmp_gclk cmp_rclk} -clock_update_edges {trailing leading} \
-scan_enable_pins scan_en -scan_enable_inversion false

For unconfined scan segments, you must define all necessary clock and enable signals such that
the tool can trace the scan path through the scan segment. Doing this provides the tool all the
necessary information to identify the specific memory elements for proper X-bounding and
wrapper analysis, and to determine the scan in and scan out pins. The tool then includes the scan
segment information in the ScanDEF file.

In the next example, the scan segment goes through a lower level module, blockA_level1_i1.
The clock and enable pins are defined at the input of each flop. If your design has a common
buffer driving all the pins you can define the clock using the output of the buffer.

Figure 6-8. Unconfined Scan Chains

add_scan_segments unconfined_segment1
 -length 3 \
 -si_connection blockA_i1/sff_1/SI \
 -so_connection blockA_i1/blockA_level1_i1/scan_out1 \
 -clock_pins {blockA_i1/buf_clk/Y} \
 -scan_enable_pins { blockA_i1/sff_1/SE |
 blockA_i1/blockA_level1_i1/sff_1/SE \
 blockA_i1/blockA_level1_i1/blockA_level2_i1/sff_1/SE }

Internal Scan and Test Circuitry Insertion
Verification of Pre-Existing Scan Segments

Tessent™ Scan and ATPG User’s Manual, v2022.4 225

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool writes the traced scan segment as an ordered section in the ScanDEF file:

+ ORDERED
 blockA_i1/sff_1 (IN SI) (OUT Q)
 blockA_i1/blockA_level1_i1/sff_1 (IN SI) (OUT Q)
 blockA_i1/blockA_level1_i1/blockA_level2_i1/sff_1 (IN SI) (OUT Q
)

Note
When your design has unconfined scan segments, you must not use the
“add_scan_segments -no_trace on” option. Without tracing, the tool treats all elements

inside the scan segment container as part of the chain, which omits elements when the segment
spans multiple instances. Tracing the segment enables the tool to properly identify the complete
list of instances in the segment as well as the scan in and scan out pins along the path.

Verification of Pre-Existing Scan Segments
When a gate level Verilog module or a library model (either Tessent or `celldefine) includes
scan segments that are described manually in a tcd_scan file, then the descriptions in the
tcd_scan file can be verified with the verify_tcd_scan command.
The verify_tcd_scan command checks the syntax of the tcd_scan file and verifies that all
existing scan segments specified in the tcd_scan file are traceable.

This verification is intended for manually-created simple tcd_scan files required as inputs for
scan stitching. This works well for testing IPs that come with pre-existing scan segments or for
memories that have built-in bypass scan chains. Do not use it to verify TCD files that are
generated by Tessent scan stitching tools. If the tcd_scan file includes multiple cores or multiple
scan modes they will need to be tested one by one, specifying which core and which mode to
test each time.

Note
The command does not support modules of type “OCC” that may require a test setup
procedure for correct tracing. It also does not support verification of chains in cores that are

connected to an EDT instance. These chains are assumed to be stitched and are automatically
verified during scan stitching at the parent level. The tool only verifies scan segments that are
connected to the boundary of the container.

Note
verify_tcd_scan creates a top-level wrapper module that instantiates the model or module
being tested. This is automatically done by the tool, and at the end of the successful

verification process, it is deleted. This entire process is transparent to the user, however if
unfixable tracing errors are found the tool will keep the top-level wrapper to allow debug of the
tracing errors.

Tessent™ Scan and ATPG User’s Manual, v2022.4226

Internal Scan and Test Circuitry Insertion
Pre-Existing Scan Chains

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

During the process of verifying the tcd_scan file the tool will automatically identify and warn
about some small discrepancies. The discrepancies can be fixed in a newly created tcd_scan file
by using the “-output” switch.

Example
This example demonstrates the verification of a tcd_scan file:

>set_context dft -scan -hierarchical_scan_insertion

>read_cell_library ../library/adk.tcell_library

>read_verilog ../from_synthesis/piccpu.v

>verify_tcd_Scan –tcd_scan piccpu.tcd_scan

The following is a sample tcd_scan file generated by the verify_tcd_scan command:

Core(display_header_sync__10) {
 Scan {
 allow_internal_pins : 1;
 is_hard_module : 1;
 internal_scan_only : 0;

Mode(mode1) {
 type : unwrapped;
 traceable : 1;
 ScanChain {
 length : 8;
 scan_in_clock : ~cmp_gclk;
 scan_out_clock : cmp_rclk;
 scan_in_port : ts_si[0];
 scan_out_port : ts_so[0];
 }
 ScanEn(scan_en) {
 active_polarity : all_ones;
 }
 Clock(cmp_gclk) {
 off_state : 1'b0;
 }
 Clock(cmp_rclk) {
 off_state : 1'b0;
 }
 }
 }
}

Pre-Existing Scan Chains
If pre-existing scan chains are already connected to the module boundaries where scan insertion
needs to be performed, you must connect them to any existing EDT IP already in the pre-scan
netlist.
If the pre-existing scan chains are not connected to the EDT IP, those scan chains exist in all the
scan modes specified using the add_scan_mode command and also remain as uncompressed

Internal Scan and Test Circuitry Insertion
Pre-Existing Scan Chains

Tessent™ Scan and ATPG User’s Manual, v2022.4 227

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

scan chains even in EDT mode. The pre-existing scan chains do not automatically get connected
to the EDT IP.

If pre-existing scan chains are present in the design and you decide to connect them to the EDT
IP, make sure to build the bypass inside the EDT IP for these pre-existing scan chains to be
included along with the bypass (multi chain bypass, single chain bypass, or both).

Once the pre-existing scan chains are connected to the EDT IP, these chains need to be declared
using add_scan_chains command, and the tool requires a test procedure file with load/unload
and shift procedures. If the design needs to be set up in a specific state for the scan chains to be
traced, then the tool also requires a test_setup procedure.

The following example illustrates specifying pre-existing scan chains after connecting to EDT
IP:

>add_scan_group grp1 chain_trace.testproc
>add_scan_chains -internal my_chain0 grp1 \

corea_gate1_tessent_edt_c1_inst/edt_scan_in[0] \
corea_gate1_tessent_edt_c1_inst/edt_scan_out[0]

>add_scan_chains -internal my_chain1 grp1 \
corea_gate1_tessent_edt_c1_inst/edt_scan_in[1] \
corea_gate1_tessent_edt_c1_inst/edt_scan_out[1]

Tessent™ Scan and ATPG User’s Manual, v2022.4228

Internal Scan and Test Circuitry Insertion
Preparation for Test Structure Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Preparation for Test Structure Insertion
You must complete a series of steps to prepare for the insertion of test structures into your
design. When the tool invokes, you are in setup mode by default. All of the setup steps shown in
the following subsections occur in setup mode.
Test Logic Insertion . 228
User Clock Signals . 232
How to Specify Existing Scan Information . 233
How to Handle Existing Boundary Scan Circuitry . 235
How to Run Rules Checking . 236
How to Manually Include and Exclude Cells for Scan. 236
Cell Library Models With Multiple Scan Paths . 238
Automatic Recognition of Existing Shift Registers. 240
Scan Cell Identification and Reporting . 243
DFT Test Logic Attributes no_control_point and no_observe_point 243

Test Logic Insertion
Test logic is circuitry that the tool adds to improve the testability of a design. If so enabled, the
tool inserts test logic during scan insertion based on the analysis performed during the design
rules and scannability checking processes.
Test logic provides a useful solution to a variety of common problems. First, some designs
contain uncontrollable clock circuitry—that is, internally-generated signals that can clock, set,
or reset flip-flops. If these signals remain uncontrollable, the tool does not consider the
sequential elements controlled by these signals scannable. Second, you might want to prevent
bus contention caused by tri-state devices during scan shifting.

Tessent Scan can assist you in modifying your circuit for maximum controllability (and thus,
maximum scannability of sequential elements) and bus contention prevention by inserting test
logic circuitry at these nodes when necessary.

Note
Tessent Scan does not attempt to add test logic to user-defined non-scan instances or
models; that is, those specified by the add_nonscan_instances command.

Tessent Scan typically gates the uncontrollable circuitry with a chip-level test pin. Figure 6-9
shows an example of test logic circuitry.

Internal Scan and Test Circuitry Insertion
Test Logic Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 229

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-9. Test Logic Insertion

You can specify which signals to insert test logic on with set_test_logic.

You can add test logic to all uncontrollable (set, reset, clock, or RAM write control) signals
during the scan insertion process. By default, Tessent Scan does not add test logic. You must
explicitly enable the use of test logic with this command.

In adding the test logic circuitry, the tool performs some basic optimizations in order to reduce
the overall amount of test logic needed. For example, if the reset line to several flip-flops is a
common internally-generated signal, the tool gates it at its source before it fans out to all the
flip-flops.

Note
You must turn the appropriate test logic on if you want the tool to consider latches as scan
candidates. Refer to “D6” in the Tessent Shell Reference Manual for more information on

scan insertion with latches.

If your design uses bidirectional pins as scan I/Os, the tool controls the scan direction for the
bidirectional pins for correct shift operation.

This can be specified with set_bidi_gating. If the enable signal of the bidirectional pin is
controlled by a primary input pin, then the tool adds a “force” statement for the enable pin in the
new load_unload procedure to enable/disable the correct direction. Otherwise, the tool inserts
gating logic to control the enable line. The gate added to the bidirectional enable line is either a
2-input AND or OR. By default, no bidirectional gating is inserted and you must make sure that
the inserted scan chains function properly by sensitizing the enable lines of any bidirectional
ports in the scan path.

There are four possible cases between the scan direction and the active values of a tri-state
driver, as shown in the following table. The second input of the gate is controlled from the

Tessent™ Scan and ATPG User’s Manual, v2022.4230

Internal Scan and Test Circuitry Insertion
Test Logic Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

scan_enable signal, which might be inverted. You need to specify AND and OR models through
the cell_type keyword in the ATPG library or use the add_cell_models command.

If you enable the gating of bidirectional pins, the tool controls all bidirectional pins. The
bidirectional pins not used as scan I/Os are put into input mode (Z state) during scan shifting by
either “force” statements in the new load_unload procedure or by using gating logic.

The tool adds a “force Z” statement in the test procedure file for the output of the bidirectional
pin if it is used as scan output pin. This ensures that the bus is not driven by the tristate drivers
of both bidirectional pin and the tester at the same time.

How to Specify the Models to use for Test Logic
When adding test logic circuitry, the tool uses a number of gates from the library. The cell_type
attribute in the library model descriptions tells the tool which components are available for use
as test logic.

If the library does not contain this information, you can instead specify which library models to
use with the add_cell_models command.

Alternately, you can use the dft_cell_selection keyword to specify the library models. For more
information about dft_cell_selection, see “Cell Selection” in the “How to Define a Cell Library”
section of the Tessent Cell Library Manual.

Note
Tessent Scan treats any Verilog module enclosed in ̀ celldefine and ̀ endcelldefine directives
as a library cell and prevents any logic changes to these modules.

Power Domains and Cell Selections
The tool automatically sets the “power_domain_name” and “power_domain_island” attributes
on the design objects when reading Unified Power Format (UPF) and Common Power Format
(CPF) files. These are read-only inherited attributes and are available on the top-level module
and instances of the design (the power_domain_name attribute is also available on net, port, and
pin objects).

Table 6-1. Scan Direction and Active Values
Driver Scan Direction Gate Type
active high input AND
active high output OR
active low input OR
active low output AND

Internal Scan and Test Circuitry Insertion
Test Logic Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 231

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The power_domain_name attribute indicates the name of the power domain for the
design object.

• The power_domain_island attribute provides a unique label to identify all design objects
across the hierarchy that share a common power domain without crossing other power
domains.

If you specify a power domain directly on adjacent library cells instead of a hierarchical
instance, the tool places them in a common power domain island (instead of each getting their
own), as shown by power_domain_island green.3 in the following figure.

Figure 6-10. power domain name and power domain island

The tool assigns the power_domain_name and power_domain_island attributes for dedicated
wrapper cells (DWCs) according to the power domains of the immediate (non-buffer and non-
inverter) gates in the fan-in or fanout of each DWC.

Issues Concerning Test Logic Insertion and Test Clocks
Because inserting test logic actually adds circuitry to the design, you should first try to increase
circuit controllability using other options. These options might include such things as
performing proper circuit setup or, potentially, adding test points to the circuit prior to scan.
Additionally, you should re-optimize a design to ensure that fanout resulting from test logic is
correctly compensated and passes electrical rules checks.

In some cases, inserting test logic requires the addition of multiple test clocks. Analysis run
during DRC determines how many test clocks the tool needs to insert. The report_scan_chains
command reports the test clock pins used in the scan chains.

Tessent™ Scan and ATPG User’s Manual, v2022.4232

Internal Scan and Test Circuitry Insertion
User Clock Signals

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Related Test Logic Commands
Use these commands to delete and report cell models and report test added logic:

• delete_cell_models — Deletes the information specified by the add_cell_models
command.

• report_cell_models — Displays a list of library cell models to be used for adding test
logic circuitry.

• report_test_logic — Displays a list of test logic added during scan insertion.

User Clock Signals
Tessent Scan must be aware of the circuit clocks to determine which sequential elements are
eligible for scan. The tool considers clocks to be any signals that have the ability to alter the
state of a sequential device (such as system clocks, sets, and resets).
Therefore, you need to tell the tool about these clock signals by adding them to the clock list
with the add_clocks command.

Note
To avoid possible DRC issues, always declare clocks at the output ports of clock modules
rather than inside them.

With this command, you must specify the off-state for pins you add to the clock list. The off-
state is the state in which clock inputs of latches are inactive. For edge-triggered devices, the off
state is the clock value prior to the clock’s capturing transition.

For example, you might have two system clocks, called “clk1” and “clk2”, whose off-states are
0 and a global reset line called “rst_l” whose off-state is 1 in your circuit. You can specify these
as clock lines as follows:

SETUP> add_clocks 0 clk1 clk2

SETUP> add_clocks 1 rst_1

You can specify multiple clock pins with the same command if they have the same off-state.
You must define clock pins prior to entering analysis mode. Otherwise, none of the non-scan
sequential elements can pass through scannability checks. Although you can still enter analysis
mode without specifying the clocks, the tool is unable to convert elements that the unspecified
clocks control.

Note
If you are unsure of the clocks within a design, you can use the analyze_control_signals
command to identify and then define all the clocks. It also defines the other control signals

in the design.

Internal Scan and Test Circuitry Insertion
How to Specify Existing Scan Information

Tessent™ Scan and ATPG User’s Manual, v2022.4 233

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• delete_clocks — Deletes primary input pins from the clock list.

• report_clocks — Displays a list of all clocks.

• report_primary_inputs — Displays a list of primary inputs.

• write_primary_inputs — Writes a list of primary inputs to a file.

How to Specify Existing Scan Information
You may have a design that already contains some existing internal scan circuitry. For example,
one block of your design may be reused from another design, and thus, may already contain its
own scan chain. You may also have used a third-party tool to insert scan before invoking the
tool. If either of these is your situation, there are several ways in which you may want to handle
the existing scan data, including, leaving the existing scan alone or adding additional scan
circuitry.
If your design contains existing scan chains that you want to use, you must specify this
information to the tool while you are in setup mode; that is, before design rules checking. If you
do not specify existing scan circuitry, the tool treats all the scan cells as non-scan cells and
performs non-scan cell checks on them to determine if they are scan candidates.

Common methodologies for handling existing scan circuitry include:

• Use Pre-Existing Scan Segments.

• Use Pre-Existing Scan Chains.

The remainder of this section includes details related to these methodologies.

How to Specify Existing Scan Groups
A scan chain group consists of a set of scan chains that are controlled through the same
procedures; that is, the same test procedure file controls the operation of all chains in the group.

If your design contains existing scan chains, you must specify the scan group to which they
belong, as well as the test procedure file that controls the group. To specify an existing scan
group, use the add_scan_groups command.

For example, you can specify a group name of “group1” controlled by the test procedure file
“group1.test_proc” as follows:

SETUP> add_scan_groups group1 group1.test_proc

For information on creating test procedure files, refer to “Test Procedure Files” on page 105.

Tessent™ Scan and ATPG User’s Manual, v2022.4234

Internal Scan and Test Circuitry Insertion
How to Specify Existing Scan Information

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Specify Existing Scan Chains
After specifying the existing scan group, you need to communicate to the tool which scan
chains belong to this group. To specify existing scan chains, use the add_scan_chains
command.

You need to specify the scan chain name, the scan group to which it belongs, and the primary
input and output pins of the scan chain. For example, assume your design has two existing scan
chains, “chain1” and “chain2”, that are part of “group1”. The scan input and output pins of
chain1 are “sc_in1” and “sc_out1”, and the scan input and output pins of chain2 are “sc_in2”
and “sc_out2”, respectively. You can specify this information as follows:

SETUP> add_scan_chains chain1 group1 sc_in1 sc_out1

SETUP> add_scan_chains chain2 group1 sc_in2 sc_out2

How to Specify Existing Scan Cells
If the design has existing scan cells that are not stitched together in a scan chain, you need to
identify these cells for Tessent Scan. (You cannot define scan chains if the scan cells are not
stitched together.) This situation can occur if scan cells are used in the functional design to
provide actual timing.

Additionally, defining these existing scan cells prevents the tool from performing possibly
undesirable default actions, such as scan cell mapping and generation of unnecessary mux gates.

New Scan Cell Mapping
If you have existing scan cells, you must identify them as such to prevent the tool from
classifying them as replaceable by new scan cells. One or the other of the following criteria is
necessary for the tool to identify existing scan cells and not map them to new scan cells:

• Criterion (a) — Declare the “data_in = <port_name>” in the scan_definition section of
the scan cell’s model in the ATPG library.

If you have a hierarchy of scan cell definitions, where one library cell can have another
library cell as its scan version, using the data_in declaration in a model causes the tool to
consider that model as the end of the scan definition hierarchy so that no mapping of
instances of that model occurs.

Note
It is not recommended that you create a hierarchy of scan cell model definitions. If,
for instance, your data_in declaration is in the scan_definitions section of the third

model in the definitions hierarchy, but the tool encounters an instance of the first model
in the hierarchy, it replaces the first model with the second model in the hierarchy, not
the intended third model.

Internal Scan and Test Circuitry Insertion
How to Handle Existing Boundary Scan Circuitry

Tessent™ Scan and ATPG User’s Manual, v2022.4 235

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Criterion (b) — The scan enable port of the instance of the cell model must be either
dangling or tied (0 or 1) or pre-connected to a global scan enable pin(s). In addition, the
scan input port must be dangling or tied or connected to the cell’s scan output port as a
self loop or a self loop with (multiple) buffers or inverters.

Dangling implies that there are no connected fan-ins from other pins except tied pins or
tied nets. To identify an existing (global) scan enable, use the set_scan_signals
command.

Issue the set_scan_signals command before the insert_test_logic command.

Additional Mux Gates
Another consequence of not specifying existing scan cells is the addition of unnecessary
multiplexers, creating an undesirable area and routing overhead.

If you use criterion (a) as the means of preventing scan cell mapping, the tool also checks the
scan enable and scan in ports. If either one is driven by system logic, then the tool inserts a new
mux gate before the data input and uses it as a mux in front of the preexisting scan cell. (This is
only for mux-DFF scan; this mux is not inserted for clocked_scan types of scan.)

If you use a criterion (b), regardless of whether you use criterion (a), as the means of preventing
scan cell mapping, the tool does not insert a mux gate before the data input.

Once the tool can identify existing scan cells, they can be stitched into scan chains in the normal
scan insertion process.

How to Handle Existing Boundary Scan Circuitry
If your design contains pre-existing boundary scan circuitry and pre-existing internal scan
circuitry, you must integrate the boundary scan circuitry with the internal test circuitry.
Boundary scan segments are often inserted at the top level and consist of multiple boundary
cells linked together. When you use Tessent Boundary Scan and Tessent Scan for insertion and
stitching, information is automatically available for the tools to identify and connect the test
instruments. For more information, see the Tessent Boundary Scan User’s Manual.

If you have a complex design or you use third-party tools for boundary scan or scan insertion,
you must identify the scan segments and ensure proper connection of the scan chains’ scan_in
and scan_out ports to the TAP controller. You specify the scan in, scan out, clocks, and scan
enable pins using the add_scan_segments command. See “Pre-Existing Scan Segments” on
page 222 for additional information and relevant examples.

Tessent™ Scan and ATPG User’s Manual, v2022.4236

Internal Scan and Test Circuitry Insertion
How to Run Rules Checking

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Run Rules Checking
Tessent Scan performs model flattening, learning analysis, rules checking, and scannability
checking when you try to exit the setup system mode.
“Common Tool Terminology and Concepts” on page 91 explains these processes in detail. If
you are finished with all the setup you need to perform, you can change the system mode by
entering the set_system_mode command as follows:

SETUP> set_system_mode analysis

You can also do change the system mode by entering the check_design_rules command as
follows:

SETUP> check_design_rules

How to Manually Include and Exclude Cells for
Scan

Regardless of what type of scan you want to insert, you can manually specify instances or
models to either convert or not convert to scan. Tessent Scan uses lists of scan cell candidates
and non-scan cells when it selects which sequential elements to convert to scan. You can add
specific instances or models to either of these lists. When you manually specify instances or
models to be in these lists, these instances are called user-class instances. System-class
instances are those Tessent Scan selects. The following subsections describe how you
accomplish this.

Cells Without Scan Replacements
When Tessent Scan switches from setup to analysis mode, it issues warnings when it encounters
sequential elements that have no corresponding scan equivalents. Tessent Scan treats elements
without scan replacements as non-scan models and automatically adds them as system-class
elements to the non-scan model list.

You can display the non-scan model list using the report_nonscan_models or
report_scan_elements command.

How to Specify Non-Scan Components
Tessent Scan keeps a list of which components it must exclude from scan identification and
replacement.

To exclude particular instances from the scan identification process, you use the
add_nonscan_instances command.

Internal Scan and Test Circuitry Insertion
How to Manually Include and Exclude Cells for Scan

Tessent™ Scan and ATPG User’s Manual, v2022.4 237

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For example, you can specify that I$155/I$117 and /I$155/I$37 are sequential instances you do
not want converted to scan cells as follows:

SETUP> add_nonscan_instances /I$155/I$117 /I$155/I$37

Another method of eliminating some components from consideration for scan cell conversion is
to specify that certain models should not be converted to scan. To exclude all instances of a
particular model type, you can use the add_nonscan_instances command.

For example, the following command would exclude all instances of the dff_3 and dff_4
components from scan cell conversion.

SETUP> add_nonscan_instances -instances dff_3 dff_4

Note
Tessent Scan automatically treats sequential models without scan equivalents as non-scan
models, adding them to the non-scan model list.

How to Specify Scan Components
After you decide which specific instances or models you do not want included in the scan
conversion process, you are ready to identify those sequential elements you do want converted
to scan. The instances you add to the scan instance list are called user-class instances.

To include particular instances in the scan identification process, use the add_scan_instances
command. This command lets you specify individual instances, hierarchical instances (for
which all lower-level instances are converted to scan), or control signals (for which all instances
controlled by the signals are converted to scan).

For example, the following command ensures that instances “/I$145/I$116” and “/I$145/I$138”
are converted to scan cells when Tessent Scan inserts scan circuitry.

SETUP> add_scan_instances /I$145/I$116 /I$145/I$138

To include all instances of a particular model type for conversion to scan, use the
add_scan_instances command. For example, the following command ensures the conversion of
all instances of the component models dff_1 and dff_2 to scan cells when Tessent Scan inserts
scan circuitry.

SETUP> add_scan_instances -instances dff_1 dff_2

Related Scan and Nonscan Commands
In addition to commands mentioned in previous sections, the following commands are useful
when working with scan and nonscan instances:

• delete_nonscan_instances — Deletes instances from the non-scan instance list.

• delete_scan_instances — Deletes instances from the scan instance list.

Tessent™ Scan and ATPG User’s Manual, v2022.4238

Internal Scan and Test Circuitry Insertion
Cell Library Models With Multiple Scan Paths

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• report_nonscan_models — Displays the models in the non-scan instance list.

• report_scan_elements — Displays information and testability data for sequential
instances.

• report_scan_models — Displays models in the scan model list.

Cell Library Models With Multiple Scan Paths
Tessent Scan natively supports library models with multiple scan paths. Each scan path must be
defined in the library model using a specific vector format for the parser to identify them
properly.
The format is illustrated in the following example. For more information, see Example Scan
Definitions in the Tessent Cell Library Manual.

 model lff2
 (CLK, D1, D2,
 D3, D4, Q1, Q2,
 Q3, Q4, SI1, SI2,
 SE1, SE2, SO1, SO2)
 (
 input (CLK) (posedge_clock;)
 input (D1) ()
 input (D2) ()
 input (D3) ()
 input (D4) ()
 input (SI1) (scan_in[0];)
 input (SI2) (scan_in[1];)
 input (SE1) (scan_enable[0];)
 input (SE2) (scan_enable[1];)
 output (Q1) ()
 output (Q2) ()
 output (Q3) () output (Q4) ()
 output (SO1) (scan_out[0];)
 output (SO2) (scan_out[1];)
 (
 // subchain-1
 primitive = _mux (D1, SI1, SE1, n1);
 primitive = _dff (, , CLK, n1, Q1, n2);
 primitive = _mux (D2, n2, SE1, n3);
 primitive = _dff (, , CLK, n3, Q2, SO1);

 // subchain-2
 primitive = _mux (D3, SI2, SE2, n4);
 primitive = _dff (, , CLK, n4, Q3, n5);
 primitive = _dff (, , CLK, n5, Q4, SO2);
)
)

Internal Scan and Test Circuitry Insertion
Cell Library Models With Multiple Scan Paths

Tessent™ Scan and ATPG User’s Manual, v2022.4 239

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool reports any modeling problems that prevent shifting data in the scan path during library
parsing when you run the set_current_design command. For example:

// command: set_current_design
// Warning: Input pin #2 (1st is 1) of primitive instance 'm2' (primitive
// type '_mux') inside model 'lff' is floating. TieXing that input.

Cell scan paths successfully identified by the parser, that are not specified as segments via the
add_scan_segments command, are automatically identified as scan_elements (of type leaf_cell)
by the tool during system mode transition from SETUP to ANALYSIS. Each scan path infers a
leaf_cell object uniquely identified by prepending leaf_cell#<scan_path_index> to the path
name of its cell instance. For example:

// command: report_scan_elements

==

name type length si_so_clocks state is_non_scannable_reason

-------------- --------- ------ ------------ ------ -----------------------

leaf_cell#0/U1 leaf_cell 1 +CK usable --

leaf_cell#1/U1 leaf_cell 1 +CK usable --

leaf_cell#0/U2 leaf_cell 1 +CK usable --

leaf_cell#1/U2 leaf_cell 1 +CK usable --

Please note that if you choose to define the multiple scan paths on a library cell by using the
add_scan_segments command (instead of using the native support), then the scan segments of
every instantiated library cell are traced during DRC to verify their shifting ability, resulting in
higher memory usage and longer run time.

The scan path information from the library cell model will be ignored as soon as you declare
any segments for that library cell using the add_scan_segments command or via TCD. This
means that you must either use the information from the library cell model, or declare all the
scan paths within that model via add_scan_segments commands.

The tool compares the user-specified scan segment declarations to those identified by the library
parser and reports any discrepancies in the specifications as warning messages. Here are some
examples:

// Warning: The existing scan segment between the scan-input pin 'SI1'

// and scan-output pin 'SO1' on library model 'lff2' may need to be

/ declared via add_scan_segments command.

// Warning: The tool-identified length, 2, of the existing scan segment
// with scan-out pin 'SO2' on library model 'lff2' differs from the user-
// specified length, '7', for the existing scan segment
// 'sch1/lff2_u1/SO2'.

// Warning: The tool-identified scan-in pin, SI2, of the existing scan
// segment with scan-out pin 'SO2' on library model 'lff2' differs from
// the user-specified scan-in pin, 'SI1', for the existing scan segment
// 'sch1/lff2_u1/SO2'.

Tessent™ Scan and ATPG User’s Manual, v2022.4240

Internal Scan and Test Circuitry Insertion
Automatic Recognition of Existing Shift Registers

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

While the scan_enable and clock ports are generally shared across all scan paths of a library
cell, the tool also supports each scan path having its own scan_enable port and clock port. Scan
paths of cells requiring multiple clock or scan_enable ports must be declared manually using the
add_scan_segments command.

Automatic Recognition of Existing Shift Registers
Tessent Scan automatically identifies the shift register structures in the input netlist and tries to
preserve their original connections (shift orders) when they are stitched into scan chains. In this
attempt, Tessent Scan converts only the first flip-flop of a shift register into a scan cell (if
originally a nonscan cell), and preserves the remaining flip-slops in the shift register as nonscan
(or replaces them with nonscan cells if originally scan cells).
This approach has several potential benefits such as the reduction of scan cells in the design,
and therefore fewer scan path muxes, and the better locality of scan path connections due to the
preservation of functional connections.

The following sections describe the process by which Tessent Scan identifies and converts scan
cells.

Shift Registers Identification
Tessent Scan identifies shift registers by performing a structural backward tracing in the
flattened model of the design.

The tracing starts from the data pin of the _dff primitive of a sequential cell and ends at the
output pin of the _dff primitive of another sequential cell. The tracing continues only on a single
sensitized path. The sensitization path of a combinational logic gate in the tracing path is
checked based on the state-stability values calculated by the tool during DRC rule checking.
When “-ALLOW_COMBINATIONAL_logic_between_registers Off ” is specified with the
set_shift_register_identification command, the state-stability values between library cells are
ignored during tracing. As a result, multiple-input gates (AND, OR, MUX, and so on) between
sequential cells cannot be traced during shift register identification. Single-input gates (BUF
and INV), on the other hand, can always be traced. Multiple-input gates inside of library cells
can always be traced provided that a sensitized path exists. This switch is Off, by default.

Multibit cells may be included in shift registers if their internal structure is such that the data
path connects all internal flops in the same order that they are connected when the scan enable
pin is active. However, no external components (such as AND or OR gates or external flops)
may be connected between internal flops of the multibit cell.

Note
The multibit cell may include combinational logic between internal flops as long as the
combinational logic is part of the multibit cell.

Internal Scan and Test Circuitry Insertion
Automatic Recognition of Existing Shift Registers

Tessent™ Scan and ATPG User’s Manual, v2022.4 241

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Multislice cells (cells that have multiple scan_out pins) may be used as the first cell in a
shift register but they are not allowed in the middle or tail of a shift register.

The identification occurs when switching to analysis mode, after DRC rule checking is
completed, as indicated in the following transcript.

// --
// Begin shift register identification process for 9971 sequential
// instances.
// --
// Number of shift register flops recorded for scan insertion: 3798
// (38.09%)
// Number of shift registers recorded for scan insertion: 696
// Longest shift register has 15 flops.
// Shortest shift register has 2 flops.
// Potential number of nonscan flops to be converted to scan cells: 696
// Potential number of scan cells to be converted to nonscan flops: 25

Shift register identification assumes the following:

1. Flip-flops that constitute a shift register use the same clock signal.

2. Multiple clock edges are permitted in the shift register structure as long as no lockup
cells are required (no TE-LE transitions occur). When lockup cells are required (as in
LE-TE transitions), the tool breaks the shift register at this location.

3. Both nonscan and scan flip-flops are considered for identification. However, every
nonscan flip-flop should have a mapping scan flip-flop model in the ATPG library. In
addition, a scan flip-flop should satisfy the following requirements:

o Its scan input pin is not functionally driven (either dangling or tied to a constant, or
looped back from Q/QB output).

o Its scan enable pin is not functionally driven, and is tied to a constant signal to
sensitize the data input pin of the sequential cell such that this input is preserved as
the shift path. The scan enable pin is not considered functionally driven if a global
scan enable pin (defined using set_scan_signals -SEN) is the driver.

4. Shift registers with multiple branches are identified such that each branch is a separate
shift register. The flip-flops on the trunk are included in one of the branches.

5. Shift registers with sequential feedback loops are identified such that the first cell of the
shift register is determined by the tool either randomly or based on the availability of the
scan cell in the loop.

Note
Shift register identification does not include cells that are defined with `celldefine.

Tessent™ Scan and ATPG User’s Manual, v2022.4242

Internal Scan and Test Circuitry Insertion
Automatic Recognition of Existing Shift Registers

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Chain Stitching
Non-scan flip-flops are replaced with their scan-equivalent flip-flops before stitching them into
scan chain structures. The identified shift register flip-flops are handled as follows.

1. The first flip-flop is replaced with the equivalent scan flip-flop. If the first flip-flop is
originally a scan flip-flop, it is preserved as is.

2. All remaining flip-flops are preserved as nonscan. If they are originally scan flip-flops,
they are converted into nonscan flip-flops.

Note
When all cells identified in the shift registers are scan cells, the tool tries to unmap the non-
head cells to their non-scan cell equivalent. In some rare cases, there are no non-scan

mappings for these shift register cells; for such cases, the tool connects their SI pins to their D
pins, and their SE pins to the SEs of the head register cells.

After performing the scan chain insertion, the report_shift_registers command may list fewer
and shorter shift registers than what were originally identified by switching to analysis mode.
When placing a shift register into a scan chain, it may be cut to a required length to satisfy the
specified/calculated scan chain length, or to satisfy various distribution constraints such as
cluster and power domains.

The tool skips stitching of the flip-flops inside a shift register structure but performs the
following connections:

1. The scan input pin of the first flip-flop.

2. The scan enable pin of the first flip-flop.

3. The scan output pin of the last flip-flop. The tool determines the scan output pin on the
last flip-flop by checking the load on the Q and QN ports.

How to Report Shift Registers
You may want to report shift registers in the design. To display this information, you use the
report_shift_registers command. This command reports the identified shift registers in the
design after switching to analysis mode. The tool tries to preserve the original connections
inside the identified shift. For each identified shift register, this command reports the following
information:

• Length.

• Hierarchical path where the shift register flip-flops reside.

• First and last flip-flop instance name unless the -verbose switch is specified in which
case all flip-flops in the shift registers are reported.

Internal Scan and Test Circuitry Insertion
Scan Cell Identification and Reporting

Tessent™ Scan and ATPG User’s Manual, v2022.4 243

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The report_scan_cells command can also report scan cells after the insert_test_logic command
runs. If any shift registers are identified in the netlist, a column is added to the report. The
column contains a tool-assigned shift register ID number and a cell number that indicates the
order in which the flip-flops are originally connected in the shift register structures.

Scan Cell Identification and Reporting
Once you complete the proper setup, the identification process for any of the test structures is
done automatically when you switch to analysis mode.
During the identification process, a number of messages may be issued about the identified
structures.

To identify the dedicated and shared wrapper cells, you can use the analyze_wrapper_cells
command.

Note
If you want to start the selection process anew each time, you must use the reset_state
command to clear the existing scan candidate list.

If you want a statistical report on all aspects of scan cell identification, you can enter the
report_statistics command. The report_statistics command lists the total number of sequential
instances, user-defined non-scan instances, user-defined scan instances, system-identified scan
instances, scannable instances with test logic, and the scan instances in preexisting chains
identified by the rules checker.

The report_scan_elements command displays information and testability data for sequential
instances.

DFT Test Logic Attributes no_control_point and
no_observe_point

Use the no_control_point and no_observe_point attributes to mark regions within the netlist that
you do not want the tool to touch while inserting test logic (including test points and fixes for
bidirectional, clock, and set/reset lines).

Note
The no_observe_point attribute prevents the addition of observe points at specific locations
within the design. The tool does not consider the no_observe_point attribute while

analyzing the clock network to identify the location to drive the clock port on an inserted
memory element, such as the flop associated with an observe point.

One common use model is to mark the entire netlist off-limits with the “set_attribute_value
-name no_control_point -value true” command at the top level, and then override this by

Tessent™ Scan and ATPG User’s Manual, v2022.4244

Internal Scan and Test Circuitry Insertion
DFT Test Logic Attributes no_control_point and no_observe_point

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

allowing test points for specific instances within the hierarchy with “set_attribute_value /block1
-name no_control_point -value false”.

The default attribute inheritance model works for this scenario. However, once you set the
attribute on the lower-level block (/block1 in this example), you do not have a way to reset to
the default behavior by searching up the hierarchy. The tool always uses the specified value
(true or false) for block1 and ignores the parent instances.

To get past this limitation, the inheritance model for the no_control_point and
no_observe_point attributes provides the ability to set them to true, false, or unspecified. This
means you can explicitly set the value for the block (/block1 in this example) to unspecified and
the tool traverses up the hierarchy looking for an explicitly specified value.

Example 1
Figure 6-11. Hierarchical Test Logic Insertion Example

Step 1: In this example, you first set the no_control_point attribute to true for the top module.
You then use the report_attributes command to get the value of the attribute at different
hierarchy levels.

set_attribute_value [get_instances] -name no_control_point -value true

{block1 block2 block3 ... }

SETUP> report_attributes block1

Internal Scan and Test Circuitry Insertion
DFT Test Logic Attributes no_control_point and no_observe_point

Tessent™ Scan and ATPG User’s Manual, v2022.4 245

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Attribute Definition Report

Attributes defined for object 'block1':
Name Value Inheritance
------------------ -------------------- -----------
...
...
...
no_control_point true -
no_control_reason explicitly_specified -
...
...

SETUP> report_attributes block1/block2

Attribute Definition Report

Attributes defined for object 'block1/block2':
Name Value Inheritance
------------------- -------------------- -----------
...
...
...
no_control_point true -
no_control_reason explicitly_specified -
...

Step 2: The next command allows test logic insertion inside block1 by setting the
no_control_point attribute to false.

set_attribute_value block1-name no_control_point -value false

{block1}

report_attributes block1

Attribute Definition Report

Attributes defined for object 'block1':
Name Value Inheritance
------------------ ------------- -----------
...
...
...
no_control_point false -
...

Example 2
Step 1: In this example, you start with the default which allows test logic insertion anywhere.
You then use the report_attributes command to get the value of the no_control_point attribute at
different hierarchy levels.

Tessent™ Scan and ATPG User’s Manual, v2022.4246

Internal Scan and Test Circuitry Insertion
DFT Test Logic Attributes no_control_point and no_observe_point

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Step 2: The next command prevents test logic insertion inside block2 by setting the
no_control_point attribute to true.

set_attribute_value /block1/block2 -name no_control_point -value true

{block1/block2}

Step 3: Report the attribute values for block 2 and block4.

SETUP> report_attributes block1/block2

Attribute Definition Report

Attributes defined for object 'block1/block2':
Name Value Inheritance
------------------- -------------------- -----------
...
...
...
no_control_point true -
no_control_reason explicitly_specified -
...

SETUP> report_attributes block4

Attribute Definition Report

Attributes defined for object 'block4':
Name Value Inheritance
------------------- -------------------- -----------
...
...
...
no_control_point false -
no_control_reason unspecified -
...

Internal Scan and Test Circuitry Insertion
Multi-Mode Chains

Tessent™ Scan and ATPG User’s Manual, v2022.4 247

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multi-Mode Chains
This section provides a high-level overview of how the tool handles multi-mode chains.
Introduction to Multi-Mode Chains. 247
Multi-Mode Gating Logic . 248
Multi-Mode Scan Insertion . 249

Chain Port Sharing . 250
Population Control . 251

Introduction to Multi-Mode Chains
This section describes how you can use multi-mode for chain allocation.
Multi-Mode scan chains are used for the following:

1. To build bypass (single chain bypass / multi chain bypass) if EDT IP is not built with
one.

2. To create multiple configurations for EDT mode.

3. Are required if using Hierarchical DFT where internal and external mode scan chains
are needed for wrapped cores.

Following is a simple example. The design comprises 26 scan elements of types purple and
green scan cells. In Mode A, the entire full population of scan cells are used and connected to
chain_length of 9 to form 3 chains. In Mode B, only the Green type of scan elements are used to
form a chain_count of 2. In Figure 6-12, Mode A uses the black si1, si2 and si3 as the scan chain
inputs, and its corresponding scan output ports are so1, so2 and so3. Mode B has just 2 chains;
the green ports are labeled so1 and so2.

Figure 6-12. Simple Example of Two Modes

Tessent™ Scan and ATPG User’s Manual, v2022.4248

Internal Scan and Test Circuitry Insertion
Multi-Mode Gating Logic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multi-Mode Gating Logic
Once the distribution of scan elements has been completed for each mode, it is possible to
determine where the scan paths from each mode diverge. These scan path positions are called
inflection points.
Inflection points are identified when more than one scan path source exists for a given scan
element. In Figure 6-12 on page 247, these are the points where the muxes are added in.

Internal Scan and Test Circuitry Insertion
Multi-Mode Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 249

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multi-Mode Scan Insertion
One of the major advantages of this scan insertion infrastructure is the ability to distribute scan
elements and allocate scan chains for more than one mode. When more than one mode is
specified, the scan insertion tool automatically inserts gating logic capable of reconfiguring the
scan chains based on a selected mode.
If multi-modes are used, then you have the capability to see how the scan chains are to be
stitched up in all the different modes and you can alter the specification for specific modes or all
modes. You also have the ability to introspect and see how the scan chains are balanced.

The following example first adds two modes: mode1 and mode 2. In mode 1, it specifies a
chain_length of 200, so the tool balances the scan chains, each scan chain containing about 200
flops. In mode 2, it divides the total number of flops into 20 chains:

>add_scan_mode mode1 -type unwrapped \
-single_clock_domain_chains on \
-single_clock_edge_chains on -chain_length 200

>add_scan_mode mode2 -type unwrapped \
-chain_count 20

Before scan gets inserted, you can analyze the different scan modes and scan chains

>analyze_scan_chains
>report_scan_chains

The report_scan_chains command here tells you how many chains are in mode 1 and how many
flops are in each of the 20 scan chains in mode 2. If you decide that there are too many flops in
a chain and want to see how many flops get identified in a chain if 30 chains are allocated, then
delete the specific scan mode, re-specify with the modified constraints and then run
analyze_scan_chains and report_scan_chains.

>delete_scan_modes mode2
>add_scan_mode mode2 -type unwrapped -chain_count 30

>analyze_scan_chains
>report_scan_chains

Now if you decide the number of flops per chain is acceptable, then stitch up the scan chains
using insert_test_logic.

>insert_test_logic -write_in_tsdb On

The “insert_test_logic -write_in_tsdb On” command writes the design and TCD file into a
tsdb_outdir directory structure so Automatic Test Pattern Generation can make use of it. This is
described in detail in “Internal Scan and Test Circuitry Insertion” on page 209.

Chain Port Sharing . 250
Population Control . 251

Tessent™ Scan and ATPG User’s Manual, v2022.4250

Internal Scan and Test Circuitry Insertion
Multi-Mode Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chain Port Sharing
It is possible to share the scanIn and scanOut connections among chains of different modes.
Extra-gating logic is inserted on the scanOut side (after the chain’s last elements) to enable each
chain path during its active mode only, using a 2x1 MUX (2-mode sharing) or AND-OR logic
(multi-mode sharing).
Either existing ports/pins or generated ports can be shared.

Existing Ports/Pins
Existing design ports/pins can be shared across modes by specifying them explicitly using the
-si_connections and -so_connections options in the add_scan_mode or
create_scan_chain_family command. For example, the following commands would cause ports
MY_SCAN_IN and MY_SCAN_OUT to be shared across the modes Core and Wrapper. The
core and wrapper are built-in switches for type class.

> add_scan_mode Core \
-include_elements [get_scan_elements -class core] \
-si_connections MY_SCAN_IN \
-so_connections MY_SCAN_OUT \

> add_scan_mode Wrapper \
-include_elements [get_scan_elements -class wrapper] \
-si_connections MY_SCAN_IN \
-so_connections MY_SCAN_OUT

Note
Typically, you would use “add_scan_mode -type internal” or “-type external” mode to
choose between the “-class core” and “-class wrapper” type scan elements.

Functional Existing Ports/Pins
Existing design ports/pins that are used functionally and specified as chain connection points
automatically receive a dedicated 2x1 MUX controlled by scanEnable logic.

Generated Ports
Ports generated by the tool can be shared across modes by specifying identical formatting rules
that omit the %s mode name field using the -si_port_format and -so_port_format options. For
example, the following commands would cause ports EXT_SCAN_IN1 to EXT_SCAN_IN10

Internal Scan and Test Circuitry Insertion
Multi-Mode Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 251

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

and EXT_SCAN_OUT1 to EXT_SCAN_OUT10 to be shared across modes Basic and
Wrapper:

> create_scan_chain_family ext_chains -chain_count 10 \
-si_port_format “EXT_SCAN_IN%d” \
-so_port_format “EXT_SCAN_OUT%d” \
-include_elements [get_scan_elements -class wrapper]

> add_scan_mode Basic -chain_count 100 \
-include_elements [get_scan_elements] \
-include_chain_families { ext_chains }

> add_scan_mode Wrapper -include_chain_families { ext_chains }

Population Control
The scan cell set considered for distribution in each scan mode may be specified explicitly.
You can do this with at least one of the add_scan_mode options “-include_elements” and
“-include_chain_families”. Only scan_element objects with a state “usable” get added to a
population; accordingly, it may be necessary to set the “active_child_scan_mode” attribute to a
specific child mode value in order to include its corresponding existing segments in a
population.

Default Population
As a convenience for mainstream users, if no “-include_...” option is invoked with the
add_scan_mode command, then the command is implicitly called with every object defined at
that point, that is:

 > add_scan_mode Implicit_population

really maps to:

> add_scan_mode Implicit_population \
-include_chain_families [get_scan_chain_families] \
-include_elements [get_scan_elements]

This might not necessarily be the population you want for the mode, so you should be cautious
when using this feature.

Population prioritization
If the same scan element is included by more than one “-include_...” option, then the following
prioritization rules dictate how it gets used:

1. -include_chain_families

2. -include_elements

The tool allocates scan elements included by both a scan_chain_family inclusion and by the
-include_elements option to the chains specified by the scan_chain_family object. It

Tessent™ Scan and ATPG User’s Manual, v2022.4252

Internal Scan and Test Circuitry Insertion
Multi-Mode Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

automatically excludes existing chains from the populations considered for distribution, and
hence it never concatenates them to other scan elements.

Mode population
As previously implied, the population of a scan mode is defined as the union of the
sub-populations specified by the options -include_chain_families and -include_elements.

Internal Scan and Test Circuitry Insertion
Scan Insertion Flows

Tessent™ Scan and ATPG User’s Manual, v2022.4 253

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Insertion Flows
This section describes and discusses in detail the different flows that can be used for Scan
Insertion.
How to Report Scannability Information . 253
Scan Insertion Flow Steps . 254
How to Control Scan Insertion . 255

Scan Insertion for Unwrapped Core . 255
Scan Insertion for Wrapped Core . 259
Scan Insertion at the Parent Level . 264
Dedicated Wrapper Cell Placement After Loading UPF/CPF File 266
Limiting Core Power Usage During External Test. 268

How to Report Scannability Information
Scannability checking is a modified version of clock rules checking that determines which non-
scan sequential instances to consider for scan. You may want to examine information regarding
the scannability status of all the non-scan sequential instances in your design.
To review this information, use the report_scan_elements command. This command displays
the results of scannability checking for the specified non-scan instances, for either the entire
design or the specified (potentially hierarchical) instance.

The following command reports a list of scan elements that are non-scannable because of failed
S rules:

report_scan_elements [get_scan_elements -filter \
 is_non_scannable_reason==inferred_from_drc]

Use the following command to report a list of elements that are non-scannable (for any reason),
as shown in the sample report:

report_scan_elements [get_scan_elements -filter is_non_scannable==true]

===
name type length si_so_clocks state is_non_scannable_reason

----------- --------- ------ ------------ ------- ----------------------

/f leaf_cell 1 +test_clk ignored inferred_from_drc

/f2 leaf_cell 1 +test_clk ignored user_specified

The report_control_signals, report_statistics, and report_scan_elements commands are useful
when reporting scannability.

• report_control_signals — Displays control signal information.

• report_statistics — Displays a statistics report.

Tessent™ Scan and ATPG User’s Manual, v2022.4254

Internal Scan and Test Circuitry Insertion
Scan Insertion Flow Steps

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• report_scan_elements — Displays information and testability data for sequential
instances.

Scan Insertion Flow Steps
The new scan insertion capability provides better control of scan element grouping/ordering
when the new scan chains are created.
There are three major steps in the flow:

1. During SETUP, along with loading the design and Tessent Cell Libraries (ATPG library
files are also accepted), any existing scan segments (also called subchains) and existing
scan chains (from previous scan insertion pass) must also be described. You can use the
add_scan_segments and add_scan_chains commands respectively for this purpose.
Refer to “Internal Scan and Test Circuitry Insertion” on page 209 for more details.

2. During the system mode transition from SETUP to ANALYSIS, the tool runs DRC and
extracts all the usable library cell/leaf cell scan elements from the design at hand. At that
point, all existing scan elements are defined and may be introspected using the
get_scan_elements command.

3. During ANALYSIS, the tool might create virtual scan elements as a result of some
commands; for example, it creates virtual scan elements if you request insertion of
dedicated wrapper cells. Once again, all created virtual scan elements may be
introspected using the get_scan_elements command.

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 255

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Control Scan Insertion
The command set_scan_insertion_options enables you to control parameters that affect scan
insertion.
For instance, if you want all chains to have max chain length 1024, use the following command:

> set_scan_insertion_options -chain_length 1024

When adding a scan mode using the add_scan_mode command, you have the ability to override
most of the general scan insertion settings by simply re-specifying them with a new value. The
command basically takes a snapshot of the active scan insertion settings and overrides any
options explicitly specified in add_scan_mode. If you want to create an external mode with
shorter chains of length 512 for mode ext_mode, you can do so as follows:

> add_scan_mode ext_mode –type external -chain_length 512

Alternatively, if you want to create a single OCC chain with no length limit in full_mode that
has a chain length of 256 for the rest of the scan element population, you can do so as follows:

> create_scan_chain_family occ \
-chain_count 1 \
-chain_length unlimited \ // overrides to no length limit!
-include_elements [get_scan_elements -filter is_occ]

> add_scan_mode full_mode -chain_length 256 \
-include_elements [get_scan_elements] \
-include_chain_families occ

Scan Insertion for Unwrapped Core . 255
Scan Insertion for Wrapped Core . 259
Scan Insertion at the Parent Level . 264
Dedicated Wrapper Cell Placement After Loading UPF/CPF File. 266
Limiting Core Power Usage During External Test. 268

Scan Insertion for Unwrapped Core
This section describes scan insertion for unwrapped core.
For unwrapped core, there are no wrapper cells created thus the scan insertion flow uses the
Generic scan insertion steps described in Chapter 1.

Tessent™ Scan and ATPG User’s Manual, v2022.4256

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-13. Scan Insertion Flow for Unwrapped Core

In this scan insertion flow, first the scan elements that are present in the design are identified.
Next, optionally you can create scan_chain_family objects that instruct the tool how to allocate
specific scan element sub-populations. During this phase, one or more scan modes get defined.

The population of each scan mode is defined by including scan_element and scan_chain_family
objects. If you do not explicitly add at least one scan mode, the tool infers a default mode that
includes every scan_element and scan_chain_family objects.

Once the pre-scan stitched netlist has been read in, along with the required libraries, then the
design gets elaborated (with set_current_design). If EDT IP was already inserted using
DftSpecification and DFTSignals are used, then these signals are available here during scan
insertion and the tool knows and uses them. For instance, if scan enable was declared as
DFTSignal, then you do not need to declare the scan enable again. The tool knows which port

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 257

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

was declared as scan enable and uses it without your providing it using the set_scan_enable
property. For more information about DFTSignals, refer to the add_dft_signals command in the
Tessent Shell Reference Manual. If EDT IP was already inserted and DFTSignals are used to
specify different modes then for edt_mode you can use the -edt_instance to connect to the EDT
IP when specifying add_scan_mode. The enable decode for this mode is automatically
understood by the tool.

Note
DFTSignals are not mandated to be used as ScanEnable signal to use Hierarchical Scan
Insertion for scan chain stitching.

Example 1: If EDT IP was inserted and an ICL for EDT IP exists, use:

>set edt_instance [get_instances -of_icl_instances \
[get_icl_instances -filter tessent_instrument_type==mentor::edt]]

>add_scan_mode edt_mode -type unwrapped -edt_instance $edt_instance

Example 2: If EDT IP was inserted and an ICL for EDT IP does not exist, use:

>set edt_instance [get_instance -of_modules *_edt_c1]
>add_scan_mode edt_mode -type unwrapped -edt_instance $edt_instance

During check_design_rules DRCs are run. If there are any pre-existing scan segments, then
refer to “Pre-Existing Scan Segments” on page 222 on how to handle them.

If multiple modes are requested to be included and DFTSignals are used then the following
example shows how to do this.

Example 3: EDT IP does not include built-in bypass. DFTSignals edt_mode, multi_mode and
single_mode are available and can be used. The default -type is unwrapped and hence it is not
necessary to specify them.

>set edt_instance [get_instance -of_modules *_edt_c1]
>add_scan_mode int_edt_mode -edt_instance $edt_instance
>add_scan_mode multi_mode -chain_count 6
>add_scan_mode single_mode -chain_count 1

Full Example: The following example is broken into three major sections. The first section,
“Design, Library and Design Elaboration,” shows how you read the Tessent Cell Library and
Synthesized Verilog Gate-level design. If EDT IP was already inserted, use the
set_tsdb_output_directory to point to where the tsdb database is located. Then use read_design
to read all the other supporting files like ICL, PDL, TCD from the last insertion pass, and
elaborate the design.

Design, Library loading and design elaboration.
>set_context dft -scan -hierarchical_scan_insertion

Sets and opens the tsdb_output directory.
>set_tsdb_output_directory ../tsdb_outdir
>read_cell_library ../../../library/tessent/adk.tcelllib

Tessent™ Scan and ATPG User’s Manual, v2022.4258

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Read synthesized netlist
>read_verilog ../3.synthesis/processor_core_synthesized.vg

Use read_design to read in information (such as DFT signals) performed in previous pass.
>read_design processor_core -design_identifier rtl2 -icl_only
>set_current_design processor_core

The second section of this example defines clocks and design constraints if present that need to
be declared.

Define clocks and design constraints if any
>add_clock clock1
>add_clock clock2

Run DRCs, specify different scan insertion options, and write scan stitched design
>check_design_rules
>report_clocks
>report_dft_signals

The last section is where DRCs are run and if DFTSignals were used, then the add_scan_mode
command can be utilized to specify them. If a tsdb_outdir was not specified, it can be specified
with insert_test_logic -write_in_tsdb On to write the design and adjoining files into a tsdb
directory database.

Find edt_instance
>set edt_instance [get_instances -of_icl_instances [get_icl_instances \

-filter tessent_instrument_type==mentor::edt]]

Specify different modes the chains need to be stitched
EDT is built-in with Bypass

>add_scan_mode edt_mode \
-edt_instance $edt_instance

Before scan gets inserted can analyze the different scan modes and scan chains
>analyze_scan_chains
>report_scan_chains

Insert scan chains and writes the scan inserted design into tsdb_outdir directory
>insert_test_logic
>report_scan_chains
>exit

The following are some more examples of Scan Insertion for the unwrapped core.

Example 1: 1 mode: 32 flat scan chains
In this very basic example, all scan elements are allocated (unwrapped/flat) across 32 scan
chains using the default distribution constraints (multiple clock domain, multiple clock edge,
power domain, and single cluster per chain). The tool connects the chains to new top-level ports
called ts_si[31:0] and ts_so[31:0].

> add_scan_mode unwrapped_mode -chain_count 32
> analyze_scan_chains
> insert_test_logic

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 259

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 2: 2 modes: edt, multi bypass (EDT controller already present)
In this example, for the edt mode, 200 chains are allocated from all scan elements and connected
to the specified EDT controller si/so pins.

For the multi bypass mode, all scan elements are distributed to 12 multi-bypass chains and
connected to new top-level ports called ts_multi_bypass_si[11:0] and ts_ multi_bypass
_so[11:0]. Default top-level ScanTestMode ports called ts_stm0s0 and ts_stm1s0 also get
created to control the activation of the 2 modes.

> add_scan_mode edt \
-si_connections edt_inst/to_si[199:0] \
-so_connections edt_inst/from_so[199:0]

> add_scan_mode multi_bypass -chain_count 12
> analyze_scan_chains
> insert_test_logic

Example 3: 3 modes: edt, multi bypass, single chain (EDT controller already
present)

This example is a variation of the previous one. The edt mode consists of 200 chains, during
multi-mode bypass it has 12 chains connected to top-level ports and during single chain it has
just one scan in and one scan out. Top-level ScanTestMode ports called edt_mode_enable,
multi_bypass_mode_enable, and single_mode_enable get created to control the activation of
the 3 modes. For the multi bypass mode, all scan elements are distributed to 12 multi-bypass
chains and connected to new top-level ports called ts_multi_bypass_si[11:0] and ts_
multi_bypass _so[11:0]. For single chain mode, all the scan elements are distributed to 1 single
chain and connected to new top-level ports called ts_single_chain_si and ts_single_chain_so.

> add_scan_mode edt -si_connections edt_inst/to_si[199:0] \
-so_connections edt_inst/from_so[199:0] -enable_connections edt_mode_enable

> add_scan_mode multi_bypass -chain_count 12 -enable_connections \
multi_bypass_mode_enable

> add_scan_mode single_chain -single_class_chains off \
-single_power_domain_chains off -single_cluster_chains off -chain_count 1 \
-enable_connections single_mode_enable

> analyze_scan_chains
> insert_test_logic

Scan Insertion for Wrapped Core
This section describes scan insertion for Wrapped core.
A wrapped core is used for hierarchical DFT as described in “Tessent Shell Flow for
Hierarchical Designs” in the Tessent Shell User’s Manual. For hierarchical DFT, wrapper cells
need to be identified and inserted. Wrapper cells can be of dedicated or shared cells. A
dedicated wrapper cell is one that does not exist in the design and is typically inserted on high
fan-in or fanout logic ports of the core that is targeted for hierarchical DFT. A shared wrapper
cell is one where isolation of the core functionality is shared with an existing functional flop.

Tessent™ Scan and ATPG User’s Manual, v2022.4260

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-14. Scan Insertion Flow for Wrapped Core

In this scan insertion flow, first the scan elements that are present in the design are identified
and any virtual scan elements resulting directly or indirectly from user commands get created.
All these scan elements can be introspected and attributed.

Second, you can create optional scan_chain_family objects that instruct the tool how to allocate
specific scan element sub-populations. During this phase, one or more scan modes get defined.
The population of each scan mode is defined by including scan_element and scan_chain_family
objects. If you do not explicitly add at least one scan mode, the tool infers a default mode that
includes every scan_element and scan_chain_family object.

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 261

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The pre-scan stitched netlist gets read in along with the required libraries, then the design gets
elaborated (when set_current_design is specified). If EDT hardware was already inserted using
DftSpecification and DFTSignals are used, then these signals are available here and the tool
knows and uses them. For instance, if scan enable was declared as DFTSignal, then you do not
need to declare the scan enable again. The tool knows which port was declared as scan enable
and uses it without the you providing it using the set_scan_enable property. To know more
about DFTSignals refer to the add_dft_signals command the Tessent Shell Reference Manual.
IF EDT hardware was already inserted and DFTSignals are used to specify different modes then
for edt_mode can use the -edt_instance to connect to the EDT hardware when specifying
add_scan_mode. The enable decode for this mode is automatically understood by the tool.

For hierarchical DFT, there are at least two modes: internal mode and external mode.

Example 1: If EDT hardware is built in with bypass, internal mode EDT hardware is present
and for external mode there is no EDT hardware built inside the core. So, for ext_mode (this is a
DFTSignal that was declared while EDT hardware was inserted) just scan chains are stitched
up. The enable for both int_mode and ext_mode is automatically decoded from these
DFTSignals.

>set edt_instance [get_instances -of_icl_instances [get_icl_instances \
-filter tessent_instrument_type==mentor::edt]]

>add_scan_mode int_mode -type internal -edt_instances $edt_instance
>add_scan_mode ext_mode -type external -chain_count 4

Example 2: If EDT hardware is not built in with bypass, internal mode has three scan modes —
when EDT is used (int_edt_mode), when EDT is bypassed with multiple scan chains
(int_multi_mode) and when EDT is bypassed with single scan chain (int_single_mode). In
External mode there is no EDT hardware and so scan chains are just stitched up to form three
scan chains.

>set edt_instance [get_instance -of_modules *_edt_c1]
>add_scan_mode int_edt_mode -type internal -edt_instance $edt_instance
>add_scan_mode int_multi_mode -type internal -chain_count 6
>add_scan_mode int_single_mode -type internal -chain_count 1
>add_scan_mode ext_multi_mode -type external -chain_count 3

Example 3: If EDT Hardware is built in with bypass for internal mode of the wrapped core, and
there are 2 scan configurations for external mode (ext_multi_mode) and (ext_single_mode). In
ext_multi_mode the external chains are stitched into 6 scan chains, where as in
ext_single_mode the external scan chains are stitched into 1 scan chain.

 >set edt_instance [get_instances -of_icl_instances [get_icl_instances \
-filter tessent_instrument_type==mentor::edt]]

 >add_scan_mode int_mode -edt_instances $edt_instance
 >add_scan_mode ext_multi_mode -chain_count 6
 >add_scan_mode ext_single_mode -chain_count 1

Full Example: The example below is broken into four major sections. The first section -
Design, Library and design elaboration shows how you read the Tessent Cell Library and
Synthesized Verilog Gate-level design. If EDT hardware was already inserted then use the

Tessent™ Scan and ATPG User’s Manual, v2022.4262

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_tsdb_output_directory to point to where the tsdb data base is located. Then use read_design
to read all the other supporting files like ICL, PDL, TCD from the last insertion pass and
elaborate the design.

Design, Library loading and design elaboration.
>set_context dft -scan

Sets and opens the tsdb_output directory.
>set_tsdb_output_directory ../tsdb_outdir
>read_cell_library ../../../library/tessent/adk.tcelllib

Reading synthesized netlist
>read_verilog ../3.synthesis/processor_core_synthesized.vg

Use read_design to read in information (such as DFT signals) performed in previous pass.
>read_design processor_core -design_identifier rtl2 -icl_only
>set_current_design processor_core

The second section of this example defines clocks and design constraints if present that need to
be declared.

Define clocks and design constraints if any
>add_clock clock1
>add_clock clock2

Run DRCs, and check_design_rules
>report_clocks
>report_dft_signals

The third section of this example identifies wrapper cells by providing input on what ports to
exclude from wrapper cell analysis, and asynchronous set/reset ports to insert dedicated
isolation cells. Then you get the tool to analyze wrapper cells and report it to make sure all ports
have wrapper cells.

Exclude the edt_channel in and out ports from wrapper chain analysis.
The ijtag_* edt_update ports are automatically excluded
>set_wrapper_analysis_options -exclude_ports [get_ports {*_edt_channels_*}]

Added a new wrapper dedicated cell on reset
>set_dedicated_wrapper_cell_options on -ports reset_n

Performs wrapper cell analysis
>analyze_wrapper_cells
>report_wrapper_cells -Verbose

The last section is where DRCs are run and if DFTSignals were used, then the add_scan_mode
command can be utilized to specify them. If a tsdb_outdir was not specified, it can be specified
with insert_test_logic -write_in_tsdb On to write the design and TCD files into a tsdb directory
database.

Specify different scan insertion options, and write scan stitched design

Find edt_instance
>set edt_instance [get_instances -of_icl_instances [get_icl_instances \

-filter tessent_instrument_type==mentor::edt]]

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 263

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Nice to specify different modes the chains need to be stitched
>add_scan_mode int_mode -type internal \

-single_clock_domain_chains off \
-single_clock_edge_chains off \
-edt_instances $edt_instance

>add_scan_mode ext_mode -type external \
-chain_count 2

>analyze_scan_chains
>report_scan_chains

The following are some more examples of Scan Insertion for the wrapped core.

Example 1: 3 modes: edt, ext, multi bypass (EDT controller already present)
In this example, for the edt mode, 200 chains are allocated from all scan elements and connected
to the specified EDT controller si/so pins. For the ext mode, the wrapper scan elements are
distributed into chains of 800 scan elements or less and connected to new top-level ports called
ts_ext_si[N-1:0] and ts_ext_so[N-1:0]. For the multi-bypass mode, all scan elements are also
distributed to 12 multi-bypass chains and connected to new top-level ports called
ts_multi_bypass_si[11:0] and ts_ multi_bypass _so[11:0]. Top-level ScanTestMode ports called
ts_stm0s0, ts_stm1s0, and ts_stm2s0 get created to control the activation of the three modes.

> analyze_wrapper_cells
> add_scan_mode edt \

-si_connections edt_inst/to_si[199:0] \
-so_connections edt_inst/from_so[199:0]

> add_scan_mode ext -type external -chain_length 800
> add_scan_mode multi_bypass -chain_count 12
> analyze_scan_chains
> insert_test_logic

Example 2: 3 modes: edt, ext, multi bypass (EDT controller already present,
OCC chains)

This example is a variation of the previous one, adding existing OCC uncompressed chains. It
defines these existing segments in setup mode and attributes them in order to enable the
distribution you want during analysis.The edt mode consists of 200 chains plus one extra chain
connected to occ_edt_si/occ_edt_so ports that contains all existing OCC scan segments. The ext
mode contains the external/wrapper scan elements plus one OCC segment used externally.

Tessent™ Scan and ATPG User’s Manual, v2022.4264

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Add & attribute all instances of the occ scan segments during setup mode
> add_scan_segments occ_chain \

-on_module occ \
-si_connections si -so_connections so

> register_attribute -name is_occ \
-obj_type scan_element -value_type boolean

> register_attribute -name is_ext_occ \
-obj_type scan_element -value_type boolean

> set_attribute_value [get_scan_elements -filter "name =~ *occ_chain"] \
-name is_occ

> set_attribute_value [get_scan_elements -filter "name =~ u2/*occ_chain"] \
-name ext_used_occ

> set_system_mode analysis
> analyze_wrapper_cells
> create_scan_chain_family compressed \

-si_connections edt_inst/si[199:0] -so_connections edt_inst/so[199:0] \
-include_elements [get_scan_element -filter !is_occ]

> create_scan_chain_family occ \
-si_connections occ_edt_si -so_connections occ_edt_so \
-include_elements [get_scan_elements -filter is_occ]

> add_scan_mode edt -include_chain_families{ compressed occ }
> add_scan_mode ext -type external -chain_length 800 \

-include_elements [get_scan_elements -filter "ext_used_occ || class == wrapper"]
> add_scan_mode multi_bypass -chain_count 12 \

-include_elements [get_scan_elements]
> analyze_scan_chains
> insert_test_logic

Scan Insertion at the Parent Level
Once the lower level cores are scan inserted and stitched, they need to be integrated at the next
parent level.
How these lower level cores are integrated depends on whether the lower level core was an
unwrapped core or a wrapped core.

If the lower level was an unwrapped core, then all the scan chains are visible at the parent level
either via the EDT hardware present inside the core or via bypassed scan chains to parent-level
pins or ports.

If the lower level was a wrapped core, then only the external mode scan chains are visible at the
parent level that need to be connected to primary pins as regular scan chains. Refer to “Tessent
Shell Flow for Flat Designs” in the Tessent Shell User’s Manual.

Alternatively, the external mode scan chains from various other wrapped cores can be
connected to EDT hardware at the parent level so they become compressed scan chains to the
EDT hardware at the parent level.

The internal modes of the wrapped cores need to be connected to the parent level by either
broadcasting if they are identical cores, channel sharing techniques (data channels are shared
but control channels are separate) or muxed into available pins that can be used as channel pins
at the parent level.

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 265

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you are reading lower level wrapped cores, then you need to open the TSDB of these lower
level cores. From the TSDB, the TCD file from the last pass that has dft_inserted_design
directory is read in. The TCD file contains information in the Scan section about how many
modes are present, if they are of type internal or external and how many scan chains are in each
mode. The clock and scan_enable information are also contained with each mode inside this
TCD file.

From reading this TCD file, the external scan chains are then stitched at the parent level of the
child cores based on scan stitching criteria provided at the parent level.

The example below shows two lower level wrapped cores, corea and coreb being read in at the
parent level “top”, which is the chip. Graybox models for the corea and coreb blocks are read in
after the top level verilog is read in. In this example EDT was inserted in RTL as a second pass.
In the first pass, TAP controller and Boundary scan cells were inserted.

Example 1:

If no -design_id is provided, then the default design_id is gate
>set_context dft -scan -design_id gate1

Set the TSDB outdir where the parent needs to write
>set_tsdb_output_directory ../tsdb_outdir

Open the TSDB directory of lower level wrapped cores
>open_tsdb ../../corea/tsdb_outdir
>open_tsdb ../../coreb/tsdb_outdir

Read the Tessent Cell Library
>read_cell_library ../../adk.tcell_library

Read the parent-level verilog using read_verilog or read_design
>read_design top -design_id rtl2 -verbose

Read the graybox of lower level wrapped cores corea and coreb
>read_design corea -design_id gate1 -view graybox -verbose
>read_design coreb -design_id gate1 -view graybox -verbose
>set_current_design top

Set the design level
>set_design_level chip

The clocks were added in during EDT/OCC insertion in rtl2 pass
Pass 1 was TAP and boundary scan insertion.

>set_system_mode analysis
>report_clocks
>set edt_instance [get_name_list [get_instance -of_module [get_name \

 [get_icl_module -of_instances top* -filter tessent_instrument_type==mentor::edt]]]]

>add_scan_mode edt_mode -edt_instance $edt_instance

>analyze_scan_chains
>report_scan_chains

Tessent™ Scan and ATPG User’s Manual, v2022.4266

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Insert scan chains
>insert_test_logic
>report_scan_chains
>exit

Example 2: In this example there are 2 external mode scan chains for each of the lower level
wrapped cores - core1 and core2. To see how the lower level scan chain is set up, refer to
Example 3 in the section "Scan Insertion for Wrapped Core".

Now at the parent level, one of these external mode scan configuration needs to be identified to
be used during scan insertion by setting the attribute "active_child_scan_mode" just before
issuing the command set_system_mode analysis as below. In this example the ext_multi_mode
of the wrapped cores (core1 and core2) is identified to be included with the edt_mode for the
top-level. Then the other external mode ext_single_mode of the wrapped cores (core1 and
core2) is included with the single_mode scan configuration at the top-level by using the
attribute "active_child_scan_mode" to ext_single_mode.

##Specify which of the external mode scan configuration to use for top-level
set_attribute_value {core1_inst} -name active_child_scan_mode -value ext_multi_mode
set_attribute_value {core2_inst1 core2_inst2} -name active_child_scan_mode \

-value ext_multi_mode

set_system_mode analysis

set edt_instance [get_name_list [get_instance -of_module \
[get_name [get_icl_module -of_instances chip_top* -filter \
tessent_instrument_type==mentor::edt]]]]

add_scan_mode edt_mode -edt_instance $edt_instance

Specify to use the external mode single chain configuration for lower level cores \
using "single_mode" at top-level
set_attribute_value {core1_inst} -name active_child_scan_mode -value ext_single_mode
set_attribute_value {core2_inst1 core2_inst2} -name active_child_scan_mode \

-value ext_single_mode

add_scan_mode single_mode -chain_count 4
analyze_scan_chains
report_scan_chains
insert_test_logic

Dedicated Wrapper Cell Placement After Loading UPF/
CPF File

The read_cpf and read_upf commands can be used to read power data into Tessent Shell. The
UPF/CPF files define different power-domains within the netlist as well as defining whether
library cells are used as isolation cells and as level shifters. This includes defining which
specific instances of those cells serve in that capacity.
The presence of power data impacts the placement of dedicated wrapper cells. Input wrapper
cells should be placed on the output side of isolation cells, and at the output of level shifters that
are at the input of a block, and at the input of a level shifter that is driving the output of a block.

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 267

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In general, this means moving the dedicated wrapper cells away from the primary input,
primary output, or both, toward the “inside” of the core.

If the primary input fans out to multiple level shifters or isolation cells, then multiple dedicated
wrapper cells are inserted to register a single primary input.

One exception to this general approach occurs when a primary input fans out to a mixture
including at least one of level shifters and isolation cells, as well as library cells that are using to
implement functional logic. In this case, the dedicated wrapper cell is placed at the driver of the
net and no wrapper cells are placed at the outputs of the wrapper cells.

Tessent™ Scan and ATPG User’s Manual, v2022.4268

Internal Scan and Test Circuitry Insertion
How to Control Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
When defining level shifters in a CPF file, you must define the level shifter with the
“set_level_shifter” command and must also specify which power domains use the cell as a

level shifter with the “map_level_shifter” command.

Note
The UPF/CPF file must define at least one power domain in order to trigger this analysis.

Limiting Core Power Usage During External Test
Limiting power dissipation of cores when they are in external test mode is a test design
objective; however, even the core flops may be toggling and consuming power during shifting
of the external mode. The main reason for this is that core and wrapper scan elements are often
mixed into common chains in some non-external modes. Forcing core scan elements and
external scan elements onto different chains can help alleviate this issue if the core chains can
shift constant values during external test.
This procedure can reduce power consumption by avoiding toggling core scan elements during
external test mode.

Procedure
1. Force core scan elements and wrapper scan elements onto different chains in all modes:

set_scan_insertion_options -single_class_chains on

2. Force the multi-mode scan path logic to produce a constant value (such as 1’b0) for core
scan elements that are part of two or more modes, if none of the targeted modes are
active. For example, core scan elements might be part of both int_mode and
single_mode:

set_scan_insertion_options -fully_encoded_scan_mode_logic on

3. Force a constant value to all core chains that do not have any wrapper cells. If core scan
elements are only part of one mode, then the decompressor shifts zeros to the core
chains during external mode. Constrain the EDT channels to a constant value and make
sure that the “edt_update” signal is constrained.

4. If there are many clock gaters in the functional logic, shut them off during capture cycles
to further minimize the power dissipation during capture.

Internal Scan and Test Circuitry Insertion
Wrapper Cells Analysis

Tessent™ Scan and ATPG User’s Manual, v2022.4 269

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Wrapper Cells Analysis
Tessent Scan provides the ability to improve performance and test coverage of hierarchical
designs by reducing the visibility of the internal core scan chains of the design submodules. The
only requirement for testing submodules at the top level is that the logic inputs must be
controllable using scan chains (that is, must be driven by registers) and the logic outputs must
be observable through scan chains (that is, must be registered).
These requirements can be met using wrapper scan chains, which are scan chains around the
periphery of the submodules that connect to each input and output (except user-defined clocks,
scan-related I/O pins, and user-excluded pins) of the submodules to be tested. The tool treats
wrapper chains comprising the wrapper cells reachable from a submodule’s inputs as the Input
type wrapper chains and treats wrapper chains comprising the wrapper cells reachable from a
submodule’s outputs as the Output type wrapper chains. It uses the Input and Output wrapper
chains to provide test coverage of hierarchical designs during the INTEST and EXTEST modes.

In INTEST mode, all inputs to submodules are controllable using the Input wrapper scan chains
and all outputs are observable through the Output wrapper scan chains. This provides the ability
to independently generate a complete set of ATPG patterns for submodules.

In EXTEST mode, all outputs from submodules are controllable using the Output wrapper scan
chains and all inputs are observable through the Input wrapper scan chains. This provides the
ability to test/optimize the logic surrounding the submodules at the top-level without requiring
internal visibility into the submodules (that is, core scan chains are not needed).

The analyze_wrapper_cells command identifies a combination of existing (shared) scan cells
and dedicated wrapper cells that provide complete observability of primary inputs as well as
complete controllability of primary outputs during top level testing (extest mode). In addition,
the input wrapper cells completely isolate the core from the primary inputs during internal
testing (intest mode), and the output wrapper cells provide observability of the core's internal
nodes.

The tool combines the scan enable connection for the scan cells that it identifies as input
wrapper cells with the intest enable signal to prevent these cells from capturing any values
coming from the primary inputs during intest. It combines the scan_enable connection for the
scan cells that it identifies as output wrapper cells with the extest enable signal to prevent these
cells from capturing data in extest mode. The following table lists the behavior of each mode:

mode core_cells input_wrapper_cells output_wrapper_cells

--------- ------------------ ------------------- --------------------

unwrapped allowed to capture allowed to capture allowed to capture

intest mode allowed to capture forced to stay in shift allowed to capture

extest mode N/A allowed to capture forced to stay in shift

The following paragraphs provide a high-level description of the wrapper analysis algorithm to
explain why the tool chooses to use dedicated wrapper cells versus shared wrapper cells for
primary inputs as well as primary outputs.

Tessent™ Scan and ATPG User’s Manual, v2022.4270

Internal Scan and Test Circuitry Insertion
Wrapper Cells Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool begins by tracing backward from the primary output pins. If the number of scan cells
that it encounters during this back-trace exceeds a specific threshold, then it inserts a dedicated
wrapper cell. In addition, the set and reset pins of an output wrapper cell must be controllable
during external test. This means the tool needs to trace back from the set and reset ports of the
potential shared output wrapper cells to see if there are any more scan cells that could impact
these ports, and consider them as additional output wrapper cells. If the number of
combinationally connected scan cells, plus the scan cells in the feedback path of the set and
reset ports exceed some threshold, then once again the tool resorts to inserting a dedicated
wrapper cell.

Finally, the tool performs a similar analysis for each primary input. If the number of scan cells
that is reached by a specific primary input exceeds the user-specified threshold, then it uses a
dedicated input wrapper cell. For input wrapper cells, the tool must have known values at all of
the ports of the scan cell. This means it must trace back from clock and data ports in addition to
the set and reset ports looking for any scan cells that must also become wrapper cells. If the
number of combinationally connected scan cells, and the number of scan cells in the feedback
path of the set, reset, and clock line exceeds the user-specified threshold, then the tool inserts a
dedicated wrapper cell. The cells in the feedback path must remain fully controllable during
extest, and they most likely capture values from non-wrapper (core) scan cells. This means the
tool must mark these cells as output wrapper cells so they connect to an internally generated
scan enable signal that remains high during capture.

All of the tracing that occurs is based on tracing through unblocked paths. This means that pin
constraints can have a huge impact on this analysis. For example, if the set or reset port of an
output wrapper cell maintains a constant 0 because of a pin constraint, then no backward tracing
is necessary.

In order to facilitate debugging, a simulation context called "wrapper_analysis" is available.
You can use the set_current_simulation_context command to view these values with
report_gates (after doing “set_gate_report simulation_context”), or using the Visualizer (also
after setting the current simulation context as the data source).

You can also force the insertion of a dedicated wrapper cell at any port using the
set_dedicated_wrapper_cell_options command. In addition, there are several parameters that
control the forward and backward tracing that can be modified using the
set_wrapper_analysis_options command.

There are several conditions that can trigger the tool to insert dedicated wrapper cells or leave
the port unwrapped. The tool inserts a dedicated wrapper cell in the following cases:

• If the wrapper analysis exceeded one of the thresholds defined with
set_wrapper_analysis_options during tracing and the port was not excluded from
registration with the "set_dedicated_wrapper_cells_options off" command.

• If the tracing reached a scan cell of an existing scan chain.

Internal Scan and Test Circuitry Insertion
Wrapper Cells Analysis

Tessent™ Scan and ATPG User’s Manual, v2022.4 271

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• If the tracing reached a blackbox and “set_wrapper_analysis_options
-register_ports_reaching_blackboxes” was set to “all” or you explicitly provided the
blackbox instance to the switch (otherwise, the tool ignores fanout branches reaching
blackboxes).

• If the tracing reached a scan element with internal_scan_only attribute set to “true”.

• If the tracing reached a scan segment and “set_wrapper_analysis_options
-allow_internal_segments_as_wrapper” is set to off (otherwise, the tool converts the
segment and scan elements in its feedback path to shared wrapper cells).

• If an output port is floating and “set_wrapper_analysis_options
-register_undriven_output” is on.

The tool may leave the port unwrapped in some cases, including the following:

• If it is an input port and does not drive any sequential cells.

• If it is a clock port, ICL port, DFT signal, bidi port, or a test-related port (for example,
scan enable).

• If it only reaches ICL instruments with keep_active_during_scan_test attribute set to
true (that is, Scan Resource Instruments).

• If it is a floating output and “set_wrapper_analysis_options -register_undriven_output”
is set to off (default).

Note
If there are pad cells on primary ports, the tool inserts dedicated wrapper cells at the core
side of the pad cells.

You can use the set_dedicated_wrapper_cell_options command to specify the library models,
other than the default, to be used for the dedicated wrapper cells and to provide additional
information regarding which I/Os should be registered with the dedicated wrapper cells. The
tool automatically registers the I/Os specified in the “on -ports list” of the
set_dedicated_wrapper_cell_options command with the dedicated wrapper cells. At the same
time, it excludes the I/Os specified in the “off -ports list” from the automatic registration with
the dedicated wrapper cells when they have failed the identification with the shared wrapper
cells (in this case the tool will force the ports to be covered by shared wrapper cells even if it
requires exceeding the thresholds set by the set_wrapper_analysis_options command).

Following are examples showing automatic registration of the failed I/Os, and controlling the I/
Os to be registered with the “on/off -ports lists” of set_dedicated_wrapper_cell_options.

Example 1

Tessent™ Scan and ATPG User’s Manual, v2022.4272

Internal Scan and Test Circuitry Insertion
Wrapper Cells Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_wrapper_analysis_options -input_fanout_libcell_levels_threshold 1 \
-output_fanin_libcell_levels_ threshold 1

set_system_mode analysis
analyze_wrapper_cells
report_wrapper_cells -verbose

Example 2

Pins in2 and in3 are excluded from the automatic registration.

Internal Scan and Test Circuitry Insertion
Wrapper Cells Analysis

Tessent™ Scan and ATPG User’s Manual, v2022.4 273

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_wrapper_analysis_options -input_fanout_libcell_levels_threshold 1 \
-output_fanin_libcell_levels_ threshold 1

set_dedicated_wrapper_cell_options off -ports in2
set_dedicated_wrapper_cell_options off -ports in3
set_system_mode analysis
analyze_wrapper_cells
report_wrapper_cells -verbose

Example 3

Pins in7 and out4 are explicitly specified to be registered.

Tessent™ Scan and ATPG User’s Manual, v2022.4274

Internal Scan and Test Circuitry Insertion
Wrapper Chains Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_wrapper_analysis_options -input_fanout_libcell_levels_threshold 1 \
-output_fanin_libcell_levels_ threshold 1

set_dedicated_wrapper_cell_options on -ports in7
set_dedicated_wrapper_cell_options on -ports out4
set_system_mode analysis
analyze_wrapper_cells
report_wrapper_cells -verbose

Wrapper Chains Generation . 274
Dedicated and Shared Wrapper Logic . 276
Clock Selection for Dedicated Wrapper Cells. 280
Dedicated Wrapper Cell Placement . 280
Identification of Clock and Reset Ports . 282
Tessent Instruments With keep_active_during_scan_test . 283

Wrapper Chains Generation
Tessent Scan generates separate Input and Output wrapper chains as described in this section.
The Input and Output wrapper chains are generated based on the following conditions:

• The scan cells comprising the wrapper scan chains are identified as the Input and Output
wrapper cells using the set_wrapper_analysis_options and analyze_wrapper_cells
commands and are stitched into the separate Input and Output wrapper chains using the
insert_test_logic command.

Internal Scan and Test Circuitry Insertion
Wrapper Chains Generation

Tessent™ Scan and ATPG User’s Manual, v2022.4 275

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o When you use the analyze_wrapper_cells command, Tessent Scan performs the
wrapper cells analysis and identifies the Input and Output wrapper cells, which it
stitches into the separate Input and Output wrapper chains.

o If you did not use the set_wrapper_analysis_options command, the
analyze_wrapper_cells command performs the default wrapper cells identification
similar to issuing the set_wrapper_analysis_options command with no arguments.

o If you use the analyze_wrapper_cells command in conjunction with the
set_dedicated_wrapper_cell_options command, the tool stitches the dedicated
wrapper cells added to the primary Inputs into the appropriate Input wrapper chains,
while it stitches the dedicated wrapper cells added to the primary Outputs into the
appropriate Output wrapper chains.

• When you use the set_dedicated_wrapper_cell_options command and the
analyze_wrapper_cells command is not issued, the dedicated wrapper cells added to the
primary I/Os are treated as Core cells and are stitched into the appropriate Core scan
chains.

o Dedicated wrapper cells are normally analyzed and inserted into scan chains when
you issue the insert_test_logic command.

o For backward compatibility, the report_wrapper_cells command triggers the
dedicated wrapper cells analysis when the set_dedicated_wrapper_cell_options
command was issued, but the analyze_wrapper_cells command was not.

• If you use the insert_test_logic command after the set_wrapper_analysis_options
command, but have not used the analyze_wrapper_cells command, you get the
following warning message when you use the report_wrapper_cells command.

Command: report_wrapper_cells
Wrapper Wrapper cells information is not available:

use "analyze_wrapper_cells" to do wrapper cells
identification prior to reporting.

• The following commands can affect the I/O registration of dedicated wrapper cells and
the identification of shared wrapper cells:

o add_nonscan_instances, delete_nonscan_instances

o add_scan_instances, delete_scan_instances

If you use any of these commands in conjunction with the
set_dedicated_wrapper_cell_options and set_wrapper_analysis_options commands, you
get the following warning message:

Warning: Wrapper cells information is out of date: use
"analyze_wrapper_cells" to re-analyze wrapper cells prior to
insertion.

Tessent™ Scan and ATPG User’s Manual, v2022.4276

Internal Scan and Test Circuitry Insertion
Dedicated and Shared Wrapper Logic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Dedicated and Shared Wrapper Logic
As part of the hierarchical scan insertion flow, scan insertion may divide a user design into two
isolated testable regions: one for internal test mode and another for external test mode. The
boundary between these two design regions is determined by wrapper cells analysis and is
implemented by insertion of dedicated wrapper cells or reusing existing logic as shared wrapper
cells.
See “Wrapper Cells Analysis” on page 269 for more details on the analysis procedure.

The tool permits various wrapper logic implementations that differ in their behavior during the
capture window of its corresponding internal or external mode: that is, when scan enable is off
but the associated int/ext_ltest_en is on. You can control this behavior with the
“set_wrapper_analysis_options -capture_window_behavior” command. There are two basic
behaviors—either the wrapper cells are shifting during capture window, or they are holding the
value. You can further refine the holding behavior: holding a constant value, holding and
inverting, or holding with run-time programmable inversion. The following text describes these
implementations in detail.

Input wrapper cells and output wrapper cells share a common architecture, except for the logic
test enable signal driving them. Accordingly, to limit the number of explicit scenarios and
diagrams described below, the term “int/ext_ltest_en” represents int_ltest_en for input wrapper
cells and ext_ltest_en for output wrapper cells. The data input (DI) port of dedicated wrapper
cells is connected to the original connection intercepted by the dedicated wrapper cell—a
primary input for input dedicated wrapper cells and internal logic for output dedicated wrapper
cells. The data output (DO) port of dedicated wrapper cells connects to the logic originally
driven by the intercepted input port, and for output dedicated wrapper cells it connects to the
output port that this cell isolates. The state element in Figure 6-15 and Figure 6-16 shows a
regular mux-DFF scan cell.

Shifting Wrapper Cells
This section describes the hardware that the scan insertion tool inserts when you use the
command “set_wrapper_analysis_options -capture_window_behavior shift”.

Dedicated Cells
This cell only captures the value of the DI port if the corresponding test logic enable signal
(“int_ltest_en” or “ext_ltest_en”) and “scan_en” are off; otherwise, it is always in shift mode
capturing the values at the SI port—either from the previous scan cell or from the scan chain
input.

Internal Scan and Test Circuitry Insertion
Dedicated and Shared Wrapper Logic

Tessent™ Scan and ATPG User’s Manual, v2022.4 277

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-15. Shifting Dedicated Wrapper Cell

Shared Wrapper Cells
An existing scan element is reused as a shared wrapper cell by appropriately connecting the
scan enable input, while preserving the D and Q connections. This cell only captures the value
at D input when both int/ext_ltest_en and scan_en are off; otherwise, it is always in shift mode.

Figure 6-16. Shifting Shared Wrapper Cell

Holding Wrapper Cells
The shifting behavior described in the previous section could make it difficult for you to close
timing, because the SO-SI connections become at-speed paths. You can alleviate this by
choosing a capture window behavior that holds during the capture window of their internal or
external test mode.

This section describes the hardware that the scan insertion tool inserts when you set
“set_wrapper_analysis_options -capture_window_behavior” to one of the following holding
cell feedback options:

• hold — non-toggling feedback loop

• invert_hold — toggling feedback loop

• programmable_hold — run-time controllable feedback loop using the static DFT signal
“wrapper_toggle_en”

Holding scan cells eliminate the need for shifting through wrapper chains during capture. This
means there is no need for separate scan enable signals for the input and output wrapper cells.
Such an architecture reduces the need to close shift path timing at functional speed, thereby
easing implementation and routing of wrapper chains.

Tessent™ Scan and ATPG User’s Manual, v2022.4278

Internal Scan and Test Circuitry Insertion
Dedicated and Shared Wrapper Logic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Dedicated Wrapper Cells
This cell only shifts when scan_en is on; otherwise, it either captures the value of DI (int/
ext_ltest_en = 0) or holds (int/ext_ltest_en = 1). The tool implements the holding in three
different ways, as described above. Depending on the capture window behavior setting,
different logic is implemented in the feedback loop, as shown in the Figure 6-17.

Figure 6-17. Holding Dedicated Wrapper Cell

Shared Wrapper Cells
Not all scan elements acting as shared wrapper cells implement holding logic. Adding a holding
loop on large scan elements (for example, existing segments of a large core) would potentially
create more timing issues than it would solve. Accordingly, this section describes two shared
wrapper cell architectures.

Scan elements from library cells (single/multi-bit) acting as shared wrapper cells also receive
holding logic. Elements of a shift register that can be used for shared isolation (input wrapper
for the first register, output wrapper for the last register, or both) cause the shift register to split
and the tool processes these shared wrapper elements individually as leaf elements. The
implementation of holding logic for such shared wrapper cells requires the addition of an extra
multiplexer in the scan path. The cell only shifts when scan_en is on; otherwise, it either
captures (int/ext_ltest_en = 0) or holds (int/ext_ltest_en = 1).

Internal Scan and Test Circuitry Insertion
Dedicated and Shared Wrapper Logic

Tessent™ Scan and ATPG User’s Manual, v2022.4 279

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-18. Holding Shared Wrapper Cell

The tool does not add holding loops to non-dividable hierarchical elements (for example,
existing segment, non-dividable shift register) because they could introduce routing and timing
issues. To eliminate the at-speed path to the SI connection of such hierarchical scan elements,
the scan path is combined with scan_en with an AND gate. As a result, the cell only shifts when
scan_en is on; otherwise, it either captures functional data (int/ext_ltest_en = 0) or a constant 0
(int/ext_ltest_en = 1). This implementation results in a small loss in fault coverage, but should
facilitate layout. Cores with external chains that already have holding pipelining flops (default)
should maintain the same functional fault coverage.

Figure 6-19. Timing Friendly Shared Wrapper Cell Implementation for Non-
Dividable Hierarchical Scan Elements

Exceptions
The primary inputs identified as set/reset are always wrapped with a non-inverting holding
wrapper cell, regardless of capture_window_behavior setting.

If you run X-bounding together with wrapper analysis, and the tool determines that an unknown
(X) value propagates to a primary output that needs a dedicated wrapper cell, it inserts the
following cell regardless of capture_window_behavior setting. It prevents capturing an X value
during internal test when x_bounding_en signal is enabled. The cell shifts only when scan_en is
on; otherwise, it either captures the value of DI (int/ext_ltest_en = 0 and x_bounding_en = 0) or
holds (int/ext_ltest_en = 1 or x_bounding_en = 1).

Tessent™ Scan and ATPG User’s Manual, v2022.4280

Internal Scan and Test Circuitry Insertion
Clock Selection for Dedicated Wrapper Cells

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-20. Dedicated Output Wrapper Cell With X-Bounding

If the design has test points, some control points may become shared output wrapper cells.
Those cells always hold their value regardless of the capture_window_behavior setting.

Clock Selection for Dedicated Wrapper Cells
If you do not explicitly specify the clock for a dedicated wrapper cell, the tool first selects the
appropriate clock domain based on the top level clocks that control the flops in the fan-in,
fanout, or both.
During the clock domain selection, the tool ignores any flops that are not either already existing
scan cells or targeted for scan insertion. In addition, the tool limits the initial search to flops that
are in the same power_domain_island as the test point location. When only a single clock
domain occurs in the fanout or fan-in, the tool uses that domain. Otherwise, it uses the most
referenced clock domain in the fanout of the control point (or fan-in of the observe point).

Next, it chooses a connection point as described below:

• It connects to the clock port of one of the flops in the fanout (for an input wrapper cell),
or fan-in (for an output wrapper cell). If the clock port of the connected scan cell is not
directly accessible, then it traces through sensitized paths in the clock network to find
the closest possible connection point.

• If no valid connection point is found as described above, it tries to connect to the
identified clock at the closest module input port moving up the hierarchy.

• Otherwise, it connects to the clock source.

Dedicated Wrapper Cell Placement
By default, when you need a dedicated wrapper cell (DWC) for a primary IO, the tool places a
single DWC directly on that primary IO. However, some limitations and user configurations can
modify the location where the tool places a DWC.

Internal Scan and Test Circuitry Insertion
Dedicated Wrapper Cell Placement

Tessent™ Scan and ATPG User’s Manual, v2022.4 281

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool attempts to satisfy all constraints and configurations with one or more DWCs per port.
If that is not possible, the tool reports a SW7 DRC violation and leaves any problematic
branches unwrapped.

DWC Placement Limitations
Dedicated wrapper cell placement has the following limitations:

• The tool does not place DWCs inside hard modules or other non-editable locations. The
tool can only place DWCs on gate pins or hierarchical instance ports/pins.

• The tool does not place DWCs on a set or reset port that drives a Tessent SRI
instrument. Such a placement interferes with the correct functionality of the Tessent
instrument. If possible, the tool attempts to bypass the Tessent instrument and wrap all
other branches of the primary input.

Power Isolation
When you use the “set_wrapper_analysis_options -dedicated_wrapper_cells_location
inside_power_isolation” command (default), the tool pushes the placement of the DWC to the
outputs of each power isolation cell. If only some (but not all) branches have isolation cells, the
tool also places DWCs on each non-isolated branch. This may result in multiple DWCs on a
single primary input.

Placing DWCs Below Instances
When you use the “set_dedicated_wrapper_cell_options -below_instances” command on a
primary IO, the tool only places DWCs inside (below) one of the instances specified by the
command.

The tool does not modify the design to create a path from the primary IO to a specified instance.
Instead, it attempts to place the DWC at existing gate pins or hierarchical ports/pins on existing
branches in the fan-in/fanout of the primary IO.

Note
The tool may not identify feedthrough instances correctly. If you want to place DWCs
inside feedthrough modules, you must add a buffer (or other combinational gates) inside the

feedthrough module. You can do this with the “set_attribute_options
-preserve_boundary_in_flat_model on” command.

Cluster Isolation
If you set the “set_dedicated_wrapper_cell_options -isolate_clusters” command to “on” for an
input port that fans into the state elements of more than one cluster, the tool tries to find separate
DWCs that each only drive state elements of a specific cluster. This may increase the total
number of DWCs required per port to be more than the number of clusters in the fanout,

Tessent™ Scan and ATPG User’s Manual, v2022.4282

Internal Scan and Test Circuitry Insertion
Identification of Clock and Reset Ports

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

depending on the number of branches connected to multiple clusters. The same can be true for
DWCs on output ports.

Note
The tool determines the cluster of a state element by the value of the “cluster_name”
attribute associated with its instance. If you have not set the cluster_name attribute (or set it

to the empty string “”), the tool considers it to be its own cluster, distinct from any other
configured cluster.

The tool isolates state elements by cluster for scan and nonscan state elements. The
cluster_name attribute of nonscan state elements must match the cluster_name of scannable
state elements for the tool to drive them both with the same DWC when cluster isolation is
active.

Identification of Clock and Reset Ports
The tool automatically identifies reset and clock ports during wrapper analysis. However, you
can influence this behavior with Tessent Shell commands.

Reset and Clock Ports
During wrapper analysis, the tool manages clock, set, and reset primary inputs (PIs) differently
from regular PIs and primary outputs (POs) to automatically identify and wrap them as reset and
clock ports appropriately.

A reset port is a port that drives a set or reset pin of a sequential element and does not drive the
clock pin of any sequential element.

A clock port is a port where any of the following are true:

• It drives the clock pin of a sequential element.

• It drives a pin or net of a cut point defined as a clock.

• It was specified as a clock port by the add_clocks command before wrapper analysis and
has not been identified by the tool as a reset port during wrapper analysis.

Wrapper Analysis of Reset and Clock Ports
The tool automatically identifies reset and clock ports. You can manually specify ports as
clocks with the add_clocks command.

Reset ports receive dedicated wrapper cells (DWCs) from wrapper analysis. Clock ports do not
receive any wrapper cells from wrapper analysis.

Internal Scan and Test Circuitry Insertion
Tessent Instruments With keep_active_during_scan_test

Tessent™ Scan and ATPG User’s Manual, v2022.4 283

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following describes how the tool identifies reset and clock ports during wrapper analysis
and where you can influence this behavior with the add_clocks and other commands.

• The tool identifies any PI with an unblocked path to a set or reset pin of any flip-flop or
latch as a reset port.

• The tool identifies any PI with an unblocked path to the clock pin of a flip-flop or latch
as a clock port.

• The tool identifies any PO with an unblocked path backward to a clock PI as a clock
feedthrough PO, including those you manually specify with the add_clocks command.

• The tool identifies any port that traces to both clock and reset (or set) pins as a clock
port.

• If you specify add_clocks for a port that the tool automatically identifies as a reset port,
it wraps that port. However, you may exclude the port from being wrapped with the
following command:

set_wrapper_analysis_options -exclude port

• The tool does not wrap clock ports when you define them with the add_clocks command
unless it identifies them as reset ports. If you specify a PI as a clock with the add_clocks
command, the tool does not wrap it.

The tool does not wrap clock ports that it automatically identifies. However, you may
force DWCs on automatically identified clock ports with the following command:

set_dedicated_wrapper_cell_options ON -port port_spec

Note
The set_dedicated_wrapper_cell_options command without the -port switch has no
effect. The “set_dedicated_wrapper_cell_options ON -port port_spec” command

has no effect on PIs you identify as a clock with the add_clocks command.

Tessent Instruments With
keep_active_during_scan_test

Do not add dedicated wrapper cells that interfere with the operation of Tessent instruments that
are marked with the keep_active_during_scan_test attribute. The tool automatically detects
combinational logic paths between primary input pins and Tessent instruments that have the
keep_active_during_scan_test attribute set. The tool does not add a dedicated wrapper cell in
this path.

Tessent™ Scan and ATPG User’s Manual, v2022.4284

Internal Scan and Test Circuitry Insertion
Tessent Instruments With keep_active_during_scan_test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
This check also applies to user-specified dedicated wrapper cells. The path between the
primary input and Tessent instruments is always protected. The user-specified dedicated

wrapper cell or cells will not be inserted directly at the primary input, but will instead be
inserted such that only paths that do not drive Tessent instruments are affected.

The primary input may drive other logic. Dedicated wrapper cells are added to control these
paths (this typically requires adding dedicated wrapper cells at the drain pins of a net instead of
adding the wrapper cell at the driver).

Internal Scan and Test Circuitry Insertion
Clock Gaters and Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 285

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters and Scan Insertion
In context of scan insertion, a clock gater is a module that has four ports with the following
functions: Test enable (TE), Functional enable (FE), Clock input and Clock output
Usually, the synthesis tools leave the test enable pins unconnected, and it is the scan insertion
tool’s role to take control of these clock gaters in order to guarantee correct scan operation.
Tessent Scan treats every TE pin that is tied to 0, 1, X or Z as unconnected.

Types of Clock Gaters . 285
Identification of Clock Gaters . 286
Identification of Pin Functions . 287
Fixing Clock Gaters . 288
Clock Gaters and Wrapper Analysis . 289

Types of Clock Gaters
Tessent Scan supports four types of clock gaters that are described in this section.
The following types of clock gaters are supported:

• Latch-free. The following picture shows an example of a latch-free AND clock gater.

Figure 6-21. Latch-Free AND Clock Gater

• Pre-latch clock gaters are the most common type of clock gater. The following picture
shows a pre-latch AND clock gater.

Figure 6-22. Pre-Latch AND Clock Gater

• Post-latch clock gater. The picture below shows a post-latch AND clock gater.

Tessent™ Scan and ATPG User’s Manual, v2022.4286

Internal Scan and Test Circuitry Insertion
Identification of Clock Gaters

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-23. Post-Latch AND Clock Gater

• Two-latch clock gater. Shown below is a two-latch AND clock gater

Figure 6-24. Two-Latch AND Clock Gater

The combinational gate on the clock path, that eventually makes the clock gater activated or
disabled, is called clock gate in this document (see the AND gates in the pictures above). It has
a clock and non-clock (control) input. The other gate that combines both enable signals is
referred to as the control gate. In general, these can be various types of combinational gates,
which impacts the required clock gater behavior—the polarity of enable signals, and the off
state value when the clock gater is disabled. It should be sufficient to control just a single enable
port of a clock gater in order to enable this clock gater. In other words, setting a controlling
value on the control gate should force the non-clock input of the clock gate to a non-controlling
value.

The tool also distinguishes two types of clock gaters—Type-A and Type-B. With a Type-A
clock gater, when the clock driving its input is in its off state, the latch inside this clock gater is
transparent. On the other hand, the same conditions make the latch non-transparent in a Type-B
clock gater, and consequently the output of this clock gater is not controlled to a deterministic
off state. As you can see, the type of clock gater (A or B) cannot be determined by just knowing
the structure of the clock gater—the clock off-state must also be considered. For more
information, refer to Two Types of Embedding in “Clock Gaters” on page 763 in this manual.

Identification of Clock Gaters
There are three ways that Tessent Scan can identify clock gaters: User-identification, Tessent
Cell Library, and Auto-identification
Described below, in order of priority, are the three ways that Tessent Scan identifies clock
gaters.

Internal Scan and Test Circuitry Insertion
Identification of Pin Functions

Tessent™ Scan and ATPG User’s Manual, v2022.4 287

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

User-specified clock gaters
You can define clock gater modules and instances using the “set_clock_gating on” command. If
you do not want Tessent Scan to take control of any particular clock gater’s TE pin, the clock
gater can be excluded with “set_clock_gating off” command. For example, a clock gater at
instance inst1/cg1, with the test enable, functional enable, clock input and clock output ports
TE, FE, CLK, GCLK respectively, can be defined using the following command:

set_clock_gating on inst1/cg1 -test_enable TE -functional_enable FE \
-invert -clock_port CLK -clock_out_port GCLK

These clock gaters are fixed by the tool even if they drive non-scan cells only. See Fixing Clock
Gaters for more information.

Tessent Cell Library
Tessent Scan uses the cell_type and pin_type attributes of the Tessent Library cells to identify
clock gater instances in the design.

• cell_type: clock_gating_and, clock_gating_or

• pin_type: func_enable, func_enable_inv, test_enable, test_enable_inv, clock_in,
clock_out

These attributes can be either specified by you in the library or automatically learned. Learning
involves automatic identification of the cell_type attribute for clock gater cells as well as a
heuristic to learn the pin attributes (if they are not specified). For more information, see Clock
Gating Cell in the Library Model Creation chapter of the Tessent Cell Library Manual.

Auto-identification
The clock gaters are automatically identified by matching the clock gater structures (see Types
of Clock Gaters above) with gates on clock paths. Once the structure is matched in the flat
model, the tool verifies that all ports (TE, FE, clock in, clock out) can be uniquely traced to the
module or cell boundary level — if they are cell-internal pins, the clock gater is discarded.

Identification of Pin Functions
Once a clock gater structure is identified, the tool needs to distinguish between TE and FE pins.
For clock gaters that are described with Tessent Cell Library, this is straight forward, as all pins
are described with pin_attributes.
When you define a clock gater with the set_clock_gating command, the -test_enable option is
required, so the TE pin is always known. However, the -functional_enable is optional, and if it
is not specified, the tool tries to automatically find the functional enable pin by tracing forward
from TE to a 2-input combinational gate, and then backwards to the instance boundary. The pin
that it finds through such tracing becomes the FE of that clock gater. If automatic identification

Tessent™ Scan and ATPG User’s Manual, v2022.4288

Internal Scan and Test Circuitry Insertion
Fixing Clock Gaters

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

of the FE pin fails, the tool issues an error message (see “set_clock_gating” in the Tessent Shell
Reference Manual).

Tessent Scan uses the same name-based heuristic as Tessent Cell Library to distinguish TE pin
from FE—when one port’s name starts with “te” or “se” and the other does not start with “te” or
“se”, the latter is considered FE and former TE (The “te” and “se” are case-insensitive). When
clock gater is auto-identified, the following methods are used to identify TE and FE pins:

• If both pins are unconnected, the tool uses the name-based heuristic to distinguish TE
from FE.

• If one of the pins is unconnected, and the name-based heuristic identifies it as TE, the
tool assumes it is the test enable, and the other enable pin is the functional enable.

• If both pins are connected, the tool uses the name-based heuristic to distinguish TE from
FE. If the heuristic is unable to identify TE and FE pins (for example, if ports are called
“i0” and “i1”), and one of the pins is connected to scan enable or clock gating enable
signal, then this port is identified as TE, and the other enable pin becomes the functional
enable.

All identified clock gaters can be reported with the report_clock_gating command.

Fixing Clock Gaters
Tessent Scan tries to take control of the clock gater’s TE port in order to guarantee correct scan
operation. Every clock gater that drives scan elements needs to be enabled (propagate the clock
signal) during shift.
Clock gaters are not fixed if they are below a hard module or are excluded with
“set_clock_gating off” command. They are also not fixed if they are not driving any scan cells.

The clock gaters with unconnected TE pin are fixed by connecting their TE pin to a combination
of appropriate signals (usually scan enable and, when needed, int_ltest_en or ext_ltest_en).
Pre-connected clock gaters are fixed by intercepting the existing TE connection, and combining
it with appropriate signals. Pre-connected clock gaters are not fixed if:

• The TE is driven by an ICL port or DFT signal.

• If both shift and capture simulation backgrounds show that the clock gater is already
enabled. This includes cases when it is connected to a constrained PI (or any other signal
that remains stable after test setup).

• If the TE pin is controllable through a defined scan enable signal. In this case, if the
clock gater drives a wrapper cell or its FE is controlled by a PI the tool intercepts the
connection and controls it with ext_ltest_en or int_ltest_en (in addition to the original
SE signal). For more information, see Clock Gaters and Wrapper Analysis.

Internal Scan and Test Circuitry Insertion
Clock Gaters and Wrapper Analysis

Tessent™ Scan and ATPG User’s Manual, v2022.4 289

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For S-rules checking and during scan segment tracing, all clock gaters that are identified as
fixable are enabled so the clock can propagate through them.

The clock gater is enabled for shift by controlling its test enable pin with the scan enable signal.
If multiple scan enable signals are defined, the clock gater is driven by a combination of all scan
enables that are used by the downstream scan elements. For example, if clock gater drives two
scan cells, one enabled with se1 and another with se2, then the clock gater’s TE pin is controlled
by an OR of se1 and se2 (assuming the signals are active high). Alternatively, instead of scan
enable, you can connect all clock gaters to a predefined clock gating enable signal (for details,
see set_clock_gating_enable command).

Please note that connecting clock gaters to a signal that is enabled throughout the test session is
not recommended. It leads to coverage loss on the fan-in of the functional enable pin, can have
a negative impact on switching activity and is not fully compatible with hierarchical scan
insertion. It is recommended to let the Tessent Scan tool handle the clock gaters.

The clock gater information is also used by the X-bounding algorithm – if an X propagates to an
FE pin of a clock gater, then its TE pin is also (in addition to scan enable) controlled with
xbounding_enable signal.

When Tessent Scan inserts additional sequential elements (retiming, pipeline, lockup latch,
dedicated wrapper cell), and the clock source is determined to be an output of a Type-B clock
gater, then the clock is actually sourced from the input of that Type-B clock gater (or the input
of first Type-B clock gater in case of cascaded Type-B clock gaters). This way, the scan chains
can be traced without initializing the Type-B clock gaters.

Clock Gaters and Wrapper Analysis
When wrapper analysis runs, in addition to scan enable, the clock gaters can also be controlled
with mode enable signals, such as int_ltest_en or ext_ltest_en, in order to define their behavior
in the capture cycle.
There are two basic scenarios.

1. The clock gater’s FE pin is driven from inside the core, and the clock gater drives at
least one wrapper cell. In such a case, the TE is controlled by the scan enable as well as
the ext_ltest_en signal. Scan enable guarantees correct shift operation in shift mode.
During capture, enabling the clock gater with ext_ltest_enable signal has the following
effect:

a. In external mode, it guarantees that the downstream input and output wrapper cell
get the clock pulses in order to capture the test responses and shift the stimuli,
respectively.

b. In internal mode, the clock gater is controlled by the functional logic, enabling fault
detection of faults in the functional enable cone. The faults can be detected through
the clock port of a wrapper cell (input or output) that this clock gater is driving.

Tessent™ Scan and ATPG User’s Manual, v2022.4290

Internal Scan and Test Circuitry Insertion
Clock Gaters and Wrapper Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-25. Faults Detectable in Internal Mode

2. Clock gater’s FE pin is controlled by a primary input. In this case the functional enable
logic is tested in external mode, so the TE pin needs to be controlled by int_ltest_en
(along with scan enable). This leads to the following behavior during capture cycle (scan
enable guarantees correct operation during shift mode):

a. In external mode, the clock gater is controlled by the primary input that drives the
functional enable. In order to guarantee the detection of faults in the functional
enable cone, if the clock gater does not drive any wrapper cells, then one of the scan
elements in its fanout is promoted to an output wrapper cell. This way all faults in
the functional enable path (including those from outside the core) can propagate to
the clock port of a wrapper cell and be detected.

It is possible that the primary input does not drive the functional enable pin directly,
but through some additional logic. Faults in that logic are also detectable. Scan
elements that contribute to this additional logic become feedback wrapper cells. If
the number of these feedback wrapper cells (and the additional promoted scan cell if
applicable) exceeds the threshold defined with set_wrapper_analysis_options, then a
dedicated wrapper cell is added at the primary input that drives the functional enable
pin.

b. In internal mode, the clock gater is transparent for the clock, and enables proper scan
chain and wrapper cell operation.

Internal Scan and Test Circuitry Insertion
Test Point and Scan Insertion

Tessent™ Scan and ATPG User’s Manual, v2022.4 291

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-26. Faults Detectable in External Mode

Test Point and Scan Insertion
Tessent ScanPro allows you to activate the dft -test_points and dft -scan sub-contexts at the
same time. You can use all of the commands from either sub-context, which means you only
need to specify the insert_test_logic command once to insert both test points and scan chains.
For any actions that differ between the two sub-contexts—such as S-rule handling—the merged
scenario uses the requirements for scan insertion, which are usually stricter than those for test
point insertion.
The merged “dft -test_points -scan” context supports wrapper analysis, X-bounding, test point
analysis and insertion, scan chain analysis and insertion, and so on. Ensure that you specify the
following commands in the following order:

1. Test point identification and analysis: analyze_test_points

2. X-bounding: analyze_xbounding

3. Wrapper analysis (as needed): analyze_wrapper_cells

4. Scan insertion: analyze_scan_chains

Note
The following example uses observation scan test points. The same flow also works for non-
observation scan test points.

The following dofile example shows a simple test point insertion and scan insertion session.
Note the following:

• Line 1: Set the context to dft -test_points -scan for both test point insertion and scan
insertion.

• Line 31: The insert_test_logic command specified once for both test points and scan
chains.

Tessent™ Scan and ATPG User’s Manual, v2022.4292

Internal Scan and Test Circuitry Insertion
Test Point and Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

1 set_context dft -test_points -scan -no_rtl
2
3 set_tsdb_output_directory tsdb_outdir
4
5 read_verilog piccpu_gate.v
6 read_cell_library ../tessent/adk.tcelllib ../data/picdram.atpglib
7 read_cell_library ../libs/mgc_cp.lib
8 read_design piccpu -design_id rtl -no_hdl
9 set_current_design
10
11 set_test_point_analysis_options -capture_per_cycle_observe_points on
12 set_test_point_analysis_options -minimum_shift_length 50
13 # set_test_point_insertion_options -capture_per_cycle_en obs_scan_en
14 set_test_point_type lbist_test_coverage
15
16 set_system_mode analysis
17
18 set_test_point_analysis -pattern_count_target 10 \
19 -test_coverage_target 99.9 -total_number 10
20
21 analyze_test_points
22
23 analyze_xbounding
24
25 add_scan_mode short_chains -edt [get_instance -of_module *_edt_lbist_c0]
26
27 analyze_scan_chains
28
29 write_test_point_dofile -replace -output_file tpDofile.do
30
31 insert_test_logic

Internal Scan and Test Circuitry Insertion
Scan Enable Pipelining

Tessent™ Scan and ATPG User’s Manual, v2022.4 293

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Enable Pipelining
This section describes how to insert scan enable pipelining using Tessent Scan. This feature
enables pseudo-Launch-Off-Shift (LOS) transition delay testing that helps to improve coverage
and simplify ATPG.
Introduction to Scan Enable Pipelining. 293
Scan Enable Pipelining Scenarios . 294

Introduction to Scan Enable Pipelining
The pseudo-Launch-Off-Shift (LOS) approach requires that the scan_enable signal turn off very
quickly after the last shift clock and that the logic settles before pulsing the capture clock.
This is shown in the following figure:

Figure 6-27. Pseudo-Launch-Off-Shift Timing

LOS can be implemented in two ways: native LOS and pseudo-LOS. Native LOS
implementations treat scan enable as a clock. Pseudo-LOS implementations avoid this
requirement by adding pipelining logic for scan_enable throughout the design. For more
information, see “Transition Fault Detection” on page 374 and “Scan Enable Pipelining
Scenarios” on page 294.

Tessent™ Scan and ATPG User’s Manual, v2022.4294

Internal Scan and Test Circuitry Insertion
Scan Enable Pipelining Scenarios

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-28. Generic Pipelined scan_enable Architecture

Figure 6-28 shows the test logic for scan_enable pipelining. The pipelined scan_enable signals
function as single-cycle paths at the capture clock frequency, which enables you to avoid the
difficult task of treating scan_enable as a global clock.

Scan Enable Pipelining Scenarios
The tool provides an integrated solution to implement scan_enable pipelining during scan
insertion.
The following scenarios show how the tool handles scan enable pipelining.

• The tool inserts scan_enable pipelining for each used clock domain (except test_clock
and shift_capture_clock), ignoring synchronous clock groups. The test_clock and the
shift_capture_clock do not get pipelined because they need to hold.

• It does not touch pre-connected OCC scan_enable pins.

• The tool inserts only one instance of scan_enable pipelining logic per scan_enable or
clock_domain. The layout tool duplicates the logic as needed.

• The tool treats scan_element object types as eligible to be connected to a pipelined
scan_enable if they do not hold during capture. Accordingly, control testpoint flops,
dedicated holding wrapper cells, holding scan pipeline flops, and holding retiming flops
inserted by the tool use a non-pipelined scan_enable.

• The tool identifies pre-existing scan elements that hold during capture and uses a
non-pipelined scan_enable.

• Holding clock_gaters (with functional enable disabled during capture) and the flops in
their fanouts use a non-pipelined scan_enable. Other clock_gaters use the pipelined
scan_enable.

• The tool treats flip-flops implementing the scan_enable pipelining logic as non-
scannable.

Internal Scan and Test Circuitry Insertion
Scan Enable Pipelining Scenarios

Tessent™ Scan and ATPG User’s Manual, v2022.4 295

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The scan_enable pipelining design enables changing the at-speed testing method from pseudo
LOS to LOC at runtime by means of a dedicated enable signal. When writing the TCD file after
scan insertion, the tool keeps track of the pipeline count for each scan_enable wrapper. The tool
also automatically uses the scan_enable pipelining information from the TCD to decide if
additional scan_enable pipelining is possible or needed for the existing segments being
concatenated at the current level.

The tool does not assign a pipelined scan_enable for existing segments with a scan_enable pin
associated to several non-synchronous clock domains. Accordingly, pseudo LOS is not
available for these segments.

The tool connects segments that already have an internally pipelined scan_enable (as specified
by the pipeline_count property in the TCD file) to the non-pipelined scan_enable signal
available for these segments.

Hardware Architecture
Basic 1-Stage Pipelining

The tool implements a basic scan_enable pipelining configuration that synchronously
transitions from active to inactive (a requirement for LOS). The chosen design architecture
includes an enable that lets you control the at-speed testing launch mode at runtime. This
configuration uses the se_pipeline_en DFT signal to enable or disable the SE pipelining, but
you can also enable it without using DFT signals.

The following figure shows how you can use a se_pipeline_en DFT signal to control the at-
speed testing launch mode at runtime: Launch-off-Shift (LOS) when it is active and
Launch-off-Capture (LOC) when it is inactive.

Figure 6-29. Controllable scan_enable Pipelining Logic for Active-High (SE)
and Active-Low (SEB) Signals

Figure 6-30 shows the negative edge-triggered flops used to pipeline scan enable for trailing
edge-triggered scan elements and OR-type clock gaters.

Figure 6-30. Controllable scan_enable Pipelining Logic for Negative Edge-
Triggered Scan Elements

Tessent™ Scan and ATPG User’s Manual, v2022.4296

Internal Scan and Test Circuitry Insertion
Scan Enable Pipelining Scenarios

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-31 shows timing with scan enable pipelining.

Figure 6-31. Timing With Scan Enable Pipelining

Note
The DFT signal se_pipeline_en is high throughout in Figure 6-31.

Invoking Scan Enable Pipelining With DFT Signals
When you define a se_pipeline_en DFT signal in SETUP mode using the add_dft_signals
command, the scan insertion tool automatically activates scan enable pipelining during the
transition to ANALYSIS mode and informs you. You can turn off the feature in ANALYSIS
mode with the “set_scan_insertion_options -se_pipeline_count 0” command and switch. The
se_pipeline_en signal is implemented as a DFT signal and can be programmed using a TDR.

Note
If you use the add_dft_signals command to specify se_pipeline_en and subsequently run the
“set_scan_signals -se_pipeline_enable pathname” command, you must explicitly run the

set_scan_insertion_options command with the “-se_pipeline_count 1” switch to implement scan
enable pipelining.

Invoking Scan Enable Pipelining Without DFT Signals
You can invoke scan enable pipelining without DFT signals with a new switch for the
set_scan_insertion_options command:

set_scan_insertion_options -se_pipeline_count 1 | 0

For details, see the set_scan_insertion_options command. In this case, the se_pipeline_en signal
is implemented as a top-level port.

Internal Scan and Test Circuitry Insertion
Scan Enable Pipelining Scenarios

Tessent™ Scan and ATPG User’s Manual, v2022.4 297

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Hierarchical Flow
The tool needs the scan enable pipelining information of each existing segment stitched into
scan chains to implement scan_enable pipelining correctly. The scan insertion tool writes out
such information for each scan inserted core that it produced. In addition, the tool loads such
information to each scan segment that it needs to assemble into chains. Accordingly, the scan
insertion tool relies on the scan enable pipelining information specified in the TCD file or by the
add_scan_segments command.

See the Scan section of the Tessent Core Description (TCD) in the Tessent Shell Reference
Manual for more information on how the tool describes the scan enable pipelining in the TCD.

Tessent™ Scan and ATPG User’s Manual, v2022.4298

Internal Scan and Test Circuitry Insertion
Scan Enable Pipelining Scenarios

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 299

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 7
Running ATPG Patterns

This section describes how to generate patterns for ATPG after scan insertion.
Running ATPG Patterns After Tessent Scan . 299
Running ATPG Patterns Without Tessent Scan. 302

Running ATPG Patterns After Tessent Scan
This section describes how you can take advantage of Tessent Scan while generating ATPG
patterns by using the new command import_scan_mode.
When you use the import_scan_mode command, the specific scan mode for which scan
insertion was performed is passed as an argument. The tool automatically reads in the TCD and
for that specific mode identifies which clocks need to be added, which scan chains to trace, and
if applicable, which OCC instances to be read in and used.

The import_scan_mode command performs the following tasks:

• Adds scan chains used in the scan mode.

• Adds EDT instruments used in the scan mode.

• Adds OCC instruments used in the scan mode.

• Configures scan clocks used in the scan mode.

• Configures DFT signals used in the scan mode.

• Creates or updates load_unload and shift procedures.

• Adds scan clock pulses to shift procedure.

• Adds scan enable signal forces to shift procedure.

For the import_scan_mode command to work properly with EDT, during scan insertion the
EDT IP needs to be connected using -edt_instance or using -si_connections/-so_connections
pointing to the EDT instance with add_scan_mode command. Refer to Scan Insertion Flow
Steps in Chapter 5 for more information.

Tessent™ Scan and ATPG User’s Manual, v2022.4300

Running ATPG Patterns
Running ATPG Patterns After Tessent Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 1
If you are using unwrapped core and have used edt_mode as the DFTSignal during scan
insertion, then you are passing it as an argument to import_scan_mode:

>set_context patterns -scan

Read the library
>read_cell_library ../../library/tessent/adk.tcelllib
>read_cell_library ../../library/mem_ver/memory.lib

Open all the previous available tsdb_outdirs
>open_tsdb ../tsdb_outdir

Read the netlist
>read_design cpu_top -design_id gate
>import_scan_mode edt_mode
>set_system_mode analysis
>report_clocks
>report_core_instances
>create_patterns
>write_tsdb_data -replace

Write out patterns for simulation
>write_patterns ./generated/pat.v -verilog -serial -replace -Begin 0 -End 64
>write_patterns ./generated/pat_parallel.v -verilog -parallel -replace -scan

Example 2
In this example a wrapped core is set up to be run with at-speed timing for transition patterns.
The import_scan_mode is passed the int_mode argument (this is the scan configuration mode)
that was used during scan insertion for internal mode:

>set_context patterns -scan
>set_tsdb_output_directory ../tsdb_outdir
>read_cell_library ../../../library/tessent/adk.tcelllib
>read_design processor_core -design_id gate
>set_current_design processor_core

Specify a different name than what was used during scan insertion with
add_scan_mode command
>set_current_mode edt_transition -type internal
>report_dft_signals
>import_scan_mode int_mode -fast_capture_mode on
>set_system_mode analysis
>report_core_instances
>report_clocks
>set_fault_type transition
>set_external_capture_options -pll_cycles 5 [lindex [get_timeplate_list] 0]
>create_patterns
>write_tsdb_data -replace
>write_patterns generated/processor_core_transition_serial.v -verilog -serial -replace
>write_patterns generated/processor_core_transition_parallel.v -verilog -parallel -replace

Running ATPG Patterns
Running ATPG Patterns After Tessent Scan

Tessent™ Scan and ATPG User’s Manual, v2022.4 301

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Setup when not using import_scan_modes:

There is no change in how you setup to run ATPG if not using import_scan_mode. You can set
up the EDT using the TCD IP mapping flow by using add_core_instances and pointing to the
EDT IP instance and passing the parameters you want to it. The same is true if there are OCCs
present in the design.

Tessent™ Scan and ATPG User’s Manual, v2022.4302

Running ATPG Patterns
Running ATPG Patterns Without Tessent Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Running ATPG Patterns Without Tessent Scan
This section describes how you can run ATPG if you have used third party tools for scan
insertion.
Core mapping for ATPG uses the TCD flow to automate mapping the DFT information from
one level to the next so that you can generate patterns at a higher level.

You can use this functionality in flows in which DFT is implemented bottom-up but pattern
generation is run at a higher level. You can use this functionality for modular EDT flows (in
which EDT and scan is implemented within a core but pattern generation is run at the next
higher level) to map EDT, scan, clock, and procedures from the core level to the level at which
pattern generation is to be run; this can be at a higher level core or at the chip level.

Core mapping for ATPG extends the core description functionality and use model developed for
pattern retargeting to top-level ATPG. Implementing core mapping for ATPG provides you
with the following benefits:

• Clean transfer of core information to the top level.

• A simple and less error-prone use model by relying on Tessent core description files for
the transfer of information. This is consistent with the pattern retargeting use model.

• Support for all combinations of uncompressed and compressed scan chains.

• Mapping or verification of procedures and clocks.

Core mapping for ATPG requires a Tessent TestKompress or Tessent FastScan license. A
TestKompress license is specifically needed if EDT logic is present at the top level of the design
or in any of the cores.

Core Mapping for ATPG Process Overview. 302
Core Mapping Examples. 311
Limitations of Core Mapping for ATPG . 317

Core Mapping for ATPG Process Overview
This section provides an overview using the TCD flow to perform core mapping for ATPG.
You can use core mapping to transfer the core-level information to the top level of the design
and generate patterns for the whole chip. The tool uses the Tessent core description (TCD) file
to transfer core-level information to the top level of the design.
An example of the core mapping process is presented in “Core Mapping Examples” on
page 311.

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 303

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Core Description File
The Tessent core description (TCD) file contains the information the tool needs to map the core
to the top level, including information such as a description of the EDT hardware and scan
chains.

Test Procedure Retargeting for Core Mapping
The automatic mapping (transfer) of test procedure information from the core level to the top
level of the design occurs when the tool transitions to analysis mode.

load_unload and shift Procedures
When cores are mapped to the chip level, chip-level load_unload and shift test procedures are
also needed. If chip-level load_unload and shift test procedures do not exist, the tool
automatically generates them based on the information in the core-level TCD files. This step
maps the core load_unload and shift procedures from the core level, merges all of the core
load_unload and shift procedures (if there is more than one core), and then merges them with
the top-level test procedures (if there are any and they do not already have the needed events to
drive the core instances).

Any timeplates in the core-level load_unload and shift procedures are updated when they are
mapped to the top level based on the following rules:

• If the timeplate does not have any pulse statements defined, the tool uses an offset and
width of 25 percent of the period as the pulse template. If the template pulse occurs
before measure_po time, the tool moves the pulse window by another 25 percent.

• If non-pulse-always clock pulses are defined in the timeplate, the specification of the
clock that is pulsed as the first one is used as a pulse timeplate.

• If only pulse-always clock pulses are defined in the timeplate, the tool uses the first one
as a pulse template.

• If the template clock has multiple pulses, the tool only uses the first pulse specification.

Clocks and Pin Constraints
By default, the tool maps all clocks and pin constraints that are specified at the core-level to the
top. Clock types are mapped based on the core-level specification. Note, the tool maps any
permanently tied constraints (CT) in those files as constraints that can be overridden (C).

Even though clocks and pin constraints are automatically mapped to the top level by default,
you can still define them at the top, or drive the core-level input constraints through logic such
as a TAP.

Any clocks that are mapped to the top are removed when the tool exits analysis mode.

Tessent™ Scan and ATPG User’s Manual, v2022.4304

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

test_setup and test_end Procedures
You typically need to provide top-level test_setup procedures and, occasionally, test_end
procedures to configure instruments such as PLLs, OCCs, EDT IPs, channel multiplexer access,
and so on in preparation for scan test. These instruments may be at the top level, within the
cores, or both. The test_setup and test_end procedures can consist of a cyclized sequence of
events, IJTAG iCall statements, or both.

If any of the instruments used for scan test are inside a core, you must have used at least one of
a test_setup or test_end procedure at the core level to initialize them. If you used IJTAG within
a core-level test_setup or test_end procedure, the TCD file retains this information. When you
add an instance of this core for mapping, the tool automatically maps the iCalls that occurred at
the core level to the top level and adds them to the top-level test_setup or test_end procedure. In
other words, if you use IJTAG to set up the core at the core level, the tool automatically maps
those sequences to the top-level test_setup and test_end procedures without you doing anything.
Of course, the top-level test_setup and test_end procedures may have additional events to
configure top-level instruments.

In order for the tool to perform automatic IJTAG mapping, you must have extracted the
chip-level ICL using the extract_icl command. You must also have sourced the core-level PDL.

Several R DRCs validate the presence of both ICL and PDL. Note that the tool does not store
ICL and PDL in the core-level TCD file; it only stores references to their usage in the test_setup
or test_end procedure.

Note
If you have not previously extracted ICL in a separate step, you can still run the normal core
mapping flow with this change: After entering the patterns -scan context, you must read ICL

for each of the cores, extract the ICL using the extract_icl command, read the PDL file for each
module, and then proceed with the rest of the core mapping flow.

Make sure to call the extract_icl command before you issue the set_procfile_name command
otherwise it is understood that the test_setup proc located in the specified proc file is actually
needed to extract the ICL. The test_setup proc is simulated and used to establish the background
simulation values when tracing and extracting the ICL network. Because this test_setup was
simulated to do ICL extraction, its name appears in the extracted ICL, and the
process_patterns_specification command generates an error if you do not refer to it using the
procfile_name property inside the AdvancedOptions wrapper.

For specific instructions on performing ICL extraction, refer to “Performing ICL Extraction” in
the Tessent IJTAG User’s Manual.

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 305

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
You can disable load_unload and shift procedure retargeting by running the
“set_procedure_retargeting_options -scan off” command. If test procedure retargeting is

disabled and chip-level load_unload and shift test procedures are missing, the tool generates an
error.

You can disable the automated mapping of core-level iCalls stored in the TCD file to the top
level by running the “set_procedure_retargeting_options -ijtag off” command. (This has no
impact on iCalls you explicitly added into the top-level setup procedures either explicitly or
indirectly using the set_test_setup_icall command.) If IJTAG retargeting is disabled, you must
provide the needed test_setup and test_end procedures.

For more information on using IJTAG to automate test_setup and test_end procedure creation,
see “IJTAG and ATPG in Tessent Shell” in the Tessent IJTAG User’s Manual.

Core Mapping Process
In addition to scan logic within the cores, you may also have top-level scan logic that operates
together with the core logic in the current mode when DRCs and ATPG are run. The standard
core mapping process enables you to add the top-level scan logic using standard commands
such as add_scan_chains and add_scan_groups (or using add_core_instances). The tool merges
the core-level load_unload and shift procedures with the top-level load_unload and shift
procedures if you have read them in.

1. Generate a Tessent core description (TCD) file for each core that you want to map to the
top. This process is illustrated in Figure 7-1.

Note
This is the same process that you use to run DRC and ATPG at the core level, except
that in this step you export the core description to the next higher level using the

write_core_description command.

Tessent™ Scan and ATPG User’s Manual, v2022.4306

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-1. Generation of Core Description Files

2. Map the core-level TCD files to the top level. This process is illustrated in Figure 7-2.

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 307

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-2. Core Mapping to Top Level

Alternative Core Mapping Process
If you want to verify your top-level scan logic independently, you can use an alternative
mapping process. The alternative mapping process requires that you create, validate, and then
add the top-level scan logic as a core instance using the “add_core_instances -current_design”
command.

Tessent™ Scan and ATPG User’s Manual, v2022.4308

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

1. Generate a Tessent core description (TCD) file for each core that you want to map to the
top. This process is illustrated in Figure 7-1.

2. Generate a TCD file for the scan logic present at the top level that excludes the scan
logic in the cores that you intend to map and merge later. The following figure illustrates
this process. This is identical to what was done at the core level in Figure 7-1 except that
this mode only defines the top-level logic in the design with the exception of the logic in
the core that will be mapped in the next step.

The TCD file you generate in this step only describes the top-level scan logic (it is not
the TCD file that describes everything including the top-level and mapped core
information).

Figure 7-3. Generation of Top-Level TCD File for Top-Level Logic

3. Map the core-level TCD files to the top level.

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 309

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This process is illustrated in Figure 7-4. In this alternative flow, if scan logic exists at the
top level, you have two different views (modes) of the top level:

o A view that only includes the top-level scan logic and the procedures that operate
that logic (if there is any)

o The merged top-level view created after the TCD flow, which, in addition to the top-
level scan logic and procedures, also includes all of the core-level scan logic mapped
to the top.

If there are two views of the top level, you must specify a different top-level mode name
in either this step or the next step, using the set_current_mode command.

Tessent™ Scan and ATPG User’s Manual, v2022.4310

Running ATPG Patterns
Core Mapping for ATPG Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-4. Alternate Process for Core Mapping to Top Level

This flow matches the process shown in Figure 7-2, except that in addition to adding
core instances for the lower-level cores, you use the “add_core_instances
-current_design” command to define the top-level scan logic that was stored in the TCD
in step 2 .

Running ATPG Patterns
Core Mapping Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 311

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core Mapping Examples
The following two examples demonstrate the core mapping use model and the alternative core
mapping use model.
Both of these examples are based on the design shown in Figure 7-5. The design has three cores:
one instance of the piccpu_1 core containing both compressed and uncompressed scan chains,
one instance of the piccpu_2 core containing only compressed chains, and one instance of the
small_core core containing only uncompressed scan chains. TOP is the top design where both
compressed and uncompressed chains exist.

Tessent™ Scan and ATPG User’s Manual, v2022.4312

Running ATPG Patterns
Core Mapping Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-5. Mapping of Cores to Chip Level

Running ATPG Patterns
Core Mapping Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 313

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core Mapping Example
As shown in this example, after you have generated a TCD file for each of the cores in your
design, you map the cores to the chip level using those TCD files, add any additional scan logic,
and then generate patterns for the entire design.

Set the proper context for core mapping and subsequent ATPG
set_context pattern -scan

Read cell library (library file)
read_cell_library technology.tcelllib

Read the top-level netlist and all core-level netlists
read_verilog generated_1_edt_top_gate.vg generated_2_edt_top_gate.vg \

generated_top_edt_top_gate.vg

Specify the top level of design for all subsequent commands and set mode
set_current_design
set_current_mode top_design_mode

Read all core description files
read_core_descriptions piccpu_1.tcd
read_core_descriptions piccpu_2.tcd
read_core_descriptions small_core.tcd

Bind core descriptions to cores
add_core_instances -instance core1_inst -core piccpu_1
add_core_instances -instance core2_inst -core piccpu_2
add_core_instances -instance core3_inst -core small_core

Specify top-level compressed chains and EDT
dofile generated_top_edt.dofile

Specify top-level uncompressed chains
add_scan_chains top_chain_1 grp1 top_scan_in_3 top_scan_out_3
add_scan_chains top_chain_2 grp1 top_scan_in_4 top_scan_out_4

Report instance bindings
report_core_instances

Change to analysis mode
set_system_mode analysis

Create patterns
create_patterns

Write patterns
write_patterns top_patts.stil -stil -replace

Report procedures used to map the core to the top level (optional)
report_procedures

Tessent™ Scan and ATPG User’s Manual, v2022.4314

Running ATPG Patterns
Core Mapping Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alternative Core Mapping Example
As shown in this alternative example flow, after you have generated a TCD file for each of the
cores in your design and for the top-level scan logic, you map the cores to the chip level using
those TCD files, and then generate patterns for the entire design.

Notice that in this flow you must add the top-level logic as a core instance using the
“add_core_instances -current_design” command. You must also specify a top-level mode name
using set_current_mode if you did not specify one during TCD file generation; the mode must
have a different name than the mode in the TCD files to avoid overwriting the first one.

The differences between this flow and the standard core mapping are shown in bold font.

Set the proper context for core mapping and subsequent ATPG
set_context pattern -scan

Read cell library (library file)
read_cell_library technology.tcelllib

Read the top-level netlist and all core-level netlists
read_verilog generated_1_edt_top_gate.vg generated_2_edt_top_gate.vg \

generated_top_edt_top_gate.vg

Specify the top level of design for all subsequent commands and set mode
set_current_design
set_current_mode top_design_mode

Read all core description files
read_core_descriptions core1.tcd
read_core_descriptions core2.tcd
read_core_descriptions core3.tcd
read_core_descriptions top_only.tcd

Bind core descriptions to cores
add_core_instances -instance core1_inst -core piccpu_1
add_core_instances -instance core2_inst -core piccpu_2
add_core_instances -instance core3_inst -core small_core
add_core_instances -current_design -core my_design

Report instance bindings
report_core_instances

Change to analysis mode
set_system_mode analysis

Create patterns
create_patterns

Write patterns
write_patterns top_patts.stil -stil -replace

Report procedures used to map the core to the top level (optional)
report_procedures

Running ATPG Patterns
Core Mapping Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 315

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core Mapping Example With IJTAG
If you used IJTAG at the core level, by default, the tool tries to map any core-level iCalls to the
chip level as described in section “test_setup and test_end Procedures.” As shown in this
example, after you have generated a TCD file for each of the cores in your design, you need to
extract the top-level ICL and source the necessary PDL. When you have done this, you can map
the cores to the chip level using the previously generated TCD files, add any additional scan
logic, and then generate patterns for the entire design.

The differences between this flow and the standard core mapping flow are shown in bold font.

Tessent™ Scan and ATPG User’s Manual, v2022.4316

Running ATPG Patterns
Core Mapping Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Set the proper context for core mapping and subsequent ATPG
set_context pattern -scan

Read cell library (library file)
read_cell_library technology.tcelllib

Read the top-level netlist and all core-level netlists
read_verilog generated_1_edt_top_gate.vg generated_2_edt_top_gate.vg \

generated_top_edt_top_gate.vg

Read core-level ICL. ICL may be automatically loaded when the
set_current_design command is issued as described in section
“Top-Down and Bottom-Up ICL Extraction Flows” in the Tessent IJTAG
User’s Manual
read_icl piccpu_1.icl
read_icl piccpu_2.icl
read_icl small_core.icl

Specify the top level of design for all subsequent commands and set mode
set_current_design
set_current_mode top_design_mode

Extract top-level ICL and write the extracted ICL for later usage
extract_icl
write_icl -output_file top_design.icl

Source core-level PDL
source generated_1_edt.pdl
source generated_2_edt.pdl
source generated_3_edt.pdl

Read all core description files
read_core_descriptions piccpu_1.tcd
read_core_descriptions piccpu_2.tcd
read_core_descriptions small_core.tcd

Bind core descriptions to cores
add_core_instances -instance core1_inst -core piccpu_1
add_core_instances -instance core2_inst -core piccpu_2
add_core_instances -instance core3_inst -core small_core

Specify top-level compressed chains and EDT
dofile generated_top_edt.dofile

Specify top-level uncompressed chains
add_scan_chains top_chain_1 grp1 top_scan_in_3 top_scan_out_3
add_scan_chains top_chain_2 grp1 top_scan_in_4 top_scan_out_4

Report instance bindings
report_core_instances

Change to analysis mode
set_system_mode analysis

Create patterns
create_patterns

Write patterns

Running ATPG Patterns
Limitations of Core Mapping for ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 317

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

write_patterns top_patts.stil -stil -replace

Report procedures used to map the core to the top level (optional)
report_procedures

Limitations of Core Mapping for ATPG
The Core Mapping for ATPG functionality has the following described limitations.

• Core-level scan pins, whether compressed or uncompressed, must connect to the top
level through optional pipeline stages. Uncompressed chains from different cores cannot
be concatenated together before being connected to the top level.

Tessent™ Scan and ATPG User’s Manual, v2022.4318

Running ATPG Patterns
Limitations of Core Mapping for ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 319

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 8
Test Pattern Generation

It is important to understand the overall process for generating test patterns for your design. You
use the ATPG tool and possibly Questa SIM, depending on your test strategy, to perform these
tasks.
The sections that follow outline the steps required for test generation.

ATPG Basic Tool Flow . 321
ATPG Tool Inputs and Outputs . 323
ATPG Process Overview . 325

ATPG Procedures . 329
Tool Invocation. 329
Circuit Behavior Setup . 330
Tool Behavior Setup . 336
Scan Data Definition. 340

Rules Checks and Violations. 342
Good/Fault Simulation With Existing Patterns . 343

Fault Simulation . 343
Good-Machine Simulation . 345

Random Pattern Simulation . 346
Tool Setup for Random Pattern Simulation . 346
Faults List Addition . 346
Running Random Pattern Simulation . 346

Fault Information Setup for ATPG . 347
Tool Setup for ATPG . 347
Faults List Creation. 348
Faults Addition to an Existing List . 348
How to Load Faults From an External List . 348
How to Write Faults to an External File . 349
Fault Sampling Percentage Setup . 349
Fault Mode Setup . 349
Possible-Detect Credit Setup . 349

ATPG Operations . 350
ATPG Setup . 351
Pattern Creation With Default Settings . 358
Approaches for Improving ATPG Efficiency. 360
How to Save the Test Patterns . 362

Low-Power ATPG . 363

Tessent™ Scan and ATPG User’s Manual, v2022.4320

Test Pattern Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Low-Power Capture . 364
Low-Power Shift. 365
Weighted Switching Activity . 365
Setting Up Low-Power ATPG . 367

IDDQ Test Set Creation . 369
IDDQ Test Set Generation . 370
Leakage Current Checks . 371

Delay Test Set Creation. 372
Transition Delay Test Set Creation. 373
Transition Fault Detection . 374
Generating a Transition Test Set . 376
Timing for Transition Delay Tests . 377
Transition Fault Detection and Multiple Clocks. 379
Pattern Failures Due to Timing Exception Paths . 383
SDC Timing Exception Effects . 389
Debugging Test Coverage With Timing Exceptions . 393
Path Delay Test Set Creation . 395
At-Speed Test With Named Capture Procedures . 405
Mux-DFF Example . 413
Support for Internal Clock Control . 419
Generating Test Patterns for Different Fault Models and Fault Grading 426
Timing-Aware ATPG . 439

Bridge and Open, and Cell Neighborhood Defects UDFM Creation 456
Interconnect Bridge and Open Extraction and UDFM Creation . 457
Cell Neighborhood Defects UDFM Creation . 471

Pattern Generation for a Boundary Scan Circuit. 479
About Dofile . 479
TAP Controller State Machine . 480
About the Test Procedure File . 481

MacroTest Overview . 487
The MacroTest Process Flow . 488
Macro Qualification for MacroTest . 490
When to Use MacroTest . 491
Macro Boundary Definition . 494
Test Values Definition . 498
Recommendations for MacroTest Use . 500
MacroTest Examples . 502

Verifying Test Patterns . 509
Design Simulation With Timing. 510
Potential Causes of Simulation Mismatches. 521

Test Pattern Generation
ATPG Basic Tool Flow

Tessent™ Scan and ATPG User’s Manual, v2022.4 321

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Basic Tool Flow
The following figure shows the basic process flow for the ATPG tool.

Figure 8-1. Overview of ATPG Tool Usage

Tessent™ Scan and ATPG User’s Manual, v2022.4322

Test Pattern Generation
ATPG Basic Tool Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tasks required to complete the test pattern generation shown in Figure 8-1 are described as
follows:

1. Invoke Tessent Shell using the “tessent -shell” command. Set the context to
“patterns -scan” using the set_context command, which enables you to access ATPG
functionality.

2. The ATPG tool requires a structural (gate-level) design netlist and a DFT library, which
you accomplish with the read_cell_library and read_verilog commands, respectively.
“ATPG Tool Inputs and Outputs” on page 323 describes which netlist formats you can
use with the ATPG tool. Every element in the netlist must have an equivalent
description in the specified DFT library. The “Design Library” section in the Tessent
Cell Library Manual gives information on the DFT library. The tool reads in the library
and the netlist, parsing and checking each.

3. After reading the library and netlist, the tool goes into setup mode. Within setup mode,
you perform several tasks, using commands either interactively or through the use of a
dofile. You can set up information about the design and the design’s scan circuitry.
“Circuit Behavior Setup” on page 330 documents this setup procedure. Within setup
mode, you can also specify information that influences simulation model creation during
the design flattening phase.

4. After performing any setup you want, you can exit setup mode, which triggers a number
of operations. If this is the first attempt to exit setup mode, the tool creates a flattened
design model. This model may already exist if a previous attempt to exit setup mode
failed or you used the create_flat_model command. “Model Flattening” on page 107
provides more details about design flattening.

5. Next, the tool performs extensive learning analysis on this model. “Learning Analysis”
on page 113 explains learning analysis in more detail.

6. Once the tool creates a flattened model and learns its behavior, it begins design rules
checking. The “Design Rule Checking” section in the Tessent Shell Reference Manual
gives a full discussion of the design rules.

7. Once the design passes rules checking, the tool enters analysis mode, where you can
perform simulation on a pattern set for the design. For more information, refer to “Good-
Machine Simulation” on page 345 and “Fault Simulation” on page 343.

8. At this point, you may want to create patterns. You can also perform some additional
setup steps, such as adding the fault list. “Fault Information Setup for ATPG” on
page 347 details this procedure. You can then run ATPG on the fault list. During the
ATPG run, the tool also performs fault simulation to verify that the generated patterns
detect the targeted faults.

In either case (full or partial scan), you can run ATPG under different constraints, or
augment the test vector set with additional test patterns, to achieve higher test coverage.
See “ATPG Operations” on page 350 for details on configuring ATPG runs.

Test Pattern Generation
ATPG Tool Inputs and Outputs

Tessent™ Scan and ATPG User’s Manual, v2022.4 323

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

After generating a test set with the ATPG tool, you should apply timing information to
the patterns and verify the design and patterns before handing them off to the vendor.
“Verifying Test Patterns” on page 509 documents this operation.

ATPG Tool Inputs and Outputs . 323
ATPG Process Overview . 325

ATPG Tool Inputs and Outputs
The ATPG tool uses multiple inputs to produce test patterns, a fault list, and ATPG information
files.
Figure 8-2 shows the inputs and outputs of the ATPG tool.

Figure 8-2. ATPG Tool Inputs and Outputs

The ATPG tool uses the inputs shown in Table 8-1:
Table 8-1. ATPG Inputs

Design The supported design data format is gate-level Verilog.
Other inputs also include 1) a cell model from the design
library and 2) a previously-saved, flattened model.

Test Procedure File This file defines the operation of the scan circuitry in your
design. You can generate this file by hand, or Tessent Scan
can create this file automatically when you issue the
command write_atpg_setup.

Tessent™ Scan and ATPG User’s Manual, v2022.4324

Test Pattern Generation
ATPG Tool Inputs and Outputs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The ATPG tool produces the outputs described in Table 8-2:

Library The design library contains descriptions of all the cells used
in the design. The tool uses the library to translate the
design data into a flat, gate-level simulation model for use
by the fault simulator and test generator.

Fault List The tool can read in an external fault list. The tool uses this
list of faults and their current status as a starting point for
test generation.

Test Patterns The tool can read in an external fault list. The tool uses this
list of faults and their current status as a starting point for
test generation.

Table 8-2. ATPG Outputs
Test Patterns The tool generates files containing test patterns. They can

generate these patterns in a number of different simulator
and ASIC vendor formats. “Test Pattern Formatting and
Timing” on page 595 discusses the test pattern formats in
more detail.

ATPG Information Files These consist of a set of files containing information from
the ATPG session. For example, you can specify creation of
a log file for the session

Fault List This is an ASCII-readable file that contains internal fault
information in the standard Tessent fault format.

Table 8-1. ATPG Inputs (cont.)

Test Pattern Generation
ATPG Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 325

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Process Overview
To understand how the ATPG tool operates, you should understand the basic ATPG process,
timing model, and basic pattern types that the tool produces. The following subsections discuss
these topics.
Basic ATPG Process . 325
ATPG Tool Timing Model . 326
ATPG Tool Pattern Types . 326

Basic ATPG Process
The ATPG tool has default values set, so when you start ATPG for the first time (by issuing the
create_patterns command), the tool performs an efficient combination of random pattern fault
simulation and deterministic test generation on the target fault list.
“The ATPG Process” on page 42 discusses the basics of random and deterministic pattern
generation.

Random Pattern Generation Using the ATPG Tool
The tool first performs random pattern fault simulation for each capture clock, stopping when a
simulation pattern fails to detect at least 0.5 percent of the remaining faults. The tool then
performs random pattern fault simulation for patterns without a capture clock, as well as those
that measure the primary outputs connected to clock lines.

Note
ATPG constraints and circuitry that can have bus contention are not optimal conditions for
random pattern generation. If you specify ATPG constraints, the tool does not perform

random pattern generation.

Deterministic Test Generation Using the ATPG Tool
Some faults have a very low chance of detection using a random pattern approach. Thus, after it
completes the random pattern simulation, the tool performs deterministic test generation on
selected faults from the current fault list. This process consists of creating test patterns for a set
of (somewhat) randomly chosen faults from the fault list.

During this process, the tool identifies and removes redundant faults from the fault list. After it
creates enough patterns for a fault simulation pass, it displays a message that indicates the
number of redundant faults, the number of ATPG untestable faults, and the number of aborted
faults that the test generator identifies. The tool then once again invokes the fault simulator,
removing all detected faults from the fault list and placing the effective patterns in the test set.
The tool then selects another set of patterns and iterates through this process until no faults

Tessent™ Scan and ATPG User’s Manual, v2022.4326

Test Pattern Generation
ATPG Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

remain in the current fault list, except those aborted during test generation (that is, those in the
UC or UO categories).

ATPG Tool Timing Model
The tool uses a cycle-based timing model, grouping the test pattern events into test cycles. The
ATPG tool simulator uses the non-scan events: force_pi, measure_po, capture_clock_on,
capture_clock_off, ram_clock_on, and ram_clock_off. The tool uses a fixed test cycle type for
ATPG; that is, you cannot modify it.
The most commonly used test cycle contains the events: force_pi, measure_po,
capture_clock_on, and capture_clock_off. The test vectors used to read or write into RAMs
contain the events force_pi, ram_clock_on, and ram_clock_off. You can associate real times
with each event via the timing file.

ATPG Tool Pattern Types
The ATPG tool optimizes the type of patterns it generates based on the style and circuitry of the
design and the information you specify.

Basic Scan Patterns
The tool generates basic scan patterns by default. A scan pattern contains the events that force a
single set of values to all scan cells and primary inputs (force_pi), followed by observation of
the resulting responses at all primary outputs and scan cells (measure_po). The tool uses any
defined scan clock to capture the data into the observable scan cells (capture_clock_on,
capture_clock_off). Scan patterns reference the appropriate test procedures to define how to
control and observe the scan cells. The basic scan pattern contains the following events:

1. Load values into scan chains.

2. Force values on all non-clock primary inputs (with clocks off and constrained pins at
their constrained values).

3. Measure all primary outputs (except those connected to scan clocks).

4. Pulse a capture clock or apply selected clock procedure.

5. Unload values from scan chains.

While the list shows the loading and unloading of the scan chain as separate events, more
typically the loading of a pattern occurs simultaneously with the unloading of the preceding
pattern. Thus, when applying the patterns at the tester, you have a single operation that loads in
scan values for a new pattern while unloading the values captured into the scan chains for the
previous pattern.

Test Pattern Generation
ATPG Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 327

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Because the ATPG tool is optimized for use with scan designs, the basic scan pattern contains
the events from which the tool derives all other pattern types.

Clock Sequential Patterns
The ATPG tool’s clock sequential pattern type handles limited sequential circuitry, and can also
help in testing designs with RAM. This kind of pattern contains the following events:

1. Load the scan chains.

2. Apply the clock sequential cycle.

a. Force values on all primary inputs, except clocks (with constrained pins at their
constrained values).

b. Pulse the write lines, read lines, capture clock, or apply selected clock procedure.

c. Repeat steps a and b for a total of N times, where N is the clock sequential depth - 1.

3. Apply the capture cycle.

a. Force primary inputs.

b. Measure primary outputs.

c. Pulse capture clock.

4. Unload the scan chains as you load the next pattern.

To instruct the tool to generate clock sequential patterns, you must set the sequential depth to
some number greater than one, using the set_pattern_type command as follows:

SETUP> set_pattern_type -sequential 2

A depth of zero indicates combinational circuitry. A depth greater than one indicates limited
sequential circuitry. You should, however, be careful of the depth you specify. You should start
off using the lowest sequential depth and analyzing the run results. You can perform several
runs, if necessary, increasing the sequential depth each time. Although the maximum
permissible depth limit is 255, you should typically limit the value you specify to five or less,
for performance reasons.

Multiple Load Patterns
The tool can optionally include multiple scan chain loads in a clock sequential pattern. By
creating patterns that use multiple loads, the tool is capable of the following:

• Take advantage of a design’s non-scan sequential cells that are capable of retaining their
state through a scan load operation.

• Test through a RAM or ROM.

Tessent™ Scan and ATPG User’s Manual, v2022.4328

Test Pattern Generation
ATPG Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You enable the multiple load capability by using “-multiple_load on” with the set_pattern_type
command and setting the sequential depth to some number greater than one. When you activate
this capability, you enable the tool to include a scan load before any pattern cycle.

Note
An exception is at-speed sequences in named capture procedures. A load may not occur
between the at-speed launch and capture cycles. For more information, see the description

of the “load” cycle type in “Internal and External Modes Definition” on page 406.

Generally, multiple load patterns require a sequential depth for every functional mode clock
pulsed. A minimum sequential depth of 4 is required to enable the tool to create the multiple
cycle patterns necessary for RAM testing.

Sequential Transparent Patterns
Designs containing some non-scan latches can use basic scan patterns if the latches behave
transparently between the time of the primary input force and the primary output measure. A
latch behaves transparently if it passes rule D6.

For latches that do not behave transparently, a user-defined procedure can force some of them to
behave transparently between the primary input force and primary output measure. A test
procedure, which is called seq_transparent, defines the appropriate conditions necessary to
force transparent behavior of some latches. The events in sequential transparent patterns
include:

1. Load scan chains.

2. Force primary inputs.

3. Apply seq_transparent procedures.

4. Measure primary outputs.

5. Unload scan chains.

For more information on sequential transparent procedures, refer to “The Procedures” section in
the Tessent Shell User’s Manual.

Test Pattern Generation
ATPG Procedures

Tessent™ Scan and ATPG User’s Manual, v2022.4 329

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Procedures
This section describes some operations you may need to perform with the ATPG tool.
Tool Invocation . 329
Circuit Behavior Setup . 330
Tool Behavior Setup . 336
Scan Data Definition . 340

Tool Invocation
You access ATPG functionality by invoking Tessent Shell and then setting the context to
“patterns -scan.”

% tessent -shell

SETUP> set_context patterns -scan

When Tessent Shell invokes, the tool assumes the first thing you want to do is set up circuit
behavior, so it automatically puts you in setup mode. To change the system mode to analysis,
use the set_system_mode command.

Tessent™ Scan and ATPG User’s Manual, v2022.4330

Test Pattern Generation
Circuit Behavior Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Circuit Behavior Setup
The ATPG tool provides a number of commands that let you set up circuit behavior. You must
run these commands from setup mode.
A convenient way to run the circuit setup commands is to place these commands in a dofile, as
explained previously in “Tessent Shell Batch Jobs”. The following subsections describe typical
circuit behavior setup tasks.

Equivalent or Inverted Primary Input Definition . 330
Primary Inputs and Outputs Addition . 330
Bidirectional Pins as Primary Inputs or Outputs . 331
How to Tie Undriven Signals . 334
Primary Input Constraints . 334
How to Mask Primary Outputs . 334
Slow Pad Addition . 335

Equivalent or Inverted Primary Input Definition
Within the circuit application environment, often multiple primary inputs of the circuit being
tested must always have the same (equivalent) or opposite values. Specifying pin equivalences
constrains selected primary input pins to equivalent or inverted values relative to the last entered
primary input pin.
The following commands are useful when working with pin equivalences:

• add_input_constraints — Adds pin equivalences.

• delete_input_constraints — Deletes the specified pin equivalences.

• report_input_constraints — Displays the specified pin equivalences.

Primary Inputs and Outputs Addition
In some cases, you may need to change the test pattern application points (primary inputs) or the
output value measurement points (primary outputs). When you add previously undefined
primary inputs, they are called user class primary inputs, while the original primary inputs are
called system class primary inputs.
To add primary inputs to a circuit, at the setup mode prompt, use the add_primary_inputs
command. When you add previously undefined primary outputs, they are called user class
primary outputs, while the original primary outputs are called system class primary outputs.

To add primary outputs to a circuit, at the setup mode prompt, use the add_primary_outputs
command.

Test Pattern Generation
Circuit Behavior Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 331

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You use the following command to report and delete primary inputs and outputs:

• delete_primary_inputs — Deletes the specified types of primary inputs.

• report_primary_inputs — Reports the specified types of primary inputs.

• delete_primary_outputs — Deletes the specified types of primary outputs.

• report_primary_outputs — Reports the specified types of primary outputs.

Bidirectional Pins as Primary Inputs or Outputs
During pattern generation, the ATPG tool automatically determines the mode of bidirectional
pins (bidis) and avoids creating patterns that drive values on these pins when they are not in
input mode. In some situations, however, you might prefer to have the tool treat a bidirectional
pin as a PI or PO. For example, some testers require more memory to store bidirectional pin data
than PI or PO data. Treating each bidi as a PI or PO when generating and saving patterns
reduces the amount of memory required to store the pin data on these testers.
From the tool’s perspective, a bidi consists of several gates and includes an input port and an
output port. You can use the commands, report_primary_inputs and report_primary_outputs, to
view PIs and POs. Pins that are listed by both commands are bidirectional pins.

Certain other PI-specific and PO-specific commands accept a bidi pinname argument, and
enable you to act on just the applicable port functionality (input or output) of the bidi. For
example, you can use the delete_primary_inputs command with a bidirectional pin argument to
remove the input port of the bidi from the design interface. From then on, the tool treats that pin
as a PO. You can use the delete_primary_outputs command similarly to delete the output port of
a bidi from the design interface, so the tool treats that bidi as a PI.

Note
Altering the design’s interface results in generated patterns that are different than those the
tool would generate for the original interface. It also prevents verification of the saved

patterns using the original netlist interface. If you want to be able to verify saved patterns by
performing simulation using the original netlist interface, you must use the commands
described in the following subsections instead of the delete_primary_inputs/outputs commands.

Bidirectional Pin as a Primary Output for ATPG Only
With the add_input_constraints command you can get the tool to treat a bidi as a PO during
ATPG only, without altering the design interface within the tool. You do this by constraining
the input part of the bidi to a constant high impedance (CZ) state. The generated patterns then
contain PO data for the bidi, and you can verify saved patterns by performing simulation using
the original design netlist.

Tessent™ Scan and ATPG User’s Manual, v2022.4332

Test Pattern Generation
Circuit Behavior Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Bidirectional Pin as a Primary Input for ATPG Only
With the add_output_masks command, you can get the tool to treat a bidi as a PI during ATPG
only, without altering the design interface. This command blocks observability of the output
part of the bidi. The generated patterns then contain PI data for the bidi, and you can verify
saved patterns by performing simulation using the original design netlist.

If the Bidirectional Pin Control Logic is Unknown
Sometimes the control logic for a bidi is unknown. In this situation, you can model the control
logic as a black box. If you want the tool to treat the bidi as a PI, model the output of the black
box to be 0. If you want the bidi treated as a PO, model the output of the black box to be 1.

If the Bidirectional Pin has a Pull-up or Pull-down Resistor
Using default settings, the ATPG tool generates a known value for a bidirectional pad having
pull-up or pull-down resistors. In reality, however, the pull-up or pull-down time is typically
very slow and results in simulation mismatches when a test is carried out at high speed.

To prevent such mismatches, you should use the add_input_constraints command. This
command changes the tool’s simulation of the I/O pad so that instead of a known value, an X is
captured for all observation points that depend on the pad. The X masks the observation point,
preventing simulation mismatches.

Examples of Setup for Bidirectional Pins as PIs or POs
The following examples demonstrate the use of the commands described in the preceding
sections about bidirectional pins (bidis). Assume the following pins exist in an example design:

• Bidirectional pins: /my_inout[0]…/my_inout[2]

• Primary inputs (PIs): /clk, /rst, /scan_in, /scan_en, /my_en

• Primary outputs (POs): /my_out[0]…/my_out[4]

You can view the bidis by issuing the following two commands:

SETUP> report_primary_inputs

SYSTEM: /clk
SYSTEM: /rst
SYSTEM: /scan_in
SYSTEM: /scan_en
SYSTEM: /my_en
SYSTEM: /my_inout[2]
SYSTEM: /my_inout[1]
SYSTEM: /my_inout[0]

SETUP> report_primary_outputs

Test Pattern Generation
Circuit Behavior Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 333

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SYSTEM: /x_out[4]
SYSTEM: /x_out[3]
SYSTEM: /x_out[2]
SYSTEM: /x_out[1]
SYSTEM: /x_out[0]
SYSTEM: /my_inout[2]
SYSTEM: /my_inout[1]
SYSTEM: /my_inout[0]

Pins listed in the output of both commands (shown in bold font) are pins the tool treats as bidis
during test generation. To force the tool to treat a bidi as a PI or PO, you can remove the
definition of the unwanted input or output port. The following example removes the input port
definition, then reports the PIs and POs. You can see the tool now only reports the bidis as POs,
which reflects how the tool treats those pins during ATPG:

SETUP> delete_primary_inputs /my_inout[0] /my_inout[1] /my_inout[2]
SETUP> report_primary_inputs

SYSTEM: /clk
SYSTEM: /rst
SYSTEM: /scan_in
SYSTEM: /scan_en
SYSTEM: /my_en

SETUP> report_primary_outputs

SYSTEM: /x_out[4]
SYSTEM: /x_out[3]
SYSTEM: /x_out[2]
SYSTEM: /x_out[1]
SYSTEM: /x_out[0]
SYSTEM: /my_inout[2]
SYSTEM: /my_inout[1]
SYSTEM: /my_inout[0]

Because deleting the unwanted primary inputs and outputs alters the design’s interface within
the tool, it may not be acceptable in all cases. Another approach, explained earlier, is to have the
tool treat a bidi as a PI or PO during ATPG only, without altering the design interface. To obtain
PO treatment for a bidi, constrain the input part of the bidi to the high impedance state. The
following command does this for the /my_inout[0] bidi:

SETUP> add_input_constraints /my_inout[0] -cz

To have the tool treat a bidi as a PI during ATPG only, direct the tool to mask (ignore) the
output part of the bidi. The following example does this for the /my_inout[0] and /my_inout[1]
pins:

SETUP> add_output_masks /my_inout[0] /my_inout[2]
SETUP> report_output_masks

TIEX /my_inout[0]
TIEX /my_inout[2]

Tessent™ Scan and ATPG User’s Manual, v2022.4334

Test Pattern Generation
Circuit Behavior Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The “TIEX” in the output of “report_output_masks” indicates the two pins are now tied to X,
which blocks their observability and prevents the tool from using them during ATPG.

How to Tie Undriven Signals
Within your design, there could be several undriven nets, which are input signals not tied to
fixed values. When you read a netlist, the application issues a warning message for each
undriven net or floating pin in the module. The ATPG tool must “virtually” tie these pins to a
fixed logic value during ATPG.
If you do not specify a value, the application uses the default value X, which you can change
with the set_tied_signals command. The set_tied_signals command assigns a fixed value to
every named floating net or pin, that you do not specify with the add_tied_signals command, in
every module of the circuit under test.

To add tied signals, use the add_tied_signals command at the setup mode prompt.

The delete_tied_signals, report_tied_signals, and set_tied_signals commands are useful when
working with undriven signals.

• delete_tied_signals — Deletes the current list of specified tied signals.

• report_tied_signals — Displays current list of specified tied nets and pins.

• set_tied_signals — Sets default for tying unspecified undriven signals.

Primary Input Constraints
The tool can constrain primary inputs during the ATPG process.
To add a pin constraint to a specific pin, use the add_input_constraints command. You can
specify one or more primary input pin pathnames to be constrained to one of the following
formats: constant 0 (C0), constant 1 (C1), high impedance (CZ), or unknown (CX).

For detailed information on the tool-specific usages of this command, refer to
add_input_constraints in the Tessent Shell Reference Manual.

How to Mask Primary Outputs
Your design may contain certain primary output pins that have no strobe capability. Or in a
similar situation, you may want to mask certain outputs from observation for design trade-off
experimentation.
In these cases, you could mask these primary outputs using the add_output_masks command.

Test Pattern Generation
Circuit Behavior Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 335

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The tool places faults that can be detected only through masked outputs in the AU
category—not the UO category.

Slow Pad Addition
While running tests at high speed, as might be used for path delay test patterns, it is not always
safe to assume that the loopback path from internal registers, via the I/O pad back to internal
registers, can stabilize within a single clock cycle. Assuming that the loopback path stabilizes
within a single clock cycle may cause problems verifying ATPG patterns or may lead to yield
loss during testing.
To prevent a problem caused by this loopback, use the add_input_constraints command to
modify the simulated behavior of the bidirectional I/O pin, on a pin by pin basis.

For a slow pad, the simulation of the I/O pad changes so that the value propagated into the
internal logic is X whenever the primary input is not driven. This causes an X to be captured for
all observation points dependent on the loopback value.

When modifying the behavior or I/O pins, these commands are useful:

• delete_input_constraints — Resets the specified I/O pin back to the default simulation
mode.

• report_input_constraints — Displays all I/O pins marked as slow.

Tessent™ Scan and ATPG User’s Manual, v2022.4336

Test Pattern Generation
Tool Behavior Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tool Behavior Setup
In addition to specifying information about the design to the ATPG tool, you can also set up
how you want the ATPG tool to handle certain situations and how much effort to put into
various processes.
The following commands are useful for setting up the ATPG tool:

• set_learn_report — Enables access to certain data learned during analysis.

• set_loop_handling — Specifies the method in which to break loops.

• set_pattern_buffer — Enables the use of temporary buffer files for pattern data.

• set_possible_credit — Sets credit for possibly-detected faults.

Bus Contention Checks . 336
Multi-Driven Net Behavior Setup . 337
Z-State Handling Setup . 337
The ATPG Learning Process . 338
Capture Handling Setup . 338
Transient Detection Setup. 339

Bus Contention Checks
If you use contention checking on tri-state driver busses and multiple-port flip-flops and latches,
the tool rejects (from the internal test pattern set) patterns generated by the ATPG process that
can cause bus contention.
To set contention checking, you use the set_contention_check command.

By default, contention checking is on, as are the switches -Warning and -Bus, causing the tool
to check tri-state driver buses and issue a warning if bus contention occurs during simulation.
For more information on the different contention checking options, refer to the
set_contention_check description in the Tessent Shell Reference Manual.

To display the current status of contention checking, use the report_environment command.

You may use the following commands when you are checking bus contention:

• analyze_bus — Analyzes the selected buses for mutual exclusion.

• set_bus_handling — Specifies how to handle contention on buses.

• set_driver_restriction — Specifies whether only a single driver or multiple drivers can
be on for buses or ports.

• report_bus_data — Reports data for either a single bus or a category of buses.

Test Pattern Generation
Tool Behavior Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 337

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• report_gates — Reports netlist information for the specified gates.

Multi-Driven Net Behavior Setup
When you specify the fault effect of bus contention on tri-state nets with the set_net_dominance
command, you are giving the tool the ability to detect some faults on the enable lines of tri-state
drivers that connect to a tri-state bus.
At the setup mode prompt, you use the set_net_dominance command.

The three choices for bus contention fault effect are And, Or, and Wire (unknown behavior),
Wire being the default. The Wire option means that any different binary value results in an X
state. The truth tables for each type of bus contention fault effect are shown on the references
pages for the set_net_dominance description in the Tessent Shell Reference Manual.

If you have a net with multiple non-tri-state drivers, you may want to specify this type of net’s
output value when its drivers have different values. Using the set_net_resolution command, you
can set the net’s behavior to And, Or, or Wire (unknown behavior). The default Wire option
requires all inputs to be at the same state to create a known output value. Some loss of test
coverage can result unless the behavior is set to And (wired-and) or Or (wired-or). To set the
multi-driver net behavior, at the setup mode prompt, you use the set_net_resolution command.

Z-State Handling Setup
If your tester has the ability to distinguish the high impedance (Z) state, you should use the Z
state for fault detection to improve your test coverage. If the tester can distinguish a high
impedance value from a binary value, certain faults may become detectable that otherwise
would be, at best, possibly detected (pos_det). This capability is particularly important for fault
detection in the enable line circuitry of tri-state drivers.
The default for the ATPG tool is to treat a Z state as an X state. If you want to account for Z
state values during simulation, you can issue the set_z_handling command.

Internal Z handling specifies how to treat the high impedance state when the tri-state network
feeds internal logic gates. External handling specifies how to treat the high impedance state at
the circuit primary outputs. The ability of the tester normally determines this behavior.

To set the internal or external Z handling, use the set_z_handling command at the setup mode
prompt.

For internal tri-state driver nets, you can specify the treatment of high impedance as a 0 state, a
1 state, and an unknown state.

Tessent™ Scan and ATPG User’s Manual, v2022.4338

Test Pattern Generation
Tool Behavior Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
This command is not necessary if the circuit model already reflects the existence of a pull
gate on the tri-state net.

For example, to specify that the tester does not measure high impedance, enter the following:

SETUP> set_z_handling external X

For external tri-state nets, you can also specify that the tool measures high impedance as a 0
state and distinguished from a 1 state (0), measures high impedance as a 1 state and
distinguished from a 0 state (1), measures high impedance as unique and distinguishable from
both a 1 and 0 state (Z).

The ATPG Learning Process
The ATPG tool performs extensive learning on the circuit during the transition from setup to
some other system mode. This learning reduces the amount of effort necessary during ATPG.
The tool enables you to control this learning process.
For example, the tool lets you turn the learning process off or change the amount of effort put
into the analysis. You can accomplish this for combinational logic using the set_static_learning
command.

By default, static learning is on and the simulation activity limit is 1000. This number ensures a
good trade-off between analysis effort and process time. If you want the ATPG tool to perform
maximum circuit learning, you should set the activity limit to the number of gates in the design.

By default, state transition graph extraction is on. For more information on the learning process,
refer to “Learning Analysis” on page 113.

Capture Handling Setup
The ATPG tool evaluates gates only once during simulation, simulating all combinational gates
before sequential gates. This default simulation behavior correlates well with the normal
behavior of a synchronous design, if the design model passes design rules checks—particularly
rules C3 and C4. However, if your design fails these checks, you should examine the situation
to see if your design would benefit from a different type of data capture simulation.
For example, examine the design of Figure 8-3. It shows a design fragment that fails the C3
rules check.

Test Pattern Generation
Tool Behavior Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 339

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-3. Data Capture Handling Example

The rules checker flags the C3 rule because Q2 captures data on the trailing edge of the same
clock that Q1 uses. The ATPG tool considers sequential gate Q1 as the data source and Q2 as
the data sink. By default, the tool simulates Q2 capturing old data from Q1. However, this
behavior most likely does not correspond to the way the circuit really operates. In this case, the
C3 violation should alert you that simulation could differ from real circuit operation.

To enable greater flexibility of capture handling for these types of situations, the tool provides
some commands that alter the default simulation behavior. The set_split_capture_cycle
command, for example, effects whether or not the tool updates simulation data between clock
edges. When set to “on,” the tool is able to determine correct capture values for trailing edge
and level-sensitive state elements despite C3 and C4 violations. If you get these violations, issue
the set_split_capture_cycle ON command.

Transient Detection Setup
You can set how the tool handles zero-width events on the clock lines of state elements. The
tool lets you turn transient detection on or off with the set_transient_detection command.
With transient detection off, DRC simulation treats all events on state elements as valid.
Because the simulator is a zero delay simulator, it is possible for DRC to simulate zero-width
monostable circuits with ideal behavior, which is rarely matched in silicon. The tool treats the
resulting zero-width output pulse from the monostable circuit as a valid clocking event for other
state elements. Thus, state elements change state although their clock lines show no clocking
event.

With transient detection on, the tool sets state elements to a value of X if the zero-width event
causes a change of state in the state elements. This is the default behavior upon invocation of the
tool.

Tessent™ Scan and ATPG User’s Manual, v2022.4340

Test Pattern Generation
Scan Data Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Data Definition
You must define the scan clocks and scan chains before the application performs rules checking
(which occurs upon exiting setup mode). The following subsections describe how to define the
various types of scan data.
Scan Clocks Definition. 340
Scan Groups Definition . 340
Scan Chains Definition . 341
Clock Restriction Setup. 341
How to Add Constraint to Scan Cells . 341
Nofault Settings . 342

Scan Clocks Definition
The tool considers any signals that capture data into sequential elements (such as system clocks,
sets, and resets) to be scan clocks. Therefore, to take advantage of the scan circuitry, you need to
define these “clock signals” by adding them to the clock list.
You must specify the off-state for pins you add to the clock list. The off-state is the state in
which clock inputs of latches are inactive. For edge-triggered devices, the off-state is the clock
value prior to the clock’s capturing transition. You add clock pins to the list by using the
add_clocks command. The delete_clocks command deletes the specified pins from the clock
list. The report_clocks command all defined clock pins.

You can constrain a clock pin to its off-state to suppress its usage as a capture clockduring the
ATPG process. The constrained value must be the same as the clock off-state, otherwise an
error occurs. If you add an equivalence pin to the clock list, all of its defined equivalent pins are
also automatically added to the clock list.

Scan Groups Definition
A scan group contains a set of scan chains controlled by a single test procedure file. You must
create this test procedure file prior to defining the scan chain group that references it.
To define scan groups, you use the add_scan_groups command. These commands are also
useful:

• delete_scan_groups — Deletes specified scan groups and associated chains.

• report_scan_groups — Displays current list of scan chain groups.

Test Pattern Generation
Scan Data Definition

Tessent™ Scan and ATPG User’s Manual, v2022.4 341

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Chains Definition
After defining scan groups, you can define the scan chains associated with the groups. For each
scan chain, you must specify the name assigned to the chain, the name of the chain’s group, the
scan chain input pin, and the scan chain output pin.

Note
Scan chains of a scan group can share a common scan input pin, but this condition requires
that both scan chains contain the same data after loading.

To define scan chains and their associated scan groups, you use the add_scan_chains command.
These commands are also useful:

• delete_scan_chains — Deletes the specified scan chains.

• report_scan_chains — Displays current list of scan chains.

Clock Restriction Setup
You can specify whether t to permit the test generator to create patterns that have more than one
non-equivalent capture clock active at the same time.
To set the clock restriction, use the set_clock_restriction command.

Note
If you choose to turn off the clock restriction, you should verify the generated pattern set
using a timing simulator to ensure there are no timing errors.

How to Add Constraint to Scan Cells
The tool can constrain scan cells to a constant value (C0 or C1) during the ATPG process to
enhance controllability or observability. Additionally, the tools can constrain scan cells to be
either uncontrollable (CX), unobservable (OX), or both (XX).
You identify a scan cell by either a pin pathname or a scan chain name plus the cell’s position in
the scan chain.

To add constraints to scan cells, you use the add_cell_constraints command. To delete
constraints from specific scan cells, use the delete_cell_constraints command. You use the
report_cell_constraints to report all defined scan cell constraints.

If you specify the pin pathname, it must be the name of an output pin directly connected
(through only buffers and inverters) to a scan memory element. In this case, the tool sets the
scan memory element to a value such that the pin is at the constrained value. An error condition
occurs if the pin pathname does not resolve to a scan memory element.

Tessent™ Scan and ATPG User’s Manual, v2022.4342

Test Pattern Generation
Rules Checks and Violations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you identify the scan cell by chain and position, the scan chain must be a currently-defined
scan chain and the position is a valid scan cell position number. The scan cell closest to the
scan-out pin is in position 0. The tool constrains the scan cell’s master memory element to the
selected value. If there are inverters between the master element and the scan cell output, they
may invert the output’s value.

Nofault Settings
Within your design, you may have instances that should not have internal faults included in the
fault list. You can label these parts with a nofault setting.
To add a nofault setting, you use the add_nofaults command. To delete a specified nofault
setting, use the delete_nofaults command. Use the report_nofaults command to report all
specified nofault settings.

You can specify that the listed pin pathnames, or all the pins on the boundary and inside the
named instances, are not permitted to have faults included in the fault list.

Rules Checks and Violations
If an error occurs during the rules checking process, the application remains in setup mode so
you can correct the error. You can easily resolve the cause of many such errors; for instance,
those that occur during parsing of the test procedure file. Other errors may be more complex and
difficult to resolve, such as those associated with proper clock definitions or with shifting data
through the scan chain.
The ATPG tool performs model flattening, learning analysis, and rules checking when you try
to exit setup mode. Each of these processes is explained in detail in “Common Tool
Terminology and Concepts” on page 91. To change from setup to one of the other system
modes, you enter the set_system_mode command.

Note
The ATPG tool does not require the DRC mode because it uses the same internal design
model for all of its processes.

“How to Troubleshoot Rules Violations” in the Tessent Shell Reference Manual discusses some
procedures for debugging rules violations. The DRC Browser tab of Tessent Visualizer is
especially useful for analyzing and debugging certain rules violations.

Test Pattern Generation
Good/Fault Simulation With Existing Patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4 343

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Good/Fault Simulation With Existing Patterns
The purpose of fault simulation is to determine the fault coverage of the current pattern source
for the faults in the active fault list. The purpose of “good” simulation is to verify the simulation
model. Typically, you use the good and fault simulation capabilities of the ATPG tool to grade
existing hand- or ATPG-generated pattern sets.
Fault Simulation. 343
Good-Machine Simulation . 345

Fault Simulation
The following subsections discuss the procedures for setting up and running fault simulation
using the ATPG tool.
Fault simulation runs in analysis mode without additional setup. You enter analysis mode using
the following command:

SETUP> set_system_mode analysis

Fault Type Designation
By default, the fault type is stuck-at. If you want to simulate patterns to detect stuck-at faults,
you do not need to issue this command.

If you want to change the fault type to toggle, pseudo stuck-at (IDDQ), transition, path delay, or
bridge, you can issue the set_fault_type command.

Whenever you change the fault type, the application deletes the current fault list and current
internal pattern set.

Faults List Creation
Before you can run fault simulation, you need an active fault list from which to run. You create
the faults list using the add_faults command. Typically, you would create this list using all
faults as follows:

> add_faults -all

“Fault Information Setup for ATPG” on page 347 provides more information on creating the
fault list and specifying other fault information.

Pattern Source Designation
You can have the tools perform simulation and test generation on a selected pattern source,
which you can change at any time.

Tessent™ Scan and ATPG User’s Manual, v2022.4344

Test Pattern Generation
Fault Simulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To use an external pattern source, you use the read_patterns command.

Note
You may notice a slight drop in test coverage when using an external pattern set as
compared to using generated patterns. This is an artificial drop.

The ATPG tool can perform simulation with a select number of random patterns. Refer to the
Tessent Shell Reference Manual for additional information about these application-specific
simulate_patterns command options.

These commands are used with pattern simulation:

• set_capture_clock — Specifies the capture clock for random pattern simulation.

• set_random_clocks — Specifies the selection of clock_sequential patterns for random
pattern simulation.

• set_random_patterns — Specifies the number of random patterns to be simulated.

Running Fault Simulation
Run the fault simulation process with the simulate_patterns command. You can repeat this
command as many times as you want for different pattern sources.

These commands are used with fault simulation:

• simulate_patterns— Runs the fault simulation process.

• report_faults — Displays faults for selected fault classes.

• report_statistics — Displays a statistics report.

Undetected Faults List Writing
Typically, after performing fault simulation on an external pattern set, you should save the
faults list. You can then use this list as a starting point for ATPG.

To save the faults, you use the write_faults command. For more information, refer to “How to
Write Faults to an External File” on page 349.

To read the faults back in for ATPG, go to analysis mode (using set_system_mode) and enter
the read_faults command.

Fault Simulation Debugging
To debug your fault simulation, you can write a list of pin values that differ between the faulty
and good machine using the add_lists and set_list_file commands.

Test Pattern Generation
Good-Machine Simulation

Tessent™ Scan and ATPG User’s Manual, v2022.4 345

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The add_lists command specifies which pins you want reported. The set_list_file command
specifies the name of the file in which to place simulation values for the selected pins. The
default behavior is to write pin values to standard output.

Circuit and Fault Status Reset
You can reset the circuit status and status of all testable faults in the fault list to undetected.
Doing so lets you re-run the fault simulation using the current fault list, which does not cause
deletion of the current internal pattern set.

To reset the testable faults in the current fault list, enter the reset_state command.

Good-Machine Simulation
Given a test vector, you use good machine simulation to predict the logic values in the good
(fault-free) circuit at all the circuit outputs. The following subsections discuss the procedures
for running good simulation on existing hand- or ATPG-generated pattern sets using the ATPG
tool.

Good-Machine Simulation Preparation
Good-machine simulation runs in analysis mode without additional setup. You enter analysis
mode using the following command:

SETUP> set_system_mode analysis

External Pattern Source Specification
By default, simulation runs using an internal ATPG-generated pattern source. To run simulation
using an external set of patterns, enter the following command:

ANALYSIS> read_patterns filename

Good Machine Simulation Debug
You can debug your good machine simulation in several ways. If you want to run the simulation
and save the values of certain pins in batch mode, you can use the add_lists and set_list_file
commands. The add_lists command specifies which pins to report. The set_list_file command
specifies the name of the file in which you want to place simulation values for the selected pins.

If you prefer to perform interactive debugging, you can use the simulate_patterns and
report_gates commands to examine internal pin values.

How to Reset Circuit Status
In analysis mode, you can reset the circuit status by using the reset_state command.

Tessent™ Scan and ATPG User’s Manual, v2022.4346

Test Pattern Generation
Random Pattern Simulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Random Pattern Simulation
The following subsections show the typical procedure for running random pattern simulation.
Tool Setup for Random Pattern Simulation . 346
Faults List Addition . 346
Running Random Pattern Simulation . 346

Tool Setup for Random Pattern Simulation
You run random pattern simulation in the analysis system mode.
If you are not already in the analysis system mode, use the set_system_mode command as in the
following example:

SETUP> set_system_mode analysis

Faults List Addition
You can generate the faults list and eliminate all untestable faults.
To generate the faults list and eliminate all untestable faults, use the add_faults and
delete_faults commands together as in the following example:

> add_faults -all

> delete_faults -untestable

In this example, the delete_faults command with the -untestable switch removes faults from the
fault list that are untestable using random patterns.

Running Random Pattern Simulation
This describes how you run random pattern simulation.

Procedure
1. Enter the “simulate_patterns -source random” command.

2. After the simulation run, you display the undetected faults with the report_faults
command.

3. Some of the undetected faults may be redundant. You run ATPG on the undetected
faults to identify those that are redundant.

Test Pattern Generation
Fault Information Setup for ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 347

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fault Information Setup for ATPG
Prior to performing test generation, you must set up a list of all faults the application has to
evaluate. The tool can either read the list in from an external source, or generate the list itself.
The type of faults in the fault list vary depending on the fault model and your targeted test type.
For more information on fault modeling and the supported models, refer to “Fault Modeling
Overview” on page 49.

After the application identifies all the faults, it implements a process of structural equivalence
fault collapsing from the original uncollapsed fault list. From this point on, the application
works on the collapsed fault list. The results, however, are reported for both the uncollapsed and
collapsed fault lists. Running any command that changes the fault list causes the tool to discard
all patterns in the current internal test pattern set due to the probable introduction of
inconsistencies. Also, whenever you re-enter setup mode, it deletes all faults from the current
fault list. The following subsections describe how to create a fault list and define fault related
information.

Tool Setup for ATPG. 347
Faults List Creation . 348
Faults Addition to an Existing List . 348
How to Load Faults From an External List . 348
How to Write Faults to an External File . 349
Fault Sampling Percentage Setup . 349
Fault Mode Setup. 349
Possible-Detect Credit Setup. 349

Tool Setup for ATPG
Switch from setup to the analysis mode using the set_system_mode command.
Assuming your circuit passes rules checking with no violations, you can exit the setup system
mode and enter the analysis system mode as follows:

SETUP> set_system_mode analysis

By default, the fault type is stuck-at. If you want to generate patterns to detect stuck-at faults,
you do not need to issue the set_fault_type command. If you want to change the fault type to
toggle, pseudo stuck-at (IDDQ), transition, or path delay, you can issue the set_fault_type
command.

Whenever you change the fault type, the application deletes the current fault list and current
internal pattern set.

Tessent™ Scan and ATPG User’s Manual, v2022.4348

Test Pattern Generation
Faults List Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Faults List Creation
The application creates the internal fault list the first time you add_faults or load in external
faults. Typically, you would create a fault list with all possible faults of the selected type,
although you can place some restrictions on the types of faults in the list.
To create a list with all faults of the given type, issue the following command:

ANALYSIS> add_faults -all

If you do not want all possible faults in the list, you can use other options of the add_faults
command to restrict the added faults. You can also specify no-faulted instances to limit placing
faults in the list. You flag instances as “Nofault” while in setup mode. For more information,
refer to “Nofault Settings” on page 342.

When the tool first generates the fault list, it classifies all faults as uncontrolled (UC).

• delete_faults — Deletes the specified faults from the current fault list.

• report_faults — Displays the specified types of faults.

Faults Addition to an Existing List
You can add new faults to the current fault list using the add_faults command.
To add new faults to the current fault list, enter the add_faults command. You must enter either
a list of object names (pin pathnames or instance names) or use the -All switch to indicate the
pins whose faults you want added to the fault list. You can use the -Stuck-at switch to indicate
which stuck faults on the selected pins you want added to the list. If you do not use the -Stuck-at
switch, the tool adds both stuck-at-0 and stuck-at-1 faults. The tool initially places faults added
to a fault list in the undetected-uncontrolled (UC) fault class.

How to Load Faults From an External List
You can place faults from a previous run (from an external file) into the internal fault list.
To read faults from an external file into the current fault list, enter the read_faults command.

The -Retain option causes the application to retain the fault class (second column of
information) from the external fault list. The -Delete option deletes all faults in the specified file
from the internal faults list. The -DELETE_Equivalent option, in the ATPG tool, deletes from
the internal fault list all faults listed in the file, as well as all their equivalent faults.

Test Pattern Generation
How to Write Faults to an External File

Tessent™ Scan and ATPG User’s Manual, v2022.4 349

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
In the ATPG tool, the filename specified cannot have fault information lines with comments
appended to the end of the lines or fault information lines greater than five columns. The

tool does not recognize the line properly and does not add the fault on that line to the fault list.

How to Write Faults to an External File
You can write all or only selected faults from a current fault list into an external file. You can
then edit or load this file to create a new fault list.
To write_faults to a file, enter the write_faults command. You must specify the name of the file
you want to write.

Fault Sampling Percentage Setup
By reducing the fault sampling percentage (which by default is 100 percent), you can decrease
the process time to evaluate a large circuit by telling the application to process only a fraction of
the total collapsed faults.
To set the fault sampling percentage, use the set_fault_sampling command. You must specify a
percentage (between 1 and 100) of the total faults you want processed.

Fault Mode Setup
You can specify use of either the collapsed or uncollapsed fault list for fault counts, test
coverages, and fault reports. The default is to use uncollapsed faults.
To set the fault mode, you use the set_fault_mode command.

Possible-Detect Credit Setup
Before reporting test coverage, fault coverage, and ATPG effectiveness, you should specify the
credit you want given to possible-detected faults.
To set the credit to be given to possible-detected faults, use the set_possible_credit command.
The selected credit may be any positive integer less than or equal to 100, the default being 50
percent.

Tessent™ Scan and ATPG User’s Manual, v2022.4350

Test Pattern Generation
ATPG Operations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Operations
Obtaining the optimal test set in the least amount of time is a desirable goal.
Figure 8-4 outlines how to most effectively meet this goal.

Figure 8-4. Efficient ATPG Flow

The first step in the process is to perform any special setup you may want for ATPG. This
includes such things as setting limits on the pattern creation process itself. The second step is to
create patterns with default settings (see “Pattern Creation With Default Settings” on page 358).
This is a very fast way to determine how close you are to your testability goals. You may even
obtain the test coverage you require from your very first run. However, if your test coverage is
not at the required level, you may have to troubleshoot the reasons for the inadequate coverage
and create additional patterns using other approaches (see “Approaches for Improving ATPG
Efficiency” on page 360).

ATPG Setup . 351
Pattern Creation With Default Settings. 358
Approaches for Improving ATPG Efficiency . 360
How to Save the Test Patterns . 362

Test Pattern Generation
ATPG Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 351

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG Setup
Prior to ATPG, you may need to set certain criteria that aid the test generators in the test
generation process.
If you just want to generate patterns quickly in the ATPG tool using default settings, the
recommended method for pattern creation is using the create_patterns command.

If the initial patterns are unsatisfactory, then run the create_patterns command a second time. If,
however, you are still unable to create a satisfactory pattern set, then use the set_pattern_type
command in conjunction with the create_patterns command using the following sequence:

ANALYSIS> set_pattern_type -sequential 2

ANALYSIS> create_patterns

A reasonable practice is creating patterns using these two commands with the sequential depth
set to 2. This is described in more detail in “Pattern Creation With Default Settings” on
page 358.

ATPG Constraints Definition . 351
Power and Ground Ports Exclusion From the Pattern Set . 353
ATPG Limits Setup . 354
Event Simulation for DFFs and Latches . 354
Flattened Model Saves Time and Memory . 356
Pattern Buffer Area Creation . 356
Fault Sampling to Save Processing Time. 357
Checkpointing Setup . 357

ATPG Constraints Definition
ATPG constraints are similar to pin constraints and scan cell constraints. Pin constraints and
scan cell constraints restrict the values of pins and scan cells, respectively. ATPG constraints
place restrictions on the acceptable kinds of values at any location in the circuit. For example,
you can use ATPG constraints to prevent bus contention or other undesirable events within a
design. Additionally, your design may have certain conditions that can never occur under
normal system operation. If you want to place these same constraints on the circuit during
ATPG, use ATPG constraints.
During deterministic pattern generation, only the restricted values on the constrained circuitry
are permitted. Unlike pin and scan cell constraints, which are only available in setup mode, you
can define ATPG constraints in any system mode after design flattening. If you want to set
ATPG constraints prior to performing design rules checking, you must first create a flattened
model of the design using the create_flat_model command.

Tessent™ Scan and ATPG User’s Manual, v2022.4352

Test Pattern Generation
ATPG Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ATPG constraints are useful when you know something about the way the circuit behaves that
you want the ATPG process to examine. For example, the design may have a portion of
circuitry that behaves like a bus system; that is, only one of various inputs may be on, or
selected, at a time. Using ATPG constraints, combined with a defined ATPG function, you can
specify this information to the ATPG tool. ATPG functions place artificial Boolean
relationships on circuitry within your design. After defining the functionality of a portion of
circuitry with an ATPG function, you can then constrain the value of the function as needed
with an ATPG constraint. This is more useful than just constraining a point in a design to a
specific value.

To define ATPG functions, use the add_atpg_functions command. When using this command,
you specify a name, a function type, and an object to which the function applies.

You can specify ATPG constraints with the add_atpg_constraints command. When using this
command, you specify a value, an object, a location, and a type.

Test generation considers all current constraints. However, design rules checking considers only
static constraints. You can only add or delete static constraints in setup mode. Design rules
checking generally does not consider dynamic constraints, but there are some exceptions
detailed in the set_drc_handling command reference description (see the Atpg_analysis and
ATPGC options). You can add or delete dynamic constraints at any time during the session. By
default, ATPG constraints are dynamic.

Figure 8-5 and the following commands give an example of how you use ATPG constraints and
functions together.

Figure 8-5. Circuitry With Natural “Select” Functionality

The circuitry of Figure 8-5 includes four gates whose outputs are the inputs of a fifth gate.
Assume you know that only one of the four inputs to gate /u5 can be on at a time, such as would
be true of four tri-state enables to a bus gate whose output must be contention-free. You can
specify this using the following commands:

ANALYSIS> add_atpg_functions sel_func1 select1 /u1/o /u2/o /u3/o /u4/o

Test Pattern Generation
ATPG Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 353

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ANALYSIS> add_atpg_constraints 1 sel_func1

These commands specify that the “select1” function applies to gates /u1, /u2, /u3, and /u4 and
the output of the select1 function should always be a 1. Deterministic pattern generation must
ensure these conditions are met. The conditions causing this constraint to be true are shown in
Table 8-3. When this constraint is true, gate /u5 is contention-free.

Given the defined function and ATPG constraint you placed on the circuitry, the ATPG tool
only generates patterns using the values shown in Table 8-3.

Typically, if you have defined ATPG constraints, the tools do not perform random pattern
generation during ATPG. However, using the ATPG tool you can perform random pattern
simulation using the simulate_patterns command. In this situation, the tool rejects patterns
during fault simulation that do not meet the currently-defined ATPG constraints.

These commands are used when you are dealing with ATPG constraints:

• analyze_atpg_constraints — Analyzes a given constraint for either its ability to be
satisfied or for mutual exclusivity.

• analyze_restrictions — Performs an analysis to automatically determine the source of
the problems from a failed ATPG run.

• delete_atpg_constraints — Removes the specified constraint from the list.

• delete_atpg_functions — Removes the specified function definition from the list.

• report_atpg_constraints — Reports all ATPG constraints in the list.

• report_atpg_functions — Reports all defined ATPG functions.

Power and Ground Ports Exclusion From the Pattern Set
You can constrain power and ground ports during circuit setup and DRC, and also exclude those
ports from the pattern set.

Table 8-3. ATPG Constraint Conditions
/u1 /u2 /u3 /u4 sel_func1 /u5
0 0 0 1 1 contention-free
0 0 1 0 1 contention-free
0 1 0 0 1 contention-free
1 0 0 0 1 contention-free

Tessent™ Scan and ATPG User’s Manual, v2022.4354

Test Pattern Generation
ATPG Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The first step is to specify the power and ground ports by setting the value of the “function”
attribute on a top-level input or inout port. For example, the following command designates the
“vcc” port as a power input:

SETUP> set_attribute_value vcc -name function -value power

Note that the port can only be an input or inout port on a top-level module, and the only
permissible values are “power” and “ground.” Also, the port cannot be an IJTAG port in the
ICL file, if present. Also, you cannot change the “function” attribute after reading in the flat
model.

Setting the value to “power” has the effect of adding an input constraint of CT1 on that port; and
setting the value to “ground” has the effect of adding an input constraint of CT0 on that port.
The only way to remove these inferred constraints is by using the reset_attribute_value
command. That is, the delete_input_constraints command does not work in this situation.

After specifying the power and ground ports, you can write patterns that exclude those ports
using the “write_patterns -parameter_list” command. Also, the parameter file has a keyword
ALL_EXCLUDE_POWER_GROUND that enables you to control whether power and ground
ports are excluded from tester pattern file formats, such as STIL and WGL. For more
information, refer to the ALL_EXCLUDE_POWER_GROUND keyword description in the
“Parameter File Format and Keywords” section of the Tessent Shell Reference Manual.

ATPG Limits Setup
Normally, there is no need to limit the ATPG process when creating patterns. There may be an
occasional special case, however, when you want the tool to terminate the ATPG process if
CPU time, test coverage, or pattern (cycle) count limits are met.
To set these limits, use the set_atpg_limits command.

Event Simulation for DFFs and Latches
The following explains how the tool’s simulation kernel models DFFs and latches. The kernel
simulates clock pulses as “010” or “101.” The three-digit notation refers to the state of the three
frames that comprise a clock cycle: clock_off frame, post-LE frame, and post-TE frame. There
are always at least three events per cycle.
The kernel distinguishes only between “edge-triggered” and “level-sensitive” sequential
elements:

• Edge-triggered elements update during 0→1 transitions of their clock input.

• Level-sensitive elements update when their clock is high.

The kernel updates all elements immediately in the same frame. For more information, refer to
Figure 8-6.

Test Pattern Generation
ATPG Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 355

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-6. Simulation Frames

Figure 8-7 explains how the simulation kernel models waveforms with DFFs and latches.

Figure 8-7. Waveform Modeling for DFFs and Latches

Tessent™ Scan and ATPG User’s Manual, v2022.4356

Test Pattern Generation
ATPG Setup

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Event Simulation Data Display for a Gate
You can display event simulation data for a gate by using the set_gate_report and report_gates
commands. For examples of how to do this refer to “Example 5” in the set_gate_report
command description in the Tessent Shell Reference Manual.

Flattened Model Saves Time and Memory
You can flatten your design and subsequently use the flattened model instead of the design
netlist with the tool. An advantage of using a flattened netlist rather a regular netlist, is that you
save memory and have room for more patterns.

Note
Before you save a flattened version of your design, ensure you have specified all necessary
settings accurately. Some design information, such as that related to hierarchy, is lost when

you flatten the design. Consequently, commands that require this information do not operate
with the flattened netlist. Some settings, once incorporated in the flattened netlist, cannot be
changed (for example, a tied constraint you apply to a primary input pin).

When you reinvoke the tool, you use this flattened netlist by specifying the “-flat” switch. The
tool reinvokes in the same mode (setup or analysis) the tool was in when you saved the flattened
model.

You flatten your design with the tool using one of the following methods depending on the
tool’s current mode:

• analysis mode — The tool automatically creates the flat model when you change from
setup to analysis mode using the set_system_mode command. After model flattening,
you save the flattened design using the write_flat_model command.

• setup mode — You can manually create a flattened model in setup mode using the
create_flat_model command. After model flattening, you save the flattened design using
the write_flat_model command.

You can read a flat model into the tool in setup mode using the read_flat_model command.

Pattern Buffer Area Creation
To reduce demands on virtual memory when you are running the tool with large designs, use the
set_pattern_buffer command with the ATPG tool. The tool then stores runtime pattern data in
temporary files rather than in virtual memory.

Test Pattern Generation
ATPG Setup

Tessent™ Scan and ATPG User’s Manual, v2022.4 357

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fault Sampling to Save Processing Time
Another command, set_fault_sampling, enables you to perform quick evaluation runs of large
designs prior to final pattern generation. Intended for trial runs only, you can use this command
to reduce the processing time when you want a quick estimate of the coverage to expect with
your design.

Checkpointing Setup
The term “checkpointing” refers to when the tool automatically saves test patterns at regular
periods, called checkpoints, throughout the pattern creation process. This is useful when ATPG
takes a long time and there is a possibility it could be interrupted accidentally. For example, if a
system failure occurs during ATPG, checkpointing enables you to recover and continue the run
from close to the interruption point. You do not have to redo the entire pattern creation process
from the beginning. The continuation run uses the data saved at the checkpoint, just prior to the
interruption, saving you the time required to recreate the patterns that would otherwise have
been lost.
The set_checkpointing_options command turns the checkpoint functionality on or off and
specifies the time period between each write of the test patterns, as well as the name of the
pattern file to which the tool writes the patterns.

Example Checkpointing
Suppose a large design takes several days for the ATPG tool to process. You do not want to
restart pattern creation from the beginning if a system failure ends ATPG one day after it
begins. The following dofile segment defines a checkpoint interval of 90 minutes and enables
checkpointing.

set_checkpointing_options on -pattern_file my_checkpoint_file -period 90 \
-replace -pattern_format ascii -faultlist_file my_checkpoint_fault_file

If you need to perform a continuation run, invoking on a flattened model can be much faster
than reflattening the netlist (see “Flattened Model Saves Time and Memory” on page 356 for
more information). After the tool loads the design, but before you continue the interrupted run,

Tessent™ Scan and ATPG User’s Manual, v2022.4358

Test Pattern Generation
Pattern Creation With Default Settings

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

be sure to set all the same constraints you used in the interrupted run. The next dofile segment
uses checkpoint data to resume the interrupted run:

Load the fault population stored by the checkpoint.

The ATPG process can spend a great deal of time proving
faults to be redundant (RE) or ATPG untestable (AU). By
loading the fault population using the -retain option, the
status of these fault sites is restored. This saves
the time required to reevaluate these fault sites.
read_faults my_checkpoint_fault_file -retain

The report_statistics command shows if the fault coverage
is at the same level as at the last checkpoint the tool
encountered.
report_statistics

Set the pattern source to the pattern set that was stored
by the checkpoint. Then fault simulate these patterns.
During the fault simulation, the external patterns are
copied into the tool’s internal pattern set. Then, by
setting the pattern source back to the internal pattern
set, additional patterns can be added during a subsequent
ATPG run. This sequence is accomplished with the following
segment of the dofile.

Fault grade the checkpoint pattern set.
read_patterns my_checkpoint_file

Reset the fault status to assure that the patterns
simulated do detect faults. When the pattern set is fault
simulated, if no faults are detected, the tool does not
retain the patterns in the internal pattern set.
reset_state
simulate_patterns
report_statistics

Create additional ATPG patterns
create_patterns

After it runs the preceding commands, the tool should be at the same fault grade and number of
patterns as when it last saved checkpoint data during the interrupted run. To complete the
pattern creation process, you can now use the create_patterns command as described in “Pattern
Creation With Default Settings”.

Pattern Creation With Default Settings
By default, the create_patterns command initiates an optimal ATPG process that includes
highly efficient pattern compression.
This is the basic command for creating patterns:

ANALYSIS> create_patterns

Test Pattern Generation
Pattern Creation With Default Settings

Tessent™ Scan and ATPG User’s Manual, v2022.4 359

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Review the transcript for any command or setting changes the tool suggests and implement
those that help you achieve your test goals. Refer to the create_patterns command description in
the Tessent Shell Reference Manual for more information.

If the first pattern creation run gives inadequate coverage, refer to “Approaches for Improving
ATPG Efficiency” on page 360. To analyze the results if pattern creation fails, use the
analyze_atpg_constraints command and the analyze_restrictions command.

Tessent™ Scan and ATPG User’s Manual, v2022.4360

Test Pattern Generation
Approaches for Improving ATPG Efficiency

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Approaches for Improving ATPG Efficiency
If you are not satisfied with the test coverage after initially creating patterns, or if the resulting
pattern set is unacceptably large, you can make adjustments to several system defaults to
improve results in another ATPG run. The following subsections provide helpful information
and strategies for obtaining better results during pattern creation.
Reasons for Low Test Coverage . 360
Analysis of a Specific Fault . 361
Aborted Faults Report. 362
Abort Limit Setup . 362

Reasons for Low Test Coverage
Identifying specific problems is the first step to increasing test coverage. For example,
constraints on the tool and abort conditions are the main reasons for low test coverage. Early
termination of the ATPG run may also be a factor.
To establish the causes of low test coverage, you need to research why the tool could not
produce tests for particular sets of faults. You can examine the messages the tool prints during
the deterministic test generation phase while it is still running. These messages can alert you to
what might be wrong with respect to redundant (RE) faults, ATPG_untestable (AU) faults, and
undetected (UD) faults. Once you understand where you want to increase coverage, you do not
need to wait for the run to finish: you can terminate the process with Ctrl-C.

The report_statistics command provides the test coverage by fault class after an ATPG run. The
report_faults command provides comprehensive lists of the faults in your design, custom-
filtered according to your specifications. The ATPG tool categorizes all faults according to the
Fault Class Hierarchy. If you are unfamiliar with the acronyms for each class, refer to “Fault
Classes” on page 76.

Constraints That Reduce Coverage
Adjusting tool constraints may reduce high numbers of faults in the ATPG_untestable (AU) or
posdet_untestable (PU) fault categories as described in “Testable (TE)” on page 79. PU faults
are a type of possible-detected, or posdet (PD), fault.

The tool categorizes AU faults as described in “Fault Sub-Classes” on page 82. The sub-class
indicates the type of logic that makes the fault difficult to test. Use the analyze_fault command
to get a detailed analysis of the logic around a specific AU fault that can help you understand
why the fault was not detected.

UDFM faults require additional analysis to increase test coverage. The report_udfm_statistics
command provides detailed fault coverage information for these advanced fault models. The

Test Pattern Generation
Approaches for Improving ATPG Efficiency

Tessent™ Scan and ATPG User’s Manual, v2022.4 361

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

analyze_fault command also has dedicated switches to help you understand the testability
factors of UDFM faults.

Abort Conditions
Adjusting abort conditions may reduce high numbers of uncontrolled (UC) and unobserved
(UO) faults, also known as UD or UC+UO faults. The tool automatically trades off run time
versus test coverage by aborting efforts on hard-to-detect faults. Increasing the abort limit or
modifying some command defaults to change how the application makes decisions may
improve coverage.

The number of aborted faults is considered high if reclassifying them as detected (DT) or posdet
(PD) would result in a meaningful improvement in test coverage. In the tool’s coverage
calculation (see “Testability Calculations” on page 90), these reclassified faults would increase
the numerator of the formula. You can quickly estimate how much improvement would be
possible using the formula and the fault statistics from your ATPG run.

Note
Changing the abort limit is not always a viable solution for a low coverage problem. The
tool cannot detect AU faults (the most common cause of low test coverage) even with an

increased abort limit. Sometimes you may need to analyze why a fault or set of faults remains
undetected to understand what you can do.

Also, if you have defined several ATPG constraints or have specified“ set_contention_check
On-Atpg”, the tool may abort because it cannot satisfy the required conditions rather than
because of the fault. In either of these cases, you should analyze the buses or ATPG constraints
to ensure the tool can satisfy the specified requirements.

Early Termination
Early termination of the ATPG tool may also cause high numbers of UD faults. When the tool
detects that new patterns are only able to test a few new faults per pattern, it terminates, rather
than continue to run a long time to get small coverage gains. To force ATPG to continue
exhaustively, run “create_patterns -no_terminate_ineffective_atpg”.

Note
Using “create_patterns -no_terminate_ineffective_atpg” increases the run time and pattern
count and may do so for little coverage gain.

Analysis of a Specific Fault
You can report on all faults in a specific fault category with the report_faults command.
You can analyze each fault individually, using the pin pathnames and types listed by
report_faults, with the analyze_fault command.

Tessent™ Scan and ATPG User’s Manual, v2022.4362

Test Pattern Generation
How to Save the Test Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The analyze_fault command runs ATPG on the specified fault, displaying information about the
processing and the end results. The application displays different data depending on the
circumstances. You can optionally display relevant circuitry in Tessent Visualizer using the
-Display option. See the analyze_fault description in the Tessent Shell Reference Manual for
more information.

Aborted Faults Report
During the ATPG process, the tool may terminate attempts to detect certain faults given the
ATPG effort required. The tools place these types of faults, called “aborted faults,” in the AU
fault class, which includes the UC and UO sub-classes.
You can determine why these faults are undetected by using the report_aborted_faults
command.

Abort Limit Setup
If the fault list contains a number of aborted faults, the tools may be able to detect these faults if
you change the abort limit. You can increase the abort limit for the number of backtracks, test
cycles, or CPU time and recreate patterns.
To set the abort limit using the ATPG tool, use the set_abort_limit command.

The default for combinational ATPG is 30. The clock sequential abort limit defaults to the limit
set for combinational. Both the report_environment command and a message at the start of
deterministic test generation indicate the combinational and sequential abort limits. If they
differ, the sequential limit follows the combinational abort limit.

The application classifies any faults that remain undetected after reaching the limits as aborted
faults—which it considers undetected faults.

The report_aborted_faults command displays and identifies the cause of aborted faults.

How to Save the Test Patterns
To save generated test patterns, enter the write_patterns command.
For more information about the test data formats, refer to “Saving Timing Patterns” on
page 608.

Test Pattern Generation
Low-Power ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 363

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Low-Power ATPG
Low-power ATPG enables you to create test patterns that minimize the amount of switching
activity during test to reduce power consumption. Excessive power consumption can
overwhelm the circuit under test, causing it to malfunction.
Low-power ATPG controls switching activity during capture and while shifting data through
the scan chain to load/unload. Use the set_power_control command to enable low-power ATPG
to limit the power consumption during the shift and capture phases of testing.

The ATPG engine optimizes according to target switching thresholds that you specify as
percentages of the number of certain logic elements in regions that you specify. For capture, the
tool bases switching threshold calculations on state element activity, which is scan and non-scan
cells. For shift, the tool bases switching threshold calculations on scan cell activity.

You can specify thresholds that the tool uses as guidelines for pattern generation with the
“set_power_control on -switching_threshold_percentage <percentage>” command. The
generated test patterns stay below the switching threshold in most circumstances, but the tool
creates patterns that exceed the threshold if necessary to detect some faults.

You can specify thresholds that the tool uses as hard requirements with the “set_power_control
on -rejection_threshold_percentage <percentage>” command. The tool rejects any patterns that
exceed this threshold.

Use the -switching_threshold_percentage and -rejection_threshold_percentage options together
to set a tighter target of the -switching_threshold_percentage and permit some of the patterns
that exceed the tight target up to the wider -rejection_threshold_percentage limit.

You can specify switching and rejection thresholds globally across the whole design, or address
localized IR drop problems by identifying regions:

• By instances (capture only) — Applies the power control settings to every specified
instance.

• By modules (capture only) — Applies the power control settings to every instance of
the specified modules.

• By clock domains (capture only) — Applies the power control settings to every
instance in the specified clock domains.

• By partitions (capture only) — Applies the power control settings to every instance in
the specified partitions. You can create partitions with the add_design_partition
command.

• By EDT controllers (shift only) — Applies the power control settings to every
instance in the specified EDT blocks.

Tessent™ Scan and ATPG User’s Manual, v2022.4364

Test Pattern Generation
Low-Power Capture

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can use the set_power_control command multiple times to add constraints to multiple
regions for the same ATPG run.

For example, if you specify a switching threshold of 30 to apply to partition block1 and specify
a switching threshold of 35 to apply to clock domain clk2, the tool calculates the switching
activity in block1 and generates patterns that cause less than 30% of the instances in block1 to
switch. The tool independently calculates the switching activity in clock domain clk2 and
generates patterns that cause less than 35% of the instances in clock domain clk2 to switch.

You can specify which rejection threshold metric the tool calculates for each test pattern:

• st_peak — Peak of state transitions (default).

• st_average — Average of state transitions.

• wsa_peak — Peak of weighted switching activity.

• wsa_average — Average of weighted switching activity.

Note
Low-power constraints are directly related to the number of test patterns generated in an
application. For example, using stricter low-power constraints results in more test patterns.

See the set_power_control command in the Tessent Shell Reference Manual for detailed usage
and examples.

To report the power control settings, use the report_power_control command.

To report the shift and capture power metrics for specified test patterns, use the
report_power_metrics command.

Low-Power Capture . 364
Low-Power Shift . 365
Weighted Switching Activity. 365
Setting Up Low-Power ATPG . 367

Low-Power Capture
Low-power capture employs the clock gaters in a design to achieve the power target. ATPG
turns off clock gaters controlling untargeted portions while turning on clock gaters controlling
targeted portions of the design.
ATPG can control power most effectively in designs that organize clock gaters in the following
ways:

• All clock gaters controllable by scan

Test Pattern Generation
Low-Power Shift

Tessent™ Scan and ATPG User’s Manual, v2022.4 365

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• All sequential elements controllable by clock gaters

• Clock gaters nested in multiple levels of hierarchy to give fine control over related
portions of the design

This low-power feature is available using the “capture” option of the set_power_control
command.

You can also specify regions to calculate and control capture power by instances, modules,
clock domains, and partitions.

Low-Power Shift
Low-power shift minimizes the switching activity during shift with a constant fill algorithm in
which random values in scan chains are replaced with constant values as they are shifted
through the core. A repeat fill heuristic generates the constant values.
This low-power feature is available in the ATPG tool using the “shift” option of the
set_power_control command.

You can also specify regions to calculate and control shift power by EDT block.

Weighted Switching Activity
Weighted switching activity (WSA) is an approximate estimate of capture power calculated
without layout information.
WSA is the sum of the switching activity of every gate in the design, weighted by the gate’s
fanout, for a given test pattern set.

The tool calculates WSA at each frame, i, of a test pattern:

where Ng is number of gates in the circuit; and num_fanoutj is number of fanouts of gate j.

Due to X sources and cell constraints, not all of the gates have known values when simulating
test patterns. To avoid underestimating the capture power consumption, the tool sums switching
activity weighted by 0.1 for transitions of X to X and sums switching activity weighted by 0.05
for the transitions of 1 to X, 0 to X, X to 0, and X to 1.

Note
The switching calculation treats the inserted buffers and inverters in the same way as the
buffers and inverters in the original design.

Tessent™ Scan and ATPG User’s Manual, v2022.4366

Test Pattern Generation
Weighted Switching Activity

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool calculates the WSA of test pattern p as the sum of WSA on all frames of the test
pattern:

where Nf is number of frames in the test pattern p and Nc is number of cycles in the test pattern
p. The frame Nf+1 is the post capture frame.

The peak WSA is the maximum of the switching activity calculated for a test pattern in a set
with Np patterns.

The WSA averaged over the set of Np test patterns:

can be expressed as a percentage of the worst-case switching activity when every gate toggles:

The following Tessent Shell commands use reported_Average_WSA and Peak_WSA:

• order_patterns

• report_power_metrics

• set_pattern_filtering

• set_power_control

• set_power_metrics

Test Pattern Generation
Setting Up Low-Power ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 367

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To calculate the switching activity for a multiple load pattern, the tool automatically simulates
the post-capture frame immediately before each load/unload operation. This makes the good
machine simulation that computes the switching activity run longer than usual.

Setting Up Low-Power ATPG
You can enable low-power ATPG for capture and shift before test patterns are generated.
Setting up low-power ATPG is an iterative process that includes the setup, generation, and
analysis of test patterns.

Prerequisites
• A scan-inserted gate-level netlist with TSDB opened, current design specified, and scan

mode defined.

• A DFT strategy for your design. A test strategy helps define the most effective testing
process for your design.

Procedure
1. Set the context to “patterns -scan”:

SETUP> set_context patterns -scan

2. Set up test patterns. See “ATPG Operations” on page 350 for more information.

3. Exit setup mode and run DRC:

SETUP> set_system_mode analysis

4. Correct any DRC violations.

5. Turn on low-power capture. For example:

ANALYSIS> set_power_control capture -switching_threshold_percentage 30 \
 -rejection_threshold_percentage 35

The tool minimizes the switching during the capture cycle to 30% of the state elements
changing state in any test pattern. It discards any test patterns that switch more than 35%
of the state elements.

6. Turn on low-power shift. For example:

ANALYSIS> set_power_control shift on -switching_threshold_percentage 20 \
 -rejection_threshold_percentage 25

The tool minimizes the switching during scan chain loading to 20% of scan elements
changing state in any test pattern. It discards any test patterns that switch more than 25%
of the scan elements.

7. Create test patterns:

ANALYSIS> create_patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4368

Test Pattern Generation
Setting Up Low-Power ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The ATPG engine generates test patterns and reports the test pattern statistics and power
metrics.

8. Analyze reports and adjust settings until your power and test coverage goals are met.
Use the report_power_metrics command to report the capture power usage associated
with specific instances, modules, clock domains, or partitions in the design.

9. Save the design data in the TSDB:

write_tsdb_data -replace

10. Save the test patterns. For example:

ANALYSIS> write_patterns ../generated/patterns_edt_p.stil -stil -replace

Related Topics
Low-Power Capture
Low-Power Shift

Test Pattern Generation
IDDQ Test Set Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 369

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IDDQ Test Set Creation
The ATPG tool supports the pseudo stuck-at fault model for IDDQ testing.
This fault model enables detection of most of the common defects in CMOS circuits (such as
resistive shorts) without costly transistor level modeling. “IDDQ Test” on page 46 introduces
IDDQ testing.

The tool creates an IDDQ patterns based on the pseudo stuck-at fault model. You must first set
the fault type to IDDQ with the set_fault_type command.

During IDDQ test generation, the tool classifies faults at the inputs of sequential devices such as
scan cells or non-scan cells as Blocked (BL) faults. This is because the diversity of flip-flop and
latch implementations means the pseudo stuck-at fault model cannot reliably guide ATPG to
create a good IDDQ test. In contrast, a simple combinational logic gate has one common, fully
complementary implementation (a NAND gate, for example, has two parallel pFETs between
its output and Vdd and two series nFETs between its output and Vss), so the tool can more
reliably declare pseudo stuck-at faults as detected. The switch level implementation of a flip-
flop varies so greatly that assuming a particular implementation is highly suspect. The tool
therefore takes a pessimistic view and reports coverage lower than it actually is, because it is
unlikely such defects go undetected for all IDDQ patterns.

Using the ATPG tool, you can generate IDDQ patterns using several user-specified checks.
These checks can help ensure that the IDDQ test vectors do not increase IDDQ in the good
circuit. These sections provide more details for IDDQ test generation and user-specified checks:

IDDQ Test Set Generation . 370
Leakage Current Checks. 371

Tessent™ Scan and ATPG User’s Manual, v2022.4370

Test Pattern Generation
IDDQ Test Set Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IDDQ Test Set Generation
These topics discuss the basic IDDQ pattern generation process and provide an example of a
typical IDDQ pattern generation run.
When to Perform the Measures . 370
Pattern Generation . 370
Running ATPG for IDDQ. 370

When to Perform the Measures
IDDQ test patterns must contain statements that tell the tester to make an IDDQ measure.
In the Text format, this IDDQ measure statement, or label, appears as follows:

measure IDDQ ALL <time>;

By default, the ATPG tool places these statements at the end of patterns (cycles) that can
contain IDDQ measurements. You can manually add these statements to patterns (cycles)
within the external pattern set.

Note
For SSN designs with IDDQ patterns, the capture cycles for retargeted patterns are
synchronized. This enables a consistent cycle for the measure IDDQ. Blocks outside of this

retargeted pattern set must be controlled to be in a quiet state so the IDDQ measurement can be
most effective.

Pattern Generation
Prior to pattern generation, you may want to set up restrictions that the tool must abide by when
creating the best IDDQ patterns.
For more information on IDDQ restrictions, see “Leakage Current Checks” on page 371. As
with any other fault type, you issue the create_patterns command within analysis mode. This
generates an internal pattern set targeting the IDDQ faults in the current list.

Running ATPG for IDDQ
This procedure shows how to run ATPG for the IDDQ fault type.

Procedure
1. Invoke Tessent Shell, set the context to “patterns -scan,” read in the netlist, set up the

appropriate parameters for the ATPG run, pass rules checking, and then enter analysis
mode.

Test Pattern Generation
Leakage Current Checks

Tessent™ Scan and ATPG User’s Manual, v2022.4 371

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP> set_system_mode analysis

2. Set the fault type to IDDQ.

ANALYSIS> set_fault_type iddq

3. Specify the number of desirable IDDQ patterns.

ANALYSIS> set_atpg_limits -pattern_count 128

4. Run ATPG, generating patterns that target the IDDQ faults in the current fault list.

Note that you could use the set_iddq_checks command prior to the ATPG run to place
restrictions on the generated patterns. You can also optionally issue the read_faults
command to add the target fault list at this point.

ANALYSIS> create_patterns -patterns_per_pass 1

The tool then adds all faults automatically.

Note that the generated internal pattern source already contains the appropriate IDDQ
measure statements.

5. Save these IDDQ patterns into a file.

ANALYSIS> write_patterns iddq.pats

Leakage Current Checks
For CMOS circuits with pull-up or pull-down resistors or tri-state buffers, the good circuit
should have a nearly zero IDDQ current. The ATPG tool enables you to specify various IDDQ
measurement checks to ensure that the good circuit does not raise IDDQ current during the
measurement.
Use the set_iddq_checks command to specify these options.

By default, the tool does not perform IDDQ checks. Both ATPG and fault simulation processes
consider the checks you specify.

Tessent™ Scan and ATPG User’s Manual, v2022.4372

Test Pattern Generation
Delay Test Set Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Delay Test Set Creation
Delay, or “at-speed” tests in the ATPG tool are of two types: transition delay and path delay.
Figure 8-8 shows a general flow for creating a delay pattern set.

Figure 8-8. Flow for Creating a Delay Test Set

Your process may be different and it may involve multiple iterations through some of the steps,
based on your design and coverage goals. This section describes these two test types in more
detail and how you create them using the ATPG tool.

Transition Delay Test Set Creation . 373
Transition Fault Detection . 374
Generating a Transition Test Set . 376
Timing for Transition Delay Tests . 377
Transition Fault Detection and Multiple Clocks . 379
Pattern Failures Due to Timing Exception Paths . 383
SDC Timing Exception Effects . 389
Debugging Test Coverage With Timing Exceptions. 393
Path Delay Test Set Creation . 395
At-Speed Test With Named Capture Procedures . 405
Mux-DFF Example . 413

Test Pattern Generation
Transition Delay Test Set Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 373

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Support for Internal Clock Control . 419
Generating Test Patterns for Different Fault Models and Fault Grading 426
Timing-Aware ATPG . 439

Transition Delay Test Set Creation
The tool can generate patterns to detect transition faults.
“At-Speed Testing and the Transition Fault Model” on page 54 introduced the transition fault
model. Transition faults model gross delays on gate terminals (or nodes), enabling each terminal
to be tested for slow-to-rise or slow-to-fall behavior. The defects these represent may include
things like partially conducting transistors or interconnections.

Figure 8-9 illustrates a simple AND gate that has six potential transition faults. These faults are
comprised of slow-to-rise and slow-to-fall transitions for each of the three terminals. Because a
transition delay test checks the speed at which a device can operate, it requires a two cycle test.
First, all the conditions for the test are set. In the figure, A and B are 0 and 1 respectively. Then
a change is launched on A, which should cause a change on Y within a pre-determined time. At
the end of the test time, a circuit response is captured and the value on Y is measured. Y might
not be stuck at 0, but if the value of Y is still 0 when the measurement is taken at the capture
point, the device is considered faulty. The ATPG tool automatically chooses the launch and
capture scan cells.

Figure 8-9. Transition Delay

Tessent™ Scan and ATPG User’s Manual, v2022.4374

Test Pattern Generation
Transition Fault Detection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Transition Fault Detection
To detect transition faults, the tool must verify that certain conditions are met. The
corresponding stuck-at fault must be detected. Also, within a single previous cycle, the node
value must be at the opposite value than the value detected in the current cycle.
The following figure depicts the launch and capture events of a small circuit during transition
testing. Transition faults can be detected on any pin.

Figure 8-10. Transition Launch and Capture Events

Broadside (Launch-Off-Capture) Patterns
This is a clock sequential pattern, commonly referred to as a broadside pattern. It has basic
timing similar to that shown in Figure 8-11 and is the kind of pattern the ATPG tool attempts to
create by default when the clock-sequential depth (the depth of non-scan sequential elements in
the design) is two or larger. You can specify this depth with the “set_pattern_type -sequential”
command, although the create_patterns command automatically selects and sets the optimal
sequential depth for you.

Typically, this type of pattern eases restrictions on scan enable timing because of the relatively
large amount of time between the last shift and the launch. After the last shift, the clock is
pulsed at speed for the launch and capture cycles.

Test Pattern Generation
Transition Fault Detection

Tessent™ Scan and ATPG User’s Manual, v2022.4 375

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-11. Basic Broadside Timing

The following are example commands you could use at the command line or in a dofile to
generate broadside transition patterns:

SETUP> add_input_constraints scan_en -c0 // force for launch & capture.

ANALYSIS> set_fault_type transition

ANALYSIS> create_patterns

Pseudo Launch-Off-Shift Patterns
This method of pattern generation is modeled within the capture cycles of ATPG. The patterns
typically include two cycles. During the first capture cycle, the design is kept in shift mode.
During the second cycle, the scan enable is de-asserted and the capture is performed. This
method is more commonly used because it enables the tool to perform shift and capture at-speed
using PLL clocks.

Figure 8-12. Pseudo Launch-Off-Shift Timing

Tessent™ Scan and ATPG User’s Manual, v2022.4376

Test Pattern Generation
Generating a Transition Test Set

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You use a named capture procedure to force scan_en to change from 1 to 0 at the second capture
cycle. The scan_en is typically a pipelined signal, not a PI, so it can have at-speed timing to
switch at the capture cycle, which is usually much faster than the shift cycles.

Related Topics
set_abort_limit [Tessent Shell Reference Manual]
set_fault_type [Tessent Shell Reference Manual]
set_pattern_type [Tessent Shell Reference Manual]

Generating a Transition Test Set
Transition faults model large delay defects at gate terminals in the circuit under test. This basic
procedure generates the transition test set to test gate terminals or nodes for slow-to-rise or
slow-to-fall behavior.

Procedure
1. Perform circuit setup tasks, as discussed in “ATPG Basic Tool Flow” on page 321 and

“ATPG Setup” on page 351 in this manual.

2. Constrain the scan enable pin to its inactive state. For example:

SETUP> add_input_constraints scan_en -c0

3. Set the sequential depth to two or greater (optional):

SETUP> set_pattern_type -sequential 2

4. Enter analysis system mode. This triggers the tool’s automatic design flattening and
rules checking processes.

SETUP> set_system_mode analysis

5. Set the fault type to transition:

ANALYSIS> set_fault_type transition

6. Run test generation:

ANALYSIS> create_patterns

Note
When the fault type is set to “transition,” the tool automatically performs
“add_faults -clock all” when you run the create_patterns command.

Related Topics
Delay Test Set Creation

Test Pattern Generation
Timing for Transition Delay Tests

Tessent™ Scan and ATPG User’s Manual, v2022.4 377

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing for Transition Delay Tests
For transition delay tests, the tool obtains the timing information from the test procedure file.
This file describes the scan circuitry operation to the tool. You can create scan circuitry
manually, or use Tessent Scan to create the scan circuitry for you after it inserts scan circuitry
into the design.
The test procedure file contains cycle-based procedures and timing definitions that tell the
ATPG tool how to operate the scan structures within a design. For more information, refer to
“Test Procedure File” in the Tessent Shell User’s Manual.

Within the test procedure file, timeplates are the mechanism used to define tester cycles and
specify where all event edges are placed in each cycle. As shown conceptually in Figure 8-11
for broadside testing, slow cycles are used for shifting (load and unload cycles) and fast cycles
for the launch and capture. Figure 8-13 shows the same diagram with example timing added.

Figure 8-13. Broadside Timing Example

This diagram now shows 400 nanosecond periods for the slow shift cycles defined in a
timeplate called tp_slow and 40 nanosecond periods for the fast launch and capture cycles
defined in a timeplate called tp_fast.

The following are example timeplates and procedures that would provide the timing shown in
Figure 8-13. For brevity, these excerpts do not comprise a complete test procedure. Normally,
there would be other procedures as well, like setup procedures.

Tessent™ Scan and ATPG User’s Manual, v2022.4378

Test Pattern Generation
Timing for Transition Delay Tests

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

timeplate tp_slow = timeplate tp_fast =
force_pi 0; force_pi 0;
measure_po 100; measure_po 10;
pulse clk 200 100; pulse clk 20 10;
period 400; period 40;

end; end;

procedure load_unload = procedure capture =
scan_group grp1; timeplate tp_fast;
timeplate tp_slow; cycle =
cycle = force_pi;

force clk 0; measure_po;
force scan_en 1; pulse_capture_clock;

end; end;
apply shift 127; end;

end;

procedure shift = procedure clock_sequential =

timeplate tp_slow; timeplate tp_fast;
cycle = cycle =

force_sci; force_pi;
measure_sco; pulse_capture_clock;
pulse clk; pulse_read_clock;

end; pulse_write_clock;
end; end;

end;

In this example, there are 40 nanoseconds between the launch and capture clocks. If you want to
create this same timing between launch and capture events, but all your clock cycles have the
same period, you can skew the clock pulses within their cycle periods—if your tester can
provide this capability. Figure 8-14 shows how this skewed timing might look.

Figure 8-14. Launch Off Shift (Skewed) Timing Example

Test Pattern Generation
Transition Fault Detection and Multiple Clocks

Tessent™ Scan and ATPG User’s Manual, v2022.4 379

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following timeplate and procedure excerpts show how skewed launch off shift pattern
events might be managed by timeplate definitions called tp_late and tp_early, in a test
procedure file:

Note
For brevity, these excerpts do not comprise a complete test procedure. The shift procedure is
not shown and normally there would be other procedures as well, like setup procedures.

timeplate tp_late = timeplate tp_early =
force_pi 0; force_pi 0;
measure_po 10; measure_po 10;
pulse clk 80 10; pulse clk 20 10;
period 100; period 100;

end; end;

procedure load_unload = procedure capture =
scan_group grp1; timeplate tp_early;
timeplate tp_late; cycle =
cycle = force_pi;

force clock 0; measure_po;
force scan_en 1; pulse_capture_clock;

end; end;
apply shift 7; end;

end;

By moving the clock pulse later in the period for the load_unload and shift cycles and earlier in
the period for the capture cycle, the 40 nanosecond time period between the launch and capture
clocks is achieved.

Transition Fault Detection and Multiple Clocks
When you are creating transition fault patterns, it is important to understand the available
commands to handle multiple clocks.
The set_clock_restriction command specifies whether ATPG can create patterns with more than
one active clock. The domain_clock literal for that command enables the tool to generate
patterns that pulse compatible scan chain capture or system clocks at the same time.

There are three separate ways to control the behavior of the tool regarding the creation of test
patterns with more than one active clock.

• set_clock_restriction domain_clock -same_clocks_between_loads on

When you use “-same_clocks_between_loads on” switch for the “set_clock_restriction
domain_clock command”, the tool uses the same clocks in every cycle within a load/
unload interval during pattern creation. See Figure 8-15 for example waveforms. The
green highlights between Cycle 2/Cycle n, Cycle n+1/Cycle m, and Cycle m+1/Cycle p
represent load cycles that occur between them.

Tessent™ Scan and ATPG User’s Manual, v2022.4380

Test Pattern Generation
Transition Fault Detection and Multiple Clocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-15. Same Clocks Between Loads “On”

• set_clock_restriction domain_clock -compatible_clocks_between_loads on

When you use “-compatible_clocks_between_loads on” switch for the
“set_clock_restriction domain_clock command”, the tool only permits compatible
clocks to pulse within capture cycles. Incompatible clocks are not permitted to pulse
between load/unload operations. See Figure 8-16 for example waveforms. In this case,
clk11 and clk12 are compatible clocks. The green highlight between Cycle 2/Cycle n,
represents a load cycle that occurs between them

Figure 8-16. Compatible Clocks Between Loads “On”

For at-speed fault models, when you are not using named capture procedures, and there
are no user defined settings or you are not calling create_patterns with the -override
switch, the tool automatically turns on hold_pi and masks all primary outputs. It also

Test Pattern Generation
Transition Fault Detection and Multiple Clocks

Tessent™ Scan and ATPG User’s Manual, v2022.4 381

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

automatically sets clock restriction to “domain_clock” with -any_interaction and
-compatible_clocks_between_loads on.

• set_clock_restriction domain_clock

When you use the “set_clock_restriction domain_clock” without the
-same_clocks_between_loads or -compatible_clocks_between_loads” switches, the tool
is not required to use the same clocks in every cycle within a load/unload interval during
pattern creation. The tool enforces the compatible clock requirement so that it does not
permit incompatible clocks to pulse in the same cycle but permits them to pulse at
different capture cycles. See Figure 8-17 for example waveforms. In this case, clk11 and
clk12 are compatible clocks and clk21 and clk22 are compatible clocks. However, clk11
and clk12 are not compatible with clk21 and clk22.

Tessent™ Scan and ATPG User’s Manual, v2022.4382

Test Pattern Generation
Transition Fault Detection and Multiple Clocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-17. domain_clock

When using create_patterns to create transition fault patterns, by default the tool sets the clock
restrictions to domain_clock (edge interaction) and the -compatible_clocks_between_loads
switch to on. It also sets the set_transition_holdpi and set_output_masks to on.

Test Pattern Generation
Pattern Failures Due to Timing Exception Paths

Tessent™ Scan and ATPG User’s Manual, v2022.4 383

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Failures Due to Timing Exception Paths
Prior to ATPG, you can perform a timing optimization on a design using a static timing analysis
(STA) tool.
This process also defines timing exception paths consisting of one of the following:

• False Path — A path that cannot be sensitized in the functional mode of operation (the
STA tool ignores these paths when determining the timing performance of a circuit).

• Multicycle Path — A path with a signal propagation delay of more than one clock
cycle. Figure 8-18 shows path P1 beginning at flip-flop U1, going through gates G1, G3,
G5, and G6, and ending at flip-flop U5. This path has a total propagation delay longer
than the clock period.

Figure 8-18. Multicycle Path Example

You should evaluate the effect of timing exception paths for any sequential pattern containing
multiple at-speed capture clock pulses, either from the same clock or from different clocks. This
includes the following pattern types:

• Clock sequential (broadside transition patterns and stuck-at patterns)

• RAM sequential

• Path delay

Tessent™ Scan and ATPG User’s Manual, v2022.4384

Test Pattern Generation
Pattern Failures Due to Timing Exception Paths

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The ATPG tool automatically evaluates false and multicycle paths before creating the test
patterns. When simulating patterns during ATPG, the tool identifies transitions that propagate
through false or multicycle paths and masks them (modifies them to X) at the capturing flops in
the resultant patterns when the transitions may not be stable due to the timing exceptions. For
multicycle paths, expected values are accurately simulated and stored in the pattern set.

Types of Timing Exception Paths. 384
Timing Exception Paths From an SDC File . 386
Does the SDC File Contain Valid SDC Information? . 387
Manual Definition of False Paths . 388

Types of Timing Exception Paths
Most designs hold data and control inputs constant for specified time periods before and after
any clock events. In this context, the time period before the clock event is the setup time, and
the time period after the clock event is hold time.
Figure 8-19 illustrates how setup and hold time exceptions can produce the following timing
exception paths: “Setup Time Exceptions” on page 384 and “Hold Time Exceptions” on
page 385.

Figure 8-19. Setup Time and Hold Time Exceptions

Setup Time Exceptions
A timing exception path with a setup time exception does not meet the setup time requirements.
This type of exception can affect test response for at-speed test patterns.

Test Pattern Generation
Pattern Failures Due to Timing Exception Paths

Tessent™ Scan and ATPG User’s Manual, v2022.4 385

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Hold Time Exceptions
A timing exception path with a hold time exception does not meet the hold time requirements.
This type of exception can affect test response of any test pattern and usually occurs across
different clock domains. The ATPG tool simulates hold time false paths for the following
timing exception paths:

• False paths you manually specify with the add_false_paths command using the -hold
switch—see “Manual Specification of False Paths for Hold Time Exception Checks”.

• False paths between two clock domains.

• Multicycle paths with a path multiplier of 0 (zero).

Figure 8-20 illustrates a hold time exception occurring across different clock domains.

Figure 8-20. Across Clock Domain Hold Time Exception

Figure 8-20 shows the false paths from the clock domain Clk1 to the clock domain Clk2. In this
figure, when a test pattern has a clock sequence of simultaneously pulsing both Clk1 and Clk2,
there can be a hold time exception from the flip-flop U1 or U2 to the flip-flop U3.

In Figure 8-20, pulsing clocks Clk1 and Clk2 simultaneously places the new value 1 at the D
input of flip-flop U1, creating a rising transition on the flip-flop U1’s Q output. This transition
sensitizes the path from the flip-flop U1 to the flip-flop U3. If the clock Clk2 arrives late at the
flip-flop U3 the new value 0 is captured at the flip-flop U3 instead of the old value 1.

Tessent™ Scan and ATPG User’s Manual, v2022.4386

Test Pattern Generation
Pattern Failures Due to Timing Exception Paths

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing Exception Paths From an SDC File
STA tools typically provide a command to write out the false and multicycle path information
identified during the STA process into a file or script in Synopsys Design Constraint (SDC)
format. For example, the Synopsys PrimeTime tool has the write_sdc command. You can also
read in both the -setup and -hold SDC information.
If you can get the information into an SDC file, you can use the read_sdc command to read in
the false path definitions from the file. Note that the tool does not infer false and multicycle
paths from the delays in an SDF file.

The following is an example of the use of this command in a typical command sequence for
creating broadside transition patterns:

<Define clocks, scan chains, constraints, and so on>

ANALYSIS> set_fault_type transition

ANALYSIS> set_pattern_type -sequential 2

ANALYSIS> read_sdc my_sdc_file

...

ANALYSIS> create_patterns

If you already have a pattern set for your design and want to see the effect of adding the false
and multicycle path information, the command sequence is slightly different:

<Define clocks, scan chains, constraints, and so on>

ANALYSIS> read_sdc my_sdc_file

ANALYSIS> add_faults -all

ANALYSIS> read_patterns my_patterns.ascii

ANALYSIS> simulate_patterns

ANALYSIS> report_statistics

As a result of simulating the patterns using the false and multicycle path information, the
patterns read in from the external pattern file are now stored in the tool’s internal pattern set,
with some capture values in the internal patterns changed to “X.” These changed values
represent masking the tool applied to adjust for false and multicycle path effects. The Xs
increase the number of undetected faults slightly and lower the test coverage; however, the
patterns are more correct and eliminate mismatches related to those capture values.

Note
You can save the patterns that include the false or multicycle path information as usual.

Test Pattern Generation
Pattern Failures Due to Timing Exception Paths

Tessent™ Scan and ATPG User’s Manual, v2022.4 387

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For example:

ANALYSIS> write_patterns my_patterns_falsepaths.v -verilog
ANALYSIS> write_patterns my_patterns_falsepaths.ascii -ascii

Does the SDC File Contain Valid SDC Information?
The read_sdc command reads an SDC file and parses it, looking for supported commands that
are relevant for ATPG.
ATPG tools support the following SDC commands and arguments:

• all_clocks

• create_clock [-name clock_name]

• create_generated_clock [-name clock name]

• get_clocks

• get_generated_clocks

• get_pins

• get_ports

• set_case_analysis value port_or_pin_list

• set_clock_groups

• set_disable_timing [-from from_pin_name] [-to to_pin_name] cell_pin_list

• set_false_path [-setup] [-hold] [-from from_list] [-to to_list] [-through through_list]

[-rise_from from_list] [-rise_to to_list] [-fall_from from_list] [-fall_to to_list]

• set_hierarchy_separator

• set_multicycle_path [-setup] [-hold] [-from from_list] [-to to_list]

[-through through_list] [-rise_from from_list] [-rise_to to_list] [-fall_from from_list]

[-fall_to to_list]

Note
For complete information on these commands and arguments, refer to your SDC
documentation.

To avoid problems extracting the timing exception paths from the SDC specifications, the best
results are obtained when the SDC file is written out using the write_sdc command in your
synthesis or static timing analysis (STA) tool.

Tessent™ Scan and ATPG User’s Manual, v2022.4388

Test Pattern Generation
Pattern Failures Due to Timing Exception Paths

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following summarizes the recommended steps:

1. In the ATPG tool, use the read_sdc command to read the SDC file.

2. Generate at-speed patterns.

Manual Definition of False Paths
Alternatively using the add_false_paths command, you can manually specify false path
definitions for both specifying false paths for setup time exception checks and specifying false
paths for hold time exception checks.
When performing this operation, you must be specific and accurate when specifying false (and
multicycle) paths during the STA process, and to maintain the same accuracy when using the
add_false_paths command.

For example, defining non-specify false path definition with the following command:

add_false_paths -from U3

would result in the propagation of the false path out through the design in an effect cone
encompassing all possible paths from that node. Figure 8-21 shows an illustration of this.

Figure 8-21. Effect Cone of a Non-Specific False Path Definition

Test Pattern Generation
SDC Timing Exception Effects

Tessent™ Scan and ATPG User’s Manual, v2022.4 389

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Manual Specification of False Paths for Setup Time Exception Checks
By default, the tool evaluates setup time exceptions for the false paths you manually specify
with the add_false_paths command.

Manual Specification of False Paths for Hold Time Exception Checks
For hold time exceptions, you identify the path with the add_false_paths command and also
specify the -hold switch. The following are useful commands for working with false paths:

• add_false_paths — Specifies one or more false paths.

• delete_false_paths — Deletes the specified false path definitions.

• report_false_paths — Displays the specified false path definitions.

• delete_multicycle_paths — Deletes the specified multicycle path definitions.

• report_multicycle_paths — Displays the specified multicycle path definitions.

SDC Timing Exception Effects
The false path and multicycle path timing exception information provided by the SDC file have
an impact on the tool’s internal pattern set.
Consider these effects when using SDC provided timing exceptions:

• Scan loading values are stable and are not impacted by SDC constraints.

• The tool considers both setup and hold time exceptions for every capture frame.

• Hold time exceptions impact the current clock edge.

• Hold time exceptions impact both the stuck-at and transition fault test coverage.

• Setup time exceptions impact the following clock edges.

• Setup time exceptions mainly impact the transition fault test coverage, except training-
edge (TE) edge flops.

• ATPG considers multicycle paths to determine the proper sequential depth to test the
faults on multicycle paths.

No Masking
Figure 8-22 shows that when there is no transition on the false path, no masking occurs.

Tessent™ Scan and ATPG User’s Manual, v2022.4390

Test Pattern Generation
SDC Timing Exception Effects

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-22. SDC No Masking

SDC False Path
Hold Time Exceptions

Figure 8-23 shows the effect of the hold time exception. The hold time exception impacts the
current clock edge. The result is Xs on G1/Q that propagate through U3/Q.

Test Pattern Generation
SDC Timing Exception Effects

Tessent™ Scan and ATPG User’s Manual, v2022.4 391

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-23. SDC False Path Hold Time Effect

Setup Time Exceptions
Figure 8-24 shows a circuit and the logic cones formed by the SDC set_false_path command.
There is an intersection cone from U1 through G3/A and an effect cone from the output of G3. It
also shows the effect of the setup time exception for this path on U3/D and U3/Q, which are
inside the effect cone of the false path. The setup time exception impacts the following clock
edge. The result is Xs on U3/D and U3/Q into the second cycle.

Tessent™ Scan and ATPG User’s Manual, v2022.4392

Test Pattern Generation
SDC Timing Exception Effects

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-24. SDC False Path Setup Time Effect

Multicycle Path
Figure 8-25 illustrates that masking occurs during the second cycle and becomes stable after the
second cycle.

Test Pattern Generation
Debugging Test Coverage With Timing Exceptions

Tessent™ Scan and ATPG User’s Manual, v2022.4 393

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-25. SDC Multicycle Path Effect

Debugging Test Coverage With Timing Exceptions
Due to the masking of unreliable transitions through timing exception paths, timing exceptions,
typically from SDC files, can impact the test coverage for static and at-speed test.
This procedure can be used to improve test coverage if your coverage goals are not achieved
because of timing exceptions.

Procedure
1. Enable the timing exception X-Statistics functionality to identify the timing exceptions

that have the highest masking impact.

set_timing_exceptions_handling -x_statistics on

2. When you have identified the timing exceptions with the highest masking impact,
remove the offending SDC timing exceptions from the SDC file. Create patterns using
the updated SDC file and evaluate the new test coverage results.

3. Run static timing analysis using the modified SDC from step 2 and check that timing
verification passes with the updated timing exceptions.

4. If the static timing analysis does not pass the with the updated SDC file, you must make
the necessary modifications to the design to meet the relaxed SDC timing.

Tessent™ Scan and ATPG User’s Manual, v2022.4394

Test Pattern Generation
Debugging Test Coverage With Timing Exceptions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. For static tests when the clock frequency is sufficiently slow, use the
“set_timing_exceptions_handling -setup off” command to disable setup timing
exception masking. This helps improve static test coverage for sequential patterns. To
verify the accuracy of this change, remove setup timing exceptions from the SDC file
and check using static timing analysis.

Examples
This example demonstrates how to enable SDC X-Statistics using 1 percent fault sampling and
generate 1,000 pattens with a sequential depth of one. After pattern creation, the example
reports the top three exceptions with the highest masking in the created patterns. This example
focuses on stuck-at fault test coverage impact, which is mainly due to hold time exceptions and
can be remedied more easily without design changes.

read_sdc original.sdc
set_timing_exceptions_handling –x_statistics on
set_fault_sampling 1
set_atpg_limits –pattern_count 1024
set_pattern_type –sequential 1
create_patterns
…
report_false_paths –x_statistics –count 3

// Total 255 paths out of 350 paths produced Xs.
// ---- --------------- ------------ --------------------
// Path Type Number of Xs File and line number
// ---- --------------- ------------ --------------------
// 1 false path 4424790 original.sdc (line 32761)
// 2 false path 3460790 original.sdc (line 32761)
// 3 false path 463897 original.sdc (line 30390)
// Only the first 3 paths producing the most Xs were reported.

This report identifies the top three offending false paths. Edit the SDC file and manually remove
the three false paths on lines 32761 and 30390. Save the file to modify.sdc. Then issue these
commands:

delete_sdc -all
read_sdc modify.sdc
create_patterns

Compare the test coverage difference from the run with the original.sdc.

Repeat the same process if the test coverage goal is not reached and there are still false paths
with large masking.

Re-run static timing analysis to determine that timing verification passes with the most currently
revised SDC file, modify.sdc.

Test Pattern Generation
Path Delay Test Set Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 395

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Path Delay Test Set Creation
The ATPG tool can generate patterns to detect path delay faults. These patterns determine if
specific user-defined paths operate correctly at-speed.
“At-Speed Testing and the Path Delay Fault Model” on page 55 introduced the path delay fault
model. You determine the paths you want tested (most people use a static timing analysis tool to
determine these paths), and list them in an ASCII path definition file you create. You then load
the list of paths into the tool. The Path Definition File describes how to create and use this file.

Path Delay Fault Detection . 395
The Path Definition File . 399
Path Definition Checks . 402
Generating a Path Delay Test Set. 403
Path Delay Testing Limitations . 404

Path Delay Fault Detection
Path delay testing requires a logic value transition, which implies two events need to occur to
detect a fault. These events include a launch event and a capture event. Typically, both the
launch and capture occur at scan cells, but they can occur at RAMs or, depending on the timing
and precision of the ATE to test around a chip’s I/O, at PIs and POs.
The following figure depicts the launch and capture events of a small circuit during a path delay
test.

Figure 8-26. Path Delay Launch and Capture Events

Path delay patterns are a variant of clock-sequential patterns. A typical pattern to detect a path
delay fault includes the following events:

1. Load scan chains.

2. Force primary inputs.

3. Pulse clock (to create a launch event for a launch point that is a state element).

4. Force primary inputs (to create a launch event for a launch point that is a primary input).

Tessent™ Scan and ATPG User’s Manual, v2022.4396

Test Pattern Generation
Path Delay Test Set Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. Measure primary outputs (to create a capture event for a capture point that is a primary
output).

6. Pulse clock (to create a capture event for a capture point that is a state element).

7. Unload scan chains.

The additional force_pi/pulse_clock cycles may occur before or after the launch or capture
events. The cycles depend on the sequential depth required to set the launch conditions or
sensitize the captured value to an observe point.

Note
Path delay testing often requires greater depth than for stuck-at fault testing. The sequential
depths that the tool calculates and reports are the minimums for stuck-at testing.

To get maximum benefit from path delay testing, the launch and capture events must have
accurate timing. The timing for all other events is not critical.

The ATPG tool detects a path delay fault with either a hazard-free test, a robust test, a non-
robust test, or a functional test. If you save a path delay pattern in ASCII format, the tool
includes comments in the file that indicate which of these types of detection the pattern uses.
The hazard free test combined with robust detection is the most rigid detection test.

Hazard-free detection occurs when the gating input used to sensitize the path value is a non-
controlling value that is held constant in every frame of every cycle as shown in Figure 8-27.
Hazard-free detection, when used with robust detection, provides a delay test with additional
restrictions than when using robust detection alone. Also, when used with robust detection, it
guarantees that any robust detection patterns created by the tool are hazard free.

Figure 8-27. Hazard-Free Detection Example

Unlike hazard-free detection, which requires that the gating input is held at a constant
non-controlling value through every frame of every cycle, robust detection requires that the
gating input used to sensitize the path is held at a non-controlling value only on the first frame
of every cycle. Similar to hazard-free, robust detection keeps the gating of the path constant
during fault detection and thus, does not affect the path timing. Because it avoids any possible

Test Pattern Generation
Path Delay Test Set Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 397

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

reconvergent timing effects, it is a desirable type of detection and for that reason is the approach
the ATPG tool tries first. The tool, however, cannot use robust detection on many paths because
of its restrictive nature and if it is unable to create a robust test, it automatically tries to create a
non-robust test. The application places faults detected by robust detection in the DR
(det_robust) fault class.

Note
A path can use robust detection only if every gate in the path is robust. If any single gate in
the path is non-robust, the path can use non-robust detection only.

The following figure gives an example of robust detection within a simple path. Notice that the
gating value on the OR and AND gates are stable on the first frame of each cycle and able to
retain the proper value for detection during launch and capture events.

Figure 8-28. Robust Detection Example

Non-robust detection does not require a constant value on the gating input used to sensitize the
path. It only requires the proper gating value, meaning it must be non-controlling, at the time of
the capture event. The ATPG tool places faults detected by non-robust detection in the DS
(det_simulation) fault class.

The following figure gives an example of non-robust detection within a simple path. Notice that
the gating value (highlighted in green) is not constant in every frame or cycle. While the value
may transition, it must be non-controlling at the start of the capture cycle.

Tessent™ Scan and ATPG User’s Manual, v2022.4398

Test Pattern Generation
Path Delay Test Set Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-29. Non-Robust Detection Example

Functional detection further relaxes the requirements on the gating input used to sensitize the
path. The gating of the path does not have to be stable as in robust detection, nor does it have to
be sensitizing at the capture event, as required by non-robust detection. Functional detection
requires only that the gating inputs do not block propagation of a transition along the path. The
tool places faults detected by functional detection in the det_functional (DF) fault class.

Figure 8-30 gives an example of functional detection for a rising-edge transition within a simple
path. Notice that the gating (off-path) value on the gates is neither stable, nor sensitizing at the
time of the capture event. However, the path input transition still propagates to the path output.

Figure 8-30. Functional Detection Example

You can use these commands as you create path delay detection test sets:

• analyze_fault — Analyzes a fault, including path delay faults, to determine why it was
not detected.

• delete_fault_sites — Deletes paths from the internal path list.

• read_fault_sites — Loads in a file of path definitions from an external file.

• report_fault_sites — Reports information on paths in the path list.

• report_statistics — Displays simulation statistics, including the number of detected
faults in each fault class.

Test Pattern Generation
Path Delay Test Set Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 399

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• set_fault_type — Specifies the number of paths the tool should expand to when
encountering an ambiguous path, by using the path_delay literal and
-expand_ambiguous_paths switch.

• set_pathdelay_holdpi — Sets whether non-clock primary inputs can change after the
first pattern force, during ATPG.

• write_fault_sites — Writes information on paths in the path list to an external file.

The Path Definition File
In an external ASCII file, you must use the path definition file to define all the paths that you
want tested in the test set.
For each path, you must specify the following:

• Path_name — A unique name you define to identify the path.

• Path_definition — The topology of the path from launch to capture point as defined by
an ordered list of pin pathnames. Each path must be unique.

The ASCII path definition file has several syntax requirements. The tools ignore as a comment
any line that begins with a double slash (//) or pound sign (#). Each statement must be on its
own line. The four types of statements include:

• Path — A required statement that specifies the unique pathname of a path.

• Condition — An optional statement that specifies any conditions necessary for the
launch and capture events. Each condition statement contains two arguments: a full pin
pathname for either an internal or external pin, and a value for that pin. Valid pin values
for condition statements are 0, 1, or Z. Condition statements must occur between the
path statement and the first pin statement for the path.

• Transition_condition — An optional statement that specifies additional transitions
required in the test pattern. Each transition_condition statement contains two arguments:
a full pin pathname for either an internal or external pin and a direction.
Transition_condition statements must occur between the path statement and the first pin
statement for the path.

The direction can be one of the following: rising, falling, same, or opposite. Rising and
falling specify that a rising edge and falling edge, respectively, are required on the
specified pin at the same time as launching a transition into the first pin of the path.
Same specifies for the tool to create a transition in the same direction as the one on the
first pin in the path definition. Opposite creates a transition in the opposite direction.

Figure 8-31 shows an example where a transition_condition statement could be
advantageous.

Tessent™ Scan and ATPG User’s Manual, v2022.4400

Test Pattern Generation
Path Delay Test Set Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-31. Example Use of transition_condition Statement

A defined path includes a 2-input AND gate with one input on the path, the other
connected to the output of a scan cell. For a robust test, the AND gate’s off-path or
gating input needs a constant 1. The tool, in exercising its preference for a robust test,
would try to create a pattern that achieved this. Suppose however that you wanted the
circuit elements fed by the scan cell to receive a 0-1 transition. You could add a
transition_condition statement to the path definition, specifying a rising transition for
the scan cell. The path capture point maintains a 0-1 transition, so remains testable with
a non-robust test, and you also get the transition you want for the other circuit elements.

• Pin — A required statement that identifies a pin in the path by its full pin pathname. Pin
statements in a path must be ordered from launch point to capture point. A “+” or “-”
after the pin pathname indicates the inversion of the pin with respect to the launch point.
A “+” indicates no inversion (you want a transition identical to the launch transition on
that pin), while a “-” indicates inversion (you want a transition opposite the launch
transition).

Note
If you use “+” or “-” in any pin statement, you must include a “+” for the launch
point. The polarity of the launch transition must always be “+”.

You must specify a minimum of two pin statements, the first being a valid launch point
(primary input or data output of a state element or RAM) and the last being a valid
capture point (primary output, data or clk input of a state element, or data input of a
RAM). The current pin must have a combinational connectivity path to the previous pin
and the edge parity must be consistent with the path circuitry. If a statement violates
either of these conditions, the tool issues an error. If the path has edge or path ambiguity,
it issues a warning.

Paths can include state elements (through data or clock inputs), but you must explicitly
name the data or clock pins in the path. If you do not, the tool does not recognize the
path and issues a corresponding message.

Test Pattern Generation
Path Delay Test Set Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 401

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• End — A required statement that signals the completion of data for the current path.
Optionally, following the end statement, you can specify the name of the path. However,
if the name does not match the pathname specified with the path statement, the tool
issues an error.

The following shows the path definition syntax:

PATH <pathname> =
 CONDition <pin_pathname> <0|1|Z>;
 TRANsition_condition <pin_pathname> <Rising|Falling|Same|Opposite>;
 PIN <pin_pathname> [+|-];
 PIN <pin_pathname> [+|-];

...
 PIN <pin_pathname> [+|-];
END [pathname];

The following is an example of a path definition file:

PATH "path0" =
 PIN /I$6/Q + ;
 PIN /I$35/B0 + ;
 PIN /I$35/C0 + ;
 PIN /I$1/I$650/IN + ;
 PIN /I$1/I$650/OUT - ;
 PIN /I$1/I$951/I$1/IN - ;
 PIN /I$1/I$951/I$1/OUT + ;
 PIN /A_EQ_B + ;
END ;
PATH "path1" =
 PIN /I$6/Q + ;
 PIN /I$35/B0 + ;
 PIN /I$35/C0 + ;
 PIN /I$1/I$650/IN + ;
 PIN /I$1/I$650/OUT - ;
 PIN /I$1/I$684/I1 - ;
 PIN /I$1/I$684/OUT - ;
 PIN /I$5/D - ;
END ;
PATH "path2" =
 PIN /I$5/Q + ;
 PIN /I$35/B1 + ;
 PIN /I$35/C1 + ;
 PIN /I$1/I$649/IN + ;
 PIN /I$1/I$649/OUT - ;
 PIN /I$1/I$622/I2 - ;
 PIN /I$1/I$622/OUT - ;
 PIN /A_EQ_B + ;
END ;
PATH "path3" =
 PIN /I$5/QB + ;
 PIN /I$6/TI + ;
END ;

Tessent™ Scan and ATPG User’s Manual, v2022.4402

Test Pattern Generation
Path Delay Test Set Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You use the read_fault_sites command to read in the path definition file. The tool loads the
paths from this file into an internal path list. You can add to this list by adding paths to a new
file and re-issuing the read_fault_sites command with the new filename.

Path Definition Checks
The ATPG tool checks the points along the defined path for proper connectivity and to
determine if the path is ambiguous. Path ambiguity indicates there are several different paths
from one defined point to the next.
Figure 8-32 indicates a path definition that creates ambiguity.

Figure 8-32. Example of Ambiguous Path Definition

In this example, the defined points are an input of Gate2 and an input of Gate7. Two paths exist
between these points, thus creating path ambiguity. When the ATPG tool encounters this
situation, it expands the ambiguous path to up to 10 unambiguous paths by default. If you want
the tool to consider a different number of paths, you can specify this with the “set_fault_type
path_delay -expand_ambiguous_paths” command.

During path checking, the tool can also encounter edge ambiguity. Edge ambiguity occurs when
a gate along the path has the ability to either keep or invert the path edge, depending on the
value of another input of the gate.Figure 8-33 shows a path with edge ambiguity due to the XOR
gate in the path.

Figure 8-33. Example of Ambiguous Path Edges

Test Pattern Generation
Path Delay Test Set Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 403

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The XOR gate in this path can act as an inverter or buffer of the input path edge, depending on
the value at its other input. Thus, the edge at the output of the XOR is ambiguous. The path
definition file lets you indicate edge relationships of the defined points in the path. You do this
by specifying a “+” or “-” for each defined point, as was previously described in “The Path
Definition File” on page 399.

The “set_fault_type path_delay -expand_ambiguous_paths” command can also expand paths
with edge ambiguity.

Generating a Path Delay Test Set
When you have a path definition file with the paths you want to test, you use this procedure to
generate a path delay test set.

Procedure
1. Perform circuit setup tasks as described in the ATPG Basic Tool Flow and ATPG Setup

sections in this manual.

2. Constrain the scan enable pin to its inactive state. For example:

SETUP> add_input_constraints scan_en -c0

3. (Optional) Turn on output masking.

SETUP> set_output_masks on

4. Add nofaults <x, y, z>

5. Set the sequential depth to two or greater:

SETUP> set_pattern_type -sequential 2

6. Enter analysis system mode. This triggers the tool’s automatic design flattening and
rules checking processes.

7. Set the fault type to path delay:

ANALYSIS> set_fault_type path_delay

8. Write a path definition file with all the paths you want to test. “The Path Definition File”
on page 399 describes this file in detail. If you want, you can do this prior to the session.
You can only add faults based on the paths defined in this file.

9. Load the path definition file (assumed for the purpose of illustration to be named
path_file_1):

ANALYSIS> read_fault_sites path_file_1

10. Specify any changes you want in how the tool expands ambiguous paths. By default, the
tool expands each ambiguous path internally with up to 10 unambiguous paths. The
following example limits the number of expanded unambiguous paths to a maximum of
4.

Tessent™ Scan and ATPG User’s Manual, v2022.4404

Test Pattern Generation
Path Delay Test Set Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ANALYSIS> set_fault_type path_delay -expand_ambiguous_paths 4

11. Define faults for the paths in the tool’s internal path list:

ANALYSIS> add_faults -all

This adds a rising edge and falling edge fault to the tool’s path delay fault list for each
defined path.

12. Perform an analysis on the specified paths and delete those the analysis proves are un-
sensitizable:

ANALYSIS> delete_fault_sites -unsensitizable_paths

13. Run test generation:

ANALYSIS> create_patterns

Path Delay Testing Limitations
Path delay testing does not support several types of circuit configurations.

• RAMs Within a Specified Path — A RAM as a launch point is supported only if the
launch point is at the RAM’s output. A RAM as a capture point is supported only if the
capture point is at the RAM’s input.

• Paths Starting at a Combinationally Transparent Latch — A combinationally
transparent latch as a capture point is supported only if the capture point is at the latch’s
input.

• Path Starting or Ending at ROM — You should model ROM as a read-only CRAM
primitive (that is, without any _write operation) to enable the tool to support path delay
testing starting or ending (or both) at ROM.

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Tessent™ Scan and ATPG User’s Manual, v2022.4 405

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

At-Speed Test With Named Capture Procedures
To create at-speed test patterns for designs with complicated clocking schemes, you may need
to specify the actual launch and capture clocking sequences. You can do this using a named
capture procedure in the test procedure file.
A named capture procedure is an optional procedure, with a unique name, used to define
explicit clock cycles. Named capture procedures can be used for generating stuck-at, path delay,
and broadside transition patterns, but not launch off shift transition patterns. You can create
named capture procedures using the create_capture_procedures command and then write out the
procedures using the write_procfile command. You can also manually create or edit named
capture procedures using an external editor if needed. For information on manually creating and
editing named capture procedures, see the “Rules for Creating and Editing Named Capture
Procedures” section in the Tessent Shell User’s Manual.

When the test procedure file contains named capture procedures, the ATPG tool generates
patterns that conform to the waveforms described by those procedures. Alternatively, you can
use the set_capture_procedures command to disable a subset of the named capture procedures,
and only the enabled subset is used. For example, you might want to exclude named capture
procedures that are unable to detect certain types of faults during test pattern generation.

You can have multiple named capture procedures within one test procedure file in addition to
the default capture procedure the file typically contains. Each named capture procedure must
reflect clock behavior that the clocking circuitry is actually capable of producing. When you use
a named capture procedure to define a waveform, it is assumed you have expert design
knowledge; the ATPG tool does not verify that the clocking circuitry is capable of delivering
the waveform to the defined internal pins.

The ATPG tool uses either all named capture procedures (the default) or only those named
capture procedures you enable with the set_capture_procedures command. When the test
procedure file does not contain named capture procedures, or you use the
“set_capture_procedures off -all” command, the tool uses the default capture procedure.
However, usually you would not use the default procedure to generate at-speed tests. The tool
does not currently support use of both named capture procedures and clock procedures in a
single ATPG session.

Note
If a DRC error prevents use of a capture procedure, the run aborts.

For more information on named capture procedures, see the “Capture Procedures Optional”
section in the Tessent Shell User’s Manual.

Support for On-Chip Clocks (PLLs) . 406
Internal and External Modes Definition . 406
Named Capture Procedures Display . 409

Tessent™ Scan and ATPG User’s Manual, v2022.4406

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Achieving the Test Coverage Goal Using Named Capture Procedures 410
Debugging Low Test Coverage Using Pre-Defined Named Capture Procedures 411
At-speed Fault Simulation Clocking Considerations . 411
Internal Signals and Clocks . 411
How to Save Internal and External Patterns . 412

Support for On-Chip Clocks (PLLs)
Named capture procedures support on-chip and internal clocks.
These are clocks generated on-chip by a phased-locked loop (PLL) or other clock generating
circuitry as shown in Figure 8-34. In addition, an example timing diagram for this circuit is
shown in Figure 8-35. A PLL can support only certain clock waveforms and named capture
procedures let you specify the permitted set of clock waveforms. In this case, if there are
multiple named capture procedures, the ATPG engine uses these named capture procedures
instead of assuming the default capture behavior.

Figure 8-34. On-Chip Clock Generation

Internal and External Modes Definition
When manually creating or editing named capture procedures, you can use the optional
keyword “mode” with two mode blocks, “internal” and “external” to describe what happens on
the internal and external sides of an on-chip phase-locked loop (PLL) or other on-chip clock-
generating circuitry. You use “mode internal =” and “mode external =” to define mode blocks in
which you put procedures to exercise internal and external signals. You must use the internal
and external modes together, and ensure no cycles are defined outside the mode definitions.

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Tessent™ Scan and ATPG User’s Manual, v2022.4 407

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-35. PLL-Generated Clock and Control Signals

The internal mode is used to describe what happens on the internal side of the on-chip PLL
control logic, while the external mode is used to describe what happens on the external side of
the on-chip PLL. Figure 8-34 shows how this might look. The internal mode uses the internal
clocks (/pll/clk1 and /pll/clk2) and signals while the external mode uses the external clocks
(system_clk) and signals (begin_ac and scan_en). If any external clocks or signals go to both the

Tessent™ Scan and ATPG User’s Manual, v2022.4408

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PLL and to other internal chip circuitry (scan_en), you need to specify their behavior in both
modes and they need to match, as shown in the following example (timing is from Figure 8-35):

timeplate tp_cap_clk_slow =
force_pi 0;
pulse /pll/clk1 20 20;
pulse /pll/clk2 40 20;
period 80;

end;
timeplate tp_cap_clk_fast =

force_pi 0;
pulse /pll/clk1 10 10;
pulse /pll/clk2 20 10;
period 40;

end;

timeplate tp_ext =

force_pi 0;
measure_po 10;
force begin_ac 60;
pulse system_clk 0 60;
period 120;

end;

procedure capture clk1 =

observe_method master;

mode internal =

cycle slow =
timeplate tp_cap_clk_slow;

force system_clk 0;
force scan_clk1 0;
force scan_clk2 0;
force scan_en 0;
force_pi;
force /pll/clk1 0;
force /pll/clk2 0;
pulse /pll/clk1;

end;
// launch cycle
cycle =
timeplate tp_cap_clk_fast;

pulse /pll/clk2;
end;
// capture cycle
cycle =
timeplate tp_cap_clk_fast;

pulse /pll/clk1;
end;
cycle slow =
timeplate tp_cap_clk_slow;

pulse /pll/clk2;
end;

end;

mode external =
timeplate tp_ext;

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Tessent™ Scan and ATPG User’s Manual, v2022.4 409

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

cycle =
force system_clk 0;
force scan_clk1 0;
force scan_clk2 0;
force scan_en 0;
force_pi;
force begin_ac 1;
pulse system_clk;

end;
cycle =

force begin_ac 0;
pulse system_clk;

end;
end;

end;

For more information about internal and external modes, see the “Rules for Creating and
Editing Named Capture Procedures” section in the Tessent Shell User’s Manual.

Named Capture Procedures Display
When the ATPG tool uses a named capture procedure, it uses a “cyclized” translation of the
internal mode. The tool may merge certain internal mode cycles in order to optimize them, and
it may expand others to ensure correct simulation results. These modifications are internal only;
the tool does not alter the named capture procedure in the test procedure file.
You can use the report_capture_procedures command to display the cyclized procedure
information with annotations that indicate the timing of the cycles and where the at-speed
sequences begin and end. If you want to view the procedures in their unaltered form in the test
procedure file, use the report_procedures command.

After cyclizing the internal mode information, the tool automatically adjusts the sequential
depth to match the number of cycles that resulted from the cyclizing process. Patterns
automatically reflect any sequential depth adjustment the tool performs.

Figure 8-36 illustrates cycle merging.

Tessent™ Scan and ATPG User’s Manual, v2022.4410

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-36. Cycles Merged for ATPG

Figure 8-37 illustrates cycle expansion.

Figure 8-37. Cycles Expanded for ATPG

Achieving the Test Coverage Goal Using Named Capture
Procedures

Use this procedure when you know the repeated clock sequences to which the test clocks will be
applied and want to investigate the best sequential depth of each clock domain to achieve the
test coverage goal.

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Tessent™ Scan and ATPG User’s Manual, v2022.4 411

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Use the create_capture_procedures command to define the minimum clock sequences in

a named capture procedure.

2. Gradually add more capture procedures with higher sequential depth until the test
coverage goal is achieved or the pattern count limit is reached.

Debugging Low Test Coverage Using Pre-Defined Named
Capture Procedures

Use this procedure when you want to know which clock sequences provide the best test
coverage and then create named capture procedures from them.

Procedure
1. Start ATPG from the default capture procedure.

2. Use the create_capture_procedures command to create named capture procedures by
extracting the most often applied clock sequences from the pattern set.

3. Use the write_procfile command to write the named capture procedure into the test
procedure file.

Note
You may need to manually edit the named capture procedure in the test procedure
file to achieve the functionality you want. For example, you may need to add

condition statements or add external mode definitions. For information on rules to
follow when editing named capture procedures, see the “Rules for Creating and Editing
Named Capture Procedures” section in the Tessent Shell User’s Manual.

At-speed Fault Simulation Clocking Considerations
Not all clocks specified in the capture procedures are applied at-speed. During at-speed fault
simulation, the tool does not activate at-speed related faults when slow clock sequences are fault
simulated, even if a transition occurs in two consecutive cycles. Generally, the clock sequence
defined in a capture procedure can consist of zero or more slow clock sequences, followed by
zero or more at-speed clock sequences, followed by zero or more slow clock sequences.

Related Topics
Delay Test Set Creation

Internal Signals and Clocks
The tool provides a way for you to specify internal signals and clocks.

Tessent™ Scan and ATPG User’s Manual, v2022.4412

Test Pattern Generation
At-Speed Test With Named Capture Procedures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For clocks and signals that come out of the PLL or clock generating circuitry that are not
available at the real I/O interface of the design, you can use the add_clocks or
add_primary_inputs commands to define the internal signals and clocks for use in ATPG. If the
pin you specify with the command is an internal pin, the tool automatically creates an internal
PI for it.

For example, when setting up for pattern generation for the example circuit shown in
Figure 8-34, you would issue this command to define the internal clocks:

SETUP> add_clocks 0 /pll/clk1 /pll/clk2

The two PLL clocks would then be available to the tool’s ATPG engine for pattern generation.

For those PIs created from internal pins by the add_clocks and add_primary_inputs commands,
fault sites in the driving logic of the internal pins are classified as AU (for example, AU.SEQ or
AU.PC) or DI (for example, DI.CLK), as appropriate.

How to Save Internal and External Patterns
By default, the ATPG tool uses only the primary input clocks when creating test patterns.
However, if you use named capture procedures with internal mode clocks and control signals
you define with the add_clocks or add_primary_inputs commands, the tool uses those internal
clocks and signals for pattern generation and simulation. To save the patterns using the same
internal clocks and signals, you must use the -Mode_internal switch with the write_patterns
command. The -Mode_internal switch is the default when saving patterns in ASCII or binary
format.

Note
The -Mode_internal switch is also necessary if you want patterns to include internal pin
events specified in scan procedures (test_setup, shift, load_unload).

To obtain pattern sets that can run on a tester, you need to write patterns that contain only the
true primary inputs to the chip. These are the clocks and signals used in the external mode of
any named capture procedures, not the internal mode. To accomplish this, you must use the
-Mode_external switch with the write_patterns command. This switch directs the tool to map
the information contained in the internal mode blocks back to the external signals and clocks
that comprise the I/O of the chip. The -Mode_external switch is the default when saving
patterns in a tester format (for example, WGL) and Verilog format.

Note
The -Mode_external switch ignores internal pin events in scan procedures (test_setup, shift,
load_unload).

Test Pattern Generation
Mux-DFF Example

Tessent™ Scan and ATPG User’s Manual, v2022.4 413

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Mux-DFF Example
In a full scan design, the vast majority of transition faults are between scan cells (or cell to cell)
in the design. There are also some faults between the PI to cells and cells to the PO. Targeting
these latter faults can be more complicated, mostly because running these test patterns on the
tester can be challenging. For example, the tester performance or timing resolution at regular I/
O pins may not be as good as that for clock pins. This section shows a mux-DFF type scan
design example and covers some of the issues regarding creating transition patterns for the
faults in these three areas.
Figure 8-38 shows a conceptual model of an example chip design. There are two clocks in this
mux-DFF design, which increases the possible number of launch and capture combinations in
creating transition patterns. For example, depending on how the design is actually put together,
there might be faults that require these launch and capture combinations: C1-C1, C2-C2,
C1-C2, and C2-C1. The clocks may be either external or are created by some on-chip clock
generator circuitry or PLL.

“Timing for Transition Delay Tests” on page 377 shows the basic waveforms and partial test
procedure files for creating broadside and launch off shift transition patterns. For this example,
named capture procedures are used to specify the timing and sequence of events. The example
focuses on broadside patterns and shows only some of the possible named capture procedures
that might be used in this kind of design.

Tessent™ Scan and ATPG User’s Manual, v2022.4414

Test Pattern Generation
Mux-DFF Example

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-38. Mux-DFF Example Design

A timing diagram for cell to cell broadside transition faults that are launched by clock C1 and
captured by clock C2 is shown in Figure 8-39.

Figure 8-39. Mux-DFF Broadside Timing, Cell to Cell

Following is the capture procedure for a matching test procedure file that uses a named capture
procedure to accomplish the clocking sequence. Other clocking combinations would be handled
with additional named capture procedures that pulse the clocks in the correct sequences.

Test Pattern Generation
Mux-DFF Example

Tessent™ Scan and ATPG User’s Manual, v2022.4 415

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set time scale 1.000000 ns ;
timeplate tp1 =

force_pi 0;
measure_po 10;
pulse scan_clk 50 20;
period 120;

end;
timeplate tp2 =

force_pi 0;
pulse c1 10 10;
pulse c2 10 10;
measure_po 30;
period 40;

end;
timeplate tp3 =

force_pi 0;
pulse c1 50 10;
pulse c2 10 10;
period 80;

end;
procedure load_unload =

timeplate tp1;
cycle =

force c1 0;
force c2 0;
force scan_en 1;

end;
apply shift 255;

end;
procedure shift =

timeplate tp1;
cycle =

force_sci;
measure_sco;
pulse scan_clk;

end;
end;
procedure capture launch_c1_cap_c2 =

cycle =
timeplate tp3;
force c1 0;
force c2 0;
force scan_clk 0;
force_pi;//force scan_en to 0
pulse c1;//launch clock

end;
cycle =

timeplate tp2;
pulse c2;//capture clock

end;
end;

Be aware that this is just one example and your implementation may vary depending on your
design and tester. For example, if your design can turn off scan_en quickly and have it settle
before the launch clock is pulsed, you may be able to shorten the launch cycle to use a shorter

Tessent™ Scan and ATPG User’s Manual, v2022.4416

Test Pattern Generation
Mux-DFF Example

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

period; that is, the first cycle in the launch_c1_cap_c2 capture procedure could be switched
from using timeplate tp3 to using timeplate tp2.

Another way to make sure scan enable is turned off well before the launch clock is to add a
cycle to the load_unload procedure right after the “apply shift” line. This cycle would only need
to include the statement, “force scan_en 0;”.

Notice that the launch and capture clocks shown in Figure 8-39 pulse in adjacent cycles. The
tool can also use clocks that pulse in non-adjacent cycles, as shown in Figure 8-40, if the
intervening cycles are at-speed cycles.

Figure 8-40. Broadside Timing, Clock Pulses in Non-Adjacent Cycles

To define a pair of nonadjacent clocks for the tool to use as the launch clock and capture clock,
include a launch_capture_pair statement at the beginning of the named capture procedure. The
tool permits multiple launch_capture_pair statements, but it uses just one of the statements for a
given fault. Without this statement, the tool defaults to using adjacent clocks.

When its choice of a launch and capture clock is guided by a launch_capture_pair statement, the
tool may use for launch, the clock specified as the launch clock in the statement or another clock
that is pulsed between the launch and capture clocks specified in the statement. The capture
clock, however, is the one specified in the statement or another clock that has the same period as
the specified capture clock.

If a named capture procedure for example pulses clocks clk1, clk2 and clk3 in that order in each
of three successive at-speed cycles and the launch_capture_pair {clk1, clk3} is defined, the tool
could use either clk1 or clk2 to launch and clk3 to capture. The idea of the launch and capture
pair is that it enables you to specify the capture clock and the farthest launch clock from the
capture clock. In this example, the {clk1, clk3} pair directs the tool to use clk3 to capture and
the farthest launch clock to be clk1. The tool considers it acceptable for clk2 to launch, because
if {clk1, clk3} is at speed, {clk2, clk3} should be at speed as well.

Test Pattern Generation
Mux-DFF Example

Tessent™ Scan and ATPG User’s Manual, v2022.4 417

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information on using the “launch_capture_pair” statement, see the
“launch_capture_pair Statement” section in the Tessent Shell User’s Manual.

If you want to try to create transition patterns for faults between the scan cells and the primary
outputs, make sure your tester can accurately measure the PO pins with adequate resolution. In
this scenario, the timing looks similar to that shown in Figure 8-39 except that there is no
capture clock. Figure 8-41 shows the timing diagram for these cell to PO patterns.

Figure 8-41. Mux-DFF Cell to PO Timing

Following is the additional capture procedure that is required:

procedure capture launch_c1_meas_PO=
cycle =
timeplate tp3;

 force_pi; //force scan_en to 0
 pulse c1; //launch clock

end;
cycle =
timeplate tp2;

measure_po; //measure PO values
end;

end;

Note
You need a separate named capture procedure for each clock in the design that can cause a
launch event.

What you specify in named capture procedures is what you get. As you can see in the two
preceding named capture procedures (launch_c1_cap_c2 and launch_c1_meas_PO), both
procedures used two cycles, with timeplate tp3 followed by timeplate tp2. The difference is that
in the first case (cell to cell), the second cycle only performed a pulse of C2 while in the second
case (cell to PO), the second cycle performed a measure_po. The key point to remember is that

Tessent™ Scan and ATPG User’s Manual, v2022.4418

Test Pattern Generation
Mux-DFF Example

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

even though both cycles used the same timeplate, they only used a subset of what was specified
in the timeplate.

To create effective transition patterns for faults between the PI and scan cells, you also may
have restrictions due to tester performance and tolerance. One way to create these patterns can
be found in the example timing diagram in Figure 8-42. The corresponding named capture
procedure is shown after the figure.

Figure 8-42. Mux-DFF PI to Cell Timing

procedure capture launch_PI_cap_C2 =
cycle =
timeplate tp2;

force_pi; //force initial values
end;
cycle =
timeplate tp3;

force_pi; //force updated values
pulse c2; //capture clock

end;
end;

As before, you would need other named capture procedures for capturing with other clocks in
the design. This example shows the very basic PI to cell situation where you first set up the
initial PI values with a force, then in the next cycle force changed values on the PI and quickly
capture them into the scan cells with a capture clock.

Note
You do not need to perform at-speed testing for all possible faults in the design. You can
eliminate testing things like the boundary scan logic, the memory BIST, and the scan shift

path by using the add_nofaults command.

Test Pattern Generation
Support for Internal Clock Control

Tessent™ Scan and ATPG User’s Manual, v2022.4 419

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Support for Internal Clock Control
You can use clock control definitions in your test procedure file to specify the operation of on-
chip/internal clocks during capture cycles. A clock control definition is one or more blocks in
the test procedure file that define internal clock operation by specifying source clocks and
conditions at scan cell outputs when a clock can be pulsed. ATPG interprets these definitions
and determines which clock to pulse during the capture cycle to detect the most faults.
When a clock control is defined, the clock control bits are included in chain test pattern to turn
off capture clocks when the clock under control has no source clock or when the source clock
defined in the clock under control is a always-pulse clock.

By default in the ATPG tool, one capture cycle is included in chain test patterns if there is no
pulse-always clock, or if the pulse-always clock drives neither observation points nor buses.

You can manually create clock control definitions or use the stil2tessent tool to generate them
automatically from a STIL Procedure File (SPF) that contains a ClockStructures block.

To specify explicit launch/capture sequences or external/internal clock relationship definitions,
you must use Named Capture Procedures (NCPs).

Note that you can turn off clock control using the “set_clock_controls off” command. You
should turn off clock controls only for debug purposes, typically to determine if a fault is
untestable because of the clock control constraints and if the fault is testable when those
constraints are not present. For more information, refer to the set_clock_controls command
description in the Tessent Shell Reference Manual.

Per-Cycle Clock Control . 419
Sequence Clock Control . 422
Capture Cycle Determination. 423
Applying Internal Clock Control . 424

Per-Cycle Clock Control
Per-cycle clock control enables you to define the internal clock output based on a single capture
cycle using scan cell values. Per-cycle clock control is commonly used for pipeline-based clock
generation where one bit controls the clock in each cycle.
Figure 8-43 shows a simplified per-cycle clock control model.

Tessent™ Scan and ATPG User’s Manual, v2022.4420

Test Pattern Generation
Support for Internal Clock Control

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-43. Simplified Per-Cycle Clock Control Model

The values on the shift register (F3-F2-F1-F0) determine if the AND gate passes the clock
through on each cycle (4 cycles in this circuit). All of the flops in this circuit are scan flops. At
the end of scan chain shifting, the scan cells are initialized to a value. The value determines the
number of clocks that the circuitry can produce.

The hardware, in this circuit, is defined so that based on the values of the four scan cells the
circuitry can provide up to four capture cycles. The combinations are shown in Figure 8-44

Test Pattern Generation
Support for Internal Clock Control

Tessent™ Scan and ATPG User’s Manual, v2022.4 421

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-44. Per-Cycle Clock Control Waveform

Tessent™ Scan and ATPG User’s Manual, v2022.4422

Test Pattern Generation
Support for Internal Clock Control

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Using “ATPG_CYCLE” you can represent the above circuit and waveforms as follows:

// Define clock control for internal clock “/clk_ctrl/int_clk1”
CLOCK_CONTROL /clk_ctrl/int_clk1 =
 // Define a source clock if one exists
 SOURCE_CLOCK ref_clk;

 // Define specific local conditions
 ATPG_CYCLE 0 =
 CONDITION /clk_ctrl/F0/q 1;
 END;
 ATPG_CYCLE 1 =
 CONDITION /clk_ctrl/F1/q 1;
 END;
 ATPG_CYCLE 2 =
 CONDITION /clk_ctrl/F2/q 1;
 END;
 ATPG_CYCLE 3 =
 CONDITION /clk_ctrl/F3/q 1;
 END
END;

Sequence Clock Control
Sequence clock control enables you to define the internal clock output based on a sequence of
capture cycles using scan cell values. Sequence clock control is commonly used for counter-
based clock generation circuitry.
Figure 8-45 shows a simplified counter-based clock control example.

Figure 8-45. Simplified Counter-Based Clock Control Example

The combinations are shown in Figure 8-46

Test Pattern Generation
Support for Internal Clock Control

Tessent™ Scan and ATPG User’s Manual, v2022.4 423

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-46. Counter-Based Clock Control Capture Waveform

In this case, the values loaded into the OCC flops determine the number of consecutive clock
pulses. Three different sequences can be generated: one clock pulse, two clock pulses, and three
clock pulses.

This can be described with this ATPG_SEQUENCE statement:

// Define clock control for internal clock “/clk_ctrl/int_clk1”
CLOCK_CONTROL /clk_ctrl/int_clk1 =
 // Define a source clock if one exists
 SOURCE_CLOCK ref_clk;
 // Define specific local conditions
 ATPG_SEQUENCE 0 0 = // ‘0 0’ is a 1 clock pulse sequence
 CONDITION /clk_ctrl/FF_reg[1]/q 0;
 CONDITION /clk_ctrl/FF_reg[0]/q 1;
 END;
 ATPG_SEQUENCE 0 1 = // ‘0 1’ is a 2 clock pulse sequence
 CONDITION /clk_ctrl/FF_reg[1]/q 1;
 CONDITION /clk_ctrl/FF_reg[0]/q 0;
 END;
 ATPG_SEQUENCE 0 2 = // ‘0 2’ is a 3 clock pulse sequence
 CONDITION /clk_ctrl/FF_reg[1]/q 1;
 CONDITION /clk_ctrl/FF_reg[0]/q 1;
 END
END;

Capture Cycle Determination
The actual capture cycle is relative to how many times the source clock pulses between scan
loads as follows.

• If the Source Clock is Pulse-Always — The specified capture cycle and the actual
capture cycle are always the same because the source clock pulses in every ATPG cycle
as shown in Figure 8-47. No source clock or a pulse-in-capture clock are considered
equivalent to a pulse-always source clock.

Tessent™ Scan and ATPG User’s Manual, v2022.4424

Test Pattern Generation
Support for Internal Clock Control

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• If the Source Clock is Defined as Anything but Pulse-Always or Pulse-in-
Capture — The specified capture cycle is determined by the pulse of the source clock.
For example, an internal clock defined to pulse for cycle 0 may not pulse in cycle 0 but
in the cycle that corresponds to the source clock pulse as shown in Figure 8-47.

Figure 8-47. Clock Control Capture Cycles

Applying Internal Clock Control
Use this procedure to apply internal clock control for ATPG via the test procedure file.

Restrictions and Limitations
Clock control definitions and Named Capture Procedures (NCPs) cannot both be enabled during
test pattern generation. By default, clock control definitions are disabled when NCPs are
enabled.

Note
Test patterns created with NCPs and test patterns created with the clock control definitions
can be fault simulated simultaneously.

Procedure
1. Depending on your application, either:

• Create clock control definitions in your test procedure file.

OR

Test Pattern Generation
Support for Internal Clock Control

Tessent™ Scan and ATPG User’s Manual, v2022.4 425

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Run the stil2tessent tool on an SPF to generate a test procedure file with clock
control definitions. Refer to the stil2tessent description in the Tessent Shell
Reference Manual.

For more information, see “Clock Control Definition” in the Tessent Shell User’s
Manual.

2. Invoke Tessent Shell, set the context to “patterns -scan,” read in the netlist, and set up
the appropriate parameters for the ATPG run.

3. Load the test procedure file created in step 1 and set up for ATPG. For example:

SETUP> add_scan_groups group1 scan_g1.procfile

SETUP> add_scan_chains chain1 group1 indata2 testout2

SETUP> add_scan_chains chain2 group1 indata4 testout4

SETUP> add_clocks0 clk1

The add_scan_groups command loads the specified test procedure file from setup mode.

You can also use the read_procfile command to load the test procedure file from
analysis mode. For more information, see “Test Pattern Formatting and Timing” on
page 595.

4. Exit setup mode and run DRC. For example:

SETUP> set_system_mode analysis

5. Correct any DRC violations. For information on clock control definition DRCs, see
“Procedure Rules (P Rules)” in the Tessent Shell Reference Manual.

Clock control definitions are enabled by default unless there are NCPs enabled in the
test procedure file. If NCPs exist and are enabled, they override clock control
definitions.

6. Report the clock control configurations. For example:

ANALYSIS> report_clock_controls

CLOCK_CONTROL "/top/core/clk1 (3457)" =
 SOURCE_CLOCK "/pll_clk (4)";
 ATPG_CYCLE 0 =
 CONDITION "/ctl_dff2/ (56)" 1;
 END;
 ATPG_CYCLE 1 =
 CONDITION "/ctl_dff1/ (55)" 1;
 END;
END;

Values in parenthesis are tool-assigned gate ID numbers.

7. Generate test patterns. For example:

ANALYSIS> create_patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4426

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

8. Save test patterns. For example:

ANALYSIS> write_patterns ../generated/patterns_edt_p.stil -stil -replace

Generating Test Patterns for Different Fault Models
and Fault Grading

Use this procedure to create test patterns for path delay, transition, stuck-at, and bridge fault
models, and to fault grade the test patterns to improve fault coverage.
This procedure focuses on generating patterns for a flat design or the internal mode of a core in
a hierarchical design. It uses the Tessent Shell Database (TSDB) flow. See Tessent Shell
Workflows and TSDB Data Flow for the Tessent Shell Flow in the Tessent Shell User’s Manual
for more information.

Note
You can use N-detect for stuck-at and transition patterns. If you use N-detect, replace the
stuck-at or transition patterns described in the procedure with the N-detect patterns.

Prerequisites
• A path definition file must be available. See “The Path Definition File” on page 399.

• For bridge faults, refer to the requirements outlined in “Bridge and Open, and Cell
Neighborhood Defects UDFM Creation” on page 456.

• A netlist with scan inserted and DFT signals defined must be available in TSDB format.

Procedure
1. Create path delay test patterns for your critical paths and save them to the TSDB (lines 1

- 30).

2. Fault grade the path delay test patterns for transition fault coverage (lines 31 - 47).

3. Create additional transition test patterns for any remaining transition faults, and add
these test patterns to the original test pattern set (lines 48 - 60).

4. Fault grade the enlarged test pattern set for stuck-at fault coverage (lines 61 - 79).

5. Create additional stuck-at test patterns for any remaining stuck-at faults and add them to
the test pattern set (lines 80 - 92).

6. Fault grade the enlarged test pattern set for bridge fault coverage (not shown).

7. Create additional bridge test patterns for any remaining bridge faults and add these test
patterns to the test pattern set (not shown).

8. Fault grade and create patterns for any additional User Defined Fault Models (UDFM).

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Tessent™ Scan and ATPG User’s Manual, v2022.4 427

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples
This example script operates on an existing design and generates patterns for path delay,
transition, and stuck-at faults. It assumes the design is stored in the TSDB and you have already
read it into the tool. The script fault-grades patterns from each proceeding generation step
before generating more patterns.

1 // Specify the current mode using a different name
2 // than you used during scan insertion with the add_scan_mode command
3 set_current_mode top_off_int -type internal
4
5 // Extract the internal mode specified during scan insertion to run ATPG
6 import_scan_mode int_mode
7
8 // Put the tool in analysis mode
9 set_system_mode analysis
10
11 /---
12 //-----------------Create path delay patterns---------------------------
13 // Enable two functional pulses (launch and capture)
14 // Set up the fault model
15 set_fault_type path_delay
16
17 // Specify your list of paths to test for delay faults
18 read_fault_sites my_Path_File
19 report_fault_sites -all
20
21 // Add all delay faults for test generation
22 add_fault -all
23
24 // Generate path delay patterns
25 create_patterns
26
27 // Save path delay patterns
28 // Store TCD, flat_model, fault list and patDB format files
29 // in the TSDB directory
30 write_tsdb_data -replace
31
32 //--
33 //----------Grade for broadside transition fault coverage---------------
34 // Change the fault model (when you change the fault model,
35 // the internal pattern set database is emptied)
36 set_fault_type transition
37
38 // Add all transition faults on all clocks for test generation
39 add_faults -clock all
40
41 // Read the previously saved path delay patterns
42 read_patterns -mode top_off_int -fault_type path_delay
43
44 // Simulate all the path delay patterns for transition fault coverage
45 // Using default settings of simulate_patterns
46 simulate_patterns -source external -store_patterns none
47 report_statistics
48
49 //---
50 //---------Create add’l transition fault patterns----------------------

Tessent™ Scan and ATPG User’s Manual, v2022.4428

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

51 // Create transition patterns to detect the remaining transition
52 // faults the path delay patterns did not detect during simulation
53 create_patterns
54
55 // optimize the pattern set
56 order_patterns 3
57
58 // Save original path delay patterns and add’l transition patterns.
59 // Store the fault list and patDB format files in the TSDB directory
60 write_tsdb_data -replace
61
62 //---
63 //----------Grade for stuck-at fault coverage--------------------------
64 // Change the fault model
65 set_fault_type stuck
66 // Add all stuck-at faults for test generation
67 add_faults -all
68
69 // Read in the previously saved path delay patterns
70 read_patterns -mode top_off_int -fault_type path_delay
71
72 // Append the previously saved transition patterns
73 read_patterns -mode top_off_int -fault_type transition -append
74
75 // Simulate all the path delay and transition patterns
76 // for stuck-at fault coverage
77 // Using default settings of simulate_patterns
78 simulate_patterns -source external -store_patterns none
79 report_statistics
80
81 //---
82 //----------Create add’l (top-up) stuck-at patterns--------------------
83 create_patterns
84
85 // optimize the pattern set
86 order_patterns 3
87
88 // Save the additional stuck-at patterns.
89 // Store TCD, flat_model, fault list and patDB format files
90 // in the TSDB directory
91 write_tsdb_data -replace
92
93 // Repeat the process for bridging faults or your own UDFM.

Results
Running the example script on a processor core illustrates the results of the process. The path
delay tests for the three critical paths specified contributed 14.77% to the transition fault test
coverage. Fault simulation reported that the combined patterns for path delay and transition
achieved 96.34% test coverage for stuck-at faults. Those coverage numbers are highlighted in
red in the following excerpt from the tool’s log file after running the script.

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Tessent™ Scan and ATPG User’s Manual, v2022.4 429

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// command: set_current_mode top_off_int -type internal
// command: import_scan_mode int_mode
// Resetting design.
// Reading core description file ../tsdb_outdir/instru ... _edt_c1.tcd
// Reading core description file ../tsdb_outdir/instru ... _occ.tcd
// command: set_system_mode analysis
// Flattening process completed, cell instances=12372, gates=23014,
// PIs=123+2(pseudo ports), POs=300, CPU time=0.14 sec.
// ---
// Begin circuit learning analyses.
...
// ---
// 150 non-scan memory elements are identified.
// --
// 42 non-scan memory elements are identified as TIE-0. (D5)
// 17 non-scan memory elements are identified as TIE-1. (D5)
// 4 non-scan memory elements are identified as TIE-X. (D5)
// 1 non-scan memory element is identified as INIT-0. (D5)
// 55 non-scan memory elements are identified as INIT-X. (D5)
// 31 non-scan memory elements are identified as TLA. (D5)
// --
// 32 gates may have an observable X-state. (E5)
// Analysis recommends using "set_split_capture on". It is currently
turned off (default value).
// command: set_fault_type path_delay
// command: read_fault_sites my_Path_File.txt
// command: report_fault_sites -all
PATH "path0" =
 PIN /PROCESSOR_1/execution_unit_0/mdb_out_nxt_reg[5]/Q + ;
 PIN /PROCESSOR_1/mem_backbone_0/U200/A0 + ;
 PIN /PROCESSOR_1/mem_backbone_0/U200/Y + ;
 PIN /PROCESSOR_1/mem_backbone_0/U32/A + ;
 PIN /PROCESSOR_1/mem_backbone_0/U32/Y + ;
 PIN /GPIO_1/U41/A + ;
 PIN /GPIO_1/U41/Y + ;
 PIN /GPIO_1/U213/A1 + ;
 PIN /GPIO_1/U213/Y + ;
END ;
PATH "path1" =
 PIN /PROCESSOR_1/execution_unit_0/mdb_out_nxt_reg[0]/Q + ;
 PIN /PROCESSOR_1/mem_backbone_0/U195/A0 + ;
 PIN /PROCESSOR_1/mem_backbone_0/U195/Y + ;
 PIN /PROCESSOR_1/mem_backbone_0/U42/A + ;
 PIN /PROCESSOR_1/mem_backbone_0/U42/Y - ;
 PIN /PROCESSOR_1/mem_backbone_0/U43/A - ;
 PIN /PROCESSOR_1/mem_backbone_0/U43/Y + ;
 PIN /GPIO_1/U40/A + ;
 PIN /GPIO_1/U40/Y + ;
 PIN /GPIO_1/U160/A1 + ;
 PIN /GPIO_1/U160/Y + ;
END ;
PATH "path2" =
 PIN /PROCESSOR_1/execution_unit_0/mdb_out_nxt_reg[6]/Q + ;
 PIN /PROCESSOR_1/mem_backbone_0/U201/A0 + ;
 PIN /PROCESSOR_1/mem_backbone_0/U201/Y + ;
 PIN /PROCESSOR_1/mem_backbone_0/U44/A + ;
 PIN /PROCESSOR_1/mem_backbone_0/U44/Y - ;
 PIN /PROCESSOR_1/mem_backbone_0/U45/A - ;

Tessent™ Scan and ATPG User’s Manual, v2022.4430

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 PIN /PROCESSOR_1/mem_backbone_0/U45/Y + ;
 PIN /GPIO_1/U42/A + ;
 PIN /GPIO_1/U42/Y + ;
 PIN /GPIO_1/U224/A1 + ;
 PIN /GPIO_1/U224/Y + ;
 PIN /GPIO_1/p1dir_reg[6]/D + ;
END ;
// command: add_faults -all
// command: create_patterns
// | ---|
// Analyzing the design
//
// Current clock restriction setting:
// Domain_clock (edge interaction)
// Calling:
// set_clock_restriction domain_clock -any_interaction
// -compatible_clocks_between_loads on
//
// Current split capture setting: Off
// DRC requirement: Yes (C3, C4, etc.)
// Calling: set_split_capture_cycle on
//
// Current clock off simulation setting: Off (optimal)
//
// Current holdpi setting: Off
// Calling: set_pathdelay_holdpi on
//
// Current output masks setting: Off
// Calling: set_output_masks on
//
// Current abort limit setting: 30
// Calling: set_abort_limit 300 100
// ---
//
// Current sequential depth: 0
// Optimal sequential depth: 2
// Calling:
// set_pattern_type -sequential 2
//
// ---|
// --
// Simulation performed for #gates = 23014 #faults = 6
// system mode = analysis pattern source = internal patterns
// ---
// #patterns test #faults #faults # eff. # test process RE/AU/AAB/EAB
// simulated cvg in list detected patts patts CPU time
// --- ------ --- --- --- --- 0.19 sec 0/0/0/1
// 5 83.33% 1 5 5 5 0.20 sec
// Warning: Test for 1 collapsed fault (1 uncollapsed)
// could not be compressed (16.67%).
// Reducing the number of scan chains may resolve this problem.

 Statistics Report
 Path-delay Faults

Fault Classes #faults
 (total)
---------------------------- ---------------

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Tessent™ Scan and ATPG User’s Manual, v2022.4 431

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 FU (full) 6
--------------------------- ---------------
 UC (uncontrolled) 1 (16.67%)
 DS (det_simulation) 5 (83.33%)

Coverage

 test_coverage 83.33%
 fault_coverage 83.33%
 atpg_effectiveness 83.33%

#test_patterns 5
 #clock_sequential_patterns 5
#simulated_patterns 5
CPU_time (secs) 6.6

// command: write_tsdb_data -replace
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int.tcd.gz
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int.flat.gz
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int_path_delay.patdb
// Note: Number of chain test patterns saved = 23.
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int_path_delay.faults.gz
// command: set_fault_type transition
// Warning: Previous fault list has been deleted.
// Warning: Previous internal test pattern set has been deleted.
// command: add_faults -clock all
// 0 faults are identified in the domain of the clock: \
// /ijtag_tck
// 86 faults are identified in the domain of the clock: \
// /test_clock_u
// 78818 faults are identified in the domain of the clock: \
// /pc_rtl2_tessent_occ_ ... _cell_clock_out_mux_Y
// 1376 faults are identified in the domain of the clock: \
// /pc_rtl1_tessent_sib_sti_inst_ ... _cell_ltest_clock_mux_Y
// command: read_patterns -mode path_delay_int -fault_type path_delay
// Reading pattern file ../tsdb_outdir/ltc/pc_gate.ltc \
// /pc.atpg_mode_top_off_int/pc_top_off_int_path_delay.patdb
// command: simulate_patterns -source external -store_patterns none
// ---
// Simulation performed for #gates = 23014 #faults = 67251
// Run fault simulation and store all patterns.
// pattern source = 5 external patterns
// ---
// #patterns test #faults #faults # eff. # test process
// simulated coverage in list detected patterns patterns CPU time
// 5 14.75% 65769 1482 5 5 0.15 sec
// command: report_statistics
 Statistics Report
 Transition Faults
--
Fault Classes #faults #faults
 (total) (total relevant)
--------------------------------- -------------- ------------------
 FU (full) 80280 80181

Tessent™ Scan and ATPG User’s Manual, v2022.4432

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

------------------------------- -------------- ------------------
 UC (uncontrolled) 47553 (59.23%) same (59.31%)
 UO (unobserved) 18216 (22.69%) same (22.72%)
 DS (det_simulation) 1482 (1.85%) same (1.85%)
 DI (det_implication) 10288 (12.82%) same (12.83%)
 TI (tied) 242 (0.30%) same (0.30%)
 BL (blocked) 268 (0.33%) same (0.33%)
 AU (atpg_untestable) 2231 (2.78%) 2132 (2.66%)
--
Fault Sub-classes

AU (atpg_untestable)
EDT (edt_blocks) 36 (0.04%) deleted
PC* (pin_constraints) 1150 (1.43%) same (1.43%)
TC* (tied_cells) 657 (0.82%) same (0.82%)
MPO (mask_po) 5 (0.01%) same (0.01%)
SEQ (sequential_depth) 320 (0.40%) same (0.40%)
OCC (on_chip_clock_control) 63 (0.08%) deleted
*Use "report_statistics -detailed_analysis" for details.
--
Coverage

test_coverage 14.75% 14.77%
fault_coverage 14.66% 14.68%
atpg_effectiveness 18.08% 18.08%

#test_patterns 5
#clock_sequential_patterns 5
#simulated_patterns 5
CPU_time (secs) 7.4
--
// command: create_patterns
// Change pattern source to internal for the pattern generation.
// Warning: Previous external test pattern set has been deleted.
// | --
// Analyzing the design
//
// Current clock restriction setting:
// Domain_clock (any interaction)
//
// compatible_clocks_between_loads
// (optimal)
//
// Current holdpi setting: Off
// Calling: set_transition_holdpi on
//
// Current abort limit setting:
// 300(Combinational) 100(Sequential)
// | --
//
// Current sequential depth: 2 (optimal)
//
// | --
// ---
// Simulation performed for #gates = 23014 #faults = 65769
// system mode = analysis pattern source = internal patterns
// ---
// #patterns test #faults #faults # eff. # test process RE/AU/AAB/EAB

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Tessent™ Scan and ATPG User’s Manual, v2022.4 433

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// simulated cvg in list detected patts patts CPU time
// --- ------ --- --- --- --- 27.16 sec 0/2232/52/27
// 69 47.45% 39908 25860 64 69 27.55 sec
...
// | --
// |
// | Warning: The number of AU faults has increased by
// | 10.97% since the start of this ATPG run.
// |
// | --
...
// --- ------ --- --- --- --- 470.20 sec 174/4675/778/996
// 2034 91.91% 1774 1 1 2000 470.21 sec
// Warning: Tests for 786 collapsed faults (981 uncollapsed)
// could not be compressed (1.29%).
// Of those, 1 collapsed fault (0.00%) is untestable because
// the scan cells specified by their tests are clustered into
// few cycles. Reducing the number of scan chains may resolve
// this compression problem. Reordering of the scan cells can
// also resolve clustering effects.
// ---
// Performing redundant fault identification for 6449 faults
// ---
// deterministic ATPG invoked with abort limit = 300
// # red. # non-red # abort # remn. progress test process
// faults faults faults faults cvg CPU time
// 1 3301 4 3143 51.26% 91.91% 0.64 sec
// 4 4618 5 1822 71.75% 91.92% 1.27 sec
// 9 6086 7 347 94.62% 91.92% 2.16 sec
// 12 6428 9 0 100.00% 91.93% 2.29 sec

 Statistics Report
 Transition Faults
--
Fault Classes #faults #faults
 (total) (total relevant)
--------------------------------- -------------- ------------------
 FU (full) 80280 80182
 ------------------------------- -------------- ------------------
 UC (uncontrolled) 18 (0.02%) same (0.02%)
 UO (unobserved) 1733 (2.16%) same (2.16%)
 DS (det_simulation) 62859 (78.30%) same (78.40%)
 DI (det_implication) 10288 (12.82%) same (12.83%)
 PT (posdet_testable) 22 (0.03%) same (0.03%)
 TI (tied) 242 (0.30%) same (0.30%)
 BL (blocked) 268 (0.33%) same (0.33%)
 RE (redundant) 186 (0.23%) same (0.23%)
 AU (atpg_untestable) 4664 (5.81%) 4566 (5.69%)
--
Fault Sub-classes

 AU (atpg_untestable)
 EDT (edt_blocks) 36 (0.04%) deleted
 PC* (pin_constraints) 1142 (1.42%) same (1.42%)
 TC* (tied_cells) 657 (0.82%) same (0.82%)
 MPO (mask_po) 5 (0.01%) same (0.01%)
 SEQ (sequential_depth) 320 (0.40%) same (0.40%)
 OCC (on_chip_clock_control) 62 (0.08%) deleted

Tessent™ Scan and ATPG User’s Manual, v2022.4434

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 Unclassified 2442 (3.05%) same (3.05%)
 UC+UO
 AAB (atpg_abort) 757 (0.94%) same (0.94%)
 EAB (edt_abort) 994 (1.24%) same (1.24%)
 *Use "report_statistics -detailed_analysis" for details.
--
Coverage

 test_coverage 91.93% 92.04%
 fault_coverage 91.13% 91.24%
 atpg_effectiveness 97.81% 97.81%
--
#test_patterns 2000
 #clock_sequential_patterns 2000
#simulated_patterns 2034
CPU_time (secs) 480.3
--

// command: order_patterns 3
// Warning: Pattern classification is incompatible with this command
// and has been automatically turned off.
// ---
// Pass 1: Order pattern set
// ---
// #patterns test #faults #faults # eff. # test process
// simulated cvg in list detected patterns patterns CPU time
// 64 46.95% 37774 26858 64 64 0.39 sec
// 128 57.21% 29550 8175 64 128 0.54 sec
...
// 2000 91.91% 1785 28 16 1998 1.57 sec
// 2 ineffective patterns exist in test set.
// ---
// Pass 2: Order pattern set
// ---
// #patterns test #faults #faults # eff. # test process
// simulated cvg in list detected patterns patterns CPU time
// 64 51.05% 34452 30180 64 64 0.39 sec
...
// 2000 91.91% 1785 14 14 1939 1.47 sec
// 61 ineffective patterns exist in test set.
// ---
// Pass 3: Order pattern set
// ---
// #patterns test #faults #faults # eff. # test process
// simulated cvg in list detected patterns patterns CPU time
// 64 54.08% 32028 32604 64 64 0.42 sec
...
// 1920 91.88% 1804 79 64 1894 1.46 sec
// 1984 91.91% 1785 19 19 1913 1.47 sec
// 93 ineffective patterns exist in test set.
// Warning: Class of fault <"/PROCESSOR_1/execution_unit_0/U273/Y" \
// slow-to-rise> changed from PT to DS.
// command: write_tsdb_data -replace
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int.tcd.gz
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int.flat.gz
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Tessent™ Scan and ATPG User’s Manual, v2022.4 435

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// pc_top_off_int_transition.patdb
// Note: Number of chain test patterns saved = 23.
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int_transition.faults.gz
// command: set_fault_type stuck
// Warning: Previous fault list has been deleted.
// Warning: Previous internal test pattern set has been deleted.
// command: add_faults -all
// command: read_patterns -mode top_off_int -fault_type path_delay
// Reading pattern file ../tsdb_outdir/ltc/pc_gate.ltc/ \
// pc.atpg_mode_top_off_int/pc_top_off_int_path_delay.patdb
// command: read_patterns -mode top_off_int -fault_type transition -
append
// Reading pattern file ../tsdb_outdir/ltc/pc_gate.ltc/ \
// pc.atpg_mode_top_off_int/pc_top_off_int_transition.patdb
// command: simulate_patterns -source external -store_patterns none
// ---
// Simulation performed for #gates = 23014 #faults = 73254
// Run fault simulation and store all patterns. pattern source = 2007
external patterns
// ---
// #patterns test #faults #faults # eff. # test process
// simulated cvg in list detected patterns patterns CPU time
// 64 78.89% 13229 60025 64 0 2.84 sec
// 128 84.45% 8157 5072 64 0 2.93 sec
...
// 1984 92.37% 894 22 4 0 3.85 sec
// 2005 92.38% 889 5 2 0 3.86 sec
// 1940 faults were identified as detected by implication.
// command: report_statistics
 Statistics Report
 Stuck-at Faults
--
Fault Classes #faults #faults
 (total) (total relevant)
--------------------------------- -------------- ------------------
 FU (full) 94078 92319
 ------------------------------- -------------- ------------------
 UC (uncontrolled) 4 (0.00%) same (0.00%)
 UO (unobserved) 790 (0.84%) same (0.86%)
 DS (det_simulation) 72365 (76.92%) same (78.39%)
 DI (det_implication) 13959 (14.84%) same (15.12%)
 PT (posdet_testable) 5 (0.01%) same (0.01%)
 UU (unused) 1578 (1.68%) same (1.71%)
 TI (tied) 755 (0.80%) same (0.82%)
 BL (blocked) 224 (0.24%) same (0.24%)
 RE (redundant) 160 (0.17%) same (0.17%)
 AU (atpg_untestable) 4238 (4.50%) 2479 (2.69%)
--
Fault Sub-classes

 AU (atpg_untestable)
 EDT (edt_blocks) 229 (0.24%) deleted
 PC* (pin_constraints) 1330 (1.41%) same (1.44%)
 TC* (tied_cells) 863 (0.92%) same (0.93%)
 MPO (mask_po) 10 (0.01%) same (0.01%)
 SEQ (sequential_depth) 244 (0.26%) same (0.26%)
 OCC (on_chip_clock_control) 719 (0.76%) deleted

Tessent™ Scan and ATPG User’s Manual, v2022.4436

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 IJTAG (ijtag) 811 (0.86%) deleted
 Unclassified 32 (0.03%) same (0.03%)
 *Use "report_statistics -detailed_analysis" for details.
--
Coverage

 test_coverage 94.49% 96.34%
 fault_coverage 91.78% 93.51%
 atpg_effectiveness 99.15% 99.15%
--
#test_patterns 0
#simulated_patterns 2005
CPU_time (secs) 493.1
--

// command: create_patterns
// Change pattern source to internal for the pattern generation.
// Warning: Previous external test pattern set has been deleted.
// | --
// Analyzing the design
//
// Current clock restriction setting:
// Domain_clock (any interaction)
// compatible_clocks_between_loads
// Calling: set_clock_restriction domain_clock -edge_interaction
//
// Current abort limit setting:
// 300(Combinational) 100(Sequential)
// --
//
// Current sequential depth: 2 (optimal)
//
// | --
// ---
// Simulation performed for #gates = 23014 #faults = 794
// system mode = analysis pattern source = internal patterns
// ---
// #patterns test #faults #faults # eff. # test process RE/AU/AAB/EAB
// simulated cvg in list detected patts patts CPU time
// --- ------ --- --- --- --- 6.33 sec 170/4297/1/27
// 2069 94.87% 392 336 56 56 7.31 sec
...
// 2112 95.02% 219 129 41 97 7.57 sec
// 42 faults were identified as detected by implication.
// Warning: Tests for 38 collapsed faults (79 uncollapsed) \
// could not be compressed (0.06%).
// Reducing the number of scan chains may resolve this problem.
// ---
// Performing redundant fault identification for 2105 faults
// ---
// deterministic ATPG invoked with abort limit = 300
// # red. # non-red # abort # remn. progress test process
// faults faults faults faults cvg CPU time
// 37 2065 3 0 100.00% 95.26% 0.22 sec

 Statistics Report
 Stuck-at Faults
--

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Tessent™ Scan and ATPG User’s Manual, v2022.4 437

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fault Classes #faults #faults
 (total) (total relevant)
--------------------------------- -------------- ------------------
 FU (full) 94078 92366
 ------------------------------- -------------- ------------------
 UO (unobserved) 83 (0.09%) same (0.09%)
 DS (det_simulation) 72966 (77.56%) same (79.00%)
 DI (det_implication) 14001 (14.88%) same (15.16%)
 PU (posdet_untestable) 3 (0.00%) same (0.00%)
 UU (unused) 1578 (1.68%) same (1.71%)
 TI (tied) 755 (0.80%) same (0.82%)
 BL (blocked) 224 (0.24%) same (0.24%)
 RE (redundant) 221 (0.23%) same (0.24%)
 AU (atpg_untestable) 4247 (4.51%) 2535 (2.74%)
--
Fault Sub-classes

 AU (atpg_untestable)
 EDT (edt_blocks) 189 (0.20%) deleted
 PC* (pin_constraints) 1318 (1.40%) same (1.43%)
 TC* (tied_cells) 855 (0.91%) same (0.93%)
 MPO (mask_po) 10 (0.01%) same (0.01%)
 SEQ (sequential_depth) 247 (0.26%) same (0.27%)
 OCC (on_chip_clock_control) 712 (0.76%) deleted
 IJTAG (ijtag) 811 (0.86%) deleted
 Unclassified 108 (0.11%) same (0.12%)
 UC+UO
 AAB (atpg_abort) 4 (0.00%) same (0.00%)
 EAB (edt_abort) 79 (0.08%) same (0.09%)
 *Use "report_statistics -detailed_analysis" for details.
--
Coverage

 test_coverage 95.26% 97.08%
 fault_coverage 92.44% 94.16%
 atpg_effectiveness 99.91% 99.91%
--
#test_patterns 164
#simulated_patterns 2184
CPU_time (secs) 501.2
--

// command: order_patterns 3
// ---
// Pass 1: Order pattern set
// ---
// #patterns test #faults #faults # eff. # test process
// simulated cvg in list detected patterns patterns CPU time
// 64 75.58% 18070 54982 64 64 0.83 sec
// 128 79.50% 14487 3583 64 128 0.89 sec
// 164 80.47% 13600 887 36 164 0.91 sec
...
// ---
// Pass 3: Order pattern set// ---

// #patterns test #faults #faults # eff. # test process
// simulated coverage in list detected patterns patterns CPU time
// 64 77.43% 16374 56678 64 64 0.88 sec

Tessent™ Scan and ATPG User’s Manual, v2022.4438

Test Pattern Generation
Generating Test Patterns for Different Fault Models and Fault Grading

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// 128 80.25% 13795 2579 64 128 0.92 sec
// 164 80.47% 13600 195 36 164 0.94 sec
// command: write_tsdb_data -replace
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int.tcd.gz
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int.flat.gz \
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int_stuck.patdb
// Note: Number of chain test patterns saved = 23.
// Writing ../tsdb_outdir/ltc/pc_gate.ltc/pc.atpg_mode_top_off_int/ \
// pc_top_off_int_stuck.faults.gz

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 439

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing-Aware ATPG
Timing-aware ATPG reads timing information from a Standard Delay Format (SDF) file and
tries to generate patterns that detect transition faults using the longest detection path.
Slack Calculation . 439
Synopsys Design Constraint Derived Clock Timing. 443
Delay Test Coverage Calculation . 444
Timing-Aware ATPG Versus Transition ATPG . 444
Timing-Aware ATPG Limitations . 445
Inaccuracies in Timing Calculations . 446
Running Timing-Aware ATPG . 446
Troubleshooting Topics . 450

Slack Calculation
Slack is equal to the margin between the path delay and the clock period. Slack within Small
Delay Fault Model represents the smallest delay defect that can be detected.
Figure 8-48 illustrates slack calculations. Assume there are three paths that can detect a fault.
The paths have a 8.5 ns, 7.5 ns, and 4.5 ns delay, respectively. The clock period is 10 ns. The
slacks for the paths are calculated as 1.5 ns, 2.5 ns, and 0.5 ns, respectively. The longest path
launches from the leading edge and captures at the leading edge of the next cycle, giving it a 1.5
ns slack. Therefore the smallest delay defect that can be detected through this path is 1.5 ns. The
shortest path launches from the leading edge and captures at the falling edge of the same cycle,
giving it a 0.5 ns slack. To detect the small delay at the fault site, the test pattern should be
generated to detect the fault through this path because it has the smallest slack.

Figure 8-48. Timing Slack

Tessent™ Scan and ATPG User’s Manual, v2022.4440

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Path Delay Calculation
When clock skew is present, it impacts arrival time and propagation time. When calculating
path delay, Tessent tools use the following algorithm to ensure that clock skew is taken into
account:

• Calculate the arrival time for every gate in the design:

The initial value of the arrival time at a sequential element is equal to the maximal clock
delay among all its clock ports. This means that the arrival time at any gate is relative to
when the clock input port changes value, instead of when the driving flop or flops
change value.

• Calculate the propagation time:

o For the gate immediately driving the clock port of the sequential element (clock
cone), the initial propagation delay is set to zero.

o For the gate immediately driving the data port of the sequential element (data path),
the initial propagation delay is set to the negative of its clock delay (instead of zero).

These calculations employ the following equations:

<path_delay> = <arrival_time> + <propagation_time>

<slack> = <clock_period> - <path_delay>

Consider the following example circuit with a clock period of eight:

Figure 8-49. Example Circuit

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 441

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Using the previous algorithm, the values for this algorithm are calculated as follows:

Figure 8-50. Example Circuit With Calculated Values

Using these values, you can find that the critical path is dff2 → g1 → g3.

Slack Calculation When Timing Exceptions Are Present
False paths and multicycle paths affect how slack and path delay are calculated.

False Paths
Static arrival time and static propagation time should exclude delay from false paths. This
calculation is performed after static false path analysis.

The tool calculates two static arrival times for a fault site, f:

• Tr(f) — Static longest delay from any launch points to f.

• Trx(f) — Static longest delay from any launch points to f excluding paths in the false
path cones.

Similarly, the tool calculates two static propagation times for a fault site, f:

• Tp(f) — Static longest delay from f to any capture points.

• Tpx(f) — Static longest delay from f to any capture points excluding delay in the false
path cones.

Tessent™ Scan and ATPG User’s Manual, v2022.4442

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool then uses these four values to calculate the static path delay through fault site f, Td(f),
using the following conditions:

• If f is inside the false path intersection cone and both Trx(f) = 0 and Tpx(f) = 0:

Td(f) = 0

• If f is inside the false path intersection cone and Trx(f) = 0 and Tpx(f) ≠ 0:

Td(f) = Tr(f) + Tpx(f)

• If f is inside the false path intersection cone and both Trx(f) ≠ 0 and Tpx(f) = 0:

Td(f) = Trx(f) + Tp(f)

• If f is inside the false path intersection cone and both Trx(f) ≠ 0 and Tpx(f) ≠ 0:

Td(f) = max{Trx(f) + Tp(f), Tr(f) + Tpx(f)}

• If f is inside the false path effect cone or at a false path to-point:

Td(f) = Trx(f) + Tpx(f)

• If f is outside the false path cone:

Td(f) = Tr(f) + Tp(f)

Consider the following example:

Figure 8-51. Slack Calculation With False Path

To keep calculations simple, this example displays only net delays (in green above the nets).
The tool uses all IOPATH and INTERCONNECT delays for full calculations.

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 443

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When calculating slack, the tool first analyzes the false path cone and identifies the false path
“from” and “to” points, as well as the intersection cone and effect cone. Then it calculates static
arrival time from all outputs of the state elements towards the fanout gates, calculating both Tr
and Trx, by accumulating the delay values from fan-in gates. Tr is calculated by considering the
arrival time of fan-in gate fi. If fi is outside the false path cone, Trx(fi) is used to calculate Trx(f);
otherwise, Tr(fi) is used. For example, Tr(G2) is 8, using the transition from F2, and Trx(G2) is
7, using the transition from F1.

Propagation times are computed in reverse order from the fan-in gates of each element, toward
the fan-in cone. For example, Tp(G2) is 6, using the transition to F5, and Tpx(G2) is 3, using the
transition to F4.

Once the arrival and propagation times are computed, the tool can derive the static path delay
through each fault site using the previous equations. For example, G2 is in the false path
intersection cone, so the tool calculates Td(G2), the static path delay through G2, using the
following formula:

Td(G2) = max{Trx(G2) + Tp(G2), Tr(G2) + Tpx(G2)} = max{7+6, 8+3} = 13

Multicycle Paths
The slack time at a gate g is calculated with the following formula:

slack_time1(g) = clock_period - Td(g)

where Td(g) is the static path delay.

For an n-cycle path with n > 1, the tool uses the number of clock periods to calculate the static
slack:

slack_timen(g) = (n-1) × clock_period + slack_time1(g)

If a gate is located in more than one multicycle path where the paths have different cycle counts,
the tool uses the largest cycle count to compute the slack.

Synopsys Design Constraint Derived Clock Timing
Timing-aware ATPG uses the divided-by ratio information from the Synopsys Design
Constraint (SDC) derived clocks and adjusts them according to the definitions in the SDC.
The clock period shown in Figure 8-48 is 20 ns if it is a divided-by-two clock.

Tessent™ Scan and ATPG User’s Manual, v2022.4444

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Delay Test Coverage Calculation
ATPG calculates a metric called Delay Test Coverage to determine the quality of the test
patterns. The delay test coverage is automatically included in the ATPG statistics report when
timing-aware ATPG is enabled.
The weight given to a detected fault is modified based upon the slack. It gives a greater weight
to a path whose slack is closest to the minimum static slack. This is the formula for delay test
coverage (DTC):

DTC = (max_static_interval - dynamic_slack) / (max_static_interval - static_slack) * 100%

• max_static_interval — This is defined as the maximum time interval between the launch
edge and capture edge among all the physical paths passing through the fault site. For
example, in Figure 8-48, the time interval for R1 and R2 is the full clock period, while it
is one-half of the clock period for R3. The maximum static time interval through the
fault site, in this case, is one full clock period.

• dynamic_slack — This is defined as the difference between the delay of the path used to
detect the fault by the pattern and the interval between the launch edge and the capture
edge associated with the path.

• static_slack — This is minimum slack among all the physical paths through the fault
site.

Using the example paths from Figure 8-48 the minimum slack is 0.5 ns. These are the delay test
coverages for detecting the fault at each path:

• R1: ((10.0 ns - 1.5 ns) / (10.0 ns - 0.5 ns))= 89.47%

• R2: ((10.0 ns - 2.5 ns) / (10.0 ns - 0.5 ns))= 78.95%

• R3: ((10.0 ns - 0.5 ns) / (10.0 ns - 0.5 ns)) = 100%

Undetected faults have a delay test coverage of 0 percent. DI faults (Detected by Implication)
have a delay test coverage of 100 percent. Chip-level delay test coverage is calculated by
averaging the delay test coverage values for all faults.

Timing-Aware ATPG Versus Transition ATPG
The following data was gathered from the STARC03 testcase, which STARC and Siemens
EDA used to evaluate timing-aware ATPG.
Table 8-4 compares transition fault ATPG and timing-aware ATPG. The testcase has the
following characteristics:

• Design Size: 2.4M sim_gate

• Number of FFs: 69,153

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 445

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• CPU: 2.2Ghz

• 315 sec to read SDF file that has 10,674,239 lines

For more information about setting run parameters, see the set_atpg_timing command.

Timing-Aware ATPG Limitations
There are many limitations involved in performing timing-aware ATPG.
The following is a list of timing-aware ATPG limitations:

• For limitations regarding the SDF file, see the read_sdf command.

• Launch-off shift is not supported.

• The ATPG run time for timing-aware is about eight times slower than the normal
transition fault ATPG. For more information, see “Timing-Aware ATPG Versus
Transition ATPG”. Targeting critical faults may help.

• A large combinational loop may slow down the analysis to calculate the static slack. It
also makes the actual delay analysis less accurate.

• The transition test coverage on timing-aware ATPG may be lower than the normal
transition fault ATPG. Because timing-aware ATPG tries to detect a fault with a longer
path, it is more likely to hit the abort limit. You may use “-coverage_effort high” switch

Table 8-4. Testcase 2 Data
Run Parameters Pattern

Count
Transition
TC

Delay
TC

CPU Time Memory

Before ATPG 0 0.00% 0.00% 0 2.1G
Transition ATPG
(1 detection)

3,668 91.23% 66.13% 4,180 sec 1.0G

Transition ATPG
(7 detections)

7,979 91.27% 68.07% 11,987 sec 1.0G

Timing-Aware ATPG

(SMFD1= 100%)

1. Slack Margin for Fault Dropping = (Ta-Tms)*100/Ta.

3,508 91.19% 67.39% 17,373 sec 2.2G

Timing-Aware ATPG
(SMFD = 50%)

8,642 91.26% 76.26% 129,735 sec 2.2G

Timing-Aware ATPG
(SMFD = 0%)

24,493 91.28% 77.71% 178,673 sec 2.2G

Tessent™ Scan and ATPG User’s Manual, v2022.4446

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

with the create_patterns command to improve transition test coverage. Be aware that
using this option increases the run time.

• Timing information in the Named Capture Procedure is not included in static slack
calculations.

• When saving check point, the SDF database is not stored. You must reload the SDF
data, using the read_sdf command, when using a flattened model.

• Static Compression (compress_patterns command) and pattern ordering (order_patterns
command) cannot be used when -Slack_margin_for_fault_dropping is specified.

• The SDF file does not impact the good machine simulation value. The SDF file is used
mainly to guide timing-aware ATPG to detect a fault along a long path as well as for
calculating the delay test coverage. That is, the tool does not extract (or infer) false and
multicycle paths from the delays in the SDF file. You have to provide that information
with an SDC file or add_false_paths command.

Inaccuracies in Timing Calculations
When performing timing-aware ATPG based on SDF, several factors can result in inaccurate
timing calculations.
Those factors are as follows:

• Device delay is not supported.

• Conditional delay is not supported. For a given IOPATH or INTERCONNECT pin pair,
the tool uses the maximal number among all conditional delays defined for this pair
when calculating static and actual delays.

• Negative delay is supported. However, if path delay is a negative number, the tool forces
the delay value to 0 when calculating delay coverage, path delay, and slack, and so on.

Running Timing-Aware ATPG
Use this procedure to create Timing-Aware test patterns with the ATPG tool.

Prerequisites
• Because timing-aware ATPG is built on transition ATPG technology, you must set up

for Transition ATPG first before starting this procedure. See “Transition Delay Test Set
Creation.”

• SDF file from static timing analysis.

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 447

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Load the timing information from an SDF file using the read_sdf command. For

example:

ANALYSIS> read_sdf top_worst.sdf

If you encounter problems reading the SDF file, see “Errors and Warnings While
Reading SDF Files” on page 450.

2. Define clock information using the set_atpg_timing command. You must define the
clock information for all clocks in the design, even for those not used for ATPG (not
used in a named capture procedure). For example:

ANALYSIS> set_atpg_timing -clock clk_in 36000 18000 18000

ANALYSIS> set_atpg_timing -clock default 36000 18000 18000

3. Enable timing-aware ATPG using the set_atpg_timing command. For example:

ANALYSIS> set_atpg_timing on -slack_margin_for_fault_dropping 50%

If you specify a slack margin for fault dropping, the fault simulation keeps faults for
pattern generation until the threshold is met. During normal transition fault simulation,
faults are dropped as soon as they are detected.

4. Select timing-critical faults using the set_atpg_timing command. For example:

ANALYSIS> set_atpg_timing -timing_critical 90%

5. Run ATPG. For example:

ANALYSIS> create_patterns -coverage_effort high

6. Report delay_fault test coverage using the report_statistics command. For example:

ANALYSIS> report_statistics

Examples
Figure 8-52 shows a testcase where there are 17 scan flip-flops and 10 combinational gates.
Each gate has a 1 ns delay and there is no delay on the scan flip-flops. A slow-to-rise fault is
injected in G5/Y. The test period is 12 ns. The last scan flip-flop (U17) has an OX cell
constraint so that it cannot be used as an observation point.

The longest path starts at U1, moving through G1 through G10 and ending at U17. The total
path delay is 10 ns. Because U17 cannot be used as an observation point, timing-aware ATPG
uses the path starting at U1, moving through G1 through G9 and ending at U16. The total path
delay is 9 ns.

Therefore static minimum slack is 12 ns - 10 ns = 2 ns, and the best actual slack is 12 ns - 9 ns =
3 ns.

Tessent™ Scan and ATPG User’s Manual, v2022.4448

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-52. Testcase 1 Logic

Figure 8-53 shows the dofile used for this example. As you can see in the comments, the dofile
goes through the procedure outlined in “Running Timing-Aware ATPG.”

Figure 8-53. Timing-Aware ATPG Example Dofile

Figure 8-54 shows the fault statistics report. Timing-aware ATPG used the longest possible
path, which is 9 ns. Static longest path is 10 ns. The delay test coverage is 9 ns / 10 ns = 90%.

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 449

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-54. Timing-Aware ATPG Example Reports

Tessent™ Scan and ATPG User’s Manual, v2022.4450

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Troubleshooting Topics
The following topics describe common issues related to timing-aware ATPG.
Run Time Reduction for Timing-Aware ATPG . 450
Errors and Warnings While Reading SDF Files. 450
Warnings During ATPG . 453
Actual Slack Smaller Than Tms. 453

Run Time Reduction for Timing-Aware ATPG
Timing-aware ATPG takes much longer than the regular transition ATPG. You can make it
faster by targeting for timing-critical faults only.
For more information about why timing-aware ATPG is slower, refer to Table 8-4 on page 445.

You can use the set_atpg_timing command to make a fault list that includes faults with less
slack time than you specified. The fault is put in the fault list if its (Longest delay)/(Test time) is
more than your specified threshold.

For example, assume there are three faults and their longest paths are 9.5 ns, 7.5 ns and 6.0 ns
respectively and the test time is 10 ns. The (Longest delay)/(Test time) is calculated 95 percent,
75 percent, and 60 percent respectively. If you set the threshold to 80 percent, only the first fault
is included. If you set it to 70 percent, the first and second faults are included.

The following series of commands inject only timing-critical faults with 70 percent or more.

ANALYSIS> add_faults -all

ANALYSIS> set_atpg_timing -timing_critical 70%

ANALYSIS> write_faults fault_list1 -timing_critical -replace

ANALYSIS> delete_faults -all

ANALYSIS> read_faults fault_list1

Errors and Warnings While Reading SDF Files
There are many errors and warnings that can occur when reading SDF files.
The most common are as follows:

• Error: Near line N — The destination pin A/B/C is mapped to gate output

For an interconnect delay, the destination pin has to be a gate input pin. If a gate output
pin is used, the tool issues the error message and ignores the delay.

• Error: Near line N — The pin A/B/C for conditional delay is mapped to gate output.

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 451

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The signals used for a condition on a conditional delay must all be gate inputs. If a gate
output is used for the condition, the tool issues the error message and ignores the delay.

For example, there is a component that has two outputs “O1” and “O2”. If a conditional
delay on “O1” is defined by using “O2”, it produces an error.

• Error: Near line N — Unable to map destination SDF pin.

Ignore INTERCONNECT delay from pin A/B/C to pin D/E/F.

The destination pin “D/E/F” does not have a receiver. It is likely to be a floating net,
where no delay can be added.

• Error: Near line N — Unable to map source SDF pin.

Ignore INTERCONNECT delay from pin A/B/C to pin D/E/F.

The source pin “A/B/C” does not have a driver. It is likely to be a floating net, where no
delay can be added.

• Error: Near line N — Unable to map flatten hierarchical source pin A/B/C derived from
D/E/F.

“D/E/F” is a source pin defined in SDF (either interconnect delay or IO Path delay), and
“A/B/C” is a flattened (cell library based) pin corresponding to “D/E/F,” and there is no
driver found.

• Error: Near line N — Unable to map flatten hierarchical destination pin A/B/C derived
from D/E/F.

“D/E/F” is a destination pin defined in SDF (either internet delay or IO Path delay), and
“A/B/C” is a flattened (cell library based) pin corresponding to “D/E/F,” and there is no
receiver found.

• Error: Near line N — There is no net path from pin A/B/C to pin D/E/F (fanin=1).
Ignore current net delay.

There is no connection between “A/B/C” (source) and “D/E/F” (destination). The
“fanin=1” means the first input of the gate.

• Warning: Near line N — Negative delay value is declared.

Negative delay is stored in the timing database and the negative value can be seen as the
minimum delay, but the negative number is not used for delay calculation. It is treated as
a zero.

• Error: Near line N — Flatten hierarchical destination pin "A" is not included in instance
“B”.

In this case, “B” is an instance name where both the source and destination pins are
located (for example, an SDF file was loaded with “-instance B” switch). But a flattened

Tessent™ Scan and ATPG User’s Manual, v2022.4452

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

hierarchical destination pin (cell based library) “A” traced from the destination pin is
outside of the instance “B.”

• Error: Near line N — Flatten hierarchical source pin “A” is not included in instance “B”.

In this case, “B” is an instance name where both the source and destination pins are
located (for example, an SDF file was loaded with “-instance B” switch). But a flattened
hierarchical source pin (cell based library) “A” traced from the source pin is outside of
the instance “B.”

• Error: Near line N — Unable to add IOPATH delay from pin A/B/C to pin D/E/F even
when the pins are treated as hierarchical pin. Ignore IOPATH delay.

There was an error when mapping the hierarchical source “A/B/C”, destination “D/E/F”,
or both to their flattened hierarchical pins. The delay is ignored. Most likely, one or both
hierarchical pins are floating.

• Error: Near line N — Unable to add INTERCONNECT delay from pin "A/B/C" to pin
"D/E/F" even when the pins are treated as hierarchical pin. Ignore INTERCONNECT
delay.

There was an error when mapping the hierarchical source “A/B/C”, destination “D/E/F”.
or both to their flattened hierarchical pins. The delay is ignored. Most likely, one or both
hierarchical pins are floating.

• Error: Near line N — The conditional delay expression is not supported. Ignore the
delay.

The delay was ignored because the condition was too complex.

• Error: Near line N — Delay from pin A/B/C (fanin=1) to pin D/E/F has been defined
before. Ignore current IOPATH delay.

Two or more IOPATH delays defined from SDF pin names map to the same flattened
gate pin. The tool keeps the value for the first definition and ignores all the subsequent
duplicates. This error with IOPATH delay is likely an SDF problem. For interconnect
delay, the tool cannot handle multiple definitions. For example, the Verilog path is: /u1/
Z -> net1 -> net2 -> /u2/A. If you define the first interconnect delay /u1/Z -> net1, the
second net1 -> net2, and the third net2 -> /u2/A, then all the three interconnect delays
are mapped to /u1/Z -> /u2/A in the gate level. This causes an error.

• Error: Near line N — There is no combinational path from pin A/B/C (fanin=3) to pin
D/E/F. Ignore current IOPATH delay.

The tool can only handle the IOPATH delay through combinational gates. Delays
passing through state elements cannot be used.

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 453

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Warnings During ATPG
It is possible to generate a warning during ATPG that is due to the conflicting setting for
holding PI and masking PO between ATPG and static timing analysis.
In this case, you may see the following message when you start ATPG:

Warning: Inconsistent holding PI attribute is set between test generation
and static timing analysis.
Test generation with capture procedures holds PI, but static timing
analysis allows PI change.
The inconsistent settings will impact the timing metrics reported by the
tool.

For ATPG, you can hold PI and mask PO as follows:

• Including the “add_input_constraints -hold” and set_output_masks commands in your
dofile.

• Including the “force_pi” and “measure_po” statements in a named capture procedure.

For static timing analysis, holding PI and masking PO can be set using the “-hold_pi” and
“-mask_po” switches for the set_atpg_timing command.

The static timing database is created once, before running ATPG, with the information of
holding PI, masking PO, or both, whereas the setting can change for ATPG especially when
using NCP (for example, one NCP has force_pi and the other does not).

Actual Slack Smaller Than Tms
This condition occurs when a one-shot circuit is used in the data path. In static analysis, it is
identified as a “static-inactive” (STAT) path but it could be used as a fault detection path.
For more information, refer to the circuit in Figure 8-55.

Tessent™ Scan and ATPG User’s Manual, v2022.4454

Test Pattern Generation
Timing-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-55. Glitch Detection Case

A slow-to-rise fault is injected at the input of the inverter (U1). There are two paths to detect it.
One is FF2 through U1 and U2 and the other is FF3 through U1 and U3. In the second path, the
fault is detected as a glitch detection as shown in the waveform.

But in the static analysis (when calculating Tms), this path is blocked because U3/out is
identified as a Tie-0 gate by DRC. Therefore the maximum static delay is 2 ns (first path). If the
test cycle is 10 ns, the Tms is 8 ns. And if ATPG uses the second path to detect the fault, the
actual slack is 7 ns (10-1-2).

The tool generates the following message during DRC if DRC identifies a Tie-AND or Tie-OR.

// Learned tied gates: #TIED_ANDs=1 #TIED_ORs=1

Following are reports for the example shown in Figure 8-55.

Test Pattern Generation
Timing-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 455

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// command: report_faults -delay
// type code pin_pathname
// static_slack actual_min_slack
// ---- ---- ------------ ------------ ----------------
 0 DS /U1/A
// 8.0000 7.0000
// command: set_gate_report delay actual_path 0
// command: report_gates /U1/A
// /U1 inv01
// A I (0-1) (3.0000) /sff1/Q
// Y O (1-0) (3.0000) /U2/A /U3/A1
// command: report_gates /U3/A1
// /U3 and02
// A0 I (0-1) (3.0000) /sff1/Q
// A1 I (1-0) (3.0000) /U1/Y
// Y O (0-0) (-) /sff3/D

// command: set_gate_report delay static_path
// command: report_gates /U3
// /U3 and02
// A0 I (2.0000, 2.0000)/(0.0000, 0.0000) /sff1/Q
// A1 I (2.0000, 2.0000)/(2.0000, 2.0000) /U1/Y
// Y O (STAT) /sff3/D

Tessent™ Scan and ATPG User’s Manual, v2022.4456

Test Pattern Generation
Bridge and Open, and Cell Neighborhood Defects UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Bridge and Open, and Cell Neighborhood
Defects UDFM Creation

You use Tessent Shell to extract potential interconnect bridge and open defects. Tessent Shell in
conjunction with Tessent CellModelGen can extract cell neighborhood defects. The tools
specify the extracted defects in the UDFM format. ATPG then can generate patterns to test for
these critical area-based bridge and open, and cell neighborhood UDFMs.
This process uses a Layout Database (LDB), which is a prerequisite to the flow. For complete
information and procedures for creating a LDB, see “Layout Database” in the Tessent
Diagnosis User’s Manual.

Interconnect Bridge and Open Extraction and UDFM Creation 457
Cell Neighborhood Defects UDFM Creation. 471

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 457

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Interconnect Bridge and Open Extraction and
UDFM Creation

Extracting defects from a chip layout (GDS) file is a complex task and requires in-depth
knowledge of layout extraction tools such as Calibre®.
The Tessent layout extraction feature does not require specific layout extraction knowledge and
enables the extraction of critical area-based bridges and opens. Input to the Tessent fault site
extraction tool is not a chip layout (GDS) file but the Tessent Layout Database (LDB), which is
created for the layout-based diagnosis. An overview is shown in Figure 8-56.

Figure 8-56. Tessent Bridge and Open Extraction Flow

From the LDB, interconnect bridges and opens can be extracted, and for each bridge and open
defect its corresponding critical area is calculated. Figure 15-8 on page 674 shows the critical
area calculation for bridges for a certain particle size and its location between two adjacent nets.

The tool writes the considered bridges and opens into UDFM files that you use as input to
ATPG for the critical area-based bridge and open pattern generation. See “About User-Defined
Fault Modeling” on page 59.

In addition to the UDFM files for ATPG purpose, also you can instruct the tool to create a
marker file to back-annotate (highlight) defects of interest within the chip layout using the
Calibre layout viewer—see “Viewing Extracted Bridge and Open Defects” on page 458.

Viewing Extracted Bridge and Open Defects . 458
Bridge and Open Extraction Output Files . 462
Critical Area-Based Bridge Pattern Generation. 466
Critical Area-Based Open Pattern Generation. 469

Tessent™ Scan and ATPG User’s Manual, v2022.4458

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Viewing Extracted Bridge and Open Defects
You can use the GDS viewer of Calibre to get a detailed view of the extracted interconnect
defects within the layout of the design.
Using the “extract_fault_sites -marker_file” command and switch, you can use this marker file
with the GDS viewer in Calibre to get a detailed view of the extracted interconnect defects
within the layout of the design. For this, you need, in addition to the generated marker file, the
<design>.gds file and optionally the layer properties file.

To open the design layout with the Calibre GDS viewer, issue the following on the command
line:

calibredrv -m <design>.gds -rve <filename>.marker [-l <layer.info>]

This opens Calibre showing the layout of your design, and the Calibre RVE window containing
the list of all extracted interconnect defects. If you have no layer properties file for your design,
you can omit the -l option and start Calibre by issuing the following on the command line:

calibredrv -m <design>.gds -rve <filename>.marker

The design layout opens containing all layers showing the Calibre defined properties.

A zoomed-in view of an example design with the RVE window is shown in Figure 8-57.

Figure 8-57. GDS View With Calibre RVE

In the RVE window on the right side of Figure 8-57, you see the list of all extracted interconnect
defects. You can change the view of the result window to not only see the Calibre internal ID(s)
of the selected defect objects (in this example the bridge areas of bridge B1, numbered from 1 to
6), but also detailed information on the selected defects. For this, click on the red circled button
shown in Figure 8-57, then select “Details”, see the blue shape.

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 459

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When having selected the details view, the RVE window displays detailed information on the
selected defect as shown in Figure 8-58.

Figure 8-58. Calibre RVE View for Bridges

Looking for example at bridge fault B1, you see that the bridge consists of 6 bridge areas,
numbered in the “ID” column from 1 to 6. The column “Coordinates” contains the X/Y
coordinates of each of the four vertices of each bridge area. These are not important because
there is also an “X” and a “Y” column. The column “CA[ts]” displays the calculated critical
area per bridge area in technology squares (ts). The column “Dist[tl]” contains the distance
between the bridging objects per bridge area in technology length (tl). The “Layer” column
displays the layer on which the bridge is detected. The “Length[tl]” column contains the length
of each bridge area in technology length [tl]. The column “TCA[ts]” displays the calculated
total critical area in technology squares (ts), that is the sum of all calculated critical areas for
that bridge fault. The “X” and “Y” columns contain the X and Y coordinates pointing to the
center of each bridge area. The “T” column displays the bridge type, which can be either S2S
(side-to-side) or C2C (corner-to corner).

Tessent™ Scan and ATPG User’s Manual, v2022.4460

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-59. Calibre RVE View for Opens

The content of the RVE details deviates a bit for open defects, as shown in Figure 8-59.
Looking for example at open group O1, you see, that the open defect O1 consists of 3 layout
segments named O1_S1, O1_S2, and O1_S3.

When you select the group “O1”, the tool displays the list of object details for all 3 segments in
the RVE details window. When you select the group “O1_S1”, the tool displays only the object
details for segment S1 in the RVE details window.

The example in Figure 8-59 shows the details for the segment “O4_S10”, which consists of 6
net objects. The column “CA[ts]” contains the calculated critical area per net object. The
“Layer” column contains the layer per net object. The column “SegmentID” shows the layout
segment for the corresponding net object. The “TCA[ts]” column contains the calculated total
critical area of the corresponding layout segment, which is the sum of the “CA[ts]” column for
that segment. Also, the “X” and “Y” coordinates per net object are given, pointing to the center
of each net object. The “XL” and “YL” columns contain the x-length and the y-length of each
layout object.

Highlighting Defects in Design Layout . 460

Highlighting Defects in Design Layout
From the Calibre RVE window you can select any defect to be highlighted in the design layout.
Select one item from the list, click the right mouse button and select “Highlight” or press the
“H” key.
You can also highlight dedicated single bridge areas or open segments from the details window.
An example for highlighting bridge fault B1 and two of the bridge areas is shown in
Figure 8-60.

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 461

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-60. Highlighted Bridge Fault B1

Figure 8-60 shows the bridge fault B1 as a black line on the right side of the layout window,
beginning on top with a green dot for bridge area 4 (see “ID” column) and ending at the bottom
with the red line for bridge area 2. On the left side of Figure 8-60 you see the enlarged picture
details of bridge area 4 and bridge area 2.

To clear the highlights, click “Highlight” in the menu bar of the Calibre RVE window, then
select “Clear Highlights”, or simply press the “F4” button on your keyboard.

Tessent™ Scan and ATPG User’s Manual, v2022.4462

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Bridge and Open Extraction Output Files
This section describes the UDFM output files from bridge and open extraction.
Log File . 462
UDFM File . 462

Log File
If you are saving a log file of the tool session, the extract_fault_sites command fills it with a
distribution graph, which displays the number of defects in relation to the total critical area.
Otherwise this distribution graph is displayed to the standard output.
For more information and an example, refer to the extract_fault_sites command in the Tessent
Shell Reference Manual.

UDFM File
When running the extract_fault_sites command, the tool generates a partly encrypted UDFM
file.
The UDFM file begins with a summary of the applied fault site extraction settings followed by a
distribution graph.

This part is followed by the UDFM section containing the encrypted net names, this section is
called “EncryptedLocationAliases”:

UDFM {
 Version : 3;
 EncryptedLocationAliases {
 "zIYEAAAAAAAABqEAAAAAAGQOMQHm2zPeHPtI8RYLEBpudnJEyNtSP...3jQ4P71IS";

"zIYEAAAAAAAABqEAAAAAAGQOMQHm2zPedfjrdjfsfhbpsulakjtSP...3jQ4P71IS";
"zIYEAAAAAAAABqEAAAAAAGQOMQHm2zPshfgajhfRYLEBdnJEyNtSP...3jQ4P71IS";
.
.
.

 }

See also the extract_fault_sites command in the Tessent Shell Reference Manual.

The UDFM Section for Extracted Bridges
The encrypted section is then followed by a readable part containing the data for the extracted
bridges.

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 463

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UdfmType("interconnect_bridges") {
 Instance("/") {
 Bridge("B1")
{Type:S2S;TCA:6285.370;Layer:"metal4";Net1:$N22071;Net2:$N22074;

CA:4225.996;Distance:1.722;Length:3848.611;X:-2261.180;Y:1542.840;
XL:0.310;YL:692.750;}

 Bridge("B2")
{Type:S2S;TCA:5740.685;Layer:"metal4";Net1:$N28132;Net2:$N28134;

CA:2455.966;Distance:1.722;Length:2235.278;X:-2307.980;Y:1570.920;
XL:0.310;YL:402.350;}
.
.
.

 Bridge("B13") {Type:B2G;TCA:3835.294;Layer:"metal4";Net1:$N93624;
CA:3060.823;Distance:2.806;Length:6749.944;X:-2210.683;Y:-144.840;
XL:0.505;YL:1214.990;}
.
.
.

 Bridge("B2762347")
{Type:C2C;TCA:0.043;Layer:"metal2";Net1:$N288288;Net2:$N892868;

CA:0.043;Distance:9.742;X:-2684.720;Y:1891.080;XL:1.240;YL:1.240;}
 Bridge("B2762348")
{Type:C2C;TCA:0.043;Layer:"metal2";Net1:$N877331;Net2:$N787491;

CA:0.043;Distance:9.742;X:-1682.000;Y:2735.400;XL:1.240;YL:1.240;}
 }
 }

The top lines show the bridge faults with the highest defect probability reflected by the “TCA”
value; the bottom lines show the bridges with the lowest probability.

Each fault is summarized in one line containing the following information:

• Bridge ID — This is the defect ID, for example “B1”.

• Type — This is the bridge type of the largest bridge area, which can be a side-to-side
(S2S), a corner-to-corner (C2C) bridge, a bridge-to-ground (B2G), or a bridge-to-power
(B2P).

• TCA — This is the calculated total critical area, which is the sum of all critical areas for
that bridge fault.

• Layer — This is the list of layers of the bridge, for example “metal3” or “metal1-
metal2-via1”.

• Net1, Net2 — These are the corresponding location aliases for the net names at which
the bridge fault is located. In case of a power bridge (B2P), or a bridge-to-ground (B2G)
Net2 is not specified.

• CA — This is the calculated critical area for the largest bridge area of that bridge fault.

• Distance — This is the distance between the bridging objects of the largest bridge area,
defined in technology length [tl].

Tessent™ Scan and ATPG User’s Manual, v2022.4464

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Length — This is the length of the largest bridge area, defined in technology length [tl].
In case of a corner-to-corner (C2C) bridge, the length is excluded.

• X, Y — These are the X/Y coordinates in microns, pointing to the center of the largest
bridge area.

• XL, YL — These are the width and length values of the largest bridge area, defined in
microns.

The UDFM Section for Extracted Opens
When you use the “extract_fault_sites -defect_types opens” command and switch, the tool
writes a section for opens to the UDFM file. A sample UDFM section for opens follows:

UdfmType("interconnect_opens") {

 Instance("/") {

 Fault("O6_S1_R") {DefectInfo("O6"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6654.603;}Test{StaticFault{$N3:0;}}Test{DelayFault{$N3:0;}}}

 Fault("O6_S1_F") {DefectInfo("O6"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6654.603;}Test{StaticFault{$N3:1;}}Test{DelayFault{$N3:1;}}}

 Fault("O8_S1_R") {DefectInfo("O8"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6544.646;}Test{StaticFault{$N6:0;}}Test{DelayFault{$N6:0;}}}

 Fault("O8_S1_F") {DefectInfo("O8"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6544.646;}Test{StaticFault{$N6:1;}}Test{DelayFault{$N6:1;}}}

 Fault("O11_S1_R") {DefectInfo("O11"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6435.698;}Test{StaticFault{$N9:0;}}Test{DelayFault{$N9:0;}}}

 Fault("O11_S1_F") {DefectInfo("O11"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6435.698;}Test{StaticFault{$N9:1;}}Test{DelayFault{$N9:1;}}}

 Fault("O13_S1_R") {DefectInfo("O13"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6391.743;}Test{StaticFault{$N11:0;}}Test{DelayFault{$N11:0;}}}

 Fault("O13_S1_F") {DefectInfo("O13"){Type:Open;Layer:"metal1-metal2-metal3-metal4-via1-

via2-via3";TCA:6391.743;}Test{StaticFault{$N11:1;}}Test{DelayFault{$N11:1;}}}.

.

.

.

Fault("O16688_S21_R") {DefectInfo("O16688"){Type:Open;Layer:"metal3";TCA:0.539;}

Test{StaticFault{$N515045:0;}}Test{DelayFault{$N515045:0;}}

Test{StaticFault{$N515047:0;}}Test{DelayFault{$N515047:0;}}

Test{StaticFault{$N515046:0;}}Test{DelayFault{$N515046:0;}}

Test{StaticFault{$N515049:0;}}Test{DelayFault{$N515049:0;}}

Test{StaticFault{$N515050:0;}}Test{DelayFault{$N515050:0;}}

Test{StaticFault{$N515051:0;}}Test{DelayFault{$N515051:0;}}

Test{StaticFault{$N515052:0;}}Test{DelayFault{$N515052:0;}}}

 Fault("O16688_S21_F") {DefectInfo("O16688"){Type:Open;Layer:"metal3";TCA:0.539;}

Test{StaticFault{$N515045:1;}}Test{DelayFault{$N515045:1;}}

Test{StaticFault{$N515047:1;}}Test{DelayFault{$N515047:1;}}

Test{StaticFault{$N515046:1;}}Test{DelayFault{$N515046:1;}}

Test{StaticFault{$N515049:1;}}Test{DelayFault{$N515049:1;}}

Test{StaticFault{$N515050:1;}}Test{DelayFault{$N515050:1;}}

Test{StaticFault{$N515051:1;}}Test{DelayFault{$N515051:1;}}

Test{StaticFault{$N515052:1;}}Test{DelayFault{$N515052:1;}}}

 }

 }

}

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 465

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Each fault definition represents an open defect segment containing the following information:

• Fault ID — This is the unique fault ID, constructed by the open group ID, followed by
the corresponding segment ID. For each open, the tool writes the results for both a rising
and a falling edge to the UDFM file, which is reflected by the appendix to the fault ID,
such as “O6_S1_R” and “O6_S1_F”.

• DefectInfo — This is the overall open group ID, under which the open segments are
summarized, for example “O6”.

• Type — This is the defect type, which is in this section always “Open”.

• Layer — This is the list of layers of the open segment, for example “metal3” or
“metal1-metal2-via1”.

• TCA — This is the calculated total critical area for that open segment.

• StaticFault — These are the corresponding location aliases for the port names at which
the static open defect is observable.

• DelayFault — These are the corresponding location aliases for the port names at which
the delay open defect is observable.

By default, the open defects are sorted in descending order by the total critical area (TCA) of the
corresponding net segments. When the option “extract_fault_sites -open_sorting net” is used,
the list of fault definitions is sorted in two levels. In the first level it is sorted by the summarized
total critical area (TCA) of all segments for each open group in descending order. In the second
level, all fault definitions for the segments of a particular open group are also sorted in
descending order by the specific TCA value.

Tessent™ Scan and ATPG User’s Manual, v2022.4466

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Critical Area-Based Bridge Pattern Generation
The following sections describe bridge pattern generation.
Bridge Fault Model . 466
How to Generate Bridge Patterns . 467

Bridge Fault Model
The tool extracts bridge faults using either four-way or two-way combinations of static and
delay faults. The four-way bridge model uses four combinations of test requirements for static
and delay faults. The two-way bridge model uses two combinations.
When reading the interconnect bridge UDFM file using the read_fault_sites command, the tool
uses the four-way bridge model by default. Alternatively, you can enable the two-way bridge
model by using the -two_way_bridge_model switch.

The static four-way bridge model forces ATPG to generate four static patterns. The tool
generates two patterns for the case that net A is the aggressor and net B is the victim. The tool
generates two more patterns for the case that net B is the aggressor and net A is the victim.
Table 8-5 provides a summary. The tool can only generate two patterns when both nets are
observable concurrently.

The static two-way bridge model forces ATPG to generate two static patterns. The model
assumes that the existence of one pattern per victim-aggressor combination is sufficient.
Table 8-6 provides a summary.

The delay four-way bridge model forces ATPG to generate four delay patterns. The tool
generates two patterns for the case that net A is the aggressor with a constant state and net B is
the victim with a rising and a falling edge. The tool generates two more patterns for the case that

Table 8-5. Static Four-Way Bridge Model
Fault Number Victim Net Aggressor Net Test Requirements
1 Net A Net B A = 1 and B = 0
2 Net A Net B A = 0 and B = 1
3 Net B Net A B = 1 and A = 0
4 Net B Net A B = 1 and A = 0

Table 8-6. Static Two-Way Bridge Model
Fault Number Victim Net Aggressor Net Test Requirements
1 Net A Net B (A = 1 and B = 0) or

(A = 0 or B = 1)
2 Net B Net A (B = 1 and A = 0) or

(B = 0 or A = 1)

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 467

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

net B is the aggressor with a constant state and net A is the victim with a rising and a falling
edge. Table 8-7 provides a summary.

The delay two-way bridge model forces ATPG to generate two delay patterns. The model
assumes that the existence of one pattern per victim-aggressor combination is sufficient.
Table 8-8 provides a summary.

How to Generate Bridge Patterns
After extracting the bridges using the extract_fault_sites command.
As explained in the extract_fault_sites command description, the created UDFM file can be
used within Tessent Shell to generate critical area-based bridge patterns. An example for the
corresponding dofile for static pattern generation from scratch is shown below:

set_context patterns -scan
read_flat_model my_design.flat_model.gz
set_fault_type udfm -static_fault
read_fault_sites my_design_bridges.udfm
add_faults -all
create_patterns
write_patterns my_design_static_bridges.stil.gz -stil -replace

For the delay pattern generation, replace the fault type as follows:

set_fault_type udfm -delay_fault

and rename the pattern file defined with the write_patterns command accordingly.

Table 8-7. Delay Four-Way Bridge Model
Fault Number Victim Net Aggressor Net Test Requirements
1 Net A Net B A = 01 and B = 00
2 Net A Net B A = 10 and B = 11
3 Net B Net A B = 01 and A = 00
4 Net B Net A B = 10 and A = 11

Table 8-8. Delay Two-Way Bridge Model
Fault Number Victim Net Aggressor Net Test Requirements
1 Net A Net B (A = 01 and B = 00) or

(A = 10 and B = 11)
2 Net A Net B (B = 01 and A = 00) or

(B = 10 and A = 11)

Tessent™ Scan and ATPG User’s Manual, v2022.4468

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The “add_faults -all” command adds the bridge faults as defined in the UDFM. Specify the
-verbose option to the add_faults command to get a reporting of netnames that could not be
matched to netnames of the design.

The following is an example of a dofile for the critical area-based bridge static top off ATPG
that might need to be adjusted for your design.

set_context patterns -scan
read_flat_model my_design.flat_model.gz
set_fault_type udfm -static_fault
read_fault_sites my_design_bridges.udfm
add_faults -all

read_patterns apt1_CA1_atpg.pat.gz
simulate_patterns -source external
report_statistics
report_udfm_statistics -set_baseline

set_pattern_source internal
create_patterns
report_udfm_statistics

write_patterns my_design_static_bridges.stil.gz -stil -replace

For the delay top off ATPG, again replace the fault type as follows:

set_fault_type udfm -delay_fault

and rename the pattern files specified with the commands read_patterns and write_patterns
accordingly.

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 469

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Critical Area-Based Open Pattern Generation
This section describes open pattern generation.
Open Fault Model . 469
How to Generate Open Patterns. 470

Open Fault Model
The open fault model is based on the actual layout of the chip. Each net in the layout from the
driven cell to all its receivers is analyzed. Therefore, each net consists of one or more net
segments, and for each net segment its own total critical area (TCA) is calculated. Each net
segment has two static and two delay faults.
In the open fault model, the static ATPG is forced to generate both 0 and 1 states for each net
segment, and the delay ATPG is forced to generate both a rising & a falling edge, which is
illustrated in Figure 8-61.

Figure 8-61. Open Fault Model — Static and Delay

Tessent™ Scan and ATPG User’s Manual, v2022.4470

Test Pattern Generation
Interconnect Bridge and Open Extraction and UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Generate Open Patterns
The following is an example of a dofile for the critical area-based open static ATPG run from
scratch that might need to be adjusted for your design.

set_context patterns -scan
read_flat_model my_design.flat_model.gz
set_fault_type udfm -static_fault
read_fault_sites my_design_open.udfm.gz
add_faults -all
create_patterns
report_udfm_statistics
write_patterns my_design_static_opens.pat.gz -ascii -replace

Please notice that the fault type is set to “udfm -static_fault”, and that only the dedicated open
UDFM file is read.

For the open delay ATPG, replace the fault type as follows:

set_fault_type udfm -delay_fault

and rename the pattern file defined with the write_patterns command accordingly.

The following is an example of a dofile for the critical area-based open static top off ATPG that
might need to be adjusted for your design.

set_context patterns -scan
read_flat_model my_design.flat_model.gz
set_fault_type udfm -static_fault
read_fault_sites my_design_open.udfm.gz
add_faults -all
read_patterns my_design_CA1_atpg.pat.gz
simulate_patterns -source external
report_udfm_statistics -set_baseline
report_statistics
create_patterns
report_udfm_statistics
write_patterns my_design_static_opens.pat.gz -ascii -replace

Please notice that the fault type is set to “udfm -static_fault”, and that only the dedicated open
UDFM file is read. Then, first the existing Cell-Aware Test (CAT-static) patterns are read and
then these are fault simulated using the UDFM open fault model. Performing this fault
simulation of the existing CAT-static pattern typically results in no or very few additional
patterns to be generated with the create_patterns command.

For the open delay top off ATPG, again replace the fault type as follows:

set_fault_type udfm -delay_fault

and rename the pattern files specified with the commands read_patterns and write_patterns
accordingly.

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 471

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Cell Neighborhood Defects UDFM Creation
Cell neighborhood defects can occur in any process technology. These are chip-dependent
bridge defects on the interface of one instantiated standard cell to another standard cell that is
placed right, left, top or at the bottom of a certain cell.
The difficulty with such defects is that these bridge defects are not purely on the interconnect
between standard cells, but that bridges are possible to cell-internal nets (layers) that are not
accessible directly via the nets on the cell interconnects. Such a case is illustrated in
Figure 8-62, which shows an AndOr cell on the left and the same AndOr cell on the right.

Figure 8-62. Neighborhood Cell Layout

The bridge defect circled above, between the “Z” output of the left cell and the cell-internal net
“6” of the cell on the right, is not targeted explicitly by the Cell-Aware ATPG. Nor is it targeted
by doing an interconnect bridge extraction.

This bridge defect can only be targeted explicitly when the cell content of the two neighbor cells
are given together to Tessent CellModelGen. The tool is then able to analyze the bridge to the
cell-internal net “6” and to create a CAT-view (UDFM) file that is passed on to CAT ATPG to
generate the chip-dependent test patterns to detect such neighborhood defects. See also “About
User-Defined Fault Modeling” on page 59.

Figure 8-63 shows a simplified chip layout with potential bridge defects between various
adjacent cells. This illustrates that bridge defects may occur between horizontally and vertically
adjacent cells.

Tessent™ Scan and ATPG User’s Manual, v2022.4472

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-63. Cell Neighborhood Defects

Figure 8-64 shows the general Neighborhood UDFM generation flow. This illustrates that the
traditional technology-dependent Cell-Aware Test (CAT) UDFM must be generated to target all
cell-internal defects. The Total Critical Area (TCA) Bridge UDFM file is also required to target
the chip-dependent interconnect bridge defects. The Neighborhood UDFM generation ensures
that the highest product quality is achieved. You can combine the UDFM ATPG runs into a
single, static UDFM ATPG run, plus a second, delay UDFM ATPG run.

Figure 8-64. Neighborhood UDFM Generation Flow

Note
For experimental purposes, you can perform three single UDFM ATPG runs; one run with
the CAT UDFM, another run with the TCA Bridge UDFM, and another run with the

Neighborhood UDFM file.

Figure 8-65 shows details of the Neighborhood UDFM file generation.

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 473

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-65. Complete Neighborhood Flow

• Tessent Neighborhood Extraction — The first step in the flow of Figure 8-65 is to
extract the cell neighborhood data file with the extract_inter_cell_data command, using
Tessent TestKompress, Tessent FastScan, or Tessent Diagnosis.

• Merge Library Views — The next step is to run Tessent CellModelGen, which starts
with the merge task, to merge the GDS, Verilog, ATPG and SPICE views of the two
neighboring cells into one view each, such that the Tessent CellModelGen view
generation runs on the combination of the two cells.

• Layout-Aware Analysis — The defect injection varies depending on the cells being
merged, injecting only defects in the adjacent neighborhood area. The objective of this
Tessent CellModelGen run is to create a UDFM file that only targets bridge defects in
the neighborhood area.

• Simulation, Synthesis, and Verify Tasks — Only a one-cycle flow is performed on the
merged cells for the simulation, synthesis, and verify tasks.

Tessent™ Scan and ATPG User’s Manual, v2022.4474

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Export Task — When the tool has run all required cell combinations, start the export
task to create a chip level UDFM file.

• TestKompress UDFM Static ATPG — Finally, Tessent TestKompress can be run to
generate the test patterns to explicitly detect the cell-neighborhood defects.

Note
Running the -merge task requires a Tessent TestKompress Automotive-Grade ATPG
license. For Tessent CellModelGen view generation with the merge task, use the

run_flow.merge script. For the export task on the merged cells, a run_export.merge script is
available. These example scripts are tailored to Tessent 24 nm test library. Modify them for
your design.

Inter-Cell Data File . 474
The Marker File . 477

Inter-Cell Data File
One of the output files from cell pair extraction is the inter-cell data file. This file starts with a
summary of the applied command line options followed by a distribution graph, displaying the
number of required Tessent CellModelGen runs in relation to the total bridging length (TBL) of
the cell pairs.
Both are also shown in the Tessent log file. See the explanation in the extract_inter_cell_data
command description in the Tessent Shell Reference Manual.

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 475

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is then followed by the UDFM section for encrypted location aliases:

UDFM {
 Version : 3;
 EncryptedLocationAliases {

"zIYEAAAAAAAAAfkAAAAAADnvDUr+Jcd6rRtM7lQRHQsXJDc2kkvY4ro3CSnVikIkofzRxsBi
+dTLpgwP",
 "e/maKK6Xwn7P667RcMJKX/
nYCrdrs3+q7FRYygVRVYYsl4jvl9Ae1HvnaOu8yt0gvoWP4GBbAJNxYTef",
 "w46GDWyPjbyLVDIiXwblSV4ydn94YjMB06Iykol7bpHTiGNPItgihnm8bUyccbz+Zu/
5MPlVod/PIyam",
 "iibsQtGjme3loCvVpnRW+dYNy+yStfVRL+jBrhzxqosnr8cMIY6W6I79/s0xXm0+/
1zRH29J8i6qMJbi",
 "c1ynIVpmQEtoT7wEpj+/
Kb3m3J+HdsrwlJplWkk1ZwVisLBNoaHqsWo274zpGibYbJqTTniWLQuxsbyI",

"PUn0o3AQfHMKBEDGJB1sRbVnR8oRpd0b8ofbKp+dnahPv+KAqwNNH6lmBYblA2EwFT5ZfJKh
A1z+pjcn",

"ZaKbH5LHY6w6iRzeEReXwWQsqFLxdFzp+sbyGTqpptz4KJvuWUpwP3kRTZe2fVBiA37WMZsT
9X8v4div",
 "OyGTwqdIaa/
8FhqSPYwhhteQrT0Gron28yhhEAsHUXu20ddBGCMIdt6cayplcgdpy2P7py48e8T7rcJi",
 "ABll83gbwXtzxTiuVngQvOGrpK5VomsiMPr79XQJpGARGFhE2MiZgpJ/+/56ydDx";
}

The UDFM Section for Inter-Cell Bridges
The encrypted section is followed by a readable part containing the data for the extracted cell
pairs.

Tessent™ Scan and ATPG User’s Manual, v2022.4476

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

UdfmType("inter_cell_bridges") {

 VirtualModule("sffq_01_std_thn_dnd_N_sffq_01_std_thn_dnd_FS_top_0_4320") { // #loc: 9

tbl: 528.000000 tl

 CellInfo("C1") {Cell:"sffq_01_std_thn_dnd"; Ori:"N"; X:0.000000e+00; Y:0.000000e+00;

XL:1.056000e-05; YL:4.320000e-06; }

 CellInfo("C2") {Cell:"sffq_01_std_thn_dnd"; Ori:"FS"; X:0.000000e+00; Y:4.320000e-06;

XL:1.056000e-05; YL:4.320000e-06; }

 DesignLocations {

 Location {C1:$N406; C2:$N407; Ori:"N"; X:-1.842320e-03; Y:-2.174760e-03; }

 Location {C1:$N174; C2:$N249; Ori:"FN"; X:-2.534960e-03; Y:1.505880e-03; }

 Location {C1:$N408; C2:$N409; Ori:"FN"; X:-1.100000e-04; Y:2.378520e-03; }

 Location {C1:$N120; C2:$N410; Ori:"FN"; X:-2.615120e-03; Y:1.324440e-03; }

 Location {C1:$N411; C2:$N204; Ori:"FN"; X:-2.125040e-03; Y:-2.278440e-03; }

 Location {C1:$N135; C2:$N121; Ori:"FN"; X:-2.047760e-03; Y:-1.449000e-03; }

 Location {C1:$N412; C2:$N62; Ori:"FN"; X:-2.577680e-03; Y:-2.131560e-03; }

 Location {C1:$N258; C2:$N413; Ori:"FN"; X:-2.330000e-03; Y:-1.742760e-03; }

 Location {C1:$N67; C2:$N257; Ori:"FN"; X:-2.333840e-03; Y:-1.751400e-03; }

 }

 }

 VirtualModule("sffq_01_std_thn_dnd_FS_sffq_01_std_thn_dnd_N_top_0_4320") { // #loc: 6

tbl: 352.000000 tl

 CellInfo("C1") {Cell:"sffq_01_std_thn_dnd"; Ori:"FS"; X:0.000000e+00; Y:0.000000e+00;

XL:1.056000e-05; YL:4.320000e-06; }

 CellInfo("C2") {Cell:"sffq_01_std_thn_dnd"; Ori:"N"; X:0.000000e+00; Y:4.320000e-06;

XL:1.056000e-05; YL:4.320000e-06; }

 DesignLocations {

 Location {C1:$N216; C2:$N217; Ori:"N"; X:-1.950320e-03; Y:2.486520e-03; }

 Location {C1:$N218; C2:$N219; Ori:"N"; X:-2.469200e-03; Y:-2.351880e-03; }

 Location {C1:$N220; C2:$N221; Ori:"N"; X:-1.210400e-04; Y:-2.248200e-03; }

 Location {C1:$N222; C2:$N223; Ori:"FN"; X:-2.681840e-03; Y:1.276920e-03; }

 Location {C1:$N224; C2:$N225; Ori:"N"; X:7.141600e-04; Y:2.598840e-03; }

 Location {C1:$N226; C2:$N227; Ori:"N"; X:-2.626160e-03; Y:1.389240e-03; }

 }

 }

.

.

.

 VirtualModule("sffq_01_std_thn_dnd_N_sffq_01_std_thn_dnd_FS_top_n10080_4320") { // #loc: 1

tbl: 2.666667 tl

 CellInfo("C1") {Cell:"sffq_01_std_thn_dnd"; Ori:"N"; X:1.008000e-05; Y:0.000000e+00;

XL:1.056000e-05; YL:4.320000e-06; }

 CellInfo("C2") {Cell:"sffq_01_std_thn_dnd"; Ori:"FS"; X:0.000000e+00; Y:4.320000e-06;

XL:1.056000e-05; YL:4.320000e-06; }

 DesignLocations {

 Location {C1:$N148; C2:$N401; Ori:"N"; X:-2.162000e-03; Y:-2.157480e-03; }

 }

 }

 }

}

The top lines show the cell pairs with the largest total bridging length (TBL); the bottom lines
show the cell pairs with the smallest TBL.

Each cell pair information is headed by the merged cell name of the cell pair, followed by the
number of occurrences of that cell pair (#loc) and the TBL in technology lengths (tl).

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Tessent™ Scan and ATPG User’s Manual, v2022.4 477

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The “CellInfo” lines for cell1 (C1) and cell2 (C2) contain the following information:

• Cell — This is the cell name of the related cell.

• Ori — This is the orientation of that cell within the bounding box, for example “FS”—
for more information including the orientation types, see the -orientation switch in the
-cell1 switch description in the Tessent CellModelGen Tool Reference manual.

• X, Y — These are the X- and Y-offsets of the cell within the bounding box, defined in
meters—for more information including the types of offsets, see the -y_offset switch in
the -cell1 switch description in the Tessent CellModelGen Tool Reference manual.

• XL, YL — These are the width and length values of the cell defined in meters.

This section is followed by the “DesignLocations” showing as many lines as there are locations,
where each line contains the following information:

• C1, C2 — These are the location aliases giving the instance name of the corresponding
cell.

• Ori — This is the orientation of the bounding box within the design, for example “FN”.

• X, Y — These are the X/Y coordinates in meters, pointing to the lower-left corner of the
bounding box, but taking the orientation of the bounding box into account. That is, when
the orientation of the bounding box is “FN”, then the originally lower-left corner is also
flipped to be at the lower-right corner.

The Marker File
When you run the extract_inter_cell_data command with the -marker_file switch, it also
generates a marker file containing layout information for all extracted cell pairs.
Figure 8-66 shows a part of a marker file annotated with a description for various entries.

Tessent™ Scan and ATPG User’s Manual, v2022.4478

Test Pattern Generation
Cell Neighborhood Defects UDFM Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-66. Marker File

In this example, cell pair number 1 occurs 9 times within the design (# Locations). The file lists
the layout data for each occurrence. The extracted cell pairs appear, sorted by the total bridging
length from largest to smallest. See also extract_inter_cell_data in the Tessent Shell Reference
Manual.

Test Pattern Generation
Pattern Generation for a Boundary Scan Circuit

Tessent™ Scan and ATPG User’s Manual, v2022.4 479

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Generation for a Boundary Scan
Circuit

This example shows how to create a test set for an IEEE 1149.1 (boundary scan)-based circuit.
The following subsections list and explain the dofile and test procedure file.

About Dofile . 479
TAP Controller State Machine . 480
About the Test Procedure File . 481

About Dofile
The following dofile shows the commands you could use to specify the scan data in the ATPG
tool.

add_clocks 0 tck
add_scan_groups grp1 proc_fscan
add_scan_chains chain1 grp1 tdi tdo
add_input_constraints tms -c0
add_input_constraints trstz -c1
set_capture_clock TCK -atpg

You must define the tck signal as a clock because it captures data. There is one scan group,
grp1, which uses the proc_fscan test procedure file (see page 481). There is one scan chain,
chain1, that belongs to the scan group. The input and output of the scan chain are tdi and tdo,
respectively.

The listed pin constraints only constrain the signals to the specified values during ATPG—not
during the test procedures. Thus, the tool constrains tms to a 0 during ATPG (for proper pattern
generation), but not within the test procedures, where the signal transitions the TAP controller
state machine for testing. This outlines the basic scan testing process:

1. Initialize scan chain.

2. Apply PI values.

3. Measure PO values.

4. Pulse capture clock.

5. Unload scan chain.

During Step 2, you must constrain tms to 0 so that the Tap controller’s finite state machine
(Figure 8-67) can go to the Shift-DR state when you pulse the capture clock (tck). You constrain
the trstz signal to its off-state for the same reason. If you do not do this, the Tap controller goes
to the Test-Logic-reset_state at the end of the Capture-DR sequence.

Tessent™ Scan and ATPG User’s Manual, v2022.4480

Test Pattern Generation
TAP Controller State Machine

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The set_capture_clock TCK -ATPG command defines tck as the capture clock and that the
capture clock must be used for each pattern (as the ATPG tool is able to create patterns where
the capture clock never gets pulsed). This ensures that the Capture-DR state properly transitions
to the Shift-DR state.

TAP Controller State Machine
The following shows the finite state machine for the TAP controller of a IEEE 1149.1 circuit.

Figure 8-67. State Diagram of TAP Controller Circuitry

The TMS signal controls the state transitions. The rising edge of the TCK clock captures the
TAP controller inputs. You may find this diagram useful when writing your own test procedure
file or trying to understand the example test procedure file shown in About the Test Procedure
File.

Test Pattern Generation
About the Test Procedure File

Tessent™ Scan and ATPG User’s Manual, v2022.4 481

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

About the Test Procedure File
This is the test procedure file proc_fscan.

Tessent™ Scan and ATPG User’s Manual, v2022.4482

Test Pattern Generation
About the Test Procedure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set time scale 1 ns;
set strobe_window time 1;
timeplate tp0 =

force_pi 100;
measure_po 200;
pulse TCK 300 100;
period 500;

end;

procedure test_setup =

timeplate tp0;

// Apply reset procedure
// Test cycle one

cycle =

force TMS 1;
force TDI 0;
force TRST 0;
pulse TCK;

end;

// "TMS"=0 change to run-test-idle
// Test cycle two

cycle =

force TMS 0;
force TRST 1;
pulse TCK;

end;

// "TMS"=1 change to select-DR
// Test cycle three

cycle =

force TMS 1;
pulse TCK;

end;

// "TMS"=1 change to select-IR
// Test cycle four

cycle =

force TMS 1;
pulse TCK;

end;

// "TMS"=0 change to capture-IR
// Test cycle five

cycle =

force TMS 0;
pulse TCK;

end;

// "TMS"=0 change to shift-IR
// Test cycle six

Test Pattern Generation
About the Test Procedure File

Tessent™ Scan and ATPG User’s Manual, v2022.4 483

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

cycle =
force TMS 0;
pulse TCK;

end;

// load MULT_SCAN instruction "1000" in IR
// Test cycle seven

cycle =

force TMS 0;
pulse TCK;

end;

// Test cycle eight

cycle =
force TMS 0;
pulse TCK;

end;

// Test cycle nine

cycle =
force TMS 0;
pulse TCK;

end;

// Last shift in exit-IR Stage
// Test cycle ten

cycle =

force TMS 1;
force TDI 1;
pulse TCK;

end;

// Change to shift-dr stage for shifting in data
// "TMS" = 11100
// "TMS"=1 change to update-IR state
// Test cycle eleven

cycle =

force TMS 1;
force TDI 1;
pulse TCK;

end;

// "TMS"=1 change to select-DR state
// Test cycle twelve

cycle =

force TMS 1;
pulse TCK;

end;

// "TMS"=0 change to capture-DR state
// Test cycle thirteen

Tessent™ Scan and ATPG User’s Manual, v2022.4484

Test Pattern Generation
About the Test Procedure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

cycle =
force TMS 0;
pulse TCK;

end;

// "TMS"=0 change to shift-DR state
// Test cycle fourteen

cycle =

force TMS 0;
force TEST_MODE 1;
force TRST 1;
pulse TCK;

end;
end;

procedure shift =

scan_group grp1;
timeplate tp0;
cycle =

force_sci;
measure_sco;
pulse TCK;

end;
end;

procedure load_unload =

scan_group grp1;
timeplate tp0;
cycle =

force TMS 0;
force TCK 0;

end;
apply shift 77;

// "TMS"=1 change to exit-1-DR state

cycle =

force TMS 1;
end;
apply shift 1;

// "TMS"=1 change to update-DR state

cycle =

force TMS 1;
pulse TCK;

end;

// "TMS"=1 change to select-DR-scan state

cycle =
force TMS 1;
pulse TCK;

end;

// "TMS"=0 change to capture-DR state

Test Pattern Generation
About the Test Procedure File

Tessent™ Scan and ATPG User’s Manual, v2022.4 485

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

cycle =
force TMS 0;
pulse TCK;

end;
end;

Upon completion of the test_setup procedure, the tap controller is in the shift-DR state in
preparation for loading the scan chain(s). It is then placed back into the shift-DR state for the
next scan cycle. This is achieved by the following:

• The items that result in the correct behavior are the pin constraint on tms of C1 and the
fact that the capture clock has been specified as TCK.

• At the end of the load_unload procedure, the tool asserts the pin constraint on TMS,
which forces tms to 0.

• The capture clock (TCK) occurs for the cycle and this results in the tap controller
cycling from the run-test-idle to the Select-DR-Scan state.

• The tool applies the load_unload procedure again. This starts the next load/unloading
the scan chain.

The first procedure in the test procedure file is test_setup. This procedure begins by resetting the
test circuitry by forcing trstz to 0. The next set of actions moves the state machine to the Shift-
IR state to load the instruction register with the internal scan instruction code (1000) for the
MULT_SCAN instruction. This is accomplished by shifting in 3 bits of data (tdi=0 for three
cycles) with tms=0, and the 4th bit (tdi=1 for one cycle) when tms=1 (at the transition to the
Exit1-IR state). The next move is to sequence the TAP to the Shift-DR state to prepare for
internal scan testing.

The second procedure in the test procedure file is shift. This procedure forces the scan inputs,
measures the scan outputs, and pulses the clock. Because the output data transitions on the
falling edge of tck, the measure_sco command at time 0 occurs as tck is falling. The result is a
rules violation unless you increase the period of the shift procedure so tck has adequate time to
transition to 0 before repeating the shift. The load_unload procedure, which is next in the file,
calls the shift procedure.

This is the basic flow of the load_unload procedure:

1. Force circuit stability (all clocks off, and so forth).

2. Apply the shift procedure n-1 times with tms=0

3. Apply the shift procedure one more time with tms=1

4. Set the TAP controller to the Capture-DR state.

The load_unload procedure inactivates the reset mechanisms, because you cannot assume they
hold their values from the test_setup procedure. It then applies the shift procedure 77 times with
tms=0 and once more with tms=1 (one shift for each of the 77 scan registers within the design).

Tessent™ Scan and ATPG User’s Manual, v2022.4486

Test Pattern Generation
About the Test Procedure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The procedure then sequences through the states to return to the Capture-DR state. You must
also set tck to 0 to meet the requirement that all clocks be off at the end of the procedure.

Test Pattern Generation
MacroTest Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 487

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

MacroTest Overview
MacroTest is a utility that helps automate the testing of embedded logic and memories (macros)
by automatically translating user-defined patterns for the macros into scan patterns. Because it
enables you to apply your macro test vectors in the embedded environment, MacroTest
improves overall IC test quality. It is particularly useful for testing small RAMs and embedded
memories but can also be used for a disjoint set of internal sites or a single block of hardware
represented by an instance in HDL.
This is illustrated conceptually in Figure 8-68.

Figure 8-68. Conceptual View of MacroTest

MacroTest provides the following capabilities and features:

• Supports user-selected scan observation points.

• Supports synchronous memories; for example, supports positive (or negative) edge-
triggered memories embedded between positive (or negative) edge-triggered scan
chains.

• Enables you to test multiple macros in parallel.

Tessent™ Scan and ATPG User’s Manual, v2022.4488

Test Pattern Generation
The MacroTest Process Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Enables you to define macro output values that do not require observation.

• Has no impact on area or performance.

The MacroTest Process Flow . 488
Macro Qualification for MacroTest . 490
When to Use MacroTest . 491
Macro Boundary Definition . 494
Test Values Definition . 498
Recommendations for MacroTest Use . 500
MacroTest Examples . 502

The MacroTest Process Flow
The MacroTest flow requires a set of patterns and MacroTest. The patterns are a sequence of
tests (inputs and expected outputs) that you develop to test the macro. To use MacroTest
effectively, you need to be familiar with two commands.

• set_macrotest_options — Modifies two rules of the DRCs to permit otherwise illegal
circuits to be processed by MacroTest. Black box (unmodeled) macros may require this
command.

• macrotest — Runs the MacroTest utility to read functional patterns you provide and
convert them into scan-based manufacturing test patterns.

For a memory, this is a sequence of writes and reads. You may need to take embedding
restrictions into account as you develop your patterns. Next, you set up and run MacroTest to
convert these cycle-based patterns into scan-based test patterns. The converted patterns, when
applied to the chip, reproduce your input sequence at the macro’s inputs through the intervening
logic. The converted patterns also ensure that the macro’s output sequence is as you specified in
your set of patterns.

Note
You can generate a wide range of pattern sets: From simple patterns that verify basic
functionality, to complex, modified March algorithms that exercise every address location

multiple times. Some embeddings (the logic surrounding the macro) do not permit arbitrary
sequences, however.

Figure 8-69 shows the basic flow for creating scan-based test patterns with MacroTest.

Test Pattern Generation
The MacroTest Process Flow

Tessent™ Scan and ATPG User’s Manual, v2022.4 489

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-69. Basic Scan Pattern Creation Flow With MacroTest

Note
The patterns produced by MacroTest cannot be read back into the ATPG tool. This is
because the simulation and assumptions about the original macro patterns are no longer

valid and the original macro patterns are not preserved in the MacroTest patterns.

Tessent Diagnosis, a Siemens EDA test failure diagnosis tool, also cannot read a pattern set that
includes MacroTest patterns. If you use Tessent Diagnosis in your manufacturing test flow, save
MacroTest patterns separately from your other patterns. This enables a test engineer to remove
them from the set of patterns applied on ATE before attempting to read that set into Tessent
Diagnosis for diagnosis.

When you run the macrotest command, MacroTest reads your pattern file and begins analyzing
the patterns. For each pattern, the tool searches back from each of the macro’s inputs to find a
scan flip-flop or primary input. Likewise, the tool analyzes observation points for the macro’s
output ports. When it has justified and recorded all macro input values and output values,
MacroTest moves on to the next pattern and repeats the process until it has converted all the
patterns. The default MacroTest effort exhaustively tries to convert all patterns. If successful,

Tessent™ Scan and ATPG User’s Manual, v2022.4490

Test Pattern Generation
Macro Qualification for MacroTest

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

then the set of scan test patterns MacroTest creates detects any defect inside the macro that
changes any macro output from the expected value.

Note
If you add faults prior to running MacroTest, the ATPG tool automatically fault simulates
the patterns as they are created. This is time consuming, but is retained for backward

compatibility. It is advised that you generate and save macrotest patterns in a separate run from
normal ATPG and faultsim and that you not issue the add_faults command in the MacroTest
run.

The patterns you supply to MacroTest must be consistent with the macro surroundings
(embedding) to assure success. In addition, the macro must meet certain design requirements.
The following sections detail these requirements, describe how and when to use MacroTest, and
conclude with some examples.

Macro Qualification for MacroTest
If a design meets three basic criteria, then you can use MacroTest to convert a sequence of
functional cycles (that describe I/O behavior at the macro boundary) into a sequence of scan
patterns.

• The design has at least one combinational observation path for each macro output pin
that requires observation (usually all outputs).

• All I/O of the RAM/macro block to be controlled or observed are unidirectional.

• The macro/block can hold its state while the scan chain shifts, if the test patterns require
that the state be held across patterns. This is the case for a March algorithm, for
example.

If you write data to a RAM macro (RAM), for example, then later read the data from the RAM,
typically you need to use one scan pattern to do the write and a different scan pattern to do the
read. Each scan pattern has a load/unload that shifts the scan chain, and you must ensure that the
DFT was inserted, if necessary, to enable the scan chain to be shifted without writing into the
RAM. If the shift clock can also cause the RAM to write and there is no way to protect the
RAM, then it is very likely that the shift process destroys RAM contents; the data written in the
early pattern is not preserved for reading during the latter pattern. Only if it is truly possible to
do a write followed by a read, all in one scan pattern, can you use MacroTest even with an
unprotected RAM.

Because converting such a multicycle pattern is a sequential ATPG search problem, success is
not guaranteed even if success is possible. Therefore, you should try to convert a few patterns
before you depend on MacroTest to be able to successfully convert a given embedded macro.
This is a good idea even for combinational conversions.

Test Pattern Generation
When to Use MacroTest

Tessent™ Scan and ATPG User’s Manual, v2022.4 491

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you intend to convert a sequence of functional cycles to a sequence of scan patterns, you can
insert the DFT to protect the RAM during shift: The RAM should have a write enable that is PI-
controllable throughout test mode to prevent destroying the state of the RAM. This ensures the
tool can create a state inside the macro and retain the state during the scan loading of the next
functional cycle (the next scan pattern after conversion by MacroTest).

The easiest case to identify is where the ATPG tool issues a message saying it can use the RAM
test mode, RAM_SEQUENTIAL. This message occurs because the tool can independently
operate the scan chains and the RAM. The tool can operate the scan chain without changing the
state of the macro as well as operate the macro without changing the state loaded into the scan
chain. This enables the most flexibility for ATPG, but the most DFT also.

However, there are cases where the tool can operate the scan chain without disturbing the
macro, while the opposite is not true. If the scan cells are affected or updated when the macro is
operated (usually because a single clock captures values into the scan chain and is also an input
into the macro), the tool cannot use RAM_SEQUENTIAL mode. Instead, the tool can use a
sequential MacroTest pattern (multiple cycles per scan load), or it can use multiple single cycle
patterns if the user’s patterns keep the write enable or write clock turned off during shift.

For example, suppose a RAM has a write enable that comes from a PI in test mode. This makes
it possible to retain written values in the RAM during shift. However, it also has a single edge-
triggered read control signal (no separate read enable) so the RAM’s outputs change any time
the address lines change followed by a pulse of the read clock/strobe. The read clock is a shared
clock and is also used as the scan clock to shift the scan chains (composed of MUX scan cells).
In this case, it is not possible to load the scan chains without changing the read values on the
output of the macro.

For this example, you need to describe a sequential read operation to MacroTest. This can be a
two-cycle operation. In the first cycle, MacroTest pulses the read clock. In the second cycle,
MacroTest observes and captures the macro outputs into the downstream scan cells. This works
because there is no intervening scan shift to change the values on the macro’s output pins. If a
PI-controllable read enable existed, or if you used a non-shift clock (clocked scan has separate
shift and capture clocks), an intervening scan load could occur between the pulse of the read
clock and the capture of the output data. This is possible because the macro read port does not
have to be clocked while shifting the scan chain.

When to Use MacroTest
MacroTest is primarily used to test small memories (register file, cache, FIFO, and so on).
Although the ATPG tool can test the faults at the boundaries of such devices, and can propagate
the fault effects through them (using the _ram or _cram primitives), it does not attempt to create
a set of patterns to test them internally. This is consistent with how it treats all primitives.
Because memory primitives are far more complex than a typical primitive (such as a NAND
gate), you may prefer to augment ATPG tool patterns with patterns that you create to test the
internals of the more complex memory primitives. Such complex primitives are usually

Tessent™ Scan and ATPG User’s Manual, v2022.4492

Test Pattern Generation
When to Use MacroTest

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

packaged as models in the ATPG library, or as HDL modules that are given the generic name
“macro.”

Note
Although the ATPG library has specific higher level collections of models called macros,
MacroTest is not intended for testing such macros; they are tested by normal ATPG. Only

small embedded memories, such as register files, are tested using macrotest. MBIST is
recommended as the testing solution for those and all memories.

Here, the term “macro” simply means some block of logic, or even a distributed set of lines that
you want to control and observe. You must provide the input values and expected output values
for the macro. Typically you are given, or must create, a set of tests. You can then simulate
these tests in some time-based simulator, and use the results predicted by that simulator as the
expected outputs of the macro. For memories, you can almost always create both the inputs and
expected outputs without any time-based simulation. For example, you might create a test that
writes a value, V, to each address. It is trivial to predict that when subsequent memory reads
occur, the expected output value is still V.

MacroTest converts these functional patterns to scan patterns that can test the device after it is
embedded in systems (where its inputs and outputs are not directly accessible, and so the tests
cannot be directly applied and observed). For example, a single macro input enable might be the
output of two enables that are ANDed outside the macro. The tests must be converted so that the
inputs of the AND are values that cause the AND’s output to have the correct value at the single
macro enable input (the value specified by the user as the macro input value). MacroTest
converts the tests (provided in a file) and provides the inputs to the macro as specified in the
file, and then observes the outputs of the macro specified in the file. If a particular macro output
is specified as having an expected 0 (or 1) output, and this output is a data input to a MUX
between the macro output and the scan chain, the select input of that MUX must have the
appropriate value to propagate the macro’s output value to the scan chain for observation.
MacroTest automatically selects the path(s) from the macro output(s) to the scan chain(s), and
delivers the values necessary for observation, such as the MUX select input value in this case.

Often, each row of a MacroTest file converts to a single 1-system cycle scan test (sometimes
called a basic scan pattern in the ATPG tool). A scan chain load, PI assertion, output measure,
clock pulse, and scan chain unload result for each row of the file if you specify such patterns. To
specify a write with no expected known outputs, specify the values to apply at the inputs to the
device and give X output values (don't care or don't measure). To specify a read with expected
known outputs, specify both the inputs to apply, and the outputs that are expected (as a result of
those and all prior inputs applied in the file so far). For example, an address and read enable
would have specified inputs, whereas the data inputs could be X (don’t care) for a memory read.

Siemens EDA highly recommends that you not over-specify patterns. It may be impossible, due
to the surrounding logic, to justify all inputs otherwise. For example, if the memory has a write
clock and write enable, and is embedded in a way that the write enable is independent but the
clock is shared with other memories, it is best to turn off the write using the write enable, and
leave the clock X so it can be asserted or de-asserted as needed. If the clock is turned off instead

Test Pattern Generation
When to Use MacroTest

Tessent™ Scan and ATPG User’s Manual, v2022.4 493

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

of the write enable, and the clock is shared with the scan chain, it is not possible to pulse the
shared clock to capture and observe the outputs during a memory read. If instead, the write
enable is shared and the memory has its own clock (not likely, but used for illustration), then it
is best to turn off the write with the clock and leave the shared write enable X.

Realize that although the scan tests produced appear to be independent tests, the tool assumes
that the sequence being converted has dependencies from one cycle to the next. Thus, the scan
patterns have dependencies from one scan test to the next. Because this is atypical, the tool
marks MacroTest patterns as such, and you must save such MacroTest patterns using the
write_patterns command. The MacroTest patterns cannot be reordered or reduced using
compress_patterns; reading back MacroTest patterns is not permitted for that reason. You must
preserve the sequence of MacroTest patterns as a complete, ordered set, all the way to the tester,
if the assumption of cycle-to-cycle dependencies in the original functional sequence is correct.

To illustrate, if you write a value to an address, and then read the value in a subsequent scan
pattern, this works as long as you preserve the original pattern sequence. If the patterns are
reordered, and the read occurs before the write, the patterns then mismatch during simulation or
fail on the tester. This occurs because the reordered scan patterns try to read the data before it
has been written. This is untrue of all other ATPG tool patterns. They are independent and can
be reordered (for example, to permit pattern compaction to reduce test set size). MacroTest
patterns are never reordered or reduced, and the number of input patterns directly determines
the number of output patterns.

Tessent™ Scan and ATPG User’s Manual, v2022.4494

Test Pattern Generation
Macro Boundary Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Macro Boundary Definition
The macro boundary is typically defined by its instance name with the macrotest command. If
no instance name is given, then the macro boundary is defined by a list of hierarchical pin
names (one per macro pin) given in the header of the MacroTest patterns file.
Macro Boundary Definition by Instance Name . 494
Macro Boundary Definition Without Using an Instance Name 495
Observation Site Specification and Reporting . 496
Macro Boundary Definition With Trailing Edge Inputs . 496

Macro Boundary Definition by Instance Name
The macro is a particular instance, almost always represented by a top-level model in the ATPG
library. More than one instance may occur in the netlist, but each instance has a unique name
that identifies it. Therefore, the instance name is all that is needed to define the macro boundary.
The definition of the instance/macro is accessed to determine the pin order as defined in the port
list of the definition. MacroTest expects that pin order to be used in the file specifying the I/O
(input and expected output) values for the macro (the tests). For example, the command:

macrotest regfile_8 file_with_tests

would specify for MacroTest to find the instance “regfile_8”, look up its model definition, and
record the name and position of each pin in the port list. Given that the netlist is written in
Verilog, with the command:

regfile_definition_name regfile_8 (net1, net2, ...);

the portlist of regfile_definition_name (not the instance port list “net1, net2, …”) is used to get
the pin names, directions, and the ordering expected in the test file, file_with_tests. If the library
definition is:

model "regfile_definition_name"
 ("Dout_0", "Dout_1", Addr_0", "Addr_1", "Write_enable", ...)
 (input ("Addr_0") () ... output ("Dout_0") () ...)

then MacroTest knows to expect the output value Dout_0 as the first value (character)
mentioned in each row (test) of the file, file_with_tests. The output Dout_1 should be the 2nd
pin, input pin Addr_0 should be the 3rd pin value encountered, and so forth. If it is inconvenient
to use this ordering, the ordering can be changed at the top of the test file, file_with_tests. This
can be done using the following syntax:

macro_inputs Addr_0 Addr_1
macro_output Dout_1
macro_inputs Write_enable
...
end

Test Pattern Generation
Macro Boundary Definition

Tessent™ Scan and ATPG User’s Manual, v2022.4 495

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

which would cause MacroTest to expect the value for input Addr_0 to be the first value in each
test, followed by the value for input Addr_1, the expected output value for Dout_1, the input
value for Write_enable, and so on.

Note
Only the pin names need be specified, because the instance name “regfile_8” was given for
the macrotest command.

Macro Boundary Definition Without Using an Instance
Name

If an instance name is not given with the macrotest command, then you must provide an entire
hierarchical path/pin name for each pin of the macro. This is given in the header of the
MacroTest patterns file.
There must be one name per data bit in the data (test values) section that follows the header. For
example:

macro_inputs regfile_8/Addr_0regfile_8/Addr_1
macro_outputregfile_8/Dout_1
macro_inputsregfile_8/write_enable
...
end

The code sample defines the same macro boundary as was previously defined for regfile_8
using only pin names to illustrate the format. Because the macro is a single instance, this would
not normally be done, because the instance name is repeated for each pin. However, you can use
this entire pathname form to define a distributed macro that covers pieces of different instances.
This more general form of boundary definition permits a macro to be any set of pins at any
level(s) of hierarchy down to the top library model. If you use names that are inside a model in
the library, the pin pathname must exist in the flattened data structures. (In other words, it must
be inside a model where all instances have names, and it must be a fault site, because these are
the requirements for a name inside a model to be preserved in the tool).

This full path/pin name form of “macro boundary” definition is a way to treat any set of pins/
wires in the design as points to be controlled, and any set of pins/wires in the design as points to
be observed. For example, some pin might be defined as a macro_input that is then given {0,1}
values for some patterns, but X for others. In some sense, this “macro input” can be thought of
as a programmable ATPG constraint (see add_atpg_constraints), whose value can be changed
on a pattern by pattern basis. There is no requirement that inputs be connected to outputs. It
would even be possible to define a distributed macro such that the “output” is really the input to
an inverter, and the “input” is really the output of the same inverter. If you specified that the
input = 0, and the expected output = 1, MacroTest would ensure that the macro “input” was 0
(so the inverter output is 0, and its input is 1), and would sensitize the input of the inverter to
some scan cell in a scan chain. Although this is indeed strange, it is included to emphasize the
point that full path/pin forms of macro boundary definition are completely flexible and

Tessent™ Scan and ATPG User’s Manual, v2022.4496

Test Pattern Generation
Macro Boundary Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

unrelated to netlist boundaries or connectivity. Any set of connected or disjoint points can be
inputs, outputs, or both.

Observation Site Specification and Reporting
You can report the set of possible observation sites using the macrotest command switch,
-Report_observation_candidates. This switch reports, for each macro output, the reachable scan
cells and whether the scan cell is already known to be unable to capture/observe. Usually, all
reachable scan cells can capture, so all are reported as possible observation sites. The report
gives the full instance name of the scan cell’s memory element, and its gate id (which follows
the name and is surrounded by parentheses).
Although rarely done, you can specify for one macro output at a time exactly which of those
reported scan cells is to be used to observe that particular macro output pin. Any subset can be
so specified. For example, if you want to force macro output pin Dout_1 to be observed at one
of its reported observation sites, such as “/top/middle/bottom/ (13125)”, then you can specify
this as follows:

macro_output regfile_8/Dout_1
observe_at13125

Note
There can be only one macro_output statement on the line above the observe_at directive.
You must also specify only one observe_at site, which is always associated with the single

macro_output line that precedes it. If a macro_input line immediately precedes the observe_at
line, MacroTest generates an error message and exits.

The preceding example uses the gate id (number in parentheses in the -Report output) to specify
the scan cell DFF to observe at, but you can also use the instance pathname. Instances inside
models may not have unique names, so the gate id is always an unambiguous way to specify
exactly where to observe. If you use the full name and the name does not exactly match, the tool
selects the closest match from the reported candidate observation sites. The tool also warns you
that an exact match did not occur and specifies the observation site that it selected.

Macro Boundary Definition With Trailing Edge Inputs
MacroTest treats macros as black boxes, even if modeled, so do not assume you can gather this
information using connectivity. Assuming nothing is known about the macro’s internals,
MacroTest forces the user-specified expected outputs onto the macro outputs for each pattern.
This enables you to use black-boxed macros or create models for normal ATPG using the _cram
primitive, but treat the macro as a black box for internal testing. A _cram primitive may be
adequate for passing data through a RAM, for example, but not for modeling it for internal
faults. MacroTest trusts the output values you provide regardless of what would normally be
calculated in the tool, enabling you to specify outputs for these and other situations.

Test Pattern Generation
Macro Boundary Definition

Tessent™ Scan and ATPG User’s Manual, v2022.4 497

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Due to its black box treatment of even modeled RAMs/macros, MacroTest must sometimes get
additional information from you. MacroTest assumes that all macro inputs capture on the
leading edge of any clock that reaches them. So, for a negative pulse, MacroTest assumes that
the leading (falling) edge causes the write into the macro, whereas for a positive pulse,
MacroTest assumes that the leading (rising) edge causes the write. If these assumptions are not
true, you must specify which data or address inputs (if such pins occur) are latched into the
macro on a trailing edge.

Occasionally, a circuit uses leading DFF updates followed by trailing edge writes to the
memory driven by those DFFs. For trailing edge macro inputs, you must indicate that the
leading edge assumption does not hold for any input pin value that must be presented to the
macro for processing on the trailing edge. For a macro that models a RAM with a trailing edge
write, you must specify this fact for the write address and data inputs to the macro that are
associated with the falling edge write. To specify the trailing edge input, you must use a
boundary description that lists the macro’s pins (you cannot use the instance name only form).

Regardless of whether you use just pin names or full path/pin names, you can replace
“macro_inputs” with “te_macro_inputs” to indicate that the inputs that follow must have their
values available for the trailing edge of the shared clock. This enables MacroTest to ensure that
the values arrive at the macro input in time for the trailing edge, and also that the values are not
overwritten by any leading edge DFF or latch updates. If a leading edge DFF drives the trailing
edge macro input pin, the tool obtains the value needed at the macro input from the D input side
of the DFF rather than its Q output. The leading edge makes Q=D at the DFF, and then that new
value propagates to the macro input and waits for the trailing edge to use. Without the user
specification as a trailing edge input, MacroTest would obtain the needed input value from the
Q output of the DFF. This is because MacroTest would assume that the leading edge of the
clock would write to the macro before the leading edge DFF could update and propagate the
new value to the macro input.

It is not necessary to specify leading edge macro inputs because this is the default behavior. It is
also unnecessary to indicate leading or trailing edges for macro outputs. You can control the
cycle in which macro outputs are captured. This ensures that the tool correctly handles any
combination of macro outputs and capturing scan cells as long as all scan cells are of the same
polarity (all leading edge capture/observe or all trailing edge capture/observe).

In the rare case that a particular macro output could be captured into either a leading or a trailing
edge scan cell, you must specify which you prefer by using the -Le_observation_only switch or
-Te_observation_only switch with the macrotest command for that macro. For more
information on these switches, see “Example 3 — Using Leading Edge & Trailing Edge
Observation Only” and the macrotest description in the Tessent Shell Reference Manual.

Tessent™ Scan and ATPG User’s Manual, v2022.4498

Test Pattern Generation
Test Values Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

An example of the TE macro input declaration follows:

macro_input clock
te_macro_inputs Addr_0 Addr_1 // TE write address inputs
macro_output Dout_1
...
end

Test Values Definition
It is important to be familiar with the elements contained in the test file.
There are four different elements than can be in the test file:

• Comments (a line starting with “//” or #)

• Blank lines

• An optional pin reordering section (which must come before any values) that begins
with “MACRO_INPuts” or “MACRO_OUTputs” and ends with “END”

• The tests (one cycle per row of the file)

Normal (nonpulseable) input pin values include {0,1,X,Z}. Some macro inputs may be driven
by PIs declared as pulseable pins (add_clocks, add_read_controls, and add_write_controls
specify these pins in the tool). These pins can have values from {P,N} where P designates a
positive pulse and N designates a negative pulse. Although you can specify a P or N on any pin,
the tool issues a warning if it cannot verify that the pin connects to a pulseable primary input
(PI). If the tool can pulse the control and cause a pulse at that macro pin, then the pulse does
occur. If it cannot, the pulse does not occur. The tool generates a warning if you specify the
wrong polarity of pulse (an N, for example, when there is a direct, non-inverting connection to a
clock PI that has been specified with an off value of 0, which means that it can only be pulsed
positively). A P needs to be specified in such a case, and some macro inputs probably must be
specified as te_macro_inputs, because the N was probably used due to a negative edge macro. P
and N denote the actual pulse, not the triggering edge of the macro. It is the embedding that
determines whether a P or N can be produced.

Note
It is the declaration of the PI pin driving the macro input, not any declaration of the macro
input itself, which determines whether a pin can be pulsed in the tool.

Normal observable output values include {L,H}, which are analogous to {0,1}. L represents
output 0, and H represents output 1. You can give X as an output value to indicate Don't
Compare, and F for a Floating output (output Z). Neither a Z nor an X output value is observed.
Occasionally an output cannot be observed but must be known in order to prevent bus
contention or to enable observation of some other macro output.

Test Pattern Generation
Test Values Definition

Tessent™ Scan and ATPG User’s Manual, v2022.4 499

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you provide a file with these characters, a check is done to ensure that an input pin gets an
input value, and an output pin gets an output value. If an “L” is specified in an input pin
position, for example, an error message is issued. This helps detect ordering mismatches
between the port list and the test file. If you prefer to use 0 and 1 for both inputs and outputs,
then use the -No_l_h switch with the macrotest command:

macrotest regfile_8 file_with_tests -no_l_h

Assuming that the -L_h default is used, the following might be the testfile contents for our
example register file, if the default port list pin order is used.

// Tests for regfile_definition_name.
//
// W
// r
// i
// t
// e
// _
// DD AA e
// oo dd n
// uu dd a
// tt rr b
// __ __ l
// 01 01 e

 XX 00 0
 XX 00 1
 HH 00 0

The example file above has only comments and data; spaces are used to separate the data into
fields for convenience. Each row must have exactly as many value characters as pins mentioned
in the original port list of the definition, or the exact number of pins in the header, if pins were
specified there. Pins can be left off of an instance if macro_inputs and macro_outputs are
specified in the header, so the header names are counted and that count is used unless the
instance name only form of macro boundary definition is used (no header names exist).

To specify less than all pins of an instance, omit the pins from the header when reordering the
pins. The omitted pins are ignored for purposes of MacroTest. If the correct number of values
do not exist on every row, an error occurs and a message is issued.

Tessent™ Scan and ATPG User’s Manual, v2022.4500

Test Pattern Generation
Recommendations for MacroTest Use

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is an example where the address lines are exchanged, and only Dout_0 is to be
tested:

// Tests for regfile_definition_name testing only Dout_0
macro_output Dout_0
macro_inputs Addr_1 Addr_0 write_enable ..
...
end
// W
// r
// i
// t
// e
// _
// D AA e
// o dd n
// u dd a
// t rr b
// _ __ l
// 0 10 e

 X 00 0
 X 00 1
 H 00 0

It is not necessary to have all macro_inputs together. You can repeat the direction designators as
necessary:

macro_input write_enable
macro_output Dout_0
macro_inputs Addr_1 Addr_0
macro_outputs Dout_1 ...
...
end

Recommendations for MacroTest Use
When using MacroTest, you should begin early in the process. This is because the environment
surrounding a regfile or memory may prevent the successful delivery of the original user-
specified tests, and Design-for-Test hardware may have to be added to enable the tests to be
delivered, or the tests may have to be changed to match the surroundings so that the conversion
can occur successfully.
For example, if the write enable line outside the macro is the complement of the read enable line
(perhaps due to a line that drives the read enable directly and also fans out to an inverter that
drives the write enable), and you specify that both the read enable and write enable pins should
be 0 for some test, then MacroTest is unable to deliver both values. It stops and reports the line
of the test file, as well as the input pins and values that cannot be delivered. If you change the
enable values in the MacroTest patterns file to always be complementary, MacroTest can then
succeed. Alternatively, if you add a MUX to make the enable inputs independently controllable

Test Pattern Generation
Recommendations for MacroTest Use

Tessent™ Scan and ATPG User’s Manual, v2022.4 501

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

in test mode and keep the original MacroTest patterns unchanged, MacroTest would use the
MUX to control one of the inputs to succeed at delivering the complementary values.

Once MacroTest is successful, you should simulate the resulting MacroTest patterns in a time-
based simulator. This verifies that the conversion was correct, and that no timing problems
exist. The tool does not simulate the internals of primitives, and therefore relies on the fact that
the inputs produced the expected outputs given in the test file. This final simulation ensures that
no errors exist due to modeling or simulation details that might differ from one simulator to the
next. Normal ATPG tool considerations hold, and it is suggested that DRC violations be treated
as they would be treated for a stuck-at fault ATPG run.

To prepare to MacroTest an empty (TieX) macro that needs to be driven by a write control (to
enable pulsing of that input pin on the black box), issue the set_macrotest_options command.
This command prevents a G5 DRC violation and enables you to proceed. Also, if a transparent
latch (TLA) on the control side of an empty macro is unobservable due to the macro, the
set_macrotest_options command prevents it from becoming a TieX, as would normally occur.
Once it becomes a TieX, it is not possible for MacroTest to justify macro values back through
the latch. If in doubt, when preparing to MacroTest any black box, issue the
set_macrotest_options command before exiting setup mode. No errors occur because of this,
even if none of the conditions requiring the command exist.

ATPG commands and options apply within MacroTest, including cell constraints, ATPG
constraints, clock restrictions (it only pulses one clock per cycle), and others. If MacroTest fails
and reports that it aborted, you can use the set_abort_limit command to get MacroTest to work
harder, which may enable MacroTest to succeed. Siemens EDA recommends that you set a
moderate abort limit for a normal MacroTest run, then increase the limit if MacroTest fails and
issues a message saying that a higher abort limit might help.

ATPG effort should match the simulation checks for bus contention to prevent MacroTest
patterns from being rejected by simulation. Therefore, if you specify set_contention_check On,
you should use the -Atpg option. Normally, if you use set_contention_check Capture_clock,
you should use the -Catpg option instead. Currently, MacroTest does not support the -Catpg
option, so this is not advised. Using the set_decision_order Random is strongly discouraged. It
can mislead the search and diagnosis in MacroTest.

In a MacroTest run, as each row is converted to a test, that test is stored internally (similar to a
normal ATPG run). You can save the patterns to write out the tests in a format of your choice
(perhaps Verilog to enable simulation and WGL for a tester). The tool supports the same
formats for MacroTest patterns as for patterns generated by a normal ATPG run. However,
because MacroTest patterns cannot be reordered, and because the expected macro output values
are not saved with the patterns, it is not possible to read macrotest patterns back into the ATPG
tool. You should generate Macrotest patterns and then save them in all formats you need.

Note
The macro_output node in the netlist must not be tied to Z (floating).

Tessent™ Scan and ATPG User’s Manual, v2022.4502

Test Pattern Generation
MacroTest Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

MacroTest Examples
The following are examples of using MacroTest.

Example 1 — Basic 1-Cycle Patterns
Verilog Contents:

RAM mem1 (.Dout ({
Dout[7], Dout[6], Dout[5], Dout[4],
Dout[3], Dout[2], Dout[1], Dout[0]

}),
.RdAddr ({ RdAddr[1], RdAddr[0] }),
.RdEn (RdEn),
.Din ({

Din[7], Din[6], Din[5], Din[4],
Din[3], Din[2], Din[1], Din[0]

}),
.WrAddr ({ WrAddr[1], WrAddr[0] }),
.WrEn (WrEn)

);

ATPG Library Contents:
model RAM (Dout, RdAddr, RdEn, Din, WrAddr, WrEn) (
 input (RdAddr,WrAddr) (array = 1 : 0;)
 input (RdEn,WrEn) ()
 input (Din) (array = 7 : 0;)
 output (Dout) (
 array = 7 : 0;
 data_size = 8;
 address_size = 2;
 read_write_conflict = XW;
 primitive = _cram(,,
 _write {,,} (WrEn,,WrAddr,Din),
 _read {,,,} (,RdEn,,RdAddr,Dout)
);
)
)

Note
Vectors are treated as expanded scalars.

Because Dout is declared as “array 7:0”, the string “Dout” in the port list is equivalent to
“Dout<7> Dout<6> Dout<5> Dout<4> Dout<3> Dout<2> Dout<1> Dout<0>”. If the
declaration of Dout had been Dout “array 0:7”, then the string “Dout” would be the reverse of
the above expansion. Vectors are always permitted in the model definitions. Vectors are not
permitted in the macrotest input patterns file, so if you redefine the pin order in the header of
that file, scalars must be used. Any of “Dout<7>”, “Dout(7)”, or “Dout[7]” can be used to
match a bit of a vector.

Test Pattern Generation
MacroTest Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 503

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Dofile Contents:
set_system_mode analysis
macrotest mem1 ram_patts2.pat
write_patterns results/pattern2.f -replace

Test File Input (ram_patts2.pat) Contents:
// model RAM (Dout, RdAddr, RdEn, Din, WrAddr, WrEn) (
// input (RdAddr,WrAddr) (array = 1 : 0;)
// input (RdEn,WrEn) ()
// input (Din) (array = 7 : 0;)
//
// output (Dout) (
// array = 7 : 0;
// data_size = 8;
// address_size = 2;
//
// Write V1 (data vector 1) to address 0. Data Outputs
// and Read Address are Don’t Cares.
XXXXXXXX XX 0 10101010 00 P
// Read V1 from address 0. Data Inputs and Write Address
// are Don’t Cares.
HLHLHLHL 00 1 XXXXXXXX XX 0
XXXXXXXX XX 0 0x010101 01 P // Write V2 to address 1.
LXLHLHLH 01 1 xxxxxxxx xx 0 // Read V2 from address 1.

Tessent™ Scan and ATPG User’s Manual, v2022.4504

Test Pattern Generation
MacroTest Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Converted Test File Output (results/pattern2.f) Contents:
... skipping some header information
 SETUP =
 declare input bus "PI" = "/clk", "/Datsel",
 "/scanen_early", "/scan_in1", "/scan_en",
.... skipping some declarations

declare output bus "PO" = "/scan_out1";
 skipping some declarations

 CHAIN_TEST =
 pattern = 0;
 apply "grp1_load" 0 =
 chain "chain1" = "0011001100110011001100";
 end;
 apply "grp1_unload" 1 =
 chain "chain1" = "0011001100110011001100";
 end;
 end;

 SCAN_TEST =

 pattern = 0 macrotest ;
 apply "grp1_load" 0 =
 chain "chain1" = "0110101010000000000000";
 end;
 force "PI" "001X0XXXXXXXX" 1;
 pulse "/scanen_early" 2;
 measure "PO" "1" 3;
 pulse "/clk" 4;
 apply "grp1_unload" 5 =
 chain "chain1" = "XXXXXXXXXXXXXXXXXXXXXX";
 end;

 pattern = 1 macrotest ;
 apply "grp1_load" 0 =
 chain "chain1" = "1000000000000000000000";
 end;
 force "PI" "001X0XXXXXXXX" 1;
 measure "PO" "1" 2;
 pulse "/clk" 3;
 apply "grp1_unload" 4=
 chain "chain1" = "XXXXXXXXXXXXXX10101010";
 end;
 ... skipping some output ...

SCAN_CELLS =
 scan_group "grp1" =
 scan_chain "chain1" =
 scan_cell = 0 MASTER FFFF "/rden_reg/ffdpb0"...
 scan_cell = 1 MASTER FFFF "/wren_reg/ffdpb0"...
 scan_cell = 2 MASTER FFFF "/datreg1/ffdpb7"...
 ... skipping some scan cells ...
 scan_cell = 20 MASTER FFFF "/doutreg1/ffdpb1"...
 scan_cell = 21 MASTER FFFF "/doutreg1/ffdpb0"...
 end;
 end;

Test Pattern Generation
MacroTest Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 505

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 end;

Example 2— Synchronous Memories (1- & 2-Cycle Patterns)
Verilog Contents:

For this example, the RAM is as before, except a single clock is connected to an edge-triggered
read and edge-triggered write pin of the macro to be tested. It is also the clock going to the
MUX scan chain. There is also a separate write enable. As a result, it is possible to write using a
one-cycle pattern, and then to preserve the data written during shift by turning the write enable
off in the shift procedure. However, for this example, a read must be done in two cycles—one to
pulse the RAM’s read enable and make the data come out of the RAM, and another to capture
that data into the scan chain before shifting changes the RAM’s output values. There is no
independent read enable to protect the outputs during shift, so they must be captured before
shifting, necessitating a 2-cycle read/observe.

ATPG Library Contents:
model RAM (Dout, RdAddr, RdClk, Din, WrAddr, WrEn, WrClk) (
 input (RdAddr,WrAddr) (array = 1 : 0;)
 input (RdClk,WrEn, WrClk) ()
 input (Din) (array = 7 : 0;)
 output (Dout) (
 array = 7 : 0;
 data_size = 8;
 edge_trigger = rw;
 address_size = 2;
 read_write_conflict = XW;
 primitive = _cram(,,
 _write {,,} (WrClk,WrEn,WrAddr,Din),
 _read {,,,} (,RdClk,,RdAddr,Dout)
);
)
)

Note that because the clock is shared, it is important to only specify one of the macro values for
RdClk or WrClk, or to make them consistent. X means “Don’t Care” on macro inputs, so it is
used to specify one of the two values in all patterns to ensure that any external embedding can
be achieved. It is easier to not over-specify MacroTest patterns, which enables using the
patterns without having to discover the dependencies and change the patterns.

Dofile Contents:
set_system_mode analysis
 macrotest mem1 ram_patts2.pat
 write_patterns results/pattern2.f -replace

Tessent™ Scan and ATPG User’s Manual, v2022.4506

Test Pattern Generation
MacroTest Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test File Input (ram_patts2.pat) Contents:
// model RAM (Dout, RdAddr, RdClk, Din, WrAddr, WrEn, WrClk) (
// input (RdAddr,WrAddr) (array = 1 : 0;)
// input (RdClk,WrEn, WrClk) ()
// input (Din) (array = 7 : 0;)
//
// output (Dout) (
// array = 7 : 0;
// data_size = 8;
// edge_trigger = rw;
//
// Write V1 (data vector 1) to address 0.
XXXXXXXX XX X 10101010 00 1 P
// Read V1 from address 0 -- next 2 rows (1 row per cycle).
XXXXXXXX 00 P XXXXXXXX XX 0 X + // + indicates another cycle.
HLHLHLHL XX X XXXXXXXX XX 0 X // Values observed this cycle.
XXXXXXXX XX X 01010101 01 1 P // Write V2 to address 1.
xxxxxxxx 01 P xxxxxxxx xx 0 X + // Read V2,address 1,cycle 1.
LHLHLHLH XX X XXXXXXXX XX 0 X // Read V2,address 1,cycle 2.

Test Pattern Generation
MacroTest Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 507

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Converted Test File Output (results/pattern2.f) Contents:
... skipping some header information
 SETUP =
 declare input bus "PI" = "/clk", "/Datsel",
 "/scanen_early", "/scan_in1", "/scan_en",
.... skipping some declarations

declare output bus "PO" = "/scan_out1";
 skipping some declarations

 CHAIN_TEST =
 pattern = 0;
 apply "grp1_load" 0 =
 chain "chain1" = "0011001100110011001100";
 end;
 apply "grp1_unload" 1 =
 chain "chain1" = "0011001100110011001100";
 end;
 end;

 SCAN_TEST =

 pattern = 0 macrotest ;
 apply "grp1_load" 0 =
 chain "chain1" = "0110101010000000000000";
 end;
 force "PI" "001X0XXXXXXXX" 1;
 pulse "/scanen_early" 2;
 measure "PO" "1" 3;
 pulse "/clk" 4;
 apply "grp1_unload" 5 =
 chain "chain1" = "XXXXXXXXXXXXXXXXXXXXXX";
 end;

 pattern = 1 macrotest ;
 apply "grp1_load" 0 =
 chain "chain1" = "1000000000000000000000";
 end;
 force "PI" "001X0XXXXXXXX" 1;
 pulse "/clk" 2;
 force "PI" "001X0XXXXXXXX" 3;
 measure "PO" "1" 4;
 pulse "/clk" 5;
 apply "grp1_unload" 6=
 chain "chain1" = "XXXXXXXXXXXXXX10101010";
 end;
 ... skipping some output ...

Example 3 — Using Leading Edge & Trailing Edge Observation Only
Assume that a clock with an off value of 0 (positive pulse) is connected through buffers to a
rising edge read input of a macro, and also to both rising and falling edge D flip-flops. Either of
the flip-flops can capture the macro’s output values for observation. If you specify that the
outputs should be captured in the same cycle as the read pulse, then this definitely occurs if you
invoke MacroTest with the -Te_observation_only switch, because only the trailing edge (TE)

Tessent™ Scan and ATPG User’s Manual, v2022.4508

Test Pattern Generation
MacroTest Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

flip-flops are selected for observation. The rising edge of the clock triggers the macro’s read, the
values propagate to the scan cells in that same cycle, and then the falling edge of the clock
captures those values in the TE scan cells.

On the other hand, if you invoke MacroTest with the -Le_observation_only switch and indicate
in the MacroTest patterns that the macro’s outputs should be observed in the cycle after pulsing
the read pin on the macro, the rising edge of one cycle would cause the read of the macro, and
then the rising edge on the next cycle would capture into the TE scan cells.

These two command switches (-Te_observation_only and -Le_observation_only) ensure that
MacroTest behaves in a manner that is compatible with the particular macro and its embedding.
In typical cases, only one kind of scan cell is available for observation and the MacroTest
patterns file would, of course, need to be compatible. These options are only needed if both
polarities of scan cells are possible observation sites for the same macro output pin.

For additional information on the use of these switches, refer to the macrotest description in the
Tessent Shell Reference Manual.

Test Pattern Generation
Verifying Test Patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4 509

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Verifying Test Patterns
After testing the functionality of the circuit with a simulator and generating the test vectors with
the ATPG tool, you should run the test vectors in a timing-based simulator and compare the
results with predicted behavior from the ATPG tools. This run can point out any functionality
discrepancies between the two tools and also show timing differences that may cause different
results. The following subsections further discuss the verification you should perform.
Design Simulation With Timing . 510
Potential Causes of Simulation Mismatches . 521

Tessent™ Scan and ATPG User’s Manual, v2022.4510

Test Pattern Generation
Design Simulation With Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Design Simulation With Timing
At this point in the design process, you should run a full timing verification to ensure a match
between the results of golden simulation and ATPG. This verification is especially crucial for
designs containing asynchronous circuitry.
You should have already saved the generated test patterns with the write_patterns command.
The tool saved the patterns in parallel unless you used the -Serial switch to save the patterns in
series. You can reduce the size of a serial pattern file by using the -Sample switch; the tool then
saves samples of patterns for each pattern type, rather than the entire pattern set (except
MacroTest patterns, which are not sampled nor included in the sampled pattern file). This is
useful when you are simulating serial patterns because the size of the sampled pattern file is
reduced and thus, the time it takes to simulate the sampled patterns is also reduced.

Note
Using the -Start and -End switches limits file size as well, but the portion of internal patterns
saved does not provide a very reliable indication of pattern characteristics when simulated.

Sampled patterns more closely approximate the results you would obtain from the entire pattern
set.

The Verilog Testbench. 511
Parallel Versus Serial Patterns . 520

Test Pattern Generation
Design Simulation With Timing

Tessent™ Scan and ATPG User’s Manual, v2022.4 511

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Verilog Testbench
If you selected -Verilog as the format in which to save the patterns, the application
automatically creates a testbench that you can use in a timing-based simulator such as Questa
SIM to verify that the tool-generated vectors behave as predicted by the ATPG tools.
For example, assume you saved the patterns generated as follows:

ANALYSIS> write_patterns pat_parallel.v -verilog -replace

The tool writes the test patterns out in one or more pattern files and an enhanced Verilog
testbench file that instantiates the top level of the design. These files contain procedures to
apply the test patterns and compare expected output with simulated output.

After compiling the patterns, the scan-inserted netlist, and an appropriate simulation library,
you simulate the patterns in a Verilog simulator. If there are no miscompares between the
ATPG tool’s expected values and the values produced by the simulator, a message reports that
there is “no error between simulated and expected patterns.” If any of the values do not match, a
simulation mismatch has occurred and must be corrected before you can use the patterns on a
tester.

Verilog Simulation . 511
Verilog Plusargs . 512
Clock Monitoring During Simulation . 514
Parallel Scan Cell Monitoring During Serial Scan Pattern Simulation 518
How To Reduce Simulation Runtime. 518

Verilog Simulation
If you are using Questa SIM as your Verilog simulator, you’ll want to invoke with the
“+acc=npr” option in order to get visibility into nets, ports, and registers while decreasing run
time.
For example:

% vsim -c -voptargs=+acc=npr

The visibility provided by the “+acc=npr” option should be sufficient for debugging advanced
testbenches. For even more visibility but with less performance gain, you can modify the above
example as follows:

% vsim -c -voptargs=+acc

Tessent™ Scan and ATPG User’s Manual, v2022.4512

Test Pattern Generation
Design Simulation With Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Verilog Plusargs
Verilog plusargs are Verilog command line arguments used to provide information, including
values, to the simulation run. The name plusarg stems from the fact that the argument name is
preceded by a plus sign (+). The default Verilog testbench supports several Verilog plusargs.

• STARTPAT — Sets the starting pattern number for the simulation.

• ENDPAT — Sets the ending pattern number for the simulation.

• CHAINTEST — Makes the STARTPAT and ENDPAT plusargs apply to the chain test
patterns instead of scan test.

• END_AFTER_SETUP — Causes the testbench to simulate only the test_setup vectors
and then finish without simulating any of the other patterns.

• SKIP_SETUP — Causes the testbench to skip simulating the test_setup vectors and start
simulation with the first pattern (either chain or scan test, whichever is present).

• CONFIG — Specifies a name of the .cfg file, which controls which .vec files are
simulated. For information about using this plusarg, refer to CONFIG Usage.

• NEWPATH — Sets a new file path for reading the Verilog testbench. The default length
of the filename is 512. You can override this value using the
SIM_TMP_REG_LENGTH parameter.

• NEWOUTPATH — Sets a new path for output files generated during simulation.

• SAVE — Save a checkpoint by writing the state of the simulation to a file.

• RESTART — Restart the simulation at a checkpoint by restoring the state of the
simulation at a saved checkpoint.

STARTPAT, ENDPAT, and CHAINTEST Usage
When CHAINTEST=0 (the default), STARTPAT and ENDPAT specify the starting and ending
scan test patterns. When CHAINTEST=1, STARTPAT and ENDPAT specify the starting and
ending chain test patterns. So, specifying a STARTPAT of 0 without specifying
CHAINTEST=1 skips the chain test patterns and simulates only the scan test patterns.
Specifying an ENDPAT of a certain number and specifying CHAINTEST=1 causes simulation
up to that number of chain test patterns and no simulation of scan test patterns. Specifying a
STARTPAT and CHAINTEST=1 causes simulation starting from the chain test specified, and
also simulation of all scan test patterns. What is not supported is the ability to start simulation at
a certain chain test pattern and then end at a certain scan test pattern.

CONFIG Usage
If you have multiple testbenches for the same design but each for different pattern sets, you
need compile only one of the testbenches and then specify the .cfg files from the other pattern
sets in order to simulate those patterns. From the same design and setup information, you can

Test Pattern Generation
Design Simulation With Timing

Tessent™ Scan and ATPG User’s Manual, v2022.4 513

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

create patterns within the tool and then write these out as a Verilog testbench. You can then
create different pattern sets for the same design and setup information (that is, do not change
clocks, scan chains, or edt logic) and then also write out as Verilog testbenches. You can save
the first testbench and compile in Questa SIM, and then delete the testbench and .name files for
all of the other pattern sets, saving only the .cfg and .vec files. Then, using the one testbench,
you can use the CONFIG plusarg to specify which pattern set to simulate and use the other
plusargs to control the range of patterns to simulate.

Verilog Simulation Dump Files
By default, the Verilog testbench contains a section to create a dump file. This uses the
SIM_DUMPFILE_PATH parameter keyword, which defaults to true. As a result, the Verilog
testbench includes the following:

`ifdef VCD
 initial begin
 $dumpfile("patname.v.dump");
 $dumpvars;
 end
`endif

`ifdef UTVCD
 initial begin
 $dumpfile("patname.v.dump");
 $vtDump;
 $dumpvars;
 end
`endif

`ifdef debussy
 initial begin
 $fsdbDumpfile("patname.v.fsdb");
 $fsdbDumpvars;
 end
`endif

`ifdef QWAVE
 initial begin
 $qwavedb_dumpvars_filename(_qwave_dump_file_name);
 $qwavedb_dumpvars;
 end
`endif

Note
To produce a qwave.db dump file, run one of the following:

• qrun with “+define+QWAVE -qwavedb”

• vlog with +define+QWAVE and vsim with -qwavedb

Tessent™ Scan and ATPG User’s Manual, v2022.4514

Test Pattern Generation
Design Simulation With Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To instruct the testbench to write a Verilog dump file, you must define one of the given formats
in the testbench and use the SIM_INCLUDE parameter keyword to specify the file that defines
the format in the testbench.

Plusargs Usage Example
As an example of how to use plusargs, the following command line invokes Questa SIM and
simulates four scan test patterns:

vsim <testbench_top> -c -do "run -all" +STARTPAT=5 +ENDPAT=8

Clock Monitoring During Simulation
You can instruct the tool to generate the Verilog testbench with the capability to monitor clocks
for both ATPG and IJTAG patterns during simulation. Additionally, you can monitor fast input
clocks of all OCC instances that are in fast capture mode.

ATPG and IJTAG Patterns Specifics
For ATPG and IJTAG patterns, the tool reports during testbench pattern simulation a summary
of each clock, and if the clock is running at the correct period/frequency for the following
patterns:

• ATPG Patterns — The Verilog testbench monitors all the clocks associated with all the
iCalls from the test_setup and all the external/internal asynchronous clocks with a
period.

• IJTAG Patterns — The Verilog testbench monitors the clock destinations for IJTAG-
based patterns. For each iClock, you can enable clock monitoring at the time when the
iClock is run to ensure each iClock is running at the correct period.

The tool independently monitors each clock to ensure that the clock is running with the correct
period for a duration of n cycles of the clock. By default n equals 10, but you can change this
number.

Note
There is no support for monitoring clocks derived from TCK as these clocks may not be
continuous during the clock monitoring window because of unforeseen inject_cycles that

can turn off TCK.

OCC Fast Input Clock Specifics
For OCC fast input clock inputs, the testbench monitors the fast clock inputs of all OCC
instances that are in fast capture mode. The clock monitoring mechanism checks to ensure the
fast clock inputs of all OCC instances that are in fast capture mode are running after test_setup.

Test Pattern Generation
Design Simulation With Timing

Tessent™ Scan and ATPG User’s Manual, v2022.4 515

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Monitoring Window
The testbench monitors the fast clock inputs of all OCC instances in fast capture mode right
after test_setup up to the start of the unloading of the next pattern encompassing at least 10
tester cycles or the end of the simulation, whichever comes first. The first pattern can be chain
pattern, scan pattern, or whichever come first. If the fast clock inputs of these OCC instances are
running during this monitor window, the testbench assumes that all they are free running until
the end of simulation.

OCC Monitoring and LogicBIST Simulation Limitations
• The testbench only detects whether the OCC fast clock inputs are running or not. There

is no detection of whether the OCC fast input clock is running at a correct frequency.

• No support for detecting if OCC fast clock inputs that periods that are multiples of each
other are synchronized. The testbench only detects if the clocks are running or not.

• OCC fast input clock monitoring is disabled for logicBIST simulation.

Clock Monitoring Code Testbench Generation
The SIM_CLOCK_MONITOR parameter file keyword instructs the tool to generate the clock
monitoring controls in the Verilog testbench when you create patterns with the write_patterns
command. By default, this keyword is set to ON.

You can disable this by specifying in your external parameter file or interactively on the
command line the SIM_CLOCK_MONITOR keyword with a value of OFF in conjunction with
the write_patterns command as in the following example:

write_patterns test_patterns.v -verilog -parameter_list {SIM_CLOCK_MONITOR off}

Clock Monitoring Control During Simulation
During simulation, you can turn off clock monitoring using the following methods:

`define TESSENT_DISABLE_CLOCK_MONITOR

`define TESSENT_DISABLE_CLOCK_MONITOR_PatternName

where PatternName is the prefix of the testbench leaf name.

You can find these controls in the Verilog testbench before the clock monitoring code.

Clock Precision Margin
By default, the testbench considers the clock correct if the clock’s running period is within 1
percent of the expected period. During simulation, you can change the precision margin to
another value using the following methods:

`define TESSENT_CLOCK_MONITOR_PERIOD_MARGIN_PERCENT margin

where margin is an integer that specifies a percentage value.

Tessent™ Scan and ATPG User’s Manual, v2022.4516

Test Pattern Generation
Design Simulation With Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

`define TESSENT_CLOCK_MONITOR_PERIOD_MARGIN_PERCENT_PatternName margin

where PatternName is the prefix of the testbench leaf name, and margin is an integer that
specifies a percentage value.

When using these methods, you do not need to regenerate the testbench. You can find these
controls in the Verilog testbench before the clock monitoring code.

`define TESSENT_CLOCK_MONITOR_PERIOD_MARGIN_PERCENT margin

Clock Monitoring Duration
By default, the testbench monitors each clock for a duration of 10 cycles. During simulation,
you can change the duration using the following methods:

`define TESSENT_CLOCK_MONITOR_CYCLES number_of_cycles

where number_of_cycles is the new duration specified in cycles.

`define TESSENT_CLOCK_MONITOR_CYCLES_PatternName number_of_cycles

where PatternName is the prefix of the testbench leaf name, and number_of_cycles is the
new duration specified in cycles.

When using these methods, you do not need to regenerate the testbench. You can find these
controls in the Verilog testbench before the clock monitoring code.

Abort on Error
During simulation, you can abort the simulation if the computed period of the clock does not
fall within the expected margin. By default, the testbench stops simulation when there are errors
detected in the clock period. You can change this using the following methods:

`define TESSENT_CONTINUE_ON_CLOCK_ERROR

overrides the default abort.

`define TESSENT_CONTINUE_ON_CLOCK_ERROR_PatternName

overrides the default abort by prefix of the testbench leaf name.

You can find these controls in the Verilog testbench before the clock monitoring code.

Clock Monitor Report
At the beginning of each clock monitoring, the tool reports the monitored clock using a format
similar to the following:

4700ns: Start Clock Monitoring on:
core_rtl_tessent_mbist_c1_controller_inst.BIST_CLK

Test Pattern Generation
Design Simulation With Timing

Tessent™ Scan and ATPG User’s Manual, v2022.4 517

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

At the conclusion, the tool issues one of the following reports for each monitored clock:

• Clocks that are running correctly within the expected margin. For example:

111600ns: Clock Monitoring passed:
core_rtl_tessent_mbist_c1_controller_inst.BIST_CLK Period =
9.000 ns as expected (within 1.0% margin of 9.000 ns)

• Clocks that are running incorrectly because the periods are not within the expected
margin. For example:

111600ns: Clock Monitoring failed:
core_rtl_tessent_mbist_c1_controller_inst.BIST_CLK Period
expected = 9.000 ns actual = 9.400 ns.

• Clocks that are not pulsing at all.

111600ns: Clock Monitoring failed:
core_rtl_tessent_mbist_c1_controller_inst.BIST_CLK Period
expected = 9.000 ns actual = n/a (no transition detected).

• Clocks that did not received enough duration to compute the periods.

111600ns: Clock Monitoring failed:
core_rtl_tessent_mbist_c1_controller_inst.BIST_CLK
Period expected = 9.000 ns actual = 9.000 ns (did not received
the expected 10 cycles)

OCC Clock Monitoring Report Specifics
At the end of the beginning of the monitoring window, the testbench reports the following
message for each OCC fast clock:

5440 Start OCC Fast Clock Input Monitoring on: <fast_clock_input_pin>.

At the end of the monitoring window, the testbench issues the following message for each OCC
fast clock input that is running during the monitoring window. The message includes the period
and the number of clock cycles detected during the monitoring window:

1040 OCC Fast Clock Input Monitoring Passed: <fast_clock_input_pin>.
Measured period = <period>. Number of Cycles = <num_cycles>

At the end of the monitoring window, the testbench issues the following message for each OCC
fast clock input that is not running during the monitoring window:

1040 OCC Fast Clock Input Monitoring Failed: <fast_clock_input_pin>.
No transitions detected.

Tessent™ Scan and ATPG User’s Manual, v2022.4518

Test Pattern Generation
Design Simulation With Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Parallel Scan Cell Monitoring During Serial Scan Pattern
Simulation

Parallel scan cell monitoring is a method for observing and reporting mismatches while
simulating serial patterns. When this is enabled, the tool monitors the internal scan structures
while shifting data. This can help you in situations where you have simulation mismatches in a
serial testbench, but the parallel-load testbench passes, and is especially useful for EDT. For
example, you can narrow problems down to scan chain loading (EDT logic) or capture clock
problems (incorrect scan unload data prior to unloading).
To enable parallel scan cell monitoring, set the SIM_PARALLEL_MONITOR keyword to 1.
When this keyword is enabled, the tool compares all scan cells in internal scan chains after scan
loading and before scan unloading. It then reports on any mismatches it detects during this
process.

Note
The testbench that this functionality produces contains SystemVerilog constructs, so you
must compile it with SystemVerilog enabled. You can generally do this by writing the

pattern file with a .sv extension instead of .v. Consult your compiler documentation for further
information on how to enable SystemVerilog.

Note
Enabling parallel scan cell monitoring requires additional disk space and causes compilation
of the testbench to take longer. However, it has a minimal impact on simulation time.

Because serial pattern simulation is time-consuming, it is recommended to enable this feature
any time you write out a serial testbench, instead of only when you find mismatches.

Mismatch messages in the log start and end with the following:

<time>: Chain monitor found mismatch for <pattern> <location>
...
End chain monitor mismatch

At the end of simulation, the summary data includes the number of chain monitor compares and
mismatches.

How To Reduce Simulation Runtime
An extensive test_setup sequence can result in a long simulation runtime. Use the save and
restore simulation options to reduce runtime by simulating test_setup one time, storing the
results, and later re-using those stored results for new simulations.

Test Pattern Generation
Design Simulation With Timing

Tessent™ Scan and ATPG User’s Manual, v2022.4 519

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can use Questa Simulator switches to run the Verilog testbench. The Verilog testbench
contains special stop and start points to interoperate with Questa checkpoint commands. As a
result, you can reduce simulation runtime as follows:

• Simulate an extensive set of patterns for test_setup with a compiled testbench.

• Save a checkpoint by writing the state of the simulation to a file.

• Restore the checkpoint for new simulations to avoid re-simulating test_setup each time.

• Simulate different pattern sets by using different configuration files for the testbench.

This feature is on by default.

Note
Set the SIM_SAVE_RESTART parameter keyword to 0 to remove these features from the
Verilog testbench for backward compatibility with an old testbench.

Examples
Example 1

Simulate the test_setup and checkpoint the state of the simulation.

vsim module_name +END_AFTER_SETUP=1 +SAVE=1 -do 'run -all; checkpoint mydata.dat;
quit;'

Simulate a range of patterns without simulating test_setup again. Set the plusargs to the
opposite values from when the checkpoint file was saved.

vsim module_name +END_AFTER_SETUP=0 +SAVE=0 +SKIP_SETUP=1 +RESTART=1
+ENDPAT=4 -restore mydata.dat -do 'run -all; quit;'

Simulate other ranges of patterns using the same command with different range values.

vsim module_name +END_AFTER_SETUP=0 +SAVE=0 +SKIP_SETUP=1 +RESTART=1
+STARTPAT=5 +ENDPAT=9 -restore mydata.dat -do 'run -all; quit;'

Example 2
Use the ATPG tool to save multiple Verilog pattern sets. Ensure these pattern sets share the
same test_setup procedure, timeplates, clocks, and scan chain configurations. Then you can
simulate the test_setup procedure one time and use the same testbench and checkpoint data by
specifying alternate configuration (.cfg) files to use with the compiled testbench.

The tool saves the following for each Verilog pattern set that it writes:

• Compiled testbench.

• Verilog .v file.

• Configuration .cfg file.

Tessent™ Scan and ATPG User’s Manual, v2022.4520

Test Pattern Generation
Design Simulation With Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Patterns in vector .vec files.

• Optionally, various .name files.

When you specify the configuration file to use with the compiled testbench, you can simulate
different pattern sets because the prerequisite conditions exist (same timeplates, scan chains,
and clocks). For example:

vsim module_name +END_AFTER_SETUP=1 +SAVE=1 -do 'run -all; checkpoint mydata.dat;
quit;'

vsim module_name +END_AFTER_SETUP=0 +SAVE=0 +SKIP_SETUP=1 +RESTART=1
+CONFIG=alt.cfg -restore mydata.dat -do 'run -all; quit;'

The first command simulates the test_setup using the original configuration file and saves a
checkpoint of the state of the design. The second command restores the state of the design using
the checkpoint and skips the test_setup patterns in those .vec files. Then it simulates the .vec
files using the alt.cfg alternate configuration file.

Parallel Versus Serial Patterns
Be sure to simulate parallel patterns and at least a few serial patterns. Parallel patterns simulate
relatively quickly, but do not detect problems that occur when data is shifted through the scan
chains. One such problem, for example, is data shifting through two cells on one clock cycle
due to clock skew. Serial patterns can detect such problems. Another reason to simulate a few
serial patterns is that correct loading of shadow or copy cells depends on shift activity. Because
parallel patterns lack the requisite shift activity to load shadow cells correctly, you may get
simulation mismatches with parallel patterns that disappear when you use serial patterns.
Therefore, always simulate at least the chain test or a few serial patterns in addition to the
parallel patterns.
For a detailed description of the differences between serial and parallel patterns, refer to “Serial
Versus Parallel Scan Chain Loading” on page 610 and “Parallel Scan Chain Loading” on
page 610. See also “Reduce Serial Loading Simulation Time With Sampling” on page 612 for
information on creating a subset of sampled serial patterns. Serial patterns take much longer to
simulate than parallel patterns (due to the time required to serially load and unload the scan
chains), so typically only a subset of serial patterns is simulated.

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 521

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Potential Causes of Simulation Mismatches
Simulation mismatches can have any number of causes; consequently, the most challenging part
of troubleshooting them is knowing where to start. Because a lot of information is available,
your first step should be to determine the likeliest potential source of the mismatch.

Note
Before troubleshooting simulation mismatches, be sure that the chain test has run without
error. You should resolve any problem with the scan chain before investigating simulation

mismatches.

Figure 8-70 is a suggested flow to help you investigate causes of simulation mismatches.

Figure 8-70. Mismatch Diagnosis Guidelines

For clock skew problems, refer to the topic “Clock-Skew Problems With Mux-DFF Designs”
on page 538.

Tessent™ Scan and ATPG User’s Manual, v2022.4522

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The remaining issues, along with analysis approaches, are discussed in the following sections:

Simulation Mismatch Investigation . 522
DRC Issues . 523
Shadow Cells . 523
Library Problems. 523
Timing Violations. 524
Simulation Data Analysis . 524
Simulation Mismatch Analysis . 530

Simulation Mismatch Investigation
If DRC violations do not seem to be a problem, you need to take a closer look at the
mismatches. You need to determine when, where, and how many mismatches occur.

• Are the mismatches reported on primary outputs (POs), scan cells, or both?

Mismatches on scan cells can be related to capture ability and timing problems on the
scan cells. For mismatches on primary outputs, the issue is more likely to be related to
an incorrect value being loaded into the scan cells.

• Are the mismatches reported on just a few or most of the patterns?

Mismatches on a few patterns indicates a problem that is unique to certain patterns,
while mismatches on most patterns indicate a more generalized problem.

• Are the mismatches observed on just a few pins/cells or most pins/cells?

Mismatches on a few pins/cells indicates a problem related to a few specific instances or
one part of the logic, while mismatches on most patterns indicate that something more
general is causing the problem.

• Do both the serial and the parallel testbench fail or just one of them?

A problem in the serial testbench only, indicates that the mismatch is related to shifting
of the scan chains (for example, data shifting through two cells on one clock cycle due to
clock skew). The problem with shadows mentioned in “Parallel Versus Serial Patterns”
on page 520, causes the serial testbench to pass and the parallel testbench to fail.

• Does the chain test fail?

As described above, serial pattern failure can be related to shifting of the scan chain. If
this is true, the chain test (which simply shifts data from scan in to scan out without
capturing functional data) also fails.

• Do only certain pattern types fail?

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 523

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If only ram sequential patterns fail, the problem is most certainly related to the RAMs
(for instance incorrect modeling). If only clock_sequential patterns fail, the problem is
probably related to non-scan flip-flops and latches.

DRC Issues
The DRC violations that are most likely to cause simulation mismatches are C6 and T24.
For details on these violations, refer to “Design Rule Checking” in the Tessent Shell Reference
Manual and Support Center describing each of these violations. For most DRC-related
violations, you should be able to see mismatches on the same flip-flops where the DRC
violations occurred.

You can avoid mismatches caused by the C6 violation by enabling the set_clock_off_simulation
command.

Shadow Cells
Another common problem that produces simulation mismatches is shadow cells.
Such cells do not cause DRC violations, but the tool issues the following message when going
into analysis mode:

// 1 external shadows that use shift clocking have been identified.

A shadow flip-flop is a non-scan flip-flop that has the D input connected to the Q output of a
scan flip-flop. Under certain circumstances, such shadow cells are not loaded correctly in the
parallel testbench. If you see the above message, it indicates that you have shadow cells in your
design and that they may be the cause of a reported mismatch. For more information about
shadow cells and simulation mismatches, consult the online Support Center—see “Global
Customer Support and Success” on page 810.

Library Problems
A simulation mismatch can be related to an incorrect library model; for example, if the reset
input of a flip-flop is modeled as active high in the analysis model used by the tool, and as
active low in the Verilog model used by the simulator. The likelihood of such problems depends
on the library. If the library has been used successfully for several other designs, the mismatch
probably is caused by something else. On the other hand, a newly developed, not thoroughly
verified library could easily cause problems. For regular combinational and sequential elements,
this causes mismatches for all patterns, while for instances such as RAMs, mismatches only
occur for a few patterns (such as RAM sequential patterns).
Another library-related issue is the behavior of multi-driven nets and the fault effect of bus
contention on tristate nets. The ATPG tool is conservative by default, so non-equal values on

Tessent™ Scan and ATPG User’s Manual, v2022.4524

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the inputs to non-tristate multi-driven nets, for example, always results in an X on the net. For
additional information, see the set_net_resolution and set_net_dominance commands.

Timing Violations
Setup and hold violations during simulation of the testbench can indicate timing-related
mismatches. In some cases, you see such violations on the same scan cell that has reported
mismatches; in other cases, the problem might be more complex. For instance, during loading
of a scan cell, you may observe a violation as a mismatch on the cell(s) and PO(s) that the
violating cell propagates to. Another common problem is clock skew.
Refer to “Clock-Skew Problems With Mux-DFF Designs” on page 538 for more information
about these topics.

Another common timing-related issue is that the timeplate file, test procedure file, or both has
not expanded. By default, the test procedure and timeplate files have one “time unit” between
each event. When you create testbenches using the -Timingfile switch with the write_patterns
command, the time unit expands to 1000 ns in the Verilog testbenches. When you use the
default -Procfile switch and a test procedure file with the write_patterns command, each time
unit in the timeplate is translated to 1 ns. This can easily cause mismatches.

Simulation Data Analysis
If you still have unresolved mismatches after performing the preceding checks, examine the
simulation data thoroughly, and compare the values observed in the simulator with the values
expected by the tool. The process you would use is very similar in the Verilog testbenches.

Mismatch Resolution Using Simulation Data
When simulated values do not match the values expected by the ATPG tool, the enhanced
Verilog parallel testbench reports the time, pattern number, and scan cell or primary output
where each mismatch occurred. The serial testbench reports only output and time, so it is more
challenging to find the scan cell where the incorrect value has been captured. It is recommended
to run the parallel testbench with a few serial shift cycles. this enables you to catch both capture
and shift problems with a single pattern set. To apply serial post-shift cycles, write out the
patterns with the “SIM_POST_SHIFT” parameter. For example, to define five post-shift cycles,
use “write_patterns <pat.v> -verilog -parameter_list {SIM_POST_SHIFT 5}”.

Based on the time and scan cell where the mismatch occurred, you can generate waveforms or
dumps that display the values just prior to the mismatch. Compare these values to the values
that the tool expected. With this information, trace back in the design (in both the ATPG tool
and the simulator) to find where the mismatch originates.

When comparing Verilog simulation data to ATPG tool data, it is helpful to use the
“_procedure_string”, “_pattern_count”, “_cycle_count”, “_compare_fail”, and “_chain_test_”

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 525

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

signals at the top level of your testbench. Display the “_procedure_string” signal in ASCII
format to see the simulated procedure. When you use the “_procedure_string” signal, the
Verilog testbench includes the test procedure simulated by the tool, which makes it easier for
you to understand the sequence of events in the testbench, and also how to compare data
between the ATPG tool and the simulator. In the example simulation transcript in Figure 8-71, a
mismatch is reported for pattern 0, cycle 13, at time 1310 ns. The cursor is located at the
mismatch point. The figure illustrates that “_compare_fail” signal increases when there is a
mismatch. From the “_procedure_string” signal, you can see that the mismatch occurs during
the “SHIFT” procedure, when the data is shifted out. Because the “_chain_test_” signal is 0,
you can determine that the failure is on the scan_test patterns.

Figure 8-71. Simulation Transcript

Simulated 1 patterns

Simulated 2 patterns

End chain test

1310ns: Simulated response for chain chain1: 000 pattern 0 cycle 13
1310ns: Expected response for chain chain1: 100 pattern 0 cycle 13
1310ns: Mismatch at chain chain1 cell 0 name ff0.Q, Simulated 0, Expected 1
Simulated 1 patterns

Simulated 2 patterns

Error between simulated and expected patterns

** Note: $finish : patterns/pat_p.v(1123)
Time: 1702 ns Iteration: 0 Instance: /chip_pat_p_v_ctl

Tessent™ Scan and ATPG User’s Manual, v2022.4526

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The waveforms include the value for the flip-flop with mismatches, as well as the
“_pattern_count” signal. The “_pattern_count” signal increments just prior to the capture
procedure. That means that when “_pattern_count” is 0 and “_procedure_string” is “SHIFT”,
data is shifted out for pattern 0 (and shifted in for pattern 1). By using these signals as a guide,
you can see that the time of the mismatch is during the shift procedure after pattern 0. The
capture for pattern 0 occurs between time 1000 and 1200, when “_procedure_string” has a value
of “LAUNCH_CAPTURE”.

To see the corresponding data in the ATPG tool, use “set_gate_report pattern_index 0”, where 0
is the pattern index.

Tip
Write out a flat model and a set of binary patterns in case you need them to debug pattern
simulation mismatches.

// command: set_context patterns -scan
// command: read_flat_model patterns/netlist.edt.flat
// command: read_patterns patterns/pat.bin

Note
Use the data from the mismatch transcript to report and display the failing cell and pattern:

1310ns: Simulated response for chain chain1: 000 pattern 0 cycle 13
1310ns: Expected response for chain chain1: 100 pattern 0 cycle 13
1310ns: Mismatch at chain chain1: cell 0 name ff0.Q, Simulated 0, Expected 1

• Bring up the failing cell in the Tessent Visualizer flat schematic with the gate report set
to the failing pattern: “report_scan_cell <mismatch_chain_name>
<mismatch_cell_number> -display”:

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 527

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Display the gate in hierarchical view to see cell-level pins:

// command: report_scan_cells chain1 0 -display
// command: set_gate_report pattern 0 -external
// command: # Manual report of the gate:
// command: report_gates ff0
// /ff0 sff
// D I (100) /ff2/Q
// SI I (100) /ff1/Q
// SE I (000) /scan_en
// CLK I (010) /vin_5/OUT
// Q O (111-[1]) /scan_out1
// QB O (000-[0])

Tessent™ Scan and ATPG User’s Manual, v2022.4528

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Once the data is displayed in the simulation waveforms and in Tessent Visualizer, start
debugging by comparing the values:

1. Check the loaded value on the scan cell is correct at the beginning of the capture
window. In this example, ff0/Q is 1 in simulation and in Tessent Visualizer at the
beginning of capture:

Figure 8-72. Comparing Simulation and Tessent Visualizer (Before Mismatch)

If the value in Tessent Visualizer and simulation match, the scan cell was loaded
correctly and there is no problem during shift.

2. Compare the values during capture. For example, in this case Tessent Visualizer shows
the flop has a clock (010); SE is 0 (000), selecting the D path; and D is (100). Q captures

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 529

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the 1, and the output is (111). In the simulation waveforms, the clock pulse is visible, SE
is 0, and D changes from 1 to 0, matching the values in Tessent Visualizer:

Figure 8-73. Comparing Simulation and Tessent Visualizer (After Mismatch)

The problem is that Q is not capturing the expected value of 1; instead, it captures 0 due
to a hold time violation.

Tessent™ Scan and ATPG User’s Manual, v2022.4530

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Simulation Mismatch Analysis
By default, the simulation VCD file, test patterns, and design data are all analyzed and the
mismatch sources are identified. Once the analysis is complete, you can use Tessent Visualizer
to graphically display the overlapping data and pinpoint the source of each mismatch.
The ATPG simulation mismatch analysis functionality is enhanced to optimize the debugging
of large (100K gates and more) designs and to support all simulators and distributed processing.
Once analysis is complete, Tessent Visualizer graphically displays the source of the mismatches
for easy identification.

The Simulation Mismatch Analysis Flow . 530
Automatically Analyzing Simulation Mismatches . 531
Manually Analyzing Simulation Mismatches . 534
Patterns Analysis . 538
Clock-Skew Problems With Mux-DFF Designs . 538

The Simulation Mismatch Analysis Flow
The simulation mismatch analysis flow includes several stages.
You can analyze simulation mismatches using the following methods:

• Automatically Analyzing Simulation Mismatches — Using this method, the tool runs
the entire flow, from Stage 1 — ATPG through Stage 5 — Mismatch source
identification using a single command invocation— see Figure 8-74.

• Manually Analyzing Simulation Mismatches — Using this method, you can run
mismatch analysis flow in steps. For example, you correct known issues in your failure
file and, instead of re-running Stage 2 — Verilog testbench simulation, you can proceed
to Stage 3 — Debug testbench generation using the modified failure file.

Both the automatic and manual flows follow the identical stages: the key difference is the
automatic flow runs the entire flow while the manual flow enables you to use the flow in steps.
The following sections cover the simulation mismatch analysis flow in detail.

Note
This procedure does not support debugging MacroTest or chain test patterns.

Stage 1 — ATPG
Generate the flattened model, test patterns, and Verilog testbench (mentor_default.v). The test
patterns must be saved in a format that can be read back into the ATPG tool (binary, ASCII,
STIL, or WGL), and the testbench must be able to generate a failure file.

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 531

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Stage 2 — Verilog testbench simulation
Simulating the Verilog testbench generates a failure file (mentor_default.v.fail). If no
simulation mismatches are found, the automatic simulation mismatch analysis stops.

Stage 3 — Debug testbench generation
Generate a testbench for just the failing patterns (mentor_default.v_vcdtb.v) by using the ATPG
tool to read the flattened netlist and read in the test patterns generated in Stage 1 and the failure
file from Stage 2. The testbench is set up to output a simulation results VCD file.

Stage 4 — Debug testbench simulation
In the same ATPG tool session, simulate the debug testbench generated in Stage 3. This
simulation produces the VCD file (mentor_default.v_debug.vcd).

Stage 5 — Mismatch source identification
Load the VCD file and trace each mismatch to its source. Then report the mismatch sources.

Note
All generated files are placed in the work_dft_debug directory inside your working
directory. This directory is created if it does not already exist.

Automatically Analyzing Simulation Mismatches
You can use the tool to automatically analyze simulation mismatches.
Figure 8-74 shows the automatic simulation mismatch analysis flow. Using this procedure, you
invoke the tool using the analyze_simulation_mismatches command with the -auto switch, and
the tool automatically runs the all stages of the flow. This procedure supports using a third-party
simulator and distributing processing to a remote server.

Tessent™ Scan and ATPG User’s Manual, v2022.4532

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-74. Automatic Simulation Mismatch Analysis Flow

Prerequisites
• (Optional) If you are using an external third-party simulator, you must create a script to

invoke, set up, and run the simulator. See Example.

• (Optional) If you want to distribute the simulation part of the analysis, you must have
access to a remote server that can be accessed through rsh. For more information, see the
analyze_simulation_mismatches description in the Tessent Shell Reference Manual.

Procedure
Note

All generated files are placed in the work_dft_debug directory inside your working
directory. This directory is created if it does not already exist.

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 533

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

1. Use the ATPG tool to read a design netlist or flat model. For example:

$ tessent -shell

SETUP> set_context patterns -scan

SETUP> read_verilog data/design.v

2. Specify the scan data for the scan cells in the design and switch to analysis system mode.
For example:

SETUP> add_scan_groups ...

SETUP> add_scan_chains ...

SETUP> add_clocks
...

SETUP> set_system_mode analysis

3. Specify the source test patterns for the design. For example:

ANALYSIS> read_patterns pats/testpat.bin

4. If you are using a third-party simulator, specify your simulator invoke script. For
example:

ANALYSIS> set_external_simulator -simulation_script runsim

For more information, see Example and the set_external_simulator description in the
Tessent Shell Reference Manual.

5. Run the automatic mismatch analysis. For example:

ANALYSIS> analyze_simulation_mismatches -auto -external_patterns

By default, the analysis runs on the local server. To run the simulation portion of the
analysis on a remote server, use the -host option. For example:

ANALYSIS> analyze_simulation_mismatches -auto -external_patterns -host abc_test

For more information, see the analyze_simulation_mismatches description in the
Tessent Shell Reference Manual.

By default, the analysis compares the specified failure file to the current test pattern
source to verify that both are generated from the same version of the design. If files do
not match, an error displays and the process aborts.

Once the test patterns and failure file pass the verification, a testbench is created
specifically for the mismatches in the failure file and simulated. The simulation results
are compared with the test patterns and design data to determine the source of simulation
mismatches listed in the failure file.

Tessent™ Scan and ATPG User’s Manual, v2022.4534

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Open Tessent Visualizer by issuing the report_mismatch_sources command with the
-display option to view and further debug the mismatches in the a schematic tab. For
example:

ANALYSIS> report_mismatch_sources -display flat_schematic

Note
In the Flat Schematic window, pin names assigned to the value “.” indicate that the
VCD debug testbench did not capture the VCD value for that location. It is not

possible to capture VCD values for every node in the design due to very large file sizes
and run time; the testbench only captures values in the combination cone behind the
failure location, which in most cases provides sufficient information to explain the
mismatch.

For a complete list of possible pin name values resulting from simulation mismatches,
see the report_mismatch_sources description in the Tessent Shell Reference Manual.

Manually Analyzing Simulation Mismatches
You can manually debug simulation mismatches using the analyze_simulation_mismatches
command. This procedure supports using a third-party simulator and distributing processing to
a remote server.
Figure 8-75 shows the manual simulation mismatch analysis flow.

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 535

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-75. Manual Simulation Mismatch Analysis Flow

Prerequisites
• (Optional) If you are using an external third-party simulator, you must create a script to

invoke, set up, and run the simulator. See Example.

• (Optional) If you want to distribute the simulation part of the analysis, you must have
access to a remote server that can be accessed through rsh. For more information, see the
analyze_simulation_mismatches description in the Tessent Shell Reference Manual.

• A design netlist or flat model and the associated test patterns are available.

• Test patterns must have been verified and mismatches exist.

• In order to generate a failure file for a manually generated testbench, you must set the
“SIM_DIAG_FILE” parameter file keyword to 2 or 1(default) prior to ATPG.

Tessent™ Scan and ATPG User’s Manual, v2022.4536

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• For a manual simulation, you must set the “_write_DIAG_file” parameter to 1 in the
Verilog testbench to generate the failure file. This is done automatically if you set the
SIM_DIAG_FILE parameter file keyword to 2 prior to ATPG.

Procedure
Note

All generated files are placed in the work_dft_debug directory inside your working
directory. This directory is created if it does not already exist.

1. Use the ATPG tool to read a design netlist or flat model. For example:

$ tessent -shell

SETUP> set_context patterns -scan

SETUP> read_verilog data/design.v

2. Specify the scan data for the scan cells in the design and switch to analysis system mode.
For example:

SETUP> add_scan_groups ...

SETUP> add_scan_chains
...

SETUP> add_clocks
...

SETUP> set_system_mode analysis

3. Specify the source test patterns for the design. For example:

> read_patterns pats/testpat.bin

4. If you are using a third-party simulator, specify your simulator invoke script. For
example:

> set_external_simulator -simulation_script runsim

For more information, see Example and the set_external_simulator description in the
Tessent Shell Reference Manual.

5. Run the mismatch analysis. For example:

> analyze_simulation_mismatches -external_patterns

By default, the analysis runs on the local server. To run the simulation portion of the
analysis on a remote server, use the -host option. For example:

ANALYSIS> analyze_simulation_mismatches -external_patterns -host abc_test

For more information, see the analyze_simulation_mismatches description in the
Tessent Shell Reference Manual.

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 537

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, the analysis compares the specified failure file to the current test pattern
source to verify that both are generated from the same version of the design. If files do
not match, an error displays and the process aborts.

Once the test patterns and failure file pass the verification, a testbench is created
specifically for the mismatches in the failure file and simulated. The simulation results
are compared with the test patterns and design data to determine the source of simulation
mismatches listed in the failure file.

6. Simulate the Verilog testbench using Questa SIM or a third-party simulator to create a
failure file—see the set_external_simulator command for details.

You must also create a script to set up and run an external simulator for the subsequent
steps of this procedure.

7. After simulation, perform a simulation mismatch analysis using the
analyze_simulation_mismatches command with the -FAilure_file switch and argument
to generate a testbench for just the failing patterns. For example:

ANALYSIS> analyze_simulation_mismatches -failure_file pat.fs.v.fail

You must use the flattened netlist and test patterns from the initial ATPG session.

This step creates the testbench for just the failing patterns (mentor_default.v_vcdtb.v).
The testbench is set up to output the simulation results to a VCD file.

8. In the same ATPG tool session, simulate the testbench for the failing patterns using the
analyze_simulation_mismatches command with the -TEstbench_for_vcd switch
argument. For example:

ANALYSIS> analyze_simulation_mismatches \
-testbench_for_vcd mentor_default.v_vcdtb.v

This step produces a VCD file (mentor_default.v_debug.vcd).

9. After simulation, load the VCD file. For example:

ANALYSIS> analyze_simulation_mismatches -vcd_file mentor_default.v_debug.vcd

10. Report the mismatch sources using the report_mismatch_sources command.

Note
To use Tessent Visualizer to view the mismatches, use the -display option with the
report_mismatch_sources command.

Examples
The following example shows a simulation script for Questa SIM where the design netlist and
model library have been pre-compiled into the my_work directory. The script compiles and
simulates the testbench that was saved using the write_patterns command as well as the debug
testbench created by the tool. Prior to running the script, the ${1} variable is replaced by the

Tessent™ Scan and ATPG User’s Manual, v2022.4538

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

tool with the name of the testbench being compiled and ${2} is replaced by the testbench top
level being simulated.

#! /bin/csh -f
vlog ${1} -work my_work
vsim ${2} -c -lib my_work -do "run -all" -sdfmax \
/${2}/design_inst=~/design/good.sdf

If there are simulation mismatches in the first run of the saved testbench, the
analyze_simulation_mismatches command creates a new version of the testbench for the
analysis. To create a simulation script that modifies this testbench, such as adding fixed force
statements, you must substitute the variable $ENTITY for the testbench name.

For example: force -freeze sim:$entity/instance/pin0 1

The script must be executable otherwise the following error is returned:

analyze_simulation_mismatches -simulation_script vsim_scr

sh: line 1: ./vsim_scr: Permission denied
// Error: Error when running script:
// vsim_scr work_dft_debug/mentor_default.v
// circle_mentor_default_v_ctl > /dev/null
// No mismatch source is found.

To correct this error, use the following Linux command in the tool before running the
analyze_simulation_mismatches command:

!chmod +x vsim_scr

Patterns Analysis
Sometimes, you can find additional information that is difficult to access in the Verilog
testbenches in other pattern formats. When comparing different pattern formats, it is useful to
know that the pattern numbering is the same in all formats. In other words, pattern #37 in the
ASCII pattern file corresponds to pattern #37 in the WGL or Verilog format.
Each of the pattern formats is described in detail in the section, “Basic Test Data Formats for
Patterns,” beginning on page 613.

Clock-Skew Problems With Mux-DFF Designs
If you have mux-DFF scan circuitry in your design, you should be aware of, and thus test for, a
common timing problem involving clock skew.
Figure 8-76 depicts the possible clock-skew problem with the mux-DFF architecture.

Test Pattern Generation
Potential Causes of Simulation Mismatches

Tessent™ Scan and ATPG User’s Manual, v2022.4 539

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-76. Clock-Skew Example

You can run into problems if the clock delay due to routing, modeled by the buffer, is greater
than the mux delay minus the flip-flop setup time. In this situation, the data does not get
captured correctly from the previous cell in the scan chain and therefore, the scan chain does not
shift data properly.

To detect this problem, you should run both critical timing analysis and functional simulation of
the scan load/unload procedure. You can use Questa SIM or another HDL simulator for the
functional simulation, and a static timing analyzer such as SST Velocity for the timing analysis.
Refer to the Questa documentation or the SST Velocity User’s Manual for details on performing
timing verification.

Tessent™ Scan and ATPG User’s Manual, v2022.4540

Test Pattern Generation
Potential Causes of Simulation Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 541

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 9
Multiprocessing for ATPG and Simulation

This chapter explains multiprocessing functionality for accelerating ATPG, simulation, and
writing patterns. Multiprocessing is a combination of distributed processing and multithreading.
Multiprocessing functionality enables you to create remote processes with multiple threads to
efficiently use additional processors.
Definition of Multiprocessing Terms . 541
Multiprocessing to Reduce Runtime . 543

Multiprocessing Requirements . 543
Procedures for Multiprocessing . 546

Using Multiprocessing for ATPG and Simulation . 546
Using Multiprocessing to Write Patterns . 547
SSH Environment and Passphrase Errors . 548
How to Disable Multithreading Functionality . 550
Threads Addition to the Primary Process . 550
Processor Addition in Manual Mode . 551
Processor Addition in Grid Mode . 553
Processor Addition to the LSF Grid . 554
Manual Mode Processor Deletion. 555
Grid Mode Processor Deletion . 556

Recommendations For Utilizing Multiprocessing . 557

Definition of Multiprocessing Terms
This manual uses the following multiprocessing terminology.

• Distribution or Distributed Processing — The dividing up and simultaneous running
of processing tasks on one or multiple machines.

• Multithreading — The dividing up and simultaneous running of processing tasks
within a single process running on one machine. Threads can run on separate cores in
parallel to speed up run time. This also minimizes memory use per thread by sharing the
design information across all threads running, compared to using the same number of
processors on multiple single-threaded secondaries.

• Multiprocessing — A general term that can refer either to distribution or
multithreading, or to a combination of both.

• Manual Mode — Starting additional processors by explicitly specifying the host(s) on
which the processors run.

Tessent™ Scan and ATPG User’s Manual, v2022.4542

Multiprocessing for ATPG and Simulation
Definition of Multiprocessing Terms

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Primary Process — The primary process is the process started when you invoke the
tool.

• Secondary Process — A separate process that does not share memory with the primary
process. Secondary processes typically run on a machine other than the primary host. If
the -multithreading option is off, secondary processes can also run on the primary host.

• Process — An instance of the executable running on the primary or secondary host,
regardless of the number of threads in use.

• Processor — A resource that runs a thread, which is added with the add_processors
command or by starting the tool.

• Grid Mode — Starting additional processors using the grid engine. You have limited
control in specifying the host upon which the job is started because that is handled by the
grid engine, subject to any constraints you place on the grid job submission.

• Thread — The smallest independent unit of a process. A process can consist of multiple
threads, all of which share the same allocated memory and other resources on the same
host.

• Worker Thread — Threads other than the main thread.

Multiprocessing for ATPG and Simulation
Multiprocessing to Reduce Runtime

Tessent™ Scan and ATPG User’s Manual, v2022.4 543

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiprocessing to Reduce Runtime
A growing number of Tessent tools can optionally use multiprocessing through distribution,
multithreading, or both, to reduce runtime.
For example, these are some of the commands and processes that support multiprocessing:

• compress_patterns (fault simulation)

• create_patterns (ATPG)

• identify_redundant_faults (ATPG)

• order_patterns (fault simulation)

• simulate_patterns (fault simulation)

• write_patterns (pattern creation and pattern retargeting)

• Static SDC (false and multicycle path) analysis

• A limited subset of power metrics calculations

For large designs, distributing portions of these commands’ processing load using
multiprocessing can reduce their runtime, sometimes significantly. The reduction in runtime
depends on several factors and is not directly proportional to the number of additional threads
doing the processing. The particular design, the tool setups you use, and the type of patterns you
generate, for example, determine the kinds of processes the tool must run and the proportion of
them it can distribute to additional threads. Generally, the ATPG runtime improvement is
greater for transition patterns than for stuck-at.

Remote processors or threads can be on the machine on which the tool is running or on remote
machines, wherever you can access additional processors on your network. ATPG results
(coverage and patterns) using multiprocessing are the same as without multiprocessing,
regardless of the number of processors.

Multiprocessing Requirements . 543

Multiprocessing Requirements
To enable the tool to establish and maintain communication with multiple processors on
multiple host machines and run secondary processing jobs on them, you need to inform the tool
of the network names of available machines (manual specification) or direct the tool to use an
automated job scheduler to select machines for you. The tool supports Load Sharing Function
(LSF), Sun Grid Engine (SGE), or custom job schedulers.
The following prerequisites must be satisfied for whichever you use:

• Manual Specification (does not require a job scheduler)

Tessent™ Scan and ATPG User’s Manual, v2022.4544

Multiprocessing for ATPG and Simulation
Multiprocessing Requirements

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can specify hosts manually, without using the SGE, LSF or a custom job scheduler.
The primary host must be able to create processes on the secondary host via the rsh or
ssh shell command.

o rsh — This requires that the network permit connection via rsh and that your .rhosts
file permit rsh access from the primary host without specifying a password. This is
the default.

Note
The .rhosts file on host machines must have read permission set for user. Write
and execute permission can optionally be set for user, but must not be set for

other and group.

rsh access is not required for the tool to create additional processes on the primary
host.

o ssh — This requires that the network permit connection via ssh. To enable use of
ssh, issue a set_multiprocessing_options command within the tool to set the
multiprocessing “remote_shell” variable to ssh. Do this prior to issuing an
add_processors command.

Primary and secondary machines must be correctly specified in the global DNS name
server for reliable network operation, and you must know either the network name or IP
address of each secondary machine you plan to use. Consult the System Administrator at
your site for additional information.

• Job Scheduler — You must have available at your site at least one of the following
methods of network job scheduling. Whichever you use, it must permit the primary
process (the process started when you invoke the tool) to create secondary processes on
different host machines.

o Load Sharing Function (LSF) — To use LSF, ensure your environment supports
use of the LSF scheduler before you invoke the tool. For example, the LSF_BINDIR
environment variable must be set appropriately, in addition to other requirements.
An appropriate setup can often be performed by sourcing a configuration file
supplied with the scheduler installation.

o Sun Grid Engine (SGE) — To use SGE, ensure your environment supports use of
the SGE scheduler before you invoke the tool. For example, the SGE_ROOT
environment variable must be set appropriately, in addition to other requirements.
An appropriate setup can often be performed by sourcing a configuration file
supplied with the scheduler installation.

Note
This documentation refers to SGE, which is a product of Altair.

o Custom Job Scheduling — For the tool to use a custom job scheduler, you need to
inform the tool of the command used at your site to launch the custom job scheduler.

Multiprocessing for ATPG and Simulation
Multiprocessing Requirements

Tessent™ Scan and ATPG User’s Manual, v2022.4 545

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You do this by issuing a set_multiprocessing_options command within the tool to set
the “generic_scheduler” variable to the appropriate site-specific command.

• Job Scheduling Options — You can control certain aspects of the job scheduling
process with the switches you set with the set_multiprocessing_options command. For
complete information about these switches, refer to the set_multiprocessing_options
description in the Tessent Shell Reference Manual.

• Tessent Software Tree Installation — It must be possible to run the Siemens EDA
Tessent executables (via fully specified paths) from any new processes.

• Tool Versions — All multiprocessing hosts must run the same version of the tool. This
is not an issue when using a single executable for all secondary hosts, but depending on
the installation, may become an issue when the path to the executable points to a
different physical disk location on a secondary host than on the primary host. The tool
installation tree must be accessible via the same path on all secondary hosts.

Tessent™ Scan and ATPG User’s Manual, v2022.4546

Multiprocessing for ATPG and Simulation
Procedures for Multiprocessing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedures for Multiprocessing
The following sections describe how to use multiprocessing functionality.
Using Multiprocessing for ATPG and Simulation . 546
Using Multiprocessing to Write Patterns . 547
SSH Environment and Passphrase Errors . 548
How to Disable Multithreading Functionality . 550
Threads Addition to the Primary Process . 550
Processor Addition in Manual Mode . 551
Processor Addition in Grid Mode . 553
Processor Addition to the LSF Grid . 554
Manual Mode Processor Deletion . 555
Grid Mode Processor Deletion . 556

Using Multiprocessing for ATPG and Simulation
The following describes the basic procedure for using multiprocessing for ATPG and fault
simulation.
These steps assume you have satisfied the “Multiprocessing Requirements” on page 543.

Procedure
1. Use the set_multiprocessing_options command to specify the values of any

multiprocessing variables, such as the job scheduler you plan to use or the remote shell.
Manual specification requires this step only if you want the tool to use ssh.

Specific LSF and SGE options depend on how these tools are configured at your site. It
is a good idea to consult your System Administrator, as you may not need any options.

2. Use the add_processors command to define host machines and the number of processors
that the tool can use for remote processes. For example:

SETUP> add_processors lsf:4 machineB:2

specifies for the tool to distribute the processing load among any four available LSF
processors and two processors on the machine named “machineB.” Note that with the
default settings there would be one remote with four threads from LSF, and one remote
with two threads from machineB. And without multithreading enabled, there would be
four separate remotes from LSF, and two from machineB.

Multiprocessing for ATPG and Simulation
Using Multiprocessing to Write Patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4 547

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
If there are no remote processes or additional threads running, the session consumes
just one license. However, when you initiate additional processors using the

add_processors command, the tool acquires additional licenses for these processors,
with each additional license permitting up to four additional processors. The previous
example adds six processors, so two additional licenses would be used.

3. Perform any other tool setups you need for ATPG or fault simulation, then issue the
command to be multiprocessed. The tool displays a message indicating the design is
being sent to remote processors and then let you know when the remote processors start
participating.

4. The following is a list of related commands:

• add_processors — Runs multiple processors in parallel on multiple machines to
reduce ATPG or fault simulation runtime.

• delete_processors — Removes processors previously defined using the
add_processors command.

• get_multiprocessing_option— Returns the value of a single specified variable
previously set with the set_multiprocessing_options command. This is an
introspection command that returns a Tcl result.

• report_multiprocessing_options— Displays the values of all variables used when
running multiprocessing commands for ATPG or fault simulation.

• report_processors — Displays information about the processors used for the current
multiprocessing environment.

• set_multiprocessing_options— Sets the values of one or more multiprocessing
variables.

Using Multiprocessing to Write Patterns
The following describes the basic procedure for using multiprocessing to write patterns.

Prerequisites
• These steps assume you have satisfied the “Multiprocessing Requirements” on

page 543.

Procedure
1. The tool can write patterns on the local host machine only. Use the

set_multiprocessing_options command to specify that multithreading is on (default) for
the local host machine.

SETUP> set_multiprocessing_options -multithreading on

Tessent™ Scan and ATPG User’s Manual, v2022.4548

Multiprocessing for ATPG and Simulation
SSH Environment and Passphrase Errors

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Use the add_processors command to define the local host machine and the number of
processors the tool can use for additional thread processes. For example:

SETUP> add_processors localhost:16

specifies to add sixteen threads to the primary thread on the local host machine.

Note
If there are no additional threads running, the session primary thread consumes one
license. However, when you initiate additional processors using the add_processors

command, the tool acquires additional licenses for them. Each additional license permits
up to four additional processors. The previous example adds sixteen processors. The tool
uses five licenses total; one license for the session primary thread and four additional
licenses for the additional sixteen processor threads.

3. Perform any other tool setups you need to write patterns, then run the write_patterns
command.

4. The following is a list of related commands:

• add_processors — Runs multiple processors in parallel on multiple machines to
reduce ATPG or fault simulation runtime.

• delete_processors — Removes processors previously defined using the
add_processors command.

• get_multiprocessing_option— Returns the value of a single specified variable
previously set with the set_multiprocessing_options command. This is an
introspection command that returns a Tcl result.

• report_multiprocessing_options— Displays the values of all variables the tool uses
when running multiprocessing commands for ATPG or fault simulation.

• report_processors — Displays information about the processors used for the current
multiprocessing environment.

• set_multiprocessing_options— Sets the values of one or more multiprocessing
variables.

SSH Environment and Passphrase Errors
Use the information in this section to resolve problems that can occur if you attempt to use the
SSH protocol when your environment has not set up the secure shell agent and password.

Error: Cannot change from rsh to ssh in the same tool session
SETUP> report_processors

Error: Cannot change from rsh to ssh in the same tool session.

Multiprocessing for ATPG and Simulation
SSH Environment and Passphrase Errors

Tessent™ Scan and ATPG User’s Manual, v2022.4 549

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This error message indicates the set_multiprocessing_options command was not used to set the
remote_shell variable to ssh prior to use of the report_processors or add_processors command.

Error: Not running a secure shell agent (SSH_AUTH_SOCK does not exist, use ssh-agent)
SETUP> set_multiprocessing_options -remote_shell ssh

Permission denied (publickey,password,keyboard-interactive).
// Error: Not running a secure shell agent (SSH_AUTH_SOCK does not
// exist, use ssh-agent).

The SSH functionality checks for the presence of two environment variables,
SSH_AGENT_PID and SSH_AUTH_SOCK, that describe your secure shell session. If not
present, it indicates the required ssh-agent daemon is not running.

To fix this problem, suspend the tool session with Control-Z and run the ssh-agent shell
program. This starts the agent and echoes the required settings for the environment variables to
the screen. For example:

ssh-agent
setenv SSH_AUTH_SOCK /tmp/ssh-yXm13171/agent.13171;
setenv SSH_AGENT_PID 13172;

Note
Ensure you remove the trailing semicolons (;) if you copy and paste the ssh-agent output
from the shell environment when you resume the tool session.

You can then resume the suspended session and set the environment variables:

SETUP> setenv SSH_AUTH_SOCK /tmp/ssh-yXm13171/agent.13171

SETUP> setenv SSH_AGENT_PID 13172

Then attempt to set remote_shell again.

Error: ssh-agent requires passphrase (use ssh-add)
SETUP> set_multiprocessing_options -remote_shell ssh

Permission denied (publickey,password,keyboard-interactive).
// Error: ssh-agent requires passphrase (use ssh-add).
// Note: SSH protocol not engaged.

This error message indicates the SSH agent is running but has not been told the passphrase to
permit SSH operations.

Tessent™ Scan and ATPG User’s Manual, v2022.4550

Multiprocessing for ATPG and Simulation
How to Disable Multithreading Functionality

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To fix this problem, suspend the tool session with Control-Z and run the ssh-add shell program:

SETUP> ^Z
Stopped (user)
% ssh-add
Could not open a connection to your authentication agent.
% setenv SSH_AUTH_SOCK /tmp/ssh-yXm13171/agent.13171
% setenv SSH_AGENT_PID 13172
% ssh-add
Enter passphrase for /user/.ssh/id_dsa:

Enter a passphrase:

Enter passphrase for /user/.ssh/id_dsa: xxxxxxxxxx
Identity added: /user/.ssh/id_dsa (/user/royb/.ssh/id_dsa)
%

Then resume the session and attempt to set remote_shell again:

SETUP> set_multiprocessing_options -remote_shell ssh

// Note: SSH protocol is engaged.

How to Disable Multithreading Functionality
Multithreading functionality is enabled by default. However, if the tool reads a flat model
produced by the pre-v2013.2 simulation kernel, the tool is able to use multithreading
functionality only for ATPG and not simulation. In this case, the tool uses only one thread per
host to simulate the patterns generated.
You can disable multithreading functionality with the following command:

> set_multiprocessing_options -multithreading off

Threads Addition to the Primary Process
If you add processors to the primary host with multithreading enabled, the primary process
increases its thread count instead of adding additional secondaries. The command transcript lists
how many threads were started.

> add_processors localhost:4 ;
// adds 4 threads to the primary process for a total thread count of 5

// Adding 4 threads to birdeye (primary)
// Primary process with 5 threads running.

> report_processors

Multiprocessing for ATPG and Simulation
Processor Addition in Manual Mode

Tessent™ Scan and ATPG User’s Manual, v2022.4 551

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// hosts threads arch CPU(s) %idle free RAM process size
// ----------------- ------- ------ ----------- ----- --------- ------------
// birdeye (primary) 5 x86-64 8 x 2.9 GHz 89% 113.91 MB 232.56 MB
// Primary process with 5 threads running.

Note that you can specify the primary host by name or IP address.

Processor Addition in Manual Mode
With multithreading enabled, the add_processors command can start only one process per
secondary host, and create additional processors (to primary or secondary) as additional threads.
The following example starts a distributed secondary process on the host “odin” that runs with 4
total threads.

> add_processors odin:4

// Adding 4 threads to odin (new secondary process host)
// Primary process host with 1 thread and 1 secondary process host with 4 threads running

// (5 total threads).

In the following example, the first command starts a distributed secondary process on the host
“odin” that runs with 2 threads. The second command increases the number of threads in the
secondary process from 2 to 4 rather than starting a new secondary host with 2 threads.

odin is not the primary process host

> add_processors odin:2

// Adding 2 threads to odin (new secondary process host)
// Primary process host with 1 thread and 1 secondary process host with 2 threads running

// (3 total threads).

> add_processors odin:2

// Adding 2 threads to odin (existing secondary process host now using 4 threads)
// Primary process host with 1 thread and 1 secondary process host with 4 threads running

/ (5 total threads).

Note that if you do not specify a number after the host name, the default is 1.

If you add more threads to a host than it has CPU cores, the command adds the threads but
issues a warning that the maximum number of available CPUs has been exceeded. If you
specify the string “maxcpu” instead of a number, the tool fills up the process with threads until
the number of threads equals the number of processors available to the host. If the host already
uses the maxcpu number of threads, the tool issues a warning that no more processors were
added. Note that this is true for the primary host as well as secondary hosts.

For example:

Assume odin has 8 processors and is not the primary process host

Tessent™ Scan and ATPG User’s Manual, v2022.4552

Multiprocessing for ATPG and Simulation
Processor Addition in Manual Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

> add_processors odin:2

// Adding 2 threads to odin (new secondary process host)
// Primary process host with 1 thread and 1 secondary process host with 2 threads running

// (3 total threads).

> add_processors odin:maxcpu

// Adding 6 threads to odin(existing secondary host now using 8 threads)
// Primary process host with 1 thread and 1 secondary process host with 8 threads running

// (9 total threads).

The “add_processors maxcpu” command always adds enough threads to reach a total of
“maxcpu” threads for a host (that is, the second add_processors command in the preceding
example would always add enough threads to total 8 on the host).

The following is a more detailed example of adding processors in manual mode:

3 different hosts used: thor, odin, and localhost,
each with 16 CPUs

First show the options used (defaults)

> report_multiprocessing_options

// Multiprocessing options:

// Option Type Value Description

// --------------------------- ------ --------- ---------------------------------------

// generic_delete string generic job scheduler job deletion

// command

// generic_scheduler string generic job scheduler job submission

// command

// license_timeout string 5 positive integer specifying in minutes

// how long to queue for a license,

// 'unlimited' or 'no_queue'

// lsf_heuristics on/off on true for LSF job scheduler heuristic

// learning

// lsf_learning on/off on true for LSF job scheduler learning

// lsf_options string options for LSF job scheduler

// multithreading on/off on turn on/off multithreading flow

// processors_per_grid_request number -1 # processors grouped for each grid

// request (default: -1 implies 8 if the

// tool knows how to request more than one)

// remote_shell string rsh rsh or ssh remote_shell setting

// result_time_limit float 45 time limit (min) used to detect

// non-responsive secondary processes.

// scheduler_timeout string 10 positive integer specifying in minutes

// how long to wait for secondary

// processors, or 'unlimited'

// sge_options string options for SGE job scheduler

> add_processors odin:2

Multiprocessing for ATPG and Simulation
Processor Addition in Grid Mode

Tessent™ Scan and ATPG User’s Manual, v2022.4 553

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Adding 2 threads to odin (new secondary host)
// Primary process host with 1 thread and 1 secondary process host with 2 threads running

// (3 total threads).

add a secondary process host with 1 thread on thor

> add_processors thor

// Adding 1 thread to thor (new secondary process host)
// Primary host with 1 thread and 2 secondary hosts with 3 threads running (4 total threads).

add 4 additional threads to the primary process host

> add_processors localhost:4

// Adding 4 threads to primary (primary process host)
// Primary process host with 5 threads running.

> add_processors odin:maxcpu thor:maxcpu

// Adding 6 threads to odin (existing secondary host now using 8 threads)
// Adding 7 threads to thor (existing secondary host now using 8 threads)
// Primary process host with 5 threads and 2 secondary process hosts with 16
// threads running (21 total threads).

do it again just to get a warning that no more threads are added

> add_processors odin:maxcpu thor:maxcpu

// Warning: Max number of processors on odin already in use (8 exist).
// No processors added.
// Warning: Max number of processors on thor already in use (8 exist).
// No processors added.

> report_processors

// hosts threads arch CPU(s) %idle free RAM process size

// --------------------- ------- ------ ----------- ----- ----------- ------------
// localhost (primary) 5 x86-64 1 x 2.6 GHz 99% 59.28 MB 256.79 MB
// odin 8 x86-64 8 x 2.9 GHz 86% 6525.36 MB 154.53 MB
// thor 8 x86-64 8 x 2.8 GHz 100% 58782.55 MB 153.59 MB
// Primary process with 5 threads and 2 secondary processes with 16 threads running.

Processor Addition in Grid Mode
As in manual mode, when multithreading is enabled the tool does not start a new secondary
process on a host given by the grid engine if there is already a running secondary process on that
machine. Instead, the thread count of the existing secondary host (or primary, if the grid request
returns the primary host) is increased.
Requesting one processor at a time from the grid engine is inefficient in many cases, as the tool
has to request enough memory for a full secondary process with every grid request. Therefore,
the tool can group a number of processors together into one grid request for a host with enough
processors and the memory needed by one secondary process with the specified number of
threads.

Tessent™ Scan and ATPG User’s Manual, v2022.4554

Multiprocessing for ATPG and Simulation
Processor Addition to the LSF Grid

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

So, if the processors_per_grid_request variable is set to 4, then an “add_processors sge:8”
command results in two grid requests for 4 processors (slots) each.

The threads started are associated with the requested grid resource, and the resource is freed
back to the grid only if all threads are removed.

The following is an example of adding processors in grid mode:

group 4 processors per grid request

> set_multiprocessing_options -processors_per_grid_request 4…

add 20 processors via LSF in 5 groups of 4 processors each

> add_processors lsf:20

this may result in a situation like this:

> report_processors

// hosts threads arch CPU(s) %idle free RAM process size
// --------------------- ------- ------ ------------ ----- ----------- ------------
// localhost (primary) 5 x86-64 16 x 2.8 GHz 100% 4655.45 MB 189.70 MB
// kraken 4 x86-64 8 x 2.8 GHz 100% 49828.50 MB 151.86 MB
// brighty 8 x86-64 8 x 2.9 GHz 100% 9461.83 MB 152.66 MB
// joker111 4 x86-64 16 x 2.8 GHz 100% 41892.00 MB 166.05 MB
// Primary process with 5 threads and 3 secondary processes with 16 threads running.

Note that for LSF, the processors_per_grid variable defaults to 8, and its value is automatically
provided to the LSF scheduler. For the SGE or the generic scheduler, the default is set to 1
because the syntax for the bundling of slot requests is site-specific. You must configure the
options specific to that grid system before using this option on non-LSF grids. For more
information about how to do this, refer to the set_multiprocessing_options description in the
Tessent Shell Reference Manual.

Note
Take care to exclude any unsupported platforms that exist in your grid environment by
specifying appropriate grid job submission constraints. For a list of supported platforms,

refer to “Supported Hardware and Operating Systems” in Managing Tessent Software.

Processor Addition to the LSF Grid
In addition to the general features described in the previous section, the tool provides some
extra assistance for submitting jobs to the LSF grid.
Whereas SGE has predefined machine types and architectures for which the tool can constrain
grid requests to hosts that are supported by the tool, LSF requires individual grid installations to
classify hosts using site-specific “model” and “type” designations. If you specify “type”
constraints in the lsf_options variable (with “set_multiprocessing_options -lsf_options”), then

Multiprocessing for ATPG and Simulation
Manual Mode Processor Deletion

Tessent™ Scan and ATPG User’s Manual, v2022.4 555

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the tool uses those constraints. Otherwise, the tool attempts to determine which type/model
combinations it can use as described below.

By default, the tool uses both LSF scheduler learning and LSF heuristics learning to determine
suitable type/model combinations when submitting jobs to the grid. You can activate and
disable these two features using the set_multiprocessing_options switches: -lsf_learning and
-lsf_heuristics. When adding processors to the LSF grid, the sequence of events is as follows:

1. When LSF scheduler learning is enabled, the tool uses the LSF system to determine
what machines and type/model combinations are available. It then runs the lsrun
command to log onto likely machines to determine which are compatible with the tool.
LSF scheduler learning cannot succeed if your LSF system is configured to prevent use
of lsrun.

Tip
If your system does not support lsrun, you may want to disable LSF scheduler
learning to avoid the resulting overhead and warning messages.

2. If LSF scheduler learning is disabled or fails, the tool then uses LSF heuristics learning
unless you have disabled this feature with “-lsf_heuristics off.” LSF heuristics learning
is an attempt to automatically choose machines on the LSF grid that are compatible with
the tool. It attempts to determine tool compatibility based on the names of the types and
models available and successfully identify some type/model combinations that the tool
can use; however, this may also result in specifying incompatible combinations or miss
some compatible combinations.

Tip
If you are sure that your secondary host requests always result in the tool obtaining
compatible hosts (for example, because you specified an LSF host queue with a

-lsf_options value that contains only compatible hosts), then you may want to disable
LSF heuristics learning to avoid learning potentially incorrect or incomplete results.

3. If LSF heuristics learning is disabled or fails, then the tool submits the job anyway
without specifying any type/model restrictions.

Manual Mode Processor Deletion
The delete_processors command decreases the number of running threads or stops an entire
secondary process if the number of threads equals zero (or less) after deducting the number of
processors to delete from the number of running threads.
If you do not specify a number, the command removes all threads and the secondary process on
the related host. If you do not specify a number or a host, the command removes all secondary
processes and their threads, as well as all additional threads on the primary process.

Tessent™ Scan and ATPG User’s Manual, v2022.4556

Multiprocessing for ATPG and Simulation
Grid Mode Processor Deletion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you issue a delete_processors command for the primary process, the tool has to make sure
that the primary process is kept running with at least one thread. If a thread is deleted from its
process, the process immediately frees all the related thread data.

Grid Mode Processor Deletion
The delete_processors command releases grid slots only if all threads belonging to a grid
request were deleted.
For example:

(assume that sge_options have already been configured properly.)

> set_multiprocessing_options -processors_per_grid_request 4

add 20 processors to SGE

> add_processors sge:20

this may end up in a situation like this:
each secondary host has at least 4 threads

> report_processors

hosts threads arch CPU(s) %idle free RAM process size
----------------------- ------- ------ ------------ ----- ----------- ------------
localhost (primary) 5 x86-64 16 x 2.8 GHz 100% 4655.45 MB 189.70MB
kraken 4 x86-64 8 x 2.8 GHz 100% 49828.50 MB 151.86MB
brighty 8 x86-64 8 x 2.9 GHz 100% 9461.83 MB 152.66MB
joker111 4 x86-64 16 x 2.8 GHz 100% 41892.00 MB 166.05MB
Primary process with 5 threads and 3 secondary processes with 16 threads running.

delete 4 threads from brighty, which frees exactly one grid slot
(because 4 processors were requested with each grid request)

> delete_processors brighty:4

delete 2 threads on kraken, which does not free any grid resource

> delete_processors kraken:2

delete everything from kraken, all grid resources (1 request) are freed

> delete_processors kraken

What is left?

> report_processors

hosts threads arch CPU(s) %idle free RAM process size

------------------ ------- ------ ------------ ----- ---------- ------------
localhost (primary) 5 x86-64 16 x 2.8 GHz 100% 4655.45 MB 189.70 MB
brighty 4 x86-64 8 x 2.9 GHz 100% 9461.83 MB 152.66 MB
joker111 4 x86-64 16 x 2.8 GHz 100% 1892.00 MB 166.05 MB
Primary process with 5 threads and 2 secondary processes with 8 threads running.

Multiprocessing for ATPG and Simulation
Recommendations For Utilizing Multiprocessing

Tessent™ Scan and ATPG User’s Manual, v2022.4 557

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Recommendations For Utilizing
Multiprocessing

This topic provides some general recommendations for multiprocess and when to use
distribution, and describes how to setup for multiprocessing plus distribution.
Figure 9-1 summarizes the general recommendations for multiprocessing using the
set_multiprocessing_options command with the -optimize_secondaries switch. The values of
the switch are the row names in the figure: pattern_count, balanced, and runtime.

The default option, pattern_count, focuses multiprocessing on maintaining a consistent pattern
count regardless of the additional compute resources applied to the ATPG process. The runtime
option focuses multiprocessing on quickly achieving the final coverage number, regardless of
the pattern count, for the fastest coverage debug during early core development. The balanced
option strikes a balance between the pattern_count and runtime options by limiting pattern
count inflation while reducing run times.

Figure 9-1. Multiprocessing General Recommendations

Multiprocessing operates using multiple threads by the same process (multithreading), using
remote hosts (distribution), or a combination of both. For pattern_count, the general
recommendation of Siemens EDA is to start with multithreading. When you need even more
threads, utilize a combination of multithreading and distribution.

For the runtime and balanced options, use a combination of multithreading and distribution.
Siemens EDA recommends utilizing an equal number of threads on the primary host and on
each of the secondary hosts. However, small differences in the numbers of threads between the
processes should have a minimal impact on runtime.

When using multithreading only, the tool always uses the pattern_count option regardless of the
specified option.

How to Setup Multithreading Plus Distribution
The summary of steps to setup multithreading plus distribution is:

• Launch Tessent Shell.

• Configure multiprocessing options.

• Reserve processing resources.

Tessent™ Scan and ATPG User’s Manual, v2022.4558

Multiprocessing for ATPG and Simulation
Recommendations For Utilizing Multiprocessing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Launch Tessent Shell
There are two primary ways to launch Tessent Shell: as a process running on your local host, or
submitted to a scheduler. Schedulers can include LSF, SGE, or a generic scheduler for your site.

Some general recommendations when using a scheduler:

• Request enough slots on the same host to cover the primary job and the additional
threads.

• For LSF, use the -n option.

• For other schedulers, refer to your reference manual to find the best method.

Configure Multiprocessing Options
Run the set_multiprocessing_options command before the add_processors command. Specify
the type of distribution to set up.

set_multiprocessing_options -optimize_secondaries {pattern_count | balanced | runtime}

Reserve the same number of slots “#” on each secondary host. Siemens EDA recommends that
this number equal the number for the add_processors command on the local host.

set_multiprocessing_options -processors_per_grid_request #

Note
You must specify the “set_multiprocessing_options -processors_per_grid_request”
command when using SGE or a generic scheduler. When using LSF, Tessent defaults to

requesting eight slots per secondary.

If the scheduler requires a specific command to achieve this, refer to the scheduler
documentation to determine how to accomplish the request.

Reserve Processing Resources
Add processors on the local host using Tessent Shell. Specify the number of additional
processors “#” required from this primary host using the following command.

add_processors localhost:#

Configure multithreading on the secondary hosts. When using direct access to remote hosts use
the following commands. Specify the number of additional processors “#” required for each
host. Siemens EDA recommends that this number equal the number specified for the
add_processors command on the local host.

add_processors host1:#

add_processors host2:#

add_processors host3:#

Multiprocessing for ATPG and Simulation
Recommendations For Utilizing Multiprocessing

Tessent™ Scan and ATPG User’s Manual, v2022.4 559

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The names host1/2/3 are the qualified hostnames of the remote hosts.

When submitting to a grid scheduler, specify the total number of additional processors “##” for
the secondary hosts. Siemens EDA recommends that this number equal the number of
secondary hosts you require multiplied by the previously specified processors_per_grid_request
value (the number specified for the add_processors command on the local host).

add_processors scheduler_type:##

Note
The scheduler_type is the scheduler that is setup in your environment.

Example
This example uses 65 total threads across eight hosts by using SGE. As a result, it uses 17
licenses; one license for the primary thread and 16 for the other 64 threads.

Specify the usual options for your grid such as required processor types

Enable a balanced run and configure each secondary to have 8 threads

set_multiprocessing_options -optimize_secondaries balanced

set_multiprocessing_options -processors_per_grid_request 8

Add 8 additional threads to the primary host

add_processors localhost:8

Add 56 threads, 7 secondaries each running 8 threads

add_processors sge:56

create_patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4560

Multiprocessing for ATPG and Simulation
Recommendations For Utilizing Multiprocessing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 561

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 10
Scan Pattern Retargeting

Scan pattern retargeting improves efficiency and productivity by enabling you to generate core-
level test patterns and retarget them for reuse at the top level. Patterns for multiple cores can be
merged and applied simultaneously at the chip level. This capability can be used for cores that
include any configuration the tool supports for ATPG; this includes multiple EDT blocks or
uncompressed chains, pipeline stages, low power, and cores with varying shift lengths.
The scan pattern retargeting capability provides these features:

• Design and develop cores in isolation from the rest of the design.

• Generate and verify test patterns of the cores at the core level.

• Generate test patterns for identical cores just once.

• Divide and conquer a large design by testing groups of cores.

• Have pipeline stages, inversion, or both between the core boundary and chip level.

• Broadcast stimuli to multiple instances of the same core.

• Merge patterns generated for multiple cores and apply them simultaneously.

• Automatically trace core-level scan pins to the chip level to extract connections,
pipelining, and inversion outside the cores.

• Perform reverse mapping of silicon failures from the chip level to the core level to
enable diagnosis to be performed at the core level.

Caution
You should verify the chip-level patterns through simulation, because the tool’s
DRCs may not detect every setup error or timing issue.

If you would like to use Tessent Diagnosis to diagnose your retargeted patterns, refer to
“Reverse Mapping Top-Level Failures to the Core” in the Tessent Diagnosis User’s Manual.

Tools and Licensing Required for Scan Retargeting . 562
Scan Pattern Retargeting Process Overview. 562
Core-Level Pattern Generation . 565
Scan Pattern Retargeting of Test Patterns . 568

Chip-Level Test Procedures . 568
External_capture Procedure . 569
Test Procedure Retargeting for Scan Pattern Retargeting . 569

Tessent™ Scan and ATPG User’s Manual, v2022.4562

Scan Pattern Retargeting
Tools and Licensing Required for Scan Retargeting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Pattern Retargeting Without a Netlist . 572
Generating Patterns at the Core Level . 576
Retargeting Patterns in Internal Mode . 577
Extracting Connectivity Between the Top Level and the Core Boundary 578
Retargeting Patterns Without a Top-Level Netlist . 579
Generating Patterns in External Mode . 580
Retargeting Example . 582

Core-level Pattern Generation for CPU Cores . 583
Core-level Pattern Generation for NB Core . 584
Retargeting of Patterns at the Chip Level . 584
Retargeting of Patterns at the Chip Level Without a Netlist . 585

Core-in-Core Pattern Retargeting . 587
Core-in-Core Pattern Retargeting Flow . 588
Generation of Child Core Internal Mode Patterns . 590
Retargeting Child Core Internal Mode Patterns . 590
Generation of Parent Internal Mode Patterns . 591
Retargeting of Parent Internal Mode Patterns. 592

multiple loadScan Pattern Retargeting Limitations. 592

Tools and Licensing Required for Scan
Retargeting

Scan pattern retargeting requires a Tessent TestKompress license. Reverse mapping of chip-
level failures, as well as diagnosis of those failures, requires a Tessent Diagnosis license.
Scan pattern retargeting and the generation of core-level retargetable patterns must be done
within the Tessent Shell tool. Instructions for invoking Tessent Shell are provided in the
following section.

For complete information about using Tessent Shell, refer to the Tessent Shell User’s Manual.

Scan Pattern Retargeting Process Overview
The scan retargeting process consists of generating patterns for all cores, retargeting the core-
level test patterns to the chip level, and generating patterns for the top-level chip logic only.
An example of the scan pattern retargeting process is presented in “Retargeting Example” on
page 582.

Scan Pattern Retargeting
Scan Pattern Retargeting Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4 563

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is a description of the scan pattern retargeting process:

1. Generate patterns for all cores. Figure 10-1 shows the process. For more information,
see “Generating Patterns at the Core Level” on page 576.

Figure 10-1. Core-Level Pattern Generation Process

2. Retarget core-level test patterns to the chip level. Figure 10-2 shows the process. For
more information, see “Retargeting Patterns in Internal Mode” on page 577.

Tessent™ Scan and ATPG User’s Manual, v2022.4564

Scan Pattern Retargeting
Scan Pattern Retargeting Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 10-2. Scan Pattern Retargeting — Internal Mode

3. Generate patterns for the top-level chip logic only. Figure 10-3 shows the process. For
more information, see “Generating Patterns in External Mode” on page 580.

Scan Pattern Retargeting
Core-Level Pattern Generation

Tessent™ Scan and ATPG User’s Manual, v2022.4 565

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 10-3. Pattern Generation — External Mode

Core-Level Pattern Generation
In order to generate retargetable patterns for a core, the core must already have wrapper chains
inserted into it and it must be configured to its internal test mode. Otherwise, you can lose
significant coverage.
To enable core-level generation of retargetable patterns, you must run “set_current_mode
[mode_name] -type internal” in setup mode.

When later retargeting core-level patterns to the top level, the tool maps only scan data from the
core level to the top level. The tool does not map core-level PIs and POs to the top level. Nor
does the tool map core-level capture cycle events from the core level to the top level. Therefore,
primary inputs must be constrained during capture, outputs must be masked, and clocking must
meet certain requirements.

Tessent™ Scan and ATPG User’s Manual, v2022.4566

Scan Pattern Retargeting
Core-Level Pattern Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The PIs and POs at the core level are not valid fault sites when the core is embedded at the next
level up, which creates inconsistencies when accounting for faults at the core level and the
faults at the top level. The tool treats the PIs and POs as no-fault sites when it runs in the
internal mode type.

During core-level pattern generation, the tool automatically adds X constraints on most input
ports and adds output masks on all output ports so that generated patterns can be mapped to the
chip level for retargeting. Pulse-always clocks, pulse-in-capture clocks, and constrained pins are
not forced to X. The tool also omits internal primary inputs (added with add_clocks or
add_primary_inputs commands), because those cut points are for modeling and are usually
controlled by Named Capture Procedures (NCPs) or clock control definitions.

You can exclude additional primary inputs from X constraints; this is necessary if the pins are
controlled by an NCP that models chip-level constraints such as a clock controller located
outside of the core. All inputs must be constrained or controlled (for example, using all enabled
NCPs).

Note
Even scan_enable, like any other input, must either be constrained to 0 or forced using an
NCP.

If a pin is not a pulse-always or pulse-in-capture clock, is not constrained, and is excluded from
isolation constraints (that is, the tool did not constrain it to X), the create_patterns command
checks that the pin is controlled. If the pin is not controlled, the tool issues an R7 DRC
violation.

Be careful when you apply the is_excluded_from_isolation_constraints attribute to a port, and
never ignore an R7 DRC violation. Doing this can result in ATPG controlling the unconstrained
port to any arbitrary value, which can vary from pattern to pattern, even though pattern
retargeting only retargets the scan data and does not retarget values on primary inputs from the
core level to the top.

Core-level test patterns can be saved in the pattern database (PatDB) format when using the
write_patterns command. While patterns saved in PatDB or ASCII format can be retargeted,
PatDB is the recommended format. You can also use the write_patterns command, as in the
normal ATPG flow, to generate simulation testbenches or write the patterns in other formats.

You can use existing commands to write out core-level fault list and fault detection information.

Caution
When generating the EDT IP, if you plan to add output channel pipeline stages later, you
must specify “set_edt_pins -change_edge_at_compactor_output trailing_edge” to ensure

that the compactor output changes consistently on the trailing edge of the EDT clock. Output
channel pipeline stages should then start with leading-edge sequential elements.

Scan Pattern Retargeting
Core-Level Pattern Generation

Tessent™ Scan and ATPG User’s Manual, v2022.4 567

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clocking Architecture
The scan pattern retargeting functionality imposes the following restrictions on clock
architecture:

• The tool does not perform per-pattern capture cycle mapping. The capture clock
conditions at the core boundary must be identical for every pattern in the pattern set.

• The recommended methodology is to have a programmable clock chopper inside each
core that is programmed by scan cell values. The scan cells used to program the clock
chopper must be inside the core. This provides ATPG with the flexibility to generate the
required clocking sequences, yet ensures that the clock conditions at the boundary of the
cores are the same (pulse-always clocks, or clocks that are pulsed only during setup,
shift, or both but constrained off during capture).

• If the clock controller is outside the core, it must have been programmed statically
during test_setup to deliver the same clock sequence during the capture phase of every
pattern. During core-level ATPG, the clocking at the core boundary must be enforced by
defining an NCP. In addition, any unconstrained pins on the core boundary must have
the is_excluded_from_isolation_constraints attribute set; otherwise, the tool constrains
them to X.

• No support is provided if the clocking on the boundary of the core is different for each
pattern, such as when the capture clocks are programmed using a scan chain outside the
core, or when the capture clocks are driven directly by chip-level pins.

• We recommend the standard OCC for use in hierarchical cores. For more information,
see “Recommendations” on page 724.

The Tessent Core Description File
The pattern generation step produces a Tessent core description (TCD) file. The TCD file
contains the information the tool needs to map the core-level patterns to the next level of
hierarchy. This includes information such as description of the EDT hardware and scan chains.

Tessent™ Scan and ATPG User’s Manual, v2022.4568

Scan Pattern Retargeting
Scan Pattern Retargeting of Test Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Pattern Retargeting of Test Patterns
To retarget core-level test patterns, Tessent Shell maps the scan path pins from the cores to the
top level, adjusts the core-level patterns based on the additional retargeting pipeline stages
learned between the core and chip level (to ensure that all patterns from different cores have the
same shift length via padding), and maps them to the chip-level pins they connect to. The tool
pads the patterns of any core that has fewer cycles than the target core by repeating the last scan
pattern. To avoid causing inflated failure counts in cases where there are failures in the repeated
pattern, the tool also masks the patterns used for padding.
Retargeting of core-level patterns does not require you to provide a full netlist for every core.
Alternatively, specify a core as either a graybox or blackbox in the following ways:

• If you have generated a graybox and want to handle the core as a graybox model, use the
read_verilog command to read the Verilog model that was written out from the graybox
generation step. Although the wrapper scan chains in the graybox model are not needed
for the retargeting mode, feedthroughs are preserved in the graybox model. If
feedthroughs are used for connecting cores to the chip level and blackboxing the cores
would break that path from the core boundary to the top, it is recommended to use the
graybox model.

• If you have the full core netlist in a separate file from the top-level module(s) and just
want to read it in and preserve the boundary but discard the contents, use the
“read_verilog <design> -interface_only” command. This method can only be used if
there are no feedthroughs or control logic within the core that are needed for the current
mode of operation.

• If you want to read the full design and blackbox specific core instances during design
flattening, use the add_black_box command. This method can only be used if there are
no feedthroughs or control logic within the core that are needed for the current mode of
operation.

Chip-Level Test Procedures . 568
External_capture Procedure. 569
Test Procedure Retargeting for Scan Pattern Retargeting . 569
Scan Pattern Retargeting Without a Netlist . 572

Chip-Level Test Procedures
You must provide the chip-level test_setup procedure needed for the retargeting step.
You must also either provide the chip-level load_unload and shift procedures, or enable the tool
to create them automatically by mapping and merging the core-level load_unload and shift
procedures as described in “Test Procedure Retargeting for Scan Pattern Retargeting” on
page 569.

Scan Pattern Retargeting
External_capture Procedure

Tessent™ Scan and ATPG User’s Manual, v2022.4 569

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

External_capture Procedure
You specify the capture cycle in an external_capture procedure, using the
set_external_capture_options -capture_procedure switch. The -capture_procedure switch
specifies the external_capture procedure to be used. The tool uses this external capture
procedure for all capture cycles between each scan load, even when the pattern is a multiple
load pattern.
An example external_capture procedure is shown here:

procedure external_capture ext_procedure_1 =
 timeplate tmp_1;
 cycle =
 force_pi;
 pulse clk_trigger 1;
 pulse reference_clock;
 end;
 cycle =
 pulse reference_clock;
 end;
end;

The external_capture procedure has the same syntax as an NCP, except it does not have internal
and external modes. In comparison to an NCP, the external_capture procedure has the following
restrictions:

• Can only have one force_pi statement.

• Cannot have any measure_po statements.

• Cannot have any load_cycles as it is used between each scan load of a pattern.

• Cannot contain any events on internal signals.

Pin constraints defined at the top level are used in this generic capture sequence. No pattern-
specific capture information is mapped from the patterns.

Test Procedure Retargeting for Scan Pattern
Retargeting

The automatic mapping (transfer) of test procedure information from the core level to the top
level of the design occurs when the tool transitions to analysis mode.

load_unload and shift Procedures
When core-level patterns are retargeted to the chip-level, chip-level load_unload and shift test
procedures are needed. If chip-level load_unload and shift test procedures do not exist, the tool
automatically generates them based on the information in the core-level TCD files. This

Tessent™ Scan and ATPG User’s Manual, v2022.4570

Scan Pattern Retargeting
Test Procedure Retargeting for Scan Pattern Retargeting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

retargeting step merges all of the core test procedures (if there is more than one core), and maps
them to the top-level test procedures.

Clocks and Pin Constraints
By default, the tool maps all clocks and pin constraints that are specified at the core-level to the
top. Clock types are mapped based on the core-level specification. Note, the tool maps any
permanently tied constraints (CT) in those files as constraints that can be overridden (C).

Even though clocks and pin constraints are automatically mapped to the top level by default,
you can still define them at the top, or drive the core-level input constraints through logic such
as a TAP.

Any clocks that are mapped to the top are removed when the tool exits analysis mode.

test_setup and test_end Procedures
You typically need to provide top-level test_setup and test_end procedures to configure
instruments such as PLLs, OCCs, EDT IPs, channel multiplexer access, and so on in preparation
for scan test. These instruments can be at the top level, within the cores, or both. The test_setup
and test_end procedures can consist of a cyclized sequence of events, IJTAG iCall statements,
or both.

If any of the instruments used for scan test are inside a core, a test_setup or test_end procedure
or both at the core level must have been used to initialize them. If IJTAG was used within a
core-level test_setup or test_end procedure, this information is retained in the TCD file. When
an instance of this core is added for mapping, the iCalls that were used at the core level are
automatically mapped to the top level and added to the top-level test_setup or test_end
procedure. In other words, if you use IJTAG to set up the core at the core level, the tool
automatically maps those sequences to the top-level test_setup and test_end procedures without
you doing anything. Of course, the top-level test_setup and test_end procedures may have
additional events to configure top-level instruments.

In order for the tool to perform automatic IJTAG mapping, you must have extracted the chip-
level ICL using the extract_icl command. You must also have sourced the core-level PDL. This
step-by-step procedure is described in the “Performing ICL Extraction” section in the Tessent
IJTAG User’s Manual.

Note
If you have not previously extracted ICL in a separate step, you can still run the normal scan
pattern retargeting flow with one change. After entering the patterns -scan context, you need

to read ICL for each of the cores, extract the ICL using the extract_icl command, read the PDL
file for each module, and then proceed with the rest of the scan retargeting flow.

Make sure to call the extract_icl command before you issue the set_procfile_name command;
otherwise, it is understood that the test_setup proc located in the specified proc file is actually

Scan Pattern Retargeting
Test Procedure Retargeting for Scan Pattern Retargeting

Tessent™ Scan and ATPG User’s Manual, v2022.4 571

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

needed to extract the ICL. The test_setup proc is simulated and used to establish the background
simulation values when tracing and extracting the ICL network. Because this test_setup was
simulated to do ICL extraction, its name appears in the extracted ICL and the
process_patterns_specification command generates an error if you do not refer to the test_setup
using the procfile_name property inside the AdvancedOptions wrapper.

Several DRCs validate the presence of both ICL and PDL. Note that the tool does not store ICL
and PDL in the core-level TCD file; it only stores references to their usage in the test_setup
procedure.

Note
You can disable load_unload and shift procedure retargeting by running the
“set_procedure_retargeting_options -scan off” command. If test procedure retargeting is

disabled and chip-level load_unload and shift test procedures are missing, the tool generates an
error.

You can disable the automated mapping of core-level iCalls stored in the TCD file to the top
level by running the “set_procedure_retargeting_options -ijtag off” command. (This does not
have any impact on iCalls you explicitly added into the top-level setup procedures either
explicitly or indirectly using the set_test_setup_icall command.) If IJTAG retargeting is
disabled, you must provide the needed test_setup and test_end procedures.

Constraint of the Top-Level Port During the Load_Unload Test Procedure
You can set a constant value for a top-level port during the simulation of the load_unload test
procedure, when needed, to enable tracing of signals from the core level to the chip level. You
can do this by setting the value of the constraint_value_during_load_unload attribute using the
set_attribute_value command.

If, for example, scan_enable must be 1 to trace signals needed for load_unload and shift
procedure retargeting, you would need to define this load_unload constraint in the tool for test
procedure retargeting to work; especially, because this value likely conflicts with the 0 input
constraint typically added to scan_enable for capture.

For more information see the set_attribute_value command and the Port data model attributes in
the Tessent Shell Reference Manual.

Tessent™ Scan and ATPG User’s Manual, v2022.4572

Scan Pattern Retargeting
Scan Pattern Retargeting Without a Netlist

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Pattern Retargeting Without a Netlist
Before describing the process of scan pattern retargeting without a netlist, it is important to
clarify that the retargeting flow consists of two distinct steps.
The two steps for scan pattern retargeting without a netlist are extraction and retargeting:

• Extraction — This step is the process of determining the connectivity from a lower-
level wrapped core to the current top level of hierarchy. It validates that the core is
embedded properly with respect to the signals and constrained values necessary for
retargeting (for example, scan chains/channels, clocks, and constrained inputs). This
step is also where we perform optional mapping of the test procedures. Once the
extraction step is complete, a TCD file can be written out that captures the information
needed for retargeting core-level patterns to the current design level.

• Retargeting — This is the step in which the core-level patterns that have been read in
are then mapped to the top-level pins, and multiple pattern sets are merged together for
simultaneous application.

These steps are discrete and you can perform them separately in different sessions or together.

Figure 10-2 shows retargeting as a single pass procedure but you can separate these two steps
out of the process that is illustrated. The extraction step occurs when you run the
“set_system_mode analysis” command and perform DRC. All connectivity between the core
and the top is extracted and validated. After extraction, use the write_core_description
command to write out the top-level TCD file, which includes the extracted connectivity and
top-level scan procedures. This top-level TCD file includes all of the core-level TCD
information in this mode so that it is self-contained. You can stop at this point and not read and
write the core-level retargetable patterns; then you have completed only the extraction step. At
this point, you can write out the top-level TCD file. If, instead, you continue and read and write
the core-level retargetable patterns before writing out the top-level TCD file, you have
completed the pattern retargeting step.

When performing the extraction step, you are not required to provide a full netlist for every
core; instead, you can specify a core as either a graybox or blackbox. The tool retrieves all of the
information necessary for retargeting its patterns from the core-level TCD file. These are the
only reasons that you would not want to blackbox a core:

• If you have a core-level test_setup procedure. The R5 DRC (test_setup validation)
cannot be performed if the setup logic in the core is not present during extraction DRC.

• If the logic in the core is involved in the top-level procedure simulation and access from
the top to the core. For example, if the core includes feed-throughs of currently active
cores, or includes the TAP for the design, which is needed for simulating the test_setup
procedure.

You are able to perform pattern retargeting without performing extraction again because you
can utilize the previously generated information in the top-level TCD file. The top-level TCD

Scan Pattern Retargeting
Scan Pattern Retargeting Without a Netlist

Tessent™ Scan and ATPG User’s Manual, v2022.4 573

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

file includes all of the information needed to perform retargeting including the core-level
descriptions, connectivity of the scan pins, and top-level scan procedures used and validated
during extraction. You only need to read in the top-level TCD file and the core-level patterns to
perform pattern retargeting. This enables efficient retargeting of new core-level patterns if the
design and procedures have not changed since DRC and core connectivity extraction were
performed; if this is not the case, you need to rerun extraction.

If anything changes with the setup of the core, such as procedures or constraints, you must rerun
extraction and DRC because the previously extracted top-level TCD may no longer be valid.

Retargeting Support For Patterns Generated at the Top Level 573

Retargeting Support For Patterns Generated at the Top
Level

Scan patterns are typically retargeted with respect to lower-level cores instantiated in the
design; in this case, the core is a lower-level core. However, in some cases, you can test part of
the top-level logic in parallel with lower-level cores by treating this partial view of the top level
as a core instance; in this case, the core is actually the top level.
During pattern retargeting, you use the add_core_instances -current_design command and
option to add the top-level logic as a core instance. This option enables you to add the core
instance with respect to the current design; this core instance then becomes the top level. The
-current_design option also enables patterns for the current design to be merged with patterns of
other core instances in the hierarchy as shown in “Example 2” on page 575.

A core can have multiple modes. A mode of a core is a specific configuration or view of that
design with a specific set of procedures and scan definitions. Two modes of a design can be
mutually exclusive (such as the internal and external test of a wrapper core), or independent of
each other (such as when we generate patterns for non-overlapping parts of a core and then
merge those patterns as in “Example 1” on page 573).

Example 1
The following example demonstrates the use of the -current_design switch to merge two modes
of a core; in this case, the “core” is the top level. In the example, patterns are generated
separately for two sub-blocks of a design from the top-level ports. Sub-Block1 is tested as mode
M1 of the top level, and Sub-Block2 is tested as mode M2 of the top level. The result, shown in
Figure 10-4, is the merging of the two pattern sets originally generated for each individual mode
into a single pattern set applied at the top level.

Tessent™ Scan and ATPG User’s Manual, v2022.4574

Scan Pattern Retargeting
Scan Pattern Retargeting Without a Netlist

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The first dofile reads in the top-level design and writes out the patterns and TCD files for mode
M1 targeting Sub-Block1:

// Invoke tool to generate patterns for each mode of top_level
set_context pattern -scan
read_verilog top_level.v //Read netlist of top_level
// Mode M1 consists of the Sub-Block1 design; the user applies constraints to access
// Sub-Block1 and can optionally blackbox Sub-Block2 to reduce memory consumption
set_current_mode M1 -type internal
...
set_system_mode analysis
...
create_patterns
write_patterns top_levelM1.patdb -patdb
write_core_description top_levelM1.tcd

The second dofile reads in the design and writes out the patterns and TCD files for mode M2
targeting Sub-Block2:

// Mode M2 consists of the Sub-Block2 design; the user applies constraints to access
// Sub-Block2 and can optionally blackbox Sub-Block1 to reduce memory consumption
set_current_mode M2 -type internal
...
set_system_mode analysis
...
create_patterns
write_patterns top_levelM2.patdb -patdb
write_core_description top_levelM2.tcd

The third dofile merges the two separately generated top-level pattern sets (modes M1 and M2)
into a single pattern set:

// Invoke the tool again to retarget patterns to top level
set_context patterns –scan_retargeting
...
read_core_descriptions top_levelM1.tcd
read_core_descriptions top_levelM2.tcd
add_core_instances –core top_level –mode M1 –current_design
add_core_instances –core top_level –mode M2 –current_design
set_system_mode analysis

// Mode extracted from PATDB file
read_patterns top_levelM1.patdb
read_patterns top_levelM2.patdb
write_patterns
…

Scan Pattern Retargeting
Scan Pattern Retargeting Without a Netlist

Tessent™ Scan and ATPG User’s Manual, v2022.4 575

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 10-4. Merging Patterns for Multiple Views of a Core at the Top Level

Example 2
The following example demonstrates the use of the add_core_instances -current_design switch
to merge mode M1 of the current design and mode internal of CoreB. In the example, one
pattern set is generated at the top level (mode M1 of the top level) to test Sub-Block1, and a
second pattern set is generated at the core level of CoreB. The result, as shown in Figure 10-5, is
the integration of the two pattern sets, originally generated for mode M1 of the top level and
mode internal of CoreB, into the top level.

The first dofile reads in the top level design and writes out the patterns and TCD files for mode
M1 targeting Sub-Block1.

// Invoke tool to generate patterns for mode M1 of the top level
set_context patterns -scan
read_verilog top_level.v // Read netlist of top_level
// Mode M1 consists of the Sub-Block1 design; the user applies constraints to access
// Sub-Block1 and can optionally blackbox any other blocks not targeted to reduce memory
// consumption
set_current_mode M1 -type internal
...
set_system_mode analysis
...
create_patterns
write_patterns top_levelM1.patdb -patdb
write_core_description top_levelM1.tcd

The second dofile reads in the CoreB design and writes out the patterns and TCD files.

Tessent™ Scan and ATPG User’s Manual, v2022.4576

Scan Pattern Retargeting
Generating Patterns at the Core Level

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_system_mode setup
delete_design
read_verilog CoreB.v
set_current_mode internal -type internal
...
set_system_mode analysis
create_patterns
write_patterns CoreB.patdb -patdb
write_core_description CoreB.tcd

The third dofile merges the top-level pattern set (mode M1) with the retargeted CoreB patterns.

// Invoke tool to retarget patterns to top level
set_context patterns –scan_retargeting
...
read_core_descriptions top_levelM1.tcd
read_core_descriptions CoreB.tcd
add_core_instances -core top_level -mode M1 -current_design
add_core_instances -core CoreB -mode internal -instances CoreB_i
...
set_system_mode analysis
read_patterns top_levelM1.patdb
read_patterns CoreB.patdb
write_patterns
….

Figure 10-5. Merging Patterns for Top Level and Core at the Top Level

Generating Patterns at the Core Level
This procedure describes how to generate core-level test patterns.

Scan Pattern Retargeting
Retargeting Patterns in Internal Mode

Tessent™ Scan and ATPG User’s Manual, v2022.4 577

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• Core-level netlist

• Cell library

Procedure
1. Enable ATPG using the “set_context patterns -scan” command.

2. Read the core-level netlist and cell library.

3. Configure the core for internal mode.

4. Generate all pattern types using the create_patterns command.

5. Address all test coverage issues.

6. Verify the test patterns (testbenches, STA).

7. Write the retargetable core test patterns using the write_patterns command.

8. Write the core fault lists using the write_faults command.

9. Write the TCD file using the write_core_description command.

10. Write the flat model for diagnosis using the write_flat_model command.

Retargeting Patterns in Internal Mode
This procedure describes how to retarget core-level test patterns to the chip level.

Prerequisites
• TCD file for each of the core types.

• Retargetable patterns resulting from core-level pattern generation.

• Top-level netlist (with cores optionally blackboxed or grayboxed).

• Top-level test procedures.

Procedure
1. Enable the retargeting of patterns using the “set_context patterns -scan_retargeting”

command.

Note
A full netlist for cores whose patterns are being retargeted is not required.
Retargeting only requires a graybox or blackbox model of the cores to both retarget

the patterns and to generate chip-level serial and parallel simulation testbenches.

2. Read the TCD file for each of the core types.

Tessent™ Scan and ATPG User’s Manual, v2022.4578

Scan Pattern Retargeting
Extracting Connectivity Between the Top Level and the Core Boundary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Bind each core description to the core instances it represents in the design using the
add_core_instances command.

4. Read a dofile and test procedure file to configure core access and to configure the cores
whose patterns are being retargeted into their internal mode.

5. Run DRCs when “set_system_mode analysis” is invoked, including extracting scan
connections from the core instances to the top level and validating the embedding of the
cores.

6. Read in the retargetable patterns for each core type using the read_patterns command.

7. Write the retargeted patterns using the write_patterns command. The tool automatically
performs pin mapping (between core and chip-level) and pattern merging as it writes the
chip-level patterns.

8. Write the top-level TCD file. This file includes the core-level core description
information as well as scan connectivity information from the cores to the top. This
information is later used for reverse mapping of silicon failures back to the core level for
diagnosis, or for pattern retargeting without a netlist.

Note
The top-level TCD file also enables generation of top-level patterns without a netlist.
For more information, see “Retargeting of Patterns at the Chip Level Without a

Netlist.”

Chip-level patterns cannot be read back into Tessent Shell, because the internal clocking
information is lost. However, this is not needed because diagnosis is done at the core
level. You can simulate the generated simulation testbench for validation. In addition,
the design objective of this functionality is to eliminate the need to load the full design
into the tool.

Extracting Connectivity Between the Top Level
and the Core Boundary

When you want to separate the extraction and retargeting steps, you can extract the connectivity
from the core level to the top level and create the top-level TCD file.
You can then perform the retargeting. See “Retargeting Patterns Without a Top-Level Netlist”
on page 579.

Prerequisites
• Core-level netlists. The core can optionally be blackboxed or grayboxed.

• Core-level TCD files

• Top-level netlist

Scan Pattern Retargeting
Retargeting Patterns Without a Top-Level Netlist

Tessent™ Scan and ATPG User’s Manual, v2022.4 579

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Enable the retargeting of patterns using the “set_context patterns -scan_retargeting”

command.

Note
A full netlist for cores whose patterns are being retargeted is not required.
Retargeting only requires a graybox or blackbox model of the cores to both retarget

the patterns and to generate chip-level serial and parallel simulation testbenches.

2. Read the TCD file for each of the core types.

3. Bind each core description to the core instances it represents in the design using the
add_core_instances command.

4. Read a dofile and test procedure file to configure core access and to configure the cores
whose patterns are being retargeted into their internal mode.

5. Perform extraction using the “set_system_mode analysis” command. This command
runs DRCs, extracts scan connections from the core instances to the top level and
validates the embedding of the cores.

6. Write the top-level TCD file using the write_core_description command. This file
includes the core-level core description information as well as scan connectivity
information from the cores to the top. This information is later used for reverse mapping
of silicon failures back to the core level for diagnosis, or for pattern retargeting without a
netlist.

Results
Top-level TCD file.

Related Topics
Scan Pattern Retargeting Without a Netlist
Retargeting Patterns Without a Top-Level Netlist

Retargeting Patterns Without a Top-Level
Netlist

You can retarget core-level patterns at the top level without a netlist by using the information
contained in the top-level TCD file.

Prerequisites
• Top-level TCD file. The top-level TCD file results from performing the extraction step

described in “Extracting Connectivity Between the Top Level and the Core Boundary”
on page 578.

Tessent™ Scan and ATPG User’s Manual, v2022.4580

Scan Pattern Retargeting
Generating Patterns in External Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Retargetable patterns resulting from core-level pattern generation.

Procedure
1. Enable the retargeting of patterns using the “set_context patterns -scan_retargeting”

command.

2. Read the top-level TCD file using the read_core_descriptions command. In the absence
of a netlist, the tool recreates what is needed for the design using this file.

3. For SSN designs, you must specify the top level of the design with the
set_current_design command.

4. Change to analysis mode using “set_system_mode analysis”. This command
automatically sets the current design, adds the cores, sets pin constraints, and provides
any other information needed for the design.

5. Read in the retargetable patterns for each core type using the read_patterns command.

6. Report core instances using the report_core_instances command.

7. Retarget and merge patterns as they are written out with respect to the chip-level
boundary using the write_patterns command.

Generating Patterns in External Mode
This procedure describes how to generate patterns in external mode.

Prerequisites
• Complete top-level netlist or top-level netlist with cores grayboxed.

• Core-level fault lists.

• Top-level dofile.

• Top-level test procedure file.

Procedure
1. Enable the generation of patterns using the “set_context patterns -scan” command.

2. Read a complete top-level netlist, or one where each core is replaced by a light-weight
graybox model, and the cell library.

3. Read a dofile and test procedure file to configure cores to external mode.

4. Run DRCs when “set_system_mode analysis” is invoked.

5. Create patterns for testing interconnect and top-level glue logic.

6. Write the generated patterns using the write_patterns command.

Scan Pattern Retargeting
Generating Patterns in External Mode

Tessent™ Scan and ATPG User’s Manual, v2022.4 581

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Read the core-level fault lists from each core’s internal mode pattern set. If the netlist is
not complete due to the use of the graybox models, add the -graybox switch to the
“read_faults <fault_file> -instance <instances> -merge” command.

8. Report the full chip test coverage.

Tessent™ Scan and ATPG User’s Manual, v2022.4582

Scan Pattern Retargeting
Retargeting Example

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Retargeting Example
This example demonstrates the retargeting use model.
This example is based on the design shown in Figure 10-6. The design has three cores of two
types: two identical instances of the CPU core and one instance of the NB core. TOP is the chip
level of the design. In the example, the input is broadcast to identical core instances.

Figure 10-6. Retargeting of Core-Level Patterns

Core-level Pattern Generation for CPU Cores . 583
Core-level Pattern Generation for NB Core . 584
Retargeting of Patterns at the Chip Level . 584

Scan Pattern Retargeting
Core-level Pattern Generation for CPU Cores

Tessent™ Scan and ATPG User’s Manual, v2022.4 583

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Retargeting of Patterns at the Chip Level Without a Netlist. 585

Core-level Pattern Generation for CPU Cores
Core-level pattern generation for the CPU core is shown here.

Set the context for ATPG
set_context patterns -scan

Read cell library (ATPG library file)
read_cell_library atpglib

Read the core netlist
read_verilog CPU.v

Specify to generate patterns that are retargetable for the internal mode
of the core. Because the mode name was not specified, the default is
the same as the mode type “internal”.
set_current_mode -type internal

Specify pins the tool should not constrain to X because they are
explicitly controlled by a Named Capture Procedure that models a
chip-level clock controller driving core-level clocks
set_attribute_value {clk1 clk2} \

-name is_excluded_from_isolation_constraints

Add commands to set up design for ATPG. To avoid coverage loss due to
auto isolation constraints on scan_enable signals, constrain scan_enable
signals to a non-X state
...
add_input_constraints input_scan_enable -C1
add_input_constraints output_scan_enable -C0
add_input_constraints core_scan_enable -C0

Change to analysis mode
set_system_mode analysis

Generate TCD file
write_core_description CPU.tcd -replace

Specify the fault model type and generate patterns
set_fault_type stuck
create_patterns

Write patterns for subsequent retargeting; PatDB is recommended format.
 write_patterns CPU_stuck.retpat -patdb -replace

Write fault list
write_faults CPU_stuck.faults.gz -replace

Write flat model for diagnosis
write_flat_model CPU_stuck.flat_model.gz -replace

Tessent™ Scan and ATPG User’s Manual, v2022.4584

Scan Pattern Retargeting
Core-level Pattern Generation for NB Core

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core-level Pattern Generation for NB Core
Core-level pattern generation for the NB core is the same as for the CPU core.

Set the context for ATPG
set_context patterns -scan

Read cell library (ATPG library file)
read_cell_library atpglib

Read core netlist
read_verilog NB.v

Specify to generate patterns that are retargetable for the internal mode
of the core. Because the mode name was not specified, the default is the
same as the mode type “internal”.
set_current_mode -type internal
...

Retargeting of Patterns at the Chip Level
The steps for scan pattern retargeting are shown here. The tool performs design rule checking as
it changes to analysis mode.

Scan Pattern Retargeting
Retargeting of Patterns at the Chip Level Without a Netlist

Tessent™ Scan and ATPG User’s Manual, v2022.4 585

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Specify that this is the scan pattern retargeting phase
set_context patterns -scan_retargeting

Read cell library (ATPG library file)
read_cell_library atpglib

Read all netlists and the current design. You can replace the core
netlists with graybox models, or blackbox them to reduce memory usage
and run time. You can blackbox them using the
read_verilog -interface_only, or add_black_box commands.
read_verilog TOP.v
read_verilog CPU.v -interface_only
read_verilog NB.v -interface_only
set_current_design TOP

Specify the top-level test procedure file
set_procfile_name TOP.testproc

Read all TCD files
read_core_descriptions CPU.tcd
read_core_descriptions NB.tcd

Bind core descriptions to cores
add_core_instances -core CPU -modules CPU
add_core_instances -core NB -instances /nb_i

Change to analysis mode
set_system_mode analysis

Read core (retargetable) patterns
read_patterns CPU_stuck.retpat
read_patterns NB_stuck.retpat

Specify generic capture window
set_external_capture_options -capture_procedure \

<external_capture_procedure_name>

Report core instances, then retarget and merge patterns as they are
written out with respect to the chip-level boundary. The STIL format
used here can later be read back into the tool to reverse map top level
failures to the core.
report_core_instances
write_patterns TOP_stuck.stil -stil -replace

Write top-level core description. Used for reverse mapping of silicon
failures back to the core level for diagnosis, or for pattern
retargeting without a netlist
write_core_description TOP_stuck.tcd -replace

Retargeting of Patterns at the Chip Level Without a
Netlist

When a logic change is made to a core that requires the core-level patterns to be regenerated, if
the logic change does not affect the ports of the core or the test setup conditions, you can

Tessent™ Scan and ATPG User’s Manual, v2022.4586

Scan Pattern Retargeting
Retargeting of Patterns at the Chip Level Without a Netlist

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

retarget those patterns without loading the chip-level netlist. Instead, you can use the top-level
TCD file that was written out during the original retargeting run. This enables you to avoid the
runtime required to load in a chip-level netlist and perform the extraction again.
The steps for scan pattern retargeting without a netlist are shown here. Prior to performing the
retargeting in this example, you must have already run the extraction step to generate the
top-level TCD file.

Note
The extraction step is identical to the steps performed in “Retargeting of Patterns at the Chip
Level” on page 584 except that the reading and writing of patterns is omitted.

In the absence of a netlist, the tool recreates what is needed for the design from the top-level
TCD file. The tool performs design rule checking as it changes to analysis mode.

Specify that this is the scan pattern retargeting phase
set_context patterns -scan_retargeting

Read the top-level TCD file that resulted from the extraction step
read_core_descriptions TOP_stuck.tcd

Changing to analysis mode automatically sets the current design, adds
the cores,sets pin constraints and any other necessary information for
the design
set_system_mode analysis

Read core (retargetable) patterns
read_patterns CPU_stuck.retpat
read_patterns NB_stuck.retpat

Report core instances (created automatically), then retarget and merge
patterns as they are written out with respect to the chip-level boundary
report_core_instances
write_patterns TOP_stuck.stil -stil -replace

Scan Pattern Retargeting
Core-in-Core Pattern Retargeting

Tessent™ Scan and ATPG User’s Manual, v2022.4 587

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core-in-Core Pattern Retargeting
Core-in-core pattern retargeting is the process of retargeting patterns through multiple levels of
embedded wrapped cores to the top level of the design. That is, if the top design contains one or
more cores and any one of those cores contains any number of nested cores, you can retarget
patterns from the lowest level to the top level of the design.
The core-in-core pattern retargeting process provides two different options: you can use flat
extraction that retargets patterns from the child to the chip level in one step, or you can perform
extraction in multiple steps (one for each intermediate (typically wrapped) core level).

• Flat Extraction Flow — The flat extraction flow requires you to provide the blackbox,
graybox, or full netlist for the core being retargeted and the full netlist for all levels of
hierarchy above it. While the flat extraction flow may require less file management
(fewer TCD files to track) and fewer extraction steps, it does mean loading large netlists
that need more memory. It also is less consistent with a hierarchical methodology in
which everything is completed at each (typically) wrapped level of hierarchy.

• Multiple Extraction Step Flow — Instead of the flat extraction flow, you can retarget
patterns by performing multiple extraction steps (one for each intermediate (typically)
wrapped level). For example, consider a design in which there is a low-level wrapped
core, a child core, instantiated inside another wrapped core, a parent core, which is then
instantiated in the top level. You perform extraction from the child to the parent at the
parent level, store the associated TCD file, perform extraction from the parent level to
the top, and then perform pattern retargeting. In addition to requiring multiple extraction
steps, this flow requires more file management. However, the multiple extraction step
flow provides the following benefits:

o Enables you to, optionally, perform verification at each level as you traverse the
design.

o Compatible with a hierarchical flow methodology because at each level you extract
everything that is needed for the parent level including the TCD file that enables you
to forget about what is inside the parent.

o More efficient because it does not require you to provide the full content of your
netlist from the child to the top level. You need only load a blackbox (or optionally
graybox) for the core being extracted and the netlist of the level to which you are
extracting.

Core-in-Core Pattern Retargeting Flow . 588
Generation of Child Core Internal Mode Patterns. 590
Retargeting Child Core Internal Mode Patterns . 590
Generation of Parent Internal Mode Patterns . 591
Retargeting of Parent Internal Mode Patterns . 592

Tessent™ Scan and ATPG User’s Manual, v2022.4588

Scan Pattern Retargeting
Core-in-Core Pattern Retargeting Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core-in-Core Pattern Retargeting Flow
You perform core-in-core pattern retargeting by, first, doing the incremental extraction step for
each wrapped level in the design. Then, the actual retargeting is performed once at the chip level
at which time the core-level patterns are retargeted to the chip level.
Because your design may contain multiple levels between the child and chip level, the process
can be extended to multiple levels. Your design may have multiple parent cores at the same
level, multiple child cores at the same level, or both of these.

In describing the process and steps required for generating and retargeting patterns from the
child level to the chip level, this section uses three design levels, as shown in Figure 10-7, and
refers to them as the “chip level”, “parent level”, and “child level”. However, as mentioned
before, this is a recursive flow that can be expanded to any number of levels.

For example, the parent core shown in Figure 10-7 could have multiple child cores inside it, or
the chip could have multiple parent cores inside it.

Figure 10-7. Three Levels of Wrapped Cores

Scan Pattern Retargeting
Core-in-Core Pattern Retargeting Flow

Tessent™ Scan and ATPG User’s Manual, v2022.4 589

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The core-in-core scan pattern retargeting process begins at the lowest level of design hierarchy
and traverses up the design one level at a time as shown in Figure 10-8:

Figure 10-8. Core-in-Core Retargeting Process Overview

Tessent™ Scan and ATPG User’s Manual, v2022.4590

Scan Pattern Retargeting
Generation of Child Core Internal Mode Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generation of Child Core Internal Mode Patterns
You generate child core internal mode patterns by performing the following steps at the child
core(s) level.

Procedure
1. Read full child netlist.

2. Set child mode to internal.

3. Generate child internal mode patterns.

4. Write out the child patterns.

5. Write out the child TCD file (write_core_description).

6. Optionally, write out the flat model for diagnosis.

7. Write out the fault list.

8. Verify scan patterns at the child level.

Related Topics
Core-in-Core Pattern Retargeting Flow

Retargeting Child Core Internal Mode Patterns
You retarget child core internal mode patterns by first performing intermediate extraction steps
prior to the retargeting step.
The extraction of the child core(s) to the parent level is performed in steps one through seven.

Procedure
1. Read the child blackbox.

2. Read the full parent netlist.

3. Configure the parent core to provide access to the child core and configure the child core
as it was configured when its patterns were generated.

4. Read the child TCD file.

5. Extract the child core connectivity and verify the child core embedding. Extraction is
performed as part of DRC when you transition to analysis mode (“set_system_mode
analysis”).

6. Write out the parent TCD file (the TCD file includes all child internal mode TCD info
and new parent TCD info).

Scan Pattern Retargeting
Generation of Parent Internal Mode Patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4 591

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. (Optional) Retarget child core patterns to parent level for verification of core embedding
only.

Once you get to the top level (below which the highest wrapped level is instantiated),
you only need to incrementally extract connectivity from the parent level to the top. The
connectivity from the child to the parent was previously extracted. Following this
incremental extraction step, pattern retargeting can be performed directly from the child
level to the top. This is described in steps 8 through 17.

8. Read the parent blackbox.

9. Read the full chip netlist.

10. Configure the chip to provide scan access from the top to the parent.

11. Configure the parent as it was configured in the previous procedure, which configured
the child for internal test and provided scan access from the parent to the child.

12. Read the parent TCD file from step 6 (which includes the extracted child TCD file).

13. Add the parent core as a core instance using add_core_instances.

14. Extract the parent core connectivity and verify the parent core embedding. Extraction is
performed as part of DRC when you transition to analysis mode (“set_system_mode
analysis”).

15. Write the chip-level TCD file. (You need this file if you plan to perform pattern
retargeting without a netlist as described in “Retargeting Patterns Without a Top-Level
Netlist” on page 579.)

16. Read the child core internal mode patterns.

17. Write the retargetable patterns.

Related Topics
Core-in-Core Pattern Retargeting Flow

Generation of Parent Internal Mode Patterns
You can generate parent-level internal mode patterns, by performing the following steps at the
parent level.

Procedure
1. Read the child graybox.

2. Read the full parent netlist.

3. Set the child to external mode.

4. Set the parent to internal mode.

Tessent™ Scan and ATPG User’s Manual, v2022.4592

Scan Pattern Retargeting
Retargeting of Parent Internal Mode Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. Write the parent TCD file.

6. Generate parent internal mode patterns.

7. Write the parent internal mode patterns.

8. Optionally, write out the flat model for diagnosis.

9. Write out the fault list.

10. Verify the scan patterns.

Related Topics
Core-in-Core Pattern Retargeting Flow

Retargeting of Parent Internal Mode Patterns
Because you now want to retarget the patterns that were generated at the level of the parent to
the top, you perform extraction and retargeting of the parent internal mode patterns in one step
without the intermediate extraction step.

Procedure
1. Read the parent blackbox.

2. Read in the full chip set.

3. Configure the chip to parent internal mode.

4. Read the parent TCD file from step 5.

5. Add the parent core as a core instance using add_core_instances.

6. Extract the parent core connectivity to the top level and verify embedding of the parent
core. Extraction is performed as part of DRC when you transition to analysis mode
(“set_system_mode analysis”).

7. Write the top-level TCD file.

8. Retarget the parent core internal mode patterns to the chip level.

Related Topics
Core-in-Core Pattern Retargeting Flow

multiple loadScan Pattern Retargeting
Limitations

The limitations of the scan pattern retargeting functionality are listed here.

Scan Pattern Retargeting
multiple loadScan Pattern Retargeting Limitations

Tessent™ Scan and ATPG User’s Manual, v2022.4 593

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Only parallel STIL and parallel WGL chip-level patterns can be read back into the tool.
To enable reverse mapping of top level failures to the core for diagnosis, you need to
have chip-level parallel STIL or WGL patterns.

• DRCs exist to validate that the design setup at the top level is consistent with the setup
that was used for core-level ATPG. But this validation is not complete. For example, the
capture cycle clocking is not validated. Consequently, you should perform chip-level
serial simulation of a small number of scan patterns to verify the setup is correct.

• Core-level ATPG has limited flat model support. You can save a flat model in analysis
mode for performing diagnosis or rerunning ATPG with that same configuration, but
you must perform the initial design setup (setup mode) and design rule checking on a
Verilog design and not a flat model. Note, you cannot access the
is_excluded_from_isolation_constraints port attribute when running on a flat model.

• During the retargeting phase, flat models are not supported. A Verilog design must be
read in. A flat model cannot be read in or written out because it lacks information
necessary for retargeting.

• Scan pattern retargeting does not support multiple scan groups.

• The recommended format for patterns for retargeting is pattern database (PatDB).

• The shadow_control, shadow_observe, and master_observe procedures are not
supported. You should not use these procedures during core-level ATPG or in the top-
level test procedure file.

• Do not use STARTPAT and ENDPAT when simulating retargeted patterns that contain
multiple load core patterns.When multiple load patterns from a core are retargeted to
top-level chip patterns, the top-level pattern count does not align with the original core-
level patterns. Each retargeted load is marked as a pattern. When saving these retargeted
patterns in a Verilog testbench, if you used the STARTPAT and ENDPAT plusargs,
they refer to the top-level pattern numbers, and it might be possible to erroneously start a
simulation in the middle of a multiple load core pattern.

Tessent™ Scan and ATPG User’s Manual, v2022.4594

Scan Pattern Retargeting
multiple loadScan Pattern Retargeting Limitations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 595

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 11
Test Pattern Formatting and Timing

This chapter explains test pattern timing and procedure files.
Figure 11-1 shows a basic process flow for defining test pattern timing.

Figure 11-1. Defining Basic Timing Process Flow

Test Pattern Timing Overview . 596
Timing Terminology . 596
General Timing Issues . 597
Generating a Procedure File . 598
Defining and Modifying Timeplates. 599

Tessent™ Scan and ATPG User’s Manual, v2022.4596

Test Pattern Formatting and Timing
Test Pattern Timing Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Delaying Clock Pulses in Shift and Capture to Handle Slow Scan Enable Transitions 600
Delaying Clocks After All Scan Enable Transitions (Recommended). 600
Transitions From Shift to Capture . 602
Transition from Capture to Shift. 605

Saving Timing Patterns . 608
Features of the Formatter . 608
Pattern Formatting Issues . 610
Basic Test Data Formats for Patterns . 613
ASIC Vendor Data Formats . 618

Vector Creation and Modification . 620
Port List Modification. 620
Vector Data Callbacks . 621
Used Ports and Vector Callback Examples . 626

Test Pattern Timing Overview
Test procedure files contain both scan and non-scan procedures. All timing for all pattern
information, both scan and non-scan, is defined in this procedure file.
While the ATPG process itself does not require test procedure files to contain real timing
information, automatic test equipment (ATE) and some simulators do require this information.
Therefore, you must modify the test procedure files you use for ATPG to include real timing
information. “General Timing Issues” on page 597 discusses how you add timing information to
existing test procedures.

After creating real timing for the test procedures, you are ready to save the patterns. You use the
write_patterns command with the proper format to create a test pattern set with timing
information. For more information, refer to “Saving Timing Patterns” on page 608.

Test procedures contain groups of statements that define scan-related events. See “Test
Procedure File” in the Tessent Shell User’s Manual.

Timing Terminology
The following list defines some timing-related terms.

• Non-return Timing — Primary inputs that change, at most, once during a test cycle.

• Offset — The timeframe in a test cycle in which pin values change.

• Period — The duration of pin timing—one or more test cycles.

• Return Timing — Primary inputs, typically clocks, that pulse high or low during every
test cycle. Return timing indicates that the pin starts at one logic level, changes, and
returns to the original logic level before the cycle ends.

Test Pattern Formatting and Timing
General Timing Issues

Tessent™ Scan and ATPG User’s Manual, v2022.4 597

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Suppressible Return Timing — Primary inputs that can exhibit return timing during a
test cycle, although not necessarily.

General Timing Issues
ATEs require test data in a cycle-based format. The patterns you apply to such equipment must
specify the waveforms of each input, output, or bidirectional pin, for each test cycle.
Within a test cycle, a device under test must abide by the following restrictions:

• At most, each non-clock input pin changes once in a test cycle. However, different input
pins can change at different times.

• Each clock input pin is at its off-state at both the start and end of a test cycle.

• At most, each clock input pin changes twice in a test cycle. However, different clock
pins can change at different times.

• Each output pin has only one expected value during a test cycle. However, the
equipment can measure different output pin values at different times.

• A bidirectional pin acts as either an input or an output, but not both, during a single test
cycle.

To avoid adverse timing problems, the following timing requirements satisfy some ATE timing
constraints:

• Unused Outputs — By default, test procedures without measure events (all procedures
except shift) strobe unused outputs at a time of cycle/2, and end the strobe at 3*cycle/4.
The shift procedure strobes unused outputs at the same time as the scan output pin.

• Unused Inputs — By default, all unused input pins in a test procedure have a force
offset of 0.

• Unused Clock Pins — By default, unused clock pins in a test procedure have an offset
of cycle/4 and a width of cycle/2, where cycle is the duration of each cycle in the test
procedure.

• Pattern Loading and Unloading — During the load_unload procedure, when one
pattern loads, the result from the previous pattern unloads. When the tool loads the first
pattern, the unload values are X. After the tool loads the last pattern, it loads a pattern of
X’s so it can simultaneously unload the values resulting from the final pattern.

• Events Between Loading and Unloading (“patterns -scan” context only) — If other
events occur between the current unloading and the next loading, in order to load and

Tessent™ Scan and ATPG User’s Manual, v2022.4598

Test Pattern Formatting and Timing
Generating a Procedure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

unload the scan chain simultaneously, The tool performs the events in the following
order:

a. Observe Procedure Only — The tool performs the observe procedure before
loading and unloading.

b. Initial Force Only — The tool performs the initial force before loading and
unloading.

c. Both Observe Procedure and Initial Force — The tool performs the observe
procedures followed by the initial force before loading and unloading.

Generating a Procedure File
This procedure showed the basic process flow for defining test pattern timing.

Procedure
1. Use the “write_procfile -Full” command and switch to generate a complete procedure

file.

2. Examine the procedure file, modify timeplates with new timing if necessary.

3. Use the read_procfile command to load in the revised procedure file.

4. Issue the write_patterns command.

5. The “Test Procedure File” section of the Tessent Shell User’s Manual gives an in depth
description of how to create a procedure file.

6. There are three ways to load existing procedure file information into the tool:

• During SETUP mode, use the “add_scan_groups <procedure_filename>”
command. Any timing information in these procedure files is used when
write_patterns is issued if no other timing information or procedure information is
loaded.

• Use the read_procfile command. This is only valid when not in SETUP mode. Using
this command loads a new procedure file that overwrites or merges with the
procedure and timing data already loaded. This new data is now in effect for all
subsequent write_patterns commands.

• If you specify a new procedure file on the write_patterns command line, the timing
information in that procedure file is used for that write_patterns command only, and
then the previous information is restored.

Test Pattern Formatting and Timing
Defining and Modifying Timeplates

Tessent™ Scan and ATPG User’s Manual, v2022.4 599

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Defining and Modifying Timeplates
This section gives an overview of the test procedure file timeplate syntax, to facilitate Step 2 in
the process flow listed previously.
For a more detailed overview of timeplates, see the “Timeplate Definition” section of the
Tessent Shell User’s Manual.

After you have used the “write_procfile -full” command to generate a procedure file, you can
examine the procedure file, modifying timeplates with new timing if necessary. Any timing
changes to the existing timeplates, cannot change the event order of the timeplate used for scan
procedures. The times may change, but the event order must be maintained.

The following example shows the contents of a timeplate, where there are two timing edges
happening at time 20, and both are listed as timing edge 4. These can be skewed, but they
cannot cross any other timing edge. The timing edges must stay in the order listed in the
comments:

force_pi 0; // timing edge 1
bidi_force_pi 12; // timing edge 3
measure_po 31; // timing edge 7
bidi_measure_po 32; // timing edge 8
force InPin 9; // timing edge 2
measure OutPin 35; // timing edge 9
pulse Clk1 20 5; // timing edge 4 & 5, respectively
pulse Clk2 20 10; // timing edge 4 & 6, respectively
period 50; // all timing edges have to happen in period

The test procedure file syntax and format is explained in the “Timeplate Definition” section in
the Tessent Shell User’s Manual. Keep in mind that the timeplate definition describes a single
tester cycle and specifies where in that cycle all event edges are placed. You must define all
timeplates before they are referenced. A procedure file must have at least one timeplate
definition. All clocks must be defined in the timeplate definition.

Tessent™ Scan and ATPG User’s Manual, v2022.4600

Test Pattern Formatting and Timing
Delaying Clock Pulses in Shift and Capture to Handle Slow Scan Enable Transitions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Delaying Clock Pulses in Shift and Capture to
Handle Slow Scan Enable Transitions

There are various techniques to handle slow scan enable transitions.
During scan test, the frequency of shift and capture clocks may not permit sufficient time for
scan enable (SE) to change state before the occurrence of the first clock pulse. Because SE is a
global signal that is not timed for fast operation similar to clocks, there may not be enough time
for it to propagate to all scan cells within one tester cycle. Although SE is the most common
case of such a signal, any other high-fanout signal may have the same timing issue. The
waveform in Figure 11-2 highlights, in red, the edge transitions that may require additional
delay.

Figure 11-2. Clock Pulses Requiring Additional Delay

These sections describe various techniques for creating procedures that avoid DRC violations
and result in correct simulation results and patterns. For all the techniques described here, SE is
assumed to be constrained to its off state in the dofile.

Delaying Clocks After All Scan Enable Transitions (Recommended) 600
Transitions From Shift to Capture. 602
Transition from Capture to Shift . 605

Delaying Clocks After All Scan Enable Transitions
(Recommended)

The recommended method for delaying clock pulses after all transitions of SE is to stretch the
timeplate used in the load_unload and capture procedures. Doing so addresses delay
requirements when transitioning from shift to capture, as well as from capture to shift.

Test Pattern Formatting and Timing
Delaying Clocks After All Scan Enable Transitions (Recommended)

Tessent™ Scan and ATPG User’s Manual, v2022.4 601

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timeplate Examples
For example, shift cycles may use a 40ns period with a 50 percent duty cycle as shown in this
timeplate:

timeplate tp_shift =
 force_pi 0;
 measure_po 5;
 pulse_clock 10 20;
 period 40;
end;

This stretched timeplate can be used to delay the clock pulse by 40ns while maintaining the
same 20ns duty cycle:

timeplate tp_load_and_capture =
 force_pi 0;
 measure_po 5;
 pulse_clock 50 20;
 period 80;
end;

As shown in the waveform in Figure 11-3, the stretched waveform adds delay to address
transitions from capture to shift and from shift to capture.

Figure 11-3. Stretched Waveform

Default Timeplate
You can explicitly specify the timeplate used by the tool as shown in the timeplate code
examples shown in “Timeplate Examples” on page 601 or by changing the default timeplate
using the “set default_timeplate” statement in the procedure file. It is recommended to not
change the default timeplate because the tool may create different procedures automatically and
use the shift procedure’s timeplate to do so. Defining the default timeplate may result in the tool
using the stretched timeplate, which is not always ideal.

Tessent™ Scan and ATPG User’s Manual, v2022.4602

Test Pattern Formatting and Timing
Transitions From Shift to Capture

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Transitions From Shift to Capture
Many designs have test hardware that uses SE to disable asynchronous control signals (such as
sets and resets) during shift. The logic inserted by DFT signals in Tessent tools also uses SE for
this purpose. Adding post-shift cycles to the load_unload procedure cannot be used because it
forces SE to transition to 0 before the end of load_unload. Unless the set/reset signals are gated
off during both shift and capture, scan cell data is disturbed and the tool reports D1 DRC
violations.
There are four methods that enable the first clock pulse in capture to be delayed without the
need to add post-shift dead cycles in the load-unload procedure.

Stretched Timeplate in Capture (Recommended)
The recommended method for delaying the capture pulse after SE transitions to 0 is the
stretched timeplate described in Delaying Clocks After All Scan Enable Transitions
(Recommended). The waveform in Figure 11-4 shows the same solution if only applied to
capture to address shift-to-capture transitions.

Figure 11-4. Stretched Timeplate in Capture

Extended Clock Sequential and Capture Procedures
If tester restrictions prevent changing the clock period between shift and capture, the clock
sequential and capture procedures can be extended to more than one cycle to achieve a similar
effect as the stretched timeplate method described in the Stretched Timeplate in Capture
(Recommended) section.

Procedures in capture can be extended by explicitly defining the clock_sequential and capture
procedures. The following clock_sequential and capture procedures have a cycle with no clock
pulse followed by another cycle that includes the clock pulse.

Test Pattern Formatting and Timing
Transitions From Shift to Capture

Tessent™ Scan and ATPG User’s Manual, v2022.4 603

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

timeplate tp1 =
 force_pi 0;
 measure_po 5;
 pulse_clock 10 20;
 period 40;
end;
procedure clock_sequential =
 timeplate tp1;
 cycle =
 force_pi;
 end ;
 cycle =
 pulse_capture_clock;
 end;
end;
procedure capture =
 timeplate tp1;
 cycle =
 force_pi;

measure_po;
 end ;
 cycle =
 pulse_capture_clock;
 end;
end;

Figure 11-5. Extended Capture Procedure

Figure 11-6. Extended Capture Procedure (Clock Sequential)

The waveforms in Figure 11-5 and Figure 11-6 illustrate that having a dead cycle at the start of
the capture procedure may not be suitable for at-speed test if the capture clock is required to

Tessent™ Scan and ATPG User’s Manual, v2022.4604

Test Pattern Formatting and Timing
Transitions From Shift to Capture

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

occur immediately after the last clock pulse. If this is required for an accurate at-speed test and
the tester can support creating such waveforms, it may be necessary to remove the dead cycle in
the capture procedure as shown in this code and in Figure 11-7:

procedure capture =
 timeplate tp1;
 cycle =
 force_pi;

measure_po;
 pulse_capture_clock;
 end;
end;

Figure 11-7. Extended Capture Procedure (Dead Cycle Removed)

External Capture Procedures
For at-speed test, it is also possible to define additional dead cycles in an external_capture
procedure to delay the first clock pulse in capture. The external capture procedure is referenced
in the dofile using the set_external_capture_options command.

An example is shown in this code and in Figure 11-8

procedure external_capture ext_fast_cap_proc =
 timeplate tp1 ;
 cycle =
 force_pi ;
 end;
 cycle =
 end;
 cycle =
 end;
 cycle =
 pulse clock;
 end;
end;

Test Pattern Formatting and Timing
Transition from Capture to Shift

Tessent™ Scan and ATPG User’s Manual, v2022.4 605

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-8. External Capture Procedure (Dead Cycles Added)

Named Capture Procedures
If Named Capture Procedures (NCPs) are used, clock pulses can be delayed using the
techniques described, by stretching the cycle, or by explicitly adding dead cycles

Post-shift Cycles
As explained earlier in the introduction of Transitions From Shift to Capture, only designs that
do not use SE to disable asynchronous controls (for example, sets and resets) can add post-shift
dead cycles to delay the clock pulse. This permits SE enough time to transition from 1 to 0
before clock pulses in capture. However, because this solution is not appropriate for many
designs, it is not recommended.

Transition from Capture to Shift
After scan enable (SE) transitions to 1, there are two method to handle slow scan enable
transitions.

Stretched Timeplate in load_unload (Recommended)
The recommended method for delaying the capture pulse after SE transitions to 1 is the
stretched timeplate described in “Delaying Clocks After All Scan Enable Transitions

Tessent™ Scan and ATPG User’s Manual, v2022.4606

Test Pattern Formatting and Timing
Transition from Capture to Shift

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

(Recommended)” on page 600. The waveform in Figure 11-9 shows the same solution if only
applied to load_unload to address capture-to-shift transitions:

Figure 11-9. Stretched Timeplate (load_unload)

Dead Cycles Before Shift
In order to permit SE enough time to transition from 0 to 1 before the first clock pulse in shift,
add any number of dead cycles with no clock pulses to the load_unload procedure before the
‘apply shift’ statement. An example is shown in this code and in Figure 11-10:

timeplate tp1 =
 force_pi 0;
 measure_po 5;
 pulse_clock 10 20;
 period 40;
end;
procedure load_unload =
 timeplate tp1;
 cycle =
 force clk 0;
 force scan_en 1;
 end;
 cycle =
 end;
 cycle =
 end;
 apply shift 100;
end;

Test Pattern Formatting and Timing
Transition from Capture to Shift

Tessent™ Scan and ATPG User’s Manual, v2022.4 607

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-10. Capture to Shift

Delaying Other Signals in load_unload That Require Additional Delay
The examples discussed in “Transition from Capture to Shift” on page 605 are simple
procedures for a design without compression. A similar approach can be used for designs with
EDT where the edt_update signal may also have a high fanout and require additional cycles to
propagate. This example adds a dead cycle after each transition of edt_update and before the
pulses of EDT and shift clocks.

procedure load_unload =
 timeplate tp1;
 cycle =
 force RST 0;
 force CLK 0;
 force scan_en 1;
 force edt_update 1;
 end;
 cycle =
 end;
 cycle =
 pulse edt_clock;
 end;
 cycle =
 force edt_update 0;
 end;
 cycle =
 end;
 apply shift 100;
end;

Tessent™ Scan and ATPG User’s Manual, v2022.4608

Test Pattern Formatting and Timing
Saving Timing Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Saving Timing Patterns
You can write the patterns generated during the ATPG process both for timing simulation and
use on the ATE.
Once you create the proper timing information in a test procedure file, the tool uses an internal
test pattern data formatter to generate the patterns in the following formats:

• Text format (ASCII)

• Binary format

• Wave Generation Language (WGL)

• Standard Test Interface Language (STIL)

• Verilog

• Texas Instruments Test Description Language (TDL 91)

• Fujitsu Test data Description Language (FTDL-E)

• Mitsubishi Test Description Language (MITDL)

• Toshiba Standard Tester interface Language 2 (TSTL2)

Features of the Formatter . 608
Pattern Formatting Issues. 610
Basic Test Data Formats for Patterns . 613
ASIC Vendor Data Formats . 618

Features of the Formatter
Here are the main features of the test pattern data formatter.

• Generating basic test pattern data formats: text, Verilog, and WGL (ASCII and binary).

• Generating ASIC Vendor test data formats: TDL 91, FTDL-E, MITDL, and TSTL2.

• Supporting parallel load of scan cells (in Verilog format).

• Reading in external input patterns and output responses, and directly translating to one
of the formats.

• Reading in external input patterns, performing good or faulty machine simulation to
generate output responses, and then translating to any of the formats.

• Writing out just a subset of patterns in any test data format.

• Facilitating failure analysis by having the test data files cross-reference information
between tester cycle numbers and pattern numbers.

Test Pattern Formatting and Timing
Features of the Formatter

Tessent™ Scan and ATPG User’s Manual, v2022.4 609

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Supporting differential scan input pins for each simulation data format.

Tessent™ Scan and ATPG User’s Manual, v2022.4610

Test Pattern Formatting and Timing
Pattern Formatting Issues

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Formatting Issues
The following subsections describe issues you should understand regarding the test pattern
formatter and pattern saving process.
Serial Versus Parallel Scan Chain Loading . 610
Parallel Scan Chain Loading . 610
Reduce Serial Loading Simulation Time With Sampling . 612
Test Pattern Data Support for IDDQ . 612

Serial Versus Parallel Scan Chain Loading
When you simulate test patterns, most of the time is spent loading and unloading the scan
chains, as opposed to actually simulating the circuit response to a test pattern. You can use
either serial or parallel loading, and each affects the total simulation time differently.
The primary advantage of simulating serial loading is that it emulates how patterns are loaded
on the tester. You thus obtain a very realistic indication of circuit operation. The disadvantage is
that for each pattern, you must clock the scan chain registers at least as many times as you have
scan cells in the longest chain. For large designs, simulating serial loading takes an extremely
long time to process a full set of patterns.

The primary advantage of simulating parallel loading of the scan chains is it greatly reduces
simulation time compared to serial loading. You can directly (in parallel) load the simulation
model with the necessary test pattern values because you have access, in the simulator, to
internal nodes in the design. Parallel loading makes it practical for you to perform timing
simulations for the entire pattern set in a reasonable time using popular simulators like Questa
SIM that utilize the Verilog format.

Parallel Scan Chain Loading
You accomplish parallel loading through the scan input and scan output pins of scan sub-chains
(a chain of one or more scan cells, modeled as a single library model) because these pins are
unique to both the timing simulator model and the Tessent Shell internal model. For example,
you can parallel load the scan chain by using Verilog force statements to change the value of the
scan input pin of each sub-chain.
After the parallel load, you apply the shift procedure a few times (depending on the number of
scan cells in the longest subchain, but usually only once) to load the scan-in value into the sub-
chains. Simulating the shift procedure only a few times can dramatically improve timing
simulation performance. You can then observe the scan-out value at the scan output pin of each
sub-chain.

Parallel loading ensures that all memory elements in the scan sub-chains achieve the same states
as when serially loaded. Also, this technique is independent of the scan design style or type of

Test Pattern Formatting and Timing
Pattern Formatting Issues

Tessent™ Scan and ATPG User’s Manual, v2022.4 611

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

scan cells the design uses. Moreover, when writing patterns using parallel loading, you do not
have to specify the mapping of the memory elements in a sub-chain between the timing
simulator and Tessent Shell. This method does not constrain library model development for
scan cells.

Note
When your design contains at least one stable-high scan cell, the shift procedure period must
exceed the shift clock off time. If the shift procedure period is less than or equal to the shift

clock off time, you may encounter timing violations during simulation. The test pattern
formatter checks for this condition and issues an appropriate error message when it encounters a
violation.

For example, the test pattern timing checker would issue an error message when reading in the
following shift procedure and its corresponding timeplate:

timeplate gen_tp1 =
force_pi 0;
measure_po 100;
pulse CLK 200 100;
period 300; // Period same as shift clock off time

end;

procedure shift =

scan_group grp1;
timeplate gen_tp1;
cycle =

force_sci;
measure_sco;
pulse CLK; // Force shift clock on and off

end;
end;

The error message would state:

// Error: There is at least one stable high scan cell in the design.
// The shift procedure period must be greater than the shift clock off
// time to avoid simulation timing violations.

The following modified timeplate would pass timing rules checks:

timeplate gen_tp1 =
force_pi 0;
measure_po 100;
pulse CLK 200 100;
period 400; // Period greater than shift clock off time

end;

Tessent™ Scan and ATPG User’s Manual, v2022.4612

Test Pattern Formatting and Timing
Pattern Formatting Issues

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Reduce Serial Loading Simulation Time With Sampling
When you use the write_patterns command, you can save a sample of the full pattern set by
using the -Sample switch. This reduces the number of patterns in the pattern file(s), reducing
simulation time accordingly. In addition, the -Sample switch enables you to control how many
patterns of each type are included in the sample. By varying the number of sample patterns, you
can fine-tune the trade-off between file size and simulation time for serial patterns.

Note
Using the -Start and -End switches limits file size as well, but the portion of internal patterns
saved does not provide a very reliable indication of pattern characteristics when simulated.

Sampled patterns more closely approximate the results you would obtain from the entire pattern
set.

After performing initial verification with parallel loading, you can use a sampled pattern set for
simulating series loading until you are satisfied test coverage is reasonably close to the
specification you want. Then, perform a series loading simulation with the unsampled pattern
set only once, as your last verification step.

Note
The set_pattern_filtering command serves a similar purpose to the -Sample switch of the
write_patterns command. The set_pattern_filtering command creates a temporary set of

sampled patterns within the tool.

Test Pattern Data Support for IDDQ
For best results, you should measure current after each non-scan cycle if doing so catches
additional IDDQ faults. However, you can only measure current at specific places in the test
pattern sequence, typically at the end of the test cycle boundary. To identify when IDDQ current
measurement can occur, the pattern file adds the following command at the appropriate places:

measure IDDQ ALL;

Several test pattern data formats support IDDQ testing. There are special IDDQ measurement
constructs in TDL 91 (Texas Instruments), MITDL (Mitsubishi), TSTL2 (Toshiba), and FTDL-
E (Fujitsu). The tools add these constructs to the test data files. All other formats (WGL and
Verilog) represent these statements as comments.

Test Pattern Formatting and Timing
Basic Test Data Formats for Patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4 613

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Basic Test Data Formats for Patterns
The write_patterns command saves the patterns in the basic test data formats including text,
binary, Verilog, and WGL (ASCII and binary). You can use these formats for timing
simulation.
Text Format . 613
Comparing the Text Format With Other Test Data Formats . 613
Binary . 616
Verilog. 616
Wave Generation Language (ASCII). 616
Standard Test Interface Language (STIL) . 617

Text Format
This is the default format that the tool generates when you run the write_patterns command. The
tool can read back in this format in addition to WGL, STIL, and binary format.
This format contains test pattern data in a text-based parallel format, along with pattern
boundary specifications. The main pattern block calls the appropriate test procedures, while the
header contains test coverage statistics and the necessary environment variable settings. This
format also contains each of the scan test procedures, as well as information about each scan
memory element in the design.

To create a basic text format file, enter the following at the application command line:

ANALYSIS> write_patterns <filename> -ascii

The formatter writes the complete test data to the file named <filename>.

For more information on the write_patterns command and its options, refer to the write_patterns
description in the Tessent Shell Reference Manual.

Note
This pattern format does not contain explicit timing information. For more information
about this test pattern format, refer to “Test Pattern File Formats” on page 631.

Comparing the Text Format With Other Test Data Formats
The text format describes the contents of the test set in a human readable form. In many cases,
you may find it useful to compare the contents of a simulation or test data format with that of the
text format for debugging purposes. This section provides detailed information necessary for
this task.

Tessent™ Scan and ATPG User’s Manual, v2022.4614

Test Pattern Formatting and Timing
Basic Test Data Formats for Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Often, the first cycle in a test set must perform certain tasks. The first test cycle in all test data
formats turns off the clocks at all clock pins, drives Z on all bidirectional pins, drives an X on all
other input pins, and disables measurement at any primary output pins.

The test pattern set can contain two main parts: the chain test block, to detect faults in the scan
chain, and the scan test or cycle test block, to detect other system faults.

The Chain Test Block
The chain test applies the test_setup procedure, followed by the load_unload procedure for
loading scan chains, and the load_unload procedure again for unloading scan chains. Each
load_unload procedure in turn calls the shift procedure. This operation typically loads a
repeating pattern of “0011” into the chains. However, if scan chains with less than four cells
exist, then the operation loads and unloads a repeating “01” pattern followed by a repeating
“10” pattern. Also, when multiple scan chains in a group share a common scan input pin, the
chain test process separately loads and unloads each of the scan chains with the repeating
pattern to test them in sequence.

The test procedure file applies each event in a test procedure at the specified time. Each test
procedure corresponds to one or more test cycles. Each test procedure can have a test cycle with
a different timing definition. By default, all events use a timescale of 1 ns.

Note
If you specify a capture clock with the set_capture_clock command, the test pattern
formatter does not produce the chain test block. For example, the formatter does not produce

a chain test block for IEEE 1149.1 devices in which you specify a capture clock during tool
setup.

The Scan Test Block
The scan test block in the pattern set starts with an application of the test_setup procedure. The
scan test block contains several test patterns, each of which typically applies the load_unload
procedure, forces the primary inputs, measures the primary outputs, and pulses a capture clock.
The load_unload procedure translates to one or more test cycles. The force, measure, and clock
pulse events in the pattern translate to the ATPG-generated capture cycle.

Each event has a sequence number within the test cycle. The sequence number’s default time
scale is 1 ns.

Unloading of the scan chains for the current pattern occurs concurrently with the loading of scan
chains for the next pattern. Therefore the last pattern in the test set contains an extra application
of the load_unload sequence.

More complex scan styles use master_observe and skewed_load procedures in the pattern. For
designs with sequential controllers, like boundary scan designs, each test procedure may have
several test cycles to operate the sequential scan controller. Some pattern types (for example,

Test Pattern Formatting and Timing
Basic Test Data Formats for Patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4 615

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RAM sequential and clock sequential types) are more complex than the basic patterns. RAM
sequential patterns involve multiple loads of the scan chains and multiple applications of the
RAM write clock. Clock sequential patterns involve multiple capture cycles after loading the
scan chains. Another special type of pattern is the clock_po pattern. In these patterns, clocks
may be held active throughout the test cycle and without applying capture clocks.

If the test data format supports only a single timing definition, the tool cannot save both
clock_po and non-clock_po patterns in one pattern set. This is so because the tester cannot
reproduce one clock waveform that meets the requirements of both types of patterns. Each
pattern type (combinational, clock_po, ram_sequential, and clock_sequential) can have a
separate timing definition.

General Considerations
During a test procedure, you may leave many pins unspecified. Unspecified primary input pins
retain their previous state.

Note
If you run ATPG after setting pin constraints, you should also ensure that you set these pins
to their constrained states at the end of the test_setup procedure. The add_input_constraints

command constrains pins for the non-scan cycles, not the test procedures. If you do not properly
constrain the pins within the test_setup procedure, the tool does it for you, internally adding the
extra force events after the test_setup procedure. This increases the period of the test_setup
procedure by one time unit. This increased period can conflict with the test cycle period,
potentially forcing you to re-run ATPG with the modified test procedure file.

All test data formats contain comment lines that indicate the beginning of each test block and
each test pattern. You can use these comments to correlate the test data in the text format with
other test data formats.

These comment lines also contain the cycle count and the loop count, which help correlate tester
pattern data with the original test pattern data. The cycle count represents the number of test
cycles, with the shift sequence counted as one cycle. The loop count represents the number of
all test cycles, including the shift cycles. The cycle count is useful if the tester has a separate
memory buffer for scan patterns, otherwise the loop count is more relevant.

Note
The cycle count and loop count contain information for all test cycles—including the test
cycles corresponding to test procedures. You can use this information to correlate tester

failures to a pattern for fault diagnosis.

Tessent™ Scan and ATPG User’s Manual, v2022.4616

Test Pattern Formatting and Timing
Basic Test Data Formats for Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Binary
This format contains test pattern data in a binary parallel format, which is the only format (other
than text format) that the tool can read. A file generated in this format contains the same
information as text format, but uses a condensed form. You should use this format for archival
purposes or when storing intermediate results for very large designs.
To create a binary format file, enter the following command:

ANALYSIS> write_patterns <filename> -binary

The tool writes the complete test data to the file named <filename>.

For more information about the write_patterns command and its options, refer to the
write_patterns description in the Tessent Shell Reference Manual.

Verilog
This format contains test pattern data and timing information in a text-based format readable by
both the Verilog and Verifault simulators. This format also supports both serial and parallel
loading of scan cells. The Verilog format supports all Tessent Shell timing definitions because
Verilog stimulus is a sequence of timed events.
To generate a basic Verilog format test pattern file, use the following arguments with the
write_patterns command:

write_patterns <filename> [-Parallel | -Serial] -Verilog

The Verilog pattern file contains procedures to apply the test patterns, compare expected output
with simulated output, and print out a report containing information about failing comparisons.
The tools write all patterns and comparison functions into one main file (<filename>), while
writing the primary output names in another file (<filename>.po.name). If you choose parallel
loading, they also write the names of the scan output pins of each scan sub-chain of each scan
chain in separate files (for example, <filename>.chain1.name). This enables the tools to report
output pins that have discrepancies between the expected and simulated outputs. For more
information about Verilog testbenches, refer to “The Verilog Testbench” on page 511.

For more information about the write_patterns command and its options, refer to the
write_patterns description in the Tessent Shell Reference Manual.

Wave Generation Language (ASCII)
The Wave Generation Language (WGL) format contains test pattern data and timing
information in a structured text-based format. You can translate this format into a variety of
simulation and tester environments, but you must first read it into the Waveform database and
use the appropriate translator. This format supports both serial and parallel loading of scan cells.

Test Pattern Formatting and Timing
Basic Test Data Formats for Patterns

Tessent™ Scan and ATPG User’s Manual, v2022.4 617

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Some test data flows verify patterns by translating WGL to stimulus and response files for use
by the chip foundry’s golden simulator. Sometimes this translation process uses its own parallel
loading scheme, called memory-to-memory mapping, for scan simulation. In this scheme, each
scan memory element in the ATPG model must have the same name as the corresponding
memory element in the simulation model. Due to the limitations of this parallel loading scheme,
you should ensure the following:

• There is only one scan cell for each DFT library model (also called a scan subchain).

• The hierarchical scan cell names in the netlist and DFT library match those of the golden
simulator (because the scan cell names in the ATPG model appear in the scan section of
the parallel WGL output).

• The scan-in and scan-out pin names of all scan cells are the same.

To generate a basic WGL format test pattern file, use the following arguments with the
write_patterns command:

write_patterns filename [-Parallel | -Serial] -Wgl

For more information about the write_patterns command and its options, refer to the
write_patterns description in the Tessent Shell Reference Manual.

Standard Test Interface Language (STIL)
To generate a STIL format test pattern file, use the following arguments with the write_patterns
command.

write_patterns filename [-Parallel | -Serial] -STIL

For more information about the write_patterns command and its options, refer to the
write_patterns description in the Tessent Shell Reference Manual.

Tessent™ Scan and ATPG User’s Manual, v2022.4618

Test Pattern Formatting and Timing
ASIC Vendor Data Formats

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ASIC Vendor Data Formats
The ASIC vendor test data formats include Texas Instruments TDL 91, Fujitsu FTDL-E,
Mitsubishi MITDL, and Toshiba TSTL2. The ASIC vendor’s chip testers use these formats.
All the ASIC vendor data formats are text-based and load data into scan cells in a parallel
manner. Also, ASIC vendors usually impose several restrictions on pattern timing. Most ASIC
vendor pattern formats support only a single timing definition. Refer to your ASIC vendor for
test pattern formatting and other requirements.

The following subsections briefly describe the ASIC vendor pattern formats.

TI TDL 91 . 618
Fujitsu FTDL-E . 618
Mitsubishi TDL . 619
Toshiba TSTL2 . 619

TI TDL 91
This format contains test pattern data in a text-based format.
The tool supports features of TDL 91 version 3.0 and of TDL 91 version 6.0. The version 3.0
format supports multiple scan chains but permits only a single timing definition for all test
cycles. Thus, all test cycles must use the timing of the main capture cycle. TI’s ASIC division
imposes the additional restriction that comparison should always be done at the end of a tester
cycle.

To generate a basic TI TDL 91 format test pattern file, use the following arguments with the
write_patterns command:

write_patterns <filename> -TItdl

The formatter writes the complete test data to the file <filename>. It also writes the chain test to
another file (<filename>.chain) for separate use during the TI ASIC flow.

For more information about the write_patterns command and its options, refer to the
write_patterns description in the Tessent Shell Reference Manual.

Fujitsu FTDL-E
This format contains test pattern data in a text-based format. The FTDL-E format splits test data
into patterns that measure 1 or 0 values, and patterns that measure Z values. The test patterns
divide into test blocks that each contain 64K tester cycles.

Test Pattern Formatting and Timing
ASIC Vendor Data Formats

Tessent™ Scan and ATPG User’s Manual, v2022.4 619

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To generate a basic FTDL-E format test pattern file, use the following arguments with the
write_patterns command:

write_patterns filename -Fjtdl

The formatter writes the complete test data to the file named filename.fjtdl.func. If the test
pattern set contains IDDQ measurements, the formatter creates a separate DC parametric test
block in a file named filename.ftjtl.dc.

For more information about the write_patterns command and its options, refer to the
write_patterns description in the Tessent Shell Reference Manual.

Mitsubishi TDL
This format contains test pattern data in a text-based format.
To generate a basic Mitsubishi Test Description Language (TDL) format test pattern file, use
the following arguments with the write_patterns command:

write_patterns <filename> -MItdl

The formatter represents all scan data in a parallel format. It writes the test data into two files:
the program file (<filename>.td0), which contains all pin definitions, timing definitions, and
scan chain definitions; and the test data file (<filename>.td1), which contains the actual test
vector data in a parallel format.

For more information about the write_patterns command and its options, refer to the
write_patterns description in the Tessent Shell Reference Manual.

Toshiba TSTL2
This format contains only test pattern data in a text-based format. The test pattern data files
contain timing information. This format supports multiple scan chains, but permits only a single
timing definition for all test cycles. TSTL2 represents all scan data in a parallel format.
To generate a basic Toshiba TSTL2 format test pattern file, use the following arguments with
the write_patterns command:

write_patterns <filename> -TSTL2

The formatter writes the complete test data to the file named <filename>. For more information
about the write_patterns command and its options, refer to the write_patterns description in the
Tessent Shell Reference Manual.

Tessent™ Scan and ATPG User’s Manual, v2022.4620

Test Pattern Formatting and Timing
Vector Creation and Modification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Vector Creation and Modification
The Tessent tools provide a method to manipulate the Broadside vector data within a pattern set
based on Boolean manipulation of the states on I/O ports or internal pins, creating new
Broadside data to save instead.
This new Broadside vector data may represent a new top level of hierarchy of the design under
test that is not present in the tool. Currently, this manipulation is restricted to Broadside pattern
sets (such as IJTAG pattern sets) or ATPG scan pattern data written using the -serial switch of
the write_patterns command when creating Broadside vectors.

You can also create broadside vector data from any source, pass the data to the write_patterns
command, and have the tool write the vector data in one of the pattern formats including the
test_setup and test_end procedure data, if present.

When using vector creation and modification, the terms pattern and vector have specific
meaning as follows:

• Pattern — A pattern is an arrangement of test stimuli and responses meant to target a
specific item or fault(s) to test. In ATPG, a pattern usually consists of a set of scan loads,
some launch and capture stimulus, and then a single scan unload. As it is stored
internally to the ATPG tool, a pattern does not yet consist of test vectors. That is, the
data could not be written directly out as a set of test vectors that could be loaded onto a
tester.

• Vector — A vector is a set of force and expect values on device ports that occur during
one test cycle. Vectors can be processed and loaded into tester memory and applied to
the DUT. A set of vectors can be grouped in such a way that they represent an ATPG
pattern, but a pattern does not necessarily consist of a set of vectors, until the vectors are
created by the write_patterns command to represent that pattern.

This pattern modification functionality consists of the following areas that work together to
enable Broadside vectors in a pattern set to be modified or created:

Port List Modification . 620
Vector Data Callbacks. 621
Used Ports and Vector Callback Examples . 626

Port List Modification
You modify the port list used to save the Broadside vectors.
You use the following commands when creating and modifying ports lists:

• get_write_patterns_options

• report_write_patterns_options

Test Pattern Formatting and Timing
Vector Data Callbacks

Tessent™ Scan and ATPG User’s Manual, v2022.4 621

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• set_write_patterns_options

These commands can be used to restrict the tool to only using a subset of the existing design
ports for writing the patterns or can be used to add additional top-level ports that are not present
in the design data that was loaded into the tool. Regardless of how the port list is modified, the
full set of ports and force and expect values is still be available to be passed to the vector
callback procs.

For example, a Tcl vector callback proc can use the full set of force and expect values that are in
the Broadside vector to create new force and expect values that then only apply to the subset of
ports. The commands can create a set of ports to use, remove the existing set, report on the
existing set, and introspect the set of ports to use.

See “Used Ports and Vector Callback Examples” on page 626 for complete usage examples.

Vector Data Callbacks
Using callbacks procs, you programmatically modify the force and expect values for ports in the
Broadside vector data.

Note
If you use the default timing for IJTAG operations, the timeplate for the vector sets must
match the IJTAG timeplate. Otherwise, simulation mismatches may occur.

Note
Vector callback procs for parallel ATPG patterns, or for patterns using test_setup and
test_end procedures, are supported only for the STIL1999 format. If you attempt to write

such patterns in STIL2005 or CTL, the tool reports an error and tells you to use STIL1999. If
you attempt to write such patterns using STIL_STRUCTURAL, the tool ignores the
STIL_STRUCTURAL keyword and reports a note to inform you that it is doing so.

Vector Data Callback Procs
You can enable Tcl callback procs and apply them to all Broadside vectors with another set of
command options. You can use the every_cycle callback only with serial scan patterns or
IJTAG patterns, while the other callback types are also valid with parallel scan patterns. The
tool inserts these callback procs into the data flow for the write_patterns command. The
write_patterns command takes a specified pattern set from the tool’s internal pattern storage and
processes it or expands it into a set of Broadside tester vectors, one pattern at a time. These
tester vectors are then written to the proper pattern file format. The tool inserts the callback into
this flow after creating the tester vectors and before they are written, enabling their modification
before being written to the pattern file.

In the process of writing out the modified vectors, the write_patterns command forward fills any
input ports with an N value with the last forced value on that port from previous vectors. Thus,

Tessent™ Scan and ATPG User’s Manual, v2022.4622

Test Pattern Formatting and Timing
Vector Data Callbacks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

if a callback proc places an N on an input port, it is replaced with a known value (0 or 1) if any
previous vectors have forced a known value on that port. It is also possible that a vector that is
passed to a callback proc may have an N value on an input port if this port was not explicitly
forced in a procedure or by the data in the pattern set being written.

Tcl procs can be defined in a dofile, at the command prompt, or sourced from an external file.
You must define the Tcl proc before the command is used to add the Tcl proc as a vector
callback proc.

The write_patterns command passes a vector set that contains force and expect values into these
callbacks. The vector set and its values can be on the full set of ports and pins, or an optionally
specified set of ports and pins. The callback returns a vector set that contains new force and
expect values for the full set of ports and pins, or an optionally specified reduced set of ports
and pins. The callback can also return an empty vector set, or a vector set with multiple vectors
in it, multiplying the number of vectors passed to it. The write_patterns command then uses the
returned vector set in place of the passed one when it writes the vectors to the pattern file. When
a callback returns an empty vector set, this indicates that no vectors should be written for the
vector that was passed to the callback. Thus, the callback can remove vectors from the list of
vectors to be written. A Tcl callback would look similar to the following:

proc myCallback { receivedVecSet } {
 # code here to create returnedVecSet from receivedVecSet
 return $returnedVecSet
}

Your Tcl interpreter runs callback procs in a mode that only permits introspection commands.

Figure 11-11 provides an example of the data flow within the write_patterns command when a
callback is used.

Figure 11-11. Example Vector Callback

Tcl Vector Set Format
A vector_set is a a Tcl dictionary.

Test Pattern Formatting and Timing
Vector Data Callbacks

Tessent™ Scan and ATPG User’s Manual, v2022.4 623

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

vector_set is ‘{‘ ‘vector_list’ ‘{‘ <vector_statement> <vector_statement>
… ‘}’ ‘}’

vector_statement is <vector> | <timeplate_statement> | <repeat_statement>

vector is ‘{‘ [‘annotation’ <ann_string>] [‘type’ <type_string>]
[‘port_values’ <value_string>] ‘}’

timeplate_statement is ‘{‘ ‘timeplate’ <tp_string> ‘}’

repeat_statement is ‘{‘ ‘repeat’ <repeat_num> ‘{‘ <vector_statement> … ‘}’
‘}’

ann_string is any string including new lines, quotes, and braces
type_string is one of ‘shift’, ‘load_unload’, ‘test_setup’, ‘test_end’,
‘shadow_control’, ‘master_observe’, ‘shadow_observe’, ‘ijtag_shift’,
‘ijtag_update’, ‘ijtag_hold’, ‘ijtag_reset’, and ‘capture’. tp_string is
the name of a valid timeplate to use for this vector and all subsequent
vectors in this vector_set, unless another timeplate_statement is used.
value_string is any sequence of the characters 0 1 N Z P L H X T without
spaces or newlines.

A vector_list is a Tcl dictionary of items where each item contains a list of more dictionaries.
Syntactically it looks like this:

'{' 'vector_list' '{' ('{' 'timeplate' string '}'
 | '{' 'annotation' string '}'
 | '{' 'type' string 'port_values' string '}'
 | '{' 'repeat' string '{' ... '}' '}')*
 '}'
 '}'

The vector_list is followed by its item is the only top-level dictionary entry. From a Tcl
processing point of view, the following code snippet shows how to access and modify every
port_value entry in a received_vector_set:

proc my_callback {received_vector_set } {

 foreach vector [dict get $received_vector_set vector_list] {
 if {[dict exists $vector port_values]} {
 dict set vector port_values [//some modification of port values]
 }
 lappend vector_list $vector
 }
 return [list vector_list $vector_list]
}

The vector_set repeat statement can be used to repeat a single vector or a block of vector
statements. The repeat_num string specifies that the vector is repeated a certain number of
times.The number of characters in value_string is equal to the number of ports used. Both the
string pair of annotation and the ann_string and the port_values and value_string are optional.

It is possible to have a vector that is completely empty and a vector_set that consists of nothing
but empty vectors or completely empty.When used with callback procs, if no optional port lists

Tessent™ Scan and ATPG User’s Manual, v2022.4624

Test Pattern Formatting and Timing
Vector Data Callbacks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

were specified when the callback proc was declared, then the vector port_values is expected to
have enough data for the full port list, in the order of the full port list. If port lists are specified
when the callback proc is added, then the port_values in the vector set contains values for only
those ports in the port list in the order specified. Vector sets passed to the callback procs and
returned from the callback procs all have the same format but may contain different port values
based on the received_port and returned_port lists (see “Port List Modification” on page 620).

Each string for the port values should only consist of the following characters:

• 0 1 N Z — Force low, force high, force unknown, force Z input values

• P — Pulse clock using pulse timing in timeplate

• L H X T — Measure low, measure high, measure unknown (no measure), and measure
Z output values

The force unknown value (N) on an input pin becomes a force of the previous value when
combined with other vectors.The annotation keyword is used to include an annotation that is
associated with a vector. These annotations can come from the “annotate” statement in the test
procedures, annotations generated from IJTAG iNotes and IJTAG solver statements, and
implicit annotations that are created when writing patterns, such as the “Pattern” or “Chain
Pattern” annotations. For these implicit annotations, because these are normally generated by
the pattern format writer and are not always consistent, a new consistent annotation is created
and passed to the vector callbacks in their place. These annotations take the form of “MGC:
Chain Pattern” and “MGC: Pattern”, representing the start of a chain test pattern and start of a
scan test pattern respectfully. If these annotations are returned from the vector callback proc,
then they are removed before being passed to the pattern format writer as the pattern format
writer still inserts its implicit annotation.

The type keyword is used to attach a vector type to a vector. The strings used to identify the type
correspond to the procedures that produced the vector, or, if “capture” is the type string, this
corresponds to all launch and capture vectors regardless of how they were produced. In the
IJTAG flow, the vector type can also correspond to IJTAG register states in the solved pattern
set. These vector types are in the vectors that are passed to the vector callback procs from the
tool and can be used by the callback proc to determine what vector values to return. It is not
necessary for the callback proc to return vectors with these types; any untyped vector keeps the
same type as the previously occurring vector.The timeplate keyword changes the timeplate used
for the next vector and all subsequent vectors for this vector set, unless another timeplate
statement is encountered. At the end of the vector_set, the timeplate used reverts to the
timeplate that was in effect prior to the vector_set. For example, if the timeplate specified for an
IJTAG pattern set is “tp1”, and if a callback proc returns a vector_set that has three vectors,
where the timeplate statement changes the timeplate to “tp2” prior to the second vector, then the
final list of vectors would have the timeplate “tp1” used for the first vector, timeplate “tp2” used
for the second and third vector, and any vectors after that would return to using timeplate “tp1”
unless otherwise changed by any subsequent callback procs.The repeat keyword can be used to
repeat one or more vectors in a vector_set N times as specified by the repeat_num.All entries in
a vector_set are optional, so it is possible for a callback to return an empty vector set to remove

Test Pattern Formatting and Timing
Vector Data Callbacks

Tessent™ Scan and ATPG User’s Manual, v2022.4 625

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

vectors. All entries in a vector are also optional, so it is possible to have a vector set that has an
empty vector. For an empty vector, the values on the ports are assumed to be N or the previously
forced value for input pins, X for output pins, and Z for bidi pins. For example, if a callback
proc is passed a vector_set that has one vector in it, and the callback proc returns an empty
vector_set (just { }), this means that callback proc has removed the vector in the vector_set that
was passed to it. If on the other hand a callback proc returns a vector set that contains an empty
vector ({ vector_list {} }), this is an empty vector that means everything remains unchanged
from the previous vector, similar to an empty cycle in a procedure of the procedure file. A
callback procedure that does not return anything can be used to simply introspect the vector
data, because it does not modify the vector data being written in any way.

The following is an example of a vector set:

vector_list {{ annotation “my annotation” port_values 000 }
{ timeplate tp1 }
{ type load_unload port_values 101 }
{ repeat 200 { port_values 100 } } // repeat this 200 times
{ port_values 110 }
{ repeat 1000 { {port_values 100 } // start of loop for 1000 times

{ port_values 101 }
{ port_values 100 } } // end of loop for 1000 times

}

Note that when a vector set is passed to a vector callback procedure when writing patterns, if
there are any repeat blocks in the vectors to be written (from ijtag patterns or sub procedures)
then the “repeat” statement and all of vector data within the repeat is passed to the callback in
one vector set. There is no syntax for specifying the begin repeat, followed by calling the
callback for each individual vector within the repeat.

Flow Example
The following example demonstrates using a vector callback procedure to invert the value on an
internal TDI port to the external TDI port. In this case, the external port is already in the netlist
so a pseudo port is added for the internal TDI, and delete_connections and create_connections
are used to attach the pseudo port to the internal cut point. This is not a complete example, but it
shows the creation of the pseudo ports, the definition of the callback procs, and the commands
that add the callback proc and set the existing used ports.

Tessent™ Scan and ATPG User’s Manual, v2022.4626

Test Pattern Formatting and Timing
Used Ports and Vector Callback Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP> set_context dft
SETUP> set_system_mode insertion
INSERTION> create_port my_tdi –on_module top –dir input
INSERTION> delete_connections U1/Y
INSERTION> create_connections my_tdi internal_inst/tdi
INSERTION> set_system_mode setup
SETUP> set_context patterns –ijtag
SETUP> set_system_mode analysis
ANALYSIS> proc ModifyPortValue { port_values } {

 set port_val_length [string length $port_values]
for {set i 0} {$i < $port_val_length} {incr i} {
 switch [string index $port_values $i]{

“0” { set port_values [string replace $port_values $i $i 1] }
 “1” { set port_values [string replace $port_values $i $i 0] }
“L” { set port_values [string replace $port_values $i $i H] }
“H” { set port_values [string replace $port_values $i $i L] }
“X” { set port_values [string replace $port_values $i $i X] }
Default { puts [string index $port_values $i] }

 }
 }
return $port_values

}
ANALYSIS> proc myCallback {received_vector_set } {
set cnt 0
foreach i $received_vector_set {

set port_values_idx [lsearch $i port_values]
if {$port_values_idx ne -1} {

incr port_values_idx
set port_values [lindex $i $port_values_idx]
set port_values [ModifyPortValue $port_values]
set tmp [lreplace $i $port_values_idx $port_values_idx $port_values]
set received_vector_set [lreplace $received_vector_set $cnt $cnt $tmp]

}
incr cnt

}
return $received_vector_set

}
ANALYSIS> proc RemovePortFromList {port_list port} {
set idx [lsearch $port_list $port]
set port_list [lreplace $port_list $idx $idx]
return $port_list

}
ANALYSIS> set_write_pattern_options -vector_callback myCallback -trigger every_cycle
ANALYSIS> set write_ports [get_write_pattern_options -returned myCallback]
ANALYSIS> set write_ports [RemovePortFromList $write_ports "my_tdi"]
ANALYSIS> set_write_pattern_options -existing_used_ports $write_ports
ANALYSIS> set_write_pattern_options -vector_callback myCallback -trigger every_cycle \

-received {my_tdi} -returned_port {tdi} -repl

Used Ports and Vector Callback Examples
This section provides a series of simple examples for using used ports and vector callbacks.

Test Pattern Formatting and Timing
Used Ports and Vector Callback Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 627

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 1
The following example shows how to work with the set of used ports and vector callbacks in:

ANALYSIS> set_write_pattern_options -reset_used_ports
ANALYSIS> set my_ports [get_write_pattern_options -all_used_port_list]
store a TCL list of all ports
now set the port list to be a subset of the original, plus one
more input port “top tdi”
ANALYSIS> set_write_pattern_options -existing_used_ports $my_subset_ports \
-additional_port_list {top_tdi input}
now write out a Verilog testbench from an ijtag pattern set called pat_set1 using only the
used ports defined above
 ANALYSIS> write_patterns my_pat.v -verilog -pattern_sets
pat_set1

Because this example writes an ijtag pattern set, there is no scan pattern data within the pattern
set, so it is not necessary to use the -serial switch on the write_patterns command. The next
example writes ATPG scan patterns, so it is necessary to use the -serial switch in order to only
produce broadside vector data. Using the -parallel switch would cause the tool to issue an error,
because that would produce both broadside vectors and scan vectors.

Example 2
The following example shows how to setup a vector callback proc to modify the vectors in a set
of scan patterns written as broadside vectors using the -serial switch. Assume the same
commands to modify the set of used ports was also used for this.

add a vector callback to modify all of the vectors
ANALYSIS> set_write_pattern_options -vector_callback protocol_A \
-returned_port [concat $my_ports [list top_tdi]]
now write a Verilog testbench using the modified port list and broadside vectors
modified by procotol_A
 ANALYSIS> write_patterns pat1_protocol_A.v -verilog -serial -replace

Example 3
The following example shows how to create a user-defined vector set, which then can be written
out instead of a pattern set.

create a new vector and append to a vector_list
ANALYSIS> set ann “some annotation string here”
ANALYSIS> set port_vals 0101HZN
ANALYSIS> set my_vector [list annotation $ann port_values $port_vals]
ANALYSIS> lappend vector_list $my_vector
assume other vectors have been created
ANALYSIS> lappend vector_list $second_vector
ANALYSIS> lappend vector_list $third_vector
ANALYSIS> set my_vector_set [list vector_list $vector_list]
now write a Verilog testbench using the vector_set
ANALYSIS> write_patterns pat1_vector_set1.v -verilog -serial -vector_set $my_vector_set

Tessent™ Scan and ATPG User’s Manual, v2022.4628

Test Pattern Formatting and Timing
Used Ports and Vector Callback Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 4
The following example shows how to use a callback proc to set a value on an additional fake
port to indicate that an analogue measurement should be performed when a particular iNote is
found in an iJtag pattern set that has the “analogue” keyword.

ANALYSIS> set_write_pattern_options -reset_used_ports
now set the port list to be the default plus one more input port “ana_measure”
ANALYSIS> set_write_pattern_options -additional_port_list {{ana_measure input}}
ANALYSIS> proc myCallback {received_vector_set} { \
set port_index [lsearch [get_write_pattern_options -received_callback_port_list \
myCallback] ana_measure] \
array set vector_element [lindex $received_vector_set 0] \
if {[string first “analogue” $vector_element(annotation)] != -1 } { \

set vector_element(port_values) \
[string replace $vector_element(port_values) port_index port_index 1] \

} else { \
set vector_element(port_values) \

[string replace $vector_element(port_values) port_index port_index 0] \
} \

return [list vector_list [array get $vector_element]]}
 ANALYSIS> set_write_pattern_options -vector_callback myCallback \

-returned_ports [concat $some_ports [list ana_measure]] \
-received_ports [concat $some_ports [list ana_measure]]

ANALYSIS> write_patterns pat_analogue.stil -stil -pattern_set ijtag_analogue_test

In the above example, the code that sets the variable “port_index” could be moved outside the
callback proc to improve performance. This however does create a dependency that
“port_index” must be properly set by user Tcl code prior to using the write_patterns command
with this callback, and if multiple port indexes are needed, then they all must be defined with
unique variable names and properly set before using the callback proc.

Example 5
The following example shows how to use a callback to echo all of the vector data being saved to
the log file without modifying the vector data in any way.

ANALYSIS> set_write_pattern_options -reset_used_ports
ANALYSIS> proc myCallback {received_vector_set} {
puts $received_vector_set

}
ANALYSIS> set_write_pattern_options -vector_callback myCallback
ANALYSIS> write_patterns pat_echo.stil -stil

Example 6
The following example shows to add additional ports that have the clock attribute and how to
use the pulse_additional statement in the procedure file to specify timing for the additional port.

Test Pattern Formatting and Timing
Used Ports and Vector Callback Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 629

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In the procedure file, the timeplate definition could look like this:

timeplate tp1 =
force_pi 0;
measure_po 10;
pulse_clock 20 20;
pulse_additional NewClock 25 10;
period 50;

end;

The command to add the additional clock ports is:

ANALYSIS> set_write_pattern_options \
-additional_port_list { { NewClock input clock } { NewClock2 input clock 1 }}

The tool adds two additional_ports. The port “NewClock” is an input port that is a clock, it has
an off-state of 0, and it uses the timing described in the timeplate for “NewClock”. The port
“NewClock2” is an input port that is a clock, it has an off-state of 1, and it uses the timing
described in the timeplate by the pulse_clock statement.

Tessent™ Scan and ATPG User’s Manual, v2022.4630

Test Pattern Formatting and Timing
Used Ports and Vector Callback Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 631

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 12
Test Pattern File Formats

This chapter provides information about the ASCII and BIST pattern file formats.
ASCII File Format . 632
BIST Pattern File Format . 641

Tessent™ Scan and ATPG User’s Manual, v2022.4632

Test Pattern File Formats
ASCII File Format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ASCII File Format
The ASCII file that describes the scan test patterns is divided into five sections, which are
named header_data, setup_data, functional_chain_test, scan_test, and scan_cell. Each section
(except the header_data section) begins with a section_name statement and ends with an end
statement. Also in this file, any line starting with a double slash (//) is a comment line.
Header_Data. 632
ASCII Setup_Data . 632
Functional_Chain_Test . 635
Scan_Test . 636
Scan_Cell . 639

Header_Data
The header_data section contains the general information, or comments, associated with the test
patterns. This is an optional section that requires a double slash (//) at the beginning of each line
in this section. The data printed may be in the following format:

// model_build_version - the version of the model build program that was
// used to create the scan model.

// design_name - the design name of the circuit to be tested.

// date - the date in which the scan model creation was performed.

// statistics - the test coverage, the number of faults for each fault
// class, and the total number of test patterns.

// settings - the description of the environment in which the ATPG is
// performed.

// messages - any warning messages about bus contention, pins held,
// equivalent pins, clock rules, and so on are noted.

ASCII Setup_Data
The setup_data section contains the definition of the scan structure and general test procedures
that are referenced in the description of the test patterns.

Note
Additional formats are added to the setup_data section for BIST patterns. For information
on these formats, see “BIST Pattern File Format” on page 641”.

Test Pattern File Formats
ASCII Setup_Data

Tessent™ Scan and ATPG User’s Manual, v2022.4 633

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The data printed is in the following format:

SETUP =
 <setup information>
END;

The setup information includes the following:

declare input bus “PI” = <ordered list of primary inputs>;

This defines the list of primary inputs that are contained in the circuit. Each primary input is
enclosed in quotation marks (“ ”) and be separated by commas. For bidirectional pins, they are
placed in both the input and output bus.

declare output bus “PO” = <ordered list of primary outputs>;

This defines the list of primary outputs that are contained in the circuit. Each primary output is
enclosed in quotation marks and be separated by commas.

CLOCK "clock_name1" =
 OFF_STATE = <off_state_value>;
 PULSE_WIDTH = <pulse_width_value>;
END;
CLOCK "clock_name2" =
 OFF_STATE = <off_state_value>;
 PULSE_WIDTH = <pulse_width_value>;
END;

This defines the list of clocks that are contained in the circuit. The clock data includes the clock
name enclosed in quotation marks, the off-state value, and the pulse width value. For edge-
triggered scan cells, the off-state is the value that places the initial state of the capturing
transition at the clock input of the scan cell.

WRITE_CONTROL "primary_input_name" =
 OFF_STATE = <off_state_value>;
 PULSE_WIDTH = <pulse_width_value>;
END;

This defines the list of write control lines that are contained in the circuit. The write control line
includes the primary input name enclosed in quotation marks, the off-state value, and the pulse
width value. If there are multiple write control lines, they must be pulsed at the same time.

PROCEDURE TEST_SETUP "test_setup" =
 FORCE "primary_input_name1" <value> <time>;
 FORCE "primary_input_name2" <value> <time>;

END;

Tessent™ Scan and ATPG User’s Manual, v2022.4634

Test Pattern File Formats
ASCII Setup_Data

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is an optional procedure that can be used to set nonscan memory elements to a constant
state for both ATPG and the load/unload process. It is applied once at the beginning of the test
pattern set. This procedure may only include force commands.

SCAN_GROUP “scan_group_name1” =
 <scan_group_information>
END;
SCAN_GROUP “scan_group_name2” =
 <scan_group_information>
END;
....
....

This defines each scan chain group that is contained in the circuit. A scan chain group is a set of
scan chains that are loaded and unloaded in parallel. The scan group name is enclosed in
quotation marks and each scan group has its own independent scan group section. Within a scan
group section, there is information associated with that scan group, such as scan chain
definitions and procedures.

SCAN_CHAIN “scan_chain_name1” =
 SCAN_IN = “scan_in_pin”;
 SCAN_OUT = “scan_out_pin”;
 LENGTH = <length_of_scan_chain>;
END;
SCAN_CHAIN “scan_chain_name2” =
 SCAN_IN = “scan_in_pin”;
 SCAN_OUT = “scan_out_pin”;
 LENGTH = <length_of_scan_chain>;
END;
....
....

The scan chain definition defines the data associated with a scan chain in the circuit. If there are
multiple scan chains within one scan group, each scan chain has its own independent scan chain
definition. The scan chain name is enclosed in quotation marks. The scan-in pin is the name of
the primary input scan-in pin enclosed in quotation marks. The scan-out pin is the name of the
primary output scan-out pin enclosed in quotation marks. The length of the scan chain is the
number of scan cells in the scan chain.

PROCEDURE <procedure_type> "scan_group_procedure_name" =
 <list of events>
END;

The type of procedures may include shift procedure, load and unload procedure, shadow-control
procedure, master-observe procedure, shadow-observe procedure, and skew-load procedure.
The list of events may be any combination of the following commands:

FORCE "primary_input_pin" <value> <time>;

Test Pattern File Formats
Functional_Chain_Test

Tessent™ Scan and ATPG User’s Manual, v2022.4 635

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This command is used to force a value (0,1, X, or Z) on a selected primary input pin at a given
time. The time values must not be lower than previous time values for that procedure. The time
for each procedure begins again at time 0. The primary input pin is enclosed in quotation marks.

APPLY "scan_group_procedure_name" <#times> <time>;

This command indicates the selected procedure name is to be applied the selected number of
times beginning at the selected time. The scan group procedure name is enclosed in quotation
marks. This command may only be used inside the load and unload procedures.

FORCE_SCI "scan_chain_name" <time>;

This command indicates the time in the shift procedure that values are to be placed on the scan
chain inputs. The scan chain name is enclosed in quotation marks.

MEASURE_SCO "scan_chain_name" <time>;

This command indicates the time in the shift procedure that values are to be measured on the
scan chain outputs. The scan chain name is enclosed in quotation marks.

Functional_Chain_Test
The functional_chain_test section contains a definition of a functional scan chain test for all
scan chains in the circuit to be tested. For each scan chain group, the scan chain test includes a
load of alternating double zeros and double ones (00110011...) followed by an unload of those
values for all scan chains of the group.
The format is as follows:

CHAIN_TEST =
 APPLY "test_setup" <value> <time>;
 PATTERN = <number>;
 APPLY "scan_group_load_name" <time> =
 CHAIN "scan_chain_name1" = "values....";
 CHAIN "scan_chain_name2" = "values....";

 END;
 APPLY "scan_group_unload_name" <time> =
 CHAIN "scan_chain_name1" = "values....";
 CHAIN "scan_chain_name2" = "values....";

 END;
END;

The optional “test_setup” line is applied at the beginning of the functional chain test pattern if
there is a test_setup procedure in the Setup_Data section. The number for the pattern is a zero-

Tessent™ Scan and ATPG User’s Manual, v2022.4636

Test Pattern File Formats
Scan_Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

based pattern number where a functional scan chain test for all scan chains in the circuit is to be
tested. The scan group load and unload name and the scan chain name are enclosed in quotation
marks. The values to load and unload the scan chain are enclosed in quotation marks.

During the loading of the scan chains, each value of the corresponding scan chain is placed at its
scan chain input pin. The shift procedure shifts the value through the scan chain and continue
shifting the next value until all values for all the scan chains have been loaded. Because the
number of shifts is determined by the length of the longest scan chain, Xs (don’t care) are
placed at the beginning of the shorter scan chains. This ensures that all the values of the scan
chains are loaded properly.

During the unloading of the scan chains, each value of the corresponding scan chain is
measured at its scan chain output pin. The shift procedure shifts the value out of the scan chain
and continue shifting the next value until all values for all the scan chains have been unloaded.
Again, because the number of shifts is determined by the length of the longest scan chain, Xs
(don’t measure) are placed at the end of the shorter scan chains. This ensures that all the values
of the scan chains are unloaded properly.

The following is an example of a functional scan chain test:

CHAIN_TEST =
 APPLY "test_setup" 1 0;
 PATTERN = 0;
 APPLY "g1_load" 0 =
 CHAIN "c2" = "XXXXXXXXX0011001100110011001100";
 CHAIN "c1" = "XXXXXXXXXXXXX001100110011001100";
 CHAIN "c0" = "0011001100110011001100110011001";
 END;
 APPLY "g1_unload" 1 =
 CHAIN "c2" = "0011001100110011001100XXXXXXXXX";
 CHAIN "c1" = "001100110011001100XXXXXXXXXXXXX";
 CHAIN "c0" = "0011001100110011001100110011001"
 END;
END;

Scan_Test
The scan_test section contains the definition of the scan test patterns that were created by
Tessent Shell.

Test Pattern File Formats
Scan_Test

Tessent™ Scan and ATPG User’s Manual, v2022.4 637

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A scan pattern normally includes the following:

SCAN_TEST =
 PATTERN = <number>;
 FORCE “PI” “primary_input_values” <time>;
 APPLY “scan_group_load_name” <time> =
 CHAIN “scan_chain_name1” = “values....”;
 CHAIN “scan_chain_name2” = “values....”;

 END;
 FORCE “PI” “primary_input_values” <time>;
 MEASURE “PO” “primary_output_values” <time>;
 PULSE “capture_clock_name1” <time>;
 PULSE “capture_clock_name2” <time>;
 APPLY “scan_group_unload_name” <time> =
 CHAIN “scan_chain_name1” = “values....”;
 CHAIN “scan_chain_name2” = “values....”;

 END;

END;

The number of the pattern represents the pattern number in which the scan chain is loaded,
values are placed and measured, any capture clock is pulsed, and the scan chain is unloaded.
The pattern number is zero-based and must start with zero. An additional force statement is
applied at the beginning of each test pattern, if transition faults are used. The scan group load
and unload names and the scan chain names are enclosed by quotation marks. All the time
values for a pattern must not be lower than the previous time values in that pattern. The values
to load and unload the scan chain are enclosed in quotation marks. Refer to the
“Functional_Chain_Test” on page 635 section on how the loading and unloading of the scan
chain operates.

The primary input values are in the order of a one-to-one correspondence with the primary
inputs defined in the setup section. The primary output values are also in the order of a one-to-
one correspondence with the primary outputs defined in the setup section.

If there is a test_setup procedure in the Setup_Data section, the first event, which is applying the
test_setup procedure, must occur before the first pattern is applied:

APPLY “test_setup” <value> <time>;

If there are any write control lines, they are pulsed after the values have been applied at the
primary inputs:

PULSE “write_control_input_name” <time>;

Tessent™ Scan and ATPG User’s Manual, v2022.4638

Test Pattern File Formats
Scan_Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If there are capture clocks, then they are pulsed at the same selected time, after the values have
been measured at the primary outputs. Any scan clock may be used to capture the data into the
scan cells that become observed.

Scan patterns reference the appropriate test procedures to define how to control and observe the
scan cells. If the contents of a master element is to be placed into the output of its scan cell
where it may be observed by applying the unload operation, the master_observe procedure must
be applied before the unloading of the scan chains:

APPLY “scan_group_master_observe_name” <value> <time>;

If the contents of a shadow is to be placed into the output of its scan cell where it may be
observed by applying the unload operation, the shadow_observe procedure must be applied
before the unloading of the scan chains:

APPLY “scan_group_shadow_observe_name” <value> <time>;

If the master and secondary of a scan cell are to be at different values for detection, the
skew_load procedure must be applied after the scan chains are loaded:

APPLY “scan_group_skew_load_name” <value> <time>;

Each scan pattern has the property that it is independent of all other scan patterns. The normal
scan pattern contains the following events:

1. Load values into the scan chains.

2. Force values on all non-clock primary inputs.

3. Measure all primary outputs not connected to scan clocks.

4. Exercise a capture clock (optional).

5. Apply observe procedure (if necessary).

6. Unload values from scan chains.

When unloading the last pattern, the tool loads the last pattern a second time to completely shift
the contents of the last capture cycle so that the output matches the calculated value. For more
information, see “Handling of Last Patterns” in the Tessent TestKompress User’s Manual.

Although the load and unload operations are given separately, it is highly recommended that the
load be performed simultaneously with the unload of the preceding pattern when applying the
patterns at the tester.

For observation of primary outputs connected to clocks, there is an additional kind of scan
pattern that contains the following events:

1. Load values into the scan chains.

Test Pattern File Formats
Scan_Cell

Tessent™ Scan and ATPG User’s Manual, v2022.4 639

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Force values on all primary inputs including clocks.

3. Measure all primary outputs that are connected to scan clocks.

Scan_Cell
The scan_cell section contains the definition of the scan cells used in the circuit.
The scan cell data is in the following format:

SCAN_CELLS =
 SCAN_GROUP “group_name1” =
 SCAN-CHAIN “chain_name1” =
 SCAN_CELL = <cellid> <type> <sciinv> <scoinv>
 <relsciinv> <relscoinv> <instance_name>
 <model_name> <input_pin> <output_pin>;

 END;
 SCAN_CHAIN “chain_name2” =
 SCAN_CELL = <cellid> <type> <sciinv> <scoinv>
 <relsciinv> <relscoinv> <instance_name>
 <model_name> <input_pin> <output_pin>;

 END;

 END;

END;

The fields for the scan cell memory elements are the following:

• cellid — A number that identifies the position of the scan cell in the scan chain. The
number 0 indicates the scan cell closest to the scan-out pin.

• type — The type of scan memory element. The type may be MASTER, SLAVE,
SHADOW, OBS_SHADOW, COPY, or EXTRA.

• sciinv — Inversion of the library input pin of the scan cell relative to the scan chain
input pin. The value may be T (inversion) or F (no inversion).

• scoinv — Inversion of the library output pin of the scan cell relative to the scan chain
output pin. The value may be T (inversion) or F (no inversion).

• relsciinv — Inversion of the memory element relative to the library input pin of the scan
cell. The value may be T (inversion) or F (no inversion).

• relscoinv — Inversion of the memory element relative to the library output pin of the
scan cell. The value may be T (inversion) or F (no inversion).

• instance_name — The top level boundary instance name of the memory element in the
scan cell.

Tessent™ Scan and ATPG User’s Manual, v2022.4640

Test Pattern File Formats
Scan_Cell

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• model_name — The internal instance pathname of the memory element in the scan cell
(if used - blank otherwise).

• input_pin — The library input pin of the scan cell (if it exists, blank otherwise).

• output_pin — The library output pin of the scan cell (if it exists, blank otherwise).

Example Circuit
Figure 12-1 illustrates the scan cell elements in a typical scan circuit.

Figure 12-1. Example Scan Circuit

Test Pattern File Formats
BIST Pattern File Format

Tessent™ Scan and ATPG User’s Manual, v2022.4 641

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

BIST Pattern File Format
All of the test pattern file formats described in the previous section directly apply to BIST
patterns also. However, an additional set of BIST-specific formats are added to the ASCII
pattern file format.
The BIST-specific formats are described in this section.

BIST Pattern Setup_Data . 641
Scan_Test for BIST . 642

BIST Pattern Setup_Data
The setup_data section for BIST contains a subsection that defines the BIST pattern-specific
configuration. This subsection includes a file version identifier and definitions for signature
registers (prpg_register and misr_register) in the BIST pattern.
A BIST-specific statement is used to identify that the following configuration is BIST pattern-
specific. The BIST-specific statement has the following format:

declare bist pattern specific configuration =

A version tag is used to indicate the BIST pattern version. The version tag has the following
format:

BIST_ASCII_PATTERN_FILE_SUBVERSION

Here is an example of a BIST pattern-specific statement combined with a version tag statement:

declare bist pattern specific configuration =
BIST_ASCII_PATTERN_FILE_SUBVERSION = 1;

Note
The “bist pattern specific configuration” statement disappears if a LFSM value is not
included.

A pattern_internal_view switch that indicates whether the BIST pattern internal view is written
to the pattern file; its possible values are “ON” or “OFF”. If the switch is set to on, as shown in
the following example, BIST patterns are included in the pattern file.

pattern_internal_view = "on"

Tessent™ Scan and ATPG User’s Manual, v2022.4642

Test Pattern File Formats
Scan_Test for BIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The prpg_register and misr_register identifiers define signature registers such as PRPG and
MISR in the BIST pattern. The signature register statements use the following format:

signature_register <name of signature register> =
length = <length of the register>;
type = <type of the register>;
init_value = <initial state of the register>;

end;

The following are some examples of signature register statements:

prpg_register "decomp1" =
length = 22;
type = PRPG;
init_value = "0000000000000000000000";

end;

prpg_register "decomp2" =

length = 12;
type = PRPG;
init_value = "000000000000";

end;

prpg_register "prpg1" =

length = 16;
type = PRPG;
init_value = "0000000000000000";

end;

prpg_register "prpg2" =

length = 16;
type = PRPG;
init_value = "0000000000000000";

end;

misr_register "misr1" =

length = 32;
type = MISR;
init_value = "11111111111111111111111111111111";

end;

misr_register "misr2" =

length = 24;
type = MISR;
init_value = "111111111111111111111111";

end;

Scan_Test for BIST
Each BIST pattern includes one lfsm_snapshot statement. Within the pattern statement, the
keyword “pre_load”, “pre_unload”, or “post_unload” is followed by a register name to indicate
when the snapshot for the register is to be taken.

Test Pattern File Formats
Scan_Test for BIST

Tessent™ Scan and ATPG User’s Manual, v2022.4 643

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The keywords are applied as follows:

• pre_load — Used for PRPG type registers.

• pre_unload and post_unload — Used for MISR type registers.

The snapshot statement is composed so that the simulation of each BIST pattern is independent
from all others:

• Given the pre_load value of PRPG registers, the loading data for each BIST pattern can
be computed.

• Given the pre_unload value of MISR registers, the MISR registers after unload can be
computed and thus verified.

Here is an example of a pattern containing a statement:

pattern = 0;
lfsm_snapshot =

pre_load "decomp1" = "0000000000000000000000";
pre_load "decomp2" = "000000000000";
pre_load "prpg1" = "1111111111111111";
pre_load "prpg2" = "1111111111111111";
pre_unload "misr1" = "11111111111111111111111111111111";
pre_unload "misr2" = "111111111111111111111111";
post_unload "misr1" = "11111111110001111110111111101111";
post_unload "misr2" = "111111110000000011111111";

end;

apply "grp1_load" 0 =
...
end;

force "PI" "...." 1;
measure "PO" "...." 2;

apply "grp1_unload" 3 =
...
end;

Tessent™ Scan and ATPG User’s Manual, v2022.4644

Test Pattern File Formats
Scan_Test for BIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 645

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 13
Power-Aware DRC and ATPG

This chapter describes the power-aware DRC and ATPG flow for use with the ATPG tool.
This chapter contains the following sections:

Power-Aware Overview. 646
Assumptions and Limitations . 646
Multiple Power Mode Test Flow . 647
Power-Aware ATPG for Traditional Fault Models . 647

CPF and UPF Parser . 648
Power-Aware ATPG Procedure . 650
Power-Aware Flow Examples. 652

Tessent™ Scan and ATPG User’s Manual, v2022.4646

Power-Aware DRC and ATPG
Power-Aware Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Power-Aware Overview
The electronics industry has adopted low-power features in major aspects of the design
continuum. In response, EDA vendors and major semiconductor companies have defined the
commonly-used power data standard formats to describe the power requirements: UPF and
CPF.
Tessent Shell supports the following versions of the UPF and CPF formats:

• IEEE 1801-2018 standard / UPF 3.1

• Common Power Format (CPF) 1.0 and 1.1

You load this power data directly into the tool to collect the power information. Once loaded,
the tools perform the necessary DRCs to ensure that the DFT logic is inserted properly with
respect to the design’s power domains and, if the design passes the rule checks, perform ATPG
with the given power mode configuration. For information about the power-aware DRC (V)
rules, refer to the Tessent Shell Reference Manual.

The tool’s low-power functionality provides you with a method to do the following:

• Provide DRCs to trace the active power mode and ensure that the scan operation works
under the current power configuration.

• Provide capability to generate test for the traditional fault models while aware of the
power mode configuration.

Assumptions and Limitations . 646
Multiple Power Mode Test Flow . 647
Power-Aware ATPG for Traditional Fault Models . 647

Assumptions and Limitations
The power-aware functionality comes with a few assumptions and limitations.

• Circuit hierarchy is preserved in the CPF or UPF file and is the same as the netlist. Note
that for modular EDT design, the module hierarchy that includes EDT logic needs to be
preserved, otherwise the tool may not be able to associate an EDT block with a power
domain. Consequently, some power DRC rules related to EDT logic may not be
performed.

• The power-aware DRC rules and reporting are based on the loaded power data (UPF or
CPF). The DRC rules do not include testing that crosses different power modes.
Additionally, the DRC rules do not cover the testing of the shutoff power domain such
as the retention cells testing.

Power-Aware DRC and ATPG
Multiple Power Mode Test Flow

Tessent™ Scan and ATPG User’s Manual, v2022.4 647

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple Power Mode Test Flow
For a design with multiple test modes, the scan chain configuration may be different for each
power mode.
Perform the DRC and ATPG separately for each power mode using the following steps:

1. Configure the power mode to be tested using the test_setup procedure.

2. Load the CPF file. The tool automatically identifies and reports the currently configured
power mode.

In addition, the tool defines and checks the new V rules when you switch to a non-SETUP
mode. See “Power-Aware Rules (V Rules)” in the Tessent Shell Reference Manual for more
information. The DRC ensures that the loaded UPF/CPF file contains consistent power
information and that the inserted DFT logic considers the design power domains properly.

Note
For DRC, you must load a UPF/CPF file in the SETUP mode of the tool. When loading a
UPF/CPF file in a non-SETUP mode, the tool does not perform V DRC until you switch the

tool from the SETUP mode to a non-SETUP mode.

Pattern Generation
ATPG generates patterns only for the current power mode. If different power modes enable
identical power domains (just in different voltage configurations), then you can reuse the
pattern set by loading the pattern file and performing fault grading.

We recommend that you write one test_setup procedure for every power mode under test and
perform a DRC check for each power mode to ensure the scan chains can operate properly in the
power mode. In addition, store a new pattern set to reflect the updated test_setup for the
corresponding power mode. When writing out patterns after ATPG, the tool saves the current
power mode information (as a comment) to the pattern file for your reference.

Power-Aware ATPG for Traditional Fault Models
During the traditional fault model test stage, the circuit is configured into a static power mode
by the test procedure at the beginning of the capture cycle and stays at the same power mode for
the entire capture cycle. The ATPG engine explicitly prevents the power control logic from
changing the active power mode.
A low-power DRC is performed before ATPG to check if the active power mode can be
disturbed. ATPG uses the analysis result to determine if any additional ATPG effort is needed
to keep the static power mode. This is similar to the E10 rule for the bus contention check,
which ATPG uses to enable the extra justification to prevent the bus contention. If the circuit
contains the power mode that powers on all power domains (called the ALL_ON state), you can

Tessent™ Scan and ATPG User’s Manual, v2022.4648

Power-Aware DRC and ATPG
CPF and UPF Parser

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

use this state for the traditional fault models. An ALL_ON state enables the circuit to be tested
for logic faults in one test set run. In addition, this state also enables the tool to perform DRC for
the entire circuit in this run.

Power Partitioning
If the circuit needs to partition with partial power domains powered in a given time, then you
must perform multiple ATPG runs; specifically, each run with its procedure file and the scan
configuration. You must ensure that every power domain is covered by at least one run.
Additionally, the chip- level test coverage can be computed manually from each separate run.

In the case of multiple power partition flow, the always on power domain, the faults may be
targeted multiple times. To reduce the creation of patterns for same faults in the always-on
domains, you can use the following command:

add_faults -power_domains always_on -delete

This explicitly removes the faults in always_on domain if the faults have been targeted by other
run.

The other way to avoid creation of duplicated patterns is to load the previously generated fault
list (using read_faults -merge) so that the detected faults by previous runs are not retargeted.

CPF and UPF Parser
The following table lists the power data commands relevant to the power-aware DRC and
ATPG process.
The other CPF and UPF commands are parsed by the tool but discarded.

Table 13-1. Power Data Commands Directly Related to ATPG and DRC
Power Features IEEE 1801-2018 / UPF 3.1 CPF 1.0 / CPF 1.1
Power Domains create_power_domain

add_domain_elements
create_composite_domain
merge_power_domain

create_power_domain
update_power_domain

Power Modes
(Power States)

add_power_state
add_pst_state
create_pst

assert_illegal_domain_configurations

create_assertion_control1

create_power_mode
update_power_mode

State Transitions describe_state_transition 2 create_mode_transition

Power-Aware DRC and ATPG
CPF and UPF Parser

Tessent™ Scan and ATPG User’s Manual, v2022.4 649

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Power Network
(to derive power-on
domains and active
state)

add_supply_state
create_power_switch

map_power_switch 2

set_power_switch
create_supply_port
create_supply_net
connect_supply_net
set_domain_supply_net

Retention Cells define_retention_cell
map_retention_cell
set_retention
set_retention_control

set_retention_elements3

create_state_retention_rule
update_state_retention_rule

define_state_retention_cell 1

Isolation Cells define_isolation_cell
map_isolation_cell
set_isolation
set_isolation_control
use_interface_cell 3

create_isolation_rule
update_isolation_rule

define_isolation_cell 1

Level Shifters define_level_shifter_cell
map_level_shifter_cell
set_level_shifter

use_interface_cell 3

create_level_shifter_rule
update_level_shifter_rule

define_level_shifter_cell 1

Design Scope add_parameter
apply_power_model
define_power_model
set_design_top
set_scope
upf_version
load_upf
load_upf_protected

find_objects4

Tcl support

Include
get_parameter
set_design
set_instance
set_cpf_version
set_time_unit
set_power_mode_control_group
set_array_naming_style
set_macro_model
end_macro_model
Tcl support

Table 13-1. Power Data Commands Directly Related to ATPG and DRC (cont.)
Power Features IEEE 1801-2018 / UPF 3.1 CPF 1.0 / CPF 1.1

Tessent™ Scan and ATPG User’s Manual, v2022.4650

Power-Aware DRC and ATPG
Power-Aware ATPG Procedure

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Power-Aware ATPG Procedure
When using the power-aware ATPG flow, you should separate the test for the logic faults from
the test for the low-power features. When testing the logic faults, the traditional fault models
(for example, the stuck-at fault model and the transition fault model) are applied and the power
switch logic need not to be presented.
The power data in UPF or CPF format should be applied to the tool so the low-power rules (see
“Power-Aware Rules (V Rules)”) can be checked and the circuit can be simulated according to
the active power mode.

The tool loads power data using the read_upf or read_cpf commands. By default, it reports
power data using the report_gates command, which shows the power on (PON) and power off
(POFF) status of the gates. For example:

report_gates /lp_case_si_rst_sms/ati_rst_sync/sync_r/U3/Udff

// /lp_case_si_rst_sms/ati_rst_sync/sync_r sync3msfqxss1ul
// SDI I(PON) /vl_sms_lp_case_si_sms_proc_sms_1_stp/
U_lp_case_si_sms_proc_bist/uu5/Z
// D I(PON) /lp_case_si_rst_sms/ati_rst_sync/sync_buf/Z
// SEN I(PON) /se
// CLK I(PON) /lp_case_si_rst_sms/ati_rst_sync/uu1/Z
// Q O(PON) /lp_case_si_rst_sms/ati_rst_sync/uu2/A /
lp_case_si_rst_sms/and_r/B
// in power domain PD_P2

1. The CPF commands for defining power cells are used for DRC but are not used by ATPG to identify the
power cells that exist in the design. These commands may be needed during test synthesis to automatically
insert power cells.
2. describe_state_transition and map_power_switch are not used for DRC and ATPG purposes.
3. The UPF commands set_retention_elements and use_interface_cell are not used to identify the location of
power cells. These commands may be needed during test synthesis to automatically insert power cells.
4. The query_* commands are not supported. A note in the IEEE-2009 standard states, “Compliance
requirement: A tool compliant to this standard shall support the find_objects command. A tool compliant to
this standard may support the query_* commands in this clause. These query_* commands do not make up
the power intent of a design; they are only used for querying the design database and are included in this
standard to enable portable, user-specified query procedures across tools that are compliant to this standard.”

Power-Aware DRC and ATPG
Power-Aware ATPG Procedure

Tessent™ Scan and ATPG User’s Manual, v2022.4 651

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following figure shows how PON appears in Tessent Visualizer:

Figure 13-1. PON Reporting in Tessent Visualizer

Procedure
1. In general, you perform the following steps with the power-aware ATPG flow, either

directly from the command line or scripted in a dofile:

2. Invoke the Tessent Shell, set the context the “patterns -scan,” and read in the low-power
design. For example:

SETUP> read_verilog low-power_design.v

3. Add scan chains and other configuration information as appropriate.

4. Load the power data using the read_cpf or read_upf command. For example:

SETUP> read_upf test.upf

5. Set the mode to analysis. For example:

SETUP> set_system_mode analysis

At this point, the tool performs the DRC checks. See “Power-Aware Rules (V Rules)” in
the Tessent Shell Reference Manual.

6. Add faults using the applicable power-aware switch to the add_faults command. For
example:

SETUP> add_faults -on_domains

Tessent™ Scan and ATPG User’s Manual, v2022.4652

Power-Aware DRC and ATPG
Power-Aware Flow Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Optionally write the faults to a fault list for multiple power-aware test methodologies—
see “Multiple Power Mode Test Flow.” For example:

SETUP> write_faults on_domain_fault_list.txt

8. Create the patterns using the create_patterns command.

9. The power-aware ATPG flow supports reporting mechanisms tailored to the power
information. See the following commands for more information:

• report_faults

• report_power_data

Power-Aware Flow Examples
This section contains examples of the power-aware flow.

Example 1
Table 13-2 shows one example design with four power domains and four power modes.

The design contains four scan chains arrayed as follows:

• Chain1 and Chain 2 — Located in the CPU power domain.

• Chain3 — Located in the MEM1 power domain.

• Chain4 — Located in the CTL power domain.

To test the design requires multiple test_setup procedures: one for each power mode except for
the one turning off all power domains. To reduce the maintenance overhead of test procedure
files, write the test_setup procedures in the following separate files:

• test_setup_active

Table 13-2. Example Design With Four Power Domains and Power Modes
Power Domains

Power
Modes

CPU MEM1 CTL Radio test_setup file

active Active Active ON Tx, Rx test_setup_active
standby Idle Sleep ON Rx test_setup_standby
idle Sleep Sleep ON Rx test_setup_idle
sleep Sleep Sleep OFF Off N/A
scan chains chain1

chain2
chain3 chain4 none

Power-Aware DRC and ATPG
Power-Aware Flow Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 653

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• test_setup_standby

• test_setup_idle

The main test procedure file, which contains the rest of the procedures, uses an include
statement to include the test_setup for the power mode under test. For example, using the
following include statement tests the “active” power mode:

include "test_setup_active"

For more information about test procedure files, see Test Procedure File in the Tessent Shell
User’s Guide.

Test the power mode with all power domains active first, if such a power mode exists (power
mode “active” in “Example Design With Four Power Domains and Power Modes” on
page 652). Testing all power domains first enables the tool to view all scan chains and to check
the “Power-Aware Rules (V Rules)” crossing all power domains. When testing different power
modes, the scan chains must be defined accordingly to prevent DRC violations. For example,
when testing the “standby” mode where the “MEM1” power domain is off, the tool reports a V8
DRC violation if chain3 is defined.

See “Power-Aware Rules (V Rules)” in the Tessent Shell Reference Manual for a complete
discussion.

Example 2
In this example, the design contains the following:

• Three power domains {D1, D2, D3}

• Two power mode

o S1: (D1=ON, D2=ON, D3=OFF)

o S2: (D1=OFF, D2=ON, D3=ON)

Additionally, assume that the design holds S1 properly (specifically, during the shift and
capture cycles), and that the design can be kept in the same power mode.

To test the design, you must perform the following multiple tool runs:

• run 1 — ATPG for power mode S1

a. Configure the design to power mode S1 by the end of test_setup.

b. Add scan chains only in power domains D1 and D2.

c. Add faults only in the power ON domains (D1 and D2) using the add_faults
-on_domains command.

d. Create patterns and write patterns.

Tessent™ Scan and ATPG User’s Manual, v2022.4654

Power-Aware DRC and ATPG
Power-Aware Flow Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

e. Write faults to a file named flist_S1.txt using the write_faults command.

f. Write isolation faults to a file named flist_S1_iso.txt using write_faults -isolation to
save for later use.

g. Write level-shifter faults to a file named flist_S1_ls.txt using write_faults
-level_shifter to save for later use.

• run 2 — ATPG for power mode S2

a. Configure the design to power mode S2 by the end of test_setup.

b. Add scan chains only in power domains D2 and D3.

c. Add faults only in the power ON domains (D2 and D3) using the “add_faults
-on_domains” command.

d. Load the previously-saved S1 fault list using the following command:

ANALYSIS> read_faults flist_S1.txt -merge -Power_check on

This step updates the fault status of faults in D2 but discards faults in D1 as they are
not power on faults. See the read_faults command for more information.

e. Create patterns and write patterns.

f. Write faults to a file named flist_S2.txt using the write_faults command.

g. Write isolation faults to a file named flist_S2_iso.txt using write_faults -isolation to
save for later use.

h. Write level-shifter faults to a file named flist_S2_ls.txt using write_faults
-level_shifter to save for later use.

After run 2, you can calculate the entire fault coverage by loading multiple fault lists into the
tool. You do this by using the “read_faults -power_check off” command and switch as shown in
the following steps:

• run 3 — Overall test coverage report

a. Load the previously-saved fault list for S1:

ANALYSIS> read_faults flist_S1.txt -merge -Power_check off

b. Load the previously-saved fault list for S2:

ANALYSIS> read_faults flist_S2.txt -merge -Power_check off

c. Issue the report_statistics command to report the overall test coverage.

d. Write the faults to a file named faults flist_all.txt using the write_faults command.

The final tool run reports isolation fault test coverage and level-shifter fault test coverage and
saves these in separate fault lists.

Power-Aware DRC and ATPG
Power-Aware Flow Examples

Tessent™ Scan and ATPG User’s Manual, v2022.4 655

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

1. Report the isolation fault test coverage:

ANALYSIS> report_statistics -isolation

2. Report the level-shifter fault test coverage:

ANALYSIS> report_statistics -level_shifter

3. Write all isolation faults to a file:

ANALYSIS> write_faults flist_all_iso.txt -isolation

4. Write all level-shifter faults to a file:

ANALYSIS> write_faults flist_all_ls.txt -level_shifter

Tessent™ Scan and ATPG User’s Manual, v2022.4656

Power-Aware DRC and ATPG
Power-Aware Flow Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 657

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 14
Low-Power Design Test

You can use the low-power scan insertion and ATPG flow for use with Tessent Scan and the
ATPG tool.
Low-Power Testing Overview. 658

Low-Power Assumptions and Limitations . 658
Low-Power CPF/UPF Parameters . 658

Scan Insertion. 660
Power-Aware Design Rule Checks . 661

Low-Power DRCs. 661
Low-Power DRC Troubleshooting . 661

Power State-Aware ATPG . 663
Power Domain Testing . 663
Low-Power Cell Testing . 665

Tessent™ Scan and ATPG User’s Manual, v2022.4658

Low-Power Design Test
Low-Power Testing Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Low-Power Testing Overview
Tessent Scan supports operations that enable low-power testing.

• Insertion of dedicated wrapper cells in the presence of isolation cells.

• Assigning dedicated wrapper cells to power domains based on the logic it is driving and
the priority of the power domains.

The low-power design flow includes the following steps:

1. Specify low-power data specifications in the CPF/UPF file. See “Low-Power CPF/UPF
Parameters”.

2. Insert scan cells and EDT logic in the design. See “Scan Insertion”.

3. Validate low-power data, scan, and EDT logic. See “Power-Aware Design Rule
Checks”.

4. Generate power domain-aware test patterns. See “Power State-Aware ATPG”.

5. Test low-power design components.

Low-Power Assumptions and Limitations . 658
Low-Power CPF/UPF Parameters . 658

Low-Power Assumptions and Limitations
The power-aware functionality comes with several assumptions and limitations.

• Tessent Scan does not write or update CPF/UPF files. Tessent Scan assumes that
everything that belongs to a power domain is explicitly listed in the UPF/CPF file.
Because of this assumption, you must make the following changes to the UPF/CPF file
after the scan insertion step and before ATPG:

o Add any inserted input wrapper cells to the correct power domain in the CPF/UPF
file.

o Explicitly define all isolation cells and their control signals, and level shifters in the
CPF/UPF file. Tessent Scan checks for their presence but does not add them. For
more information, see Scan Insertion.

Low-Power CPF/UPF Parameters
Tessent Scan uses CPF/UPF files to identify the power domains in the design and to constrain
scan insertion within the power domain boundaries.

Low-Power Design Test
Low-Power CPF/UPF Parameters

Tessent™ Scan and ATPG User’s Manual, v2022.4 659

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Scan supports power structure and configuration data from the following formats:

• CPF 1.0 and 1.1

• UPF 3.1 (IEEE1801-2018)

If you are a member of Si2, you can access complete information about CPF standards at the
following URL:

https://www.si2.org/openeda.si2.org/project/showfiles.php?group_id=51

You can find more information on UPF standards as well as other IEEE standards at the
following URL:

http://standards.ieee.org/

In the CPF/UPF file, you must specify power domains and information related to the power
domains, power states (modes) of the design, and isolation cells and control signals. You can
use the commands listed in Table 14-1 to specify this information.

Table 14-1. Power Data Commands Directly Related to ATPG
Power Features IEEE 1801-2018 / UPF 3.1 CPF 1.0 / CPF 1.1
Power Domains create_power_domain

add_domain_elements
create_composite_domain
merge_power_domain

create_power_domain
update_power_domain

Power Modes
(Power States)

add_power_state
add_pst_state
create_pst

assert_illegal_domain_configurations
create_assertion_control
create_power_mode
update_power_mode

Isolation Cells define_isolation_cell
set_isolation_command
set_isolation_control
map_isolation_cell

create_isolation_rule
define_isolation_cell
update_isolation_cell

Level Shifters define_level_shifter_cell
map_level_shifter_cell

create_level_shifter_rule
update_level_shifter_rule

Tessent™ Scan and ATPG User’s Manual, v2022.4660

Low-Power Design Test
Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Insertion
The tool automatically sets two attributes, “power_domain_name” and
“power_domain_island,” on the design objects when reading Unified Power Format (UPF) and
Common Power Format (CPF) files. You can use these attributes to organize scan elements into
scan chain families, scan modes, and scan chains.
See the “Power Domains and Cell Selections” section of Test Logic Insertion for details.

By default, scan chains can include a mix of scan elements in different power domains. You can
change that behavior at the scan chain family, scan mode, or global level using the following
commands and switches:

create_scan_chain_family -single_power_domain_chains on
add_scan_mode -single_power_domain_chains on
set_scan_insertion_options -single_power_domain_chains on

Each power domain can use separate cell selection for implementing test logic. The
set_dft_cell_selection_mapping command establishes the mapping between power domain and
cell selection.

Tip
If you generate multiple Tessent IPs (such as an EDT, an OCC, and a SIB) in the same
power domain at the top level of your design and want the tool to insert logic using the cell

library you specify with the set_dft_cell_selection_mapping command, put all the IPs in the
same block.

Design Scope add_parameter
apply_power_model
define_power_model
set_design_top
set_scope
upf_version
load_upf
load_upf_protected
find_objects
Tcl support

Include
get_parameter
set_design
set_instance
set_cpf_version
set_time_unit
set_power_mode_control_group
set_array_naming_style
set_macro_model
end_macro_model
Tcl support

Table 14-1. Power Data Commands Directly Related to ATPG (cont.)
Power Features IEEE 1801-2018 / UPF 3.1 CPF 1.0 / CPF 1.1

Low-Power Design Test
Power-Aware Design Rule Checks

Tessent™ Scan and ATPG User’s Manual, v2022.4 661

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Power-Aware Design Rule Checks
Tessent Scan performs power-aware design rule checking to validate power data and power-
aware reporting to facilitate troubleshooting design rule violations.
Low-Power DRCs . 661
Low-Power DRC Troubleshooting. 661

Low-Power DRCs
In addition to checking design logic and the cell library, power-aware design rules (DRCs V1-
V21) check the design for violations and correctness of power data provided through CPF/UPF
files.

Note
Tessent Visualizer does not have any direct support for power domain-related DRC failures.
However, you can use standard design tracing features in Tessent Visualizer to pinpoint

issues.

• DRCs V1 to V7 — Checked after reading a power data file.

• DRCs V8 to V21 — Checked when you switch from setup mode to a non-setup mode.

For information on specific V DRCs, see “Power-Aware Rules (V Rules)” in the Tessent Shell
Reference Manual.

Low-Power DRC Troubleshooting
You can use the get_scan_elements command to generate a scan cell report that includes power
domain information. Tessent Scan treats power domains as scan partitions during scan chain
stitching.
You can use the get_scan_elements command along with suitable equations for the -filter
switch, using attributes like cluster_name, power_domain_island and power_domain_name to
extract all information from the CPF/UPF files and report each power domain (scan partition)
and the pathnames of all of the sequential instances in that power domain. Newly added
dedicated wrapper cells and lockup cells are indicated by the string “(new cell)” following their
name.

Power Domains for Scan Cells Reporting
You can use the report_scan_cells command to generate a scan cell report that includes power
domain information as shown here:

ANALYSIS> report_scan_cells -power_domain

Tessent™ Scan and ATPG User’s Manual, v2022.4662

Low-Power Design Test
Low-Power DRC Troubleshooting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information, refer to the report_scan_cells description in the Tessent Shell Reference
Manual.

Power Domains for Gates Reporting
You can use the set_gate_report command to add power domain information to the results of the
report_gates report as shown in the example here:

ANALYSIS> set_gate_report -power on

ANALYSIS> report_gates 154421

// /mc0/present_state_reg_3_/inst1122_4/mlc_dff (154421) DFF
// "S" I(ON) 153682-
// "R" I(ON) 153681-
// "C0" I(ON) 26078-
// "D0" I(ON) 43013-
// "OUT" O(ON) 1115-
// MASTER cell_id=0 chain=chain66 group=grp1 invert_data=FFFF
// in power domain PD_mem_ctrl

For more information, refer to the set_gate_report description in the Tessent Shell Reference
Manual.

Power Domain Violation Tracing
You can use Tessent Visualizer design tracing capabilities to pinpoint failures and issues
reported during design rule checking.

Low-Power Design Test
Power State-Aware ATPG

Tessent™ Scan and ATPG User’s Manual, v2022.4 663

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Power State-Aware ATPG
The recommended method for ATPG is to have all power domains on if possible. With this
method, you can manage power considerations due to switching activity during test by
sequencing the test of design blocks and using low-power ATPG. This is the simplest approach
and maximizes fault coverage. If you cannot use this method due to static power limitations,
you should select a minimum set of power states to achieve the required fault coverage for all
the blocks in the design as well as inter-block connectivity.
Power Domain Testing . 663
Low-Power Cell Testing . 665

Power Domain Testing
You can run ATPG in multiple power modes and power states by setting the appropriate power
mode/state conditions as specified in the CPF or UPF.
To demonstrate, assume a design has the following two power modes:

• PM1 — All domains on

• PM2 — PD_mem_ctrl powered down when mc_pwr is “0”

By setting a pin constraint on mc_pwr as shown here, ATPG recognizes which power mode is
currently set and runs appropriately:

SETUP> add_input_constraints mc_pwr -c1
SETUP> set_system_mode analysis
…

// ---
// Begin circuit learning analyses.
// ---
…

SETUP> create_patterns

No faults in fault list. Adding all faults...
…
// Enabling power-aware ATPG: initial power mode in capture cycle = PM2
…

If the power mode can change during the capture cycle, the tool issues V12 violations. When
V12 handling is a warning (default), the tool automatically adds ATPG constraints to fix the
power mode during the capture cycles:

…
// 1 ATPG constraint is added to fix power mode during capture.
// The active power mode at the beginning of capture cycle is PM2.
// Power-aware ATPG is enabled.
…

Tessent™ Scan and ATPG User’s Manual, v2022.4664

Low-Power Design Test
Power Domain Testing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When power-aware ATPG is enabled, the tool performs ATPG and fault simulation according
to the power mode: the regular gates in a power-off domain are X and the corresponding faults
are AU. The fault grouping classifies the fault as AU due to power off if faults in a power
domain are added:

ANALYSIS> create_patterns

ANALYSIS> report_statistics

Statistics Report
Stuck-at Faults

Fault Classes #faults
 (total)
-- -------------
 FU (full) 354
 -- -------------

DS (det_simulation) 52 (14.69%)
DI (det_implication) 40 (11.30%)
UU (unused) 26 (7.34%)
RE (redundant) 134 (37.85%)
AU (atpg_untestable) 102 (28.81%)

Fault Sub-classes
 --
 AU (atpg_untestable)

POFF (power_off) 102 (28.81%)
*Use "report_statistics -detailed_analysis" for details.

Coverage
 --
 test_coverage 47.42%
 fault_coverage 25.99%
 atpg_effectiveness 100.00%
 --
-
#test_patterns 0
#simulated_patterns 0
CPU_time (secs) 1.9

Instead of adding all faults, you can choose to add, delete, report, and write faults on power-on
domains or any user-specified power domains:

add_/delete_/report_/write_faults
[[-ON_domains] | [-OFf_domains] |
[-POWer_domains {domain_name …}]]
[-ISolation_cells] [-LEvel_shifters] [-REtention_cells]

Low-Power Design Test
Low-Power Cell Testing

Tessent™ Scan and ATPG User’s Manual, v2022.4 665

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Low-Power Cell Testing
Level shifters and isolation cells require special handling during scan insertion.
The handling of these low power cells is shown in these sections:

Level Shifters . 665
Isolation Cells . 665

Level Shifters
In most cases, you can handle level shifters as standard buffers and do not need any special
handling to achieve full test coverage. However, if one or more power domains in the design
can operate at more than one supply voltage, you should run ATPG for all permutations of the
supply voltage for both input and output sides of any given level shifter to ensure full coverage.

Isolation Cells
Isolation cells are special low power cells used to separate power on and power off domains.
They require special handling during scan insertion as described in this section.
For a full description of isolation cells, refer to IEEE 1801:Design and Verification of Low
Power Integrated Circuits.

You can test isolation cells in one of two modes:

• Normal transmission mode — In this mode, when an isolation cell is disabled and
stuck-at “0” or “1”, the fault can be detected on the input and output of the cell. A stuck-
at fault (isolation on) for the isolation enable pin is also detected because this failure
forces the cell into isolation and prevents the transmission of data.

• Isolation mode — In this mode, input side stuck-at faults are not detectable if the
isolation cell is a clamp-style cell (output held to “0” or “1” when isolation on). If the
isolation cell is a latch-style cell, input side stuck-at faults are detectable by latching the
value of the driving domain before enabling isolation.

Tessent™ Scan and ATPG User’s Manual, v2022.4666

Low-Power Design Test
Low-Power Cell Testing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 667

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 15
Defect-Oriented Test

The defect-oriented test approach enables a complete physical defect-based ATPG for the
digital logic area of CMOS-based designs. The Automotive-Grade ATPG feature of Tessent
TestKompress provides advanced defect-oriented fault models to improve the test quality and
achieve the high requirements of the automotive industry and other applications targeting zero
DPPM.
While traditional fault models such as stuck-at only address defects on ports of the logic model,
the defect-oriented fault models are based on the real layout and cover:

• Cell-internal bridge, open, transistor, and port defects.

• Critical area-based interconnect bridge defects.

• Critical area-based interconnect open defects.

• Inter-cell bridge defects between neighboring cells.

The generated fault models enable pattern generation to cover the defects or to quantify existing
pattern sets regarding the quality. Cell-internal defects, such as bridge, open, transistor, and port
defects, are covered with Tessent CellModelGen. Generating patterns to cover inter-cell bridge
defects between neighboring cells requires the Tessent CellModelGen merge function.

Note
A separate license is required to generate Automotive-Grade ATPG test patterns in Tessent
TestKompress. You can run Tessent CellModelGen with or without an Automotive-Grade

ATPG license.

Figure 15-1 shows a general flow overview of the defect-oriented fault models and the required
Tessent tools.

Tessent™ Scan and ATPG User’s Manual, v2022.4668

Defect-Oriented Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 15-1. Defect-Oriented Test Flow Overview

Table 15-1 summarizes the Tessent Shell commands related to Automotive-Grade ATPG.

Cell-Internal Defects and Port Faults . 669
Interconnect Bridge Defects . 670
Interconnect Open Defects . 670
Cell Neighborhood Bridge Defects . 671
Critical Area Calculation . 673

Table 15-1. Command Overview
Command Fault Types Addressed Description
extract_fault_sites • Critical area-based

interconnect bridges
• Critical area-based

interconnect opens

Extracts interconnect bridges
and opens from a layout
database LDB and writes out
the data in UDFM file format.

extract_inter_cell_data • Cell neighborhood
bridge defects

Extracts neighborhood cell
combinations and writes the
combinations out in UDFM file
format.

set_marker_file_options • Critical area-based
interconnect bridges

• Critical area-based
interconnect opens

• Cell neighborhood
bridge defects

Specifies settings for the marker
file generated by the
extract_fault_sites and
extract_inter_cell_data
commands.

read_fault_sites • All Loads the UDFM file into the
current ATPG tool session.

Defect-Oriented Test
Cell-Internal Defects and Port Faults

Tessent™ Scan and ATPG User’s Manual, v2022.4 669

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Critical Area Calculation Formula for Bridges. 675
Critical Area Calculation Formula for Opens and Vias . 677
Alternative Critical Area Calculation Formula for Bridges . 679

Timing-Aware Pattern Generation for Cell-Internal Defects . 680
UDFM . 681
License Information. 682
Example Designs . 683

ls169 . 683
cat_chip . 685

Cell-Internal Defects and Port Faults
Cell-internal defects, such as bridges, opens, transistor defects, and port faults, can occur during
the manufacturing process. Tessent CellModelGen is a fault model generation tool, enabling
transistor-level, defect-based ATPG to significantly improve the defect coverage of
manufactured ICs.
Tessent CellModelGen runs on each cell of a technology library. For each physical defect, the
tool calculates test cubes and the critical area. Use the resulting fault models in UDFM format
for static and delay pattern generation, and for cell-aware diagnosis.

Figure 15-2 shows the layout of a 3-input XOR cell, highlighting possible intra-cell defects and
port faults.

Figure 15-2. Possible Intra-Cell Defects and Port Faults

The Tessent tool package includes Tessent CellModelGen. Specific functions require an
Automotive-Grade ATPG license.

Tessent™ Scan and ATPG User’s Manual, v2022.4670

Defect-Oriented Test
Interconnect Bridge Defects

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For a detailed description, refer to the Tessent CellModelGen Tool Reference.

Interconnect Bridge Defects
One possible defect type is an inter-cell bridge between interconnect wires.
The Tessent layout extraction feature enables the extraction of critical area-based bridges.
Consider the following example. Figure 15-3 shows the critical area of two possible
interconnect bridge defects between Net A and Net B, highlighted as red shaded rectangles.

Figure 15-3. Possible Interconnect Bridge Defects

The Tessent “Layout Database” (LDB) contains physical data for layout-based diagnosis. The
LDB is an input for the Tessent fault site extraction tool. The tool extracts interconnect bridges
from the LDB and calculates the critical area for each bridge defect.

The tool writes the considered bridges into UDFM files that you then use as input to ATPG for
the critical area-based bridge pattern generation. The tool can also create a marker file to
highlight defects of interest within the chip layout using the Calibre layout viewer.

For a detailed description of interconnect bridge defect extraction from the LDB, see
extract_fault_sites. For details on UDFM creation and critical area-based bridge pattern
generation, refer to “Interconnect Bridge and Open Extraction and UDFM Creation” on
page 457.

Related Topics
Interconnect Bridge and Open Extraction and UDFM Creation

Interconnect Open Defects
Another possible defect type is an inter-cell open in interconnect wires.

Defect-Oriented Test
Cell Neighborhood Bridge Defects

Tessent™ Scan and ATPG User’s Manual, v2022.4 671

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent layout extraction feature enables the extraction of critical area-based open defects.
Consider the following example. Figure 15-4 shows two possible open defects on the
interconnect between standard cells.

Figure 15-4. Possible Interconnect Open Defects

The Tessent “Layout Database” (LDB) contains physical data for layout-based diagnosis. The
LDB is an input for the Tessent fault site extraction tool. The tool extracts interconnect opens
from the LDB and calculates the critical area for each open defect.

The tool writes the considered opens into UDFM files that you then use as input to ATPG for
the critical area-based open pattern generation. The tool can also create a marker file to
highlight defects of interest within the chip layout using the Calibre layout viewer.

For a detailed description of interconnect open defect extraction from the LDB, see
extract_fault_sites. For details on UDFM creation and critical area-based open pattern
generation, refer to “Interconnect Bridge and Open Extraction and UDFM Creation” on
page 457.

Related Topics
Interconnect Bridge and Open Extraction and UDFM Creation

Cell Neighborhood Bridge Defects
Cell neighborhood defects are chip-dependent bridge defects located on the interface from one
instance of a standard cell to another neighboring cell. Such defects can occur on the
interconnect between cells and also cell-internal nets (layers) not directly accessible from the
cell interconnect nets.

Tessent™ Scan and ATPG User’s Manual, v2022.4672

Defect-Oriented Test
Cell Neighborhood Bridge Defects

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 15-5 shows a bridge between the “Z” output of Cell 1 and the cell-internal net “6” of Cell
2. This bridge fault is not targeted explicitly by the cell-aware ATPG. Nor is it targeted by doing
an interconnect bridge extraction.

Figure 15-5. Cell Neighborhood Bridge Defect

The solution is to first extract the cell pair data of the two neighboring cells from the Layout
Database (LDB). The extraction step outputs an inter-cell data file, which enables merging of
the two cells into one virtual cell. The Tessent CellModelGen -merge step analyzes the merged
cell by explicitly targeting the neighborhood area of the merged cell, and generates a cell pair
UDFM file that can be passed on to ATPG.

Note
When you perform experiments with your library, you should first run the cell-aware library
characterization to ensure that everything is set up correctly.

For a detailed description of how to extract cell neighborhood data from the LDB, see
extract_inter_cell_data. For details on how to merge two neighboring cells and generate a cell
pair UDFM file, see The Merge Task in the Tessent CellModelGen Tool Reference.

Related Topics
Cell Neighborhood Defects UDFM Creation

Defect-Oriented Test
Critical Area Calculation

Tessent™ Scan and ATPG User’s Manual, v2022.4 673

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Critical Area Calculation
The extraction of the fault sites can be influenced by various settings that refer to the defect
probability and the critical area.
The tool calculates critical area-based on the relation between the size and density of particles
that may cause a bridge or open fault. The bridge probability depends, among others, on the
distance between two adjacent objects. The open probability depends, among others, on the
width of a net object and its length. Figure 15-6 shows the generic relation between the
probability, defect size, the critical area, and lambda, which is the multiplication product of
defect size and critical area.

Figure 15-6. Probability and Critical Area

Based on the calculation shown in Figure 15-6, the particle sizes that most probably can cause a
bridge defect are taken into account for the bridge area calculation as shown in Figure 15-7, and
also for the critical area calculation as explained in Figure 15-8 on page 674. The assumed
defect sizes are normalized to the technology length [tl]. That means, a value of 1 tl is equal to
the length of the technology node.

Figure 15-7. Bridge Area Calculation

In the example shown in Figure 15-7, there are two adjacent objects in the cell layout on the
same layer (for example metal2) and the distance between the adjacent objects is two
technology lengths. The length of the bridging area is three technology lengths. As a result, the
bridging area is six technology squares.

Tessent™ Scan and ATPG User’s Manual, v2022.4674

Defect-Oriented Test
Critical Area Calculation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

With the information about the maximum defect size that shall be considered, as shown in
Figure 15-6 on page 673, the critical area of each bridge defect is calculated; this is illustrated in
Figure 15-8.

Figure 15-8. Critical Area Calculation

For the probability of each bridge defect, the distance between the adjacent objects and the
length of the bridging area are taken into account. A high bridge probability is reached, when
the distance between the adjacent objects is for example just 1 technology length and the length
of the bridging area is for example 10 or more technology lengths, see the example shown in
Figure 15-9.

Figure 15-9. High Bridge Probability

A low probability is present, when the bridging length is for example just 1 technology length
and the distance between the 2 adjacent objects is for example 10 times or more the technology
length. This is illustrated in Figure 15-10.

Figure 15-10. Low Bridge Probability

Defect-Oriented Test
Critical Area Calculation Formula for Bridges

Tessent™ Scan and ATPG User’s Manual, v2022.4 675

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For the probability of each open defect, the width and length of the net object are taken into
account. A high open probability is reached when the width of the net object (for example
metal1, metal2 and so on) is small and the length is large, see an example shown in
Figure 15-11.

Figure 15-11. High Open Probability

A low open probability is given when the width is large and the length is small, see an example
shown in Figure 15-12.

Figure 15-12. Low Open Probability

Critical Area Calculation Formula for Bridges . 675
Critical Area Calculation Formula for Opens and Vias . 677
Alternative Critical Area Calculation Formula for Bridges . 679

Critical Area Calculation Formula for Bridges
The formula for calculating the critical area for bridges is shown in the following figure.

Figure 15-13. Critical Area Calculation Formula for Bridges

The definitions for the variables are as follows:

• s = spot size in technology length [tl]

• smin = minimum spot size in [tl], that can create a bridge

Tessent™ Scan and ATPG User’s Manual, v2022.4676

Defect-Oriented Test
Critical Area Calculation Formula for Bridges

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• smax = maximum spot size in [tl] to be considered

• distmin = technology dependent minimum distance between objects in [tl]

• length = length of the bridging area in [tl]

• dist = distance between the bridging objects in [tl]

Figure 15-14 shows the result of such a calculation in three examples of side-to-side (S2S)
bridges, with critical areas in layer M1, M2, and M3, each with a different distance and a
different length.

Figure 15-14. Critical Area Example — Side-to-Side Bridges

The total critical area (TCA) in technology squares [ts] in the example in Figure 15-14 is:

4.1 ts + 0.8 ts + 4.6 ts = 9.5 ts

The minimum spot size smin is different for the three bridge areas, that means for the bridge
area in layer M1 in above example it is smin = 1.5; for the M2 bridge area it is smin = 3.0; and
for the M3 bridge area it is smin = 1.0.

In all cases, the maximum spot size that is considered is smax = smin + 2

Note
The calculation of the critical area for bridges to power and ground is the same as for side-
to-side (S2S) bridges. The only difference is that they are written out to the UDFM file as

B2P (bridge-to-power) and B2G (bridge-to-ground).

Figure 15-15 shows the result of the critical area calculation for a corner-to-corner (C2C) bridge
in layer M3.

Defect-Oriented Test
Critical Area Calculation Formula for Opens and Vias

Tessent™ Scan and ATPG User’s Manual, v2022.4 677

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 15-15. Critical Area Example — Corner-to-Corner Bridge

The definitions for the variables for calculating the CA for C2C bridges slightly differ from the
definitions for S2S bridges:

• length = - (higher value of dx or dy) in [tl]

• dist = lower value of dx or dy in [tl]

Note
Note that in this definition, the “length” is negative because the sides do not overlap.
Also, in the example in Figure 15-15, the dy value is higher than the dx value. So,

“length” is defined to be -3tl, and “dist” is defined to be 2tl.

The critical area for this C2C bridge is 0.2 ts.

Critical Area Calculation Formula for Opens and
Vias

The formula for calculating the critical area for opens and vias is shown in the following figure.
Figure 15-16. Critical Area Calculation Formula for Opens and Vias

The definitions for the variables are as follows:

• s = spot size in technology length [tl]

• smin = minimum spot size in [tl], that can create an open

• smax = maximum spot size in [tl] to be considered

Tessent™ Scan and ATPG User’s Manual, v2022.4678

Defect-Oriented Test
Critical Area Calculation Formula for Opens and Vias

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• widthmin = technology dependent minimum width of objects in [tl]

• length = length of the net or via object in [tl]

• width = width of the net or via object in [tl]

Figure 15-17. Open Example — Net With Seven Layout Segments

In Figure 15-17 shows the layout of one net with seven segments, driven by the MUX Z output
port. A layout segment is the part of the net that is in front of a fan-out or in front of a receiver
port. Each layout segment defines an open defect. Vias are considered together with the
corresponding segment and do not result in a separate open defect.

Figure 15-18 shows one via, which has a length and width of each 1 tl.

Figure 15-18. One Via

Using the critical area calculation formula shown in Figure 15-16 on page 677, this results in a
TCA of 1.96 ts.

Figure 15-19 shows four single vias to connect an M3 object with an M2 object. Having four
vias instead of just one as in Figure 15-18, results in a smaller TCA for the set of four vias. The
calculation of the TCA for the set of four vias is based on a length and width of each 2.2 tl, so
the surrounding rectangle (shown in red in Figure 15-19) is used for the critical area calculation.

Defect-Oriented Test
Alternative Critical Area Calculation Formula for Bridges

Tessent™ Scan and ATPG User’s Manual, v2022.4 679

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 15-19. Four Vias

Using the formula shown in Figure 15-16 on page 677, this results in a TCA of 0.85 ts. This is
in addition divided by the number of vias. So, the actual TCA for this example is 0.2125 ts.

Alternative Critical Area Calculation Formula for
Bridges

An alternative method for calculating the critical area for bridges is an analytical solution based
on a wider range of defects but taking critical area saturation into account as follows:

Figure 15-20. Alternative Critical Area Calculation Formula for Bridges

The definitions for the variables are as follows:

• d = distance between the bridging objects

• l = length of the bridging area

• w = width of the net

Note that this alternative critical area calculation formula omits the units.

Based on this calculation method, the TCA of the S2S bridges shown in Figure 15-14 is:

2.7 + 1.1 + 2.4 = 6.2

Accordingly, the TCA for the C2C example in Figure 15-15 is 0.3.

Note
This calculation method is only supported for bridges. When you use this method for opens,
the tool generates an error message.

Tessent™ Scan and ATPG User’s Manual, v2022.4680

Defect-Oriented Test
Timing-Aware Pattern Generation for Cell-Internal Defects

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing-Aware Pattern Generation for Cell-
Internal Defects

Timing-aware ATPG reads timing information from a Standard Delay Format (SDF) file and
tries to generate patterns that detect transition faults using the longest detection path. Cell-aware
fault models contain information on whether a defect has been identified as a small- or gross-
delay defect, depending on the measured value at the cell output. Use this information, called
“impact value,” to target specific defects in a timing-aware cell-aware test (TA-CAT) pattern
generation run by specifying a filter when loading the UDFM file.

Small-Delay Defects
The pattern generation settings targeting small-delay defects are as follows:

set_fault_type udfm -delay_fault
read_fault_sites <tech>.udfm -filter {impact < 50}
read_sdf <design>.sdf.gz
set_atpg_timing on
set_atpg_timing -clock_waveform <design settings>
add_faults –all
create_patterns

The commands and settings in red are related to TA-CAT ATPG. The “-filter {impact < 50}”
setting filters out all the defects with an impact equal to or larger than 50%. This targets only
small-delay defects. Small-delay ATPG requires reading an SDF file.

Gross-Delay Defects
Similar to the small-delay defect targeting, a “-filter {impact >= 50}” setting filters out all the
defects with an impact of less than 50%, to target only gross-delay defects.

set_fault_type udfm -delay_fault
read_fault_sites <tech>.udfm -filter {impact >= 50}
add_faults –all
create_patterns

Small- and Gross-Delay Defects
The following example demonstrates how to generate patterns for small-delay defects with top
off patterns for all remaining delay defects.

Defect-Oriented Test
UDFM

Tessent™ Scan and ATPG User’s Manual, v2022.4 681

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_fault_type udfm -delay_fault
read_fault_sites <tech>.udfm -filter {impact < 50}
read_sdf <design>.sdf.gz
set_atpg_timing on
set_atpg_timing -clock_waveform <design settings>
add_faults –all
create_patterns
write_patterns CAT_timing.stil –stil –replace
set_atpg_timing off
delete_fault_sites -all
read_fault_sites<tech>.udfm
add_fault_sites –all
add_faults –all
read_patterns CAT_timing.stil
simulate_patterns –source external –store_pattern none
create_patterns
write_patterns CAT_delay.stil –stil –replace

For details on the TA-CAT ATPG, see Generate Timing-Aware Cell-Aware Delay Patterns and
Generate topoff Cell-Aware Delay Patterns, Based on Timing-Aware Cell-Aware Patterns in
the Tessent CellModelGen Tool Reference.

Displaying Defects
The “report_faults -details” command displays the faults selected by “set_fault_type -filter” as
shown in this example:

read_fault_sites ../data/CMOS65_2020_1.udfm.gz -filter {impact <= 81}
add_faults ip_inst/inst
report_faults -details

// Class UdfmType Cell Fault TCA Impact Instance

// ----- ------------------ ---------- ------------------------- ----- ------ --------

// UC intra_cell_defects H_XNOR3X12 D100:Bridge:1.0_7:23_12:6 0.62 74 ip_i/inst

// UC intra_cell_defects H_XNOR3X12 D41:Bridge:1.0_A:105_6:11 6.96 76 ip_i/inst

// UC intra_cell_defects H_XNOR3X12 D58:Bridge:1.0_C:42_15:13 5.85 81 ip_i/inst

// EQ intra_cell_defects H_XNOR3X12 D255:Bridge:1.0_M53:s_M53:g 6.94 8 ip_i/inst

Related Topics
Timing-Aware ATPG

UDFM
When performing any of the tasks described in the Defect-Oriented Test section, the results are
written out in user-defined fault model (UDFM) format.
For an example interconnect bridge and open UDFM file, see “UDFM File” on page 462. For
an example cell pair extraction UDFM file, see “Inter-Cell Data File” on page 474.

For information on this file format, refer to “About User-Defined Fault Modeling” on page 59.

Tessent™ Scan and ATPG User’s Manual, v2022.4682

Defect-Oriented Test
License Information

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

License Information
All functions related to the LDB-based interconnect bridge, interconnect open, and inter-cell
(cell neighborhood) flows require the Tessent TestKompress Automotive-Grade ATPG feature
license. This license is required to generate UDFM files and for using UDFM files in pattern
generation.
You can generate fault models for cell-internal defects using the Tessent CellModelGen tool
with and without the Tessent TestKompress Automotive-Grade ATPG feature license, but some
functional features are only available with the license.

The tables below give an overview of the license requirement for UDFM generation and pattern
generation using UDFMs.

(*) Some additional products are required for the cell-internal model creation process. See “List
of Required Product Licenses” in the Tessent CellModelGen Tool Reference for more details.

(*) Limited cell-aware ATPG, which excludes some enhancements created since 2018.4, is
possible without the Automotive-Grade ATPG license.

Table 15-2. UDFM Generation
Fault Model License Required
Cell-aware/cell-internal
(including timing-aware)

TestKompress(*)

Interconnect bridge TestKompress and Automotive-Grade ATPG
Interconnect open TestKompress and Automotive-Grade ATPG
Inter-cell bridge defects TestKompress and Automotive-Grade ATPG

Table 15-3. Tessent TestKompress ATPG
Pattern Type License Required
Cell-aware (including timing-
aware)

TestKompress and Automotive-Grade ATPG(*)

Interconnect bridge TestKompress and Automotive-Grade ATPG
Interconnect open TestKompress and Automotive-Grade ATPG
Inter-cell bridge defects TestKompress and Automotive-Grade ATPG

Defect-Oriented Test
Example Designs

Tessent™ Scan and ATPG User’s Manual, v2022.4 683

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example Designs
Tessent CellModelGen comes with two example designs and a Tessent 24 nm training library.
Use the run_atpg script to perform a test run before using the Automotive-Grade ATPG features
on your design.

Note
The run_atpg script and the two example designs included with the Tessent CellModelGen
package demonstrate the defect-oriented test functionality and flow. The example designs

are too small to make valid judgments on pattern count, coverage, and runtime differences
between the different fault models.

To retrieve the test cases and all cells of the training library, create an empty working directory
and type the following:

cellmodelgen -get_script all

This provides a number of C-shell scripts and data files as well as a lib directory containing the
two example designs: ls169 and cat_chip.

For details on the retrieved files and directories, refer to Creating a Working Directory and
Retrieving Run Scripts and The Cell-Aware Database in the Tessent CellModelGen Tool
Reference.

ls169. 683
cat_chip . 685

ls169
The ls169 design is a simple demonstration design to perform a test run of the interconnect
bridge and open extraction, the cell neighborhood extraction, and the timing-aware cell-aware
test (TA-CAT) ATPG. It is designed using cells from the Tessent 24 nm training library
provided with the Tessent CellModelGen tool.
The first step for extraction and ATPG on the ls169 design is to run the compile task with the
run_atpg script:

./run_atpg ls169 compile

This creates a directory named ATPG and starts Tessent ATPG to create the flat model for all
further steps. When completed, the ATPG directory contains the design data, flat model, layout
database, and other files. Table 15-4 shows the tasks available for use with the run_atpg script
for common ATPG tasks. Outputs include a log file and patterns.

Tessent™ Scan and ATPG User’s Manual, v2022.4684

Defect-Oriented Test
ls169

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 15-4. Common ATPG Runs
Command Description
./run_atpg ls169 SA_atpg Generates stuck-at patterns.
./run_atpg ls169 TR_atpg Generates transition patterns.
./run_atpg ls169 CA1_atpg Generates cell-aware static patterns.
./run_atpg ls169 CA2_atpg Generates cell-aware delay patterns.
./run_atpg ls169 TACAT_atpg Generates timing-aware cell-aware delay patterns.
./run_atpg ls169 CA1_satop Generates cell-aware static patterns on top of stuck-

at patterns.
./run_atpg ls169 CA2_trtop Generates cell-aware delay patterns on top of

transition patterns.
./run_atpg ls169 CA2_tatop Generates cell-aware delay patterns on top of timing-

aware cell-aware delay patterns.
./run_atpg ls169 BR1_atpg Generates interconnect bridge static patterns.
./run_atpg ls169 BR2_atpg Generates interconnect bridge delay patterns.
./run_atpg ls169 OP1_atpg Generates interconnect open static patterns.
./run_atpg ls169 OP2_atpg Generates interconnect open delay patterns.
./run_atpg ls169 NB1_atpg Generates cell-neighborhood static patterns.
./run_atpg ls169 BR1_ca1top Generates interconnect bridge static patterns on top

of cell-aware static patterns.
./run_atpg ls169 IC1_atpg Generates a set of static patterns combining cell-

aware, interconnect bridge, interconnect open, and
cell neighborhood patterns.

./run_atpg ls169 IC2_atpg Generates a set of delay patterns combining cell-
aware, interconnect bridge, and interconnect open
patterns.

./run_atpg ls169 EXT_bridges Performs interconnect bridge extraction from LDB
and writes out an interconnect bridge UDFM file to
be used as input to the interconnect bridge ATPG.

./run_atpg ls169 EXT_opens Performs interconnect open extraction from LDB
and writes out an interconnect open UDFM file to be
used as input to the interconnect open ATPG.

./run_atpg ls169 EXT_cells Performs cell neighborhood extraction from LDB
and writes out cell pair information into an inter-cell
data file in UDFM format to be used as input to the
Tessent CellModelGen -merge task.

Defect-Oriented Test
cat_chip

Tessent™ Scan and ATPG User’s Manual, v2022.4 685

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

cat_chip
The cat_chip design is a simple demonstration design to perform a test run of the cell-aware test
pattern generation with the run_atpg script, which is provided with the Tessent CellModelGen
tool. This design contains multiple instantiations of the ls169 core and cells from the Tessent 24
nm training library.
For a detailed description on how to perform the cell-aware test pattern generation on the
cat_chip design, refer to “How to Run the run_atpg Script” in the Tessent CellModelGen Tool
Reference.

Tessent™ Scan and ATPG User’s Manual, v2022.4686

Defect-Oriented Test
cat_chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 687

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 16
Using MTFI Files

This chapter describes MTFI (Mentor Tessent Fault Information) features, which are available
for use in the ATPG tool and Tessent LogicBIST. MTFI is a common and extendable file
format for storing fault status information.
This chapter describes MTFI syntax, as well as the major MTFI features:

MTFI File Format . 688
MTFI Features . 691

Support of Fault Classes and Sub-Classes . 691
Support of Stuck and Transition Fault Information . 693
Support of N-Detect Values . 693
Support of Different Fault Types in the Same File. 695
Support for Hierarchical Fault Accounting . 695

Commands that Support MTFI . 697

Tessent™ Scan and ATPG User’s Manual, v2022.4688

Using MTFI Files
MTFI File Format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

MTFI File Format
MTFI is the default (but optional) file format for reading and writing fault information in the

dft -edt and patterns -scan contexts.
MTFI is an ASCII file format for storing fault information about an instance that the ATPG tool
can read and write.

Format
The following simple MTFI example shows the minimum required keywords in bold:

FaultInformation {
: version : 1;

FaultType (Stuck) {
 FaultList {
 Format : Identifier, Class, Location;
 Instance ("/i1") {
 0, DS, "F1";
 1, DS, "F2";
 }
 }
 }
}

Parameters
The basic syntax elements of MTFI are as follows:
• Comments

The “//” identifies the start of the comment until the end of line.
• FaultInformation { … }

Keyword that specifies the top-level block and file type.
• version : integer

Keyword that specifies the syntax version of the MTFI file.
• FaultType (type) { … }

Keyword that specifies the fault type of the data: Stuck, Iddq, Toggle, Transition,
Path_delay, Bridge, and Udfm. The keywords are identical to those available for the
set_fault_type command described in the Tessent Shell Reference Manual.

• FaultList { … }
Keyword that defines a data block that stores per-fault data.

• UnlistedFaultsData { … }
Keyword that defines a data block that stores the coverage information for specific graybox
instances to enable hierarchical fault accounting. For more information, refer to “Support
for Hierarchical Fault Accounting” on page 695.

Using MTFI Files
MTFI File Format

Tessent™ Scan and ATPG User’s Manual, v2022.4 689

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• FaultCollapsing { true | false }
Keyword that specifies the fault collapsing status in the fault list. A value of “true” means
that the faults in the list are collapsed; a value of “false” means that the faults in the list are
uncollapsed. You can use this statement only inside the FaultList data block.

• DetectionLimit : integer
Keyword that specifies the detection drop limit for a DS fault.

• Format
Keyword that specifies the sequence of values stored in a specific data block (FaultList or
UnlistedFaultsData). The following keywords are available for use in the Format statement:

o Class

Required keyword that specifies the fault category, and optionally the sub category
(for example, DS, UC, AU.BB). For more information, refer to “Support of Fault
Classes and Sub-Classes” on page 691.

o Location

Keyword that specifies the pin pathname. You can use this keyword only in the
FaultList data block. In the case of a stuck-at fault, the keyword is required.

o Identifier

Required keyword that specifies the fault identifier. In the case of stuck-at or
transition faults, the value can be 0 or 1. No other fault types are supported.

o Detections

Optional keyword that specifies the number of detections for the fault types stuck-at
and transition. For more information, refer to “Support of N-Detect Values” on
page 693.

o CollapsedFaultsCount

Required keyword that specifies the number of collapsed faults. You can use this
keyword only in the UnlistedFaultsData data block.

o UncollapsedFaultsCount

Required keyword that specifies the number of uncollapsed faults. You can use this
keyword only in the UnlistedFaultsData data block.

• Instance (“pathname“) { … }
Required keyword that specifies the instance pathname to all of the pins in the data block.
You must enclose the pathname in parentheses and quotation marks. The pathname can be
an empty string.

Tessent™ Scan and ATPG User’s Manual, v2022.4690

Using MTFI Files
MTFI File Format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples
The following is an example of a typical MTFI file:

//
// Tessent FastScan v9.6
//
// Design = test.v
// Created = Tue Dec 20 20:08:46 2011
//
// Statistics:
// Test Coverage = 50.00%
// Total Faults = 6
// UC (uncontrolled) = 2
// DS (det_simulation) = 1
// DI (det_implication) = 1
// AU (atpg_untestable) = 2
//
FaultInformation {

version : 1;
FaultType (Stuck){

FaultList {
FaultCollapsing : false;

Format : Identifier, Class, Location;
Instance (“”) {

1, DS, “/i1/IN0”;
1, AU, “/i1/IN1”;
1, EQ, “/i2/Y”;
0, UC, “/i5/Z”;
1, DI, “/i5/Z”;
0, AU, “/i4/IN1”;
1, UC, “/i4/IN1”;

}
}

}
}

Using MTFI Files
MTFI Features

Tessent™ Scan and ATPG User’s Manual, v2022.4 691

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

MTFI Features
The following text explains the major features of the MTFI format.
Support of Fault Classes and Sub-Classes. 691
Support of Stuck and Transition Fault Information . 693
Support of N-Detect Values . 693
Support of Different Fault Types in the Same File. 695
Support for Hierarchical Fault Accounting . 695

Support of Fault Classes and Sub-Classes
MTFI provide features that enable you to specify fault classes and sub-classes.
The following example shows how MTFI supports fault classes and sub-classes using the
Format statement’s Class keyword:

FaultInformation {
version : 1;
FaultType (Stuck){

FaultList {
FaultCollapsing : false;
Format : Identifier, Class, Location;
Instance (“”) {

1, DS, “/i1/IN0”;
1, AU, “/i1/IN1”;
1, EQ, “/i2/Y”;
0, UC, “/i5/Z”;
1, DI, “/i5/Z”;
0, AU, “/i4/IN1”;
1, UC, “/i4/IN1”;

}
}

}
}

In the following example, one AU fault is identified as being AU due to black box, and one DI
fault is specified as being due to LBIST. So for these two faults, the MTFI file reports both class
and sub-class values.

Tessent™ Scan and ATPG User’s Manual, v2022.4692

Using MTFI Files
Support of Fault Classes and Sub-Classes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FaultInformation {
version : 1;
FaultType (Stuck) {

FaultList {
FaultCollapsing : false;
Format : Identifier, Class, Location;
Instance (“”) {

1, DS, “/i1/IN0”;
1, AU, “/i1/IN1”;
1, EQ, “/i2/Y”;
0, UC, “/i5/Z”;
1, DI, “/i5/Z”;
1, DI.LBIST, “/i5/Z”;
0, AU.BB, “/i4/IN1”;
1, UC, “/i4/IN1”;

}
}

}
}

In the preceding example, the sub-class information is part of the class value and separated by
the dot. Any of the AU, UC, UO and DI fault classes can be further divided into different sub-
classes. For all the available AU fault sub-classes, refer to the set_relevant_coverage command
description in the Tessent Shell Reference Manual. The tool supports the following UC and UO
fault sub-classes: ATPG_Abort (AAB), Unsuccessful (UNS), EDT Abort (EAB). The tool
supports the pre-defined fault sub-class EDT for DI faults.

User-Defined Fault Sub-Classes
Besides the predefined fault sub-classes described previously, the tool also supports a user-
defined sub-class for AU and DI faults. The user-defined sub-class can be any string based on
the following character set:

• A-Z

• a-z

• 0-9

• -

• _

It is your responsibility to ensure that the name of the user-defined sub-class differs from any of
the predefined sub-classes. Otherwise, the faults may be accounted for incorrectly.

Note the statistics report displays the breakdown of DI faults when you use the “report_statistics
-detailed_report DI” command and when there are some DI faults in specific subcategories.

Using MTFI Files
Support of Stuck and Transition Fault Information

Tessent™ Scan and ATPG User’s Manual, v2022.4 693

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Support of Stuck and Transition Fault Information
MTFI is able to represent stuck fault information in a fashion similar to the classic format.
This is shown in the following example:

FaultInformation {
version : 1;
FaultType (Stuck) {

FaultList {
FaultCollapsing : false;
Format : Identifier, Class, Location;
Instance (“”) {

1, UC, “/in1”;
0, DS, “/in1”;
0, DS, “/i1/IN0”;
1, DS, “/i1/OUT”;
1, DS, “/i1/IN0”;
1, AU, “/i1/IN1”;
1, EQ, “/i2/Y”;
0, UC, “/i5/Z”;
1, DS, “/out”;
1, DI, “/i5/Z”;

}
}

}
}

Support of N-Detect Values
The information about how often a fault has been detected can be handled for a single fault in
the FaultList block, as well as for a group of faults in the UnlistedFaultsData block.
In the FaultList block, you can add the value to the list using the Format statement’s Detections
keyword. The value must be a positive integer that specifies the number of detections of this
fault. All classes other than DS must have a value of 0.

In the following example, the detection drop limit is 4. For any DS faults that are detected four
times or more, the tool reports the detection value as “4”.

Tessent™ Scan and ATPG User’s Manual, v2022.4694

Using MTFI Files
Support of N-Detect Values

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FaultInformation {
version : 1;
FaultType (Stuck) {

FaultList {
FaultCollapsing : false;
DetectionLimit : 4;
Format : Identifier, Class, Detections, Location;
Instance (“”) {

1, DS, 3, “/i1/OUT”;
1, DS, 4, “/i1/IN0”;
1, AU.BB, 0, “/i1/IN1”;
1, EQ, 0, “/i2/Y”;
0, UC, 0, “/i5/Z”;
1, DS, 2, “/out”;
1, DI, 0, “/i5/Z”;

}
}

}
}

In general, the same rules are valid for the UnlistedFaultsData block, as shown in the following
example:

FaultInformation {
version : 1;
FaultType (Stuck) {

UnlistedFaultsData {
DetectionLimit : 4;
Format : Class,Detections,CollapsedFaultCount,

UncollapsedFaultCount;
Instance (“/CoreD/i1”) {

UC, 0, 1252, 2079;
UC.EAB, 0, 452, 543;
DS, 1, 69873, 87232;
DS, 2, 12873, 21432;
DS, 3, 9752, 11974;
DS, 4, 487, 6293;
AU.BB, 0, 8708, 10046;
AU, 0, 2374, 3782;

}
}

}
}

In the case of the UnlistedFaultsData, the preceding example shows the fault count after the
number of detections. Typically, there is one line per detection until reaching the current
detection limit. So in the preceding example, the number of faults have reached the detection
limit of 4.

Also note that in the previous example, the line UC, 0, 1252, 2079 shows the collapsed and
uncollapsed fault count for the UC faults that are in the unclassified sub-class (that is, those that
do not fall into any of the predefined or user-defined sub-classes).

Using MTFI Files
Support of Different Fault Types in the Same File

Tessent™ Scan and ATPG User’s Manual, v2022.4 695

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Similarly, the line AU, 0, 2374, 3782 shows the fault counts for the unclassified AU faults.

While loading the MTFI file, the n-detection number stored in the file is capped at the detection
limit currently set in the tool. This applies to both the detection number in FaultList data block
and that in UnlistedFaultsData block. Depending on the switch, the n-detection data in the
external MTFI file can be appended to the internal detection number of the corresponding fault,
or replace the detection number of the corresponding fault in the internal fault list.

Support of Different Fault Types in the Same File
MTFI enables you to manually specify multiple fault types in a single file.
When reading an MTFI file using the read_faults command, the current fault type (set using
set_fault_type) must match the specified fault type within the MTFI file. In order to share fault
information between the fault types Stuck and Transition, MTFI enables you to manually
specify both fault types in the same file, as shown in the following example:

FaultInformation {
version : 1;
FaultType (Stuck, Transition) {

FaultList {
FaultCollapsing : false;
Format : Identifier, Class, Location;
Instance ("") {

1, AU.PC, "/i1/OUT";
1, AU.PC, "/i1/IN0";
1, AU.BB, "/i1/IN1";
1, AU.BB, "/i2/Y";
0, AU.TC, "/i5/Z";
1, AU.TC, "/out";
1, AU.TC, "/i5/Z";

}
}

}
}

MTFI does not support combinations other than Stuck and Transition. And note that none of the
tools that support MTFI can output MTFI files that contain multiple fault types.

Support for Hierarchical Fault Accounting
MTFI enables you to efficiently handle fault information for hierarchical designs, where
individual small cores are tested and their fault statistics saved in individual MTFI files. You
can then instantiate those small cores in a larger core using “graybox” versions of the small
cores plus the fault information from their MTFI files. Using this method, the test patterns for
the larger core need not deal with the internal details of the small cores, only with their graybox
versions (which contain only the subset of the logic needed for testing at the next higher level).

Tessent™ Scan and ATPG User’s Manual, v2022.4696

Using MTFI Files
Support for Hierarchical Fault Accounting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Consider the example in Figure 16-1. Core_A and Core_B are stand-alone designs with their
own individual test patterns and fault lists. After running ATPG on Core_A and Core_B, you
store fault information in MTFI files using the following commands:

ANALYSIS> write_faults Core_A.mtfi
ANALYSIS> write_faults Core_B.mtfi

Note that the logic in Core_A and Core_B is fully observable and controllable, so there are no
unlisted faults in the Core_A.mtfi or Core_B.mtfi files.

If there are multiple fault lists for a given core, each reflecting the coverage achieved by a
different test mode, and the intent is to merge these results into a single coverage for the core,
you must perform the merge during a core-level ATPG run. This is because when you use the
“read_faults -graybox” command at the next level of hierarchy, the command supports only a
single fault list per core. Note that you can only merge fault lists of a single fault type. You
cannot, for example, merge fault lists for stuck and transition at the core level.

Taking the example of Core_A previously described, you would first merge the fault lists of any
other previously-run test modes before writing out the final fault list for the core. The following
sequence of commands is an example of this:

ANALYSIS> read_faults Core_A_mode1.mtfi -merge
ANALYSIS> read_faults Core_A_mode2.mtfi -merge
ANALYSIS> write_faults Core_A.mtfi

Next you create Core_C by instantiating graybox versions of Core_A and Core_B, and then you
use the fault information you wrote previously using the following commands:

ANALYSIS> read_faults Core_A.mtfi-Instance Core_C/Core_A -Graybox
ANALYSIS> read_faults Core_B.mtfi -Instance Core_C/Core_B -Graybox

The -Graybox switch directs the tool to map any faults it can to existing nets in Core_C and to
essentially discard the remaining faults by classifying them as unlisted. The tool retains the fault
statistics for the unlisted faults.

After you have run ATPG on Core_C, you can write out the fault information to an MTFI file:

ANALYSIS> write_faults Core_C.mtfi

The command writes out data for both the listed and unlisted faults that were created when you
issued the read_faults command. You could then instantiate a graybox version of Core_C in a
larger core, Core_D, and load the fault information from the Core_C.mtfi file. That way,
Core_A, Core_B, and Core_C have already been fully tested and are not tested again, but the
fault statistics from all three cores are available for viewing and analysis with the listed faults in
Core_D.

Using MTFI Files
Commands that Support MTFI

Tessent™ Scan and ATPG User’s Manual, v2022.4 697

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 16-1. Using MTFI With Hierarchical Designs

For more information about the read_faults and write_faults commands, refer to their
descriptions in the Tessent Shell Reference Manual.

Commands that Support MTFI
The following table summarizes the commands that support MTFI.

Table 16-1. MTFI Command Summary
Command Description
read_faults Updates the current fault list with the faults listed in a specified

file.
report_faults Displays data from the current fault list.
write_faults Writes data from the current fault list to a specified file.

Tessent™ Scan and ATPG User’s Manual, v2022.4698

Using MTFI Files
Commands that Support MTFI

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Scan and ATPG User’s Manual, v2022.4 699

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 17
Graybox Overview

Graybox functionality streamlines the process of scan insertion and ATPG processing in a
hierarchical design by enabling you to perform scan and ATPG operations on a sub-module,
and then enabling you to use a simplified, graybox representation of that sub-module when
performing scan and ATPG operations at the next higher level of hierarchy.
Because the graybox representation of a sub-module contains only a minimal amount of
interconnect circuitry, the use of grayboxes in a large, hierarchical design can dramatically
reduce the amount of memory and tool runtime required to perform scan insertion, optimize
timing, analyze faults, and create test patterns.

Note
Currently, only Mux-DFF scan architecture is supported with the graybox functionality.

Table 17-1 summarizes the commands that support graybox functionality, which is available in
the ATPG tool.

What Is a Graybox?. 699
Graybox Process Overview . 702

Example dofile for Creating a Graybox Netlist . 703
Graybox Netlist Generation for EDT Logic Inserted Blocks . 704

What Is a Graybox?
A graybox is a simplified representation of a sub-module that contains only the minimum
amount of interconnect circuitry (primary inputs/outputs, wrapper chains, and the glue logic

Table 17-1. Graybox Command Summary
Command Description
analyze_graybox Identifies the instances and nets to be included in the graybox

netlist.
set_attribute_value Assigns an attribute and value to specified design objects. For a

list of graybox attributes, refer to the analyze_graybox
command description.

report_graybox_statistics Reports the statistics gathered by graybox analysis.
write_design Writes the current design in Verilog netlist format to the

specified file. Optionally writes a graybox netlist.

Tessent™ Scan and ATPG User’s Manual, v2022.4700

Graybox Overview
What Is a Graybox?

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

outside of the wrapper chains) required to process the grayboxed sub-module at the next higher
level of hierarchy.
To understand a graybox representation of a sub-module, first consider the full netlist
representation shown in Figure 17-1. This figure shows the input and output wrapper chains, the
core scan chains, and the combinational logic that exists both inside and outside the wrapper
chains.

After performing scan insertion, fault accounting, and pattern creation for this sub-module, you
create a graybox representation of the sub-module, as shown in Figure 17-2.

Figure 17-1. Full Hierarchical Block Netlist

Figure 17-2 is a graybox representation of the sub-module shown in Figure 17-1. Note that the
graybox contains only the primary inputs/outputs, wrapper chains, and combinational logic that
exists outside of the wrapper chains (that is, any combinational logic between a primary input or
output and the nearest connected flip-flop).

Graybox Overview
What Is a Graybox?

Tessent™ Scan and ATPG User’s Manual, v2022.4 701

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 17-2. Graybox Version of Block Netlist

Tessent™ Scan and ATPG User’s Manual, v2022.4702

Graybox Overview
Graybox Process Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Graybox Process Overview
The following is a description of the overall process of generating a graybox netlist. Graybox
functionality is available when the tool is in the analysis system mode and the design is in
external mode. External mode means that the input wrapper chains are used in regular test
modes (both capture and shift), whereas the output wrapper chains are used only in a non-
capture mode (shift, hold or rotate). Wrapper chains inserted by Tessent Scan are configured in
external mode by constraining the output wrapper chain scan_enable signal to active during
both shift and capture phases.
The dofile used for graybox netlist generation does the following:

1. Defines clock pins used in external mode (using the add_clocks command).

2. Constrains test control pins that place the circuit in external mode (using the
add_input_constraints command).

3. Defines wrapper chains (using the add_cell_constraints command).

4. Places the circuit in external mode using a test procedure file. This test procedure file
should do the following:

o Define a test-setup procedure for the external mode to force primary inputs that
enable signal paths to wrapper cells.

o Define a shift and load-unload procedure to force wrapper chain scan enable signals
and toggle the shift clocks for the external mode.

Other types of scan and clock procedures (such as master-observe or shadow-observe)
and non-scan procedures (such as capture) might also be required to ensure that the
circuit operates correctly in external mode.

Note
Test-setup procedures are not permitted if they pulse the clocks to initialize non-scan
cells to constant values in order to sensitize the control signals of external mode. In

other words, the only permitted control signals that place the circuit in external mode are
the primary inputs to the block (core).

5. Identifies graybox logic using the analyze_graybox command. The command also
displays a summary to indicate the combinational and sequential logic gates identified
by the analysis. The tool marks the identified graybox instances by setting their
in_graybox attribute. You can add specific instances into the graybox netlist by turning
on the preserve_in_graybox attribute using the set_attribute_value command.

The graybox analysis performs the identification by tracing backward from all primary
output pins and wrapper chains. However, the scan-out pins of the core chains are
excluded from the backward tracing. Because core chains are not defined with the
add_scan_chains command, you accomplish this by setting the ignore_for_graybox
attribute of the scan-out pins using the set_attribute_value command.

Graybox Overview
Example dofile for Creating a Graybox Netlist

Tessent™ Scan and ATPG User’s Manual, v2022.4 703

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. The “write_design -graybox” command writes out all the instances marked with the
in_graybox attribute. The tool uniquifies all modules that are included in the graybox
netlist (except the top module). The interface (port declarations) of a uniquified module
is preserved. The uniquification is required because the partial inclusion of the logic
inside a module into the graybox netlist could cause conflicts between the different
instances of the module, as these instances could be interacting differently with the
wrapper chains.

Example dofile for Creating a Graybox Netlist . 703
Graybox Netlist Generation for EDT Logic Inserted Blocks . 704

Example dofile for Creating a Graybox Netlist
The following dofile example shows how to create a graybox netlist.

Define clock pins used for external mode
add_clocks 0 NX2
add_clocks 0 NX1

Set up for external mode
Hold output wrapper chain scan enable active
add_input_constraints sen_out -C1

Define wrapper chains
add_scan_groups grp1 external_mode.testproc
add_scan_chains wrapper_chain1 grp1 scan_in1 scan_out1
add_scan_chains wrapper_chain2 grp1 scan_in2 scan_out2

Ignore core chains scan_out pins for graybox analysis to exclude the
logic intended for internal test mode
set_attribute_value scan_out3 –name ignore_for_graybox –value true
set_attribute_value scan_out4 –name ignore_for_graybox –value true

set_system_mode analysis

Identify graybox logic
analyze_graybox -collect_reporting_data
report_graybox_statistics -top 10

NOTE: At this point, you can use the set_attribute_value command with
the preserve_in_graybox attribute to add specific instances into
graybox netlist.

Write graybox netlist
write_design –graybox –output_file graybox.v -replace

Tessent™ Scan and ATPG User’s Manual, v2022.4704

Graybox Overview
Graybox Netlist Generation for EDT Logic Inserted Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Graybox Netlist Generation for EDT Logic Inserted
Blocks

A graybox netlist can also be generated for a block whose scan chains are driven by EDT logic.
Below is an example dofile to generate a graybox netlist for a block whose wrapper chain scan
I/O ports are accessed directly through wrapper-extest ports, bypassing the EDT logic.
The int_ltest_en and ext_ltest_en ports are added to the netlist by Tessent Scan when you insert
wrapper chains using the analyze_wrapper_chains command. The wrapper-extest ports are
activated by constraining the global signal wrapper_extest to a logic 1. The EDT logic and
subsequently the core logic are excluded from graybox netlist by marking the EDT channel
outputs with the ignore_for_graybox attribute before performing the graybox analysis.

Note
In this example, the int_ltest_en and ext_test_en signals are primary input pins. However, it
is also possible to define dft_signals (using the add_dft_signals command) that are

controlled by IJTAG registers. In this case, use the set_static_dft_signal_value command
(instead of add_input_constraints) to set int_ltest_en to 0 and ext_ltest_en to 1.

Define clocks
add_clocks 0 clk

Set up for external mode
Enable access to wrapper chain extest ports and
hold output wrapper chain scan enable active
add_input_constraints int_ltest_en -C0
add_input_constraints ext_ltest_en -C1
add_input_constraints scan_en_out -C1

Define wrapper chains
add_scan_groups grp1 cpu_block1_extest.testproc
add_scan_chains chain1 grp1 scan_in1 scan_out2
add_scan_chains chain2 grp1 scan_in3 scan_out4
add_scan_chains chain3 grp1 scan_in5 scan_out6
add_scan_chains chain4 grp1 scan_in7 scan_out8

Ignore all EDT channel outputs to exclude EDT logic and core chains
from the graybox netlist.
set_attribute_value edt_channels_out1 -name ignore_for_graybox -value true
set_attribute_value edt_channels_out2 -name ignore_for_graybox -value true
set_attribute_value edt_channels_out3 -name ignore_for_graybox -value true
set_attribute_value edt_channels_out4 -name ignore_for_graybox -value true

DRC
set_system_mode analysis

Identify graybox logic
analyze_graybox

Write graybox netlist
write_design -graybox -output_file graybox.v

Graybox Overview
Graybox Netlist Generation for EDT Logic Inserted Blocks

Tessent™ Scan and ATPG User’s Manual, v2022.4 705

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In the following example, the block does not have dedicated wrapper-extest ports and therefore
scan I/O ports are accessed only through EDT logic during extest. The setup of the EDT logic is
skipped to simplify the DRC process as there is no pattern generation in the same tool run. The
EDT logic is inserted such a way that an exclusive subset of the channel I/O pins are used only
for wrapper chains. This enables excluding the core logic from graybox netlist by marking the
core chain EDT channel outputs with ignore_for_graybox attribute. Graybox analysis can
identify the EDT logic that is sensitized for extest if the depth of sequential pipeline stages on
channel outputs allocated for wrapper chains is less than 2. However, in this example, the EDT
block is specified as a preserve instance to include it in the graybox netlist entirely.

Define clocks
add_clocks 0 clk

No EDT setup
set_edt_options off

Set up for external mode
add_input_constraints seno C1

Define wrapper chains
add_scan_groups grp1 setup.testproc
add_scan_chains -internal chain1 grp1 \
 /edt_block_i/edt_scan_in[0]/edt_block_i/edt_scan_out[0]
add_scan_chains -internal chain2 grp1 \
 /edt_block_i/edt_scan_in[1] /edt_block_i/edt_scan_out[1]

Ignore EDT channel outputs that access core logic in graybox analysis
set_attribute_value edt_channels_out3 -name ignore_for_graybox -value true
set_attribute_value edt_channels_out4 -name ignore_for_graybox -value true

DRC
set_system_mode analysis

Identify graybox logic
analyze_graybox -preserve_instances edt_block_i

Write graybox netlist
write_design -graybox -output_file graybox.v

The EDT logic can also be included in the graybox netlist without using the -preserve_instances
switch explicitly. EDT Finder can identify the parts of the EDT logic that are sensitized for
extest and automatically adds them as preserve instances for graybox analysis. This also enables
any sequential pipeline stages on channel I/O pins to be included in the graybox netlist. The
following example dofile shows a typical setup to utilize the EDT finder in graybox analysis.
The EDT channel pins allocated for core chains are constrained/masked to ignore for EDT
Finder. However, this is usually effective when separate EDT blocks are inserted for wrapper
and core chains.

Tessent™ Scan and ATPG User’s Manual, v2022.4706

Graybox Overview
Graybox Netlist Generation for EDT Logic Inserted Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Define clocks
add_clocks 0 clk

Set up for external mode
add_input_constraints seno C1

EDT Finder is on by default
Ignore EDT channels that are used for core logic
add_clocks 0 edt_clock
add_input_constraints edt_clock C0
add_input_constraints edt_channels_in2 -C0
add_output_masks edt_channels_out2

Define EDT block and all chains
add_edt_blocks edt_block
set_edt_options -channels 2 -longest_chain_range 4 28
set_edt_pins input_channel 1 edt_channels_in1 -pipeline_stages 4
set_edt_pins input_channel 2 edt_channels_in2 -pipeline_stages 4
set_edt_pins output_channel 1 edt_channels_out1 -pipeline_stages 3
set_edt_pins output_channel 2 edt_channels_out2 -pipeline_stages 3
add_scan_groups grp1 setup.testproc
add_scan_chains -internal chain1 grp1 /edt_block_i/edt_scan_in[0] \
/edt_block_i/edt_scan_out[0]
add_scan_chains -internal chain2 grp1 /edt_block_i/edt_scan_in[1] \
/edt_block_i/edt_scan_out[1]
add_scan_chains -internal chain3 grp1 /edt_block_i/edt_scan_in[3] \
/edt_block_i/edt_scan_out[3]
add_scan_chains -internal chain4 grp1 /edt_block_i/edt_scan_in[4] \
/edt_block_i/edt_scan_out[4]

Ignore EDT channel outputs that access core logic in graybox analysis
set_attribute_value edt_channels_out3 -name ignore_for_graybox -value true
set_attribute_value edt_channels_out4 -name ignore_for_graybox -value true

DRC
set_system_mode analysis

Identify graybox logic
analyze_graybox

Write graybox netlist
write_design -graybox -output_file graybox.v

Tessent™ Scan and ATPG User’s Manual, v2022.4 707

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 18
Tessent On-Chip Clock Controller

On-chip clock control (OCC) circuits commonly manage clocks during test. Clock controllers
can generate slow-speed or at-speed clock sequences under the control of the ATPG process.
Tessent OCC is an implementation of a clock controller created by Tessent Shell. Its design
meets the requirements of scan test for ATPG, Logic BIST, EDT, and Low Pin Count Test.
General OCC Overview . 708

Primary OCC Functions . 708
Tessent OCC Overview . 710

Design Placement . 710
Operating Modes. 711
Timing Diagrams . 716
OCC Interface . 718
Inserting the Tessent OCC . 721
Recommendations. 724
Miscellaneous Overview Topics. 728

Tessent OCC Types and Usage. 735
The Standard OCC . 736
The Synchronous OCC . 741
The Mini-OCC . 762

Tessent™ Scan and ATPG User’s Manual, v2022.4708

Tessent On-Chip Clock Controller
General OCC Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

General OCC Overview
OCC circuits generate programmable clock pulses under ATPG control. It is common for clock
control circuits to have external, static, and scan-based internal controls to configure and
generate the clock pulses that testing requires.
When designing OCC circuits, consider the following requirements:

• Independent control by ATPG of each clock domain to improve coverage, reduce
pattern count, and achieve safe clocking with minimal user intervention.

• Delivery of the correct number of clock pulses during capture on a per-pattern basis.

• Clean switching between shift and capture clocks.

• Clock selection of slow or fast clocks during capture to apply slow and at-speed
patterns.

• Scan-programmable clock waveform generation within a wrapped core to support test
pattern retargeting. When you wrap hierarchical cores for core-level clock generation, it
enables test pattern retargeting at the top-level to merge with other cores to reduce
ATPG run times.

• Synchronization of clocks for at-speed testing of faults between synchronous clock
domains. This can be small or large in scope. For example:

o A single hierarchy or across multiple hierarchical blocks.

o A single physical core or across multiple physical cores.

o Between single-frequency clock domains, or divided clock domains.

o Combinations of the above.

Primary OCC Functions . 708

Primary OCC Functions
Typical on-chip clock controllers have three primary functions: clock selection, clock chopping
control, and clock gating.

• Clock Selection

o Selects which always-capture or always-pulse clock to use.

o Selects the clock based on frequency, test type, and other criteria.

• Clock Gating

o Gates clock based upon the enable signal from clock control.

Figure 18-1 shows the relationship between these three functions.

Tessent On-Chip Clock Controller
Primary OCC Functions

Tessent™ Scan and ATPG User’s Manual, v2022.4 709

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-1. OCC Clock Control Components

Tessent™ Scan and ATPG User’s Manual, v2022.4710

Tessent On-Chip Clock Controller
Tessent OCC Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent OCC Overview
Using Tessent Shell, you can generate and insert Tessent OCCs into your design. Use the
DftSpecification wrappers to configure the OCCs to generate programmable clock pulses under
ATPG control.
You can find the DftSpecification wrapper syntax in the “OCC” section of the Tessent Shell
Reference Manual. Specify your OCC requirements for all Tessent OCC variations for Tessent
Shell for the following:

• FastScan and TestKompress for ATPG

• TK/LBIST Hybrid Controller

Note
Use the Tessent OCC methodology for designs where all the clock domains are internal. If
you also have external clocks, you must divide your transition ATPG into two sessions: one

session for the external clocks and one for the internal clocks.

Design Placement . 710
Operating Modes . 711
Timing Diagrams . 716
OCC Interface . 718
Inserting the Tessent OCC . 721
Recommendations . 724
Miscellaneous Overview Topics . 728

Design Placement
Insert OCC logic such that the functional clock source drives the fast clock input of the OCC,
typically, a PLL. Ideally, place the OCC near the clock source and inside the core to enable
local clock control to support pattern retargeting flows. The OCC uses a top-level slow clock for
shift and slow capture. It uses a test mode signal to determine whether to supply a test or
functional clock to the circuit.
Figure 18-2 shows an example of OCC placement.

Tessent On-Chip Clock Controller
Operating Modes

Tessent™ Scan and ATPG User’s Manual, v2022.4 711

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-2. Clock Control Logic Design Placement

You may need to guide the Clock Tree Synthesis (CTS) to not balance the flops and latches in
the OCC with the clock tree it drives. The extract_sdc command writes out a Tessent SDC
constraints file containing a Tcl-based proc, which defines how to achieve this goal in CTS. For
more information on that file, refer to the “Timing Constraints SDC” section of the Tessent
Shell User’s Manual.

The output of the OCC supplies the clock to the design during functional and test modes. The
fast clock drives the design in functional mode. The fast clock also drives at-speed capture in
test mode, while a top-level slow clock drives shift and slow capture. The reference clock that
drives the PLL is a free-running clock, typically, pulse-always.

The fast clock input propagates when you de-assert the test mode signal. For this reason, it is not
necessary to add a clock mux after the OCC for functional mode. Additionally, having a
common path for the fast clock in functional and test modes simplifies clock tree synthesis
(CTS) and timing closure.

Note
Do not ungroup the clock control blocks during synthesis optimization or layout. Tessent
Shell can create the SDC for you to ease the automation of defining the clock gating logic

and its operation. If you ungroup the hierarchy in the OCC, ATPG may encounter DRC
violations.

Operating Modes
The Tessent OCC has five distinct operating modes: Functional, Shift, Slow Capture, Fast
Capture, and Kill Clock.

Functional Mode
Figure 18-3 shows functional mode (test_mode = 0) that enables the fast clock gater to supply a
fast clock to the design. It disables the slow clock and internal clock gaters to reduce power.

Tessent™ Scan and ATPG User’s Manual, v2022.4712

Tessent On-Chip Clock Controller
Operating Modes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-3. Functional Mode Operation

Shift Mode
Figure 18-4 shows shift mode (scan_en = 1) that uses the slow_clock to load and unload the
scan chains, including the condition bits in ShiftReg.

Figure 18-4. Shift Mode Operation

Shift-Only Mode
Shift-only mode disables the OCC (test_mode = 0) and activates shift (scan_en = 1). It enables
the slow clock clock gater to use the slow clock path for shift, and it enables bypass shift.

Figure 18-5 shows that both inactive (test_mode = 0) and active OCCs use Slow Clock for shift.
By default, OCCs enable the shift clock path any time scan_en is 1, even if the OCC is inactive.
This ensures consistent shift timing in the internal and external modes. In the internal mode, the
shift clock enters a physical block via the Test Clock input, and the functional clocks have

Tessent On-Chip Clock Controller
Operating Modes

Tessent™ Scan and ATPG User’s Manual, v2022.4 713

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

separate paths. In external mode, Test Clock and the functional clocks retain separate paths
because the OCC can inject shift_clock even if it is inactive while placed in shift-only mode

Figure 18-5. OCC Shift Clocking

To change the default and use the functional clock instead of the test clock, set the
shift_only_mode OCC wrapper property to off.

Slow Capture Mode
Figure 18-6 shows slow capture mode (fast_capture_mode = 0) that uses the slow_clock to
capture data into the scan cells and to shift the condition bits in ShiftReg.

Figure 18-6. Slow Capture Mode Operation

Tessent™ Scan and ATPG User’s Manual, v2022.4714

Tessent On-Chip Clock Controller
Operating Modes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fast Capture Mode
Figure 18-7 shows fast capture mode (fast_capture_mode = 1) that uses the fast_clock to
capture data into the scan cells and to shift the condition bits in ShiftReg.

Figure 18-7. Fast Capture Mode Operation

Note
For stuck-at faults, and if there is at least one OCC in fast capture mode, the tool masks all
POs and holds all PIs, and permits no interaction between clocks.

Kill Clock Mode
Figure 18-8 shows the kill clock mode (kill_clock_en = 1) that enables you to block propagation
of fast_clock input to clock_out output. Asserting the kill_clock_en signal is effective in the two
operating modes when the OCC is not active:

• In functional mode (test_mode = 0 and shift_only_mode = 0)

• In capture phase of shift-only mode (test_mode = 0, shift_only_mode = 1, and
scan_en = 0)

The tool adds the kill_clock_en input to the Tessent OCC when you set “kill_clock_mode on”
in the OCC DftSpecification. Optionally, the command “add_dft_signals occ_kill_clock_en”
enables the kill clock mode property.

graphics_source/OCC_kill_clock_en
schematics_global_kill_clock_for_documentation_operating_modes.pptx

Tessent On-Chip Clock Controller
Operating Modes

Tessent™ Scan and ATPG User’s Manual, v2022.4 715

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-8. Kill Clock Mode Operation

Active Upstream Parent Mode
Figure 18-9 shows the active upstream parent mode that enables you to bypass the sync_cell to
drive fast_clock with another OCC. While in this mode, the OCC uses the local slow_clock for
shift.

The tool adds the active_upstream_parent_occ input to the Tessent OCC according to your
specification of the upstream_parent_occ property in the OCC DftSpecification.

Figure 18-9. Active Upstream Parent Mode Operation

graphics_source/OCC_w_active_upstream_parent_support.pptx

See “Child-Mode Operation” on page 739 for more information.

Tessent™ Scan and ATPG User’s Manual, v2022.4716

Tessent On-Chip Clock Controller
Timing Diagrams

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing Diagrams
Tessent OCC timing diagrams for slow speed capture and fast capture.
Figure 18-10 shows an example timing diagram for slow speed capture (fast_capture_mode =
0). This example sets capture_cycle_width to “10”, resulting in a maximum sequential depth of
3. (See Table 18-1 on page 718 for a description and examples.) This mode uses slow_clock for
shift and capture. Based on condition bits loaded into the shift register, the clock_out port
generates the appropriate number of slow_clock pulses.

Figure 18-10. Slow Speed Capture Timing Diagram

Figure 18-11 shows an example timing diagram for fast capture mode (fast_capture_mode = 1).
This example sets capture_cycle_width “10”, resulting in a maximum sequential depth of 3.
(See Table 18-1 on page 718 for a description and examples.) This mode uses the slow_clock
for shift, but the fast capture pulses on clock_out are derived from fast_clock.

Figure 18-11 also shows that the Tessent OCC synchronizes the scan enable signal to the
fast_clock (sync_cell/q) and uses it to trigger the fast clock pulses on ShiftReg/clk. The
ShiftReg/clk signal is the clock source for the shift register containing the condition bits. Based
on the condition bits loaded during shift, the clock_out port generates the appropriate number of
fast_clock pulses.

Tessent On-Chip Clock Controller
Timing Diagrams

Tessent™ Scan and ATPG User’s Manual, v2022.4 717

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-11. Fast Capture Timing Diagram

Tessent™ Scan and ATPG User’s Manual, v2022.4718

Tessent On-Chip Clock Controller
OCC Interface

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

OCC Interface
The Tessent OCC has a standard interface, but it can change when you use certain options that
require the addition of signals during hardware generation. For that reason, we recommend that
you use the IJTAG interface to enable the standardization of the OCC interface.
Table 18-1 describes the functionality of the OCC input and output signals.

Table 18-1. Clock Controller I/O Signals
Name Direction Description
scan_en Input Scan enable that a top-level pin

drives
capture_cycle_width:[1:0] Input1 Configures the maximum number

of clock pulses during capture
cycle as well as the length of the
scan chain:
00 - 1 pulse - 1 scan cell
01 - 2 pulses - 2 scan cells
10 - 3 pulses - 3 scan cells
If the length of the OCC scan
chain is set to 4 using the
capture_window_size property
during OCC IP creation, this
configures the input as follows:
11 - 4 pulses - 4 scan cells
For example, if the maximum
sequential depth is 2, this bus can
have a configuration of “01”
instead of the default “10”. This
can reduce the number of shift
cycles, and, more importantly,
reduces the number of bits to
encode if a decompressor drives
the OCC chain.

scan_in Input Scan chain input for loading shift
register

fast_capture_mode Input1 Selects fast or slow capture clock
(0 = slow, 1 = fast)

test_mode Input1 Selects test or functional mode (0
= functional, 1 = test). Functional
mode enables fast_clock to drive
clock_out and disables the
remaining clock gaters to
minimize switching activity

Tessent On-Chip Clock Controller
OCC Interface

Tessent™ Scan and ATPG User’s Manual, v2022.4 719

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IJTAG Interface. 719

IJTAG Interface
An OCC with an IJTAG interface has an additional multiplexer. The multiplexer enables the
injection of ijtag_tck through the slow clock gater.
The tool inserts an IJTAG interface when the ijtag_host_interface property is not equal to
“none”. The tool includes the clocks in the ICL model based on the value you set for the
include_clocks_in_icl_model property. See the DftSpecification/OCC wrapper in the Tessent
Shell Reference Manual for more information.

When the ICL model includes the clocks, set the tck_clock_only property to “on” to create
patterns that can control the multiplexer and use TCK during shift. See the
PatternsSpecification/Patterns wrapper in the Tessent Shell Reference Manual for more
information.

Figure 18-12 shows the multiplexer in an OCC with an IJTAG interface. The multiplexer
selects slow_clock or ijtag_tck and its output drives the OCC slow_clock and the slow clock
gater. The OCC inject_tck signal drives the multiplexer select pin.

kill_clock_en Input Turns off the OCC in functional
mode (test_mode = 0)

shift_only_mode Input Disables the OCC and activates
shift. It enables the slow clock
gater to use the slow clock path for
shift, and it enables bypass shift

fast_clock Input Clock for fast capture (typically,
the output of a free running or
pulse always PLL)

slow_clock Input Clock for shift and slow capture
scan_out Output Scan chain output for unloading

shift register
clock_out Output Controlled clock output

1. Use on-chip controllers (such as IJTAG) or other means to control static signals that do not change
during the test session and to reduce the need for top-level pins.

Table 18-1. Clock Controller I/O Signals (cont.)
Name Direction Description

Tessent™ Scan and ATPG User’s Manual, v2022.4720

Tessent On-Chip Clock Controller
OCC Interface

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-12. Standard OCC With IJTAG Interface

Figure 18-13 highlights the additional multiplexing on the slow_clock input of the OCC. When
inject_tck is 1, the mux selects ijtag_tck, which drives clock_out through the slow clock gater
and the output mux.

Figure 18-13. OCC With IJTAG Interface: ijtag_tck Injected for Slow Clock

Tessent On-Chip Clock Controller
Inserting the Tessent OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 721

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Inserting the Tessent OCC
Use Tessent Shell to insert the OCC.
You define the Tessent OCC using DftSpecification configuration syntax. The OCC
DftSpecification defines connections for the slow clock, scan enable, and static OCC signals.

To achieve the best configuration for compressed ATPG, you must stitch the OCC sub-chains
into the scan chains. See “OCC Sub-Chain Stitching” in the Tessent TestKompress User’s
Manual for more information.

The following sections describe the basic procedure for inserting Tessent OCCs. For examples
with more details on inserting OCCs in a flow and using them for pattern generation, refer to
“Tessent Shell Flow for Flat Designs” and “Tessent Shell Flow for Hierarchical Designs” in the
Tessent Shell User’s Manual.

Inserting the OCC . 721
occ.dft_spec. 722
OCC Insertion When Using an Existing Clock as the test_clk DFT Signal 723

Inserting the OCC
This procedure uses Tessent Shell to insert an instance of the OCC logic for each internal clock.

Procedure
1. Start Tessent Shell from the shell prompt.

% tessent -shell

2. Set the Tessent Shell context to ‘dft’ using the set_context command.

SETUP> set_context dft -no_rtl -design_identifier occ

3. Read in the design netlist using the read_verilog command.

SETUP> read_verilog cpu_core.vg.gz

4. Read in the cell library using the read_cell_library command to create some instances
such as muxes. For example:

SETUP> read_cell_library adk.tcelllib

5. Set the current design and design level using the set_current_design and
set_design_level commands. For example:

SETUP> set_current_design cpu
SETUP> set_design_level sub_block

Tessent™ Scan and ATPG User’s Manual, v2022.4722

Tessent On-Chip Clock Controller
Inserting the Tessent OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Read your occ.dft_spec configuration file using the read_config_data command to
specify OCC insertion parameters. For example:

SETUP> read_config_data occ.dft_spec

7. Optionally define the port list and procedure to insert on-chip control for clocks and to
connect condition bits of the OCC into new scan chains after DftSpecification
processing.

8. Validate and process the content definitions in the DftSpecification wrapper using the
process_dft_specification command.

SETUP> process_dft_specification

9. Synthesize the resulting RTL using the run_synthesis command.

SETUP> run_synthesis

This step only applies when inserting the OCC RTL into a gate-level netlist. When
inserting into an RTL design, you can synthesize the OCC with the rest of the design.
The run_synthesis command also writes the updated netlist to the TSDB directory.

10. If needed, optionally write out the updated netlist using the write_design command. For
example:

SETUP> set_current_designSETUP> write_design -output_file
cpu_core_post_occ_insertion.vg.gz -replace

11. Exit the tool.

SETUP> exit

occ.dft_spec
The following example shows a basic OCC DftSpecification:

DftSpecification(cpu, occ_core) {
reuse_modules_when_possible: on;
OCC {

Controller(CLK1_OCC) {
// DEFINE ROOT OF CLOCK DOMAIN WHERE THE TOOL INSERTS THIS OCC
clock_intercept_node: /BUF_OCC_1/Y;

}
Controller(CLK2_OCC) {

// DEFINE ROOT OF CLOCK DOMAIN WHERE THE TOOL INSERTS THIS OCC
clock_intercept_node: /BUF_OCC_2/Y;

}
Controller(CLK3_OCC) {

// DEFINE ROOT OF CLOCK DOMAIN WHERE THE TOOL INSERTS THIS OCC
clock_intercept_node: /BUF_OCC_3/Y;

}
}

}

Tessent On-Chip Clock Controller
Inserting the Tessent OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 723

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

OCC Insertion When Using an Existing Clock as the
test_clk DFT Signal

To prevent D1 DRC errors when using an existing clock as the test_clock DFT signal, you must
insert an OCC in the functional clock path that does not interfere with the clock gating cells.
Figure 18-14 shows a clock, created using the command “add_clocks clk -pulse_always”,
driving sequential elements.

You want to use the clk pin as the DFT test_clock, so you use the command, “add_dft_signals
test_clock -source_nodes clk”. You also create the DFT signals edt_clock and
shift_capture_clock from the test_clock DFT signal using the command “add_dft_signals
{edt_clock shift_capture_clock} -create_from_other_signals”.

Figure 18-14. Original Clocking

Figure 18-15 shows the design with the clock gating cells that the tool adds for edt_clock and
shift_capture_clock. It also shows the OCC inserted in a location where it intercepts the test
clock signal “test_clock,” which is an incorrect location for insertion.

Tessent™ Scan and ATPG User’s Manual, v2022.4724

Tessent On-Chip Clock Controller
Recommendations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-15. Incorrect OCC Placement

To correct this issue, you must move the OCC to a location on the functional clock path that
does not interfere with the direct, free-running clock to the clock gating cells. In some cases,
you may need to add an anchor point for the OCC, such as a buffer. Figure 18-16 shows the
OCC in a suitable location at the output of an added buffer.

Figure 18-16. Correct OCC Placement

Recommendations
Use the standard OCC in hierarchical cores to simplify timing closure and ATPG setup.
We recommend using a standard OCC for core-level implementation instead of the parent-mode
and child-mode OCC combination. It has a fast and slow clock, and a scan programmable shift
register, which enables its use without the additional requirements that come with using a child
OCC. See “The Standard OCC” on page 736 for more information.

Although we do not recommend its use in hierarchical cores, the parent and child OCC
implementation is useful in designs that use a clock mesh, or when a mux is not permitted inside
the hierarchical core.

Tessent On-Chip Clock Controller
Recommendations

Tessent™ Scan and ATPG User’s Manual, v2022.4 725

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Shift Timing for Core-Level Child OCC
The core-level child OCC has a single clock on the core boundary. The OCC uses the clock for
shift, and slow and fast capture. This feature creates additional requirements to meet shift timing
in the core.

Figure 18-17 shows a core with two clocks, each with a child OCC that drives scan cells. This
example uses a test clock during shift to control test logic, EDT logic, and other logic in the
core.

Figure 18-17. Child OCC in Core

When you use a child OCC in the core, address the following items during shift mode:

• There are multiple clocks on the boundary of the core that drive the scan cells.

• Timing closure at the core level must balance multiple clock paths, during shift mode, in
addition to functional mode.

• The top-level clock path timing from the parent OCC to the core impacts shift and
capture.

• Timing closure must balance functional clock paths for test clock.

Shift Timing for Core-Level Standard OCC
The features of the standard OCC make it simpler to meet core-level shift timing requirements.
Figure 18-18 shows a core with a standard OCC implementation.

Tessent™ Scan and ATPG User’s Manual, v2022.4726

Tessent On-Chip Clock Controller
Recommendations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-18. Standard OCC in Core

The following are some of the benefits when you use a standard OCC at the core level:

• During shift, the test clock sources all scan cell clocks.

• You can close timing analysis in shift mode without skew between different clock
branches.

• The top-level functional clock paths do not impact shift.

• There is no need to balance functional clock paths to test clock for shift mode.

Fast Capture ATPG Timeplate Setup
Using a child OCC for hierarchical cores increases complexity because it requires two
timeplates to accurately simulate the core’s fast capture patterns. This is because the child OCC
uses the single clock for shift, and slow and fast capture.

Supply the timeplates to the tool with the following command:

set_procfile_name <file_with_two_timeplates>

By default, the tool considers the first timeplate in the file as the default timeplate to use for
shift. If the first timeplate in the file is not for shift, use this command:

set_procedure_retargeting_options -timeplate <name_of_shift_timeplate>

Tessent On-Chip Clock Controller
Recommendations

Tessent™ Scan and ATPG User’s Manual, v2022.4 727

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Define the timeplate for capture using this command:

set_external_capture_options -pll_cycles <number_of_pll_capture_cycles> \
 <name_of_capture_timeplate>

The timeplate for shift defines a single pulse on clock and for capture, it defines multiple clock
pulses to match the functional frequency of the clock:

set time scale 1 ps;
timeplate shift_tp =
 force_pi 50;
 measure_po 100;
 pulse func_clk1 1600 3200; //156 MHz
 pulse func_clk2 1600 3200; //156 MHz
 period 6400;
end;

timeplate capture_tp =
 force_pi 50;
 measure_po 100;
 pulse func_clk1 800 1600, 4000 1600; //312 MHz
 pulse func_clk2 400 800, 2000 800, 3600 800, 5200 800; //625 MHz
 period 6400;
end;

Tessent™ Scan and ATPG User’s Manual, v2022.4728

Tessent On-Chip Clock Controller
Miscellaneous Overview Topics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Miscellaneous Overview Topics
A collection of additional OCC topics, such as clocking, scan enable synchronization, and
bypassing the shift path.
OCC With Capture Enable. 728
Slow Clock Driving Sequential Elements . 729
Scan Enable Synchronization . 729
Slow Clock Pulses in Capture . 729
Fast Clock With Slower Frequency Than Slow Clock . 730
Fast Capture . 734
Bypass Shift Path . 734

OCC With Capture Enable
There is an OCC with a capture_enable input to use with a free-running slow clock.
When you specify an OCC with capture enable (capture_trigger : capture_en), the tool adds a
clock gater on the free-running slow clock input to generate the appropriate clock pulses. The
enable signal for this clock gater is an OR gate output whose inputs are scan_en and capture_en.
This enables the generation of slow_clock pulses during shift and capture cycles.

Figure 18-19 shows the OCC schematic with the clock gater (cgc) at the lower left.

Figure 18-19. OCC With capture_en

You can use this version of the OCC with a slow clock from the tester (that is not free-running).
For this case, the new clock gater lets the controlled slow clock pass through during shift and
capture.

Tessent On-Chip Clock Controller
Miscellaneous Overview Topics

Tessent™ Scan and ATPG User’s Manual, v2022.4 729

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Slow Clock Driving Sequential Elements
The top-level slow clock you use for shift and slow capture must not control any sequential
elements directly. The slow clock acts as a trigger for capture during the fast-capture mode.
During fast-capture, the tool does not simulate the necessary slow clock pulses, which can result
in simulation mismatches.

Scan Enable Synchronization
The OCC can synchronize the top-level scan enable signal with the fast clock from a PLL
output. It has a synchronization cell that uses two flip-flops clocked by the fast clock. Scan
enable is the trigger signal to gate the clock to the shift register. The output of the
synchronization cell produces an inverted scan enable signal, which is synchronized with the
fast clock for use during fast capture testing.
Additionally, the OCC uses a flip-flop on the input side of the synchronization cell that uses the
trailing edge of the slow clock. Because scan enable normally fans out to the entire circuit and
may arrive after the fast clock, the flip-flop on the slow clock ensures that scan enable does not
synchronize to the fast clock until the slow clock pulses, which reduces the risk of a race
condition.

To ensure proper DRC analysis and simulation, the output of the clock gater cell driven by the
synchronization logic is defined as a pulse-in-capture internal clock. When using the TCD flow
for pattern generation, the tool automatically defines the internal clock as a pulse-in-capture
clock. This ensures correct logic simulation during load_unload, and avoids unnecessary DRC
violations.

The synchronization cell (sync_cell) in Figure 18-24 on page 736 has an asynchronous reset
port that is driven by “(scan_en | ~test_mode)” if it is active high. If the reset port of the
synchronous cell is active low, it is driven by “~(scan_en | ~test_mode)”.

The RTL description describes the synchronization cell as a separate module, so you can
replace it with a technology-specific synchronization cell from the appropriate library.

Slow Clock Pulses in Capture
Given that the slow clock captures scan enable before the fast clock synchronizes it, the slow
clock must not directly drive any sequential elements that may impact the scan operation.

Tessent™ Scan and ATPG User’s Manual, v2022.4730

Tessent On-Chip Clock Controller
Miscellaneous Overview Topics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool does not assume that the slow and fast clocks are synchronized. Thus, you can define in
the fast capture external_capture procedure that there is a pulse on the slow clock at the
beginning of capture:

procedure external_capture ext_fast_cap_proc =
timeplate tmp1 ;
cycle =

force_pi ;
pulse slow_clock;

end;
end;

The tool does not simulate the clock pulses that you define in external_capture procedures when
it calculates the expected values in the patterns. The tool adds these clock pulses to the created
patterns after ATPG to ensure correct operation in fast capture mode. Because the output of the
clock gating logic is defined as a pulse-in-capture internal clock, the tool does not need to
simulate the clock pulse on the register that first captures scan enable. However, if a slow clock
controls any other sequential elements, it can result in simulation mismatches.

Fast Clock With Slower Frequency Than Slow Clock
If the frequency of the fast clock is slower than the frequency of the slow clock, you need to use
two different timeplates for shift and load_unload. Most situations permit you to use the same
timeplate for both.
In this case, the procedure requires additional cycles using the (slower) fast clock’s period. You
must specify additional post-shift cycles in the dofile to ensure the correct operation of the
parallel testbench.

Refer to the following files for an example of this setup. The variable settings for the sample
dofile are example values only; these settings are design-specific, and are included here for
reference. Figure 18-20 shows how to use these variables.

Tessent On-Chip Clock Controller
Miscellaneous Overview Topics

Tessent™ Scan and ATPG User’s Manual, v2022.4 731

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-20. Sample Dofile Variables

Sample Dofile
<Read in and set up the design>
…
########## variable settings ############
set test_clock_period 40
set scan_en_mcp 3
set slowest_fast_clock_period 45
set measure_po_percent 45
set test_clock_rise_percent 50
set_test_clock_pulse_width_percent 25

import_scan_mode int_mode -fast_capture_mode on
set_current_mode int_mode_fast
source ../data/import_procedures.tcl
…
set_fault_type transition
set_external_capture_options -pll_cycles $pll_cycles ltest_capture_cycle
set_atpg_limit -pattern_count 128
create_patterns
write_tsdb_data -replace
write_patterns corea_[get_current_mode]_serial.v -verilog -serial \

-replace -end 2 -parameter_list [list SIM_TOP_NAME TB]
write_patterns -corea_[get_current_mode]_parallel.v -verilog -replace \

-parameter_list [list SIM_TOP_NAME TB SIM_POST_SHIFT $SIM_POST_SHIFT]
…

Tessent™ Scan and ATPG User’s Manual, v2022.4732

Tessent On-Chip Clock Controller
Miscellaneous Overview Topics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The import_procedures.tcl file computes the timing, pll_cycles, and SIM_POST_SHIFT:

import_procedures.tcl
set test_clock_period_slow [expr $scan_en_mcp * $test_clock_period]
set test_clock_period_shift_cycle $test_clock_period
set measure_po_shift_cycle [expr \

{round(0.01*$measure_po_percent*$test_clock_period)}]
set test_clock_rise_shift_cycle [expr \

{round(0.01*$test_clock_rise_percent*$test_clock_period)}]
set test_clock_width_shift_cycle [expr \

{round(0.01*$test_clock_pulse_width_percent*$test_clock_period)}]
set test_clock_period_capture_cycle $test_clock_period_slow
set measure_po_capture_cycle [expr \

{$test_clock_period_capture_cycle - ($test_clock_period_shift_cycle- \
$measure_po_shift_cycle)}]

set test_clock_rise_capture_cycle [expr \
{$test_clock_period_capture_cycle - ($test_clock_period_shift_cycle- \
$test_clock_rise_shift_cycle)}]

set test_clock_width_capture_cycle $test_clock_width_shift_cycle
if {$scan_en_mcp <= 2} {

set test_clock_period_pre_shift_cycle $test_clock_period_shift_cycle
set measure_po_pre_shift_cycle $measure_po_shift_cycle
set test_clock_rise_pre_shift_cycle $test_clock_rise_shift_cycle

} else {
set test_clock_period_pre_shift_cycle [expr \

{$test_clock_period_capture_cycle - \
$test_clock_period_shift_cycle}]

set measure_po_pre_shift_cycle [expr \
{$test_clock_period_pre_shift_cycle - \
($test_clock_period_shift_cycle-$measure_po_shift_cycle)}]

set test_clock_rise_pre_shift_cycle [expr \
{$test_clock_period_pre_shift_cycle - \
($test_clock_period_shift_cycle-$test_clock_rise_shift_cycle)}]

}
set test_clock_width_pre_shift_cycle $test_clock_width_shift_cycle
set_procfile_name ../data/procedures.def
set capture_width 4
set pll_cycles 1
if {![info exists slowest_fast_clock_period]} {

display_message -warning "The variable 'slowest_fast_clock_period' is \
not defined. Assuming the fast_clock to slow_clock period \nratio \
is such that 2 fast_clock cycles fits inside one slow_clock cycle. \
If you are not sure, \nspecify the period of the slowest \
fast_clock as it exists at the input of each OCCs."

incr pll_cycles [expr {int(ceil((2+$capture_width) * 0.5))}]
set SIM_POST_SHIFT 1

} else {
incr pll_cycles [expr {int(ceil((2.0+$capture_width) * \

$slowest_fast_clock_period/$test_clock_period_slow))}]
set SIM_POST_SHIFT [expr {int(ceil(2.0*$slowest_fast_clock_period/ \

$test_clock_period) - 1)}]
}
puts "pll_cycles = $pll_cycles"
puts "SIM_POST_SHIFT = $SIM_POST_SHIFT"

Tessent On-Chip Clock Controller
Miscellaneous Overview Topics

Tessent™ Scan and ATPG User’s Manual, v2022.4 733

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This import file uses a procedures DEF file with three different timeplates:

procedures.def
timeplate ltest_shift_cycle =

force_pi 0 ;
measure_po $measure_po_shift_cycle ;
pulse_clock $test_clock_rise_shift_cycle $test_clock_width_shift_cycle;

 period $test_clock_period_shift_cycle ;
end;
timeplate ltest_capture_cycle =
 force_pi 0 ;
 measure_po $measure_po_capture_cycle ;
 pulse_clock $test_clock_rise_capture_cycle \

$test_clock_width_capture_cycle ;
 period $test_clock_period_capture_cycle ;
end;
timeplate ltest_pre_shift_cycle =
 force_pi 0 ;
 measure_po $measure_po_pre_shift_cycle ;
 pulse_clock $test_clock_rise_pre_shift_cycle \

$test_clock_width_pre_shift_cycle ;
 period $test_clock_period_pre_shift_cycle ;
end;
set default_timeplate ltest_capture_cycle;
procedure shift =
 scan_group grp1 ;
 timeplate ltest_shift_cycle ;
 cycle =
 force_sci ;
 measure_sco;
 end;
end;
procedure load_unload =
 scan_group grp1 ;
 timeplate ltest_shift_cycle;
 cycle =
 timeplate ltest_pre_shift_cycle;
 end;
 apply shift 2;
end;

The following figures show waveform graphics for this setup. These figures include the
following signals, from top to bottom:

• shift_capture_clock

• edt_clock

• edt_update

• scan_enable

Tessent™ Scan and ATPG User’s Manual, v2022.4734

Tessent On-Chip Clock Controller
Miscellaneous Overview Topics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-21. Fast Capture, Serial Load

Figure 18-22. Slow Capture, Serial Load

Fast Capture
The following commands are automatically set by the create_patterns command for fast capture
when you do not use named capture procedures (NCP).

set_output_masks on
add_input_constraints -all -hold
set_clock_restriction domain_clock -any_interaction -compatible_clocks_between_loads on

You do not need these commands when using NCPs because the capture clock sequence to
force PIs and measure POs is explicitly defined in your NCPs.

However, you must specify:

set_external_capture_options ...

Bypass Shift Path
Set the test_mode signal to put an OCC into functional mode when you do not use them for a
particular test mode.
Figure 18-24 on page 736 shows that the standard OCC schematic has a single
BYPASS_SHIFT_FF_reg flip-flop. This flip-flop is also in the parent and child OCCs. The
OCC sub-chain is part of the design’s scan chains. The scan chains must continue to work when
the OCC is not in use for a particular test mode while other parts of the design are under test.
While in the functional mode, the path from scan_in to scan_out remains accessible by shifting
through the BYPASS_SHIFT_FF_reg flip-flop.

Tessent On-Chip Clock Controller
Tessent OCC Types and Usage

Tessent™ Scan and ATPG User’s Manual, v2022.4 735

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent OCC Types and Usage
Tessent OCC types and their usage descriptions.
The Standard OCC . 736
The Synchronous OCC . 741
The Mini-OCC . 762

Tessent™ Scan and ATPG User’s Manual, v2022.4736

Tessent On-Chip Clock Controller
The Standard OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Standard OCC
The standard OCC provides a fast clock for fast capture and a slow clock for shift and slow
capture. A scan programmable shift register enables ATPG to suppress or pulse clock cycles as
required. One usage for the standard OCC is Intest mode for pattern retargeting.
The standard OCC performs all three OCC functions: clock selection, clock chopping control,
and clock gating. Figure 18-23 shows a standard OCC implementation.

The standard OCC is the recommended OCC for use in hierarchical cores. For more
information, see “Recommendations” on page 724.

Figure 18-23. Standard OCC Example

Figure 18-24 shows the logic schematic for the OCC design. The schematic represents an OCC
without an IJTAG interface. To see how an OCC with an IJTAG interface differs, see “IJTAG
Interface” on page 719.

Figure 18-24. On-Chip Clock Controller Logic Schematic

Parent-Mode Operation . 737

Tessent On-Chip Clock Controller
The Standard OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 737

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Child-Mode Operation . 739

Parent-Mode Operation
Parent-mode operation is one of the operating modes of the standard OCC. This operating mode
bypasses the OCC clock gating logic and performs clock selection only. It requires a
downstream child-mode OCC to perform the clock gating and chopping.
Figure 18-25 shows an OCC operating in parent-mode. A typical use for this mode is pattern
retargeting in Extest mode, when interactions between core-level boundary logic (wrapper
chains) and top-level logic are under test.

In parent-mode, the OCC performs clock selection only. The parent-mode OCC requires a
downstream child OCC.

Figure 18-25. OCC Operating in Parent-Mode (Extest Mode)

Figure 18-26 shows an OCC operating in parent-mode. The example use of this figure is pattern
retargeting in Intest mode.

Figure 18-26. OCC Operating in Parent-Mode (Intest Mode)

Tessent™ Scan and ATPG User’s Manual, v2022.4738

Tessent On-Chip Clock Controller
The Standard OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-27 shows the parent-mode OCC logic. The shift clock does not need to route down to
the lowest-level child-mode OCC because the parent-mode OCC injects the shift clock at the
base of the clock in shift mode. When scan_en is low, it lets a programmable constant set of
clock pulses go through.

The parent-mode OCC usually feeds the clock input of a child-mode OCC, which, in turn,
enables the scan-based test pattern generation tool to control which clock pulses go through.

Figure 18-27. Parent-Mode OCC Logic Schematic

Table 18-2 describes the functionality of the clock controller I/O signals.

The schematics in Figure 18-25 through Figure 18-27 represent OCCs that the tool can generate
without an IJTAG interface. To see how an OCC with an IJTAG interface differs, see “IJTAG
Interface” on page 719.

The standard OCC is the recommended OCC for use in hierarchical cores. For more
information, see “Recommendations” on page 724.

Table 18-2. Parent-Mode OCC I/O Signals
Name Direction Description
parent_mode Input Defines whether the OCC

operates in parent mode. The
default (0) sets the OCC
functions in standard mode,
selecting and gating clocks
for top-level testing. Parent
mode (1) sets the OCC for
clock selection only.

For a description of remaining I/O signals, see Table 18-1 on page 718 in the OCC
Interface section.

Tessent On-Chip Clock Controller
The Standard OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 739

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Child-Mode Operation
In child-mode operation the OCC hardware performs the clock chopping control function of the
OCC, and optional clock gating of the supplied clock.
The OCC hardware supports this in one of two ways:

• Standard OCC that allows an upstream parent-mode OCC by using the
“upstream_parent_occ : allow” property and value.

• Child-mode only OCC hardware, which requires an upstream parent OCC.

This section explains the child-mode only hardware, but the same principles apply when the
OCC implementation allows an upstream parent-mode OCC. See OCC DftSpecification in the
Tessent Shell Reference Manual for more information.

By default, the child-mode OCC creates the clock enable signal based on values loaded into the
scan-programmable shift register. Figure 18-28 shows how this enable signal controls the
(optional) clock gater inside the OCC.

Figure 18-28. Child-Mode OCC Gates and Creates Clocks With Parent-Mode
OCC

Figure 18-29 shows an example schematic of the child on-chip controller with a clock gater.

Figure 18-29. Child-Mode OCC Logic Schematic

In some cases, it is not practical to use a child-mode OCC with an internal clock gater.
Optionally, you can create the child-mode OCC without the internal clock gater. The created
signal enables layout tools to replicate and control the design’s clock gaters for implementations

Tessent™ Scan and ATPG User’s Manual, v2022.4740

Tessent On-Chip Clock Controller
The Standard OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

such as a clock mesh. Figure 18-30 shows the transparent handling of clock gating cells that you
provide.

Figure 18-30. Child-Mode OCC Enable for Clock Gaters With Parent-Mode OCC

Figure 18-31 shows the child-mode OCC logic without the clock gater.

Figure 18-31. Child-Mode OCC Logic Schematic, No Clock-Gater

To properly operate the clock gaters during capture, a sensitized path must exist between the
OCC’s clock enable port and the clock gaters. The tool verifies controllability of all clock gaters
with a structural connection to the OCC. If any of the structurally-connected clock gaters do not
have a sensitized path from the OCC, the clock gater must be disabled during capture. In such
cases, the tool verifies that the clock gater’s test and functional enables are off, or that its clock
source is off.

Figure 18-28 through Figure 18-31 represent an OCC that is generated without an IJTAG
interface. To see how an OCC with an IJTAG interface differs, see “IJTAG Interface” on
page 719.

The standard OCC is the recommended OCC for use in hierarchical cores. For more
information, see “Recommendations” on page 724.

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 741

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Synchronous OCC
When designs generate synchronous divided or single-frequency clocks on-chip, you must
control them to test slow-to-fast and fast-to-slow clock domain paths. Slow-to-fast tests launch
from the slow clock domain and capture on the fast clock domain. Fast-to-slow tests launch
from the fast clock domain and capture on the slow clock domain.
Each distinct OCC contains synchronization logic to trigger fast clock pulses for at-speed tests
in each clock domain. The Synchronous OCC (Sync-OCC) includes additional functionality to
improve the testability of circuits between synchronous divided clock domains. These functions
control the trigger of the clocks to enable at-speed testing from slow-to-fast and fast-to-slow
clock domain crossings.

Introduction . 741
Launch and Capture Aligned Clocking . 741
Synchronous OCC Functionality . 744
Usage Scenarios . 750
Synchronous OCC Generation and Insertion . 753
DftSpecification Examples . 757
Synchronous OCC Simulations . 759
Limitations . 761

Introduction
Tessent generates the on-chip clock controller (OCC). It performs three essential functions:
clock selection, clock chopping control, and clock gating. However, each OCC only controls
one clock at a time.
Some designs generate synchronous divided clocks on-chip and have test requirements that
include slow-to-fast (launch from slow clock and capture on fast clock) and fast-to-slow (launch
from fast clock and capture on slow clock) paths. These designs require the controlling of
clocks in a manner that enables testing.

This is not easy to achieve by creating a distinct OCC for each clock. The synchronization logic
in the OCCs results in different fast-clock pulses triggering at different times independent of
each other. Thus, to improve the testability of the circuit between different synchronous divided
clocks, the OCC needs additional functionality to control the triggering of these clocks to enable
slow-to-fast and fast-to-slow testing. Synchronous-OCC (Sync-OCC) provides this capability.

Launch and Capture Aligned Clocking
This chapter describes why the desired slow-to-fast and fast-to-slow testing is very difficult to
achieve when using distinct regular OCCs.

Tessent™ Scan and ATPG User’s Manual, v2022.4742

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-32 shows the timing of the fast clocks triggering in regular OCCs in capture mode.
The figure shows three fast clocks: fast_clock1, fast_clock2, and fast_clock3, and their
respective OCC outputs in capture mode: clock_out1, clock_out2, and clock_out3. The arrows
show the timing of fast_clock1 triggering after going into capture mode when scan-enable
changes to 0. This topic describes fast_clock1 timing, but the same concept applies to
fast_clock2 and fast_clock3. For simplicity, the timing diagram shows the correct timing and
sequence of events (such as the start and end of the capture phase) only for fast_clock1. This
topic also describes the timing of clock_out2 and clock_out3 pulses.

All three fast clocks are synchronous. Thus, the functional paths between these clocks require
at-speed testing, which means launching the data from a slower clock and capturing it on a
faster clock or vice-versa. The capture mode starts when the scan enable signal (scan_en)
transitions from 1 to 0. The synchronizer cell in the OCC synchronizes the scan enable
transition between slow and fast clock by using one negative edge of the slow clock pulse (1),
and two pulses of the fast clock (2). The third pulse indicated by (3) goes out of the OCC to the
scan flops. You can make the same observation for the other two clocks. However, the
scan_enable and the slow_clock timing are not necessarily balanced between the three OCCs,
so they reach different OCCs at different times. This results in different OCCs entering capture
mode at different times. This, in turn, results in fast clocks firing in capture mode at different
times with no relationship to each other. This implies that clock_out* clocks are not
synchronous to each other. Any one of those clocks can fire at any time depending on when its
OCC receives the slow_clock and scan_enable. The position of clock_out2 and clock_out3
pulses in capture mode shows this unpredictable behavior.

Figure 18-32. Regular OCC Capture Mode With Synchronous Divided Clocks

This makes it difficult to perform the at-speed testing of the cross clock domain functional paths
with the shortest time between clock domains. Two cross clock domain paths with the shortest

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 743

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

slow-to-fast and fast-to-slow timing between fast_clock2 and fast_clock3 are (4) and (5),
respectively. More such paths exist, but these are sufficient to describe the concept.

For example, the shortest path between fast_clock2 TE and fast_clock3 LE. Configuring
distinct OCCs to achieve the clock interaction of (4) and (5) is almost impossible to guarantee.

A single Synchronous OCC can align the firing of the synchronous divided clocks in capture
mode, so you do not have to use multiple regular OCCs. This enables the testing of shortest
timing paths, such as (4) and (5), between synchronous divided clocks. Figure 18-33 shows
examples of alignment with two different configurations of Synchronous OCC. The next
section describes the details of the clock edge alignment.

Figure 18-33. Clock Edge Alignment With Sync-OCC for Different
Configurations

Tessent™ Scan and ATPG User’s Manual, v2022.4744

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synchronous OCC Functionality
Synchronous OCC is capable of testing with three types of clock groups.

• Synchronous divided clocks

• Multiple clocks of same frequency

• Mix of synchronous divided clocks and same frequency clocks

The required clock pulse alignment for synchronous clock groups testing, as described earlier, is
enabled by providing an additional 2-bit shift register located in series with 4-bit control shift
register of OCC. The 2-bit shift register is called pulse_to_align register and its content
represents the index of the rising edge of the slowest synchronous clock pulse on which all
synchronous clock pulses with the same index are aligned. Figure 18-34shows the output of
synchronous OCC in capture mode with clocks aligned on edges with index 0 and 1.

Figure 18-34. Impact of pulse_to_align values on generated waveforms

It is important to note that because there are only 2 capture pulses in the example in
Figure 18-34, there are only two possible rising edges of the slowest clock on which all clocks
can be aligned. Thus, the pulse_to_align can only have a value of 0 or 1 indicating which edge
to align on. The highest index of the edge on which clocks can align is 3 because pulse_to_align
is a 2-bit register. This would be needed when there are four pulses in capture mode. The
maximum number of capture clock pulses in a given pattern set is limited by the value of 2-bit
signal (which can be a 2-bit bus on the OCC interface or internal 2-bit register) defined by the
OCC DftSpecification property called “capture_cycle_width”. If the “capture_cycle_width” is
set to 1 or 2, the highest index of the clock pulse on which the synchronous clocks can align is 1.

The OCC’s main control shift register controls the slowest clock provided to the OCC. To
ensure the synchronous chopping of all the clocks, according to the same pattern as the main
clock, shadow registers, initialized by the value loaded into the main shift register, are created
for faster clocks and are clocked by them.

Sync-OCC Schematics . 745

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 745

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple Clocks of the Same Frequency . 747
Mix of Synchronous Divided Clocks and Same Frequency Clocks. 747
Bypass Shift Register . 748

Sync-OCC Schematics
Schematics of hardware details for a Sync-OCC and control logic for divided clocks.

• Figure 18-35 shows a Sync-OCC schematic for three synchronous divided clocks.

Figure 18-35. Sync-OCC Schematic

• Figure 18-36 shows control logic that generates the clock enable signals.

Tessent™ Scan and ATPG User’s Manual, v2022.4746

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-36. Sync-OCC Control Logic

• Figure 18-37 shows control logic for the slowest frequency fast clock.

Figure 18-37. Sync-OCC Slowest Fast Clock

• Figure 18-38 shows control logic for the faster clock frequencies.

Figure 18-38. Sync-OCC Faster Clocks

This sync_gen module features a 2-bit counter design, which starts incrementing in the
capture phase. Its value saturates on reaching the value that the pulse_to_align bus
indicates. On reaching this state, the shift register of the faster clock enables the faster
clock pulses.

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 747

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple Clocks of the Same Frequency
When controlling more than one clock of the same frequency, the tool creates distinct clock
gaters for each of the provided clocks. However, the internal control signals are common to all
clocks with the same frequency.
When you use the Sync-OCC to control clocks of the same frequency, the tool does not create
any new 4-bit shift registers. For example, Figure 18-39 shows the one, 4-bit shift register the
tool creates for clocks of the same frequency. Compare it to the multiple 4-bit shift registers of
Figure 18-35 on page 745. With only one 4-bit shift register, this Sync-OCC generates the same
clock enable signal for all fast clocks of same frequency. Therefore, it is not possible to delay
one clock of the same frequency with respect to another one.

However, in the presence of divided clocks of different frequencies, a request to align the edges
of one clock with the slowest clock at a particular index causes all the synchronous clocks of the
same frequency to align to that index.

Figure 18-39. Sync-OCC With Multiple Clocks of Same Frequency

Mix of Synchronous Divided Clocks and Same Frequency Clocks
Sync-OCC supports controlling of divided clock and same frequency clocks at the same time.
Figure 18-40 shows a logic diagram that mixes five such clocks. The fast_clock_f1_1 and
fast_clock_f1_2 clocks are of the same frequency; fast_clock_f2_1 and fast_clock_f2_2 are also
the same frequency but are divide-by-2 versions of the fast_clock_f1_1 frequency.
fast_clock_f4_1 is a divide-by-4 version of the fast_clock_f1_1 frequency.

Tessent™ Scan and ATPG User’s Manual, v2022.4748

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-40. Sync-OCC Handles Multiple Clocks and Undivided Clocks

Bypass Shift Register
Sync-OCC includes a bypass shift register that enables the shift path even when the OCC is not
active. The shift path goes through the scan_in and scan_out ports of the OCC.
This enables the scan chains that include OCCs to remain functioning during different test
conditions.

For example:

• When the pattern disables the specific OCC instance because it is not under test. For
example, when other parts of a design are under test, the scan chains containing the OCC
must shift for correct scan operation.

• When LBIST mode uses the specific OCC instance (loaded in parallel through static
clock control).

Figure 18-41 shows an OCC with a bypass shift register. The bypass register also enables
bypassing the pulse_to_align register.

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 749

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-41. Bypass Shift Register

Tessent™ Scan and ATPG User’s Manual, v2022.4750

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage Scenarios
The tool supports the following usage scenarios: flat ATPG (with one level of hierarchy);
hierarchical ATPG with the clock source inside the core driving the top logic; and hierarchical
ATPG with the clock source at the top level.

The arrows in the figures below represents interaction between the clock domains and logic.

1. Figure 18-42 shows flat ATPG (with one level of hierarchy).

Figure 18-42. Flat ATPG

o Insert Sync-OCC at the same level as the dividers, at the root of clock source.

o Perform ATPG.

2. Figure 18-43 shows hierarchical ATPG with the clock source inside the core driving the
top logic.

Figure 18-43. Hierarchical ATPG With Clock Source Inside Core

o Insert Sync-OCC inside wrapped core A.

o Perform ATPG for wrapped core A in intest mode.

o Perform ATPG for core B with wrapped core A in extest mode and Sync-OCC
inside core A enabled.

3. Figure 18-44 shows hierarchical ATPG with the clock source at top level.

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 751

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-44. Hierarchical ATPG With Clock Source At Top Level

o Insert Sync-OCC inside wrapped core A.

o Insert Sync-OCC at core B at the root of the clock source and before any branches/
fanouts to core A.

o Perform ATPG for wrapped core A in intest mode.

o Perform ATPG for core B with wrapped core A in extest mode and core A Sync-
OCC disabled.

o Note that during core A intest mode, core B Sync-OCC is disabled and when testing
core B (with core A in extest mode), core A Sync-OCC is disabled. Two OCCs
cannot be active in a series at the same time.

Sync-OCC Generation and Insertion Using DftSpecification . 751
Enabling the OCC for ATPG . 752
Timing Constraints . 752

Sync-OCC Generation and Insertion Using DftSpecification
Specify clock intercept nodes for the Sync-OCC using the DftSpecification.
The syntax of the DftSpecification for Sync-OCC is as follows:

DftSpecification(module_name,id) {
OCC {

Controller(id) {
clock_intercept_nodes: <node1>, <node2>, ...;
FrequencyRatio(2|4|8) {
clock_intercept_nodes: <node1>, <node2>, ...;

}
}

}
}

• Specify the clock intercept nodes for OCC using the clock_intercept_node property of
the DftSpecification.

Tessent™ Scan and ATPG User’s Manual, v2022.4752

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Specify the clock intercept nodes for multiple fast clocks of the same frequency using
the clock_intercept_nodes property.

• Specify the clock intercept nodes for divided clocks in the FrequencyRatio wrapper.

• Specify one wrapper for each ratio of divided clocks.

• Within a FrequencyRatio wrapper of a divided clock, specify the clock intercept nodes
for multiple divided clocks of same frequency using the clock_intercept_nodes property.

Enabling the OCC for ATPG
The process of enabling a Sync-OCC is the same as enabling a regular OCC. Run the
add_core_instances command on the OCC instance in the OCC TCD file.
When using Tessent Scan and scan modes, import a scan mode during ATPG using the
import_scan_mode command, and run the add_core_instances command on the OCC instances
in TCDs automatically. For more details on enabling OCCs for ATPG, see “Tessent Shell Flow
for Flat Designs” and “Tessent Shell Flow for Hierarchical Designs” in the Tessent Shell User’s
Manual.

Timing Constraints
Tessent OCC timing constraints support multiple clocks by using a wildcard with the
set_disable_timing command for the clock_out_mux/<select> pins.
For example:

set_disable_timing [tessent_get_pins
{<occ_instance>/tessent_persistent_cell_clock_out*_mux/S0}];
#<<< note the * wildcard

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 753

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synchronous OCC Generation and Insertion
Information to generate a Sync-OCC using DftSpecification.
The following are some of the DftSpecification configuration wrappers in the Tessent Shell
Reference Manual that describe the features to generate a Sync-OCC for automatic insertion
into your design.

• OCC

• Interface

• Connections

• Controller

Synchronous DftSpecification Definition Rules . 753
DftSpecification Property: pulse_to_align. 754
Interface Port Naming Convention . 756

Synchronous DftSpecification Definition Rules
Typically, an OCC intercepts a fast-clock driving a node using clock_intercept_node. The tool
automatically knows which fast clock corresponds to the intercepted node, and uses it as its fast
clock input. Therefore, you do not need to specify the fast_clock property in the
DftSpecification.
However, when you explicitly define the fast clock source of the OCC, you need to specify both
the clock_intercept_node and fast_clock. The clock_intercept_node specification connects the
node and the OCC output. The fast_clock specification connects the OCC fast clock input to the
fast clock source. Also, specify the clock_intercept_node and fast_clock when the fast clock
source does not connect to the node of the OCC output. You must adhere to the following rules:

• The clock_intercept_node and Connections/fast_clock properties accept a list of string
values instead of only one value.

• The tool defines separate wrappers for each divided-clock ratio to specify the list of
divided clocks and their clock_intercept_nodes. These are the FrequencyRatio(2|4|8)
wrappers in the Controller(id) and Connections wrappers. The clock_intercept_nodes
specifies the node that the Sync-OCC intercepts. The fast_clocks specifies the fast clock
driving the OCC corresponding to the intercepted node. Define the undivided clocks (or
the fast clock) and their intercept nodes with the first fast_clocks property in the
Connections wrapper, and the clock_intercept_nodes property in the Controller(id)
wrapper. For example, specify a divide-by-2 clock in a FrequencyRatio (2) wrapper.

• For both undivided clocks in fast_clocks and divided clocks in FrequencyRatio(2|4|8),
the relationship between clock_intercept_nodes and fast_clocks is based on the order
you specify. For example, in the DftSpecification example for a Sync-OCC,

Tessent™ Scan and ATPG User’s Manual, v2022.4754

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

fast_clock_f1_2_node in the clock_intercept_node list corresponds to
fast_clock_2_source in Connections wrapper’s fast_clock list because the example
specifies them both in the second position of their respective lists.

• Similar to a regular OCC, it is optional to specify the fast_clock property in the
Sync-OCC DftSpecification wrapper. In the DftSpecification example for a Sync-OCC,
no fast_clock list is defined in the Connections wrapper for FrequencyRatio(2)
clock_intercept_node list. However, due to the relationship that the previous rule
describes, if the fast_clocks list does not specify a fast clock, you must specify a dash (-)
in its place. The DftSpecification example shows this as a ‘-’ in the Connections
wrapper’s fast_clock list for the corresponding fast_clock_f1_1_node
clock_intercept_node in the Controller wrapper. This ensures that both lists
(clock_intercept_node and fast_clock) have the same number of nodes. This rule applies
to both divided and undivided clocks (fast clocks).

• For the non-insertion flow (process_dft_specification -no_insertion), you cannot specify
clock_intercept_nodes. This case requires the specification of the clock_port_count
value. This property describes how many clock ports with a given frequency ratio to
create in the generated OCC.

DftSpecification Property: pulse_to_align
The pulse_to_align property in the OCC DftSpecification configures the control and interfacing
of the pulse_to_align port.
This property appears in three different wrappers, so that you can configure it based on design
and testing requirements.

1. OCC Interface Wrapper

Figure 18-45. pulse_to_align in the OCC Interface Wrapper

DftSpecification {
 OCC {
 Interface {
 pulse_to_align : port_name; //pulse_to_align[%d]
 }
 }
}

This is a global wrapper. The property’s value applies to the same property in all the
Controller(id) wrappers. If you set the static_clock_control property to “external” in the
OCC wrapper, the tool creates a bus port named pulse_to_align on the OCC boundary.
You can configure the port’s name using the pulse_to_align property in the Interface
wrapper. The port name specification for pulse_to_align in the OCC Interface wrapper
applies to all OCC instances that the tool inserts.

2. OCC Connections Wrapper

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 755

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-46. pulse_to_align in the OCC Connections Wrapper

DftSpecification {
 OCC {
 Connections {
 pulse_to_align : port_pin_name | 0, ... ;
 }
 }
}

This is a global wrapper. When you set the static_clock_control property to “external” in
the OCC wrapper, you can specify the connection to the pulse_to_align bus port on the
OCC boundary using the pulse_to_align property in the Connections wrapper. The node
you specify connects to the pulse_to_align port on all the Sync-OCCs that the tool
inserts. You can override the connection node driving pulse_to_align for a particular
OCC in the Connections wrapper of the Controller(id) wrapper.

3. OCC Controller(ID)/Connections Wrapper

Figure 18-47. pulse_to_align in the OCC Controller/Connections Wrapper

DftSpecification {
OCC {

Controller(id) {
Connections {
pulse_to_align: port_pin_name; //default: 0

}
}

}
}

This wrapper is only for a particular OCC with the "id" you specify. The property values
you specify in this wrapper override the values from the global Connections wrapper.
Overriding the global values is necessary when the tool inserts multiple OCCs in the
design that do not share the same connection point.

4. Static Clock Control for pulse_to_align

You can use the static_clock_control_mode property in the OCC/Connections/
StaticExternalControls wrapper to specify if the programmable clock sequence is under
ATPG control or not. When under your control, you can load the pulse_to_align register
in parallel in two different ways based on the value of the static_clock_control property:

o Internal: When you enable internal static_clock_control, the IJTAG internal TDR
requires two additional bits. The ICL aliases those bits as “ijtag_pulse_to_align”. By
default, the tool loads the value 2’b00. This ICL alias is similar to the
“ijtag_clock_sequence” property that specifies the OCC control shift register
content.

o External: When you enable external static_clock_control, the tool equips the OCC
with an additional 2-bit bus input “pulse_to_align” and exposes it for the NCP index
decoder (driven by the LBIST controller) to drive.

Tessent™ Scan and ATPG User’s Manual, v2022.4756

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more details on static_clock_control_mode, see “OCC” in the “DftSpecification
Configuration Syntax” section of the Tessent Shell Reference Manual.

Interface Port Naming Convention
When the tool generates the Sync-OCC hardware, it defines the module port names in the OCC
RTL for all the undivided clocks, divided clocks and output clocks ports following the specific
naming convention <port_name>[_f#][_#].

Note
You do not necessarily need to know about the clock port names and naming-convention as
it is followed by the tool automatically when generating and inserting OCC. This section is

simply to describe the convention for your understanding or when you need to change the
defaults.

• The prefix <port_name> is applied to the module port name to all undivided and divided
clocks. The <port_name> string gets its value from the property fast_clock in:
DftSpecification/OCC/Interface/fast_clock. The default value of this property is
fast_clock but you can set it to a desired name when defining DftSpecification.

• _f# is appended to <port_name> to indicate the frequency ratio where # is replaced with
the ratio value. This applies to the undivided fast clock as well and the appended string
would be _f1. _f# is appended to <port_name> to indicate the frequency ratio where # is
replaced with the ratio value. This applies to the undivided fast clock as well and the
appended string would be _f1.

• _# is appended to the port-name when there are multiple clocks of frequency _f#.

• The above convention applies to clock_out ports of OCC as well. The <port_name>
string gets its value from the property clock_out in DftSpecification/OCC/Interface/
clock_out. The default value is clock_out.

• Example 1: For two undivided clocks of the same frequency, the tool will assign the
module port names on OCC boundary as fast_clock_f1_1 and fast_clock_f1_2

• Example 2: For two clocks with frequency of div-by-2 and div-by-4 (defined in
FrequencyRatio(<id>), the tool will assign the module port names on OCC boundary as
fast_clock_f2 and fast_clock_f4. If more clocks of either frequency are present, the tool
will create port with names as fast_clock_f2_2, fast_clock_f2_3 and so on.

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 757

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DftSpecification Examples
The two examples in this section show the DftSpecification for generating the OCC for the
insertion and non-insertion flow.

Figure 18-48. Sync-OCC Interface Generated With DftSpecification

DftSpecification For Insertion Flow
In the DftSpecification shown here, the clock_intercept_nodes (*_node) are the nodes which
were originally driven directly by the fast-clock.
The fast_clock list in Connections wrapper (*_source) are the nodes where the corresponding
fast-clock input of the OCC would be connected.

Tessent™ Scan and ATPG User’s Manual, v2022.4758

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 18-49. DFTSpecification for OCC With Mixed Clocks for Insertion

DftSpecification For Non-insertion Flow
If you generate the Sync-OCC without a design to insert in, the DftSpecification can be defined
without the clock_intercept_nodes and clock sources as they are derived from the design.
The DftSpecification shown below produces the same Sync-OCC as shown in Figure 18-48.

Figure 18-50. DftSpecification for OCC With Mixed Clocks for RTL Generation

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 759

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synchronous OCC Simulations
You can instruct the tool to generate the Verilog testbench with the capability to monitor all fast
clocks inputs of Sync-OCC in fast capture mode.
The testbench monitors clocks to ensure they are running at the correct frequency and are
synchronized with each other. The Verilog testbench does not support this capability when the
test patterns are written using write_patterns command with the -Mode_internal argument.

Sync-OCC Fast Clock Input Synchronization Monitoring . 759
Sync-OCC Fast Clock Input Synchronization Display Messages 759

Sync-OCC Fast Clock Input Synchronization Monitoring
The testbench verifies and ensures all Sync-OCC fast clock inputs are synchronous.
The period of each OCC fast clock input must be divisible into the period of the slowest OCC
fast clock input’s period. The test bench allows the difference if it is within the specified
margin. For example, the following shows OCC synchronous fast clock inputs and their
periods:

clkA 10ns
clkB 20ns
clkC 25ns

In this example, the slowest clock is clkC running at 25ns. All the other OCC synchronous fast
clock inputs must have periods that are divisible into 25ns. Because the period of clkA is 10ns,
which is not divisible into 25ns, this would be a violation.

Note
ATPG treats all Sync-OCC fast clock inputs as synchronous clocks by automatically adding
them to the same synchronous clock group. For more details, see the

“add_synchronous_clock_group” command in the Tessent Shell Reference Manual.

Clock Precision Margin
By default, the test bench considers the clock correct if the clock’s running period is within 1
percent of the expected period. During simulation, you can change the precision margin to
another value using the following method:

`define MGC_CLOCK_MONITOR_PERIOD_MARGIN_PERCENT margin

Sync-OCC Fast Clock Input Synchronization Display Messages
The testbench displays heading messages during simulation prior to checking the Sync-OCC
fast clock input synchronization.

Tessent™ Scan and ATPG User’s Manual, v2022.4760

Tessent On-Chip Clock Controller
The Synchronous OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

$realtime: Verifying the following sync fast clock inputs synchronization
for OCC <OCC_instance_name>, using a margin of M/100 * P(k)(M% of P(k)):
$realtime: w1. Measured Period = P(w1), Rise Time = T(w1)
…
$realtime: j. Measured Period = P(j), Rise Time = T(j)
$realtime: k. Measured Period = P(k), Rise Time = T(k)
…
$realtime: wn. Measured Period = P(wn), Rise Time = T(wn)

where

• M/100 — The precision margin (M) divided by 100.

• j — The Sync-OCC fast clock input with the largest period, or the slowest clock.

• k — The Sync-OCC fast clock input with the smallest period, or the fastest clock.

• P(w) — The period of the OCC sync fast clock w.

• T(w) — The time of the positive edge transition for the OCC sync fast clock w.

• N(w) — The nearest factor rounded to the nearest integer of P(w) with respect to P(j).
For example, if P(j) = 14, P(w) = 5, then N(w) = roundToInt(14/5) = 3. Similarly, for
P(j) = 19, P(w) = 6, then N(w) = roundToInt(19/6) = 3.

The first condition requires the period P(j) to be a multiple of P(w) for each Sync-OCC fast
clock input, w, within a specified margin, M:

P(w) * N(w) - P(j) | < P(k) * M/100

The second condition requires the positive edge transition of each Sync-OCC fast clock input,
w, to be at the same time as the positive edge transition of the slowest Sync-OCC fast clock
input, j, within a specified margin, M:

T(j) - T(w) | < P(k) * M/100

After the OCC fast clock inputs pass the initial verification, the test bench performs the OCC
fast clock input synchronization checks.

Period Check Violation Message
If the Sync-OCC fast clock w fails the first check, the tool reports the following error:

$realtime: OCC sync fast clock input monitoring failed: The period of w is
P(w), but the period of the slowest clock j is P(j). This fails
period requirement by | P(j} - (P(w) * N(w)) |, which is
outside the specified margin of M% * P(k).

Tessent On-Chip Clock Controller
The Synchronous OCC

Tessent™ Scan and ATPG User’s Manual, v2022.4 761

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Alignment Violation Message
If the Sync-OCC fast clock w fails the second check, the tool reports the following error:

$realtime: OCC Sync Fast Clock Input Monitoring failed: The clock w rose
at time T(w), but the slowest clock j rose at T(j). This fails
edge requirement by |T(j) - T(w)|, which is outside the
specified margin of M% * P(k).

If all the checks pass, the tool reports the following message:

$realtime: OCC sync fast clock inputs verification passed for
OCC_instance_name.

For additional clock monitoring reporting, see “Clock Monitor Report” in the “Clock
Monitoring During Simulation” section of the Tessent Scan and ATPG User’s Manual.

Limitations
This chapter describes the limitations of Sync-OCC.

• Sync-OCC only supports clocks divided by power-of-2: 2, 4 and 8. The tool does not
support 16 and beyond.

• Sync-OCC requires all lower divided clocks as inputs when the design uses a higher
divided clock. For example, if a design has only a fast-clock and a 1/8 clock, the
Sync-OCC needs both 1/2 and 1/4 as input for its operation, even if the design does not
use these two divided clocks.

• Clock Dividers

All clock dividers must be before the Sync-OCC, that is, their output should feed the
Sync-OCC. The Sync-OCC does not support the case where the clock dividers are after
the OCC. The OCC output cannot feed into clock dividers.

Figure 18-51. Sync-OCC Only Supports Clock Dividers Feeding Into OCC

• The capture_window_size for Sync-OCC is limited to 4.

Tessent™ Scan and ATPG User’s Manual, v2022.4762

Tessent On-Chip Clock Controller
The Mini-OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• LBIST controller and NCP Index Decoder

The Sync-OCC used with a TK/LBIST controller does not support testing between
synchronous divided clock domains. This is because the LBIST controller and NCP
Index Decoder cannot generate correct values for the pulse_to_align register. However,
the TK functionality of TK/LBIST controller works with Sync-OCC as normal.

The Mini-OCC
You can insert a mini-OCC into a Scan Tested Instrument (STI) Segment Insertion Bit (SIB) of
the IJTAG network.
The mini-OCC is a limited-use OCC that comes with an IJTAG SIB(STI). It provides control to
ATPG and LogicBIST when the TCK clock domain receives clock pulses. The mini-OCC
enables the testing of the STIs under the SIB. An example is the MemoryBIST logic. See “Sib”
in the Tessent Shell Reference Manual to find more information on the mini-OCC.

Related Topics
Sib [Tessent Shell Reference Manual]

Appendix A
Clock Gaters

The use of clock gaters to reduce power consumption is becoming a widely adopted design
practice. Although effective for reducing power, clock gaters create new challenges for ATPG
tools because of the additional complication introduced in clock paths. Among the challenges,
the most frequently encountered in the tool is the C1 DRC violation. The C1 rule is fairly strict,
requiring clock ports of scan cells to be at their off states when all clock primary inputs (PIs) are
at their off states. Not all designs abide by this rule when there are clock gaters in clock paths.
Basic Clock Gater Cell . 763
Two Types of Embedding . 765

Non-DRC Violation Clock Gater Embedding (Type-A) . 766
Potential DRC Violation Clock Gater Embedding (Type-B) . 767

Cascaded Clock Gaters . 771
Level-2 Clock Gater . 771
Example Combinations of Cascaded Clock Gaters . 771

Clock Gater Configuration Support Summary . 772

Basic Clock Gater Cell
There is one common type of clock gater cell. The cell (inside the dashed box) has three inputs:
scan_en, en, and clk. The output of the cell is the gated clock, gclk.
Figure A-1 shows the structure of the cell.

Figure A-1. Basic Clock Gater Cell

The scan_en input is for test mode and is usually driven by a scan enable signal to enable
shifting. The en input is for functional mode and is usually driven by internal control logic.
Sometimes test_en is used to drive the scan_en input to avoid any trouble caused by the clock
gater. However, this ends up keeping the clock gater always on and results in loss of coverage in
the en fan-in cone. The latch in the clock gater eliminates potential glitches. Depending on the
embedding, there could be inversions of the clk signal both in front of clk and after gclk, which
Tessent™ Scan and ATPG User’s Manual, v2022.4 763

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Basic Clock Gater Cell
in the figure are shown as inverters on the dashed lines representing the clk input and gclk
output.

Related Topics
Two Types of Embedding
Tessent™ Scan and ATPG User’s Manual, v2022.4764

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Two Types of Embedding
Two Types of Embedding
The key factor affecting whether the tool produces DRC violations is whether the clk signal gets
inverted in front of the clk input to the cell.
To better understand the impact of such an inversion, it is helpful to understand two common
ways designers embed the basic clock gater cell (see Figure A-1) in a design. Figure A-2 shows
the two possibilities, referred to as Type-A and Type-B.

Figure A-2. Two Types of Embedding for the Basic Clock Gater

In the figure, assume the PI /clock drives two clock gaters and that the off state of /clock is 0.
The behavior of the two types of embeddings is as follows:

• Type-A — When PI /clock is at its off state, the latch in the clock gater is transparent,
and the AND gate in the clock gater gets a controlling value at its input. As a result, the
output gclk1 is controlled to a deterministic off state.

• Type-B — When /clock is at its off state, the latch in the clock gater is not transparent,
and the AND gate in the clock gater gets a non-controlling value at its input. As a result,
the output gclk2 is not controlled to a deterministic off state. Its off state value depends
on the output of the latch.

Note
The preceding classification has nothing to do with whether there is inversion after
gclk. It only depends on whether the off state of /clock can both make the latch

transparent and control the AND gate.

Non-DRC Violation Clock Gater Embedding (Type-A) . 766
Potential DRC Violation Clock Gater Embedding (Type-B). 767
Tessent™ Scan and ATPG User’s Manual, v2022.4 765

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Non-DRC Violation Clock Gater Embedding (Type-A)
Non-DRC Violation Clock Gater Embedding
(Type-A)

The tool fully supports the Type-A embedding for the following reasons.
• Because the latch is transparent, when scan_en is asserted at the beginning of

load_unload, the clock gater is immediately turned on. Therefore, subsequent shifting is
reliable and there are no scan chain tracing DRC violations.

• Because gclk is controlled to a deterministic off state, there are no C1 DRC violations
for downstream scan cells driven by it.

• The tool can pick up full fault coverage in the fan-in cone logic of the en and scan_en
inputs of the clock gater. This coverage is often too significant to be sacrificed.

Type-A embedding is the preferred design practice and is strongly recommended.

Tip
Type-A embedding does not necessarily mean the downstream scan cells have to be either
all leading edge (LE) flip-flops or all trailing edge (TE) flip-flops. A designer can have both

of them by inserting inversions after gclk.
Tessent™ Scan and ATPG User’s Manual, v2022.4766

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Potential DRC Violation Clock Gater Embedding (Type-B)
Potential DRC Violation Clock Gater Embedding
(Type-B)

Type-B embeddings have the following undesirable characteristics.
• When PI /clock is at its off state, the latch in the clock gater is not transparent. This

means a change on its D input at the beginning of a cycle is not immediately reflected at
its Q output. In other words, the action of turning the clock gater on or off lags its
instruction.

• The clock off state of gclk is not deterministic. It depends on what value the latch in the
clock gater captures in the previous cycle. Therefore, the tool issues a C1 DRC
violation.

The kinds of problems that can arise due to these undesirable characteristics are described in the
following sections.

Type-B Scan Chain Tracing Failures (T3 Violations) . 767
Scan Cell Data Captures When Clocks are Off . 768
Driving LE Flops With Type-B Clock Gaters. 768

Type-B Scan Chain Tracing Failures (T3 Violations)
If the scan flip-flops downstream from the Type-B clock gater are LE triggered, it results in
scan chain tracing failures.
This occurs because the first shift edge in the load_unload is missed, as illustrated in Figure A-3
and Figure A-4. Figure A-3 shows an example circuit where a Type-B clock gater drives both
TE and LE scan flip-flops.

Note
Assuming the off state of the PI /clock is 0, an inverter is needed after gclk to make the
downstream flip-flop LE. The inverted gclk is indicated as gclk_b.

Figure A-3. Type-B Clock Gater Causes Tracing Failure
Tessent™ Scan and ATPG User’s Manual, v2022.4 767

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Potential DRC Violation Clock Gater Embedding (Type-B)
Figure A-4. Sample EDT Test Procedure Waveforms

Figure A-4 shows the timing diagram of several signals during capture and the beginning of
load_unload. Suppose the latch in the Type-B clock gater captures a 1 in the last capture cycle
(shown as Q_bar going low in the capture window). You can see that the first leading edge is
suppressed because the latch holds its state after capture and into load_unload. Although
scan_en is high at the beginning of load_unload, the output of the latch does not change until the
first shift clock arrives. This lag between the “instruction” and the “action” causes the
downstream LE scan flip-flops to miss their first shift edge. However, TE-triggered scan flip-
flops are still able to trigger on the first trailing edge.

For details on how to avoid the DRC rule failures in this scenario, refer to “Driving LE Flops
With Type-B Clock Gaters” on page 768.

Scan Cell Data Captures When Clocks are Off
T3 violations rarely occur in designs with Type-B clock gaters that drive LE scan flip-flops,
typically because the downstream scan flip-flops in those designs are all made TE by synthesis
tools. The tools handle Type-B clock gaters that drive TE scan flip-flops just fine, and change
any downstream latches, LE nonscan flip-flops, RAMs, and POs to TIEX. This prevents C1
DRC violations, coverage loss in the en cone of the clock gater, and potential simulation
mismatches when you verify patterns in a timing based simulator.

Driving LE Flops With Type-B Clock Gaters
When you have a Type-B clock gater driving LE flops, you must take some additional actions to
prevent DRC violations.
Tessent™ Scan and ATPG User’s Manual, v2022.4768

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Potential DRC Violation Clock Gater Embedding (Type-B)
Pattern Generation
To generate test patterns in the “patterns -scan” context, perform the following steps:

1. Initialize the clock gaters in one cycle of test_setup by driving scan_enable high and
pulsing the clocks.

2. Enter the set_stability_check command with the following arguments:

set_stability_check on -sim_static_atpg_constraints on

3. Add ATPG constraints of “1” on the functional enable of the Type-B clock gaters:

add_atpg_constraints 1 functional_enable_pin -static

With “-sim_static_atpg_constraints” set to on, the tool simulates static ATPG constraints during
DRC. In this case, the functional enable of the Type-B clock gater is constrained to “1” for
ATPG analysis during design rules checking.

Scan insertion
To prevent S-rule violations related to Type-B clock gaters driving LE flops in the “dft -scan”
context, do the following:

1. Initialize the clock gaters in one cycle of the test_setup procedure by asserting one of its
enable pins and pulsing the relevant clock. This may require more than one cycle if the
clock gaters are cascaded.

For example, assuming that the “clock_gater_enable” port controls the enable port of the
type-B clock gater (gating clock “clk”), define the following test_setup procedure in a
procedure file design.proc:

procedure test_setup =
 timeplate tp1 ;
 iReset;
 cycle =
 force clock_gater_enable 1;
 pulse clk;
 end;
 cycle =
 force clock_gater_enable 0;
 end;
end;

2. Keep the functional enable or test enable pin of the clock gater asserted after the clock
gater is initialized in test_setup procedure.

For example, connect the test enable of the clock gaters to test_en (either manually or
using design editing). Alternatively, constrain the functional enable of the clock gater:

add_input_constraints clock_gater_enable –c1
Tessent™ Scan and ATPG User’s Manual, v2022.4 769

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Potential DRC Violation Clock Gater Embedding (Type-B)
Note
These workarounds lead to fault coverage loss in the fan-in cone of the clock gater’s enable
input.
Tessent™ Scan and ATPG User’s Manual, v2022.4770

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Cascaded Clock Gaters
Cascaded Clock Gaters
One level of clock gating is sometimes not enough to implement a complex power controlling
scheme.
Figure A-5 shows a two-level clock gating scheme using the clock gater cell. The dashed lines
in the figure indicate places where inversions may exist. PI /clock is first gated by a level-1
gater and then the output gclk1 is further gated by a level-2 gater, generating the final clock
gclk2.

Figure A-5. Two-Level Clock Gating

Level-2 Clock Gater. 771
Example Combinations of Cascaded Clock Gaters . 771

Level-2 Clock Gater
In a two-level clock gating scheme, if the level-1clock gater is of Type-A, then the clock off
value of gclk1, being deterministic, has no problem propagating to the level-2 clock gater.
The latter can be understood based on the definition in “Basic Clock Gater Cell” on page 763.

However, when the level-1 gater is of Type-B, the tool cannot apply the basic definition to the
level-2 gater directly, because the clock off value of gclk1 is undetermined. In this case, the type
for the level-2 clock gater is defined by assuming the level-1 clock gater has been turned on.
Therefore, even if the level-1 clock gater is of Type-B, the tool can still classify the level-2
clock gater.

Example Combinations of Cascaded Clock Gaters
There are four possible combinations of two-level cascading clock gaters and the support the
tool provides for them.

• Type-A Level-1 + Type-A Level-2 — This is the preferred combination, is fully
supported by the tool, and is strongly recommended.
Tessent™ Scan and ATPG User’s Manual, v2022.4 771

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock Gaters
Clock Gater Configuration Support Summary
• Type-A Level-1 + Type-B Level-2 — This can be reduced to a single level type-B case.
All earlier discussion of type-B clock gaters applies. See “Potential DRC Violation
Clock Gater Embedding (Type-B)” on page 767 for more information.

• Type-B Level-1 + Type-A Level-2 — Avoid this combination. Scan chain tracing is
broken even if the downstream scan flip-flops of the level-2 gater are TE. The problem
occurs when both level-1 and level-2 clock gaters capture a 1 in the last cycle of the
capture window (meaning both clock gaters are turned off). Then the downstream scan
flip-flops miss both the first LE shift edge and the first TE shift edge in the subsequent
load_unload. This is a design problem, not a tool limitation.

• Type-B Level-1 + Type-B Level-2 — Supported only if all the downstream scan flip-
flops are TE.

Clock Gater Configuration Support Summary
The following table summarizes the support that the tool provides for each clock gater
configuration.

Table A-1. Clock Gater Configuration Support Summary
Gater Configuration LE Scan Flip-flops

Downstream
TE Flip-flops
Downstream

Latches, RAM,
ROM, PO
Downstream

Type-A Supported, strongly
recommended.

Supported, strongly
recommended.

Supported.

Type-B T3 DRC violations. A
design issue. Not
supported.

Supported. Changed to TIEX.

Type-A Level-1 +
Type-A Level-2

Supported. Supported. Supported.

Type-A Level-1 +
Type-B Level-2

Same as Type-B
alone.

Same as Type-B
alone.

Same as Type-B
alone.

Type-B Level-1 +
Type-A Level-2

T3 DRC violations.
Not supported.

T3 DRC violations.
Not supported.

Changed to TIEX.

Type-B Level-1 +
Type-B Level-2

T3 DRC violations.
Not supported.

Supported. Changed to TIEX.
Tessent™ Scan and ATPG User’s Manual, v2022.4772

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix B
State Stability Issues

State stability refers to state elements that are stable, hold their values across shift cycles and
patterns, and their values can be used for DRC (for example, scan chain tracing).
Debugging state stability is useful when you set up a state (for example, in a TAP controller
register, in the test_setup procedure) that you use for sensitizing the shift path. Unless the state
value is preserved for all shift cycles and all patterns, then scan chain tracing can fail. If you set
up the correct value in the test_setup procedure but the value is changed due to the application
of shift or the capture cycle, the value cannot be depended on. For such cases, you can debug
state stability by identifying what caused a stable state element to unexpectedly change states.

Note
The information in this appendix uses the set_stability_check command set to On (the
default for this command), except as noted in Example 3 and Example 9.

Display of State Stability Data . 773
State Stability Data Format . 774
State Stability Examples . 777

Example 1 — Basic Example . 780
Example 2 — Multiple Cycles in Load_unload Prior to Shift . 783
Example 3 — Drc_pattern Reporting for Pulse Generators . 785
Example 4 — Single Post Shift . 786
Example 5 — Single Post Shift With Cycles Between Main and Post Shift 787
Example 6 — Cycles After Apply Shift Statement in Load_unload 789
Example 7 — No Statements in Load_unload Prior to Apply Shift. 791
Example 8 — Basic With Specified Capture Clock . 791
Example 9 — Setting Stability Check to Off and All_shift . 792
Example 10 — Pin Constraints, Test_setup, and State Stability . 793
Example 11 — Single Pre Shift . 794
Example 12 — Basic With Enhanced Stability Check for NCPs. 796

Display of State Stability Data
You have several options for displaying state stability data.
Tessent™ Scan and ATPG User’s Manual, v2022.4 773

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
State Stability Data Format
Using the set_gate_report command with the Drc_pattern option, you can display simulation
data for different procedures using the report_gates command or Tessent Visualizer. The
following examples show how to use the set_gate_report command:

set_gate_report drc_pattern test_setup

set_gate_report drc_pattern load_unload

set_gate_report drc_pattern shift

For “drc_pattern load_unload” and “drc_pattern shift”, the superimposed values for all
applications of the procedure are reported. This means a pin that is 1 for only the first
application of shift, but 0 or X for the second application of shift shows up as X.

When you set the Drc_pattern option of the set_gate_report command to State_stability as
shown in the following example:

set_gate_report drc_pattern state_stability

the state stability report also includes the load_unload and shift data for the first application of
these procedures.

When you debug state stability, you normally compare the state stability values (the values
during the first application of the procedures) with the superimposed (stable) values from
“drc_pattern load_unload” and “drc_pattern shift.”

State Stability Data Format
State stability data is only available after DRC and only if there is a test_setup procedure.
The format of the state stability data displayed for a pin is shown in the following example:

The first row lists the column labels in parentheses. The second row displays the pin name and
five or more groups of data in parentheses. Each group has one or more bits of data
corresponding to the number of events in each group.

Following is a description of the data columns in the state stability report:

• ts — Last event in the test_setup procedure. This is always one bit.

• ld — Any event in the load_unload procedure that is before or after the apply shift
statement. When load_unload is simulated, all primary input pins that are not explicitly
forced in the load_unload procedure or constrained with an add_input_constraints
command are set to X. Constrained pins are forced to their constrained values at the end
of test_setup prior to load_unload. This is because even if your test_setup procedure
gives those pins different values coming out of test_setup, in the final patterns saved, an

(ts) (ld) (shift) (ld) (shift) (cell_con) (cap) (stbl)
// CLK I (0) (0) (010~0) (00) (010) (0) (0X0) (0)
Tessent™ Scan and ATPG User’s Manual, v2022.4774

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
State Stability Data Format
event is added to test_setup to force those pins to their constrained values. (You can see
that event in the test_setup procedure if you issue write_procfile after completing DRC.)
Consequently, for the first pattern, a pin has its constrained value going into
load_unload. For all subsequent patterns, load_unload follows the capture cycle, during
which the tool would have enforced the constrained value. Therefore, for all patterns, a
constrained pin is forced to its constrained value going into load_unload and hence this
value can be used for stability analysis. This is also true for the state stability analysis
where the first application of load_unload is simulated.

The number of bits in this group depends on the number of events in the procedure prior
to the apply shift statement. If there are no events prior to the apply shift statement, this
group still exists (with one bit).

• shift — Apply shift statement (main shift or independent shift). If the load_unload
procedure has multiple apply shift statements, then multiple (shift) groups are displayed.
If this is also the main shift application (that is, the number of shifts applied is greater
than one), the group includes a tilde (~). The values before the tilde correspond to the
very first application of the shift procedure, with the number of bits corresponding to the
number of primary input events in the shift procedure. The group without a tilde (~) is
the independent shift.

The last bit (after the tilde) corresponds to the stable state after application of the last
shift in the main shift statement. By default, the precise number of shifts is not
simulated. The stable state shown corresponds to an infinite number of shift cycles; that
is, in some cases, when for instance the depth of non-scan circuitry is deeper than the
scan chain length, sequential circuitry that should be 1 or 0 after the first load_unload
may show up as X. For more information, see the description of the “set_stability_check
all_shift” command in “Example 4 — Single Post Shift” on page 786.

After the third group, there could be additional groups if there are the following:

o Multiple apply shift statements

o Events in the load_unload procedure after the apply shift statement

• shdw_con — Shadow_control procedure. This column is not shown in the examples.
Look at the test procedure file to determine the meaning of this group.

• cell_con — Cell constraints. If there are cell constraints, an extra simulation event is
added to show the value. This is always one bit.

• cap — Capture procedure. This is the simulation of the first capture cycle. Notice that
this is not the simulation of pattern 0 or any specific pattern. Therefore, normally the
capture clock going to 0X0 (or 1X1 for active low clocks) is displayed, indicating that
the clock may or may not pulse for any given pattern. If you issue the
“set_capture_clock -Atpg” command to force the tool to use a specific capture clock
exactly once for every pattern, the capture cycle simulation is less pessimistic and “010”
or “101” is reported.
Tessent™ Scan and ATPG User’s Manual, v2022.4 775

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
State Stability Data Format
• stbl — Final stable values after several iterations of simulating load_unload and capture
procedures. If the value of a gate is always the same at the end of the test_setup and
capture procedures, then its stable value is the same; otherwise, the stable value is X.

Note
The skew_load, master_observe, or shadow_observe procedures are not simulated as
part of state stability analysis, so their simulation data is not displayed in a state

stability report. To view the simulation data for any of these procedures, use the
“set_gate_report Drc_pattern” command with the specific <procedure_name> of
interest.
Tessent™ Scan and ATPG User’s Manual, v2022.4776

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
State Stability Examples
State Stability Examples
This section contains examples of state stability reporting that show different behaviors in state
stability analysis.
The examples are based on the design shown in Figure B-1. The design has the following three
clocks:

• clk1 — The only scan clock

• clk2 — Clocks a particular non-scan flip-flop

• reset — Resets four non-scan flip-flops connected as a register

The design has five pins (A, B, C, D, and E) that are exercised in the procedures to specifically
show state stability analysis. The circuit has the following characteristics:

• Pin D has a C0 pin constraint. There are no other constrained pins.

• Non-scan flip-flop ff00 is clocked by clk1 and driven by pin A. The flip-flop is
initialized in test_setup, but loses state when it is pulsed after test_setup.

• Non-scan flip-flop ff10 is clocked by clk1 and driven by pin D. Notice that this one gets
initialized and “sticks” (is converted to TIE0) due to the pin constraint.

• Non-scan flip-flop ff20 is clocked by clk2 and driven by pin A.

• Non-scan flip-flop ff32 is the fourth flip-flop in a serial shift register. The first flip-flop
in the register is ff30 and driven by pin A. The flip-flops are all clocked by clk1 and
reset by the reset signal. ff32 is reset in test_setup, maintains state through the first
application of shift, but then loses stability.

• There is one scan chain with three scan cells: sff1, sff2, and sff3.

The timeplate and procedures that were used for the first (basic) example are shown following
the design.
Tessent™ Scan and ATPG User’s Manual, v2022.4 777

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
State Stability Examples
Figure B-1. Design Used in State Stability Examples
Tessent™ Scan and ATPG User’s Manual, v2022.4778

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
State Stability Examples

timeplate gen_tp1 =

force_pi 0;
measure_po 10;
pulse clk1 20 10;
pulse clk2 20 10;
pulse reset 20 10;
period 40;

end;

procedure capture =

timeplate gen_tp1;
cycle =

force_pi;
measure_po;
pulse_capture_clock;

end;
end;

procedure shift =

scan_group grp1;
timeplate gen_tp1;
cycle =

force_sci;
measure_sco;
pulse clk1;
force C 0;

end;
end;

procedure test_setup =

scan_group grp1;
timeplate gen_tp1;
// First cycle, one PI event (force)
cycle =

force clk1 0;
force clk2 0;
force reset 0;
force A 0;
force B 0;
force C 0;
force D 0;
force E 0;

end;
// Second cycle, two PI events (pulse on, pulse off)
cycle =

pulse reset;
pulse clk2;

end;
// Third cycle, three PI events (force, pulse on, and pulse off)
cycle =

force A 1;
pulse clk1;

end;
end;

procedure load_unload =

scan_group grp1;
Tessent™ Scan and ATPG User’s Manual, v2022.4 779

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 1 — Basic Example
timeplate gen_tp1;
// First cycle, one PI event (force)
cycle =

force clk1 0;
force clk2 0;
force reset 0;
force scan_en 1;
force B 1;
force C 1;

end;
apply shift 3;

end;

With the exception of Example 3, the only difference between these examples is the test
procedure file. The procedures used in subsequent examples differ from the basic example as
follows:

Example 1 — Basic Example . 780
Example 2 — Multiple Cycles in Load_unload Prior to Shift . 783
Example 3 — Drc_pattern Reporting for Pulse Generators . 785
Example 4 — Single Post Shift . 786
Example 5 — Single Post Shift With Cycles Between Main and Post Shift 787
Example 6 — Cycles After Apply Shift Statement in Load_unload 789
Example 7 — No Statements in Load_unload Prior to Apply Shift 791
Example 8 — Basic With Specified Capture Clock . 791
Example 9 — Setting Stability Check to Off and All_shift . 792
Example 10 — Pin Constraints, Test_setup, and State Stability. 793
Example 11 — Single Pre Shift. 794
Example 12 — Basic With Enhanced Stability Check for NCPs 796

Example 1 — Basic Example
In the basic example, you invoke the tool on the design and issue the following commands.

add_clocks 0 clk1 clk2 reset

add_scan_groups grp1 scan1.testproc

add_scan_chains c0 grp1 scan_in1 scan_out1

add_input_constraints D -c0

set_gate_report drc_pattern state_stability

set_system_mode analysis

report_gates A B C D E
Tessent™ Scan and ATPG User’s Manual, v2022.4780

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 1 — Basic Example
...
// (ts)(ld)(shift)(cap)(stbl)
// A O (1)(1)(111~1)(XXX)(X)
// B O (0)(1)(111~1)(XXX)(X)
// C O (0)(1)(000~0)(XXX)(X)
// D O (0)(0)(000~0)(000)(0)
// E O (0)(0)(000~0)(XXX)(X)

The results of this operation are:

• test_setup: Pins A through E are forced to 0 in the first cycle. Pin A is forced to 1 in the
third cycle.

• load_unload: Pins B and C are forced to 1.

• capture: Pin D is constrained. It was forced in test_setup, but the pin constraint is forcing
Pin D to be 0 in capture.

A typical initialization problem is illustrated in ff00. Figure B-2 shows the relevant circuitry and
statements in the test_setup procedure that seemingly initialize this flip-flop.

Figure B-2. Typical Initialization Problem

In this case, you might expect the output to always be 1 after initialization because the third
cycle of the test_setup procedure forced a 1 on input A and pulsed clk1. For comparison
purposes, following is the reported state_stability data together with the data reported for
load_unload and shift. Notice especially the Q output:

// /ff00 dff
// (ts)(ld)(shift)(cap)(stbl) (ld)(shift)
// CLK I (0)(0)(010~0)(0X0)(0) (0)(010) (010)
// D I (1)(X)(XXX~X)(XXX)(X) (X)(XXX) (XXX)
// Q O (1)(1)(1XX~X)(XXX)(X) (1)(XXX) (XXX)
// QB O (0)(0)(0XX~X)(XXX)(X) (0)(XXX) (XXX)

You can see from the state stability display that, after test_setup, the output of Q is set to 1. In
the first application of load_unload it is still 1, but it goes to X during the first shift. Compare
this to what is shown for “drc_pattern load_unload” and “drc_pattern shift”.
Tessent™ Scan and ATPG User’s Manual, v2022.4 781

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 1 — Basic Example
A stable initialization value can be better achieved by doing for ff00 something similar to what
occurs for ff10, where the D input is connected to the constrained D pin:

// /ff00 dff
// (ts)(ld)(shift)(cap)(stbl) (ld)(shift)
// CLK I (0)(0)(010~0)(0X0)(0) (0)(010) (010)
// D I (1)(X)(000~0)(000)(X) (X)(000) (000)
// Q O (1)(1)(000~0)(000)(X) (0)(000) (000)
// QB O (0)(0)(111~1)(111)(X) (1)(111) (111)

Another interesting observation can be made for ff32. This flip-flop is at the end of a 4-bit shift
register where all the flip-flops are reset during test_setup as shown in Figure B-3. (This figure
is excerpted from Figure B-1 on page 778 in the section “State Stability Examples”.)

Figure B-3. Three-Bit Shift Register

Notice how Q in this case is stable for the first application of load_unload and shift, but the
stable state after the last shift (after ~) is X. This is due to an optimization the tool does by
default for the state_stability check. (Compare this output to example Example 9 — Setting
Stability Check to Off and All_shift.)

// /ff32 dffr
// (ts)(ld)(shift)(cap)(stbl) (ld)(shift)
// R I (0)(0)(000~0)(0X0)(0) (0)(000) (000)
// CLK I (0)(0)(010~0)(0X0)(0) (0)(010) (010)
// D I (0)(0)(000~0)(XXX)(X) (0)(000) (XXX)
// Q O (0)(0)(000~1)(XXX)(X) (0)(000) (XXX)
// QB O (1)(1)(111~1)(XXX)(X) (1)(111) (XXX)
Tessent™ Scan and ATPG User’s Manual, v2022.4782

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 2 — Multiple Cycles in Load_unload Prior to Shift
Non-scan flip-flop ff20 is clocked by clk2, which is not a shift clock. This flip-flop is also
initialized during test_setup as shown in Figure B-4.

Figure B-4. Initialization With a Non-Shift Clock

The Q output is disturbed during capture, not during shift, because this element is not exercised
during shift:

// /ff20 dff
// (ts)(ld)(shift)(cap)(stbl) (ld)(shift)
// CLK I (0)(0)(000~0)(0X0)(0) (0)(000) (000)
// D I (1)(X)(XXX~X)(XXX)(X) (X)(XXX) (XXX)
// Q O (0)(0)(000~0)(0XX)(X) (0)(000) (XXX)
// QB O (1)(1)(111~1)(1XX)(X) (1)(111) (XXX)

Notice that the load_unload and shift data for ff32 and ff20 is almost identical (except for the
clock data), but that the state_stability data enables you to see that they become unstable in very
different ways.

Example 2 — Multiple Cycles in Load_unload Prior
to Shift

The main difference between this example and the basic example is that in the load_unload
procedure there are multiple cycles prior to the apply shift statement (statements that are new in
this example are highlighted in bold).
Tessent™ Scan and ATPG User’s Manual, v2022.4 783

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 2 — Multiple Cycles in Load_unload Prior to Shift
procedure load_unload =
 scan_group grp1 ;
 timeplate gen_tp1 ;
 // First cycle, one PI event (force)
 cycle =
 force clk1 0 ;
 force clk2 0 ;
 force reset 0 ;
 force scan_en 1 ;
 force B 1;
 force C 1;
 force E 1;
 end ;

// Second cycle, three PI events
(force, pulse on, pulse off)
 cycle =
 force E 0;
 pulse clk2;
 end ;

// Third cycle, two PI events
(pulse on, pulse off)
 cycle =
 pulse clk2;
 end ;
 apply shift 3;
 end;

As a result, multiple events are displayed in the second group of state stability data. Notice there
are now three cycles. The following gate report excerpts show six bits of data (in bold),
corresponding to the total number of events. The first bit is from the first cycle (one event), the
next three bits are from the second cycle (three events), and the last two bits are from the third
cycle, which has two events.

// /E primary_input
// (ts)(ld)(shift)(cap)(stbl)
// E O (0)(100000)(000~0)(XXX)(X)
// /A primary_input
// (ts)(ld)(shift)(cap)(stbl)
// A O (1)(XXXXXX)(XXX~X)(XXX)(X)
// /clk2 primary_input
// (ts)(ld)(shift)(cap)(stbl)
// clk2 O (0)(001010)(000~0)(0X0)(0)

// /ff20 dff
// (ts)(ld)(shift)(cap)(stbl)
// CLK I (0)(001010)(000~0)(0X0)(0)
// D I (1)(XXXXXX)(XXX~X)(XXX)(X)
// Q O (0)(00XXXX)(XXX~X)(XXX)(X)
// QB O (1)(11XXXX)(XXX~X)(XXX)(X)

Notice how A goes to X for the load_unload simulation. This is because it is not explicitly
forced in the load_unload procedure (or constrained with an add_input_constraints command).
Tessent™ Scan and ATPG User’s Manual, v2022.4784

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 3 — Drc_pattern Reporting for Pulse Generators
Example 3 — Drc_pattern Reporting for Pulse
Generators

If a circuit contains a pulse generator (PG) with user-defined timing, the tool performs
additional simulation steps for the PG’s output changes. When a rising edge event occurs at its
input, a PG outputs a 1 after a certain delay, which the tool simulates as an additional event.
After another delay, the PG’s output signal returns to 0, which is also simulated as a separate
event. Both output events are added to reports within a pair of brackets ([]) following the input
event.
Suppose the non-scan flip-flop ff20 of the preceding example is clocked by a PG as shown in
Figure B-5. Excerpts below the figure show how the PG events would appear in gate reports.

Figure B-5. Clocking ff20 With a Pulse Generator

// /clk2 primary_input
// (ts)(ld)(shift)(cap)(stbl)
// clk2 O (0)(001[11]01[11]0)(000~0)(0X[X]0)(0) /pg1/clk

// /pg1 pulse_gen
// (ts)(ld)(shift)(cap)(stbl)
// clk I (0)(001[11]01[11]0)(000~0)(0X[X]0)(0) /clk2
// out O (0)(000[10]00[10]0)(000~0)(00[X]0)(0) /ff20/CLK

// /ff20 dff
// (ts)(ld)(shift)(cap)(stbl)
// CLK I (0)(000[10]00[10]0)(000~0)(00[X]0)(0) /pg1/out
// D I (1)(XXX[XX]XX[XX]X)(XXX~X)(XX[X]X)(X) /A
// Q O (0)(000[XX]XX[XX]X)(XXX~X)(XX[X]X)(X)
// QB O (1)(111[XX]XX[XX]X)(XXX~X)(XX[X]X)(X)

The rising edge events on clk2 initiate pg1’s two output pulses (highlighted in bold). Notice the
pulses are not shown simultaneous with the input changes that caused them. This is an
exception to the typical display of output changes simultaneous with such input changes, as
shown for ff20. Notice also how the active clock edge at ff20’s CLK input is one event later
than clk2’s active edge and is seen to be a PG signal due to the brackets.

For an introduction to pulse generators, see “Pulse Generators” on page 142. For detailed
information about the tool’s pulse generator primitive, see “Pulse Generators With User-
Defined Timing” in the Tessent Cell Library Manual.
Tessent™ Scan and ATPG User’s Manual, v2022.4 785

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 4 — Single Post Shift
Example 4 — Single Post Shift
This example has multiple cycles in the load_unload procedure. What is new is the single post
shift (highlighted in bold).

procedure load_unload =
 scan_group grp1 ;
 timeplate gen_tp1 ;
 // First cycle, one PI event (force)
 cycle =
 force clk1 0 ;
 force clk2 0 ;
 force reset 0 ;
 force scan_en 1 ;
 force B 1;
 force C 1;
 end ;
 // Second cycle, three PI events (force, pulse on, pulse off)
 cycle =
 force E 0;
 pulse clk2;
 end;
 apply shift 2;
 apply shift 1;
 end;

In this case, the state stability data has an additional group (shown in bold) between the main
shift and the capture cycle. This corresponds to the first application of the post shift:

// /ff32 dffr
// (ts)(ld)(shift)(shift)(cap)(stbl)
// R I (0)(0000)(000~0)(000)(0X0)(0) /reset
// CLK I (0)(0000)(010~0)(010)(0X0)(0) /clk1
// D I (0)(0000)(000~X)(XXX)(XXX)(X) /ff31b/Q
// Q O (0)(0000)(000~X)(XXX)(XXX)(X)
// QB O (1)(1111)(111~X)(XXX)(XXX)(X)

You can see that ff32 is really stable during the first application of shift. If you use the
set_stability_check All_shift command in this case, the output is slightly different:

set_stability_check all_shift

set_system_mode setup

set_system_mode analysis

report_gates ff32
Tessent™ Scan and ATPG User’s Manual, v2022.4786

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 5 — Single Post Shift With Cycles Between Main and Post Shift
// /ff32 dffr
// (ts)(ld)(shift)(shift)(cap)(stbl)
// R I (0)(0000)(000~0)(000)(0X0)(0) /reset
// CLK I (0)(0000)(010~0)(010)(0X0)(0) /clk1
// D I (0)(0000)(000~1)(1XX)(XXX)(X) /ff31b/Q
// Q O (0)(0000)(000~0)(011)(1XX)(X)
// QB O (1)(1111)(111~1)(100)(0XX)(X)

Notice how ff32 is now 0 throughout the main shift application, but is set to 1 during the post
shift. This is due to how A is set to 1 in test_setup and this pulse is clocked through.

Example 5 — Single Post Shift With Cycles
Between Main and Post Shift

In this example, a post shift exists but there is an additional cycle (shown in bold font) between
the main shift and the post shift. This causes yet another group of data to be displayed when you
report the state stability data.
Tessent™ Scan and ATPG User’s Manual, v2022.4 787

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 5 — Single Post Shift With Cycles Between Main and Post Shift
procedure load_unload =
scan_group grp1 ;
timeplate gen_tp1 ;
// First cycle, one PI event (force)
cycle =

force clk1 0 ;
force clk2 0 ;
force reset 0 ;
force scan_en 1 ;
force B 1;
force C 1;

end ;
// Second cycle, three PI events (force, pulse on, pulse off)

 cycle =
 force A 1;
 pulse clk2;
 end ;
 apply shift 3;

// Third cycle, three PI events (force, pulse on, pulse off)
 cycle =
 force C 1;
 force A 0;
 pulse clk2;
 end ;
 apply shift 1;
 end;

 procedure shift =
 scan_group grp1 ;
 timeplate gen_tp1 ;
 cycle =
 force_sci ;
 measure_sco ;
 pulse clk1 ;
 force C 0;
 end;
 end;

The fourth data group (highlighted in bold) represents the cycle between the two applications of
shift (for the first application of the load_unload procedure). The fifth data group represents the
application of the post shift, and the last (sixth) group represents capture. Notice how pins A and
C vary state due to the values forced on them in the load_unload and shift procedures.

// /A primary_input
// (ts)(ld)(shift)(ld)(shift)(cap)(stbl)
// A (1)(X111)(111~1)(000)(000)(XXX)(X)
// /B primary_input
// (ts)(ld)(shift)(ld)(shift)(cap)(stbl)
// B O (0)(1111)(111~1)(111)(111)(XXX)(X)
// /C primary_input
// (ts)(ld)(shift)(ld)(shift)(cap)(stbl)
// C O (0)(1111)(000~0)(111)(000)(XXX)(X)
Tessent™ Scan and ATPG User’s Manual, v2022.4788

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 6 — Cycles After Apply Shift Statement in Load_unload
Notice also that clk2 in this case is pulsed during load_unload only, not in test_setup. Here is the
modified test_setup procedure (with the clk2 pulse removed from the second cycle):

procedure test_setup =
scan_group grp1 ;
timeplate gen_tp1 ;
// First cycle, one event (force)
cycle =

force clk1 0 ;
force clk2 0 ;
force reset 0;
force A 0;
force B 0;
force C 0;
force D 0;
force E 0;

end ;
// Second cycle, two events (pulse on, pulse off)
cycle =

pulse reset ;
end;
// Third cycle, three events (force, pulse on, pulse off)
cycle =

force A 1;
pulse clk1 ;

end;
end;

This results in the following behavior for ff20, which is clocked by clk2:

// /ff20 dff
// (ts)(ld)(shift)(ld)(shift)(cap)(stbl)
// CLK I (0)(0010)(000~0)(010)(000)(0X0)(0) /clk2
// D I (1)(X111)(111~1)(000)(000)(XXX)(X) /A
// Q O (X)(XX11)(111~1)(100)(000)(0XX)(X)
// QB O (X)(XX00)(000~0)(011)(111)(1XX)(X)

Notice how the state of this flip-flop is disturbed during capture.

Example 6 — Cycles After Apply Shift Statement in
Load_unload

This example reuses the load_unload procedure of the basic example (with only one apply shift
statement), but adds three new cycles (shown in bold font) after the application of shift.
Tessent™ Scan and ATPG User’s Manual, v2022.4 789

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 6 — Cycles After Apply Shift Statement in Load_unload
procedure load_unload =
scan_group grp1 ;
timeplate gen_tp1 ;
// First cycle, one PI event (force)
cycle =

force clk1 0 ;
force clk2 0 ;
force reset 0 ;
force scan_en 1 ;
force B 1;
force C 1;

end ;
apply shift 3;
// Second cycle, one PI event (force)
cycle =

force C 1;
end ;
// Third cycle, three PI events (force, pulse on, pulse off)
cycle =

force C 0;
pulse clk2;

end ;
// Fourth cycle, one PI event (force)
cycle =

force C 1;
end ;

end;
procedure shift =

scan_group grp1 ;
timeplate gen_tp1 ;
cycle =

force_sci ;
measure_sco ;
pulse clk1 ;
force C 0;

end;
end;

In this case, the second data group in the state stability report represents the one event in the
cycle before the apply shift statement. The fourth data group represents the events in the three
cycles after the apply shift statement (but still for the first application of load_unload). The first
bit is the one event in the second cycle, the next three bits represent the third cycle, and the last
bit represents the fourth cycle:

// /C primary_input
// (ts)(ld)(shift)(ld)(cap)(stbl)
// C O (0)(1)(000~0)(10001)(XXX)(X)
// /clk2 primary_input
// (ts)(ld)(shift)(ld)(cap)(stbl)
// clk2 O (0)(0)(000~0)(00100)(0X0) (0) /ff20/CLK
Tessent™ Scan and ATPG User’s Manual, v2022.4790

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 7 — No Statements in Load_unload Prior to Apply Shift
Example 7 — No Statements in Load_unload Prior
to Apply Shift

In this example, there are no statements in the load_unload procedure prior to the apply shift
statement and scan_en is forced in the shift procedure instead of in a separate cycle in
load_unload. Other procedures are as in the basic example.
Here are the modified load_unload and shift procedures:

procedure load_unload =
scan_group grp1 ;
timeplate gen_tp1 ;
apply shift 3;

end;

procedure shift =

scan_group grp1 ;
timeplate gen_tp1 ;
cycle =

force_scan_en 1 ;
force sci ;
measure_sco ;
pulse clk1 ;
force C 0;

end;
end;

In this case, the report still shows an event for load_unload in the second data group. This makes
it easier to see differences between the end of test_setup and the entry into the first load_unload.
Such differences can occur because during load_unload the tool sets to X any primary input pins
that are not constrained with an add_input_constraints command or explicitly forced in the
load_unload procedure. This is the case for pin A in this example:

// /A primary_input
// (ts)(ld)(shift)(cap)(stbl)
// A O (1)(X)(XXX~X)(XXX) (X) /ff30/D /ff20/D /ff00/D
// /ff20 dff
// (ts)(ld)(shift)(cap)(stbl)
// CLK I (0)(0)(000~0)(0X0)(0) /clk2
// D I (1)(X)(XXX~X)(XXX)(X) /A
// Q O (0)(0)(000~0)(0XX)(X)
// QB O (1)(1)(111~1)(1XX)(X)

Example 8 — Basic With Specified Capture Clock
If you specify a capture clock using the set_capture_clock command with the -Atpg switch, the
format looks slightly different: the specified clock shows up as “010” (or “101”) during capture
instead of “0X0” (or “1X1”).
Tessent™ Scan and ATPG User’s Manual, v2022.4 791

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 9 — Setting Stability Check to Off and All_shift
If the “set_capture_clock clk1 -Atpg” command is used, the state stability display for a scan cell
clocked by clk1 in the example design looks like the following:

// /sff1 sff
// (ts)(ld)(shift)(cap)(stbl)
// SE I (X)(1)(111~1)(XXX)(X) /scan_en
// D I (X)(X)(XXX~X)(XXX)(X) /gate1/Y
// SI I (X)(X)(XXX~X)(XXX)(X) /sff2/QB
// CLK I (0)(0)(010~0)(010)(0) /clk1
// Q O (X)(X)(XXX~X)(XXX)(X) /gate2/A0
// QB O (X)(X)(XXX~X)(XXX)(X) /scan_out1

Example 9 — Setting Stability Check to Off and
All_shift

The preceding examples, except as noted in example 3, used the default On setting of the
set_stability_check command. This command has two other settings: All_shift and Off.
For All_shift, the tool simulates the exact number of shifts. This means for situations where
particular events take place during shift, the tool simulates these exactly rather than simulating
the stable state after an “infinite” number of shifts. The following state_stability displays show
the difference between using On and using All_shift for ff32 and the procedures of the basic
example (values of interest are highlighted in bold):

set_stability_check On:

// /ff32 dffr
// (ts)(ld)(shift)(cap)(stbl)
// R I (0)(0)(000~0)(0X0)(0) /reset
// CLK I (0)(0)(010~0)(0X0)(0) /clk1
// D I (0)(0)(000~X)(XXX)(X) /ff31b/Q
// Q O (0)(0)(000~X)(XXX)(X)
// QB O (1)(1)(111~X)(XXX)(X)

set_stability_check All_shift:

// /ff32 dffr
// (ts)(ld)(shift)(cap)(stbl)
// R I (0)(0)(000~0)(0X0)(0) /reset
// CLK I (0)(0)(010~0)(0X0)(0) /clk1
// D I (0)(0)(000~X)(XXX)(X) /ff31b/Q
// Q O (0)(0)(000~1)(1XX)(X)
// QB O (1)(1)(111~0)(0XX)(X)

In the All_shift case, notice how the stable state after shift differs from the On case. After
exactly three applications of the shift procedure, the state is 1, but after “infinite” applications of
the shift procedure, it is X.
Tessent™ Scan and ATPG User’s Manual, v2022.4792

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 10 — Pin Constraints, Test_setup, and State Stability
When stability checking is set to off, the tool reports only dashes:

// /ff32 dffr
// R I (-) /reset
// CLK I (-) /clk1
// D I (-) /ff31/Q
// Q O (-)
// QB O (-)

Example 10 — Pin Constraints, Test_setup, and
State Stability

In this example, the test_setup procedure is modified so that pin D, which is constrained to C0
by an add_input_constraints command, is not forced in the first cycle, but is forced to 1 in the
second cycle. It is never forced to its constrained value 0.
It is a good practice to always force the constrained pins to their constrained state at the end of
the test_setup procedure. If you do not do that, the tool adds an additional cycle to the test_setup
procedure when you write out the patterns. This recommended practice is not followed in this
example:

procedure test_setup =
scan_group grp1
timeplate gen_tp1 ;
// First cycle, three PI events (force, pulse on, pulse off)
cycle =

force clk1 0 ;
force clk2 0 ;
force reset 0 ;
force A 0 ;
force B 0 ;
force C 0 ;
force E 0 ;
pulse clk1 ;

end ;
// Second cycle, three PI events (force, pulse on, pulse off)
cycle =

force D 1 ;
pulse clk1 ;

end ;
end;

Notice what happens during test_setup:

set_gate_report drc_pattern test_setup

report_gates D ff10
Tessent™ Scan and ATPG User’s Manual, v2022.4 793

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 11 — Single Pre Shift
// /D primary_input
// D O /ff10/D
//
// Cycle: 0 1
// ------ --- ---
// 23 467
// Time: 000 000
// ------ --- ---
// D XXX 111
//
// /ff10 dff
// CLK I /clk1
// D I /D
// Q O
// QB O
//
// Cycle: 0 1
// ------ --- ---
// 23 467
// Time: 000 000
// ------ --- ---
// CLK 010 010
// D XXX 111
// Q XXX X11
// QB XXX X00

Then, for state stability, notice how D changes from 1 to 0 between test_setup and the first
application of load_unload. This is because of the pin constraint to 0 on this pin:

set_gate_report drc_pattern state_stability

report_gates D ff10

// /D primary_input
// (ts)(ld)(shift)(cap)(stbl)
// D O (1)(0)(000~0)(000)(X) /ff10/D
// /ff10 dff
// (ts)(ld)(shift)(cap)(stbl)
// CLK I (0)(0)(010~0)(0X0)(0) /clk1
// D I (1)(0)(000~0)(000)(X) /D
// Q O (1)(1)(100~X)(XXX)(X)
// QB O (0)(0)(011~X)(XXX)(X)

Example 11 — Single Pre Shift
In the load_unload procedure for this example, a single pre shift is followed by one cycle and
then the main shift. Also, pins C and E vary in the different cycles of the load_unload and shift
operations. The differences from the basic versions of these procedures are highlighted in bold.
Tessent™ Scan and ATPG User’s Manual, v2022.4794

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 11 — Single Pre Shift
procedure load_unload =
scan_group grp1 ;
timeplate gen_tp1 ;
// First cycle, one event (force)
cycle =

force clk1 0 ;
force clk2 0 ;
force reset 0 ;
force scan_en 1 ;
force B 1;
force C 1;
force E 1;

end ;
apply shift 1; // Pre shift
// Second cycle, three PI events (force, pulse on, pulse off)
cycle =

force C 0;
force E 0;
pulse clk2;

end;
apply shift 2; // Main shift

end;

procedure shift =

scan_group grp1 ;
timeplate gen_tp1 ;
cycle =

force_sci ;
measure_sco ;
pulse clk1 ;
force C 0;

end;
end;

The third group in the state_stability display (highlighted in bold) is the pre-shift. The fourth
group is the cycle between the shift applications, and the fifth group is the main shift.

set_gate_report drc_pattern state_stability

report_gates C E clk1 clk2

// /C primary_input
// (ts)(ld)(shift)(ld)(shift)(cap)(stbl)
// C O (0)(1)(000)(000)(000~0)(XXX)(X)
// /E primary_input
// (ts)(ld)(shift)(ld)(shift)(cap)(stbl)
// E O (0)(1)(111)(000)(000~0)(XXX)(X)
// /clk1 primary_input
// (ts)(ld)(shift)(ld)(shift)(cap)(stbl)
// clk1 O (0)(0)(010)(000)(010~0)(0X0)(0)/ff32/CLK
// /ff31b/CLK…
// /clk2 primary_input
// (ts)(ld)(shift)(ld)(shift)(cap)
// clk2 O (0)(0)(000)(010)(000~0)(0X0) /ff20/CLK
Tessent™ Scan and ATPG User’s Manual, v2022.4 795

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

State Stability Issues
Example 12 — Basic With Enhanced Stability Check for NCPs
Example 12 — Basic With Enhanced Stability
Check for NCPs

If you enable the enhanced stability check for NCPs using “set_stability_check
-sim_capture_procedures”, the report_gates output format looks slightly different. Notice that
for the “(cap)” column of the stability report below, the tool presents two simulation values
separated with a tilde character (~). The first value is the value at the beginning of capture, and
the second value is the value at the end of capture. The tool determines these values by taking
the common value among all NCP simulation values. Because different NCPs can be of
different length in sequence, the tool uses the tilde separator to skip the events in between in
order to highlight only the first and last value.
There is only one exception to the display of the tilde separator, which is when the simulation is
a constant 1 or 0 among all NCP cycles. Then instead of showing the tilde separator, the middle
value is the same constant value (1 or 0). The first and last value is usually of the most interest
when debugging stability analysis.

In the following alteration to the basic example on page 780, the tool is already invoked on the
design, and you enter the following commands:

add_clocks 0 clk1 clk2 reset

add_scan_groups grp1 scan1.testproc

add_scan_chains c0 grp1 scan_in1 scan_out1

add_input_constraints D -c0

set_gate_report drc_pattern state_stability

set_stability_check -sim_capture_procedures on // enables more detailed analysis

set_system_mode analysis

report_gates A B C D E

...
// (ts)(ld)(shift)(cap)(stbl)
// A O (1)(1)(111~1)(X~X)(X)
// B O (0)(1)(111~1)(X~X)(X)
// C O (0)(1)(000~0)(X~X)(X)
// D O (0)(0)(000~0)(0~0)(0)
// E O (0)(0)(000~0)(X~X)(X)
Tessent™ Scan and ATPG User’s Manual, v2022.4796

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix C
Tessent Shell Batch Jobs

You can use Tessent Shell in either an interactive or non-interactive manner. You conduct a tool
session interactively by entering the commands manually, or the session can be completely
scripted and driven using a dofile. This non-interactive mode of operation enables the entire
session to be conducted without user interaction. This method of using Tessent Shell can be
further expanded to enable the session to be scheduled and run as a true batch or cron job. This
appendix focuses on the features of Tessent Shell that support its use in a batch environment.
Commands and Variables for the dofile . 797
Command Line Options . 800

Scheduling a Batch Job for Running Later . 800

Commands and Variables for the dofile
The following shell script invokes Tessent Shell and then runs a dofile that sets the context to
“patterns -scan,” reads a design, and reads a cell library.
The dofile also specifies an option to exit from the dofile upon encountering an error:

set_tcl_shell_options -abort_dofile_on_error exit

The exit option sets the exit code to a non-zero value if an error occurs during when the dofile
runs. This enables a shell script that launches a Tessent Shell session to control process flow
based on the success or failure of a tool operation. Note the line check for the exit status
following the line that invokes Tessent Shell.
Tessent™ Scan and ATPG User’s Manual, v2022.4 797

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell Batch Jobs
Commands and Variables for the dofile
#!/bin/csh -b

Add the pathname of the <Tessent_Tree_Path>/bin directory to the PATH
environment variable so you can invoke the tool without typing the full
pathname

setenv PATH <Tessent_Tree_Path>/bin:${PATH}

setenv DESIGN `pwd`

tessent -shell -dofile ${DESIGN}/tshell.do \

-license_wait 30 -log ${DESIGN}/`date +log_file_%m_%d_%y_%H:%M:%S`
setenv proc_status $status
if ("$proc_status" == 0) then
echo "Session was successful"
echo " The exit code is: " $proc_status
else echo "Session failed"
echo " The exit code is: " $proc_status
endif
echo $proc_status " is the exit code value."

You can use environment variables in a Tessent Shell dofile. For example, the shell script sets
the DESIGN environment variable to the current working directory. When a batch job is
created, the process may not inherit the same environment that existed in the shell environment.
To assure that the process has access to the files referenced in the dofile, the DESIGN
environment variable is used. A segment of a Tessent Shell dofile displaying the use of an
environment variable follows:

The shell script that launches this dofile sets the DESIGN environment
variable to the current working directory.
add_scan_groups g1 ${DESIGN}/procfile

add_scan_chains c1 g1 scan_in CO
...

write_faults ${DESIGN}/fault_list -all -replace

You can also use a startup file to alias common commands. To set up the predefined alias
commands, use the file .tessent_startup (located by default in your home directory). For
example:

alias save_my_pat write_patterns $1/pats.v -$2 -replace

The following dofile segment displays the use of the alias defined in the .tessent_startup file:

The following alias is defined in the .tessent_startup file

save_my_pat $DESIGN verilog

Tessent™ Scan and ATPG User’s Manual, v2022.4798

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell Batch Jobs
Commands and Variables for the dofile
Another important consideration is to exit in a graceful manner from the dofile. This is required
to assure that Tessent Shell exits instead of waiting for additional command line input.

The following command terminates the Tessent Shell dofile.

exit -force
Tessent™ Scan and ATPG User’s Manual, v2022.4 799

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell Batch Jobs
Command Line Options
Command Line Options
Several Tessent Shell command line options are useful when running Tessent Shell as a batch
job. One of these options is the -LICense_wait option, which sets a limit for retrying license
acquisition after you set a context. The default is no time limit for a license.
If Tessent Shell is unable to obtain a license after the specified number of retries, the tool exits.
An example of the Tessent Shell invocation line with this option follows:

% tessent -shell-dofile tshell.do -license_wait 30 \
-log ${DESIGN}/`date +log_file_%m_%d_%y_%H:%M:%S`

Another item of interest is the logfile name created using the Linux “date” command for each
Tessent Shell run. The logfile is based on the month, day, year, hour, minute, and second that
the batch job was launched. An example of the logfile name that would be created follows:

log_file_05_30_12_08:42:37

Scheduling a Batch Job for Running Later. 800

Scheduling a Batch Job for Running Later
You can schedule a batch job using the Linux at or cron command. For more information about
using either of these commands, use the Linux man command.
Tessent™ Scan and ATPG User’s Manual, v2022.4800

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix D
Net Pair Identification With Calibre for

Bridge Fault Test Patterns

You can use the ATPG tool to identify a list of net pairs that should be targeted for the bridging
fault model and generated scan patterns. For complete information, refer to the “Bridge Fault
Test Pattern Generation Flow” section of the Calibre Solutions for Physical Verification manual
in your Calibre software tree or Support Center.
These sections cover the specifics of the bridge fault model.

The Static Bridge Fault Model . 801
Four-Way Dominant Fault Model . 802
Top-level Bridging ATPG . 802
Incremental Multi-Fault ATPG . 803
The Bridge Parameters File . 805

The Static Bridge Fault Model
Certain pairs of nets in a design have specific characteristics that make them vulnerable to
bridging. The static bridge fault model is used by the ATPG tool to test against potential bridge
sites (net pairs) extracted from the design. You can load the bridge sites from a bridge definition
file or from the Calibre query server output file.
For more information, see “Net Pair Identification With Calibre for Bridge Fault Test Patterns”
on page 801.

This model uses a 4-Way Dominant fault model that works by driving one net (dominant) to a
logic value and ensuring that the other net (follower) can be driven to the opposite value.

Let sig_A and sig_B be two nets in the design. If sig_A and sig_B are bridged together, the
following faulty relationships exist:

• sig_A is dominant with a value of 0 (sig_A=0; sig_B=1/0)

• sig_A is dominant with a value of 1 (sig_A=1; sig_B=0/1)

• sig_B is dominant with a value of 0 (sig_B=0; sig_A=1/0)

• sig_B is dominant with a value of 1 (sig_B=1; sig_A=0/1)
Tessent™ Scan and ATPG User’s Manual, v2022.4 801

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Pair Identification With Calibre for Bridge Fault Test Patterns
Four-Way Dominant Fault Model
By default, the tool creates test patterns that test each net pair against all four faulty
relationships.

Four-Way Dominant Fault Model
The ATPG tool uses the 4-Way Dominant fault model to target net pairs for bridging. The
4-Way Dominant fault model works by driving a net to a dominant value (0 or 1) and ensuring
that the follower can be driven to the opposite value.
A simplified bridging fault model is adopted by defining the target net pairs as a set of stuck-at
faults. Each of the net pairs targeted by the bridge fault model is classified as dominant or
follower. A dominant net forces the follower net to take the same value as the dominant net in
the faulty circuit when the follower has an opposite logical value than the dominant net.

Let A and B be two gates with output signals sig_A and sig_B. When sig_A and sig_B are
bridged together, four faulty relationships can be defined:

• sig_A has dominant value of 0 (sig_A=0; sig_B s@0)

• sig_A has dominant value of 1 (sig_A=1; sig_B s@1)

• sig_B has dominant value of 0 (sig_B=0; sig_A s@0)

• sig_B has dominant value of 1 (sig_B=1; sig_A s@1)

By default, the ATPG tool targets each net pair using these four faulty relationships by
generating patterns that drive one net to the dominant value and observing the behavior of the
other (follower) net.

Top-level Bridging ATPG
This flow generates patterns for a list of net pairs generated by another tool such as Calibre.
The following input files are used in this flow:

• Gate-level Netlist

• ATPG Library

• Bridge Definition File or Calibre Server output file, here: from_calibre.sites
Tessent™ Scan and ATPG User’s Manual, v2022.4802

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Pair Identification With Calibre for Bridge Fault Test Patterns
Incremental Multi-Fault ATPG
The following commands are specific to bridging fault ATPG and should be issued once in
analysis mode:

set_fault_type bridge
// FAULT TYPE SET TO 4WAY_DOM
read_fault_sites from_calibre.sites
// ALL BRIDGE NET PAIRS ARE LOADED
add_faults all
// GENERATE A LIST OF FAULTS BASED ON THE LOADED BRIDGE NET PAIRS
create_patterns
// GENERATES PATTERNS
write_patterns bridge_patterns.ascii
exit

The set_fault_type command with the bridge argument is the only specification needed for
generation of patterns that target the 4-Way Dominant fault model. The read_fault_sites
command is used to load the list of net pairs that should be targeted for the bridging fault model.

Incremental Multi-Fault ATPG
The following flow generates patterns for a list of net pairs generated by another tool such as
Calibre. After the initial ATPG for bridging, you can generate patterns for other fault models
such as stuck-at. The flow fault simulates each pattern set for other fault models and generates
additional patterns to target the remaining faults.
The following input files are used in this flow:

• Gate-level Netlist

• ATPG Library

• Bridge Definition File or Calibre Server output file, here: from_calibre.sites
Tessent™ Scan and ATPG User’s Manual, v2022.4 803

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Pair Identification With Calibre for Bridge Fault Test Patterns
Incremental Multi-Fault ATPG
The following example shows generation of patterns for bridging faults followed by stuck-at
faults. The following commands should be issued once in analysis mode:

set_fault_type bridge
// fault type set to 4way_dom
read_fault_sites from_calibre.sites
// all bridge net pairs are loaded
create_patterns
//generate a list of faults based on the loaded bridge net pairs,
// then generate patterns
write_patterns bridge_patterns.ascii
set_fault_type stuck
add_faults all
// adds all stuck-at faults
read_patterns bridge_patterns.ascii
// load external patterns and add to internal patterns
simulate_patterns
// simulate bridge patterns for stuck-at faults
report_statistics
set_fault_protection on
// protect stuck-at faults that were detected by bridge patterns
reset_state
// remove bridge patterns that were effective in detecting stuck-at faults
create_patterns
// generate new patterns for remaining faults
write_patterns stuck_patterns.ascii
exit

The next example shows generation of patterns for stuck-at faults followed by bridging faults.
The following commands should be issued once in analysis mode:

set_fault_type stuck
create_patterns
// adds all stuck-at faults and generates patterns
write_patterns stuck_patterns.ascii
set_fault_type bridge
// fault type set to 4way_dom
read_fault_sites from_calibre.sites
// all bridge net pairs are loaded
read_patterns stuck_patterns.ascii
simulate_patterns
// simulate stuck-at patterns for bridge faults
write_faults bridge_faults.detected -class DT
// save detected bridge faults to file
create_patterns
reset_state
// remove stuck-at patterns that were effective in detecting bridge faults
read_faults bridge_faults.detected -retain
// load detected bridge faults and retain detection status
create_patterns
// generate new patterns for remaining undetected bridge faults
write_patterns patterns_bridge.ascii
exit
Tessent™ Scan and ATPG User’s Manual, v2022.4804

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Pair Identification With Calibre for Bridge Fault Test Patterns
The Bridge Parameters File
The Bridge Parameters File
The bridge definition is a text file that you automatically generate using the Extraction Package.
This section provides information for interpreting the entries in the bridge parameters file.

Format
Normally, you do not modify the generated bridge parameters file. If you do modify this file,
then you must adhere to the following syntax:

• Precede each line of comment text with a pair of slashes (//).

• Do not modify keywords. They can be in upper-or lowercase.

• Use an equal sign to define a value for a keyword.

• Enclose all string values in double quotation marks (" ").

• Bridge declarations must be enclosed in braces ({}).

• A semicolon (;) must separate each entry within the bridge declaration.

Parameters
Use the keywords described in the following table to create a bridge definition file. Keywords
cannot be modified and can be in upper- or lowercase.

Table D-1. Bridge Definition File Keywords
Keyword (s) Usage Rules
VERSION Required. Used to specify the version of the bridge definition file and

must be declared before any bridge entries. Must be a real number or
integer written in non-scientific format starting with 1.1.

FAULT_TYPE Optional. Used to indicate what type of fault is declared by the FAULTS
keyword. Must be a string value enclosed in quotation marks (" ").

BRIDGE Required. Used to start a bridge entry.
NET1
NET2

Required. Identifies the net/pin pair for the bridge entry. Specifies the
regular or hierarchical net/pin pathname to gate(s). Use the following
guidelines when using these keywords:

• Declare either net or pin value pairs.
• Net/Pin pairs are the first two items declared in the bridge entry.
• Net/Pin pathnames are string values and should be enclosed in

quotation marks (" ").
• A net can be used in multiple bridge entries.
• Nets can be defined in any order.
Tessent™ Scan and ATPG User’s Manual, v2022.4 805

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Pair Identification With Calibre for Bridge Fault Test Patterns
The Bridge Parameters File
FAULTS Optional. Provides a fault classification for each of the four components
of the 4-way bridge fault model. Four classifications must be specified
in a comma-separated list enclosed in braces ({}). You can use any of
the following 2-digit codes for each of the four components:

• UC (uncontrolled)
• UO (unobserved)
• DS (det_simulation)
• PU (posdet_untestable)
• PT (posdet_testable)
• TI (tied)
• BL (blocked)
• AU (ATPG_untestable)
• NF (directs the tool to nofault this component of the bridge)

Using fault classifications, you can filter and display the fault types you
need. For more information on fault classes and codes, see “Fault
Classes” on page 76.

NAME Optional. A unique string, enclosed in quotation marks (" "), that
specifies a name for the bridge.

DISTANCE1 Optional. Real number that specifies the distance attribute in microns
(um) for the bridge entry.

PARALLEL_RUN 1 Optional. Real number that specifies the parallel_run attribute in
microns (um) for the bridge entry.

LAYER 1,2 Optional. String that specifies the layer attribute for the bridge entry.
Must be enclosed in quotation marks (" ").

WEIGHT 1,2 Optional. Real number that specifies the weight attribute for the bridge
entry.

TYPE 1,2 Optional. 3-, 4-, or 5-character code that specifies a type identification
for the bridge entry. Must be enclosed in quotation marks (" "). Use one
of the following codes:

• S2S — Side-to-side
• SW2S — Side-Wide-to-Side: same as S2S but at least one of the two

signal lines is a wide metal line
• S2SOW — Side-to-Side-Over-Wide: same as S2S, but the bridge is

located over a wide piece of metal in a layer below
• C2C — Corner-to-Corner
• V2V — Via-to-Via: an S2S for vias
• VC2VC — Via-Corner-to-Via-Corner
• EOL — End-of-Line: the end head of a line faces another metal line

Table D-1. Bridge Definition File Keywords (cont.)
Keyword (s) Usage Rules
Tessent™ Scan and ATPG User’s Manual, v2022.4806

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Pair Identification With Calibre for Bridge Fault Test Patterns
The Bridge Parameters File
Examples
The following example shows the format of the bridge definition file. The keywords used in this
file are case insensitive.

// Any string after // is a comment that the tool ignores.
VERSION 1.1// An optional item that declares the version of
 // the bridge definition file. VERSION must be
 // defined before any bridge entry. The version
 // number starts from 1.0.
FAULT_TYPE = BRIDGE_STATIC_4WAY_DOM
 // An optional header that indicates the fault type
// to be declared by keywords FAULTS in
 // bridge body. Currently, the only valid fault type
 // is BRIDGE_STATIC_4WAY_DOM
BRIDGE {// Define the bridge entry body and can be repeated
 // as many times as necessary.
NET1 = NET_NAME; // Defines the first net name.
NET2 = NET_NAME; // Defines the second net name.
// NET1 and NET2 must be defined in each bridge
// entry and they must be declared before any other
// items defined in the bridge entry body.
FAULTS = {FAULT_CATEGORY_1, FAULT_CATEGORY_2, FAULT_CATEGORY_3,
FAULT_CATEGORY_4};
 // An optional item that defines the fault
 // classes for each of the four faulty

// relationships. All four fault categories must be
 // declared and must be in the order shown in the
 // previous section. Examples of fault classes are
 // UC, UO, DS, DI, PU, // PT, TI, BL and AU. A new
 // fault class NF (No Fault) can be used to exclude
 // any specific faulty relationship for ATPG.
NAME = STRING; // An optional string specifying the name
// of the bridge.
PARALLEL_RUN = floating number; // An optional item specifying the
// parallel run length of the nets of the bridge.
DISTANCE = floating number; // An optional item specifying the distance
// of the nets of the bridge.
WEIGHT = floating number; // An optional item specifying a weight assigned
// to the bridge.
LAYER = LAYER_NAME; // An optional item specifying the name of the
// layer the bridge is in.
} // End of bridge body

The items DISTANCE, PARALLEL_RUN, WEIGHT, and LAYER are collectively referred to
as attributes of the bridge. For ATPG purposes, these attributes are ignored, and by default not
reported. You have to specify the -attribute option to according commands to see them. The unit
of length used for DISTANCE and PARALLEL_RUN is um (10^-6) meters.

1. This keyword is not used by the software to define any specific value. However, you can use it to specify
a value that the read_fault_sites command can filter on.
2. You can display a histogram of the number of equivalent classes of bridges based on either their layer,
weight, or type attribute using the report_fault_sites or the report_fault command.
Tessent™ Scan and ATPG User’s Manual, v2022.4 807

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Pair Identification With Calibre for Bridge Fault Test Patterns
The Bridge Parameters File
Tessent™ Scan and ATPG User’s Manual, v2022.4808

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix E
Getting Help

There are several ways to get help when setting up and using Tessent software tools. Depending
on your need, help is available from documentation, online command help, and Siemens EDA
Support.
The Tessent Documentation System . 809
Global Customer Support and Success . 810

The Tessent Documentation System
At the center of the documentation system is the InfoHub that supports both PDF and HTML
content. From the InfoHub, you can access all locally installed product documentation, system
administration documentation, videos, and tutorials. For users who want to use PDF, you have a
PDF bookcase file that provides access to all the installed PDF files.
For information on defining default HTML browsers, setting up browser options, and setting the
default PDF viewer, refer to the “Documentation Options” in the Mentor Documentation
System manual.

You can access the documentation in the following ways:

• Shell Command — On Linux platforms, enter mgcdocs at the shell prompt or invoke a
Tessent tool with the -manual invocation switch.

• File System — Access the Tessent InfoHub or PDF bookcase directly from your file
system, without invoking a Tessent tool. For example:

HTML:

firefox <software_release_tree>/doc/infohubs/index.html

PDF:

acroread <software_release_tree>/doc/pdfdocs/_tessent_pdf_qref.pdf

• Application Online Help — You can get contextual online help within most Tessent
tools by using the “help -manual” tool command. For example:

> help dofile -manual

This command opens the appropriate reference manual at the “dofile” command
description.
Tessent™ Scan and ATPG User’s Manual, v2022.4 809

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Getting Help
Global Customer Support and Success
Global Customer Support and Success
A support contract with Siemens Digital Industries Software is a valuable investment in your
organization’s success. With a support contract, you have 24/7 access to the comprehensive and
personalized Support Center portal.
Support Center features an extensive knowledge base to quickly troubleshoot issues by product
and version. You can also download the latest releases, access the most up-to-date
documentation, and submit a support case through a streamlined process.

https://support.sw.siemens.com

If your site is under a current support contract, but you do not have a Support Center login,
register here:

https://support.sw.siemens.com/register
Tessent™ Scan and ATPG User’s Manual, v2022.4810

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

https://support.sw.siemens.com
https://support.sw.siemens.com/register

Index
Index

— A —
Abort limit, 362
Aborted faults, 362

changing the limits, 362
reporting, 362

Ambiguity
edge, 403
path, 402

ASCII WGL format, 616
ASIC Vector Interfaces, 31
ATPG

applications, 43
basic operations, 329
constraints, 351
default run, 358
defined, 42
for IDDQ, 369
for path delay, 395
for transition fault, 373
full scan, 43
function, 352
inputs and outputs, 323
MacroTest, using, 487
non-scan cell handling, 137
pattern types, 326
process, 350
setting up faults, 343
test cycles, 326
timing model, 326
tool flow, 321

ATPG commands
add_cell_constraints, 341
add_clocks, 340
add_false_paths, 389
add_faults, 343, 348
add_input_constraints, 330, 332
add_lists, 345
add_nofaults, 342
add_output_masks, 332

add_primary_inputs, 330
add_scan_chains, 341
add_scan_groups, 340
add_slow_pad, 335
add_tied_signals, 334
analyze_atpg_constraints, 353
analyze_bus, 336
analyze_fault, 398
analyze_graybox, 699
analyze_restrictions, 353
create_flat_model, 107
create_patterns, 447
delete_atpg_constraints, 353
delete_atpg_functions, 353
delete_false_paths, 389
delete_fault_sites, 398
delete_faults, 348
delete_input_constraints, 330, 335
delete_multicycle_paths, 389, 395
delete_primary_inputs, 331
delete_primary_outputs, 331
delete_scan_chains, 341
delete_scan_groups, 340
delete_tied_signals, 334
read_fault_sites, 398
read_patterns, 344
report_aborted_faults, 362
report_atpg_constraints, 353
report_atpg_functions, 354
report_bus_data, 336
report_cell_constraints, 342
report_clocks, 340
report_false_paths, 389
report_fault_sites, 398
report_faults, 344, 348, 362
report_gates, 337
report_input_constraints, 330, 336
report_nofaults, 342
report_nonscan_cells, 141
report_paths, 398
811Tessent™ Scan and ATPG User’s Manual, v2022.4

report_primary_inputs, 331
report_primary_outputs, 331
report_scan_chains, 341
report_scan_groups, 341
report_statistics, 344
report_tied_signals, 334
reset_state, 346
run, 359
set_abort_limit, 362
set_atpg_timing, 450, 453
set_bus_handling, 336
set_capture_clock, 344
set_checkpointing_options, 357
set_clock_restriction, 341
set_contention_check, 336
set_driver_restriction, 336
set_fault_mode, 349
set_fault_type, 343, 347, 399
set_learn_report, 336
set_list_file, 345
set_net_dominance, 337
set_net_resolution, 337
set_pattern_buffer, 336
set_pattern_type, 141, 327, 328, 377
set_possible_credit, 350
set_random_clocks, 344
set_random_patterns, 344
set_system_mode, 330, 342
set_tied_signals, 334
set_z_handling, 337
simulate_patterns, 344
write_fault_sites, 399
write_faults, 349
write_patterns, 362

ATPG tool, definition of, 29
At-speed test, 372

— B —
Batch jobs, 797
Bidirectional pin

as primary input, 331
as primary output, 331

Boundary scan, defined, 34
Bridge fault testing

creating the test set, 387
Bus

float, 137
Bus contention, 137

checking during ATPG, 336
fault effects, 337

— C —
Capture handling, 338
Capture point, 55
Capture procedure

seeNamed capture procedure
Chain test, 614
Checkpointing example, 357
Checkpoints, setting, 357
Clock

capture, 340, 480
list, 340
off-state, 340
scan, 340

Clock procedure, 326
Clocked sequential test generation, 140
Combinational loop, 128, 129, 130, 131, 132,

133
cutting, 129

Constant value loops, 129
Constraints

ATPG, 351
pin, 334
scan cell, 341

Contention, bus, 117
Copy cell or element, 96
Copy, scan cell element, 96
Coupling loops, 132
CPF commands, 648
create_patterns, 447
Creating a delay test set, 372
Creating patterns

default run, 358
Cycle count, 615
Cycle test, 614

— D —
Data capture simulation, 338
Debugging simulation mismatches, 521
Defect, 45
Delay test coverage, 444
812 Tessent™ Scan and ATPG User’s Manual, v2022.4

Design Compiler, handling pre-inserted scan
cells, 233

Design flattening, 107
Design flow, delay test set, 372
Design flow, EDT

tasks and products, 174
Design rules checking

blocked values, 121
bus keeper analysis, 120
bus mutual-exclusivity, 117
clock rules, 120
constrained values, 121
data rules, 119
extra rules, 121
forbidden values, 121
general rules, 116
introduction, 116
procedure rules, 116
RAM rules, 120
scan chain tracing, 118
scannability rules, 121
shadow latch identification, 118
transparent latch identification, 119

Design-for-Test, defined, 30
Deterministic test generation, 42
DFF modeling, 355
Differential scan input pins, 613
Distributed ATPG, troubleshooting SSH, 548

— E —
Edge ambiguity, 403
EMPTY, 31, 37, 39, 90, 113, 116, 141, 149,

150, 329, 377, 413, 419
Existing scan cells

handling, 233
External logic location flow

tasks and products, 174
External pattern generation, 43
Extra, scan cell element, 96

— F —
Fault

aborted, 362
classes, 76
collapsing, 50
detection, 73

no fault setting, 342
representative, 50, 90
simulation, 343
small delay, 439
undetected, 362

Fault grading
in multiple fault model flow, 426
pattern generation and, 426

Fault models
path delay, 55

Fault sampling, 357
Feedback loops, 128
Flattening, design, 107
Frame, simulation, 355
Full scan, 36, 215

— G —
Gate duplication, 131
Good simulation, 345

— H —
Hierarchical instance, definition, 107
Hold_pi, 453

— I —
IDDQ testing, 369

creating the test set, 369
methodologies, 46
test pattern formats, 612
vector types, 47

Incomplete designs, 150
Instance, definition, 107
Internal scan, 33, 34

— L —
Latches

handling as non-scan cells, 137
modeling, 355
scannability checking of, 127

Launch point, 55
Learning analysis, 113

dominance relationships, 115
equivalence relationships, 113
forbidden relationships, 115
implied relationships, 114
logic behavior, 113

Line holds, 77, 78
813Tessent™ Scan and ATPG User’s Manual, v2022.4

Loop count, 615
Loop cutting, 129

by constant value, 129
by gate duplication, 131
for coupling loops, 132
single multiple fanout, 130

Loop handling, 128

— M —
Macros, 47
MacroTest, 487

basic flow, 487, 488, 489
capabilities, summary, 487
examples, 502

basic 1-Cycle Patterns, 502
leading&trailing edge observation, 502
synchronous memories, 502

macro boundary
defining, 494

with instance name, 494
with trailing edge inputs, 496
without instance name, 495

reporting&specifying observation sites,
496

overview, 487
qualifying macros, 490
recommendations for using, 500
test values, 498
when to use, 491

Manufacturing defect, 45
Mask_po, 453
Masking primary outputs, 334
Master cell or element, 94
Master, scan cell element, 94
Memories, testing, 487
Module, definition, 108
MTFI, 687

— N —
Named capture procedure, 405

internal and external mode of, 406
on-chip clocks and, 406

No fault setting, 342
Non-scan cell handling, 137

ATPG, 137
clocked sequential, 140

sequential transparent, 139
Non-scan sequential instances

reporting, 253

— O —
Off-state, 100, 232, 340
One-shot circuit, 453
Output mask, 453

— P —
Parallel scan chain loading, 610
Partition scan, 37, 215
Path ambiguity, 402
Path definition file, 399
Path delay testing, 55, 395

basic procedure, 403
limitations, 404
multiple fault models and

flow, 426
path ambiguity, 402
path definition checking, 402
path definition file, 399
patterns, 395
robust detection, 397
transition detection, 397

Path sensitization, 74
Pattern formats

binary, 616
text, 613
Verilog, 616
WGL (ASCII), 616

Pattern generation
deterministic, 42
external source, 43
multiple fault models and

flow, 426
Performing ATPG, 350
Pin constraints, 334
plusargs, Verilog, 512
Possible-detect credit, 80, 349
Possible-detected faults, 80
power-aware ATPG procedure, 650
power-aware overview, 646
Pre-inserted scan cells

handling, 233
Primary inputs
814 Tessent™ Scan and ATPG User’s Manual, v2022.4

bidirectional pins as, 331
constraining, 334
constraints, 334

Primary outputs
bidirectional pins as, 331
masking, 334

Primitives, simulation, 109
Pulse generators

gate reporting for, 785
introduction, 142

— R —
RAM

ATPG support, 145
comm on read and clock lines, 147
common write and clock lines, 147
related commands, 148
rules checking, 149
sequential mode, 146
testing, 144

Remote, 94
report_graybox_statistics, 699
ROM

ATPG support, 145
related commands, 148
rules checking, 149
testing, 144

— S —
Sampling, fault, 357
Saving patterns, serial versus parallel, 610
Scan

basic operation, 35
clock, 35

Scan and wrapper test structures, 215
Scan cell

concepts, 93
constraints, 341
existing, 233
pre-inserted, 233

Scan cell elements
copy, 96
extra, 96
master, 94
remote, 94
shadow, 95

Scan chains
definition, 97
parallel loading, 610
serial loading, 612
serial versus parallel loading, 610
specifying, 341

Scan clocks, 99, 232
specifying, 232, 340

Scan design
simple example, 35

Scan design, defined, 33
Scan groups, 97, 340
Scan related events, 597
Scan sub-chain, 610
Scan test, 614
Scannability checks, 127
SDF file, 450
Sequential element modeling, 355
Sequential loop, 128, 134
Sequential transparent latch handling, 139
Serial scan chain loading, 612
set_atpg_timing, 450, 453
Shadow, 95
Shadow cell or element, 95
Simulating captured data, 338
Simulation data formats, 613
Simulation formats, 608
Simulation frame, 355
Simulation mismatches, debugging, 521
Simulation primitives, 109

AND, 110
BUF, 109
BUS, 111
DFF, 110
INV, 110
LA, 110
MUX, 110
NAND, 110
NMOS, 111
NOR, 110
OR, 110
OUT, 113
PBUS, 111
RAM, 112
ROM, 112
815Tessent™ Scan and ATPG User’s Manual, v2022.4

STFF, 110
STLA, 110
SW, 111
SWBUS, 111
TIE gates, 110
TLA, 110
TSD, 111
TSH, 111
WIRE, 111
XNOR, 110
XOR, 110
ZHOLD, 111

Single multiple fanout loops, 130
Sink gates, 339
Slack, 439
Small delay fault model, 439
Source gates, 339
SSH protocol

troubleshooting, 548
Static-inactive path, 453
Structural loop, 128

combinational, 128
sequential, 128

Structured DFT, 30
System-class

non-scan instances, 236
scan instances, 236

— T —
Te ssent Core Description File (TCD), 567
Tessent Core Description File (TCD), 303

top-level, 572
Tessent FastScan, available in Tessent Shell,

29
Tessent Scan

features, 39
inputs and outputs, 212
invocation, 214
supported test structures, 215

Tessent Scan commands
add_clocks, 232
add_nonscan_instances, 237
delete_cell_models, 232
delete_clocks, 233
delete_nonscan_instances, 237
delete_scan_instances, 237

report_cell_models, 232
report_clocks, 233
report_control_signals, 253
report_nonscan_models, 238
report_primary_inputs, 233
report_statistics, 253
report_test_logic, 232
set_system_mode, 236

Tessent Scan, available in Tessent Shell, 29
Tessent Shell, providing ATPG and Scan

functionality, 29
Tessent TestKompress, available in Tessent

Shell, 29
Tessent Visualizer, see "Tessent Visualizer" in

the Tessent Shell User’s Manual
Test clock, 142, 229
Test logic, 127, 142, 228
Test Pattern File Format

Functional Chain Test, 635
Header_Data, 632
Scan Cell, 639
Scan Test, 636

Test patterns, 42
chain test block, 614
scan test block, 614

Test points
definition of, 216

Test procedure file
in Tessent Scan, 213

Test structures
full scan, 36, 215
partition scan, 37, 215
scan and wrapper, 215
supported by Tessent Scan, 215
test points, 216

Test types
at-speed, 48
IDDQ, 46

Test vectors, 42
Testability, 30
Testbench, Verilog, 511
Testing

memories, 487
TI TDL 91 format, 618
TIE0, scannable, 127
816 Tessent™ Scan and ATPG User’s Manual, v2022.4

TIE1, scannable, 127
Timing-aware ATPG

detection paths, 453
example, 447
limitations, 445
reducing run time, 450
setting up, 446
troubleshooting, 450

Tools used in EDT flow, 174
Toshiba TSTL2 format, 619
Transition ATPG, 444
Transition testing

basic procedures, 376
Transparent remote handling, 139
Troubleshooting

sdf file, 450
timing-aware ATPG, 450

— U —
Undetected faults, 362
UPF commands, 648
User-class

non-scan instances, 236
scan instances, 237

— V —
Verilog, 616
Verilog plusargs, 512
Verilog testbench, 511
817Tessent™ Scan and ATPG User’s Manual, v2022.4

818 Tessent™ Scan and ATPG User’s Manual, v2022.4

Third-Party Information
Details on open source and third-party software that may be included with this product are available in the
<your_software_installation_location>/legal directory.
Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

	InfoHub
	Bookcase
	Revision History ISO-26262
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Overview
	What is Design-for-Test?
	DFT Strategies

	Top-Down Design Flow With DFT

	Chapter 2 Scan and ATPG Basics
	Scan Design Overview
	About Scan Design Methodology
	About Wrapper Chains
	Test Structure Insertion With Tessent Scan

	ATPG Overview
	The ATPG Process
	Random Pattern Test Generation
	Deterministic Pattern Test Generation
	External Pattern Test Generation

	Tessent ATPG Applications
	Scan Sequential ATPG With the ATPG Tool

	Overview of Test Types and Fault Models
	Test Types
	Functional Test
	IDDQ Test
	At-Speed Test

	Fault Modeling Overview
	Test Types and Associated Fault Models
	Fault Locations
	Fault Collapsing
	Supported Fault Model Types
	Functional Testing and the Stuck-At Fault Model
	Functional Testing and the Toggle Fault Model
	IDDQ Testing and the Pseudo Stuck-At Fault Model
	At-Speed Testing and the Transition Fault Model
	At-Speed Testing and the Path Delay Fault Model

	Fault Manipulation
	Overview of Fault Manipulation
	Fault Manipulation Functionality

	About User-Defined Fault Modeling
	User-Defined Fault Modeling Usage Notes
	UDFM File Format
	Creating a User-Defined Fault Model
	Generating UDFM Test Patterns

	Multiple Detect
	Bridge Coverage Estimate

	Embedded Multiple Detect
	Fault Detection
	Fault Classes
	Untestable (UT)
	Testable (TE)
	Fault Class Hierarchy
	Fault Sub-Classes

	Fault Reporting
	Testability Calculations

	Chapter 3 Common Tool Terminology and Concepts
	Scan Terminology
	Scan Cells
	Master Element
	Remote Element
	Shadow Element
	Copy Element
	Extra Element
	Scan Chains
	Scan Groups
	Scan Clocks

	Scan Architectures
	Multi-Bit Cells

	Test Procedure Files
	Model Flattening
	Design Object Naming
	The Flattening Process
	Simulation Primitives of the Flattened Model

	Learning Analysis
	Equivalence Relationships
	Logic Behavior
	Implied Relationships
	Forbidden Relationships
	Dominance Relationships

	ATPG Design Rules Checking
	General Rules Checking
	Procedure Rules Checking
	Bus Mutual Exclusivity Analysis
	Scan Chain Tracing
	Shadow Latch Identification
	Data Rules Checking
	Transparent Latch Identification
	Clock Rules Checking
	RAM Rules Checking
	Bus Keeper Analysis
	Extra Rules Checking
	Scannability Rules Checking
	Constrained/Forbidden/Block Value Calculations

	Clock Terminology
	Programmable Clock Chopper

	Chapter 4 Testability Issues
	Synchronous Circuitry
	Asynchronous Circuitry
	Scannability Checking
	Support for Special Testability Cases
	Feedback Loops
	Structural Combinational Loops and Loop-Cutting Methods
	Structural Sequential Loops and Handling
	Redundant Logic
	Asynchronous Sets and Resets
	Gated Clocks
	Tri-State Devices
	Non-Scan Cell Handling
	Clock Dividers
	Pulse Generators
	JTAG-Based Circuits
	RAM and ROM Test Overview
	RAM/ROM Support
	RAM/ROM Support Commands
	Basic ROM/RAM Rules Checks

	Incomplete Designs

	Chapter 5 Test Point Analysis and Insertion
	What Are Test Points?
	Why You Use Test Points
	Control Points and Observe Points
	Control Points
	Observe Points

	Test Point Insertion Flows
	Analyze and Insert Test Points in a Pre-Scan Design
	Analyze and Insert Test Points in a Post-Scan Design
	How to Insert Test Points and Perform Scan Stitching Using Third-Party Tools
	How to Insert Test Points for DC or Genus
	How to Create a Test Points and OST Scan Insertion Script for DC or Genus

	Test Point Usage Scenarios
	Test Points for ATPG Pattern Count Reduction
	Test Points for Reducing Pattern Count
	Requirements for Test Point Analysis and Insertion
	Specify Test Point Type
	Inserting Test Points When Using the EDT Skeleton IP Flow

	Test Points for LBIST Test Coverage Improvement
	Test Point Analysis and Insertion Step Overview
	Test Point Analysis With Small LBIST Pattern Counts
	Test Coverage Reporting During Test Point Analysis for LogicBIST Coverage Improvement
	Incremental Relevant Test Coverage Report
	False Paths and Test Coverage
	Fault Classes and Fault Analysis
	“Blocked by xbounding” Faults
	Uncontrollable/Unobservable Faults
	Example Test Report

	Test Points for Hybrid TK/LBIST Design
	Improving Test Coverage and Pattern Count Reduction

	Test Points for ATPG Test Coverage Improvement
	Test Points for Improving the Test Coverage of Deterministic Patterns

	Test Points Special Topics
	Control Point and Observe Point Enable Signal Handling
	Test Point Analysis With Multiple Power Domains
	Test Point Analysis Multicycle and False Path Handling
	Test Point Analysis Critical Path Handling
	PrimeTime and Tempus Scripts for Preventing Test Points on Critical Paths
	PrimeTime Script Usage
	Tempus Script Usage

	User-Defined Test Points Handling
	Test Point Deletion
	delete_test_points Command
	Modifying the Test Point Dofile

	Back to Back Command Handling
	Static Timing Analysis for Test Points
	Test Points and At-Speed Testing
	Clock Selection for Test Point Flops
	Example of Test Point Insertion With Custom Prefix for Inserted Logic
	Test Point Sharing

	Chapter 6 Internal Scan and Test Circuitry Insertion
	Introduction to Tessent Scan
	Tessent Scan Inputs and Outputs
	Invoking Tessent Scan
	Example Dofile Using Tessent Scan
	Test Structures Supported by Tessent Scan

	Tool Terminology and Concepts
	Scan Element
	Scan Chain Family
	Scan Mode
	Unwrapped Cores Versus Wrapped Cores
	Pre-Existing Scan Segments
	Verification of Pre-Existing Scan Segments
	Pre-Existing Scan Chains

	Preparation for Test Structure Insertion
	Test Logic Insertion
	User Clock Signals
	How to Specify Existing Scan Information
	How to Handle Existing Boundary Scan Circuitry
	How to Run Rules Checking
	How to Manually Include and Exclude Cells for Scan
	Cell Library Models With Multiple Scan Paths
	Automatic Recognition of Existing Shift Registers
	Scan Cell Identification and Reporting
	DFT Test Logic Attributes no_control_point and no_observe_point

	Multi-Mode Chains
	Introduction to Multi-Mode Chains
	Multi-Mode Gating Logic
	Multi-Mode Scan Insertion
	Chain Port Sharing
	Population Control

	Scan Insertion Flows
	How to Report Scannability Information
	Scan Insertion Flow Steps
	How to Control Scan Insertion
	Scan Insertion for Unwrapped Core
	Scan Insertion for Wrapped Core
	Scan Insertion at the Parent Level
	Dedicated Wrapper Cell Placement After Loading UPF/ CPF File
	Limiting Core Power Usage During External Test

	Wrapper Cells Analysis
	Wrapper Chains Generation
	Dedicated and Shared Wrapper Logic
	Clock Selection for Dedicated Wrapper Cells
	Dedicated Wrapper Cell Placement
	Identification of Clock and Reset Ports
	Tessent Instruments With keep_active_during_scan_test

	Clock Gaters and Scan Insertion
	Types of Clock Gaters
	Identification of Clock Gaters
	Identification of Pin Functions
	Fixing Clock Gaters
	Clock Gaters and Wrapper Analysis

	Test Point and Scan Insertion
	Scan Enable Pipelining
	Introduction to Scan Enable Pipelining
	Scan Enable Pipelining Scenarios

	Chapter 7 Running ATPG Patterns
	Running ATPG Patterns After Tessent Scan
	Running ATPG Patterns Without Tessent Scan
	Core Mapping for ATPG Process Overview
	Core Mapping Examples
	Limitations of Core Mapping for ATPG

	Chapter 8 Test Pattern Generation
	ATPG Basic Tool Flow
	ATPG Tool Inputs and Outputs
	ATPG Process Overview
	Basic ATPG Process
	ATPG Tool Timing Model
	ATPG Tool Pattern Types

	ATPG Procedures
	Tool Invocation
	Circuit Behavior Setup
	Equivalent or Inverted Primary Input Definition
	Primary Inputs and Outputs Addition
	Bidirectional Pins as Primary Inputs or Outputs
	How to Tie Undriven Signals
	Primary Input Constraints
	How to Mask Primary Outputs
	Slow Pad Addition

	Tool Behavior Setup
	Bus Contention Checks
	Multi-Driven Net Behavior Setup
	Z-State Handling Setup
	The ATPG Learning Process
	Capture Handling Setup
	Transient Detection Setup

	Scan Data Definition
	Scan Clocks Definition
	Scan Groups Definition
	Scan Chains Definition
	Clock Restriction Setup
	How to Add Constraint to Scan Cells
	Nofault Settings

	Rules Checks and Violations
	Good/Fault Simulation With Existing Patterns
	Fault Simulation
	Good-Machine Simulation

	Random Pattern Simulation
	Tool Setup for Random Pattern Simulation
	Faults List Addition
	Running Random Pattern Simulation

	Fault Information Setup for ATPG
	Tool Setup for ATPG
	Faults List Creation
	Faults Addition to an Existing List
	How to Load Faults From an External List
	How to Write Faults to an External File
	Fault Sampling Percentage Setup
	Fault Mode Setup
	Possible-Detect Credit Setup

	ATPG Operations
	ATPG Setup
	ATPG Constraints Definition
	Power and Ground Ports Exclusion From the Pattern Set
	ATPG Limits Setup
	Event Simulation for DFFs and Latches
	Flattened Model Saves Time and Memory
	Pattern Buffer Area Creation
	Fault Sampling to Save Processing Time
	Checkpointing Setup

	Pattern Creation With Default Settings
	Approaches for Improving ATPG Efficiency
	Reasons for Low Test Coverage
	Analysis of a Specific Fault
	Aborted Faults Report
	Abort Limit Setup

	How to Save the Test Patterns

	Low-Power ATPG
	Low-Power Capture
	Low-Power Shift
	Weighted Switching Activity
	Setting Up Low-Power ATPG

	IDDQ Test Set Creation
	IDDQ Test Set Generation
	When to Perform the Measures
	Pattern Generation
	Running ATPG for IDDQ

	Leakage Current Checks

	Delay Test Set Creation
	Transition Delay Test Set Creation
	Transition Fault Detection
	Generating a Transition Test Set
	Timing for Transition Delay Tests
	Transition Fault Detection and Multiple Clocks
	Pattern Failures Due to Timing Exception Paths
	Types of Timing Exception Paths
	Timing Exception Paths From an SDC File
	Does the SDC File Contain Valid SDC Information?
	Manual Definition of False Paths

	SDC Timing Exception Effects
	Debugging Test Coverage With Timing Exceptions
	Path Delay Test Set Creation
	Path Delay Fault Detection
	The Path Definition File
	Path Definition Checks
	Generating a Path Delay Test Set
	Path Delay Testing Limitations

	At-Speed Test With Named Capture Procedures
	Support for On-Chip Clocks (PLLs)
	Internal and External Modes Definition
	Named Capture Procedures Display
	Achieving the Test Coverage Goal Using Named Capture Procedures
	Debugging Low Test Coverage Using Pre-Defined Named Capture Procedures
	At-speed Fault Simulation Clocking Considerations
	Internal Signals and Clocks
	How to Save Internal and External Patterns

	Mux-DFF Example
	Support for Internal Clock Control
	Per-Cycle Clock Control
	Sequence Clock Control
	Capture Cycle Determination
	Applying Internal Clock Control

	Generating Test Patterns for Different Fault Models and Fault Grading
	Timing-Aware ATPG
	Slack Calculation
	Synopsys Design Constraint Derived Clock Timing
	Delay Test Coverage Calculation
	Timing-Aware ATPG Versus Transition ATPG
	Timing-Aware ATPG Limitations
	Inaccuracies in Timing Calculations
	Running Timing-Aware ATPG
	Troubleshooting Topics
	Run Time Reduction for Timing-Aware ATPG
	Errors and Warnings While Reading SDF Files
	Warnings During ATPG
	Actual Slack Smaller Than Tms

	Bridge and Open, and Cell Neighborhood Defects UDFM Creation
	Interconnect Bridge and Open Extraction and UDFM Creation
	Viewing Extracted Bridge and Open Defects
	Highlighting Defects in Design Layout

	Bridge and Open Extraction Output Files
	Log File
	UDFM File

	Critical Area-Based Bridge Pattern Generation
	Bridge Fault Model
	How to Generate Bridge Patterns

	Critical Area-Based Open Pattern Generation
	Open Fault Model
	How to Generate Open Patterns

	Cell Neighborhood Defects UDFM Creation
	Inter-Cell Data File
	The Marker File

	Pattern Generation for a Boundary Scan Circuit
	About Dofile
	TAP Controller State Machine
	About the Test Procedure File

	MacroTest Overview
	The MacroTest Process Flow
	Macro Qualification for MacroTest
	When to Use MacroTest
	Macro Boundary Definition
	Macro Boundary Definition by Instance Name
	Macro Boundary Definition Without Using an Instance Name
	Observation Site Specification and Reporting
	Macro Boundary Definition With Trailing Edge Inputs

	Test Values Definition
	Recommendations for MacroTest Use
	MacroTest Examples

	Verifying Test Patterns
	Design Simulation With Timing
	The Verilog Testbench
	Verilog Simulation
	Verilog Plusargs
	Clock Monitoring During Simulation
	Parallel Scan Cell Monitoring During Serial Scan Pattern Simulation
	How To Reduce Simulation Runtime

	Parallel Versus Serial Patterns

	Potential Causes of Simulation Mismatches
	Simulation Mismatch Investigation
	DRC Issues
	Shadow Cells
	Library Problems
	Timing Violations
	Simulation Data Analysis
	Simulation Mismatch Analysis
	The Simulation Mismatch Analysis Flow
	Automatically Analyzing Simulation Mismatches
	Manually Analyzing Simulation Mismatches
	Patterns Analysis
	Clock-Skew Problems With Mux-DFF Designs

	Chapter 9 Multiprocessing for ATPG and Simulation
	Definition of Multiprocessing Terms
	Multiprocessing to Reduce Runtime
	Multiprocessing Requirements

	Procedures for Multiprocessing
	Using Multiprocessing for ATPG and Simulation
	Using Multiprocessing to Write Patterns
	SSH Environment and Passphrase Errors
	How to Disable Multithreading Functionality
	Threads Addition to the Primary Process
	Processor Addition in Manual Mode
	Processor Addition in Grid Mode
	Processor Addition to the LSF Grid
	Manual Mode Processor Deletion
	Grid Mode Processor Deletion

	Recommendations For Utilizing Multiprocessing

	Chapter 10 Scan Pattern Retargeting
	Tools and Licensing Required for Scan Retargeting
	Scan Pattern Retargeting Process Overview
	Core-Level Pattern Generation
	Scan Pattern Retargeting of Test Patterns
	Chip-Level Test Procedures
	External_capture Procedure
	Test Procedure Retargeting for Scan Pattern Retargeting
	Scan Pattern Retargeting Without a Netlist
	Retargeting Support For Patterns Generated at the Top Level

	Generating Patterns at the Core Level
	Retargeting Patterns in Internal Mode
	Extracting Connectivity Between the Top Level and the Core Boundary
	Retargeting Patterns Without a Top-Level Netlist
	Generating Patterns in External Mode
	Retargeting Example
	Core-level Pattern Generation for CPU Cores
	Core-level Pattern Generation for NB Core
	Retargeting of Patterns at the Chip Level
	Retargeting of Patterns at the Chip Level Without a Netlist

	Core-in-Core Pattern Retargeting
	Core-in-Core Pattern Retargeting Flow
	Generation of Child Core Internal Mode Patterns
	Retargeting Child Core Internal Mode Patterns
	Generation of Parent Internal Mode Patterns
	Retargeting of Parent Internal Mode Patterns

	multiple loadScan Pattern Retargeting Limitations

	Chapter 11 Test Pattern Formatting and Timing
	Test Pattern Timing Overview
	Timing Terminology
	General Timing Issues
	Generating a Procedure File
	Defining and Modifying Timeplates
	Delaying Clock Pulses in Shift and Capture to Handle Slow Scan Enable Transitions
	Delaying Clocks After All Scan Enable Transitions (Recommended)
	Transitions From Shift to Capture
	Transition from Capture to Shift

	Saving Timing Patterns
	Features of the Formatter
	Pattern Formatting Issues
	Serial Versus Parallel Scan Chain Loading
	Parallel Scan Chain Loading
	Reduce Serial Loading Simulation Time With Sampling
	Test Pattern Data Support for IDDQ

	Basic Test Data Formats for Patterns
	Text Format
	Comparing the Text Format With Other Test Data Formats
	Binary
	Verilog
	Wave Generation Language (ASCII)
	Standard Test Interface Language (STIL)

	ASIC Vendor Data Formats
	TI TDL 91
	Fujitsu FTDL-E
	Mitsubishi TDL
	Toshiba TSTL2

	Vector Creation and Modification
	Port List Modification
	Vector Data Callbacks
	Used Ports and Vector Callback Examples

	Chapter 12 Test Pattern File Formats
	ASCII File Format
	Header_Data
	ASCII Setup_Data
	Functional_Chain_Test
	Scan_Test
	Scan_Cell

	BIST Pattern File Format
	BIST Pattern Setup_Data
	Scan_Test for BIST

	Chapter 13 Power-Aware DRC and ATPG
	Power-Aware Overview
	Assumptions and Limitations
	Multiple Power Mode Test Flow
	Power-Aware ATPG for Traditional Fault Models

	CPF and UPF Parser
	Power-Aware ATPG Procedure
	Power-Aware Flow Examples

	Chapter 14 Low-Power Design Test
	Low-Power Testing Overview
	Low-Power Assumptions and Limitations
	Low-Power CPF/UPF Parameters

	Scan Insertion
	Power-Aware Design Rule Checks
	Low-Power DRCs
	Low-Power DRC Troubleshooting

	Power State-Aware ATPG
	Power Domain Testing
	Low-Power Cell Testing
	Level Shifters
	Isolation Cells

	Chapter 15 Defect-Oriented Test
	Cell-Internal Defects and Port Faults
	Interconnect Bridge Defects
	Interconnect Open Defects
	Cell Neighborhood Bridge Defects
	Critical Area Calculation
	Critical Area Calculation Formula for Bridges
	Critical Area Calculation Formula for Opens and Vias
	Alternative Critical Area Calculation Formula for Bridges

	Timing-Aware Pattern Generation for Cell- Internal Defects
	UDFM
	License Information
	Example Designs
	ls169
	cat_chip

	Chapter 16 Using MTFI Files
	MTFI File Format
	MTFI Features
	Support of Fault Classes and Sub-Classes
	Support of Stuck and Transition Fault Information
	Support of N-Detect Values
	Support of Different Fault Types in the Same File
	Support for Hierarchical Fault Accounting

	Commands that Support MTFI

	Chapter 17 Graybox Overview
	What Is a Graybox?
	Graybox Process Overview
	Example dofile for Creating a Graybox Netlist
	Graybox Netlist Generation for EDT Logic Inserted Blocks

	Chapter 18 Tessent On-Chip Clock Controller
	General OCC Overview
	Primary OCC Functions

	Tessent OCC Overview
	Design Placement
	Operating Modes
	Timing Diagrams
	OCC Interface
	IJTAG Interface

	Inserting the Tessent OCC
	Inserting the OCC
	occ.dft_spec
	OCC Insertion When Using an Existing Clock as the test_clk DFT Signal

	Recommendations
	Miscellaneous Overview Topics
	OCC With Capture Enable
	Slow Clock Driving Sequential Elements
	Scan Enable Synchronization
	Slow Clock Pulses in Capture
	Fast Clock With Slower Frequency Than Slow Clock
	Fast Capture
	Bypass Shift Path

	Tessent OCC Types and Usage
	The Standard OCC
	Parent-Mode Operation
	Child-Mode Operation

	The Synchronous OCC
	Introduction
	Launch and Capture Aligned Clocking
	Synchronous OCC Functionality
	Sync-OCC Schematics
	Multiple Clocks of the Same Frequency
	Mix of Synchronous Divided Clocks and Same Frequency Clocks
	Bypass Shift Register

	Usage Scenarios
	Sync-OCC Generation and Insertion Using DftSpecification
	Enabling the OCC for ATPG
	Timing Constraints

	Synchronous OCC Generation and Insertion
	Synchronous DftSpecification Definition Rules
	DftSpecification Property: pulse_to_align
	Interface Port Naming Convention

	DftSpecification Examples
	DftSpecification For Insertion Flow
	DftSpecification For Non-insertion Flow

	Synchronous OCC Simulations
	Sync-OCC Fast Clock Input Synchronization Monitoring
	Sync-OCC Fast Clock Input Synchronization Display Messages

	Limitations

	The Mini-OCC

	Appendix A Clock Gaters
	Basic Clock Gater Cell
	Two Types of Embedding
	Non-DRC Violation Clock Gater Embedding (Type-A)
	Potential DRC Violation Clock Gater Embedding (Type-B)
	Type-B Scan Chain Tracing Failures (T3 Violations)
	Scan Cell Data Captures When Clocks are Off
	Driving LE Flops With Type-B Clock Gaters

	Cascaded Clock Gaters
	Level-2 Clock Gater
	Example Combinations of Cascaded Clock Gaters

	Clock Gater Configuration Support Summary

	Appendix B State Stability Issues
	Display of State Stability Data
	State Stability Data Format
	State Stability Examples
	Example 1 — Basic Example
	Example 2 — Multiple Cycles in Load_unload Prior to Shift
	Example 3 — Drc_pattern Reporting for Pulse Generators
	Example 4 — Single Post Shift
	Example 5 — Single Post Shift With Cycles Between Main and Post Shift
	Example 6 — Cycles After Apply Shift Statement in Load_unload
	Example 7 — No Statements in Load_unload Prior to Apply Shift
	Example 8 — Basic With Specified Capture Clock
	Example 9 — Setting Stability Check to Off and All_shift
	Example 10 — Pin Constraints, Test_setup, and State Stability
	Example 11 — Single Pre Shift
	Example 12 — Basic With Enhanced Stability Check for NCPs

	Appendix C Tessent Shell Batch Jobs
	Commands and Variables for the dofile
	Command Line Options
	Scheduling a Batch Job for Running Later

	Appendix D Net Pair Identification With Calibre for Bridge Fault Test Patterns
	The Static Bridge Fault Model
	Four-Way Dominant Fault Model
	Top-level Bridging ATPG
	Incremental Multi-Fault ATPG
	The Bridge Parameters File

	Appendix E Getting Help
	The Tessent Documentation System
	Global Customer Support and Success

	Index
	Third-Party Information
	Documentation Feedback

